1a3152895Sdrh /* 2a3152895Sdrh ** 2001 September 15 3a3152895Sdrh ** 4a3152895Sdrh ** The author disclaims copyright to this source code. In place of 5a3152895Sdrh ** a legal notice, here is a blessing: 6a3152895Sdrh ** 7a3152895Sdrh ** May you do good and not evil. 8a3152895Sdrh ** May you find forgiveness for yourself and forgive others. 9a3152895Sdrh ** May you share freely, never taking more than you give. 10a3152895Sdrh ** 11a3152895Sdrh ************************************************************************* 12fec00eabSdrh ** 13a3152895Sdrh ** Memory allocation functions used throughout sqlite. 14a3152895Sdrh */ 15a3152895Sdrh #include "sqliteInt.h" 16a3152895Sdrh #include <stdarg.h> 17a3152895Sdrh 18a3152895Sdrh /* 19b21c8cd4Sdrh ** This routine runs when the memory allocator sees that the 20b21c8cd4Sdrh ** total memory allocation is about to exceed the soft heap 21b21c8cd4Sdrh ** limit. 22b21c8cd4Sdrh */ 23b21c8cd4Sdrh static void softHeapLimitEnforcer( 24b21c8cd4Sdrh void *NotUsed, 2562c14b34Sdanielk1977 sqlite3_int64 NotUsed2, 26153c62c4Sdrh int allocSize 27b21c8cd4Sdrh ){ 2862c14b34Sdanielk1977 UNUSED_PARAMETER2(NotUsed, NotUsed2); 29b21c8cd4Sdrh sqlite3_release_memory(allocSize); 30b21c8cd4Sdrh } 31b21c8cd4Sdrh 32b21c8cd4Sdrh /* 338468024dSdanielk1977 ** Set the soft heap-size limit for the library. Passing a zero or 348468024dSdanielk1977 ** negative value indicates no limit. 35a3152895Sdrh */ 36a3152895Sdrh void sqlite3_soft_heap_limit(int n){ 37b21c8cd4Sdrh sqlite3_uint64 iLimit; 38b21c8cd4Sdrh int overage; 39b21c8cd4Sdrh if( n<0 ){ 40b21c8cd4Sdrh iLimit = 0; 41b21c8cd4Sdrh }else{ 42b21c8cd4Sdrh iLimit = n; 43a3152895Sdrh } 449ac06509Sdrh #ifndef SQLITE_OMIT_AUTOINIT 459ac3fe97Sdrh sqlite3_initialize(); 469ac06509Sdrh #endif 47b21c8cd4Sdrh if( iLimit>0 ){ 484a27a286Sshane sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); 49b21c8cd4Sdrh }else{ 504a27a286Sshane sqlite3MemoryAlarm(0, 0, 0); 51b21c8cd4Sdrh } 521bd10f8aSdrh overage = (int)(sqlite3_memory_used() - (i64)n); 53b21c8cd4Sdrh if( overage>0 ){ 54b21c8cd4Sdrh sqlite3_release_memory(overage); 55b21c8cd4Sdrh } 56a3152895Sdrh } 57a3152895Sdrh 58a3152895Sdrh /* 598468024dSdanielk1977 ** Attempt to release up to n bytes of non-essential memory currently 608468024dSdanielk1977 ** held by SQLite. An example of non-essential memory is memory used to 618468024dSdanielk1977 ** cache database pages that are not currently in use. 62a3152895Sdrh */ 63a3152895Sdrh int sqlite3_release_memory(int n){ 6486f8c197Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 6567e3da7aSdanielk1977 int nRet = 0; 6667e3da7aSdanielk1977 nRet += sqlite3PcacheReleaseMemory(n-nRet); 67dfb316d4Sdanielk1977 return nRet; 681e536953Sdanielk1977 #else 6962c14b34Sdanielk1977 UNUSED_PARAMETER(n); 701e536953Sdanielk1977 return SQLITE_OK; 711e536953Sdanielk1977 #endif 72a3152895Sdrh } 73a3152895Sdrh 74fec00eabSdrh /* 75fec00eabSdrh ** State information local to the memory allocation subsystem. 76fec00eabSdrh */ 775c8f8587Sdanielk1977 static SQLITE_WSD struct Mem0Global { 7823bf0f41Sdanielk1977 /* Number of free pages for scratch and page-cache memory */ 7923bf0f41Sdanielk1977 u32 nScratchFree; 8023bf0f41Sdanielk1977 u32 nPageFree; 8123bf0f41Sdanielk1977 82fec00eabSdrh sqlite3_mutex *mutex; /* Mutex to serialize access */ 83fec00eabSdrh 84fec00eabSdrh /* 85fec00eabSdrh ** The alarm callback and its arguments. The mem0.mutex lock will 86fec00eabSdrh ** be held while the callback is running. Recursive calls into 87fec00eabSdrh ** the memory subsystem are allowed, but no new callbacks will be 88e64ca7baSdrh ** issued. 89fec00eabSdrh */ 90fec00eabSdrh sqlite3_int64 alarmThreshold; 91fec00eabSdrh void (*alarmCallback)(void*, sqlite3_int64,int); 92fec00eabSdrh void *alarmArg; 93fec00eabSdrh 94fec00eabSdrh /* 95075c23afSdanielk1977 ** Pointers to the end of sqlite3GlobalConfig.pScratch and 96075c23afSdanielk1977 ** sqlite3GlobalConfig.pPage to a block of memory that records 979ac3fe97Sdrh ** which pages are available. 989ac3fe97Sdrh */ 999ac3fe97Sdrh u32 *aScratchFree; 1009ac3fe97Sdrh u32 *aPageFree; 101e64ca7baSdrh } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1025c8f8587Sdanielk1977 1035c8f8587Sdanielk1977 #define mem0 GLOBAL(struct Mem0Global, mem0) 104fec00eabSdrh 105fec00eabSdrh /* 106fec00eabSdrh ** Initialize the memory allocation subsystem. 107fec00eabSdrh */ 108fec00eabSdrh int sqlite3MallocInit(void){ 109075c23afSdanielk1977 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 110fec00eabSdrh sqlite3MemSetDefault(); 111fec00eabSdrh } 112fec00eabSdrh memset(&mem0, 0, sizeof(mem0)); 113075c23afSdanielk1977 if( sqlite3GlobalConfig.bCoreMutex ){ 11459f8c08eSdanielk1977 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 115fec00eabSdrh } 116075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 117075c23afSdanielk1977 && sqlite3GlobalConfig.nScratch>=0 ){ 1189ac3fe97Sdrh int i; 119bc73971dSdanielk1977 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); 120075c23afSdanielk1977 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) 121075c23afSdanielk1977 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; 122075c23afSdanielk1977 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } 123075c23afSdanielk1977 mem0.nScratchFree = sqlite3GlobalConfig.nScratch; 1249ac3fe97Sdrh }else{ 125075c23afSdanielk1977 sqlite3GlobalConfig.pScratch = 0; 126075c23afSdanielk1977 sqlite3GlobalConfig.szScratch = 0; 1279ac3fe97Sdrh } 128075c23afSdanielk1977 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 129075c23afSdanielk1977 && sqlite3GlobalConfig.nPage>=1 ){ 1309ac3fe97Sdrh int i; 1310a60a384Sdrh int overhead; 132bc73971dSdanielk1977 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); 133075c23afSdanielk1977 int n = sqlite3GlobalConfig.nPage; 1340a60a384Sdrh overhead = (4*n + sz - 1)/sz; 135075c23afSdanielk1977 sqlite3GlobalConfig.nPage -= overhead; 136075c23afSdanielk1977 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) 137075c23afSdanielk1977 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; 138075c23afSdanielk1977 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } 139075c23afSdanielk1977 mem0.nPageFree = sqlite3GlobalConfig.nPage; 1409ac3fe97Sdrh }else{ 141075c23afSdanielk1977 sqlite3GlobalConfig.pPage = 0; 142075c23afSdanielk1977 sqlite3GlobalConfig.szPage = 0; 1439ac3fe97Sdrh } 144075c23afSdanielk1977 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 145fec00eabSdrh } 146fec00eabSdrh 147fec00eabSdrh /* 148fec00eabSdrh ** Deinitialize the memory allocation subsystem. 149fec00eabSdrh */ 150fec00eabSdrh void sqlite3MallocEnd(void){ 1510a549071Sdanielk1977 if( sqlite3GlobalConfig.m.xShutdown ){ 152075c23afSdanielk1977 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 1530a549071Sdanielk1977 } 1549ac3fe97Sdrh memset(&mem0, 0, sizeof(mem0)); 155fec00eabSdrh } 156fec00eabSdrh 157fec00eabSdrh /* 158fec00eabSdrh ** Return the amount of memory currently checked out. 159fec00eabSdrh */ 160fec00eabSdrh sqlite3_int64 sqlite3_memory_used(void){ 161f7141990Sdrh int n, mx; 162c376a198Sdrh sqlite3_int64 res; 163f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 164c376a198Sdrh res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 165c376a198Sdrh return res; 166fec00eabSdrh } 167fec00eabSdrh 168fec00eabSdrh /* 169fec00eabSdrh ** Return the maximum amount of memory that has ever been 170fec00eabSdrh ** checked out since either the beginning of this process 171fec00eabSdrh ** or since the most recent reset. 172fec00eabSdrh */ 173fec00eabSdrh sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 174f7141990Sdrh int n, mx; 175c376a198Sdrh sqlite3_int64 res; 176f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 1777986a71aSdrh res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 178c376a198Sdrh return res; 179fec00eabSdrh } 180fec00eabSdrh 181fec00eabSdrh /* 182fec00eabSdrh ** Change the alarm callback 183fec00eabSdrh */ 1844a27a286Sshane int sqlite3MemoryAlarm( 185fec00eabSdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 186fec00eabSdrh void *pArg, 187fec00eabSdrh sqlite3_int64 iThreshold 188fec00eabSdrh ){ 189fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 190fec00eabSdrh mem0.alarmCallback = xCallback; 191fec00eabSdrh mem0.alarmArg = pArg; 192fec00eabSdrh mem0.alarmThreshold = iThreshold; 193fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 194fec00eabSdrh return SQLITE_OK; 195fec00eabSdrh } 196fec00eabSdrh 197eec556d3Sshane #ifndef SQLITE_OMIT_DEPRECATED 198fec00eabSdrh /* 1994a27a286Sshane ** Deprecated external interface. Internal/core SQLite code 2004a27a286Sshane ** should call sqlite3MemoryAlarm. 2014a27a286Sshane */ 2024a27a286Sshane int sqlite3_memory_alarm( 2034a27a286Sshane void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 2044a27a286Sshane void *pArg, 2054a27a286Sshane sqlite3_int64 iThreshold 2064a27a286Sshane ){ 2074a27a286Sshane return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 2084a27a286Sshane } 209eec556d3Sshane #endif 2104a27a286Sshane 2114a27a286Sshane /* 212fec00eabSdrh ** Trigger the alarm 213fec00eabSdrh */ 214fec00eabSdrh static void sqlite3MallocAlarm(int nByte){ 215fec00eabSdrh void (*xCallback)(void*,sqlite3_int64,int); 216fec00eabSdrh sqlite3_int64 nowUsed; 217fec00eabSdrh void *pArg; 218e64ca7baSdrh if( mem0.alarmCallback==0 ) return; 219fec00eabSdrh xCallback = mem0.alarmCallback; 220f7141990Sdrh nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 221fec00eabSdrh pArg = mem0.alarmArg; 222e64ca7baSdrh mem0.alarmCallback = 0; 223fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 224fec00eabSdrh xCallback(pArg, nowUsed, nByte); 225fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 226e64ca7baSdrh mem0.alarmCallback = xCallback; 227e64ca7baSdrh mem0.alarmArg = pArg; 228fec00eabSdrh } 229fec00eabSdrh 230fec00eabSdrh /* 231f7141990Sdrh ** Do a memory allocation with statistics and alarms. Assume the 232f7141990Sdrh ** lock is already held. 233fec00eabSdrh */ 234f7141990Sdrh static int mallocWithAlarm(int n, void **pp){ 235fec00eabSdrh int nFull; 236f7141990Sdrh void *p; 237f7141990Sdrh assert( sqlite3_mutex_held(mem0.mutex) ); 238075c23afSdanielk1977 nFull = sqlite3GlobalConfig.m.xRoundup(n); 239f7141990Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 240f7141990Sdrh if( mem0.alarmCallback!=0 ){ 241f7141990Sdrh int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 242f7141990Sdrh if( nUsed+nFull >= mem0.alarmThreshold ){ 243fec00eabSdrh sqlite3MallocAlarm(nFull); 244fec00eabSdrh } 245f7141990Sdrh } 246075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 247d09414cdSdanielk1977 if( p==0 && mem0.alarmCallback ){ 248fec00eabSdrh sqlite3MallocAlarm(nFull); 249075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 250fec00eabSdrh } 251c702c7ccSdrh if( p ){ 252c702c7ccSdrh nFull = sqlite3MallocSize(p); 253c702c7ccSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 254c702c7ccSdrh } 255f7141990Sdrh *pp = p; 256f7141990Sdrh return nFull; 257fec00eabSdrh } 258f7141990Sdrh 259f7141990Sdrh /* 260f7141990Sdrh ** Allocate memory. This routine is like sqlite3_malloc() except that it 261f7141990Sdrh ** assumes the memory subsystem has already been initialized. 262f7141990Sdrh */ 263f7141990Sdrh void *sqlite3Malloc(int n){ 264f7141990Sdrh void *p; 265e08ed7e7Sdrh if( n<=0 || n>=0x7fffff00 ){ 266e08ed7e7Sdrh /* A memory allocation of a number of bytes which is near the maximum 267e08ed7e7Sdrh ** signed integer value might cause an integer overflow inside of the 268e08ed7e7Sdrh ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 269e08ed7e7Sdrh ** 255 bytes of overhead. SQLite itself will never use anything near 270e08ed7e7Sdrh ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 271f7141990Sdrh p = 0; 272075c23afSdanielk1977 }else if( sqlite3GlobalConfig.bMemstat ){ 273f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 274f7141990Sdrh mallocWithAlarm(n, &p); 275fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 276fec00eabSdrh }else{ 277075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(n); 278fec00eabSdrh } 279fec00eabSdrh return p; 280fec00eabSdrh } 281fec00eabSdrh 282fec00eabSdrh /* 283fec00eabSdrh ** This version of the memory allocation is for use by the application. 284fec00eabSdrh ** First make sure the memory subsystem is initialized, then do the 285fec00eabSdrh ** allocation. 286fec00eabSdrh */ 287fec00eabSdrh void *sqlite3_malloc(int n){ 288fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 289fec00eabSdrh if( sqlite3_initialize() ) return 0; 290fec00eabSdrh #endif 291fec00eabSdrh return sqlite3Malloc(n); 292fec00eabSdrh } 293fec00eabSdrh 294fec00eabSdrh /* 295e5ae5735Sdrh ** Each thread may only have a single outstanding allocation from 296facf0307Sdrh ** xScratchMalloc(). We verify this constraint in the single-threaded 297facf0307Sdrh ** case by setting scratchAllocOut to 1 when an allocation 298e5ae5735Sdrh ** is outstanding clearing it when the allocation is freed. 299e5ae5735Sdrh */ 300e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 301facf0307Sdrh static int scratchAllocOut = 0; 302e5ae5735Sdrh #endif 303e5ae5735Sdrh 304e5ae5735Sdrh 305e5ae5735Sdrh /* 306e5ae5735Sdrh ** Allocate memory that is to be used and released right away. 307e5ae5735Sdrh ** This routine is similar to alloca() in that it is not intended 308e5ae5735Sdrh ** for situations where the memory might be held long-term. This 309e5ae5735Sdrh ** routine is intended to get memory to old large transient data 310e5ae5735Sdrh ** structures that would not normally fit on the stack of an 311e5ae5735Sdrh ** embedded processor. 312e5ae5735Sdrh */ 313facf0307Sdrh void *sqlite3ScratchMalloc(int n){ 314e5ae5735Sdrh void *p; 315e5ae5735Sdrh assert( n>0 ); 3169ac3fe97Sdrh 317e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 31837f99187Sdrh /* Verify that no more than two scratch allocation per thread 3199ac3fe97Sdrh ** is outstanding at one time. (This is only checked in the 3209ac3fe97Sdrh ** single-threaded case since checking in the multi-threaded case 3219ac3fe97Sdrh ** would be much more complicated.) */ 32237f99187Sdrh assert( scratchAllocOut<=1 ); 323e5ae5735Sdrh #endif 3249ac3fe97Sdrh 325075c23afSdanielk1977 if( sqlite3GlobalConfig.szScratch<n ){ 326f7141990Sdrh goto scratch_overflow; 327f7141990Sdrh }else{ 328e5ae5735Sdrh sqlite3_mutex_enter(mem0.mutex); 329f7141990Sdrh if( mem0.nScratchFree==0 ){ 330f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 331f7141990Sdrh goto scratch_overflow; 332e5ae5735Sdrh }else{ 3339ac3fe97Sdrh int i; 3349ac3fe97Sdrh i = mem0.aScratchFree[--mem0.nScratchFree]; 335075c23afSdanielk1977 i *= sqlite3GlobalConfig.szScratch; 336f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 337e50135e2Sdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 3388183e339Sdanielk1977 sqlite3_mutex_leave(mem0.mutex); 339075c23afSdanielk1977 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; 34015301596Sshane assert( (((u8*)p - (u8*)0) & 7)==0 ); 341e5ae5735Sdrh } 342f7141990Sdrh } 343f7141990Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 344f7141990Sdrh scratchAllocOut = p!=0; 345f7141990Sdrh #endif 346f7141990Sdrh 347f7141990Sdrh return p; 348f7141990Sdrh 349f7141990Sdrh scratch_overflow: 350075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 351f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 352e50135e2Sdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 353f7141990Sdrh n = mallocWithAlarm(n, &p); 354f7141990Sdrh if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 3559ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 356f7141990Sdrh }else{ 357075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(n); 358f7141990Sdrh } 359107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 360f7141990Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 361f7141990Sdrh scratchAllocOut = p!=0; 362f7141990Sdrh #endif 363e5ae5735Sdrh return p; 364e5ae5735Sdrh } 365facf0307Sdrh void sqlite3ScratchFree(void *p){ 366e5ae5735Sdrh if( p ){ 367075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch==0 368075c23afSdanielk1977 || p<sqlite3GlobalConfig.pScratch 3699ac3fe97Sdrh || p>=(void*)mem0.aScratchFree ){ 370107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 371174b9a16Sdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 372107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 373075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 374f7141990Sdrh int iSize = sqlite3MallocSize(p); 375f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 376f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 377f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 378075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 379f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 380f7141990Sdrh }else{ 381075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 382f7141990Sdrh } 3839ac3fe97Sdrh }else{ 3849ac3fe97Sdrh int i; 3851bd10f8aSdrh i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); 386075c23afSdanielk1977 i /= sqlite3GlobalConfig.szScratch; 387075c23afSdanielk1977 assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); 388f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 38900e13613Sdanielk1977 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); 3909ac3fe97Sdrh mem0.aScratchFree[mem0.nScratchFree++] = i; 391f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 3929ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 39337f99187Sdrh 39437f99187Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 39537f99187Sdrh /* Verify that no more than two scratch allocation per thread 39637f99187Sdrh ** is outstanding at one time. (This is only checked in the 39737f99187Sdrh ** single-threaded case since checking in the multi-threaded case 39837f99187Sdrh ** would be much more complicated.) */ 39937f99187Sdrh assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 40037f99187Sdrh scratchAllocOut = 0; 40137f99187Sdrh #endif 40237f99187Sdrh 4039ac3fe97Sdrh } 404e5ae5735Sdrh } 405e5ae5735Sdrh } 406e5ae5735Sdrh 407e5ae5735Sdrh /* 408633e6d57Sdrh ** TRUE if p is a lookaside memory allocation from db 409633e6d57Sdrh */ 4104150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 411633e6d57Sdrh static int isLookaside(sqlite3 *db, void *p){ 412174b9a16Sdrh return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 413633e6d57Sdrh } 4144150ebf8Sdrh #else 4154150ebf8Sdrh #define isLookaside(A,B) 0 4164150ebf8Sdrh #endif 417633e6d57Sdrh 418633e6d57Sdrh /* 419fec00eabSdrh ** Return the size of a memory allocation previously obtained from 420fec00eabSdrh ** sqlite3Malloc() or sqlite3_malloc(). 421fec00eabSdrh */ 422fec00eabSdrh int sqlite3MallocSize(void *p){ 423107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 424174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 425075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 426fec00eabSdrh } 427633e6d57Sdrh int sqlite3DbMallocSize(sqlite3 *db, void *p){ 4287047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 429174b9a16Sdrh if( db && isLookaside(db, p) ){ 430633e6d57Sdrh return db->lookaside.sz; 431633e6d57Sdrh }else{ 432174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 433174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 434174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 435075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 436633e6d57Sdrh } 437633e6d57Sdrh } 438fec00eabSdrh 439fec00eabSdrh /* 440fec00eabSdrh ** Free memory previously obtained from sqlite3Malloc(). 441fec00eabSdrh */ 442fec00eabSdrh void sqlite3_free(void *p){ 443fec00eabSdrh if( p==0 ) return; 444174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 445107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 446075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 447fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 448f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 449075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 450fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 451fec00eabSdrh }else{ 452075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 453fec00eabSdrh } 454fec00eabSdrh } 455fec00eabSdrh 456fec00eabSdrh /* 457633e6d57Sdrh ** Free memory that might be associated with a particular database 458633e6d57Sdrh ** connection. 459633e6d57Sdrh */ 460633e6d57Sdrh void sqlite3DbFree(sqlite3 *db, void *p){ 4617047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 462174b9a16Sdrh if( db ){ 463174b9a16Sdrh if( db->pnBytesFreed ){ 464174b9a16Sdrh *db->pnBytesFreed += sqlite3DbMallocSize(db, p); 465174b9a16Sdrh return; 466d46def77Sdan } 467633e6d57Sdrh if( isLookaside(db, p) ){ 468633e6d57Sdrh LookasideSlot *pBuf = (LookasideSlot*)p; 469633e6d57Sdrh pBuf->pNext = db->lookaside.pFree; 470633e6d57Sdrh db->lookaside.pFree = pBuf; 471633e6d57Sdrh db->lookaside.nOut--; 472174b9a16Sdrh return; 473174b9a16Sdrh } 474174b9a16Sdrh } 475174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 476174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 477174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 478107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 479633e6d57Sdrh sqlite3_free(p); 480633e6d57Sdrh } 481633e6d57Sdrh 482633e6d57Sdrh /* 483fec00eabSdrh ** Change the size of an existing memory allocation 484fec00eabSdrh */ 485fec00eabSdrh void *sqlite3Realloc(void *pOld, int nBytes){ 486fec00eabSdrh int nOld, nNew; 487fec00eabSdrh void *pNew; 488fec00eabSdrh if( pOld==0 ){ 489fec00eabSdrh return sqlite3Malloc(nBytes); 490fec00eabSdrh } 491b6063cf8Sdrh if( nBytes<=0 ){ 492fec00eabSdrh sqlite3_free(pOld); 493fec00eabSdrh return 0; 494fec00eabSdrh } 495b6063cf8Sdrh if( nBytes>=0x7fffff00 ){ 496b6063cf8Sdrh /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 497b6063cf8Sdrh return 0; 498b6063cf8Sdrh } 499fec00eabSdrh nOld = sqlite3MallocSize(pOld); 500075c23afSdanielk1977 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 501fec00eabSdrh if( nOld==nNew ){ 502fec00eabSdrh pNew = pOld; 5037c6791c8Sdrh }else if( sqlite3GlobalConfig.bMemstat ){ 5047c6791c8Sdrh sqlite3_mutex_enter(mem0.mutex); 5057c6791c8Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 506f7141990Sdrh if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 507f7141990Sdrh mem0.alarmThreshold ){ 508fec00eabSdrh sqlite3MallocAlarm(nNew-nOld); 509fec00eabSdrh } 510107b56e8Sdrh assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 511174b9a16Sdrh assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 512075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 513d09414cdSdanielk1977 if( pNew==0 && mem0.alarmCallback ){ 514fec00eabSdrh sqlite3MallocAlarm(nBytes); 515075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 516fec00eabSdrh } 517fec00eabSdrh if( pNew ){ 518c702c7ccSdrh nNew = sqlite3MallocSize(pNew); 519f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 520fec00eabSdrh } 521fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 522fec00eabSdrh }else{ 5237c6791c8Sdrh pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 524fec00eabSdrh } 525fec00eabSdrh return pNew; 526fec00eabSdrh } 527fec00eabSdrh 528fec00eabSdrh /* 529fec00eabSdrh ** The public interface to sqlite3Realloc. Make sure that the memory 530fec00eabSdrh ** subsystem is initialized prior to invoking sqliteRealloc. 531fec00eabSdrh */ 532fec00eabSdrh void *sqlite3_realloc(void *pOld, int n){ 533fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 534fec00eabSdrh if( sqlite3_initialize() ) return 0; 535fec00eabSdrh #endif 536fec00eabSdrh return sqlite3Realloc(pOld, n); 537fec00eabSdrh } 538fec00eabSdrh 539a3152895Sdrh 540a3152895Sdrh /* 54117435752Sdrh ** Allocate and zero memory. 542a3152895Sdrh */ 543fec00eabSdrh void *sqlite3MallocZero(int n){ 544fec00eabSdrh void *p = sqlite3Malloc(n); 545a3152895Sdrh if( p ){ 546a3152895Sdrh memset(p, 0, n); 547a3152895Sdrh } 548a3152895Sdrh return p; 549a3152895Sdrh } 55017435752Sdrh 55117435752Sdrh /* 55217435752Sdrh ** Allocate and zero memory. If the allocation fails, make 55317435752Sdrh ** the mallocFailed flag in the connection pointer. 55417435752Sdrh */ 555fec00eabSdrh void *sqlite3DbMallocZero(sqlite3 *db, int n){ 556a1644fd8Sdanielk1977 void *p = sqlite3DbMallocRaw(db, n); 55717435752Sdrh if( p ){ 55817435752Sdrh memset(p, 0, n); 55917435752Sdrh } 56017435752Sdrh return p; 56117435752Sdrh } 56217435752Sdrh 56317435752Sdrh /* 56417435752Sdrh ** Allocate and zero memory. If the allocation fails, make 56517435752Sdrh ** the mallocFailed flag in the connection pointer. 566ddecae79Sdrh ** 567ddecae79Sdrh ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 568ddecae79Sdrh ** failure on the same database connection) then always return 0. 569ddecae79Sdrh ** Hence for a particular database connection, once malloc starts 570ddecae79Sdrh ** failing, it fails consistently until mallocFailed is reset. 571ddecae79Sdrh ** This is an important assumption. There are many places in the 572ddecae79Sdrh ** code that do things like this: 573ddecae79Sdrh ** 574ddecae79Sdrh ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 575ddecae79Sdrh ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 576ddecae79Sdrh ** if( b ) a[10] = 9; 577ddecae79Sdrh ** 578ddecae79Sdrh ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 579ddecae79Sdrh ** that all prior mallocs (ex: "a") worked too. 58017435752Sdrh */ 581fec00eabSdrh void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 582633e6d57Sdrh void *p; 583d9da78a2Sdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 584*ccd4ad3eSdan assert( db==0 || db->pnBytesFreed==0 ); 5854150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 586633e6d57Sdrh if( db ){ 587633e6d57Sdrh LookasideSlot *pBuf; 588633e6d57Sdrh if( db->mallocFailed ){ 589633e6d57Sdrh return 0; 590633e6d57Sdrh } 591633e6d57Sdrh if( db->lookaside.bEnabled && n<=db->lookaside.sz 592633e6d57Sdrh && (pBuf = db->lookaside.pFree)!=0 ){ 593633e6d57Sdrh db->lookaside.pFree = pBuf->pNext; 594633e6d57Sdrh db->lookaside.nOut++; 595633e6d57Sdrh if( db->lookaside.nOut>db->lookaside.mxOut ){ 596633e6d57Sdrh db->lookaside.mxOut = db->lookaside.nOut; 597633e6d57Sdrh } 598633e6d57Sdrh return (void*)pBuf; 599633e6d57Sdrh } 600633e6d57Sdrh } 601ddecae79Sdrh #else 602ddecae79Sdrh if( db && db->mallocFailed ){ 603ddecae79Sdrh return 0; 604ddecae79Sdrh } 6054150ebf8Sdrh #endif 606fec00eabSdrh p = sqlite3Malloc(n); 607f3a65f7eSdrh if( !p && db ){ 60817435752Sdrh db->mallocFailed = 1; 60917435752Sdrh } 610174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB | 611174b9a16Sdrh ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 61217435752Sdrh return p; 61317435752Sdrh } 61417435752Sdrh 61526783a58Sdanielk1977 /* 61626783a58Sdanielk1977 ** Resize the block of memory pointed to by p to n bytes. If the 61726783a58Sdanielk1977 ** resize fails, set the mallocFailed flag in the connection object. 61826783a58Sdanielk1977 */ 619a1644fd8Sdanielk1977 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 620a1644fd8Sdanielk1977 void *pNew = 0; 621d9da78a2Sdrh assert( db!=0 ); 6227047e25cSdrh assert( sqlite3_mutex_held(db->mutex) ); 623a1644fd8Sdanielk1977 if( db->mallocFailed==0 ){ 624633e6d57Sdrh if( p==0 ){ 625633e6d57Sdrh return sqlite3DbMallocRaw(db, n); 626633e6d57Sdrh } 627633e6d57Sdrh if( isLookaside(db, p) ){ 628633e6d57Sdrh if( n<=db->lookaside.sz ){ 629633e6d57Sdrh return p; 630633e6d57Sdrh } 631633e6d57Sdrh pNew = sqlite3DbMallocRaw(db, n); 632633e6d57Sdrh if( pNew ){ 633633e6d57Sdrh memcpy(pNew, p, db->lookaside.sz); 634633e6d57Sdrh sqlite3DbFree(db, p); 635633e6d57Sdrh } 636633e6d57Sdrh }else{ 637174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 638174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 639107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 640a1644fd8Sdanielk1977 pNew = sqlite3_realloc(p, n); 641a1644fd8Sdanielk1977 if( !pNew ){ 642174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); 643a1644fd8Sdanielk1977 db->mallocFailed = 1; 644a1644fd8Sdanielk1977 } 645174b9a16Sdrh sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 646174b9a16Sdrh (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 647a1644fd8Sdanielk1977 } 648633e6d57Sdrh } 649a1644fd8Sdanielk1977 return pNew; 650a1644fd8Sdanielk1977 } 651a1644fd8Sdanielk1977 65217435752Sdrh /* 65317435752Sdrh ** Attempt to reallocate p. If the reallocation fails, then free p 65417435752Sdrh ** and set the mallocFailed flag in the database connection. 65517435752Sdrh */ 65617435752Sdrh void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 657a3152895Sdrh void *pNew; 658a1644fd8Sdanielk1977 pNew = sqlite3DbRealloc(db, p, n); 659a3152895Sdrh if( !pNew ){ 660633e6d57Sdrh sqlite3DbFree(db, p); 661a3152895Sdrh } 662a3152895Sdrh return pNew; 663a3152895Sdrh } 664a3152895Sdrh 665a3152895Sdrh /* 666a3152895Sdrh ** Make a copy of a string in memory obtained from sqliteMalloc(). These 667a3152895Sdrh ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 668a3152895Sdrh ** is because when memory debugging is turned on, these two functions are 669a3152895Sdrh ** called via macros that record the current file and line number in the 670a3152895Sdrh ** ThreadData structure. 671a3152895Sdrh */ 672633e6d57Sdrh char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 673a3152895Sdrh char *zNew; 674633e6d57Sdrh size_t n; 675633e6d57Sdrh if( z==0 ){ 676633e6d57Sdrh return 0; 677a3152895Sdrh } 678dee0e404Sdrh n = sqlite3Strlen30(z) + 1; 679633e6d57Sdrh assert( (n&0x7fffffff)==n ); 680633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, (int)n); 681a3152895Sdrh if( zNew ){ 682a3152895Sdrh memcpy(zNew, z, n); 6831e536953Sdanielk1977 } 6841e536953Sdanielk1977 return zNew; 6851e536953Sdanielk1977 } 6861e536953Sdanielk1977 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 687633e6d57Sdrh char *zNew; 688633e6d57Sdrh if( z==0 ){ 689633e6d57Sdrh return 0; 690633e6d57Sdrh } 691633e6d57Sdrh assert( (n&0x7fffffff)==n ); 692633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, n+1); 693633e6d57Sdrh if( zNew ){ 694633e6d57Sdrh memcpy(zNew, z, n); 695633e6d57Sdrh zNew[n] = 0; 6961e536953Sdanielk1977 } 6971e536953Sdanielk1977 return zNew; 6981e536953Sdanielk1977 } 6991e536953Sdanielk1977 700a3152895Sdrh /* 701f089aa45Sdrh ** Create a string from the zFromat argument and the va_list that follows. 702f089aa45Sdrh ** Store the string in memory obtained from sqliteMalloc() and make *pz 703f089aa45Sdrh ** point to that string. 704a3152895Sdrh */ 705f089aa45Sdrh void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 706a3152895Sdrh va_list ap; 707f089aa45Sdrh char *z; 708a3152895Sdrh 709f089aa45Sdrh va_start(ap, zFormat); 710f089aa45Sdrh z = sqlite3VMPrintf(db, zFormat, ap); 711a3152895Sdrh va_end(ap); 712633e6d57Sdrh sqlite3DbFree(db, *pz); 713f089aa45Sdrh *pz = z; 714a3152895Sdrh } 715a3152895Sdrh 716a3152895Sdrh 717a3152895Sdrh /* 718a3152895Sdrh ** This function must be called before exiting any API function (i.e. 71917435752Sdrh ** returning control to the user) that has called sqlite3_malloc or 72017435752Sdrh ** sqlite3_realloc. 721a3152895Sdrh ** 722a3152895Sdrh ** The returned value is normally a copy of the second argument to this 723be217793Sshane ** function. However, if a malloc() failure has occurred since the previous 724a3152895Sdrh ** invocation SQLITE_NOMEM is returned instead. 725a3152895Sdrh ** 726be217793Sshane ** If the first argument, db, is not NULL and a malloc() error has occurred, 727a3152895Sdrh ** then the connection error-code (the value returned by sqlite3_errcode()) 728a3152895Sdrh ** is set to SQLITE_NOMEM. 729a3152895Sdrh */ 730a3152895Sdrh int sqlite3ApiExit(sqlite3* db, int rc){ 731a1644fd8Sdanielk1977 /* If the db handle is not NULL, then we must hold the connection handle 732a1644fd8Sdanielk1977 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 733a1644fd8Sdanielk1977 ** is unsafe, as is the call to sqlite3Error(). 734a1644fd8Sdanielk1977 */ 735a1644fd8Sdanielk1977 assert( !db || sqlite3_mutex_held(db->mutex) ); 73698c21903Sdanielk1977 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 737a3152895Sdrh sqlite3Error(db, SQLITE_NOMEM, 0); 73817435752Sdrh db->mallocFailed = 0; 739a3152895Sdrh rc = SQLITE_NOMEM; 740a3152895Sdrh } 741a3152895Sdrh return rc & (db ? db->errMask : 0xff); 742a3152895Sdrh } 743