1a3152895Sdrh /* 2a3152895Sdrh ** 2001 September 15 3a3152895Sdrh ** 4a3152895Sdrh ** The author disclaims copyright to this source code. In place of 5a3152895Sdrh ** a legal notice, here is a blessing: 6a3152895Sdrh ** 7a3152895Sdrh ** May you do good and not evil. 8a3152895Sdrh ** May you find forgiveness for yourself and forgive others. 9a3152895Sdrh ** May you share freely, never taking more than you give. 10a3152895Sdrh ** 11a3152895Sdrh ************************************************************************* 12fec00eabSdrh ** 13a3152895Sdrh ** Memory allocation functions used throughout sqlite. 14a3152895Sdrh */ 15a3152895Sdrh #include "sqliteInt.h" 16a3152895Sdrh #include <stdarg.h> 17a3152895Sdrh 18a3152895Sdrh /* 198468024dSdanielk1977 ** Attempt to release up to n bytes of non-essential memory currently 208468024dSdanielk1977 ** held by SQLite. An example of non-essential memory is memory used to 218468024dSdanielk1977 ** cache database pages that are not currently in use. 22a3152895Sdrh */ 23a3152895Sdrh int sqlite3_release_memory(int n){ 2486f8c197Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 259f129f46Sdrh return sqlite3PcacheReleaseMemory(n); 261e536953Sdanielk1977 #else 279f129f46Sdrh /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 289f129f46Sdrh ** is a no-op returning zero if SQLite is not compiled with 299f129f46Sdrh ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 3062c14b34Sdanielk1977 UNUSED_PARAMETER(n); 319f129f46Sdrh return 0; 321e536953Sdanielk1977 #endif 33a3152895Sdrh } 34a3152895Sdrh 35fec00eabSdrh /* 36badc980aSdrh ** An instance of the following object records the location of 37badc980aSdrh ** each unused scratch buffer. 38badc980aSdrh */ 39badc980aSdrh typedef struct ScratchFreeslot { 40badc980aSdrh struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41badc980aSdrh } ScratchFreeslot; 42badc980aSdrh 43badc980aSdrh /* 44fec00eabSdrh ** State information local to the memory allocation subsystem. 45fec00eabSdrh */ 465c8f8587Sdanielk1977 static SQLITE_WSD struct Mem0Global { 47fec00eabSdrh sqlite3_mutex *mutex; /* Mutex to serialize access */ 48fec00eabSdrh 49fec00eabSdrh /* 50fec00eabSdrh ** The alarm callback and its arguments. The mem0.mutex lock will 51fec00eabSdrh ** be held while the callback is running. Recursive calls into 52fec00eabSdrh ** the memory subsystem are allowed, but no new callbacks will be 53e64ca7baSdrh ** issued. 54fec00eabSdrh */ 55fec00eabSdrh sqlite3_int64 alarmThreshold; 56fec00eabSdrh void (*alarmCallback)(void*, sqlite3_int64,int); 57fec00eabSdrh void *alarmArg; 58fec00eabSdrh 59fec00eabSdrh /* 60badc980aSdrh ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61badc980aSdrh ** (so that a range test can be used to determine if an allocation 62badc980aSdrh ** being freed came from pScratch) and a pointer to the list of 63badc980aSdrh ** unused scratch allocations. 649ac3fe97Sdrh */ 65badc980aSdrh void *pScratchEnd; 66badc980aSdrh ScratchFreeslot *pScratchFree; 67badc980aSdrh u32 nScratchFree; 6850d1b5f3Sdrh 6950d1b5f3Sdrh /* 7050d1b5f3Sdrh ** True if heap is nearly "full" where "full" is defined by the 7150d1b5f3Sdrh ** sqlite3_soft_heap_limit() setting. 7250d1b5f3Sdrh */ 7350d1b5f3Sdrh int nearlyFull; 746ac78a0dSdrh } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 755c8f8587Sdanielk1977 765c8f8587Sdanielk1977 #define mem0 GLOBAL(struct Mem0Global, mem0) 77fec00eabSdrh 78fec00eabSdrh /* 79f82ccf64Sdrh ** This routine runs when the memory allocator sees that the 80f82ccf64Sdrh ** total memory allocation is about to exceed the soft heap 81f82ccf64Sdrh ** limit. 82f82ccf64Sdrh */ 83f82ccf64Sdrh static void softHeapLimitEnforcer( 84f82ccf64Sdrh void *NotUsed, 85f82ccf64Sdrh sqlite3_int64 NotUsed2, 86f82ccf64Sdrh int allocSize 87f82ccf64Sdrh ){ 88f82ccf64Sdrh UNUSED_PARAMETER2(NotUsed, NotUsed2); 89f82ccf64Sdrh sqlite3_release_memory(allocSize); 90f82ccf64Sdrh } 91f82ccf64Sdrh 92f82ccf64Sdrh /* 93f82ccf64Sdrh ** Change the alarm callback 94f82ccf64Sdrh */ 95f82ccf64Sdrh static int sqlite3MemoryAlarm( 96f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 97f82ccf64Sdrh void *pArg, 98f82ccf64Sdrh sqlite3_int64 iThreshold 99f82ccf64Sdrh ){ 100f82ccf64Sdrh int nUsed; 101f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 102f82ccf64Sdrh mem0.alarmCallback = xCallback; 103f82ccf64Sdrh mem0.alarmArg = pArg; 104f82ccf64Sdrh mem0.alarmThreshold = iThreshold; 105f82ccf64Sdrh nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 106f82ccf64Sdrh mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 107f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 108f82ccf64Sdrh return SQLITE_OK; 109f82ccf64Sdrh } 110f82ccf64Sdrh 111f82ccf64Sdrh #ifndef SQLITE_OMIT_DEPRECATED 112f82ccf64Sdrh /* 113f82ccf64Sdrh ** Deprecated external interface. Internal/core SQLite code 114f82ccf64Sdrh ** should call sqlite3MemoryAlarm. 115f82ccf64Sdrh */ 116f82ccf64Sdrh int sqlite3_memory_alarm( 117f82ccf64Sdrh void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 118f82ccf64Sdrh void *pArg, 119f82ccf64Sdrh sqlite3_int64 iThreshold 120f82ccf64Sdrh ){ 121f82ccf64Sdrh return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 122f82ccf64Sdrh } 123f82ccf64Sdrh #endif 124f82ccf64Sdrh 125f82ccf64Sdrh /* 126f82ccf64Sdrh ** Set the soft heap-size limit for the library. Passing a zero or 127f82ccf64Sdrh ** negative value indicates no limit. 128f82ccf64Sdrh */ 129f82ccf64Sdrh sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 130f82ccf64Sdrh sqlite3_int64 priorLimit; 131f82ccf64Sdrh sqlite3_int64 excess; 132f82ccf64Sdrh #ifndef SQLITE_OMIT_AUTOINIT 133de0f1815Sdrh int rc = sqlite3_initialize(); 134de0f1815Sdrh if( rc ) return -1; 135f82ccf64Sdrh #endif 136f82ccf64Sdrh sqlite3_mutex_enter(mem0.mutex); 137f82ccf64Sdrh priorLimit = mem0.alarmThreshold; 138f82ccf64Sdrh sqlite3_mutex_leave(mem0.mutex); 139f82ccf64Sdrh if( n<0 ) return priorLimit; 140f82ccf64Sdrh if( n>0 ){ 141f82ccf64Sdrh sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 142f82ccf64Sdrh }else{ 143f82ccf64Sdrh sqlite3MemoryAlarm(0, 0, 0); 144f82ccf64Sdrh } 145f82ccf64Sdrh excess = sqlite3_memory_used() - n; 1464b03f21eSshaneh if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 147f82ccf64Sdrh return priorLimit; 148f82ccf64Sdrh } 149f82ccf64Sdrh void sqlite3_soft_heap_limit(int n){ 150f82ccf64Sdrh if( n<0 ) n = 0; 151f82ccf64Sdrh sqlite3_soft_heap_limit64(n); 152f82ccf64Sdrh } 153f82ccf64Sdrh 154f82ccf64Sdrh /* 155fec00eabSdrh ** Initialize the memory allocation subsystem. 156fec00eabSdrh */ 157fec00eabSdrh int sqlite3MallocInit(void){ 158075c23afSdanielk1977 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 159fec00eabSdrh sqlite3MemSetDefault(); 160fec00eabSdrh } 161fec00eabSdrh memset(&mem0, 0, sizeof(mem0)); 162075c23afSdanielk1977 if( sqlite3GlobalConfig.bCoreMutex ){ 16359f8c08eSdanielk1977 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 164fec00eabSdrh } 165075c23afSdanielk1977 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 1667ff2719eSdrh && sqlite3GlobalConfig.nScratch>0 ){ 167badc980aSdrh int i, n, sz; 168badc980aSdrh ScratchFreeslot *pSlot; 169badc980aSdrh sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 170badc980aSdrh sqlite3GlobalConfig.szScratch = sz; 171badc980aSdrh pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 172badc980aSdrh n = sqlite3GlobalConfig.nScratch; 173badc980aSdrh mem0.pScratchFree = pSlot; 174badc980aSdrh mem0.nScratchFree = n; 175badc980aSdrh for(i=0; i<n-1; i++){ 176badc980aSdrh pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 177badc980aSdrh pSlot = pSlot->pNext; 178badc980aSdrh } 179badc980aSdrh pSlot->pNext = 0; 180badc980aSdrh mem0.pScratchEnd = (void*)&pSlot[1]; 1819ac3fe97Sdrh }else{ 182badc980aSdrh mem0.pScratchEnd = 0; 183075c23afSdanielk1977 sqlite3GlobalConfig.pScratch = 0; 184075c23afSdanielk1977 sqlite3GlobalConfig.szScratch = 0; 185badc980aSdrh sqlite3GlobalConfig.nScratch = 0; 1869ac3fe97Sdrh } 18750d1b5f3Sdrh if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 18850d1b5f3Sdrh || sqlite3GlobalConfig.nPage<1 ){ 189075c23afSdanielk1977 sqlite3GlobalConfig.pPage = 0; 190075c23afSdanielk1977 sqlite3GlobalConfig.szPage = 0; 19150d1b5f3Sdrh sqlite3GlobalConfig.nPage = 0; 1929ac3fe97Sdrh } 193075c23afSdanielk1977 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 194fec00eabSdrh } 195fec00eabSdrh 196fec00eabSdrh /* 19750d1b5f3Sdrh ** Return true if the heap is currently under memory pressure - in other 19850d1b5f3Sdrh ** words if the amount of heap used is close to the limit set by 19950d1b5f3Sdrh ** sqlite3_soft_heap_limit(). 20050d1b5f3Sdrh */ 20150d1b5f3Sdrh int sqlite3HeapNearlyFull(void){ 20250d1b5f3Sdrh return mem0.nearlyFull; 20350d1b5f3Sdrh } 20450d1b5f3Sdrh 20550d1b5f3Sdrh /* 206fec00eabSdrh ** Deinitialize the memory allocation subsystem. 207fec00eabSdrh */ 208fec00eabSdrh void sqlite3MallocEnd(void){ 2090a549071Sdanielk1977 if( sqlite3GlobalConfig.m.xShutdown ){ 210075c23afSdanielk1977 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 2110a549071Sdanielk1977 } 2129ac3fe97Sdrh memset(&mem0, 0, sizeof(mem0)); 213fec00eabSdrh } 214fec00eabSdrh 215fec00eabSdrh /* 216fec00eabSdrh ** Return the amount of memory currently checked out. 217fec00eabSdrh */ 218fec00eabSdrh sqlite3_int64 sqlite3_memory_used(void){ 219f7141990Sdrh int n, mx; 220c376a198Sdrh sqlite3_int64 res; 221f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 222c376a198Sdrh res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 223c376a198Sdrh return res; 224fec00eabSdrh } 225fec00eabSdrh 226fec00eabSdrh /* 227fec00eabSdrh ** Return the maximum amount of memory that has ever been 228fec00eabSdrh ** checked out since either the beginning of this process 229fec00eabSdrh ** or since the most recent reset. 230fec00eabSdrh */ 231fec00eabSdrh sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 232f7141990Sdrh int n, mx; 233c376a198Sdrh sqlite3_int64 res; 234f7141990Sdrh sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 2357986a71aSdrh res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 236c376a198Sdrh return res; 237fec00eabSdrh } 238fec00eabSdrh 239fec00eabSdrh /* 240fec00eabSdrh ** Trigger the alarm 241fec00eabSdrh */ 242fec00eabSdrh static void sqlite3MallocAlarm(int nByte){ 243fec00eabSdrh void (*xCallback)(void*,sqlite3_int64,int); 244fec00eabSdrh sqlite3_int64 nowUsed; 245fec00eabSdrh void *pArg; 246e64ca7baSdrh if( mem0.alarmCallback==0 ) return; 247fec00eabSdrh xCallback = mem0.alarmCallback; 248f7141990Sdrh nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 249fec00eabSdrh pArg = mem0.alarmArg; 250e64ca7baSdrh mem0.alarmCallback = 0; 251fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 252fec00eabSdrh xCallback(pArg, nowUsed, nByte); 253fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 254e64ca7baSdrh mem0.alarmCallback = xCallback; 255e64ca7baSdrh mem0.alarmArg = pArg; 256fec00eabSdrh } 257fec00eabSdrh 258fec00eabSdrh /* 259f7141990Sdrh ** Do a memory allocation with statistics and alarms. Assume the 260f7141990Sdrh ** lock is already held. 261fec00eabSdrh */ 262f7141990Sdrh static int mallocWithAlarm(int n, void **pp){ 263fec00eabSdrh int nFull; 264f7141990Sdrh void *p; 265f7141990Sdrh assert( sqlite3_mutex_held(mem0.mutex) ); 266075c23afSdanielk1977 nFull = sqlite3GlobalConfig.m.xRoundup(n); 267f7141990Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 268f7141990Sdrh if( mem0.alarmCallback!=0 ){ 269f7141990Sdrh int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 2708e1bb041Sdrh if( nUsed >= mem0.alarmThreshold - nFull ){ 27150d1b5f3Sdrh mem0.nearlyFull = 1; 272fec00eabSdrh sqlite3MallocAlarm(nFull); 27350d1b5f3Sdrh }else{ 27450d1b5f3Sdrh mem0.nearlyFull = 0; 275fec00eabSdrh } 276f7141990Sdrh } 277075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 27850d1b5f3Sdrh #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 279d09414cdSdanielk1977 if( p==0 && mem0.alarmCallback ){ 280fec00eabSdrh sqlite3MallocAlarm(nFull); 281075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(nFull); 282fec00eabSdrh } 28350d1b5f3Sdrh #endif 284c702c7ccSdrh if( p ){ 285c702c7ccSdrh nFull = sqlite3MallocSize(p); 286c702c7ccSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 287eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 288c702c7ccSdrh } 289f7141990Sdrh *pp = p; 290f7141990Sdrh return nFull; 291fec00eabSdrh } 292f7141990Sdrh 293f7141990Sdrh /* 294f7141990Sdrh ** Allocate memory. This routine is like sqlite3_malloc() except that it 295f7141990Sdrh ** assumes the memory subsystem has already been initialized. 296f7141990Sdrh */ 297f7141990Sdrh void *sqlite3Malloc(int n){ 298f7141990Sdrh void *p; 29971a1a0f4Sdrh if( n<=0 /* IMP: R-65312-04917 */ 30071a1a0f4Sdrh || n>=0x7fffff00 30171a1a0f4Sdrh ){ 302e08ed7e7Sdrh /* A memory allocation of a number of bytes which is near the maximum 303e08ed7e7Sdrh ** signed integer value might cause an integer overflow inside of the 304e08ed7e7Sdrh ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 305e08ed7e7Sdrh ** 255 bytes of overhead. SQLite itself will never use anything near 306e08ed7e7Sdrh ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 307f7141990Sdrh p = 0; 308075c23afSdanielk1977 }else if( sqlite3GlobalConfig.bMemstat ){ 309f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 310f7141990Sdrh mallocWithAlarm(n, &p); 311fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 312fec00eabSdrh }else{ 313075c23afSdanielk1977 p = sqlite3GlobalConfig.m.xMalloc(n); 314fec00eabSdrh } 31539f67bebSdrh assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ 316fec00eabSdrh return p; 317fec00eabSdrh } 318fec00eabSdrh 319fec00eabSdrh /* 320fec00eabSdrh ** This version of the memory allocation is for use by the application. 321fec00eabSdrh ** First make sure the memory subsystem is initialized, then do the 322fec00eabSdrh ** allocation. 323fec00eabSdrh */ 324fec00eabSdrh void *sqlite3_malloc(int n){ 325fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 326fec00eabSdrh if( sqlite3_initialize() ) return 0; 327fec00eabSdrh #endif 328fec00eabSdrh return sqlite3Malloc(n); 329fec00eabSdrh } 330fec00eabSdrh 331fec00eabSdrh /* 332e5ae5735Sdrh ** Each thread may only have a single outstanding allocation from 333facf0307Sdrh ** xScratchMalloc(). We verify this constraint in the single-threaded 334facf0307Sdrh ** case by setting scratchAllocOut to 1 when an allocation 335e5ae5735Sdrh ** is outstanding clearing it when the allocation is freed. 336e5ae5735Sdrh */ 337e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 338facf0307Sdrh static int scratchAllocOut = 0; 339e5ae5735Sdrh #endif 340e5ae5735Sdrh 341e5ae5735Sdrh 342e5ae5735Sdrh /* 343e5ae5735Sdrh ** Allocate memory that is to be used and released right away. 344e5ae5735Sdrh ** This routine is similar to alloca() in that it is not intended 345e5ae5735Sdrh ** for situations where the memory might be held long-term. This 346e5ae5735Sdrh ** routine is intended to get memory to old large transient data 347e5ae5735Sdrh ** structures that would not normally fit on the stack of an 348e5ae5735Sdrh ** embedded processor. 349e5ae5735Sdrh */ 350facf0307Sdrh void *sqlite3ScratchMalloc(int n){ 351e5ae5735Sdrh void *p; 352e5ae5735Sdrh assert( n>0 ); 3539ac3fe97Sdrh 354badc980aSdrh sqlite3_mutex_enter(mem0.mutex); 355*3ccd5bf8Sdrh sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 356badc980aSdrh if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 357badc980aSdrh p = mem0.pScratchFree; 358badc980aSdrh mem0.pScratchFree = mem0.pScratchFree->pNext; 359badc980aSdrh mem0.nScratchFree--; 360badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 361b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 362badc980aSdrh }else{ 363b0c6a888Sdan sqlite3_mutex_leave(mem0.mutex); 364*3ccd5bf8Sdrh p = sqlite3Malloc(n); 365*3ccd5bf8Sdrh if( sqlite3GlobalConfig.bMemstat && p ){ 366*3ccd5bf8Sdrh sqlite3_mutex_enter(mem0.mutex); 367*3ccd5bf8Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 368*3ccd5bf8Sdrh sqlite3_mutex_leave(mem0.mutex); 369badc980aSdrh } 370badc980aSdrh sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 371badc980aSdrh } 3721ff6e3abSdrh assert( sqlite3_mutex_notheld(mem0.mutex) ); 373b0c6a888Sdan 374badc980aSdrh 375badc980aSdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 376badc980aSdrh /* Verify that no more than two scratch allocations per thread 377badc980aSdrh ** are outstanding at one time. (This is only checked in the 378badc980aSdrh ** single-threaded case since checking in the multi-threaded case 379badc980aSdrh ** would be much more complicated.) */ 380badc980aSdrh assert( scratchAllocOut<=1 ); 381badc980aSdrh if( p ) scratchAllocOut++; 382badc980aSdrh #endif 383badc980aSdrh 384badc980aSdrh return p; 385badc980aSdrh } 386badc980aSdrh void sqlite3ScratchFree(void *p){ 387badc980aSdrh if( p ){ 388badc980aSdrh 389e5ae5735Sdrh #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 39037f99187Sdrh /* Verify that no more than two scratch allocation per thread 3919ac3fe97Sdrh ** is outstanding at one time. (This is only checked in the 3929ac3fe97Sdrh ** single-threaded case since checking in the multi-threaded case 3939ac3fe97Sdrh ** would be much more complicated.) */ 394badc980aSdrh assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 395badc980aSdrh scratchAllocOut--; 396e5ae5735Sdrh #endif 3979ac3fe97Sdrh 398badc980aSdrh if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 399badc980aSdrh /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 400badc980aSdrh ScratchFreeslot *pSlot; 401badc980aSdrh pSlot = (ScratchFreeslot*)p; 402e5ae5735Sdrh sqlite3_mutex_enter(mem0.mutex); 403badc980aSdrh pSlot->pNext = mem0.pScratchFree; 404badc980aSdrh mem0.pScratchFree = pSlot; 405badc980aSdrh mem0.nScratchFree++; 406fcd71b60Sdrh assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 407badc980aSdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 4089ac3fe97Sdrh sqlite3_mutex_leave(mem0.mutex); 409f7141990Sdrh }else{ 410badc980aSdrh /* Release memory back to the heap */ 411107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 412174b9a16Sdrh assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 413107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 414075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 415f7141990Sdrh int iSize = sqlite3MallocSize(p); 416f7141990Sdrh sqlite3_mutex_enter(mem0.mutex); 417f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 418f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 41981ba7d16Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 420075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 421f7141990Sdrh sqlite3_mutex_leave(mem0.mutex); 422f7141990Sdrh }else{ 423075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 424f7141990Sdrh } 4259ac3fe97Sdrh } 426e5ae5735Sdrh } 427e5ae5735Sdrh } 428e5ae5735Sdrh 429e5ae5735Sdrh /* 430633e6d57Sdrh ** TRUE if p is a lookaside memory allocation from db 431633e6d57Sdrh */ 4324150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 433633e6d57Sdrh static int isLookaside(sqlite3 *db, void *p){ 434b0e7704eSdrh return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 435633e6d57Sdrh } 4364150ebf8Sdrh #else 4374150ebf8Sdrh #define isLookaside(A,B) 0 4384150ebf8Sdrh #endif 439633e6d57Sdrh 440633e6d57Sdrh /* 441fec00eabSdrh ** Return the size of a memory allocation previously obtained from 442fec00eabSdrh ** sqlite3Malloc() or sqlite3_malloc(). 443fec00eabSdrh */ 444fec00eabSdrh int sqlite3MallocSize(void *p){ 445107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 446174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 447075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 448fec00eabSdrh } 449633e6d57Sdrh int sqlite3DbMallocSize(sqlite3 *db, void *p){ 450b0e7704eSdrh assert( db!=0 ); 451b0e7704eSdrh assert( sqlite3_mutex_held(db->mutex) ); 452b0e7704eSdrh if( isLookaside(db, p) ){ 453633e6d57Sdrh return db->lookaside.sz; 454633e6d57Sdrh }else{ 455174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 456174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 457174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 458075c23afSdanielk1977 return sqlite3GlobalConfig.m.xSize(p); 459633e6d57Sdrh } 460633e6d57Sdrh } 461fec00eabSdrh 462fec00eabSdrh /* 463fec00eabSdrh ** Free memory previously obtained from sqlite3Malloc(). 464fec00eabSdrh */ 465fec00eabSdrh void sqlite3_free(void *p){ 46671a1a0f4Sdrh if( p==0 ) return; /* IMP: R-49053-54554 */ 467174b9a16Sdrh assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 468107b56e8Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 469075c23afSdanielk1977 if( sqlite3GlobalConfig.bMemstat ){ 470fec00eabSdrh sqlite3_mutex_enter(mem0.mutex); 471f7141990Sdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 472eafc43b1Sdrh sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 473075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 474fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 475fec00eabSdrh }else{ 476075c23afSdanielk1977 sqlite3GlobalConfig.m.xFree(p); 477fec00eabSdrh } 478fec00eabSdrh } 479fec00eabSdrh 480fec00eabSdrh /* 481633e6d57Sdrh ** Free memory that might be associated with a particular database 482633e6d57Sdrh ** connection. 483633e6d57Sdrh */ 484633e6d57Sdrh void sqlite3DbFree(sqlite3 *db, void *p){ 4857047e25cSdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 4869ccd8659Sdrh if( p==0 ) return; 487174b9a16Sdrh if( db ){ 488174b9a16Sdrh if( db->pnBytesFreed ){ 489174b9a16Sdrh *db->pnBytesFreed += sqlite3DbMallocSize(db, p); 490174b9a16Sdrh return; 491d46def77Sdan } 492633e6d57Sdrh if( isLookaside(db, p) ){ 493633e6d57Sdrh LookasideSlot *pBuf = (LookasideSlot*)p; 4943608f177Sdrh #if SQLITE_DEBUG 4953608f177Sdrh /* Trash all content in the buffer being freed */ 4963608f177Sdrh memset(p, 0xaa, db->lookaside.sz); 4973608f177Sdrh #endif 498633e6d57Sdrh pBuf->pNext = db->lookaside.pFree; 499633e6d57Sdrh db->lookaside.pFree = pBuf; 500633e6d57Sdrh db->lookaside.nOut--; 501174b9a16Sdrh return; 502174b9a16Sdrh } 503174b9a16Sdrh } 504174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 505174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 506174b9a16Sdrh assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 507107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 508633e6d57Sdrh sqlite3_free(p); 509633e6d57Sdrh } 510633e6d57Sdrh 511633e6d57Sdrh /* 512fec00eabSdrh ** Change the size of an existing memory allocation 513fec00eabSdrh */ 514fec00eabSdrh void *sqlite3Realloc(void *pOld, int nBytes){ 515ca591febSshaneh int nOld, nNew, nDiff; 516fec00eabSdrh void *pNew; 517fec00eabSdrh if( pOld==0 ){ 51871a1a0f4Sdrh return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ 519fec00eabSdrh } 520b6063cf8Sdrh if( nBytes<=0 ){ 52171a1a0f4Sdrh sqlite3_free(pOld); /* IMP: R-31593-10574 */ 522fec00eabSdrh return 0; 523fec00eabSdrh } 524b6063cf8Sdrh if( nBytes>=0x7fffff00 ){ 525b6063cf8Sdrh /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 526b6063cf8Sdrh return 0; 527b6063cf8Sdrh } 528fec00eabSdrh nOld = sqlite3MallocSize(pOld); 5299f129f46Sdrh /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 5309f129f46Sdrh ** argument to xRealloc is always a value returned by a prior call to 5319f129f46Sdrh ** xRoundup. */ 532075c23afSdanielk1977 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 533fec00eabSdrh if( nOld==nNew ){ 534fec00eabSdrh pNew = pOld; 5357c6791c8Sdrh }else if( sqlite3GlobalConfig.bMemstat ){ 5367c6791c8Sdrh sqlite3_mutex_enter(mem0.mutex); 5377c6791c8Sdrh sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 5388e1bb041Sdrh nDiff = nNew - nOld; 5398e1bb041Sdrh if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 5408e1bb041Sdrh mem0.alarmThreshold-nDiff ){ 5412e5a422eSdrh sqlite3MallocAlarm(nDiff); 542fec00eabSdrh } 543107b56e8Sdrh assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 544174b9a16Sdrh assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 545075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 546d09414cdSdanielk1977 if( pNew==0 && mem0.alarmCallback ){ 547fec00eabSdrh sqlite3MallocAlarm(nBytes); 548075c23afSdanielk1977 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 549fec00eabSdrh } 550fec00eabSdrh if( pNew ){ 551c702c7ccSdrh nNew = sqlite3MallocSize(pNew); 5522e5a422eSdrh sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 553fec00eabSdrh } 554fec00eabSdrh sqlite3_mutex_leave(mem0.mutex); 555fec00eabSdrh }else{ 5567c6791c8Sdrh pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 557fec00eabSdrh } 55839f67bebSdrh assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ 559fec00eabSdrh return pNew; 560fec00eabSdrh } 561fec00eabSdrh 562fec00eabSdrh /* 563fec00eabSdrh ** The public interface to sqlite3Realloc. Make sure that the memory 564fec00eabSdrh ** subsystem is initialized prior to invoking sqliteRealloc. 565fec00eabSdrh */ 566fec00eabSdrh void *sqlite3_realloc(void *pOld, int n){ 567fec00eabSdrh #ifndef SQLITE_OMIT_AUTOINIT 568fec00eabSdrh if( sqlite3_initialize() ) return 0; 569fec00eabSdrh #endif 570fec00eabSdrh return sqlite3Realloc(pOld, n); 571fec00eabSdrh } 572fec00eabSdrh 573a3152895Sdrh 574a3152895Sdrh /* 57517435752Sdrh ** Allocate and zero memory. 576a3152895Sdrh */ 577fec00eabSdrh void *sqlite3MallocZero(int n){ 578fec00eabSdrh void *p = sqlite3Malloc(n); 579a3152895Sdrh if( p ){ 580a3152895Sdrh memset(p, 0, n); 581a3152895Sdrh } 582a3152895Sdrh return p; 583a3152895Sdrh } 58417435752Sdrh 58517435752Sdrh /* 58617435752Sdrh ** Allocate and zero memory. If the allocation fails, make 58717435752Sdrh ** the mallocFailed flag in the connection pointer. 58817435752Sdrh */ 589fec00eabSdrh void *sqlite3DbMallocZero(sqlite3 *db, int n){ 590a1644fd8Sdanielk1977 void *p = sqlite3DbMallocRaw(db, n); 59117435752Sdrh if( p ){ 59217435752Sdrh memset(p, 0, n); 59317435752Sdrh } 59417435752Sdrh return p; 59517435752Sdrh } 59617435752Sdrh 59717435752Sdrh /* 59817435752Sdrh ** Allocate and zero memory. If the allocation fails, make 59917435752Sdrh ** the mallocFailed flag in the connection pointer. 600ddecae79Sdrh ** 601ddecae79Sdrh ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 602ddecae79Sdrh ** failure on the same database connection) then always return 0. 603ddecae79Sdrh ** Hence for a particular database connection, once malloc starts 604ddecae79Sdrh ** failing, it fails consistently until mallocFailed is reset. 605ddecae79Sdrh ** This is an important assumption. There are many places in the 606ddecae79Sdrh ** code that do things like this: 607ddecae79Sdrh ** 608ddecae79Sdrh ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 609ddecae79Sdrh ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 610ddecae79Sdrh ** if( b ) a[10] = 9; 611ddecae79Sdrh ** 612ddecae79Sdrh ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 613ddecae79Sdrh ** that all prior mallocs (ex: "a") worked too. 61417435752Sdrh */ 615fec00eabSdrh void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 616633e6d57Sdrh void *p; 617d9da78a2Sdrh assert( db==0 || sqlite3_mutex_held(db->mutex) ); 618ccd4ad3eSdan assert( db==0 || db->pnBytesFreed==0 ); 6194150ebf8Sdrh #ifndef SQLITE_OMIT_LOOKASIDE 620633e6d57Sdrh if( db ){ 621633e6d57Sdrh LookasideSlot *pBuf; 622633e6d57Sdrh if( db->mallocFailed ){ 623633e6d57Sdrh return 0; 624633e6d57Sdrh } 6250b12e7f8Sdrh if( db->lookaside.bEnabled ){ 6260b12e7f8Sdrh if( n>db->lookaside.sz ){ 6270b12e7f8Sdrh db->lookaside.anStat[1]++; 6280b12e7f8Sdrh }else if( (pBuf = db->lookaside.pFree)==0 ){ 6290b12e7f8Sdrh db->lookaside.anStat[2]++; 6300b12e7f8Sdrh }else{ 631633e6d57Sdrh db->lookaside.pFree = pBuf->pNext; 632633e6d57Sdrh db->lookaside.nOut++; 6330b12e7f8Sdrh db->lookaside.anStat[0]++; 634633e6d57Sdrh if( db->lookaside.nOut>db->lookaside.mxOut ){ 635633e6d57Sdrh db->lookaside.mxOut = db->lookaside.nOut; 636633e6d57Sdrh } 637633e6d57Sdrh return (void*)pBuf; 638633e6d57Sdrh } 639633e6d57Sdrh } 6400b12e7f8Sdrh } 641ddecae79Sdrh #else 642ddecae79Sdrh if( db && db->mallocFailed ){ 643ddecae79Sdrh return 0; 644ddecae79Sdrh } 6454150ebf8Sdrh #endif 646fec00eabSdrh p = sqlite3Malloc(n); 647f3a65f7eSdrh if( !p && db ){ 64817435752Sdrh db->mallocFailed = 1; 64917435752Sdrh } 650174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB | 651174b9a16Sdrh ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 65217435752Sdrh return p; 65317435752Sdrh } 65417435752Sdrh 65526783a58Sdanielk1977 /* 65626783a58Sdanielk1977 ** Resize the block of memory pointed to by p to n bytes. If the 65726783a58Sdanielk1977 ** resize fails, set the mallocFailed flag in the connection object. 65826783a58Sdanielk1977 */ 659a1644fd8Sdanielk1977 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 660a1644fd8Sdanielk1977 void *pNew = 0; 661d9da78a2Sdrh assert( db!=0 ); 6627047e25cSdrh assert( sqlite3_mutex_held(db->mutex) ); 663a1644fd8Sdanielk1977 if( db->mallocFailed==0 ){ 664633e6d57Sdrh if( p==0 ){ 665633e6d57Sdrh return sqlite3DbMallocRaw(db, n); 666633e6d57Sdrh } 667633e6d57Sdrh if( isLookaside(db, p) ){ 668633e6d57Sdrh if( n<=db->lookaside.sz ){ 669633e6d57Sdrh return p; 670633e6d57Sdrh } 671633e6d57Sdrh pNew = sqlite3DbMallocRaw(db, n); 672633e6d57Sdrh if( pNew ){ 673633e6d57Sdrh memcpy(pNew, p, db->lookaside.sz); 674633e6d57Sdrh sqlite3DbFree(db, p); 675633e6d57Sdrh } 676633e6d57Sdrh }else{ 677174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 678174b9a16Sdrh assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 679107b56e8Sdrh sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 680a1644fd8Sdanielk1977 pNew = sqlite3_realloc(p, n); 681a1644fd8Sdanielk1977 if( !pNew ){ 682174b9a16Sdrh sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); 683a1644fd8Sdanielk1977 db->mallocFailed = 1; 684a1644fd8Sdanielk1977 } 685174b9a16Sdrh sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 686174b9a16Sdrh (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 687a1644fd8Sdanielk1977 } 688633e6d57Sdrh } 689a1644fd8Sdanielk1977 return pNew; 690a1644fd8Sdanielk1977 } 691a1644fd8Sdanielk1977 69217435752Sdrh /* 69317435752Sdrh ** Attempt to reallocate p. If the reallocation fails, then free p 69417435752Sdrh ** and set the mallocFailed flag in the database connection. 69517435752Sdrh */ 69617435752Sdrh void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 697a3152895Sdrh void *pNew; 698a1644fd8Sdanielk1977 pNew = sqlite3DbRealloc(db, p, n); 699a3152895Sdrh if( !pNew ){ 700633e6d57Sdrh sqlite3DbFree(db, p); 701a3152895Sdrh } 702a3152895Sdrh return pNew; 703a3152895Sdrh } 704a3152895Sdrh 705a3152895Sdrh /* 706a3152895Sdrh ** Make a copy of a string in memory obtained from sqliteMalloc(). These 707a3152895Sdrh ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 708a3152895Sdrh ** is because when memory debugging is turned on, these two functions are 709a3152895Sdrh ** called via macros that record the current file and line number in the 710a3152895Sdrh ** ThreadData structure. 711a3152895Sdrh */ 712633e6d57Sdrh char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 713a3152895Sdrh char *zNew; 714633e6d57Sdrh size_t n; 715633e6d57Sdrh if( z==0 ){ 716633e6d57Sdrh return 0; 717a3152895Sdrh } 718dee0e404Sdrh n = sqlite3Strlen30(z) + 1; 719633e6d57Sdrh assert( (n&0x7fffffff)==n ); 720633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, (int)n); 721a3152895Sdrh if( zNew ){ 722a3152895Sdrh memcpy(zNew, z, n); 7231e536953Sdanielk1977 } 7241e536953Sdanielk1977 return zNew; 7251e536953Sdanielk1977 } 7261e536953Sdanielk1977 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 727633e6d57Sdrh char *zNew; 728633e6d57Sdrh if( z==0 ){ 729633e6d57Sdrh return 0; 730633e6d57Sdrh } 731633e6d57Sdrh assert( (n&0x7fffffff)==n ); 732633e6d57Sdrh zNew = sqlite3DbMallocRaw(db, n+1); 733633e6d57Sdrh if( zNew ){ 734633e6d57Sdrh memcpy(zNew, z, n); 735633e6d57Sdrh zNew[n] = 0; 7361e536953Sdanielk1977 } 7371e536953Sdanielk1977 return zNew; 7381e536953Sdanielk1977 } 7391e536953Sdanielk1977 740a3152895Sdrh /* 741f089aa45Sdrh ** Create a string from the zFromat argument and the va_list that follows. 742f089aa45Sdrh ** Store the string in memory obtained from sqliteMalloc() and make *pz 743f089aa45Sdrh ** point to that string. 744a3152895Sdrh */ 745f089aa45Sdrh void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 746a3152895Sdrh va_list ap; 747f089aa45Sdrh char *z; 748a3152895Sdrh 749f089aa45Sdrh va_start(ap, zFormat); 750f089aa45Sdrh z = sqlite3VMPrintf(db, zFormat, ap); 751a3152895Sdrh va_end(ap); 752633e6d57Sdrh sqlite3DbFree(db, *pz); 753f089aa45Sdrh *pz = z; 754a3152895Sdrh } 755a3152895Sdrh 756a3152895Sdrh 757a3152895Sdrh /* 758a3152895Sdrh ** This function must be called before exiting any API function (i.e. 75917435752Sdrh ** returning control to the user) that has called sqlite3_malloc or 76017435752Sdrh ** sqlite3_realloc. 761a3152895Sdrh ** 762a3152895Sdrh ** The returned value is normally a copy of the second argument to this 763be217793Sshane ** function. However, if a malloc() failure has occurred since the previous 764a3152895Sdrh ** invocation SQLITE_NOMEM is returned instead. 765a3152895Sdrh ** 766be217793Sshane ** If the first argument, db, is not NULL and a malloc() error has occurred, 767a3152895Sdrh ** then the connection error-code (the value returned by sqlite3_errcode()) 768a3152895Sdrh ** is set to SQLITE_NOMEM. 769a3152895Sdrh */ 770a3152895Sdrh int sqlite3ApiExit(sqlite3* db, int rc){ 771a1644fd8Sdanielk1977 /* If the db handle is not NULL, then we must hold the connection handle 772a1644fd8Sdanielk1977 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 773a1644fd8Sdanielk1977 ** is unsafe, as is the call to sqlite3Error(). 774a1644fd8Sdanielk1977 */ 775a1644fd8Sdanielk1977 assert( !db || sqlite3_mutex_held(db->mutex) ); 77698c21903Sdanielk1977 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 77713f40da3Sdrh sqlite3Error(db, SQLITE_NOMEM); 77817435752Sdrh db->mallocFailed = 0; 779a3152895Sdrh rc = SQLITE_NOMEM; 780a3152895Sdrh } 781a3152895Sdrh return rc & (db ? db->errMask : 0xff); 782a3152895Sdrh } 783