1a3152895Sdrh /* 2a3152895Sdrh ** 2001 September 15 3a3152895Sdrh ** 4a3152895Sdrh ** The author disclaims copyright to this source code. In place of 5a3152895Sdrh ** a legal notice, here is a blessing: 6a3152895Sdrh ** 7a3152895Sdrh ** May you do good and not evil. 8a3152895Sdrh ** May you find forgiveness for yourself and forgive others. 9a3152895Sdrh ** May you share freely, never taking more than you give. 10a3152895Sdrh ** 11a3152895Sdrh ************************************************************************* 12fec00eabSdrh ** 13a3152895Sdrh ** Memory allocation functions used throughout sqlite. 14a3152895Sdrh */ 15a3152895Sdrh #include "sqliteInt.h" 16a3152895Sdrh #include <stdarg.h> 17a3152895Sdrh 18a3152895Sdrh /* 198468024dSdanielk1977 ** Attempt to release up to n bytes of non-essential memory currently 208468024dSdanielk1977 ** held by SQLite. An example of non-essential memory is memory used to 218468024dSdanielk1977 ** cache database pages that are not currently in use. 22a3152895Sdrh */ 23a3152895Sdrh int sqlite3_release_memory(int n){ 2486f8c197Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 259f129f46Sdrh return sqlite3PcacheReleaseMemory(n); 261e536953Sdanielk1977 #else 279f129f46Sdrh /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 289f129f46Sdrh ** is a no-op returning zero if SQLite is not compiled with 299f129f46Sdrh ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 3062c14b34Sdanielk1977 UNUSED_PARAMETER(n); 319f129f46Sdrh return 0; 321e536953Sdanielk1977 #endif 33a3152895Sdrh } 34a3152895Sdrh 35fec00eabSdrh /* 36badc980aSdrh ** An instance of the following object records the location of 37badc980aSdrh ** each unused scratch buffer. 38badc980aSdrh */ 39badc980aSdrh typedef struct ScratchFreeslot { 40badc980aSdrh struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41badc980aSdrh } ScratchFreeslot; 42badc980aSdrh 43badc980aSdrh /* 44fec00eabSdrh ** State information local to the memory allocation subsystem. 45fec00eabSdrh */ 465c8f8587Sdanielk1977 static SQLITE_WSD struct Mem0Global { 47fec00eabSdrh sqlite3_mutex *mutex; /* Mutex to serialize access */ 48fec00eabSdrh 49fec00eabSdrh /* 50fec00eabSdrh ** The alarm callback and its arguments. The mem0.mutex lock will 51fec00eabSdrh ** be held while the callback is running. Recursive calls into 52fec00eabSdrh ** the memory subsystem are allowed, but no new callbacks will be 53e64ca7baSdrh ** issued. 54fec00eabSdrh */ 55fec00eabSdrh sqlite3_int64 alarmThreshold; 56fec00eabSdrh void (*alarmCallback)(void*, sqlite3_int64,int); 57fec00eabSdrh void *alarmArg; 58fec00eabSdrh 59fec00eabSdrh /* 60badc980aSdrh ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61badc980aSdrh ** (so that a range test can be used to determine if an allocation 62badc980aSdrh ** being freed came from pScratch) and a pointer to the list of 63badc980aSdrh ** unused scratch allocations. 649ac3fe97Sdrh */ 65badc980aSdrh void *pScratchEnd; 66badc980aSdrh ScratchFreeslot *pScratchFree; 67badc980aSdrh u32 nScratchFree; 6850d1b5f3Sdrh 6950d1b5f3Sdrh /* 7050d1b5f3Sdrh ** True if heap is nearly "full" where "full" is defined by the 7150d1b5f3Sdrh ** sqlite3_soft_heap_limit() setting. 7250d1b5f3Sdrh */ 7350d1b5f3Sdrh int nearlyFull; 746ac78a0dSdrh } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 755c8f8587Sdanielk1977 765c8f8587Sdanielk1977 #define mem0 GLOBAL(struct Mem0Global, mem0) 77fec00eabSdrh 78fec00eabSdrh /* 79f82ccf64Sdrh ** This routine runs when the memory allocator sees that the 80f82ccf64Sdrh ** total memory allocation is about to exceed the soft heap 81f82ccf64Sdrh ** limit. 82f82ccf64Sdrh */ 83f82ccf64Sdrh static void softHeapLimitEnforcer( 84f82ccf64Sdrh void *NotUsed, 85f82ccf64Sdrh sqlite3_int64 NotUsed2, 86f82ccf64Sdrh int allocSize 87f82ccf64Sdrh ){ 88f82ccf64Sdrh UNUSED_PARAMETER2(NotUsed, NotUsed2); 89f82ccf64Sdrh sqlite3_release_memory(allocSize); 90f82ccf64Sdrh } 91f82ccf64Sdrh 92f82ccf64Sdrh /* 93f82ccf64Sdrh ** Change the alarm callback 94f82ccf64Sdrh */ 95f82ccf64Sdrh static int sqlite3MemoryAlarm( 96f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 97f82ccf64Sdrh void *pArg, 98f82ccf64Sdrh sqlite3_int64 iThreshold 99f82ccf64Sdrh ){ 100f82ccf64Sdrh int nUsed; 101f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 102f82ccf64Sdrh mem0.alarmCallback = xCallback; 103f82ccf64Sdrh mem0.alarmArg = pArg; 104f82ccf64Sdrh mem0.alarmThreshold = iThreshold; 105f82ccf64Sdrh nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 106f82ccf64Sdrh mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 107f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 108f82ccf64Sdrh return SQLITE_OK; 109f82ccf64Sdrh } 110f82ccf64Sdrh 111f82ccf64Sdrh #ifndef SQLITE_OMIT_DEPRECATED 112f82ccf64Sdrh /* 113f82ccf64Sdrh ** Deprecated external interface. Internal/core SQLite code 114f82ccf64Sdrh ** should call sqlite3MemoryAlarm. 115f82ccf64Sdrh */ 116f82ccf64Sdrh int sqlite3_memory_alarm( 117f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 118f82ccf64Sdrh void *pArg, 119f82ccf64Sdrh sqlite3_int64 iThreshold 120f82ccf64Sdrh ){ 121f82ccf64Sdrh return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 122f82ccf64Sdrh } 123f82ccf64Sdrh #endif 124f82ccf64Sdrh 125f82ccf64Sdrh /* 126f82ccf64Sdrh ** Set the soft heap-size limit for the library. Passing a zero or 127f82ccf64Sdrh ** negative value indicates no limit. 128f82ccf64Sdrh */ 129f82ccf64Sdrh sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 130f82ccf64Sdrh sqlite3_int64 priorLimit; 131f82ccf64Sdrh sqlite3_int64 excess; 132f82ccf64Sdrh #ifndef SQLITE_OMIT_AUTOINIT 133de0f1815Sdrh int rc = sqlite3_initialize(); 134de0f1815Sdrh if( rc ) return -1; 135f82ccf64Sdrh #endif 136f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 137f82ccf64Sdrh priorLimit = mem0.alarmThreshold; 138f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 139f82ccf64Sdrh if( n<0 ) return priorLimit; 140f82ccf64Sdrh if( n>0 ){ 141f82ccf64Sdrh sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 142f82ccf64Sdrh }else{ 143f82ccf64Sdrh sqlite3MemoryAlarm(0, 0, 0); 144f82ccf64Sdrh } 145f82ccf64Sdrh excess = sqlite3_memory_used() - n; 1464b03f21eSshaneh if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 147f82ccf64Sdrh return priorLimit; 148f82ccf64Sdrh } 149f82ccf64Sdrh void sqlite3_soft_heap_limit(int n){ 150f82ccf64Sdrh if( n<0 ) n = 0; 151f82ccf64Sdrh sqlite3_soft_heap_limit64(n); 152f82ccf64Sdrh } 153f82ccf64Sdrh 154f82ccf64Sdrh /* 155fec00eabSdrh ** Initialize the memory allocation subsystem. 156fec00eabSdrh */ 157fec00eabSdrh int sqlite3MallocInit(void){ 158075c23afSdanielk1977 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 159fec00eabSdrh sqlite3MemSetDefault(); 160fec00eabSdrh } 161fec00eabSdrh memset(&mem0, 0, sizeof(mem0)); 162075c23afSdanielk1977 if( sqlite3GlobalConfig.bCoreMutex ){ 16359f8c08eSdanielk1977 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 164fec00eabSdrh } 165075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 1667ff2719eSdrh && sqlite3GlobalConfig.nScratch>0 ){ 167badc980aSdrh int i, n, sz; 168badc980aSdrh ScratchFreeslot *pSlot; 169badc980aSdrh sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 170badc980aSdrh sqlite3GlobalConfig.szScratch = sz; 171badc980aSdrh pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 172badc980aSdrh n = sqlite3GlobalConfig.nScratch; 173badc980aSdrh mem0.pScratchFree = pSlot; 174badc980aSdrh mem0.nScratchFree = n; 175badc980aSdrh for(i=0; i<n-1; i++){ 176badc980aSdrh pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 177badc980aSdrh pSlot = pSlot->pNext; 178badc980aSdrh } 179badc980aSdrh pSlot->pNext = 0; 180badc980aSdrh mem0.pScratchEnd = (void*)&pSlot[1]; 1819ac3fe97Sdrh }else{ 182badc980aSdrh mem0.pScratchEnd = 0; 183075c23afSdanielk1977 sqlite3GlobalConfig.pScratch = 0; 184075c23afSdanielk1977 sqlite3GlobalConfig.szScratch = 0; 185badc980aSdrh sqlite3GlobalConfig.nScratch = 0; 1869ac3fe97Sdrh } 18750d1b5f3Sdrh if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 18850d1b5f3Sdrh || sqlite3GlobalConfig.nPage<1 ){ 189075c23afSdanielk1977 sqlite3GlobalConfig.pPage = 0; 190075c23afSdanielk1977 sqlite3GlobalConfig.szPage = 0; 19150d1b5f3Sdrh sqlite3GlobalConfig.nPage = 0; 1929ac3fe97Sdrh } 193075c23afSdanielk1977 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 194fec00eabSdrh } 195fec00eabSdrh 196fec00eabSdrh /* 19750d1b5f3Sdrh ** Return true if the heap is currently under memory pressure - in other 19850d1b5f3Sdrh ** words if the amount of heap used is close to the limit set by 19950d1b5f3Sdrh ** sqlite3_soft_heap_limit(). 20050d1b5f3Sdrh */ 20150d1b5f3Sdrh int sqlite3HeapNearlyFull(void){ 20250d1b5f3Sdrh return mem0.nearlyFull; 20350d1b5f3Sdrh } 20450d1b5f3Sdrh 20550d1b5f3Sdrh /* 206fec00eabSdrh ** Deinitialize the memory allocation subsystem. 207fec00eabSdrh */ 208fec00eabSdrh void sqlite3MallocEnd(void){ 2090a549071Sdanielk1977 if( sqlite3GlobalConfig.m.xShutdown ){ 210075c23afSdanielk1977 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 2110a549071Sdanielk1977 } 2129ac3fe97Sdrh memset(&mem0, 0, sizeof(mem0)); 213fec00eabSdrh } 214fec00eabSdrh 215fec00eabSdrh /* 216fec00eabSdrh ** Return the amount of memory currently checked out. 217fec00eabSdrh */ 218fec00eabSdrh sqlite3_int64 sqlite3_memory_used(void){ 219f7141990Sdrh int n, mx; 220c376a198Sdrh sqlite3_int64 res; 221f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 222c376a198Sdrh res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 223c376a198Sdrh return res; 224fec00eabSdrh } 225fec00eabSdrh 226fec00eabSdrh /* 227fec00eabSdrh ** Return the maximum amount of memory that has ever been 228fec00eabSdrh ** checked out since either the beginning of this process 229fec00eabSdrh ** or since the most recent reset. 230fec00eabSdrh */ 231fec00eabSdrh sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 232f7141990Sdrh int n, mx; 233c376a198Sdrh sqlite3_int64 res; 234f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 2357986a71aSdrh res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 236c376a198Sdrh return res; 237fec00eabSdrh } 238fec00eabSdrh 239fec00eabSdrh /* 240fec00eabSdrh ** Trigger the alarm 241fec00eabSdrh */ 242fec00eabSdrh static void sqlite3MallocAlarm(int nByte){ 243fec00eabSdrh void (*xCallback)(void*,sqlite3_int64,int); 244fec00eabSdrh sqlite3_int64 nowUsed; 245fec00eabSdrh void *pArg; 246e64ca7baSdrh if( mem0.alarmCallback==0 ) return; 247fec00eabSdrh xCallback = mem0.alarmCallback; 248f7141990Sdrh nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 249fec00eabSdrh pArg = mem0.alarmArg; 250e64ca7baSdrh mem0.alarmCallback = 0; 251fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 252fec00eabSdrh xCallback(pArg, nowUsed, nByte); 253fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 254e64ca7baSdrh mem0.alarmCallback = xCallback; 255e64ca7baSdrh mem0.alarmArg = pArg; 256fec00eabSdrh } 257fec00eabSdrh 258fec00eabSdrh /* 259f7141990Sdrh ** Do a memory allocation with statistics and alarms. Assume the 260f7141990Sdrh ** lock is already held. 261fec00eabSdrh */ 262f7141990Sdrh static int mallocWithAlarm(int n, void **pp){ 263fec00eabSdrh int nFull; 264f7141990Sdrh void *p; 265f7141990Sdrh assert( sqlite3_mutex_held(mem0.mutex) ); 266075c23afSdanielk1977 nFull = sqlite3GlobalConfig.m.xRoundup(n); 267f7141990Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 268f7141990Sdrh if( mem0.alarmCallback!=0 ){ 269f7141990Sdrh int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 2708e1bb041Sdrh if( nUsed >= mem0.alarmThreshold - nFull ){ 27150d1b5f3Sdrh mem0.nearlyFull = 1; 272fec00eabSdrh sqlite3MallocAlarm(nFull); 27350d1b5f3Sdrh }else{ 27450d1b5f3Sdrh mem0.nearlyFull = 0; 275fec00eabSdrh } 276f7141990Sdrh } 277075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 27850d1b5f3Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 279d09414cdSdanielk1977 if( p==0 && mem0.alarmCallback ){ 280fec00eabSdrh sqlite3MallocAlarm(nFull); 281075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 282fec00eabSdrh } 28350d1b5f3Sdrh #endif 284c702c7ccSdrh if( p ){ 285c702c7ccSdrh nFull = sqlite3MallocSize(p); 286c702c7ccSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 287eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 288c702c7ccSdrh } 289f7141990Sdrh *pp = p; 290f7141990Sdrh return nFull; 291fec00eabSdrh } 292f7141990Sdrh 293f7141990Sdrh /* 294f7141990Sdrh ** Allocate memory. This routine is like sqlite3_malloc() except that it 295f7141990Sdrh ** assumes the memory subsystem has already been initialized. 296f7141990Sdrh */ 297da4ca9d1Sdrh void *sqlite3Malloc(u64 n){ 298f7141990Sdrh void *p; 299da4ca9d1Sdrh if( n==0 || n>=0x7fffff00 ){ 300e08ed7e7Sdrh /* A memory allocation of a number of bytes which is near the maximum 301e08ed7e7Sdrh ** signed integer value might cause an integer overflow inside of the 302e08ed7e7Sdrh ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 303e08ed7e7Sdrh ** 255 bytes of overhead. SQLite itself will never use anything near 304e08ed7e7Sdrh ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 305f7141990Sdrh p = 0; 306075c23afSdanielk1977 }else if( sqlite3GlobalConfig.bMemstat ){ 307f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 3083329a63aSdrh mallocWithAlarm((int)n, &p); 309fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 310fec00eabSdrh }else{ 311da4ca9d1Sdrh p = sqlite3GlobalConfig.m.xMalloc((int)n); 312fec00eabSdrh } 3138da47419Sdrh assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 314fec00eabSdrh return p; 315fec00eabSdrh } 316fec00eabSdrh 317fec00eabSdrh /* 318fec00eabSdrh ** This version of the memory allocation is for use by the application. 319fec00eabSdrh ** First make sure the memory subsystem is initialized, then do the 320fec00eabSdrh ** allocation. 321fec00eabSdrh */ 322fec00eabSdrh void *sqlite3_malloc(int n){ 323fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 324fec00eabSdrh if( sqlite3_initialize() ) return 0; 325fec00eabSdrh #endif 326da4ca9d1Sdrh return n<=0 ? 0 : sqlite3Malloc(n); 327da4ca9d1Sdrh } 328da4ca9d1Sdrh void *sqlite3_malloc64(sqlite3_uint64 n){ 329da4ca9d1Sdrh #ifndef SQLITE_OMIT_AUTOINIT 330da4ca9d1Sdrh if( sqlite3_initialize() ) return 0; 331da4ca9d1Sdrh #endif 332fec00eabSdrh return sqlite3Malloc(n); 333fec00eabSdrh } 334fec00eabSdrh 335fec00eabSdrh /* 336e5ae5735Sdrh ** Each thread may only have a single outstanding allocation from 337facf0307Sdrh ** xScratchMalloc(). We verify this constraint in the single-threaded 338facf0307Sdrh ** case by setting scratchAllocOut to 1 when an allocation 339e5ae5735Sdrh ** is outstanding clearing it when the allocation is freed. 340e5ae5735Sdrh */ 341e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 342facf0307Sdrh static int scratchAllocOut = 0; 343e5ae5735Sdrh #endif 344e5ae5735Sdrh 345e5ae5735Sdrh 346e5ae5735Sdrh /* 347e5ae5735Sdrh ** Allocate memory that is to be used and released right away. 348e5ae5735Sdrh ** This routine is similar to alloca() in that it is not intended 349e5ae5735Sdrh ** for situations where the memory might be held long-term. This 350e5ae5735Sdrh ** routine is intended to get memory to old large transient data 351e5ae5735Sdrh ** structures that would not normally fit on the stack of an 352e5ae5735Sdrh ** embedded processor. 353e5ae5735Sdrh */ 354facf0307Sdrh void *sqlite3ScratchMalloc(int n){ 355e5ae5735Sdrh void *p; 356e5ae5735Sdrh assert( n>0 ); 3579ac3fe97Sdrh 358badc980aSdrh sqlite3_mutex_enter(mem0.mutex); 3593ccd5bf8Sdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 360badc980aSdrh if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 361badc980aSdrh p = mem0.pScratchFree; 362badc980aSdrh mem0.pScratchFree = mem0.pScratchFree->pNext; 363badc980aSdrh mem0.nScratchFree--; 364badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 365b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 366badc980aSdrh }else{ 367b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 3683ccd5bf8Sdrh p = sqlite3Malloc(n); 3693ccd5bf8Sdrh if( sqlite3GlobalConfig.bMemstat && p ){ 3703ccd5bf8Sdrh sqlite3_mutex_enter(mem0.mutex); 3713ccd5bf8Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 3723ccd5bf8Sdrh sqlite3_mutex_leave(mem0.mutex); 373badc980aSdrh } 374badc980aSdrh sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 375badc980aSdrh } 3761ff6e3abSdrh assert( sqlite3_mutex_notheld(mem0.mutex) ); 377b0c6a888Sdan 378badc980aSdrh 379badc980aSdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 380*cbd55b03Sdrh /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 381*cbd55b03Sdrh ** buffers per thread. 382*cbd55b03Sdrh ** 383*cbd55b03Sdrh ** This can only be checked in single-threaded mode. 384*cbd55b03Sdrh */ 385*cbd55b03Sdrh assert( scratchAllocOut==0 ); 386badc980aSdrh if( p ) scratchAllocOut++; 387badc980aSdrh #endif 388badc980aSdrh 389badc980aSdrh return p; 390badc980aSdrh } 391badc980aSdrh void sqlite3ScratchFree(void *p){ 392badc980aSdrh if( p ){ 393badc980aSdrh 394e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 39537f99187Sdrh /* Verify that no more than two scratch allocation per thread 3969ac3fe97Sdrh ** is outstanding at one time. (This is only checked in the 3979ac3fe97Sdrh ** single-threaded case since checking in the multi-threaded case 3989ac3fe97Sdrh ** would be much more complicated.) */ 399badc980aSdrh assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 400badc980aSdrh scratchAllocOut--; 401e5ae5735Sdrh #endif 4029ac3fe97Sdrh 403badc980aSdrh if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 404badc980aSdrh /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 405badc980aSdrh ScratchFreeslot *pSlot; 406badc980aSdrh pSlot = (ScratchFreeslot*)p; 407e5ae5735Sdrh sqlite3_mutex_enter(mem0.mutex); 408badc980aSdrh pSlot->pNext = mem0.pScratchFree; 409badc980aSdrh mem0.pScratchFree = pSlot; 410badc980aSdrh mem0.nScratchFree++; 411fcd71b60Sdrh assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 412badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 4139ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 414f7141990Sdrh }else{ 415badc980aSdrh /* Release memory back to the heap */ 416107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 417174b9a16Sdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 418107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 419075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 420f7141990Sdrh int iSize = sqlite3MallocSize(p); 421f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 422f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 423f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 42481ba7d16Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 425075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 426f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 427f7141990Sdrh }else{ 428075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 429f7141990Sdrh } 4309ac3fe97Sdrh } 431e5ae5735Sdrh } 432e5ae5735Sdrh } 433e5ae5735Sdrh 434e5ae5735Sdrh /* 435633e6d57Sdrh ** TRUE if p is a lookaside memory allocation from db 436633e6d57Sdrh */ 4374150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 438633e6d57Sdrh static int isLookaside(sqlite3 *db, void *p){ 439b0e7704eSdrh return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 440633e6d57Sdrh } 4414150ebf8Sdrh #else 4424150ebf8Sdrh #define isLookaside(A,B) 0 4434150ebf8Sdrh #endif 444633e6d57Sdrh 445633e6d57Sdrh /* 446fec00eabSdrh ** Return the size of a memory allocation previously obtained from 447fec00eabSdrh ** sqlite3Malloc() or sqlite3_malloc(). 448fec00eabSdrh */ 449fec00eabSdrh int sqlite3MallocSize(void *p){ 450107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 451075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 452fec00eabSdrh } 453633e6d57Sdrh int sqlite3DbMallocSize(sqlite3 *db, void *p){ 45417bcb102Sdrh if( db==0 ){ 455d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 456d231aa3aSdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 45717bcb102Sdrh return sqlite3MallocSize(p); 45817bcb102Sdrh }else{ 459b0e7704eSdrh assert( sqlite3_mutex_held(db->mutex) ); 460b0e7704eSdrh if( isLookaside(db, p) ){ 461633e6d57Sdrh return db->lookaside.sz; 462633e6d57Sdrh }else{ 463d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 464d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 465075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 466633e6d57Sdrh } 467633e6d57Sdrh } 46817bcb102Sdrh } 469da4ca9d1Sdrh sqlite3_uint64 sqlite3_msize(void *p){ 470d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 471d231aa3aSdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 472da4ca9d1Sdrh return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); 473da4ca9d1Sdrh } 474fec00eabSdrh 475fec00eabSdrh /* 476fec00eabSdrh ** Free memory previously obtained from sqlite3Malloc(). 477fec00eabSdrh */ 478fec00eabSdrh void sqlite3_free(void *p){ 47971a1a0f4Sdrh if( p==0 ) return; /* IMP: R-49053-54554 */ 480107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 481d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 482075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 483fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 484f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 485eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 486075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 487fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 488fec00eabSdrh }else{ 489075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 490fec00eabSdrh } 491fec00eabSdrh } 492fec00eabSdrh 493fec00eabSdrh /* 494b4586f12Sdrh ** Add the size of memory allocation "p" to the count in 495b4586f12Sdrh ** *db->pnBytesFreed. 496b4586f12Sdrh */ 497b4586f12Sdrh static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 498b4586f12Sdrh *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 499b4586f12Sdrh } 500b4586f12Sdrh 501b4586f12Sdrh /* 502633e6d57Sdrh ** Free memory that might be associated with a particular database 503633e6d57Sdrh ** connection. 504633e6d57Sdrh */ 505633e6d57Sdrh void sqlite3DbFree(sqlite3 *db, void *p){ 5067047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 5079ccd8659Sdrh if( p==0 ) return; 508174b9a16Sdrh if( db ){ 509174b9a16Sdrh if( db->pnBytesFreed ){ 510b4586f12Sdrh measureAllocationSize(db, p); 511174b9a16Sdrh return; 512d46def77Sdan } 513633e6d57Sdrh if( isLookaside(db, p) ){ 514633e6d57Sdrh LookasideSlot *pBuf = (LookasideSlot*)p; 5153608f177Sdrh #if SQLITE_DEBUG 5163608f177Sdrh /* Trash all content in the buffer being freed */ 5173608f177Sdrh memset(p, 0xaa, db->lookaside.sz); 5183608f177Sdrh #endif 519633e6d57Sdrh pBuf->pNext = db->lookaside.pFree; 520633e6d57Sdrh db->lookaside.pFree = pBuf; 521633e6d57Sdrh db->lookaside.nOut--; 522174b9a16Sdrh return; 523174b9a16Sdrh } 524174b9a16Sdrh } 525d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 526d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 527174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 528107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 529633e6d57Sdrh sqlite3_free(p); 530633e6d57Sdrh } 531633e6d57Sdrh 532633e6d57Sdrh /* 533fec00eabSdrh ** Change the size of an existing memory allocation 534fec00eabSdrh */ 535da4ca9d1Sdrh void *sqlite3Realloc(void *pOld, u64 nBytes){ 536ca591febSshaneh int nOld, nNew, nDiff; 537fec00eabSdrh void *pNew; 538d231aa3aSdrh assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 539d231aa3aSdrh assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 540fec00eabSdrh if( pOld==0 ){ 5418da47419Sdrh return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 542fec00eabSdrh } 543da4ca9d1Sdrh if( nBytes==0 ){ 5448da47419Sdrh sqlite3_free(pOld); /* IMP: R-26507-47431 */ 545fec00eabSdrh return 0; 546fec00eabSdrh } 547b6063cf8Sdrh if( nBytes>=0x7fffff00 ){ 548b6063cf8Sdrh /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 549b6063cf8Sdrh return 0; 550b6063cf8Sdrh } 551fec00eabSdrh nOld = sqlite3MallocSize(pOld); 5529f129f46Sdrh /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 5539f129f46Sdrh ** argument to xRealloc is always a value returned by a prior call to 5549f129f46Sdrh ** xRoundup. */ 555da4ca9d1Sdrh nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 556fec00eabSdrh if( nOld==nNew ){ 557fec00eabSdrh pNew = pOld; 5587c6791c8Sdrh }else if( sqlite3GlobalConfig.bMemstat ){ 5597c6791c8Sdrh sqlite3_mutex_enter(mem0.mutex); 5603329a63aSdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 5618e1bb041Sdrh nDiff = nNew - nOld; 5628e1bb041Sdrh if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 5638e1bb041Sdrh mem0.alarmThreshold-nDiff ){ 5642e5a422eSdrh sqlite3MallocAlarm(nDiff); 565fec00eabSdrh } 566075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 567d09414cdSdanielk1977 if( pNew==0 && mem0.alarmCallback ){ 5683329a63aSdrh sqlite3MallocAlarm((int)nBytes); 569075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 570fec00eabSdrh } 571fec00eabSdrh if( pNew ){ 572c702c7ccSdrh nNew = sqlite3MallocSize(pNew); 5732e5a422eSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 574fec00eabSdrh } 575fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 576fec00eabSdrh }else{ 5777c6791c8Sdrh pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 578fec00eabSdrh } 5798da47419Sdrh assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 580fec00eabSdrh return pNew; 581fec00eabSdrh } 582fec00eabSdrh 583fec00eabSdrh /* 584fec00eabSdrh ** The public interface to sqlite3Realloc. Make sure that the memory 585fec00eabSdrh ** subsystem is initialized prior to invoking sqliteRealloc. 586fec00eabSdrh */ 587fec00eabSdrh void *sqlite3_realloc(void *pOld, int n){ 588fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 589fec00eabSdrh if( sqlite3_initialize() ) return 0; 590fec00eabSdrh #endif 5918da47419Sdrh if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 592da4ca9d1Sdrh return sqlite3Realloc(pOld, n); 593da4ca9d1Sdrh } 594da4ca9d1Sdrh void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 595da4ca9d1Sdrh #ifndef SQLITE_OMIT_AUTOINIT 596da4ca9d1Sdrh if( sqlite3_initialize() ) return 0; 597da4ca9d1Sdrh #endif 598fec00eabSdrh return sqlite3Realloc(pOld, n); 599fec00eabSdrh } 600fec00eabSdrh 601a3152895Sdrh 602a3152895Sdrh /* 60317435752Sdrh ** Allocate and zero memory. 604a3152895Sdrh */ 605da4ca9d1Sdrh void *sqlite3MallocZero(u64 n){ 606fec00eabSdrh void *p = sqlite3Malloc(n); 607a3152895Sdrh if( p ){ 60820f3df04Sdrh memset(p, 0, (size_t)n); 609a3152895Sdrh } 610a3152895Sdrh return p; 611a3152895Sdrh } 61217435752Sdrh 61317435752Sdrh /* 61417435752Sdrh ** Allocate and zero memory. If the allocation fails, make 61517435752Sdrh ** the mallocFailed flag in the connection pointer. 61617435752Sdrh */ 617da4ca9d1Sdrh void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 618a1644fd8Sdanielk1977 void *p = sqlite3DbMallocRaw(db, n); 61917435752Sdrh if( p ){ 62020f3df04Sdrh memset(p, 0, (size_t)n); 62117435752Sdrh } 62217435752Sdrh return p; 62317435752Sdrh } 62417435752Sdrh 62517435752Sdrh /* 62617435752Sdrh ** Allocate and zero memory. If the allocation fails, make 62717435752Sdrh ** the mallocFailed flag in the connection pointer. 628ddecae79Sdrh ** 629ddecae79Sdrh ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 630ddecae79Sdrh ** failure on the same database connection) then always return 0. 631ddecae79Sdrh ** Hence for a particular database connection, once malloc starts 632ddecae79Sdrh ** failing, it fails consistently until mallocFailed is reset. 633ddecae79Sdrh ** This is an important assumption. There are many places in the 634ddecae79Sdrh ** code that do things like this: 635ddecae79Sdrh ** 636ddecae79Sdrh ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 637ddecae79Sdrh ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 638ddecae79Sdrh ** if( b ) a[10] = 9; 639ddecae79Sdrh ** 640ddecae79Sdrh ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 641ddecae79Sdrh ** that all prior mallocs (ex: "a") worked too. 64217435752Sdrh */ 643da4ca9d1Sdrh void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 644633e6d57Sdrh void *p; 645d9da78a2Sdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 646ccd4ad3eSdan assert( db==0 || db->pnBytesFreed==0 ); 6474150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 648633e6d57Sdrh if( db ){ 649633e6d57Sdrh LookasideSlot *pBuf; 650633e6d57Sdrh if( db->mallocFailed ){ 651633e6d57Sdrh return 0; 652633e6d57Sdrh } 6530b12e7f8Sdrh if( db->lookaside.bEnabled ){ 6540b12e7f8Sdrh if( n>db->lookaside.sz ){ 6550b12e7f8Sdrh db->lookaside.anStat[1]++; 6560b12e7f8Sdrh }else if( (pBuf = db->lookaside.pFree)==0 ){ 6570b12e7f8Sdrh db->lookaside.anStat[2]++; 6580b12e7f8Sdrh }else{ 659633e6d57Sdrh db->lookaside.pFree = pBuf->pNext; 660633e6d57Sdrh db->lookaside.nOut++; 6610b12e7f8Sdrh db->lookaside.anStat[0]++; 662633e6d57Sdrh if( db->lookaside.nOut>db->lookaside.mxOut ){ 663633e6d57Sdrh db->lookaside.mxOut = db->lookaside.nOut; 664633e6d57Sdrh } 665633e6d57Sdrh return (void*)pBuf; 666633e6d57Sdrh } 667633e6d57Sdrh } 6680b12e7f8Sdrh } 669ddecae79Sdrh #else 670ddecae79Sdrh if( db && db->mallocFailed ){ 671ddecae79Sdrh return 0; 672ddecae79Sdrh } 6734150ebf8Sdrh #endif 674fec00eabSdrh p = sqlite3Malloc(n); 675f3a65f7eSdrh if( !p && db ){ 67617435752Sdrh db->mallocFailed = 1; 67717435752Sdrh } 678d231aa3aSdrh sqlite3MemdebugSetType(p, 679d231aa3aSdrh (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 68017435752Sdrh return p; 68117435752Sdrh } 68217435752Sdrh 68326783a58Sdanielk1977 /* 68426783a58Sdanielk1977 ** Resize the block of memory pointed to by p to n bytes. If the 68526783a58Sdanielk1977 ** resize fails, set the mallocFailed flag in the connection object. 68626783a58Sdanielk1977 */ 687da4ca9d1Sdrh void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 688a1644fd8Sdanielk1977 void *pNew = 0; 689d9da78a2Sdrh assert( db!=0 ); 6907047e25cSdrh assert( sqlite3_mutex_held(db->mutex) ); 691a1644fd8Sdanielk1977 if( db->mallocFailed==0 ){ 692633e6d57Sdrh if( p==0 ){ 693633e6d57Sdrh return sqlite3DbMallocRaw(db, n); 694633e6d57Sdrh } 695633e6d57Sdrh if( isLookaside(db, p) ){ 696633e6d57Sdrh if( n<=db->lookaside.sz ){ 697633e6d57Sdrh return p; 698633e6d57Sdrh } 699633e6d57Sdrh pNew = sqlite3DbMallocRaw(db, n); 700633e6d57Sdrh if( pNew ){ 701633e6d57Sdrh memcpy(pNew, p, db->lookaside.sz); 702633e6d57Sdrh sqlite3DbFree(db, p); 703633e6d57Sdrh } 704633e6d57Sdrh }else{ 705d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 706d231aa3aSdrh assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 707107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 7083329a63aSdrh pNew = sqlite3_realloc64(p, n); 709a1644fd8Sdanielk1977 if( !pNew ){ 710a1644fd8Sdanielk1977 db->mallocFailed = 1; 711a1644fd8Sdanielk1977 } 712d231aa3aSdrh sqlite3MemdebugSetType(pNew, 713174b9a16Sdrh (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 714a1644fd8Sdanielk1977 } 715633e6d57Sdrh } 716a1644fd8Sdanielk1977 return pNew; 717a1644fd8Sdanielk1977 } 718a1644fd8Sdanielk1977 71917435752Sdrh /* 72017435752Sdrh ** Attempt to reallocate p. If the reallocation fails, then free p 72117435752Sdrh ** and set the mallocFailed flag in the database connection. 72217435752Sdrh */ 723da4ca9d1Sdrh void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 724a3152895Sdrh void *pNew; 725a1644fd8Sdanielk1977 pNew = sqlite3DbRealloc(db, p, n); 726a3152895Sdrh if( !pNew ){ 727633e6d57Sdrh sqlite3DbFree(db, p); 728a3152895Sdrh } 729a3152895Sdrh return pNew; 730a3152895Sdrh } 731a3152895Sdrh 732a3152895Sdrh /* 733a3152895Sdrh ** Make a copy of a string in memory obtained from sqliteMalloc(). These 734a3152895Sdrh ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 735a3152895Sdrh ** is because when memory debugging is turned on, these two functions are 736a3152895Sdrh ** called via macros that record the current file and line number in the 737a3152895Sdrh ** ThreadData structure. 738a3152895Sdrh */ 739633e6d57Sdrh char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 740a3152895Sdrh char *zNew; 741633e6d57Sdrh size_t n; 742633e6d57Sdrh if( z==0 ){ 743633e6d57Sdrh return 0; 744a3152895Sdrh } 745dee0e404Sdrh n = sqlite3Strlen30(z) + 1; 746633e6d57Sdrh assert( (n&0x7fffffff)==n ); 747633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, (int)n); 748a3152895Sdrh if( zNew ){ 749a3152895Sdrh memcpy(zNew, z, n); 7501e536953Sdanielk1977 } 7511e536953Sdanielk1977 return zNew; 7521e536953Sdanielk1977 } 753da4ca9d1Sdrh char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 754633e6d57Sdrh char *zNew; 755633e6d57Sdrh if( z==0 ){ 756633e6d57Sdrh return 0; 757633e6d57Sdrh } 758633e6d57Sdrh assert( (n&0x7fffffff)==n ); 759633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, n+1); 760633e6d57Sdrh if( zNew ){ 76120f3df04Sdrh memcpy(zNew, z, (size_t)n); 762633e6d57Sdrh zNew[n] = 0; 7631e536953Sdanielk1977 } 7641e536953Sdanielk1977 return zNew; 7651e536953Sdanielk1977 } 7661e536953Sdanielk1977 767a3152895Sdrh /* 768f089aa45Sdrh ** Create a string from the zFromat argument and the va_list that follows. 769f089aa45Sdrh ** Store the string in memory obtained from sqliteMalloc() and make *pz 770f089aa45Sdrh ** point to that string. 771a3152895Sdrh */ 772f089aa45Sdrh void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 773a3152895Sdrh va_list ap; 774f089aa45Sdrh char *z; 775a3152895Sdrh 776f089aa45Sdrh va_start(ap, zFormat); 777f089aa45Sdrh z = sqlite3VMPrintf(db, zFormat, ap); 778a3152895Sdrh va_end(ap); 779633e6d57Sdrh sqlite3DbFree(db, *pz); 780f089aa45Sdrh *pz = z; 781a3152895Sdrh } 782a3152895Sdrh 783b50c65d5Sdrh /* 784b50c65d5Sdrh ** Take actions at the end of an API call to indicate an OOM error 785b50c65d5Sdrh */ 786b50c65d5Sdrh static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 787b50c65d5Sdrh db->mallocFailed = 0; 788b50c65d5Sdrh sqlite3Error(db, SQLITE_NOMEM); 789b50c65d5Sdrh return SQLITE_NOMEM; 790b50c65d5Sdrh } 791a3152895Sdrh 792a3152895Sdrh /* 793a3152895Sdrh ** This function must be called before exiting any API function (i.e. 79417435752Sdrh ** returning control to the user) that has called sqlite3_malloc or 79517435752Sdrh ** sqlite3_realloc. 796a3152895Sdrh ** 797a3152895Sdrh ** The returned value is normally a copy of the second argument to this 798be217793Sshane ** function. However, if a malloc() failure has occurred since the previous 799a3152895Sdrh ** invocation SQLITE_NOMEM is returned instead. 800a3152895Sdrh ** 801be217793Sshane ** If the first argument, db, is not NULL and a malloc() error has occurred, 802a3152895Sdrh ** then the connection error-code (the value returned by sqlite3_errcode()) 803a3152895Sdrh ** is set to SQLITE_NOMEM. 804a3152895Sdrh */ 805a3152895Sdrh int sqlite3ApiExit(sqlite3* db, int rc){ 806a1644fd8Sdanielk1977 /* If the db handle is not NULL, then we must hold the connection handle 807a1644fd8Sdanielk1977 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 808a1644fd8Sdanielk1977 ** is unsafe, as is the call to sqlite3Error(). 809a1644fd8Sdanielk1977 */ 810a1644fd8Sdanielk1977 assert( !db || sqlite3_mutex_held(db->mutex) ); 811b50c65d5Sdrh if( db==0 ) return rc & 0xff; 812b50c65d5Sdrh if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 813b50c65d5Sdrh return apiOomError(db); 814a3152895Sdrh } 815b50c65d5Sdrh return rc & db->errMask; 816a3152895Sdrh } 817