1a3152895Sdrh /* 2a3152895Sdrh ** 2001 September 15 3a3152895Sdrh ** 4a3152895Sdrh ** The author disclaims copyright to this source code. In place of 5a3152895Sdrh ** a legal notice, here is a blessing: 6a3152895Sdrh ** 7a3152895Sdrh ** May you do good and not evil. 8a3152895Sdrh ** May you find forgiveness for yourself and forgive others. 9a3152895Sdrh ** May you share freely, never taking more than you give. 10a3152895Sdrh ** 11a3152895Sdrh ************************************************************************* 12fec00eabSdrh ** 13a3152895Sdrh ** Memory allocation functions used throughout sqlite. 14a3152895Sdrh */ 15a3152895Sdrh #include "sqliteInt.h" 16a3152895Sdrh #include <stdarg.h> 17a3152895Sdrh 18a3152895Sdrh /* 198468024dSdanielk1977 ** Attempt to release up to n bytes of non-essential memory currently 208468024dSdanielk1977 ** held by SQLite. An example of non-essential memory is memory used to 218468024dSdanielk1977 ** cache database pages that are not currently in use. 22a3152895Sdrh */ 23a3152895Sdrh int sqlite3_release_memory(int n){ 2486f8c197Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 259f129f46Sdrh return sqlite3PcacheReleaseMemory(n); 261e536953Sdanielk1977 #else 279f129f46Sdrh /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 289f129f46Sdrh ** is a no-op returning zero if SQLite is not compiled with 299f129f46Sdrh ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 3062c14b34Sdanielk1977 UNUSED_PARAMETER(n); 319f129f46Sdrh return 0; 321e536953Sdanielk1977 #endif 33a3152895Sdrh } 34a3152895Sdrh 35fec00eabSdrh /* 36badc980aSdrh ** An instance of the following object records the location of 37badc980aSdrh ** each unused scratch buffer. 38badc980aSdrh */ 39badc980aSdrh typedef struct ScratchFreeslot { 40badc980aSdrh struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41badc980aSdrh } ScratchFreeslot; 42badc980aSdrh 43badc980aSdrh /* 44fec00eabSdrh ** State information local to the memory allocation subsystem. 45fec00eabSdrh */ 465c8f8587Sdanielk1977 static SQLITE_WSD struct Mem0Global { 47fec00eabSdrh sqlite3_mutex *mutex; /* Mutex to serialize access */ 48fec00eabSdrh 49fec00eabSdrh /* 50fec00eabSdrh ** The alarm callback and its arguments. The mem0.mutex lock will 51fec00eabSdrh ** be held while the callback is running. Recursive calls into 52fec00eabSdrh ** the memory subsystem are allowed, but no new callbacks will be 53e64ca7baSdrh ** issued. 54fec00eabSdrh */ 55fec00eabSdrh sqlite3_int64 alarmThreshold; 56fec00eabSdrh void (*alarmCallback)(void*, sqlite3_int64,int); 57fec00eabSdrh void *alarmArg; 58fec00eabSdrh 59fec00eabSdrh /* 60badc980aSdrh ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61badc980aSdrh ** (so that a range test can be used to determine if an allocation 62badc980aSdrh ** being freed came from pScratch) and a pointer to the list of 63badc980aSdrh ** unused scratch allocations. 649ac3fe97Sdrh */ 65badc980aSdrh void *pScratchEnd; 66badc980aSdrh ScratchFreeslot *pScratchFree; 67badc980aSdrh u32 nScratchFree; 6850d1b5f3Sdrh 6950d1b5f3Sdrh /* 7050d1b5f3Sdrh ** True if heap is nearly "full" where "full" is defined by the 7150d1b5f3Sdrh ** sqlite3_soft_heap_limit() setting. 7250d1b5f3Sdrh */ 7350d1b5f3Sdrh int nearlyFull; 746ac78a0dSdrh } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 755c8f8587Sdanielk1977 765c8f8587Sdanielk1977 #define mem0 GLOBAL(struct Mem0Global, mem0) 77fec00eabSdrh 78fec00eabSdrh /* 79*af89fe66Sdrh ** Return the memory allocator mutex. sqlite3_status() needs it. 80*af89fe66Sdrh */ 81*af89fe66Sdrh sqlite3_mutex *sqlite3MallocMutex(void){ 82*af89fe66Sdrh return mem0.mutex; 83*af89fe66Sdrh } 84*af89fe66Sdrh 85*af89fe66Sdrh /* 86f82ccf64Sdrh ** This routine runs when the memory allocator sees that the 87f82ccf64Sdrh ** total memory allocation is about to exceed the soft heap 88f82ccf64Sdrh ** limit. 89f82ccf64Sdrh */ 90f82ccf64Sdrh static void softHeapLimitEnforcer( 91f82ccf64Sdrh void *NotUsed, 92f82ccf64Sdrh sqlite3_int64 NotUsed2, 93f82ccf64Sdrh int allocSize 94f82ccf64Sdrh ){ 95f82ccf64Sdrh UNUSED_PARAMETER2(NotUsed, NotUsed2); 96f82ccf64Sdrh sqlite3_release_memory(allocSize); 97f82ccf64Sdrh } 98f82ccf64Sdrh 99f82ccf64Sdrh /* 100f82ccf64Sdrh ** Change the alarm callback 101f82ccf64Sdrh */ 102f82ccf64Sdrh static int sqlite3MemoryAlarm( 103f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 104f82ccf64Sdrh void *pArg, 105f82ccf64Sdrh sqlite3_int64 iThreshold 106f82ccf64Sdrh ){ 107*af89fe66Sdrh sqlite3_int64 nUsed; 108f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 109f82ccf64Sdrh mem0.alarmCallback = xCallback; 110f82ccf64Sdrh mem0.alarmArg = pArg; 111f82ccf64Sdrh mem0.alarmThreshold = iThreshold; 112f82ccf64Sdrh nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 113f82ccf64Sdrh mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 114f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 115f82ccf64Sdrh return SQLITE_OK; 116f82ccf64Sdrh } 117f82ccf64Sdrh 118f82ccf64Sdrh #ifndef SQLITE_OMIT_DEPRECATED 119f82ccf64Sdrh /* 120f82ccf64Sdrh ** Deprecated external interface. Internal/core SQLite code 121f82ccf64Sdrh ** should call sqlite3MemoryAlarm. 122f82ccf64Sdrh */ 123f82ccf64Sdrh int sqlite3_memory_alarm( 124f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 125f82ccf64Sdrh void *pArg, 126f82ccf64Sdrh sqlite3_int64 iThreshold 127f82ccf64Sdrh ){ 128f82ccf64Sdrh return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 129f82ccf64Sdrh } 130f82ccf64Sdrh #endif 131f82ccf64Sdrh 132f82ccf64Sdrh /* 133f82ccf64Sdrh ** Set the soft heap-size limit for the library. Passing a zero or 134f82ccf64Sdrh ** negative value indicates no limit. 135f82ccf64Sdrh */ 136f82ccf64Sdrh sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 137f82ccf64Sdrh sqlite3_int64 priorLimit; 138f82ccf64Sdrh sqlite3_int64 excess; 139f82ccf64Sdrh #ifndef SQLITE_OMIT_AUTOINIT 140de0f1815Sdrh int rc = sqlite3_initialize(); 141de0f1815Sdrh if( rc ) return -1; 142f82ccf64Sdrh #endif 143f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 144f82ccf64Sdrh priorLimit = mem0.alarmThreshold; 145f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 146f82ccf64Sdrh if( n<0 ) return priorLimit; 147f82ccf64Sdrh if( n>0 ){ 148f82ccf64Sdrh sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 149f82ccf64Sdrh }else{ 150f82ccf64Sdrh sqlite3MemoryAlarm(0, 0, 0); 151f82ccf64Sdrh } 152f82ccf64Sdrh excess = sqlite3_memory_used() - n; 1534b03f21eSshaneh if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 154f82ccf64Sdrh return priorLimit; 155f82ccf64Sdrh } 156f82ccf64Sdrh void sqlite3_soft_heap_limit(int n){ 157f82ccf64Sdrh if( n<0 ) n = 0; 158f82ccf64Sdrh sqlite3_soft_heap_limit64(n); 159f82ccf64Sdrh } 160f82ccf64Sdrh 161f82ccf64Sdrh /* 162fec00eabSdrh ** Initialize the memory allocation subsystem. 163fec00eabSdrh */ 164fec00eabSdrh int sqlite3MallocInit(void){ 165075c23afSdanielk1977 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 166fec00eabSdrh sqlite3MemSetDefault(); 167fec00eabSdrh } 168fec00eabSdrh memset(&mem0, 0, sizeof(mem0)); 169075c23afSdanielk1977 if( sqlite3GlobalConfig.bCoreMutex ){ 17059f8c08eSdanielk1977 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 171fec00eabSdrh } 172075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 1737ff2719eSdrh && sqlite3GlobalConfig.nScratch>0 ){ 174badc980aSdrh int i, n, sz; 175badc980aSdrh ScratchFreeslot *pSlot; 176badc980aSdrh sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 177badc980aSdrh sqlite3GlobalConfig.szScratch = sz; 178badc980aSdrh pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 179badc980aSdrh n = sqlite3GlobalConfig.nScratch; 180badc980aSdrh mem0.pScratchFree = pSlot; 181badc980aSdrh mem0.nScratchFree = n; 182badc980aSdrh for(i=0; i<n-1; i++){ 183badc980aSdrh pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 184badc980aSdrh pSlot = pSlot->pNext; 185badc980aSdrh } 186badc980aSdrh pSlot->pNext = 0; 187badc980aSdrh mem0.pScratchEnd = (void*)&pSlot[1]; 1889ac3fe97Sdrh }else{ 189badc980aSdrh mem0.pScratchEnd = 0; 190075c23afSdanielk1977 sqlite3GlobalConfig.pScratch = 0; 191075c23afSdanielk1977 sqlite3GlobalConfig.szScratch = 0; 192badc980aSdrh sqlite3GlobalConfig.nScratch = 0; 1939ac3fe97Sdrh } 19450d1b5f3Sdrh if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 19550d1b5f3Sdrh || sqlite3GlobalConfig.nPage<1 ){ 196075c23afSdanielk1977 sqlite3GlobalConfig.pPage = 0; 197075c23afSdanielk1977 sqlite3GlobalConfig.szPage = 0; 19850d1b5f3Sdrh sqlite3GlobalConfig.nPage = 0; 1999ac3fe97Sdrh } 200075c23afSdanielk1977 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 201fec00eabSdrh } 202fec00eabSdrh 203fec00eabSdrh /* 20450d1b5f3Sdrh ** Return true if the heap is currently under memory pressure - in other 20550d1b5f3Sdrh ** words if the amount of heap used is close to the limit set by 20650d1b5f3Sdrh ** sqlite3_soft_heap_limit(). 20750d1b5f3Sdrh */ 20850d1b5f3Sdrh int sqlite3HeapNearlyFull(void){ 20950d1b5f3Sdrh return mem0.nearlyFull; 21050d1b5f3Sdrh } 21150d1b5f3Sdrh 21250d1b5f3Sdrh /* 213fec00eabSdrh ** Deinitialize the memory allocation subsystem. 214fec00eabSdrh */ 215fec00eabSdrh void sqlite3MallocEnd(void){ 2160a549071Sdanielk1977 if( sqlite3GlobalConfig.m.xShutdown ){ 217075c23afSdanielk1977 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 2180a549071Sdanielk1977 } 2199ac3fe97Sdrh memset(&mem0, 0, sizeof(mem0)); 220fec00eabSdrh } 221fec00eabSdrh 222fec00eabSdrh /* 223fec00eabSdrh ** Return the amount of memory currently checked out. 224fec00eabSdrh */ 225fec00eabSdrh sqlite3_int64 sqlite3_memory_used(void){ 226f7141990Sdrh int n, mx; 227c376a198Sdrh sqlite3_int64 res; 228f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 229c376a198Sdrh res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 230c376a198Sdrh return res; 231fec00eabSdrh } 232fec00eabSdrh 233fec00eabSdrh /* 234fec00eabSdrh ** Return the maximum amount of memory that has ever been 235fec00eabSdrh ** checked out since either the beginning of this process 236fec00eabSdrh ** or since the most recent reset. 237fec00eabSdrh */ 238fec00eabSdrh sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 239f7141990Sdrh int n, mx; 240c376a198Sdrh sqlite3_int64 res; 241f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 2427986a71aSdrh res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 243c376a198Sdrh return res; 244fec00eabSdrh } 245fec00eabSdrh 246fec00eabSdrh /* 247fec00eabSdrh ** Trigger the alarm 248fec00eabSdrh */ 249fec00eabSdrh static void sqlite3MallocAlarm(int nByte){ 250fec00eabSdrh void (*xCallback)(void*,sqlite3_int64,int); 251fec00eabSdrh sqlite3_int64 nowUsed; 252fec00eabSdrh void *pArg; 253e64ca7baSdrh if( mem0.alarmCallback==0 ) return; 254fec00eabSdrh xCallback = mem0.alarmCallback; 255f7141990Sdrh nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 256fec00eabSdrh pArg = mem0.alarmArg; 257e64ca7baSdrh mem0.alarmCallback = 0; 258fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 259fec00eabSdrh xCallback(pArg, nowUsed, nByte); 260fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 261e64ca7baSdrh mem0.alarmCallback = xCallback; 262e64ca7baSdrh mem0.alarmArg = pArg; 263fec00eabSdrh } 264fec00eabSdrh 265fec00eabSdrh /* 266f7141990Sdrh ** Do a memory allocation with statistics and alarms. Assume the 267f7141990Sdrh ** lock is already held. 268fec00eabSdrh */ 269f7141990Sdrh static int mallocWithAlarm(int n, void **pp){ 270fec00eabSdrh int nFull; 271f7141990Sdrh void *p; 272f7141990Sdrh assert( sqlite3_mutex_held(mem0.mutex) ); 273075c23afSdanielk1977 nFull = sqlite3GlobalConfig.m.xRoundup(n); 274f7141990Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 275f7141990Sdrh if( mem0.alarmCallback!=0 ){ 276*af89fe66Sdrh sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 2778e1bb041Sdrh if( nUsed >= mem0.alarmThreshold - nFull ){ 27850d1b5f3Sdrh mem0.nearlyFull = 1; 279fec00eabSdrh sqlite3MallocAlarm(nFull); 28050d1b5f3Sdrh }else{ 28150d1b5f3Sdrh mem0.nearlyFull = 0; 282fec00eabSdrh } 283f7141990Sdrh } 284075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 28550d1b5f3Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 286d09414cdSdanielk1977 if( p==0 && mem0.alarmCallback ){ 287fec00eabSdrh sqlite3MallocAlarm(nFull); 288075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 289fec00eabSdrh } 29050d1b5f3Sdrh #endif 291c702c7ccSdrh if( p ){ 292c702c7ccSdrh nFull = sqlite3MallocSize(p); 293*af89fe66Sdrh sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 294*af89fe66Sdrh sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 295c702c7ccSdrh } 296f7141990Sdrh *pp = p; 297f7141990Sdrh return nFull; 298fec00eabSdrh } 299f7141990Sdrh 300f7141990Sdrh /* 301f7141990Sdrh ** Allocate memory. This routine is like sqlite3_malloc() except that it 302f7141990Sdrh ** assumes the memory subsystem has already been initialized. 303f7141990Sdrh */ 304da4ca9d1Sdrh void *sqlite3Malloc(u64 n){ 305f7141990Sdrh void *p; 306da4ca9d1Sdrh if( n==0 || n>=0x7fffff00 ){ 307e08ed7e7Sdrh /* A memory allocation of a number of bytes which is near the maximum 308e08ed7e7Sdrh ** signed integer value might cause an integer overflow inside of the 309e08ed7e7Sdrh ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 310e08ed7e7Sdrh ** 255 bytes of overhead. SQLite itself will never use anything near 311e08ed7e7Sdrh ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 312f7141990Sdrh p = 0; 313075c23afSdanielk1977 }else if( sqlite3GlobalConfig.bMemstat ){ 314f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 3153329a63aSdrh mallocWithAlarm((int)n, &p); 316fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 317fec00eabSdrh }else{ 318da4ca9d1Sdrh p = sqlite3GlobalConfig.m.xMalloc((int)n); 319fec00eabSdrh } 3208da47419Sdrh assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 321fec00eabSdrh return p; 322fec00eabSdrh } 323fec00eabSdrh 324fec00eabSdrh /* 325fec00eabSdrh ** This version of the memory allocation is for use by the application. 326fec00eabSdrh ** First make sure the memory subsystem is initialized, then do the 327fec00eabSdrh ** allocation. 328fec00eabSdrh */ 329fec00eabSdrh void *sqlite3_malloc(int n){ 330fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 331fec00eabSdrh if( sqlite3_initialize() ) return 0; 332fec00eabSdrh #endif 333da4ca9d1Sdrh return n<=0 ? 0 : sqlite3Malloc(n); 334da4ca9d1Sdrh } 335da4ca9d1Sdrh void *sqlite3_malloc64(sqlite3_uint64 n){ 336da4ca9d1Sdrh #ifndef SQLITE_OMIT_AUTOINIT 337da4ca9d1Sdrh if( sqlite3_initialize() ) return 0; 338da4ca9d1Sdrh #endif 339fec00eabSdrh return sqlite3Malloc(n); 340fec00eabSdrh } 341fec00eabSdrh 342fec00eabSdrh /* 343e5ae5735Sdrh ** Each thread may only have a single outstanding allocation from 344facf0307Sdrh ** xScratchMalloc(). We verify this constraint in the single-threaded 345facf0307Sdrh ** case by setting scratchAllocOut to 1 when an allocation 346e5ae5735Sdrh ** is outstanding clearing it when the allocation is freed. 347e5ae5735Sdrh */ 348e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 349facf0307Sdrh static int scratchAllocOut = 0; 350e5ae5735Sdrh #endif 351e5ae5735Sdrh 352e5ae5735Sdrh 353e5ae5735Sdrh /* 354e5ae5735Sdrh ** Allocate memory that is to be used and released right away. 355e5ae5735Sdrh ** This routine is similar to alloca() in that it is not intended 356e5ae5735Sdrh ** for situations where the memory might be held long-term. This 357e5ae5735Sdrh ** routine is intended to get memory to old large transient data 358e5ae5735Sdrh ** structures that would not normally fit on the stack of an 359e5ae5735Sdrh ** embedded processor. 360e5ae5735Sdrh */ 361facf0307Sdrh void *sqlite3ScratchMalloc(int n){ 362e5ae5735Sdrh void *p; 363e5ae5735Sdrh assert( n>0 ); 3649ac3fe97Sdrh 365badc980aSdrh sqlite3_mutex_enter(mem0.mutex); 3663ccd5bf8Sdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 367badc980aSdrh if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 368badc980aSdrh p = mem0.pScratchFree; 369badc980aSdrh mem0.pScratchFree = mem0.pScratchFree->pNext; 370badc980aSdrh mem0.nScratchFree--; 371*af89fe66Sdrh sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); 372b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 373badc980aSdrh }else{ 374b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 3753ccd5bf8Sdrh p = sqlite3Malloc(n); 3763ccd5bf8Sdrh if( sqlite3GlobalConfig.bMemstat && p ){ 3773ccd5bf8Sdrh sqlite3_mutex_enter(mem0.mutex); 378*af89fe66Sdrh sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 3793ccd5bf8Sdrh sqlite3_mutex_leave(mem0.mutex); 380badc980aSdrh } 381badc980aSdrh sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 382badc980aSdrh } 3831ff6e3abSdrh assert( sqlite3_mutex_notheld(mem0.mutex) ); 384b0c6a888Sdan 385badc980aSdrh 386badc980aSdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 387cbd55b03Sdrh /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 388cbd55b03Sdrh ** buffers per thread. 389cbd55b03Sdrh ** 390cbd55b03Sdrh ** This can only be checked in single-threaded mode. 391cbd55b03Sdrh */ 392cbd55b03Sdrh assert( scratchAllocOut==0 ); 393badc980aSdrh if( p ) scratchAllocOut++; 394badc980aSdrh #endif 395badc980aSdrh 396badc980aSdrh return p; 397badc980aSdrh } 398badc980aSdrh void sqlite3ScratchFree(void *p){ 399badc980aSdrh if( p ){ 400badc980aSdrh 401e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 40237f99187Sdrh /* Verify that no more than two scratch allocation per thread 4039ac3fe97Sdrh ** is outstanding at one time. (This is only checked in the 4049ac3fe97Sdrh ** single-threaded case since checking in the multi-threaded case 4059ac3fe97Sdrh ** would be much more complicated.) */ 406badc980aSdrh assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 407badc980aSdrh scratchAllocOut--; 408e5ae5735Sdrh #endif 4099ac3fe97Sdrh 410badc980aSdrh if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 411badc980aSdrh /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 412badc980aSdrh ScratchFreeslot *pSlot; 413badc980aSdrh pSlot = (ScratchFreeslot*)p; 414e5ae5735Sdrh sqlite3_mutex_enter(mem0.mutex); 415badc980aSdrh pSlot->pNext = mem0.pScratchFree; 416badc980aSdrh mem0.pScratchFree = pSlot; 417badc980aSdrh mem0.nScratchFree++; 418fcd71b60Sdrh assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 419*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); 4209ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 421f7141990Sdrh }else{ 422badc980aSdrh /* Release memory back to the heap */ 423107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 424d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); 425107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 426075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 427f7141990Sdrh int iSize = sqlite3MallocSize(p); 428f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 429*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); 430*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); 431*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 432075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 433f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 434f7141990Sdrh }else{ 435075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 436f7141990Sdrh } 4379ac3fe97Sdrh } 438e5ae5735Sdrh } 439e5ae5735Sdrh } 440e5ae5735Sdrh 441e5ae5735Sdrh /* 442633e6d57Sdrh ** TRUE if p is a lookaside memory allocation from db 443633e6d57Sdrh */ 4444150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 445633e6d57Sdrh static int isLookaside(sqlite3 *db, void *p){ 446b0e7704eSdrh return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 447633e6d57Sdrh } 4484150ebf8Sdrh #else 4494150ebf8Sdrh #define isLookaside(A,B) 0 4504150ebf8Sdrh #endif 451633e6d57Sdrh 452633e6d57Sdrh /* 453fec00eabSdrh ** Return the size of a memory allocation previously obtained from 454fec00eabSdrh ** sqlite3Malloc() or sqlite3_malloc(). 455fec00eabSdrh */ 456fec00eabSdrh int sqlite3MallocSize(void *p){ 457107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 458075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 459fec00eabSdrh } 460633e6d57Sdrh int sqlite3DbMallocSize(sqlite3 *db, void *p){ 46117bcb102Sdrh if( db==0 ){ 462d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 463d231aa3aSdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 46417bcb102Sdrh return sqlite3MallocSize(p); 46517bcb102Sdrh }else{ 466b0e7704eSdrh assert( sqlite3_mutex_held(db->mutex) ); 467b0e7704eSdrh if( isLookaside(db, p) ){ 468633e6d57Sdrh return db->lookaside.sz; 469633e6d57Sdrh }else{ 470d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 471d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 472075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 473633e6d57Sdrh } 474633e6d57Sdrh } 47517bcb102Sdrh } 476da4ca9d1Sdrh sqlite3_uint64 sqlite3_msize(void *p){ 477d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 478d231aa3aSdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 479da4ca9d1Sdrh return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); 480da4ca9d1Sdrh } 481fec00eabSdrh 482fec00eabSdrh /* 483fec00eabSdrh ** Free memory previously obtained from sqlite3Malloc(). 484fec00eabSdrh */ 485fec00eabSdrh void sqlite3_free(void *p){ 48671a1a0f4Sdrh if( p==0 ) return; /* IMP: R-49053-54554 */ 487107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 488d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 489075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 490fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 491*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 492*af89fe66Sdrh sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 493075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 494fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 495fec00eabSdrh }else{ 496075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 497fec00eabSdrh } 498fec00eabSdrh } 499fec00eabSdrh 500fec00eabSdrh /* 501b4586f12Sdrh ** Add the size of memory allocation "p" to the count in 502b4586f12Sdrh ** *db->pnBytesFreed. 503b4586f12Sdrh */ 504b4586f12Sdrh static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 505b4586f12Sdrh *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 506b4586f12Sdrh } 507b4586f12Sdrh 508b4586f12Sdrh /* 509633e6d57Sdrh ** Free memory that might be associated with a particular database 510633e6d57Sdrh ** connection. 511633e6d57Sdrh */ 512633e6d57Sdrh void sqlite3DbFree(sqlite3 *db, void *p){ 5137047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 5149ccd8659Sdrh if( p==0 ) return; 515174b9a16Sdrh if( db ){ 516174b9a16Sdrh if( db->pnBytesFreed ){ 517b4586f12Sdrh measureAllocationSize(db, p); 518174b9a16Sdrh return; 519d46def77Sdan } 520633e6d57Sdrh if( isLookaside(db, p) ){ 521633e6d57Sdrh LookasideSlot *pBuf = (LookasideSlot*)p; 5223608f177Sdrh #if SQLITE_DEBUG 5233608f177Sdrh /* Trash all content in the buffer being freed */ 5243608f177Sdrh memset(p, 0xaa, db->lookaside.sz); 5253608f177Sdrh #endif 526633e6d57Sdrh pBuf->pNext = db->lookaside.pFree; 527633e6d57Sdrh db->lookaside.pFree = pBuf; 528633e6d57Sdrh db->lookaside.nOut--; 529174b9a16Sdrh return; 530174b9a16Sdrh } 531174b9a16Sdrh } 532d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 533d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 534174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 535107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 536633e6d57Sdrh sqlite3_free(p); 537633e6d57Sdrh } 538633e6d57Sdrh 539633e6d57Sdrh /* 540fec00eabSdrh ** Change the size of an existing memory allocation 541fec00eabSdrh */ 542da4ca9d1Sdrh void *sqlite3Realloc(void *pOld, u64 nBytes){ 543ca591febSshaneh int nOld, nNew, nDiff; 544fec00eabSdrh void *pNew; 545d231aa3aSdrh assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 546d425864dSmistachkin assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 547fec00eabSdrh if( pOld==0 ){ 5488da47419Sdrh return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 549fec00eabSdrh } 550da4ca9d1Sdrh if( nBytes==0 ){ 5518da47419Sdrh sqlite3_free(pOld); /* IMP: R-26507-47431 */ 552fec00eabSdrh return 0; 553fec00eabSdrh } 554b6063cf8Sdrh if( nBytes>=0x7fffff00 ){ 555b6063cf8Sdrh /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 556b6063cf8Sdrh return 0; 557b6063cf8Sdrh } 558fec00eabSdrh nOld = sqlite3MallocSize(pOld); 5599f129f46Sdrh /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 5609f129f46Sdrh ** argument to xRealloc is always a value returned by a prior call to 5619f129f46Sdrh ** xRoundup. */ 562da4ca9d1Sdrh nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 563fec00eabSdrh if( nOld==nNew ){ 564fec00eabSdrh pNew = pOld; 5657c6791c8Sdrh }else if( sqlite3GlobalConfig.bMemstat ){ 5667c6791c8Sdrh sqlite3_mutex_enter(mem0.mutex); 5673329a63aSdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 5688e1bb041Sdrh nDiff = nNew - nOld; 5698e1bb041Sdrh if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 5708e1bb041Sdrh mem0.alarmThreshold-nDiff ){ 5712e5a422eSdrh sqlite3MallocAlarm(nDiff); 572fec00eabSdrh } 573075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 574d09414cdSdanielk1977 if( pNew==0 && mem0.alarmCallback ){ 5753329a63aSdrh sqlite3MallocAlarm((int)nBytes); 576075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 577fec00eabSdrh } 578fec00eabSdrh if( pNew ){ 579c702c7ccSdrh nNew = sqlite3MallocSize(pNew); 580*af89fe66Sdrh sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 581fec00eabSdrh } 582fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 583fec00eabSdrh }else{ 5847c6791c8Sdrh pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 585fec00eabSdrh } 5868da47419Sdrh assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 587fec00eabSdrh return pNew; 588fec00eabSdrh } 589fec00eabSdrh 590fec00eabSdrh /* 591fec00eabSdrh ** The public interface to sqlite3Realloc. Make sure that the memory 592fec00eabSdrh ** subsystem is initialized prior to invoking sqliteRealloc. 593fec00eabSdrh */ 594fec00eabSdrh void *sqlite3_realloc(void *pOld, int n){ 595fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 596fec00eabSdrh if( sqlite3_initialize() ) return 0; 597fec00eabSdrh #endif 5988da47419Sdrh if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 599da4ca9d1Sdrh return sqlite3Realloc(pOld, n); 600da4ca9d1Sdrh } 601da4ca9d1Sdrh void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 602da4ca9d1Sdrh #ifndef SQLITE_OMIT_AUTOINIT 603da4ca9d1Sdrh if( sqlite3_initialize() ) return 0; 604da4ca9d1Sdrh #endif 605fec00eabSdrh return sqlite3Realloc(pOld, n); 606fec00eabSdrh } 607fec00eabSdrh 608a3152895Sdrh 609a3152895Sdrh /* 61017435752Sdrh ** Allocate and zero memory. 611a3152895Sdrh */ 612da4ca9d1Sdrh void *sqlite3MallocZero(u64 n){ 613fec00eabSdrh void *p = sqlite3Malloc(n); 614a3152895Sdrh if( p ){ 61520f3df04Sdrh memset(p, 0, (size_t)n); 616a3152895Sdrh } 617a3152895Sdrh return p; 618a3152895Sdrh } 61917435752Sdrh 62017435752Sdrh /* 62117435752Sdrh ** Allocate and zero memory. If the allocation fails, make 62217435752Sdrh ** the mallocFailed flag in the connection pointer. 62317435752Sdrh */ 624da4ca9d1Sdrh void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 625a1644fd8Sdanielk1977 void *p = sqlite3DbMallocRaw(db, n); 62617435752Sdrh if( p ){ 62720f3df04Sdrh memset(p, 0, (size_t)n); 62817435752Sdrh } 62917435752Sdrh return p; 63017435752Sdrh } 63117435752Sdrh 63217435752Sdrh /* 63317435752Sdrh ** Allocate and zero memory. If the allocation fails, make 63417435752Sdrh ** the mallocFailed flag in the connection pointer. 635ddecae79Sdrh ** 636ddecae79Sdrh ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 637ddecae79Sdrh ** failure on the same database connection) then always return 0. 638ddecae79Sdrh ** Hence for a particular database connection, once malloc starts 639ddecae79Sdrh ** failing, it fails consistently until mallocFailed is reset. 640ddecae79Sdrh ** This is an important assumption. There are many places in the 641ddecae79Sdrh ** code that do things like this: 642ddecae79Sdrh ** 643ddecae79Sdrh ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 644ddecae79Sdrh ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 645ddecae79Sdrh ** if( b ) a[10] = 9; 646ddecae79Sdrh ** 647ddecae79Sdrh ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 648ddecae79Sdrh ** that all prior mallocs (ex: "a") worked too. 64917435752Sdrh */ 650da4ca9d1Sdrh void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 651633e6d57Sdrh void *p; 652d9da78a2Sdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 653ccd4ad3eSdan assert( db==0 || db->pnBytesFreed==0 ); 6544150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 655633e6d57Sdrh if( db ){ 656633e6d57Sdrh LookasideSlot *pBuf; 657633e6d57Sdrh if( db->mallocFailed ){ 658633e6d57Sdrh return 0; 659633e6d57Sdrh } 6600b12e7f8Sdrh if( db->lookaside.bEnabled ){ 6610b12e7f8Sdrh if( n>db->lookaside.sz ){ 6620b12e7f8Sdrh db->lookaside.anStat[1]++; 6630b12e7f8Sdrh }else if( (pBuf = db->lookaside.pFree)==0 ){ 6640b12e7f8Sdrh db->lookaside.anStat[2]++; 6650b12e7f8Sdrh }else{ 666633e6d57Sdrh db->lookaside.pFree = pBuf->pNext; 667633e6d57Sdrh db->lookaside.nOut++; 6680b12e7f8Sdrh db->lookaside.anStat[0]++; 669633e6d57Sdrh if( db->lookaside.nOut>db->lookaside.mxOut ){ 670633e6d57Sdrh db->lookaside.mxOut = db->lookaside.nOut; 671633e6d57Sdrh } 672633e6d57Sdrh return (void*)pBuf; 673633e6d57Sdrh } 674633e6d57Sdrh } 6750b12e7f8Sdrh } 676ddecae79Sdrh #else 677ddecae79Sdrh if( db && db->mallocFailed ){ 678ddecae79Sdrh return 0; 679ddecae79Sdrh } 6804150ebf8Sdrh #endif 681fec00eabSdrh p = sqlite3Malloc(n); 682f3a65f7eSdrh if( !p && db ){ 68317435752Sdrh db->mallocFailed = 1; 68417435752Sdrh } 685d231aa3aSdrh sqlite3MemdebugSetType(p, 686d231aa3aSdrh (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 68717435752Sdrh return p; 68817435752Sdrh } 68917435752Sdrh 69026783a58Sdanielk1977 /* 69126783a58Sdanielk1977 ** Resize the block of memory pointed to by p to n bytes. If the 69226783a58Sdanielk1977 ** resize fails, set the mallocFailed flag in the connection object. 69326783a58Sdanielk1977 */ 694da4ca9d1Sdrh void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 695a1644fd8Sdanielk1977 void *pNew = 0; 696d9da78a2Sdrh assert( db!=0 ); 6977047e25cSdrh assert( sqlite3_mutex_held(db->mutex) ); 698a1644fd8Sdanielk1977 if( db->mallocFailed==0 ){ 699633e6d57Sdrh if( p==0 ){ 700633e6d57Sdrh return sqlite3DbMallocRaw(db, n); 701633e6d57Sdrh } 702633e6d57Sdrh if( isLookaside(db, p) ){ 703633e6d57Sdrh if( n<=db->lookaside.sz ){ 704633e6d57Sdrh return p; 705633e6d57Sdrh } 706633e6d57Sdrh pNew = sqlite3DbMallocRaw(db, n); 707633e6d57Sdrh if( pNew ){ 708633e6d57Sdrh memcpy(pNew, p, db->lookaside.sz); 709633e6d57Sdrh sqlite3DbFree(db, p); 710633e6d57Sdrh } 711633e6d57Sdrh }else{ 712d231aa3aSdrh assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 713d425864dSmistachkin assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 714107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 7153329a63aSdrh pNew = sqlite3_realloc64(p, n); 716a1644fd8Sdanielk1977 if( !pNew ){ 717a1644fd8Sdanielk1977 db->mallocFailed = 1; 718a1644fd8Sdanielk1977 } 719d231aa3aSdrh sqlite3MemdebugSetType(pNew, 720174b9a16Sdrh (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 721a1644fd8Sdanielk1977 } 722633e6d57Sdrh } 723a1644fd8Sdanielk1977 return pNew; 724a1644fd8Sdanielk1977 } 725a1644fd8Sdanielk1977 72617435752Sdrh /* 72717435752Sdrh ** Attempt to reallocate p. If the reallocation fails, then free p 72817435752Sdrh ** and set the mallocFailed flag in the database connection. 72917435752Sdrh */ 730da4ca9d1Sdrh void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 731a3152895Sdrh void *pNew; 732a1644fd8Sdanielk1977 pNew = sqlite3DbRealloc(db, p, n); 733a3152895Sdrh if( !pNew ){ 734633e6d57Sdrh sqlite3DbFree(db, p); 735a3152895Sdrh } 736a3152895Sdrh return pNew; 737a3152895Sdrh } 738a3152895Sdrh 739a3152895Sdrh /* 740a3152895Sdrh ** Make a copy of a string in memory obtained from sqliteMalloc(). These 741a3152895Sdrh ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 742a3152895Sdrh ** is because when memory debugging is turned on, these two functions are 743a3152895Sdrh ** called via macros that record the current file and line number in the 744a3152895Sdrh ** ThreadData structure. 745a3152895Sdrh */ 746633e6d57Sdrh char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 747a3152895Sdrh char *zNew; 748633e6d57Sdrh size_t n; 749633e6d57Sdrh if( z==0 ){ 750633e6d57Sdrh return 0; 751a3152895Sdrh } 752dee0e404Sdrh n = sqlite3Strlen30(z) + 1; 753633e6d57Sdrh assert( (n&0x7fffffff)==n ); 754633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, (int)n); 755a3152895Sdrh if( zNew ){ 756a3152895Sdrh memcpy(zNew, z, n); 7571e536953Sdanielk1977 } 7581e536953Sdanielk1977 return zNew; 7591e536953Sdanielk1977 } 760da4ca9d1Sdrh char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 761633e6d57Sdrh char *zNew; 762633e6d57Sdrh if( z==0 ){ 763633e6d57Sdrh return 0; 764633e6d57Sdrh } 765633e6d57Sdrh assert( (n&0x7fffffff)==n ); 766633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, n+1); 767633e6d57Sdrh if( zNew ){ 76820f3df04Sdrh memcpy(zNew, z, (size_t)n); 769633e6d57Sdrh zNew[n] = 0; 7701e536953Sdanielk1977 } 7711e536953Sdanielk1977 return zNew; 7721e536953Sdanielk1977 } 7731e536953Sdanielk1977 774a3152895Sdrh /* 775f089aa45Sdrh ** Create a string from the zFromat argument and the va_list that follows. 776f089aa45Sdrh ** Store the string in memory obtained from sqliteMalloc() and make *pz 777f089aa45Sdrh ** point to that string. 778a3152895Sdrh */ 779f089aa45Sdrh void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 780a3152895Sdrh va_list ap; 781f089aa45Sdrh char *z; 782a3152895Sdrh 783f089aa45Sdrh va_start(ap, zFormat); 784f089aa45Sdrh z = sqlite3VMPrintf(db, zFormat, ap); 785a3152895Sdrh va_end(ap); 786633e6d57Sdrh sqlite3DbFree(db, *pz); 787f089aa45Sdrh *pz = z; 788a3152895Sdrh } 789a3152895Sdrh 790b50c65d5Sdrh /* 791b50c65d5Sdrh ** Take actions at the end of an API call to indicate an OOM error 792b50c65d5Sdrh */ 793b50c65d5Sdrh static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 794b50c65d5Sdrh db->mallocFailed = 0; 795b50c65d5Sdrh sqlite3Error(db, SQLITE_NOMEM); 796b50c65d5Sdrh return SQLITE_NOMEM; 797b50c65d5Sdrh } 798a3152895Sdrh 799a3152895Sdrh /* 800a3152895Sdrh ** This function must be called before exiting any API function (i.e. 80117435752Sdrh ** returning control to the user) that has called sqlite3_malloc or 80217435752Sdrh ** sqlite3_realloc. 803a3152895Sdrh ** 804a3152895Sdrh ** The returned value is normally a copy of the second argument to this 805be217793Sshane ** function. However, if a malloc() failure has occurred since the previous 806a3152895Sdrh ** invocation SQLITE_NOMEM is returned instead. 807a3152895Sdrh ** 808be217793Sshane ** If the first argument, db, is not NULL and a malloc() error has occurred, 809a3152895Sdrh ** then the connection error-code (the value returned by sqlite3_errcode()) 810a3152895Sdrh ** is set to SQLITE_NOMEM. 811a3152895Sdrh */ 812a3152895Sdrh int sqlite3ApiExit(sqlite3* db, int rc){ 813a1644fd8Sdanielk1977 /* If the db handle is not NULL, then we must hold the connection handle 814a1644fd8Sdanielk1977 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 815a1644fd8Sdanielk1977 ** is unsafe, as is the call to sqlite3Error(). 816a1644fd8Sdanielk1977 */ 817a1644fd8Sdanielk1977 assert( !db || sqlite3_mutex_held(db->mutex) ); 818b50c65d5Sdrh if( db==0 ) return rc & 0xff; 819b50c65d5Sdrh if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 820b50c65d5Sdrh return apiOomError(db); 821a3152895Sdrh } 822b50c65d5Sdrh return rc & db->errMask; 823a3152895Sdrh } 824