xref: /sqlite-3.40.0/src/malloc.c (revision 06ae6792)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** This routine runs when the memory allocator sees that the
20 ** total memory allocation is about to exceed the soft heap
21 ** limit.
22 */
23 static void softHeapLimitEnforcer(
24   void *NotUsed,
25   sqlite3_int64 NotUsed2,
26   int allocSize
27 ){
28   UNUSED_PARAMETER2(NotUsed, NotUsed2);
29   sqlite3_release_memory(allocSize);
30 }
31 
32 /*
33 ** Set the soft heap-size limit for the library. Passing a zero or
34 ** negative value indicates no limit.
35 */
36 void sqlite3_soft_heap_limit(int n){
37   sqlite3_uint64 iLimit;
38   int overage;
39   if( n<0 ){
40     iLimit = 0;
41   }else{
42     iLimit = n;
43   }
44 #ifndef SQLITE_OMIT_AUTOINIT
45   sqlite3_initialize();
46 #endif
47   if( iLimit>0 ){
48     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
49   }else{
50     sqlite3MemoryAlarm(0, 0, 0);
51   }
52   overage = (int)(sqlite3_memory_used() - (i64)n);
53   if( overage>0 ){
54     sqlite3_release_memory(overage);
55   }
56 }
57 
58 /*
59 ** Attempt to release up to n bytes of non-essential memory currently
60 ** held by SQLite. An example of non-essential memory is memory used to
61 ** cache database pages that are not currently in use.
62 */
63 int sqlite3_release_memory(int n){
64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
65   return sqlite3PcacheReleaseMemory(n);
66 #else
67   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
68   ** is a no-op returning zero if SQLite is not compiled with
69   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
70   UNUSED_PARAMETER(n);
71   return 0;
72 #endif
73 }
74 
75 /*
76 ** An instance of the following object records the location of
77 ** each unused scratch buffer.
78 */
79 typedef struct ScratchFreeslot {
80   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
81 } ScratchFreeslot;
82 
83 /*
84 ** State information local to the memory allocation subsystem.
85 */
86 static SQLITE_WSD struct Mem0Global {
87   sqlite3_mutex *mutex;         /* Mutex to serialize access */
88 
89   /*
90   ** The alarm callback and its arguments.  The mem0.mutex lock will
91   ** be held while the callback is running.  Recursive calls into
92   ** the memory subsystem are allowed, but no new callbacks will be
93   ** issued.
94   */
95   sqlite3_int64 alarmThreshold;
96   void (*alarmCallback)(void*, sqlite3_int64,int);
97   void *alarmArg;
98 
99   /*
100   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
101   ** (so that a range test can be used to determine if an allocation
102   ** being freed came from pScratch) and a pointer to the list of
103   ** unused scratch allocations.
104   */
105   void *pScratchEnd;
106   ScratchFreeslot *pScratchFree;
107   u32 nScratchFree;
108 
109   /*
110   ** True if heap is nearly "full" where "full" is defined by the
111   ** sqlite3_soft_heap_limit() setting.
112   */
113   int nearlyFull;
114 } mem0 = { 0, 0, 0, 0, 0, 0, 0 };
115 
116 #define mem0 GLOBAL(struct Mem0Global, mem0)
117 
118 /*
119 ** Initialize the memory allocation subsystem.
120 */
121 int sqlite3MallocInit(void){
122   if( sqlite3GlobalConfig.m.xMalloc==0 ){
123     sqlite3MemSetDefault();
124   }
125   memset(&mem0, 0, sizeof(mem0));
126   if( sqlite3GlobalConfig.bCoreMutex ){
127     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
128   }
129   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
130       && sqlite3GlobalConfig.nScratch>0 ){
131     int i, n, sz;
132     ScratchFreeslot *pSlot;
133     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
134     sqlite3GlobalConfig.szScratch = sz;
135     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
136     n = sqlite3GlobalConfig.nScratch;
137     mem0.pScratchFree = pSlot;
138     mem0.nScratchFree = n;
139     for(i=0; i<n-1; i++){
140       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
141       pSlot = pSlot->pNext;
142     }
143     pSlot->pNext = 0;
144     mem0.pScratchEnd = (void*)&pSlot[1];
145   }else{
146     mem0.pScratchEnd = 0;
147     sqlite3GlobalConfig.pScratch = 0;
148     sqlite3GlobalConfig.szScratch = 0;
149     sqlite3GlobalConfig.nScratch = 0;
150   }
151   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
152       || sqlite3GlobalConfig.nPage<1 ){
153     sqlite3GlobalConfig.pPage = 0;
154     sqlite3GlobalConfig.szPage = 0;
155     sqlite3GlobalConfig.nPage = 0;
156   }
157   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
158 }
159 
160 /*
161 ** Return true if the heap is currently under memory pressure - in other
162 ** words if the amount of heap used is close to the limit set by
163 ** sqlite3_soft_heap_limit().
164 */
165 int sqlite3HeapNearlyFull(void){
166   return mem0.nearlyFull;
167 }
168 
169 /*
170 ** Deinitialize the memory allocation subsystem.
171 */
172 void sqlite3MallocEnd(void){
173   if( sqlite3GlobalConfig.m.xShutdown ){
174     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
175   }
176   memset(&mem0, 0, sizeof(mem0));
177 }
178 
179 /*
180 ** Return the amount of memory currently checked out.
181 */
182 sqlite3_int64 sqlite3_memory_used(void){
183   int n, mx;
184   sqlite3_int64 res;
185   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
186   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
187   return res;
188 }
189 
190 /*
191 ** Return the maximum amount of memory that has ever been
192 ** checked out since either the beginning of this process
193 ** or since the most recent reset.
194 */
195 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
196   int n, mx;
197   sqlite3_int64 res;
198   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
199   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
200   return res;
201 }
202 
203 /*
204 ** Change the alarm callback
205 */
206 int sqlite3MemoryAlarm(
207   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
208   void *pArg,
209   sqlite3_int64 iThreshold
210 ){
211   int nUsed;
212   sqlite3_mutex_enter(mem0.mutex);
213   mem0.alarmCallback = xCallback;
214   mem0.alarmArg = pArg;
215   mem0.alarmThreshold = iThreshold;
216   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
217   mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
218   sqlite3_mutex_leave(mem0.mutex);
219   return SQLITE_OK;
220 }
221 
222 #ifndef SQLITE_OMIT_DEPRECATED
223 /*
224 ** Deprecated external interface.  Internal/core SQLite code
225 ** should call sqlite3MemoryAlarm.
226 */
227 int sqlite3_memory_alarm(
228   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
229   void *pArg,
230   sqlite3_int64 iThreshold
231 ){
232   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
233 }
234 #endif
235 
236 /*
237 ** Trigger the alarm
238 */
239 static void sqlite3MallocAlarm(int nByte){
240   void (*xCallback)(void*,sqlite3_int64,int);
241   sqlite3_int64 nowUsed;
242   void *pArg;
243   if( mem0.alarmCallback==0 ) return;
244   xCallback = mem0.alarmCallback;
245   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
246   pArg = mem0.alarmArg;
247   mem0.alarmCallback = 0;
248   sqlite3_mutex_leave(mem0.mutex);
249   xCallback(pArg, nowUsed, nByte);
250   sqlite3_mutex_enter(mem0.mutex);
251   mem0.alarmCallback = xCallback;
252   mem0.alarmArg = pArg;
253 }
254 
255 /*
256 ** Do a memory allocation with statistics and alarms.  Assume the
257 ** lock is already held.
258 */
259 static int mallocWithAlarm(int n, void **pp){
260   int nFull;
261   void *p;
262   assert( sqlite3_mutex_held(mem0.mutex) );
263   nFull = sqlite3GlobalConfig.m.xRoundup(n);
264   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
265   if( mem0.alarmCallback!=0 ){
266     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
267     if( nUsed+nFull >= mem0.alarmThreshold ){
268       mem0.nearlyFull = 1;
269       sqlite3MallocAlarm(nFull);
270     }else{
271       mem0.nearlyFull = 0;
272     }
273   }
274   p = sqlite3GlobalConfig.m.xMalloc(nFull);
275 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
276   if( p==0 && mem0.alarmCallback ){
277     sqlite3MallocAlarm(nFull);
278     p = sqlite3GlobalConfig.m.xMalloc(nFull);
279   }
280 #endif
281   if( p ){
282     nFull = sqlite3MallocSize(p);
283     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
284     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
285   }
286   *pp = p;
287   return nFull;
288 }
289 
290 /*
291 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
292 ** assumes the memory subsystem has already been initialized.
293 */
294 void *sqlite3Malloc(int n){
295   void *p;
296   if( n<=0 || n>=0x7fffff00 ){
297     /* A memory allocation of a number of bytes which is near the maximum
298     ** signed integer value might cause an integer overflow inside of the
299     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
300     ** 255 bytes of overhead.  SQLite itself will never use anything near
301     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
302     p = 0;
303   }else if( sqlite3GlobalConfig.bMemstat ){
304     sqlite3_mutex_enter(mem0.mutex);
305     mallocWithAlarm(n, &p);
306     sqlite3_mutex_leave(mem0.mutex);
307   }else{
308     p = sqlite3GlobalConfig.m.xMalloc(n);
309   }
310   return p;
311 }
312 
313 /*
314 ** This version of the memory allocation is for use by the application.
315 ** First make sure the memory subsystem is initialized, then do the
316 ** allocation.
317 */
318 void *sqlite3_malloc(int n){
319 #ifndef SQLITE_OMIT_AUTOINIT
320   if( sqlite3_initialize() ) return 0;
321 #endif
322   return sqlite3Malloc(n);
323 }
324 
325 /*
326 ** Each thread may only have a single outstanding allocation from
327 ** xScratchMalloc().  We verify this constraint in the single-threaded
328 ** case by setting scratchAllocOut to 1 when an allocation
329 ** is outstanding clearing it when the allocation is freed.
330 */
331 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
332 static int scratchAllocOut = 0;
333 #endif
334 
335 
336 /*
337 ** Allocate memory that is to be used and released right away.
338 ** This routine is similar to alloca() in that it is not intended
339 ** for situations where the memory might be held long-term.  This
340 ** routine is intended to get memory to old large transient data
341 ** structures that would not normally fit on the stack of an
342 ** embedded processor.
343 */
344 void *sqlite3ScratchMalloc(int n){
345   void *p;
346   assert( n>0 );
347 
348   sqlite3_mutex_enter(mem0.mutex);
349   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
350     p = mem0.pScratchFree;
351     mem0.pScratchFree = mem0.pScratchFree->pNext;
352     mem0.nScratchFree--;
353     sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
354     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
355     sqlite3_mutex_leave(mem0.mutex);
356   }else{
357     if( sqlite3GlobalConfig.bMemstat ){
358       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
359       n = mallocWithAlarm(n, &p);
360       if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
361       sqlite3_mutex_leave(mem0.mutex);
362     }else{
363       sqlite3_mutex_leave(mem0.mutex);
364       p = sqlite3GlobalConfig.m.xMalloc(n);
365     }
366     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
367   }
368   assert( sqlite3_mutex_notheld(mem0.mutex) );
369 
370 
371 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
372   /* Verify that no more than two scratch allocations per thread
373   ** are outstanding at one time.  (This is only checked in the
374   ** single-threaded case since checking in the multi-threaded case
375   ** would be much more complicated.) */
376   assert( scratchAllocOut<=1 );
377   if( p ) scratchAllocOut++;
378 #endif
379 
380   return p;
381 }
382 void sqlite3ScratchFree(void *p){
383   if( p ){
384 
385 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
386     /* Verify that no more than two scratch allocation per thread
387     ** is outstanding at one time.  (This is only checked in the
388     ** single-threaded case since checking in the multi-threaded case
389     ** would be much more complicated.) */
390     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
391     scratchAllocOut--;
392 #endif
393 
394     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
395       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
396       ScratchFreeslot *pSlot;
397       pSlot = (ScratchFreeslot*)p;
398       sqlite3_mutex_enter(mem0.mutex);
399       pSlot->pNext = mem0.pScratchFree;
400       mem0.pScratchFree = pSlot;
401       mem0.nScratchFree++;
402       assert( mem0.nScratchFree<=sqlite3GlobalConfig.nScratch );
403       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
404       sqlite3_mutex_leave(mem0.mutex);
405     }else{
406       /* Release memory back to the heap */
407       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
408       assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
409       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
410       if( sqlite3GlobalConfig.bMemstat ){
411         int iSize = sqlite3MallocSize(p);
412         sqlite3_mutex_enter(mem0.mutex);
413         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
414         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
415         sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
416         sqlite3GlobalConfig.m.xFree(p);
417         sqlite3_mutex_leave(mem0.mutex);
418       }else{
419         sqlite3GlobalConfig.m.xFree(p);
420       }
421     }
422   }
423 }
424 
425 /*
426 ** TRUE if p is a lookaside memory allocation from db
427 */
428 #ifndef SQLITE_OMIT_LOOKASIDE
429 static int isLookaside(sqlite3 *db, void *p){
430   return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
431 }
432 #else
433 #define isLookaside(A,B) 0
434 #endif
435 
436 /*
437 ** Return the size of a memory allocation previously obtained from
438 ** sqlite3Malloc() or sqlite3_malloc().
439 */
440 int sqlite3MallocSize(void *p){
441   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
442   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
443   return sqlite3GlobalConfig.m.xSize(p);
444 }
445 int sqlite3DbMallocSize(sqlite3 *db, void *p){
446   assert( db==0 || sqlite3_mutex_held(db->mutex) );
447   if( db && isLookaside(db, p) ){
448     return db->lookaside.sz;
449   }else{
450     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
451     assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
452     assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
453     return sqlite3GlobalConfig.m.xSize(p);
454   }
455 }
456 
457 /*
458 ** Free memory previously obtained from sqlite3Malloc().
459 */
460 void sqlite3_free(void *p){
461   if( p==0 ) return;
462   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
463   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
464   if( sqlite3GlobalConfig.bMemstat ){
465     sqlite3_mutex_enter(mem0.mutex);
466     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
467     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
468     sqlite3GlobalConfig.m.xFree(p);
469     sqlite3_mutex_leave(mem0.mutex);
470   }else{
471     sqlite3GlobalConfig.m.xFree(p);
472   }
473 }
474 
475 /*
476 ** Free memory that might be associated with a particular database
477 ** connection.
478 */
479 void sqlite3DbFree(sqlite3 *db, void *p){
480   assert( db==0 || sqlite3_mutex_held(db->mutex) );
481   if( db ){
482     if( db->pnBytesFreed ){
483       *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
484       return;
485     }
486     if( isLookaside(db, p) ){
487       LookasideSlot *pBuf = (LookasideSlot*)p;
488       pBuf->pNext = db->lookaside.pFree;
489       db->lookaside.pFree = pBuf;
490       db->lookaside.nOut--;
491       return;
492     }
493   }
494   assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
495   assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
496   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
497   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
498   sqlite3_free(p);
499 }
500 
501 /*
502 ** Change the size of an existing memory allocation
503 */
504 void *sqlite3Realloc(void *pOld, int nBytes){
505   int nOld, nNew;
506   void *pNew;
507   if( pOld==0 ){
508     return sqlite3Malloc(nBytes);
509   }
510   if( nBytes<=0 ){
511     sqlite3_free(pOld);
512     return 0;
513   }
514   if( nBytes>=0x7fffff00 ){
515     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
516     return 0;
517   }
518   nOld = sqlite3MallocSize(pOld);
519   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
520   ** argument to xRealloc is always a value returned by a prior call to
521   ** xRoundup. */
522   nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
523   if( nOld==nNew ){
524     pNew = pOld;
525   }else if( sqlite3GlobalConfig.bMemstat ){
526     sqlite3_mutex_enter(mem0.mutex);
527     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
528     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
529           mem0.alarmThreshold ){
530       sqlite3MallocAlarm(nNew-nOld);
531     }
532     assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
533     assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
534     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
535     if( pNew==0 && mem0.alarmCallback ){
536       sqlite3MallocAlarm(nBytes);
537       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
538     }
539     if( pNew ){
540       nNew = sqlite3MallocSize(pNew);
541       sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
542     }
543     sqlite3_mutex_leave(mem0.mutex);
544   }else{
545     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
546   }
547   return pNew;
548 }
549 
550 /*
551 ** The public interface to sqlite3Realloc.  Make sure that the memory
552 ** subsystem is initialized prior to invoking sqliteRealloc.
553 */
554 void *sqlite3_realloc(void *pOld, int n){
555 #ifndef SQLITE_OMIT_AUTOINIT
556   if( sqlite3_initialize() ) return 0;
557 #endif
558   return sqlite3Realloc(pOld, n);
559 }
560 
561 
562 /*
563 ** Allocate and zero memory.
564 */
565 void *sqlite3MallocZero(int n){
566   void *p = sqlite3Malloc(n);
567   if( p ){
568     memset(p, 0, n);
569   }
570   return p;
571 }
572 
573 /*
574 ** Allocate and zero memory.  If the allocation fails, make
575 ** the mallocFailed flag in the connection pointer.
576 */
577 void *sqlite3DbMallocZero(sqlite3 *db, int n){
578   void *p = sqlite3DbMallocRaw(db, n);
579   if( p ){
580     memset(p, 0, n);
581   }
582   return p;
583 }
584 
585 /*
586 ** Allocate and zero memory.  If the allocation fails, make
587 ** the mallocFailed flag in the connection pointer.
588 **
589 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
590 ** failure on the same database connection) then always return 0.
591 ** Hence for a particular database connection, once malloc starts
592 ** failing, it fails consistently until mallocFailed is reset.
593 ** This is an important assumption.  There are many places in the
594 ** code that do things like this:
595 **
596 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
597 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
598 **         if( b ) a[10] = 9;
599 **
600 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
601 ** that all prior mallocs (ex: "a") worked too.
602 */
603 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
604   void *p;
605   assert( db==0 || sqlite3_mutex_held(db->mutex) );
606   assert( db==0 || db->pnBytesFreed==0 );
607 #ifndef SQLITE_OMIT_LOOKASIDE
608   if( db ){
609     LookasideSlot *pBuf;
610     if( db->mallocFailed ){
611       return 0;
612     }
613     if( db->lookaside.bEnabled && n<=db->lookaside.sz
614          && (pBuf = db->lookaside.pFree)!=0 ){
615       db->lookaside.pFree = pBuf->pNext;
616       db->lookaside.nOut++;
617       if( db->lookaside.nOut>db->lookaside.mxOut ){
618         db->lookaside.mxOut = db->lookaside.nOut;
619       }
620       return (void*)pBuf;
621     }
622   }
623 #else
624   if( db && db->mallocFailed ){
625     return 0;
626   }
627 #endif
628   p = sqlite3Malloc(n);
629   if( !p && db ){
630     db->mallocFailed = 1;
631   }
632   sqlite3MemdebugSetType(p, MEMTYPE_DB |
633          ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
634   return p;
635 }
636 
637 /*
638 ** Resize the block of memory pointed to by p to n bytes. If the
639 ** resize fails, set the mallocFailed flag in the connection object.
640 */
641 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
642   void *pNew = 0;
643   assert( db!=0 );
644   assert( sqlite3_mutex_held(db->mutex) );
645   if( db->mallocFailed==0 ){
646     if( p==0 ){
647       return sqlite3DbMallocRaw(db, n);
648     }
649     if( isLookaside(db, p) ){
650       if( n<=db->lookaside.sz ){
651         return p;
652       }
653       pNew = sqlite3DbMallocRaw(db, n);
654       if( pNew ){
655         memcpy(pNew, p, db->lookaside.sz);
656         sqlite3DbFree(db, p);
657       }
658     }else{
659       assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
660       assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
661       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
662       pNew = sqlite3_realloc(p, n);
663       if( !pNew ){
664         sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
665         db->mallocFailed = 1;
666       }
667       sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
668             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
669     }
670   }
671   return pNew;
672 }
673 
674 /*
675 ** Attempt to reallocate p.  If the reallocation fails, then free p
676 ** and set the mallocFailed flag in the database connection.
677 */
678 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
679   void *pNew;
680   pNew = sqlite3DbRealloc(db, p, n);
681   if( !pNew ){
682     sqlite3DbFree(db, p);
683   }
684   return pNew;
685 }
686 
687 /*
688 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
689 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
690 ** is because when memory debugging is turned on, these two functions are
691 ** called via macros that record the current file and line number in the
692 ** ThreadData structure.
693 */
694 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
695   char *zNew;
696   size_t n;
697   if( z==0 ){
698     return 0;
699   }
700   n = sqlite3Strlen30(z) + 1;
701   assert( (n&0x7fffffff)==n );
702   zNew = sqlite3DbMallocRaw(db, (int)n);
703   if( zNew ){
704     memcpy(zNew, z, n);
705   }
706   return zNew;
707 }
708 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
709   char *zNew;
710   if( z==0 ){
711     return 0;
712   }
713   assert( (n&0x7fffffff)==n );
714   zNew = sqlite3DbMallocRaw(db, n+1);
715   if( zNew ){
716     memcpy(zNew, z, n);
717     zNew[n] = 0;
718   }
719   return zNew;
720 }
721 
722 /*
723 ** Create a string from the zFromat argument and the va_list that follows.
724 ** Store the string in memory obtained from sqliteMalloc() and make *pz
725 ** point to that string.
726 */
727 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
728   va_list ap;
729   char *z;
730 
731   va_start(ap, zFormat);
732   z = sqlite3VMPrintf(db, zFormat, ap);
733   va_end(ap);
734   sqlite3DbFree(db, *pz);
735   *pz = z;
736 }
737 
738 
739 /*
740 ** This function must be called before exiting any API function (i.e.
741 ** returning control to the user) that has called sqlite3_malloc or
742 ** sqlite3_realloc.
743 **
744 ** The returned value is normally a copy of the second argument to this
745 ** function. However, if a malloc() failure has occurred since the previous
746 ** invocation SQLITE_NOMEM is returned instead.
747 **
748 ** If the first argument, db, is not NULL and a malloc() error has occurred,
749 ** then the connection error-code (the value returned by sqlite3_errcode())
750 ** is set to SQLITE_NOMEM.
751 */
752 int sqlite3ApiExit(sqlite3* db, int rc){
753   /* If the db handle is not NULL, then we must hold the connection handle
754   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
755   ** is unsafe, as is the call to sqlite3Error().
756   */
757   assert( !db || sqlite3_mutex_held(db->mutex) );
758   if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
759     sqlite3Error(db, SQLITE_NOMEM, 0);
760     db->mallocFailed = 0;
761     rc = SQLITE_NOMEM;
762   }
763   return rc & (db ? db->errMask : 0xff);
764 }
765