1a3152895Sdrh /* 2a3152895Sdrh ** 2001 September 15 3a3152895Sdrh ** 4a3152895Sdrh ** The author disclaims copyright to this source code. In place of 5a3152895Sdrh ** a legal notice, here is a blessing: 6a3152895Sdrh ** 7a3152895Sdrh ** May you do good and not evil. 8a3152895Sdrh ** May you find forgiveness for yourself and forgive others. 9a3152895Sdrh ** May you share freely, never taking more than you give. 10a3152895Sdrh ** 11a3152895Sdrh ************************************************************************* 12fec00eabSdrh ** 13a3152895Sdrh ** Memory allocation functions used throughout sqlite. 14a3152895Sdrh */ 15a3152895Sdrh #include "sqliteInt.h" 16a3152895Sdrh #include <stdarg.h> 17a3152895Sdrh 18a3152895Sdrh /* 198468024dSdanielk1977 ** Attempt to release up to n bytes of non-essential memory currently 208468024dSdanielk1977 ** held by SQLite. An example of non-essential memory is memory used to 218468024dSdanielk1977 ** cache database pages that are not currently in use. 22a3152895Sdrh */ 23a3152895Sdrh int sqlite3_release_memory(int n){ 2486f8c197Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 259f129f46Sdrh return sqlite3PcacheReleaseMemory(n); 261e536953Sdanielk1977 #else 279f129f46Sdrh /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 289f129f46Sdrh ** is a no-op returning zero if SQLite is not compiled with 299f129f46Sdrh ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 3062c14b34Sdanielk1977 UNUSED_PARAMETER(n); 319f129f46Sdrh return 0; 321e536953Sdanielk1977 #endif 33a3152895Sdrh } 34a3152895Sdrh 35fec00eabSdrh /* 36badc980aSdrh ** An instance of the following object records the location of 37badc980aSdrh ** each unused scratch buffer. 38badc980aSdrh */ 39badc980aSdrh typedef struct ScratchFreeslot { 40badc980aSdrh struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41badc980aSdrh } ScratchFreeslot; 42badc980aSdrh 43badc980aSdrh /* 44fec00eabSdrh ** State information local to the memory allocation subsystem. 45fec00eabSdrh */ 465c8f8587Sdanielk1977 static SQLITE_WSD struct Mem0Global { 47fec00eabSdrh sqlite3_mutex *mutex; /* Mutex to serialize access */ 48fec00eabSdrh 49fec00eabSdrh /* 50fec00eabSdrh ** The alarm callback and its arguments. The mem0.mutex lock will 51fec00eabSdrh ** be held while the callback is running. Recursive calls into 52fec00eabSdrh ** the memory subsystem are allowed, but no new callbacks will be 53e64ca7baSdrh ** issued. 54fec00eabSdrh */ 55fec00eabSdrh sqlite3_int64 alarmThreshold; 56fec00eabSdrh void (*alarmCallback)(void*, sqlite3_int64,int); 57fec00eabSdrh void *alarmArg; 58fec00eabSdrh 59fec00eabSdrh /* 60badc980aSdrh ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61badc980aSdrh ** (so that a range test can be used to determine if an allocation 62badc980aSdrh ** being freed came from pScratch) and a pointer to the list of 63badc980aSdrh ** unused scratch allocations. 649ac3fe97Sdrh */ 65badc980aSdrh void *pScratchEnd; 66badc980aSdrh ScratchFreeslot *pScratchFree; 67badc980aSdrh u32 nScratchFree; 6850d1b5f3Sdrh 6950d1b5f3Sdrh /* 7050d1b5f3Sdrh ** True if heap is nearly "full" where "full" is defined by the 7150d1b5f3Sdrh ** sqlite3_soft_heap_limit() setting. 7250d1b5f3Sdrh */ 7350d1b5f3Sdrh int nearlyFull; 746ac78a0dSdrh } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 755c8f8587Sdanielk1977 765c8f8587Sdanielk1977 #define mem0 GLOBAL(struct Mem0Global, mem0) 77fec00eabSdrh 78fec00eabSdrh /* 79f82ccf64Sdrh ** This routine runs when the memory allocator sees that the 80f82ccf64Sdrh ** total memory allocation is about to exceed the soft heap 81f82ccf64Sdrh ** limit. 82f82ccf64Sdrh */ 83f82ccf64Sdrh static void softHeapLimitEnforcer( 84f82ccf64Sdrh void *NotUsed, 85f82ccf64Sdrh sqlite3_int64 NotUsed2, 86f82ccf64Sdrh int allocSize 87f82ccf64Sdrh ){ 88f82ccf64Sdrh UNUSED_PARAMETER2(NotUsed, NotUsed2); 89f82ccf64Sdrh sqlite3_release_memory(allocSize); 90f82ccf64Sdrh } 91f82ccf64Sdrh 92f82ccf64Sdrh /* 93f82ccf64Sdrh ** Change the alarm callback 94f82ccf64Sdrh */ 95f82ccf64Sdrh static int sqlite3MemoryAlarm( 96f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 97f82ccf64Sdrh void *pArg, 98f82ccf64Sdrh sqlite3_int64 iThreshold 99f82ccf64Sdrh ){ 100f82ccf64Sdrh int nUsed; 101f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 102f82ccf64Sdrh mem0.alarmCallback = xCallback; 103f82ccf64Sdrh mem0.alarmArg = pArg; 104f82ccf64Sdrh mem0.alarmThreshold = iThreshold; 105f82ccf64Sdrh nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 106f82ccf64Sdrh mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 107f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 108f82ccf64Sdrh return SQLITE_OK; 109f82ccf64Sdrh } 110f82ccf64Sdrh 111f82ccf64Sdrh #ifndef SQLITE_OMIT_DEPRECATED 112f82ccf64Sdrh /* 113f82ccf64Sdrh ** Deprecated external interface. Internal/core SQLite code 114f82ccf64Sdrh ** should call sqlite3MemoryAlarm. 115f82ccf64Sdrh */ 116f82ccf64Sdrh int sqlite3_memory_alarm( 117f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 118f82ccf64Sdrh void *pArg, 119f82ccf64Sdrh sqlite3_int64 iThreshold 120f82ccf64Sdrh ){ 121f82ccf64Sdrh return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 122f82ccf64Sdrh } 123f82ccf64Sdrh #endif 124f82ccf64Sdrh 125f82ccf64Sdrh /* 126f82ccf64Sdrh ** Set the soft heap-size limit for the library. Passing a zero or 127f82ccf64Sdrh ** negative value indicates no limit. 128f82ccf64Sdrh */ 129f82ccf64Sdrh sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 130f82ccf64Sdrh sqlite3_int64 priorLimit; 131f82ccf64Sdrh sqlite3_int64 excess; 132f82ccf64Sdrh #ifndef SQLITE_OMIT_AUTOINIT 133f82ccf64Sdrh sqlite3_initialize(); 134f82ccf64Sdrh #endif 135f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 136f82ccf64Sdrh priorLimit = mem0.alarmThreshold; 137f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 138f82ccf64Sdrh if( n<0 ) return priorLimit; 139f82ccf64Sdrh if( n>0 ){ 140f82ccf64Sdrh sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 141f82ccf64Sdrh }else{ 142f82ccf64Sdrh sqlite3MemoryAlarm(0, 0, 0); 143f82ccf64Sdrh } 144f82ccf64Sdrh excess = sqlite3_memory_used() - n; 1454b03f21eSshaneh if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 146f82ccf64Sdrh return priorLimit; 147f82ccf64Sdrh } 148f82ccf64Sdrh void sqlite3_soft_heap_limit(int n){ 149f82ccf64Sdrh if( n<0 ) n = 0; 150f82ccf64Sdrh sqlite3_soft_heap_limit64(n); 151f82ccf64Sdrh } 152f82ccf64Sdrh 153f82ccf64Sdrh /* 154fec00eabSdrh ** Initialize the memory allocation subsystem. 155fec00eabSdrh */ 156fec00eabSdrh int sqlite3MallocInit(void){ 157075c23afSdanielk1977 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 158fec00eabSdrh sqlite3MemSetDefault(); 159fec00eabSdrh } 160fec00eabSdrh memset(&mem0, 0, sizeof(mem0)); 161075c23afSdanielk1977 if( sqlite3GlobalConfig.bCoreMutex ){ 16259f8c08eSdanielk1977 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 163fec00eabSdrh } 164075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 1657ff2719eSdrh && sqlite3GlobalConfig.nScratch>0 ){ 166badc980aSdrh int i, n, sz; 167badc980aSdrh ScratchFreeslot *pSlot; 168badc980aSdrh sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 169badc980aSdrh sqlite3GlobalConfig.szScratch = sz; 170badc980aSdrh pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 171badc980aSdrh n = sqlite3GlobalConfig.nScratch; 172badc980aSdrh mem0.pScratchFree = pSlot; 173badc980aSdrh mem0.nScratchFree = n; 174badc980aSdrh for(i=0; i<n-1; i++){ 175badc980aSdrh pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 176badc980aSdrh pSlot = pSlot->pNext; 177badc980aSdrh } 178badc980aSdrh pSlot->pNext = 0; 179badc980aSdrh mem0.pScratchEnd = (void*)&pSlot[1]; 1809ac3fe97Sdrh }else{ 181badc980aSdrh mem0.pScratchEnd = 0; 182075c23afSdanielk1977 sqlite3GlobalConfig.pScratch = 0; 183075c23afSdanielk1977 sqlite3GlobalConfig.szScratch = 0; 184badc980aSdrh sqlite3GlobalConfig.nScratch = 0; 1859ac3fe97Sdrh } 18650d1b5f3Sdrh if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 18750d1b5f3Sdrh || sqlite3GlobalConfig.nPage<1 ){ 188075c23afSdanielk1977 sqlite3GlobalConfig.pPage = 0; 189075c23afSdanielk1977 sqlite3GlobalConfig.szPage = 0; 19050d1b5f3Sdrh sqlite3GlobalConfig.nPage = 0; 1919ac3fe97Sdrh } 192075c23afSdanielk1977 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 193fec00eabSdrh } 194fec00eabSdrh 195fec00eabSdrh /* 19650d1b5f3Sdrh ** Return true if the heap is currently under memory pressure - in other 19750d1b5f3Sdrh ** words if the amount of heap used is close to the limit set by 19850d1b5f3Sdrh ** sqlite3_soft_heap_limit(). 19950d1b5f3Sdrh */ 20050d1b5f3Sdrh int sqlite3HeapNearlyFull(void){ 20150d1b5f3Sdrh return mem0.nearlyFull; 20250d1b5f3Sdrh } 20350d1b5f3Sdrh 20450d1b5f3Sdrh /* 205fec00eabSdrh ** Deinitialize the memory allocation subsystem. 206fec00eabSdrh */ 207fec00eabSdrh void sqlite3MallocEnd(void){ 2080a549071Sdanielk1977 if( sqlite3GlobalConfig.m.xShutdown ){ 209075c23afSdanielk1977 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 2100a549071Sdanielk1977 } 2119ac3fe97Sdrh memset(&mem0, 0, sizeof(mem0)); 212fec00eabSdrh } 213fec00eabSdrh 214fec00eabSdrh /* 215fec00eabSdrh ** Return the amount of memory currently checked out. 216fec00eabSdrh */ 217fec00eabSdrh sqlite3_int64 sqlite3_memory_used(void){ 218f7141990Sdrh int n, mx; 219c376a198Sdrh sqlite3_int64 res; 220f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 221c376a198Sdrh res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 222c376a198Sdrh return res; 223fec00eabSdrh } 224fec00eabSdrh 225fec00eabSdrh /* 226fec00eabSdrh ** Return the maximum amount of memory that has ever been 227fec00eabSdrh ** checked out since either the beginning of this process 228fec00eabSdrh ** or since the most recent reset. 229fec00eabSdrh */ 230fec00eabSdrh sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 231f7141990Sdrh int n, mx; 232c376a198Sdrh sqlite3_int64 res; 233f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 2347986a71aSdrh res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 235c376a198Sdrh return res; 236fec00eabSdrh } 237fec00eabSdrh 238fec00eabSdrh /* 239fec00eabSdrh ** Trigger the alarm 240fec00eabSdrh */ 241fec00eabSdrh static void sqlite3MallocAlarm(int nByte){ 242fec00eabSdrh void (*xCallback)(void*,sqlite3_int64,int); 243fec00eabSdrh sqlite3_int64 nowUsed; 244fec00eabSdrh void *pArg; 245e64ca7baSdrh if( mem0.alarmCallback==0 ) return; 246fec00eabSdrh xCallback = mem0.alarmCallback; 247f7141990Sdrh nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 248fec00eabSdrh pArg = mem0.alarmArg; 249e64ca7baSdrh mem0.alarmCallback = 0; 250fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 251fec00eabSdrh xCallback(pArg, nowUsed, nByte); 252fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 253e64ca7baSdrh mem0.alarmCallback = xCallback; 254e64ca7baSdrh mem0.alarmArg = pArg; 255fec00eabSdrh } 256fec00eabSdrh 257fec00eabSdrh /* 258f7141990Sdrh ** Do a memory allocation with statistics and alarms. Assume the 259f7141990Sdrh ** lock is already held. 260fec00eabSdrh */ 261f7141990Sdrh static int mallocWithAlarm(int n, void **pp){ 262fec00eabSdrh int nFull; 263f7141990Sdrh void *p; 264f7141990Sdrh assert( sqlite3_mutex_held(mem0.mutex) ); 265075c23afSdanielk1977 nFull = sqlite3GlobalConfig.m.xRoundup(n); 266f7141990Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 267f7141990Sdrh if( mem0.alarmCallback!=0 ){ 268f7141990Sdrh int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 269f7141990Sdrh if( nUsed+nFull >= mem0.alarmThreshold ){ 27050d1b5f3Sdrh mem0.nearlyFull = 1; 271fec00eabSdrh sqlite3MallocAlarm(nFull); 27250d1b5f3Sdrh }else{ 27350d1b5f3Sdrh mem0.nearlyFull = 0; 274fec00eabSdrh } 275f7141990Sdrh } 276075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 27750d1b5f3Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 278d09414cdSdanielk1977 if( p==0 && mem0.alarmCallback ){ 279fec00eabSdrh sqlite3MallocAlarm(nFull); 280075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 281fec00eabSdrh } 28250d1b5f3Sdrh #endif 283c702c7ccSdrh if( p ){ 284c702c7ccSdrh nFull = sqlite3MallocSize(p); 285c702c7ccSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 286eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 287c702c7ccSdrh } 288f7141990Sdrh *pp = p; 289f7141990Sdrh return nFull; 290fec00eabSdrh } 291f7141990Sdrh 292f7141990Sdrh /* 293f7141990Sdrh ** Allocate memory. This routine is like sqlite3_malloc() except that it 294f7141990Sdrh ** assumes the memory subsystem has already been initialized. 295f7141990Sdrh */ 296f7141990Sdrh void *sqlite3Malloc(int n){ 297f7141990Sdrh void *p; 29871a1a0f4Sdrh if( n<=0 /* IMP: R-65312-04917 */ 29971a1a0f4Sdrh || n>=0x7fffff00 30071a1a0f4Sdrh ){ 301e08ed7e7Sdrh /* A memory allocation of a number of bytes which is near the maximum 302e08ed7e7Sdrh ** signed integer value might cause an integer overflow inside of the 303e08ed7e7Sdrh ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 304e08ed7e7Sdrh ** 255 bytes of overhead. SQLite itself will never use anything near 305e08ed7e7Sdrh ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 306f7141990Sdrh p = 0; 307075c23afSdanielk1977 }else if( sqlite3GlobalConfig.bMemstat ){ 308f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 309f7141990Sdrh mallocWithAlarm(n, &p); 310fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 311fec00eabSdrh }else{ 312075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(n); 313fec00eabSdrh } 31439f67bebSdrh assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ 315fec00eabSdrh return p; 316fec00eabSdrh } 317fec00eabSdrh 318fec00eabSdrh /* 319fec00eabSdrh ** This version of the memory allocation is for use by the application. 320fec00eabSdrh ** First make sure the memory subsystem is initialized, then do the 321fec00eabSdrh ** allocation. 322fec00eabSdrh */ 323fec00eabSdrh void *sqlite3_malloc(int n){ 324fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 325fec00eabSdrh if( sqlite3_initialize() ) return 0; 326fec00eabSdrh #endif 327fec00eabSdrh return sqlite3Malloc(n); 328fec00eabSdrh } 329fec00eabSdrh 330fec00eabSdrh /* 331e5ae5735Sdrh ** Each thread may only have a single outstanding allocation from 332facf0307Sdrh ** xScratchMalloc(). We verify this constraint in the single-threaded 333facf0307Sdrh ** case by setting scratchAllocOut to 1 when an allocation 334e5ae5735Sdrh ** is outstanding clearing it when the allocation is freed. 335e5ae5735Sdrh */ 336e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 337facf0307Sdrh static int scratchAllocOut = 0; 338e5ae5735Sdrh #endif 339e5ae5735Sdrh 340e5ae5735Sdrh 341e5ae5735Sdrh /* 342e5ae5735Sdrh ** Allocate memory that is to be used and released right away. 343e5ae5735Sdrh ** This routine is similar to alloca() in that it is not intended 344e5ae5735Sdrh ** for situations where the memory might be held long-term. This 345e5ae5735Sdrh ** routine is intended to get memory to old large transient data 346e5ae5735Sdrh ** structures that would not normally fit on the stack of an 347e5ae5735Sdrh ** embedded processor. 348e5ae5735Sdrh */ 349facf0307Sdrh void *sqlite3ScratchMalloc(int n){ 350e5ae5735Sdrh void *p; 351e5ae5735Sdrh assert( n>0 ); 3529ac3fe97Sdrh 353badc980aSdrh sqlite3_mutex_enter(mem0.mutex); 354badc980aSdrh if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 355badc980aSdrh p = mem0.pScratchFree; 356badc980aSdrh mem0.pScratchFree = mem0.pScratchFree->pNext; 357badc980aSdrh mem0.nScratchFree--; 358badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 359badc980aSdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 360b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 361badc980aSdrh }else{ 362badc980aSdrh if( sqlite3GlobalConfig.bMemstat ){ 363badc980aSdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 364badc980aSdrh n = mallocWithAlarm(n, &p); 365badc980aSdrh if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 366b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 367badc980aSdrh }else{ 368b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 369badc980aSdrh p = sqlite3GlobalConfig.m.xMalloc(n); 370badc980aSdrh } 371badc980aSdrh sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 372badc980aSdrh } 3731ff6e3abSdrh assert( sqlite3_mutex_notheld(mem0.mutex) ); 374b0c6a888Sdan 375badc980aSdrh 376badc980aSdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 377badc980aSdrh /* Verify that no more than two scratch allocations per thread 378badc980aSdrh ** are outstanding at one time. (This is only checked in the 379badc980aSdrh ** single-threaded case since checking in the multi-threaded case 380badc980aSdrh ** would be much more complicated.) */ 381badc980aSdrh assert( scratchAllocOut<=1 ); 382badc980aSdrh if( p ) scratchAllocOut++; 383badc980aSdrh #endif 384badc980aSdrh 385badc980aSdrh return p; 386badc980aSdrh } 387badc980aSdrh void sqlite3ScratchFree(void *p){ 388badc980aSdrh if( p ){ 389badc980aSdrh 390e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 39137f99187Sdrh /* Verify that no more than two scratch allocation per thread 3929ac3fe97Sdrh ** is outstanding at one time. (This is only checked in the 3939ac3fe97Sdrh ** single-threaded case since checking in the multi-threaded case 3949ac3fe97Sdrh ** would be much more complicated.) */ 395badc980aSdrh assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 396badc980aSdrh scratchAllocOut--; 397e5ae5735Sdrh #endif 3989ac3fe97Sdrh 399badc980aSdrh if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 400badc980aSdrh /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 401badc980aSdrh ScratchFreeslot *pSlot; 402badc980aSdrh pSlot = (ScratchFreeslot*)p; 403e5ae5735Sdrh sqlite3_mutex_enter(mem0.mutex); 404badc980aSdrh pSlot->pNext = mem0.pScratchFree; 405badc980aSdrh mem0.pScratchFree = pSlot; 406badc980aSdrh mem0.nScratchFree++; 407*fcd71b60Sdrh assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 408badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 4099ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 410f7141990Sdrh }else{ 411badc980aSdrh /* Release memory back to the heap */ 412107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 413174b9a16Sdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 414107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 415075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 416f7141990Sdrh int iSize = sqlite3MallocSize(p); 417f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 418f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 419f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 42081ba7d16Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 421075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 422f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 423f7141990Sdrh }else{ 424075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 425f7141990Sdrh } 4269ac3fe97Sdrh } 427e5ae5735Sdrh } 428e5ae5735Sdrh } 429e5ae5735Sdrh 430e5ae5735Sdrh /* 431633e6d57Sdrh ** TRUE if p is a lookaside memory allocation from db 432633e6d57Sdrh */ 4334150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 434633e6d57Sdrh static int isLookaside(sqlite3 *db, void *p){ 435174b9a16Sdrh return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 436633e6d57Sdrh } 4374150ebf8Sdrh #else 4384150ebf8Sdrh #define isLookaside(A,B) 0 4394150ebf8Sdrh #endif 440633e6d57Sdrh 441633e6d57Sdrh /* 442fec00eabSdrh ** Return the size of a memory allocation previously obtained from 443fec00eabSdrh ** sqlite3Malloc() or sqlite3_malloc(). 444fec00eabSdrh */ 445fec00eabSdrh int sqlite3MallocSize(void *p){ 446107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 447174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 448075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 449fec00eabSdrh } 450633e6d57Sdrh int sqlite3DbMallocSize(sqlite3 *db, void *p){ 4517047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 452174b9a16Sdrh if( db && isLookaside(db, p) ){ 453633e6d57Sdrh return db->lookaside.sz; 454633e6d57Sdrh }else{ 455174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 456174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 457174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 458075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 459633e6d57Sdrh } 460633e6d57Sdrh } 461fec00eabSdrh 462fec00eabSdrh /* 463fec00eabSdrh ** Free memory previously obtained from sqlite3Malloc(). 464fec00eabSdrh */ 465fec00eabSdrh void sqlite3_free(void *p){ 46671a1a0f4Sdrh if( p==0 ) return; /* IMP: R-49053-54554 */ 467174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 468107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 469075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 470fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 471f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 472eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 473075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 474fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 475fec00eabSdrh }else{ 476075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 477fec00eabSdrh } 478fec00eabSdrh } 479fec00eabSdrh 480fec00eabSdrh /* 481633e6d57Sdrh ** Free memory that might be associated with a particular database 482633e6d57Sdrh ** connection. 483633e6d57Sdrh */ 484633e6d57Sdrh void sqlite3DbFree(sqlite3 *db, void *p){ 4857047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 486174b9a16Sdrh if( db ){ 487174b9a16Sdrh if( db->pnBytesFreed ){ 488174b9a16Sdrh *db->pnBytesFreed += sqlite3DbMallocSize(db, p); 489174b9a16Sdrh return; 490d46def77Sdan } 491633e6d57Sdrh if( isLookaside(db, p) ){ 492633e6d57Sdrh LookasideSlot *pBuf = (LookasideSlot*)p; 493633e6d57Sdrh pBuf->pNext = db->lookaside.pFree; 494633e6d57Sdrh db->lookaside.pFree = pBuf; 495633e6d57Sdrh db->lookaside.nOut--; 496174b9a16Sdrh return; 497174b9a16Sdrh } 498174b9a16Sdrh } 499174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 500174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 501174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 502107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 503633e6d57Sdrh sqlite3_free(p); 504633e6d57Sdrh } 505633e6d57Sdrh 506633e6d57Sdrh /* 507fec00eabSdrh ** Change the size of an existing memory allocation 508fec00eabSdrh */ 509fec00eabSdrh void *sqlite3Realloc(void *pOld, int nBytes){ 510fec00eabSdrh int nOld, nNew; 511fec00eabSdrh void *pNew; 512fec00eabSdrh if( pOld==0 ){ 51371a1a0f4Sdrh return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ 514fec00eabSdrh } 515b6063cf8Sdrh if( nBytes<=0 ){ 51671a1a0f4Sdrh sqlite3_free(pOld); /* IMP: R-31593-10574 */ 517fec00eabSdrh return 0; 518fec00eabSdrh } 519b6063cf8Sdrh if( nBytes>=0x7fffff00 ){ 520b6063cf8Sdrh /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 521b6063cf8Sdrh return 0; 522b6063cf8Sdrh } 523fec00eabSdrh nOld = sqlite3MallocSize(pOld); 5249f129f46Sdrh /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 5259f129f46Sdrh ** argument to xRealloc is always a value returned by a prior call to 5269f129f46Sdrh ** xRoundup. */ 527075c23afSdanielk1977 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 528fec00eabSdrh if( nOld==nNew ){ 529fec00eabSdrh pNew = pOld; 5307c6791c8Sdrh }else if( sqlite3GlobalConfig.bMemstat ){ 5317c6791c8Sdrh sqlite3_mutex_enter(mem0.mutex); 5327c6791c8Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 533f7141990Sdrh if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 534f7141990Sdrh mem0.alarmThreshold ){ 535fec00eabSdrh sqlite3MallocAlarm(nNew-nOld); 536fec00eabSdrh } 537107b56e8Sdrh assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 538174b9a16Sdrh assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 539075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 540d09414cdSdanielk1977 if( pNew==0 && mem0.alarmCallback ){ 541fec00eabSdrh sqlite3MallocAlarm(nBytes); 542075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 543fec00eabSdrh } 544fec00eabSdrh if( pNew ){ 545c702c7ccSdrh nNew = sqlite3MallocSize(pNew); 546f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 547fec00eabSdrh } 548fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 549fec00eabSdrh }else{ 5507c6791c8Sdrh pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 551fec00eabSdrh } 55239f67bebSdrh assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ 553fec00eabSdrh return pNew; 554fec00eabSdrh } 555fec00eabSdrh 556fec00eabSdrh /* 557fec00eabSdrh ** The public interface to sqlite3Realloc. Make sure that the memory 558fec00eabSdrh ** subsystem is initialized prior to invoking sqliteRealloc. 559fec00eabSdrh */ 560fec00eabSdrh void *sqlite3_realloc(void *pOld, int n){ 561fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 562fec00eabSdrh if( sqlite3_initialize() ) return 0; 563fec00eabSdrh #endif 564fec00eabSdrh return sqlite3Realloc(pOld, n); 565fec00eabSdrh } 566fec00eabSdrh 567a3152895Sdrh 568a3152895Sdrh /* 56917435752Sdrh ** Allocate and zero memory. 570a3152895Sdrh */ 571fec00eabSdrh void *sqlite3MallocZero(int n){ 572fec00eabSdrh void *p = sqlite3Malloc(n); 573a3152895Sdrh if( p ){ 574a3152895Sdrh memset(p, 0, n); 575a3152895Sdrh } 576a3152895Sdrh return p; 577a3152895Sdrh } 57817435752Sdrh 57917435752Sdrh /* 58017435752Sdrh ** Allocate and zero memory. If the allocation fails, make 58117435752Sdrh ** the mallocFailed flag in the connection pointer. 58217435752Sdrh */ 583fec00eabSdrh void *sqlite3DbMallocZero(sqlite3 *db, int n){ 584a1644fd8Sdanielk1977 void *p = sqlite3DbMallocRaw(db, n); 58517435752Sdrh if( p ){ 58617435752Sdrh memset(p, 0, n); 58717435752Sdrh } 58817435752Sdrh return p; 58917435752Sdrh } 59017435752Sdrh 59117435752Sdrh /* 59217435752Sdrh ** Allocate and zero memory. If the allocation fails, make 59317435752Sdrh ** the mallocFailed flag in the connection pointer. 594ddecae79Sdrh ** 595ddecae79Sdrh ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 596ddecae79Sdrh ** failure on the same database connection) then always return 0. 597ddecae79Sdrh ** Hence for a particular database connection, once malloc starts 598ddecae79Sdrh ** failing, it fails consistently until mallocFailed is reset. 599ddecae79Sdrh ** This is an important assumption. There are many places in the 600ddecae79Sdrh ** code that do things like this: 601ddecae79Sdrh ** 602ddecae79Sdrh ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 603ddecae79Sdrh ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 604ddecae79Sdrh ** if( b ) a[10] = 9; 605ddecae79Sdrh ** 606ddecae79Sdrh ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 607ddecae79Sdrh ** that all prior mallocs (ex: "a") worked too. 60817435752Sdrh */ 609fec00eabSdrh void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 610633e6d57Sdrh void *p; 611d9da78a2Sdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 612ccd4ad3eSdan assert( db==0 || db->pnBytesFreed==0 ); 6134150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 614633e6d57Sdrh if( db ){ 615633e6d57Sdrh LookasideSlot *pBuf; 616633e6d57Sdrh if( db->mallocFailed ){ 617633e6d57Sdrh return 0; 618633e6d57Sdrh } 6190b12e7f8Sdrh if( db->lookaside.bEnabled ){ 6200b12e7f8Sdrh if( n>db->lookaside.sz ){ 6210b12e7f8Sdrh db->lookaside.anStat[1]++; 6220b12e7f8Sdrh }else if( (pBuf = db->lookaside.pFree)==0 ){ 6230b12e7f8Sdrh db->lookaside.anStat[2]++; 6240b12e7f8Sdrh }else{ 625633e6d57Sdrh db->lookaside.pFree = pBuf->pNext; 626633e6d57Sdrh db->lookaside.nOut++; 6270b12e7f8Sdrh db->lookaside.anStat[0]++; 628633e6d57Sdrh if( db->lookaside.nOut>db->lookaside.mxOut ){ 629633e6d57Sdrh db->lookaside.mxOut = db->lookaside.nOut; 630633e6d57Sdrh } 631633e6d57Sdrh return (void*)pBuf; 632633e6d57Sdrh } 633633e6d57Sdrh } 6340b12e7f8Sdrh } 635ddecae79Sdrh #else 636ddecae79Sdrh if( db && db->mallocFailed ){ 637ddecae79Sdrh return 0; 638ddecae79Sdrh } 6394150ebf8Sdrh #endif 640fec00eabSdrh p = sqlite3Malloc(n); 641f3a65f7eSdrh if( !p && db ){ 64217435752Sdrh db->mallocFailed = 1; 64317435752Sdrh } 644174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB | 645174b9a16Sdrh ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 64617435752Sdrh return p; 64717435752Sdrh } 64817435752Sdrh 64926783a58Sdanielk1977 /* 65026783a58Sdanielk1977 ** Resize the block of memory pointed to by p to n bytes. If the 65126783a58Sdanielk1977 ** resize fails, set the mallocFailed flag in the connection object. 65226783a58Sdanielk1977 */ 653a1644fd8Sdanielk1977 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 654a1644fd8Sdanielk1977 void *pNew = 0; 655d9da78a2Sdrh assert( db!=0 ); 6567047e25cSdrh assert( sqlite3_mutex_held(db->mutex) ); 657a1644fd8Sdanielk1977 if( db->mallocFailed==0 ){ 658633e6d57Sdrh if( p==0 ){ 659633e6d57Sdrh return sqlite3DbMallocRaw(db, n); 660633e6d57Sdrh } 661633e6d57Sdrh if( isLookaside(db, p) ){ 662633e6d57Sdrh if( n<=db->lookaside.sz ){ 663633e6d57Sdrh return p; 664633e6d57Sdrh } 665633e6d57Sdrh pNew = sqlite3DbMallocRaw(db, n); 666633e6d57Sdrh if( pNew ){ 667633e6d57Sdrh memcpy(pNew, p, db->lookaside.sz); 668633e6d57Sdrh sqlite3DbFree(db, p); 669633e6d57Sdrh } 670633e6d57Sdrh }else{ 671174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 672174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 673107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 674a1644fd8Sdanielk1977 pNew = sqlite3_realloc(p, n); 675a1644fd8Sdanielk1977 if( !pNew ){ 676174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); 677a1644fd8Sdanielk1977 db->mallocFailed = 1; 678a1644fd8Sdanielk1977 } 679174b9a16Sdrh sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 680174b9a16Sdrh (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 681a1644fd8Sdanielk1977 } 682633e6d57Sdrh } 683a1644fd8Sdanielk1977 return pNew; 684a1644fd8Sdanielk1977 } 685a1644fd8Sdanielk1977 68617435752Sdrh /* 68717435752Sdrh ** Attempt to reallocate p. If the reallocation fails, then free p 68817435752Sdrh ** and set the mallocFailed flag in the database connection. 68917435752Sdrh */ 69017435752Sdrh void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 691a3152895Sdrh void *pNew; 692a1644fd8Sdanielk1977 pNew = sqlite3DbRealloc(db, p, n); 693a3152895Sdrh if( !pNew ){ 694633e6d57Sdrh sqlite3DbFree(db, p); 695a3152895Sdrh } 696a3152895Sdrh return pNew; 697a3152895Sdrh } 698a3152895Sdrh 699a3152895Sdrh /* 700a3152895Sdrh ** Make a copy of a string in memory obtained from sqliteMalloc(). These 701a3152895Sdrh ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 702a3152895Sdrh ** is because when memory debugging is turned on, these two functions are 703a3152895Sdrh ** called via macros that record the current file and line number in the 704a3152895Sdrh ** ThreadData structure. 705a3152895Sdrh */ 706633e6d57Sdrh char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 707a3152895Sdrh char *zNew; 708633e6d57Sdrh size_t n; 709633e6d57Sdrh if( z==0 ){ 710633e6d57Sdrh return 0; 711a3152895Sdrh } 712dee0e404Sdrh n = sqlite3Strlen30(z) + 1; 713633e6d57Sdrh assert( (n&0x7fffffff)==n ); 714633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, (int)n); 715a3152895Sdrh if( zNew ){ 716a3152895Sdrh memcpy(zNew, z, n); 7171e536953Sdanielk1977 } 7181e536953Sdanielk1977 return zNew; 7191e536953Sdanielk1977 } 7201e536953Sdanielk1977 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 721633e6d57Sdrh char *zNew; 722633e6d57Sdrh if( z==0 ){ 723633e6d57Sdrh return 0; 724633e6d57Sdrh } 725633e6d57Sdrh assert( (n&0x7fffffff)==n ); 726633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, n+1); 727633e6d57Sdrh if( zNew ){ 728633e6d57Sdrh memcpy(zNew, z, n); 729633e6d57Sdrh zNew[n] = 0; 7301e536953Sdanielk1977 } 7311e536953Sdanielk1977 return zNew; 7321e536953Sdanielk1977 } 7331e536953Sdanielk1977 734a3152895Sdrh /* 735f089aa45Sdrh ** Create a string from the zFromat argument and the va_list that follows. 736f089aa45Sdrh ** Store the string in memory obtained from sqliteMalloc() and make *pz 737f089aa45Sdrh ** point to that string. 738a3152895Sdrh */ 739f089aa45Sdrh void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 740a3152895Sdrh va_list ap; 741f089aa45Sdrh char *z; 742a3152895Sdrh 743f089aa45Sdrh va_start(ap, zFormat); 744f089aa45Sdrh z = sqlite3VMPrintf(db, zFormat, ap); 745a3152895Sdrh va_end(ap); 746633e6d57Sdrh sqlite3DbFree(db, *pz); 747f089aa45Sdrh *pz = z; 748a3152895Sdrh } 749a3152895Sdrh 750a3152895Sdrh 751a3152895Sdrh /* 752a3152895Sdrh ** This function must be called before exiting any API function (i.e. 75317435752Sdrh ** returning control to the user) that has called sqlite3_malloc or 75417435752Sdrh ** sqlite3_realloc. 755a3152895Sdrh ** 756a3152895Sdrh ** The returned value is normally a copy of the second argument to this 757be217793Sshane ** function. However, if a malloc() failure has occurred since the previous 758a3152895Sdrh ** invocation SQLITE_NOMEM is returned instead. 759a3152895Sdrh ** 760be217793Sshane ** If the first argument, db, is not NULL and a malloc() error has occurred, 761a3152895Sdrh ** then the connection error-code (the value returned by sqlite3_errcode()) 762a3152895Sdrh ** is set to SQLITE_NOMEM. 763a3152895Sdrh */ 764a3152895Sdrh int sqlite3ApiExit(sqlite3* db, int rc){ 765a1644fd8Sdanielk1977 /* If the db handle is not NULL, then we must hold the connection handle 766a1644fd8Sdanielk1977 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 767a1644fd8Sdanielk1977 ** is unsafe, as is the call to sqlite3Error(). 768a1644fd8Sdanielk1977 */ 769a1644fd8Sdanielk1977 assert( !db || sqlite3_mutex_held(db->mutex) ); 77098c21903Sdanielk1977 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 771a3152895Sdrh sqlite3Error(db, SQLITE_NOMEM, 0); 77217435752Sdrh db->mallocFailed = 0; 773a3152895Sdrh rc = SQLITE_NOMEM; 774a3152895Sdrh } 775a3152895Sdrh return rc & (db ? db->errMask : 0xff); 776a3152895Sdrh } 777