1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** If the following global variable points to a string which is the 79 ** name of a directory, then that directory will be used to store 80 ** all database files specified with a relative pathname. 81 ** 82 ** See also the "PRAGMA data_store_directory" SQL command. 83 */ 84 char *sqlite3_data_directory = 0; 85 86 /* 87 ** Initialize SQLite. 88 ** 89 ** This routine must be called to initialize the memory allocation, 90 ** VFS, and mutex subsystems prior to doing any serious work with 91 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 92 ** this routine will be called automatically by key routines such as 93 ** sqlite3_open(). 94 ** 95 ** This routine is a no-op except on its very first call for the process, 96 ** or for the first call after a call to sqlite3_shutdown. 97 ** 98 ** The first thread to call this routine runs the initialization to 99 ** completion. If subsequent threads call this routine before the first 100 ** thread has finished the initialization process, then the subsequent 101 ** threads must block until the first thread finishes with the initialization. 102 ** 103 ** The first thread might call this routine recursively. Recursive 104 ** calls to this routine should not block, of course. Otherwise the 105 ** initialization process would never complete. 106 ** 107 ** Let X be the first thread to enter this routine. Let Y be some other 108 ** thread. Then while the initial invocation of this routine by X is 109 ** incomplete, it is required that: 110 ** 111 ** * Calls to this routine from Y must block until the outer-most 112 ** call by X completes. 113 ** 114 ** * Recursive calls to this routine from thread X return immediately 115 ** without blocking. 116 */ 117 int sqlite3_initialize(void){ 118 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 119 int rc; /* Result code */ 120 121 #ifdef SQLITE_OMIT_WSD 122 rc = sqlite3_wsd_init(4096, 24); 123 if( rc!=SQLITE_OK ){ 124 return rc; 125 } 126 #endif 127 128 /* If SQLite is already completely initialized, then this call 129 ** to sqlite3_initialize() should be a no-op. But the initialization 130 ** must be complete. So isInit must not be set until the very end 131 ** of this routine. 132 */ 133 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 134 135 #ifdef SQLITE_ENABLE_SQLLOG 136 { 137 extern void sqlite3_init_sqllog(void); 138 sqlite3_init_sqllog(); 139 } 140 #endif 141 142 /* Make sure the mutex subsystem is initialized. If unable to 143 ** initialize the mutex subsystem, return early with the error. 144 ** If the system is so sick that we are unable to allocate a mutex, 145 ** there is not much SQLite is going to be able to do. 146 ** 147 ** The mutex subsystem must take care of serializing its own 148 ** initialization. 149 */ 150 rc = sqlite3MutexInit(); 151 if( rc ) return rc; 152 153 /* Initialize the malloc() system and the recursive pInitMutex mutex. 154 ** This operation is protected by the STATIC_MASTER mutex. Note that 155 ** MutexAlloc() is called for a static mutex prior to initializing the 156 ** malloc subsystem - this implies that the allocation of a static 157 ** mutex must not require support from the malloc subsystem. 158 */ 159 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 160 sqlite3_mutex_enter(pMaster); 161 sqlite3GlobalConfig.isMutexInit = 1; 162 if( !sqlite3GlobalConfig.isMallocInit ){ 163 rc = sqlite3MallocInit(); 164 } 165 if( rc==SQLITE_OK ){ 166 sqlite3GlobalConfig.isMallocInit = 1; 167 if( !sqlite3GlobalConfig.pInitMutex ){ 168 sqlite3GlobalConfig.pInitMutex = 169 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 170 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 171 rc = SQLITE_NOMEM; 172 } 173 } 174 } 175 if( rc==SQLITE_OK ){ 176 sqlite3GlobalConfig.nRefInitMutex++; 177 } 178 sqlite3_mutex_leave(pMaster); 179 180 /* If rc is not SQLITE_OK at this point, then either the malloc 181 ** subsystem could not be initialized or the system failed to allocate 182 ** the pInitMutex mutex. Return an error in either case. */ 183 if( rc!=SQLITE_OK ){ 184 return rc; 185 } 186 187 /* Do the rest of the initialization under the recursive mutex so 188 ** that we will be able to handle recursive calls into 189 ** sqlite3_initialize(). The recursive calls normally come through 190 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 191 ** recursive calls might also be possible. 192 ** 193 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 194 ** to the xInit method, so the xInit method need not be threadsafe. 195 ** 196 ** The following mutex is what serializes access to the appdef pcache xInit 197 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 198 ** call to sqlite3PcacheInitialize(). 199 */ 200 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 201 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 202 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 203 sqlite3GlobalConfig.inProgress = 1; 204 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 205 sqlite3RegisterGlobalFunctions(); 206 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 207 rc = sqlite3PcacheInitialize(); 208 } 209 if( rc==SQLITE_OK ){ 210 sqlite3GlobalConfig.isPCacheInit = 1; 211 rc = sqlite3OsInit(); 212 } 213 if( rc==SQLITE_OK ){ 214 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 215 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 216 sqlite3GlobalConfig.isInit = 1; 217 } 218 sqlite3GlobalConfig.inProgress = 0; 219 } 220 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 221 222 /* Go back under the static mutex and clean up the recursive 223 ** mutex to prevent a resource leak. 224 */ 225 sqlite3_mutex_enter(pMaster); 226 sqlite3GlobalConfig.nRefInitMutex--; 227 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 228 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 229 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 230 sqlite3GlobalConfig.pInitMutex = 0; 231 } 232 sqlite3_mutex_leave(pMaster); 233 234 /* The following is just a sanity check to make sure SQLite has 235 ** been compiled correctly. It is important to run this code, but 236 ** we don't want to run it too often and soak up CPU cycles for no 237 ** reason. So we run it once during initialization. 238 */ 239 #ifndef NDEBUG 240 #ifndef SQLITE_OMIT_FLOATING_POINT 241 /* This section of code's only "output" is via assert() statements. */ 242 if ( rc==SQLITE_OK ){ 243 u64 x = (((u64)1)<<63)-1; 244 double y; 245 assert(sizeof(x)==8); 246 assert(sizeof(x)==sizeof(y)); 247 memcpy(&y, &x, 8); 248 assert( sqlite3IsNaN(y) ); 249 } 250 #endif 251 #endif 252 253 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 254 ** compile-time option. 255 */ 256 #ifdef SQLITE_EXTRA_INIT 257 if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ 258 int SQLITE_EXTRA_INIT(const char*); 259 rc = SQLITE_EXTRA_INIT(0); 260 } 261 #endif 262 263 return rc; 264 } 265 266 /* 267 ** Undo the effects of sqlite3_initialize(). Must not be called while 268 ** there are outstanding database connections or memory allocations or 269 ** while any part of SQLite is otherwise in use in any thread. This 270 ** routine is not threadsafe. But it is safe to invoke this routine 271 ** on when SQLite is already shut down. If SQLite is already shut down 272 ** when this routine is invoked, then this routine is a harmless no-op. 273 */ 274 int sqlite3_shutdown(void){ 275 if( sqlite3GlobalConfig.isInit ){ 276 #ifdef SQLITE_EXTRA_SHUTDOWN 277 void SQLITE_EXTRA_SHUTDOWN(void); 278 SQLITE_EXTRA_SHUTDOWN(); 279 #endif 280 sqlite3_os_end(); 281 sqlite3_reset_auto_extension(); 282 sqlite3GlobalConfig.isInit = 0; 283 } 284 if( sqlite3GlobalConfig.isPCacheInit ){ 285 sqlite3PcacheShutdown(); 286 sqlite3GlobalConfig.isPCacheInit = 0; 287 } 288 if( sqlite3GlobalConfig.isMallocInit ){ 289 sqlite3MallocEnd(); 290 sqlite3GlobalConfig.isMallocInit = 0; 291 292 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 293 /* The heap subsystem has now been shutdown and these values are supposed 294 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 295 ** which would rely on that heap subsystem; therefore, make sure these 296 ** values cannot refer to heap memory that was just invalidated when the 297 ** heap subsystem was shutdown. This is only done if the current call to 298 ** this function resulted in the heap subsystem actually being shutdown. 299 */ 300 sqlite3_data_directory = 0; 301 sqlite3_temp_directory = 0; 302 #endif 303 } 304 if( sqlite3GlobalConfig.isMutexInit ){ 305 sqlite3MutexEnd(); 306 sqlite3GlobalConfig.isMutexInit = 0; 307 } 308 309 return SQLITE_OK; 310 } 311 312 /* 313 ** This API allows applications to modify the global configuration of 314 ** the SQLite library at run-time. 315 ** 316 ** This routine should only be called when there are no outstanding 317 ** database connections or memory allocations. This routine is not 318 ** threadsafe. Failure to heed these warnings can lead to unpredictable 319 ** behavior. 320 */ 321 int sqlite3_config(int op, ...){ 322 va_list ap; 323 int rc = SQLITE_OK; 324 325 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 326 ** the SQLite library is in use. */ 327 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 328 329 va_start(ap, op); 330 switch( op ){ 331 332 /* Mutex configuration options are only available in a threadsafe 333 ** compile. 334 */ 335 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 336 case SQLITE_CONFIG_SINGLETHREAD: { 337 /* Disable all mutexing */ 338 sqlite3GlobalConfig.bCoreMutex = 0; 339 sqlite3GlobalConfig.bFullMutex = 0; 340 break; 341 } 342 case SQLITE_CONFIG_MULTITHREAD: { 343 /* Disable mutexing of database connections */ 344 /* Enable mutexing of core data structures */ 345 sqlite3GlobalConfig.bCoreMutex = 1; 346 sqlite3GlobalConfig.bFullMutex = 0; 347 break; 348 } 349 case SQLITE_CONFIG_SERIALIZED: { 350 /* Enable all mutexing */ 351 sqlite3GlobalConfig.bCoreMutex = 1; 352 sqlite3GlobalConfig.bFullMutex = 1; 353 break; 354 } 355 case SQLITE_CONFIG_MUTEX: { 356 /* Specify an alternative mutex implementation */ 357 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 358 break; 359 } 360 case SQLITE_CONFIG_GETMUTEX: { 361 /* Retrieve the current mutex implementation */ 362 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 363 break; 364 } 365 #endif 366 367 368 case SQLITE_CONFIG_MALLOC: { 369 /* Specify an alternative malloc implementation */ 370 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 371 break; 372 } 373 case SQLITE_CONFIG_GETMALLOC: { 374 /* Retrieve the current malloc() implementation */ 375 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 376 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 377 break; 378 } 379 case SQLITE_CONFIG_MEMSTATUS: { 380 /* Enable or disable the malloc status collection */ 381 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 382 break; 383 } 384 case SQLITE_CONFIG_SCRATCH: { 385 /* Designate a buffer for scratch memory space */ 386 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 387 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 388 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 389 break; 390 } 391 case SQLITE_CONFIG_PAGECACHE: { 392 /* Designate a buffer for page cache memory space */ 393 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 394 sqlite3GlobalConfig.szPage = va_arg(ap, int); 395 sqlite3GlobalConfig.nPage = va_arg(ap, int); 396 break; 397 } 398 399 case SQLITE_CONFIG_PCACHE: { 400 /* no-op */ 401 break; 402 } 403 case SQLITE_CONFIG_GETPCACHE: { 404 /* now an error */ 405 rc = SQLITE_ERROR; 406 break; 407 } 408 409 case SQLITE_CONFIG_PCACHE2: { 410 /* Specify an alternative page cache implementation */ 411 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 412 break; 413 } 414 case SQLITE_CONFIG_GETPCACHE2: { 415 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 416 sqlite3PCacheSetDefault(); 417 } 418 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 419 break; 420 } 421 422 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 423 case SQLITE_CONFIG_HEAP: { 424 /* Designate a buffer for heap memory space */ 425 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 426 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 427 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 428 429 if( sqlite3GlobalConfig.mnReq<1 ){ 430 sqlite3GlobalConfig.mnReq = 1; 431 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 432 /* cap min request size at 2^12 */ 433 sqlite3GlobalConfig.mnReq = (1<<12); 434 } 435 436 if( sqlite3GlobalConfig.pHeap==0 ){ 437 /* If the heap pointer is NULL, then restore the malloc implementation 438 ** back to NULL pointers too. This will cause the malloc to go 439 ** back to its default implementation when sqlite3_initialize() is 440 ** run. 441 */ 442 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 443 }else{ 444 /* The heap pointer is not NULL, then install one of the 445 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 446 ** ENABLE_MEMSYS5 is defined, return an error. 447 */ 448 #ifdef SQLITE_ENABLE_MEMSYS3 449 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 450 #endif 451 #ifdef SQLITE_ENABLE_MEMSYS5 452 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 453 #endif 454 } 455 break; 456 } 457 #endif 458 459 case SQLITE_CONFIG_LOOKASIDE: { 460 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 461 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 462 break; 463 } 464 465 /* Record a pointer to the logger funcction and its first argument. 466 ** The default is NULL. Logging is disabled if the function pointer is 467 ** NULL. 468 */ 469 case SQLITE_CONFIG_LOG: { 470 /* MSVC is picky about pulling func ptrs from va lists. 471 ** http://support.microsoft.com/kb/47961 472 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 473 */ 474 typedef void(*LOGFUNC_t)(void*,int,const char*); 475 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 476 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 477 break; 478 } 479 480 case SQLITE_CONFIG_URI: { 481 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 482 break; 483 } 484 485 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 486 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 487 break; 488 } 489 490 #ifdef SQLITE_ENABLE_SQLLOG 491 case SQLITE_CONFIG_SQLLOG: { 492 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 493 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 494 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 495 break; 496 } 497 #endif 498 499 case SQLITE_CONFIG_MMAP_SIZE: { 500 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 501 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 502 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 503 mxMmap = SQLITE_MAX_MMAP_SIZE; 504 } 505 sqlite3GlobalConfig.mxMmap = mxMmap; 506 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 507 if( szMmap>mxMmap) szMmap = mxMmap; 508 sqlite3GlobalConfig.szMmap = szMmap; 509 break; 510 } 511 512 default: { 513 rc = SQLITE_ERROR; 514 break; 515 } 516 } 517 va_end(ap); 518 return rc; 519 } 520 521 /* 522 ** Set up the lookaside buffers for a database connection. 523 ** Return SQLITE_OK on success. 524 ** If lookaside is already active, return SQLITE_BUSY. 525 ** 526 ** The sz parameter is the number of bytes in each lookaside slot. 527 ** The cnt parameter is the number of slots. If pStart is NULL the 528 ** space for the lookaside memory is obtained from sqlite3_malloc(). 529 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 530 ** the lookaside memory. 531 */ 532 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 533 void *pStart; 534 if( db->lookaside.nOut ){ 535 return SQLITE_BUSY; 536 } 537 /* Free any existing lookaside buffer for this handle before 538 ** allocating a new one so we don't have to have space for 539 ** both at the same time. 540 */ 541 if( db->lookaside.bMalloced ){ 542 sqlite3_free(db->lookaside.pStart); 543 } 544 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 545 ** than a pointer to be useful. 546 */ 547 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 548 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 549 if( cnt<0 ) cnt = 0; 550 if( sz==0 || cnt==0 ){ 551 sz = 0; 552 pStart = 0; 553 }else if( pBuf==0 ){ 554 sqlite3BeginBenignMalloc(); 555 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 556 sqlite3EndBenignMalloc(); 557 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 558 }else{ 559 pStart = pBuf; 560 } 561 db->lookaside.pStart = pStart; 562 db->lookaside.pFree = 0; 563 db->lookaside.sz = (u16)sz; 564 if( pStart ){ 565 int i; 566 LookasideSlot *p; 567 assert( sz > (int)sizeof(LookasideSlot*) ); 568 p = (LookasideSlot*)pStart; 569 for(i=cnt-1; i>=0; i--){ 570 p->pNext = db->lookaside.pFree; 571 db->lookaside.pFree = p; 572 p = (LookasideSlot*)&((u8*)p)[sz]; 573 } 574 db->lookaside.pEnd = p; 575 db->lookaside.bEnabled = 1; 576 db->lookaside.bMalloced = pBuf==0 ?1:0; 577 }else{ 578 db->lookaside.pEnd = 0; 579 db->lookaside.bEnabled = 0; 580 db->lookaside.bMalloced = 0; 581 } 582 return SQLITE_OK; 583 } 584 585 /* 586 ** Return the mutex associated with a database connection. 587 */ 588 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 589 return db->mutex; 590 } 591 592 /* 593 ** Free up as much memory as we can from the given database 594 ** connection. 595 */ 596 int sqlite3_db_release_memory(sqlite3 *db){ 597 int i; 598 sqlite3_mutex_enter(db->mutex); 599 sqlite3BtreeEnterAll(db); 600 for(i=0; i<db->nDb; i++){ 601 Btree *pBt = db->aDb[i].pBt; 602 if( pBt ){ 603 Pager *pPager = sqlite3BtreePager(pBt); 604 sqlite3PagerShrink(pPager); 605 } 606 } 607 sqlite3BtreeLeaveAll(db); 608 sqlite3_mutex_leave(db->mutex); 609 return SQLITE_OK; 610 } 611 612 /* 613 ** Configuration settings for an individual database connection 614 */ 615 int sqlite3_db_config(sqlite3 *db, int op, ...){ 616 va_list ap; 617 int rc; 618 va_start(ap, op); 619 switch( op ){ 620 case SQLITE_DBCONFIG_LOOKASIDE: { 621 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 622 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 623 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 624 rc = setupLookaside(db, pBuf, sz, cnt); 625 break; 626 } 627 default: { 628 static const struct { 629 int op; /* The opcode */ 630 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 631 } aFlagOp[] = { 632 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 633 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 634 }; 635 unsigned int i; 636 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 637 for(i=0; i<ArraySize(aFlagOp); i++){ 638 if( aFlagOp[i].op==op ){ 639 int onoff = va_arg(ap, int); 640 int *pRes = va_arg(ap, int*); 641 int oldFlags = db->flags; 642 if( onoff>0 ){ 643 db->flags |= aFlagOp[i].mask; 644 }else if( onoff==0 ){ 645 db->flags &= ~aFlagOp[i].mask; 646 } 647 if( oldFlags!=db->flags ){ 648 sqlite3ExpirePreparedStatements(db); 649 } 650 if( pRes ){ 651 *pRes = (db->flags & aFlagOp[i].mask)!=0; 652 } 653 rc = SQLITE_OK; 654 break; 655 } 656 } 657 break; 658 } 659 } 660 va_end(ap); 661 return rc; 662 } 663 664 665 /* 666 ** Return true if the buffer z[0..n-1] contains all spaces. 667 */ 668 static int allSpaces(const char *z, int n){ 669 while( n>0 && z[n-1]==' ' ){ n--; } 670 return n==0; 671 } 672 673 /* 674 ** This is the default collating function named "BINARY" which is always 675 ** available. 676 ** 677 ** If the padFlag argument is not NULL then space padding at the end 678 ** of strings is ignored. This implements the RTRIM collation. 679 */ 680 static int binCollFunc( 681 void *padFlag, 682 int nKey1, const void *pKey1, 683 int nKey2, const void *pKey2 684 ){ 685 int rc, n; 686 n = nKey1<nKey2 ? nKey1 : nKey2; 687 rc = memcmp(pKey1, pKey2, n); 688 if( rc==0 ){ 689 if( padFlag 690 && allSpaces(((char*)pKey1)+n, nKey1-n) 691 && allSpaces(((char*)pKey2)+n, nKey2-n) 692 ){ 693 /* Leave rc unchanged at 0 */ 694 }else{ 695 rc = nKey1 - nKey2; 696 } 697 } 698 return rc; 699 } 700 701 /* 702 ** Another built-in collating sequence: NOCASE. 703 ** 704 ** This collating sequence is intended to be used for "case independent 705 ** comparison". SQLite's knowledge of upper and lower case equivalents 706 ** extends only to the 26 characters used in the English language. 707 ** 708 ** At the moment there is only a UTF-8 implementation. 709 */ 710 static int nocaseCollatingFunc( 711 void *NotUsed, 712 int nKey1, const void *pKey1, 713 int nKey2, const void *pKey2 714 ){ 715 int r = sqlite3StrNICmp( 716 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 717 UNUSED_PARAMETER(NotUsed); 718 if( 0==r ){ 719 r = nKey1-nKey2; 720 } 721 return r; 722 } 723 724 /* 725 ** Return the ROWID of the most recent insert 726 */ 727 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 728 return db->lastRowid; 729 } 730 731 /* 732 ** Return the number of changes in the most recent call to sqlite3_exec(). 733 */ 734 int sqlite3_changes(sqlite3 *db){ 735 return db->nChange; 736 } 737 738 /* 739 ** Return the number of changes since the database handle was opened. 740 */ 741 int sqlite3_total_changes(sqlite3 *db){ 742 return db->nTotalChange; 743 } 744 745 /* 746 ** Close all open savepoints. This function only manipulates fields of the 747 ** database handle object, it does not close any savepoints that may be open 748 ** at the b-tree/pager level. 749 */ 750 void sqlite3CloseSavepoints(sqlite3 *db){ 751 while( db->pSavepoint ){ 752 Savepoint *pTmp = db->pSavepoint; 753 db->pSavepoint = pTmp->pNext; 754 sqlite3DbFree(db, pTmp); 755 } 756 db->nSavepoint = 0; 757 db->nStatement = 0; 758 db->isTransactionSavepoint = 0; 759 } 760 761 /* 762 ** Invoke the destructor function associated with FuncDef p, if any. Except, 763 ** if this is not the last copy of the function, do not invoke it. Multiple 764 ** copies of a single function are created when create_function() is called 765 ** with SQLITE_ANY as the encoding. 766 */ 767 static void functionDestroy(sqlite3 *db, FuncDef *p){ 768 FuncDestructor *pDestructor = p->pDestructor; 769 if( pDestructor ){ 770 pDestructor->nRef--; 771 if( pDestructor->nRef==0 ){ 772 pDestructor->xDestroy(pDestructor->pUserData); 773 sqlite3DbFree(db, pDestructor); 774 } 775 } 776 } 777 778 /* 779 ** Disconnect all sqlite3_vtab objects that belong to database connection 780 ** db. This is called when db is being closed. 781 */ 782 static void disconnectAllVtab(sqlite3 *db){ 783 #ifndef SQLITE_OMIT_VIRTUALTABLE 784 int i; 785 sqlite3BtreeEnterAll(db); 786 for(i=0; i<db->nDb; i++){ 787 Schema *pSchema = db->aDb[i].pSchema; 788 if( db->aDb[i].pSchema ){ 789 HashElem *p; 790 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 791 Table *pTab = (Table *)sqliteHashData(p); 792 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 793 } 794 } 795 } 796 sqlite3BtreeLeaveAll(db); 797 #else 798 UNUSED_PARAMETER(db); 799 #endif 800 } 801 802 /* 803 ** Return TRUE if database connection db has unfinalized prepared 804 ** statements or unfinished sqlite3_backup objects. 805 */ 806 static int connectionIsBusy(sqlite3 *db){ 807 int j; 808 assert( sqlite3_mutex_held(db->mutex) ); 809 if( db->pVdbe ) return 1; 810 for(j=0; j<db->nDb; j++){ 811 Btree *pBt = db->aDb[j].pBt; 812 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 813 } 814 return 0; 815 } 816 817 /* 818 ** Close an existing SQLite database 819 */ 820 static int sqlite3Close(sqlite3 *db, int forceZombie){ 821 if( !db ){ 822 return SQLITE_OK; 823 } 824 if( !sqlite3SafetyCheckSickOrOk(db) ){ 825 return SQLITE_MISUSE_BKPT; 826 } 827 sqlite3_mutex_enter(db->mutex); 828 829 /* Force xDisconnect calls on all virtual tables */ 830 disconnectAllVtab(db); 831 832 /* If a transaction is open, the disconnectAllVtab() call above 833 ** will not have called the xDisconnect() method on any virtual 834 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 835 ** call will do so. We need to do this before the check for active 836 ** SQL statements below, as the v-table implementation may be storing 837 ** some prepared statements internally. 838 */ 839 sqlite3VtabRollback(db); 840 841 /* Legacy behavior (sqlite3_close() behavior) is to return 842 ** SQLITE_BUSY if the connection can not be closed immediately. 843 */ 844 if( !forceZombie && connectionIsBusy(db) ){ 845 sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " 846 "statements or unfinished backups"); 847 sqlite3_mutex_leave(db->mutex); 848 return SQLITE_BUSY; 849 } 850 851 #ifdef SQLITE_ENABLE_SQLLOG 852 if( sqlite3GlobalConfig.xSqllog ){ 853 /* Closing the handle. Fourth parameter is passed the value 2. */ 854 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 855 } 856 #endif 857 858 /* Convert the connection into a zombie and then close it. 859 */ 860 db->magic = SQLITE_MAGIC_ZOMBIE; 861 sqlite3LeaveMutexAndCloseZombie(db); 862 return SQLITE_OK; 863 } 864 865 /* 866 ** Two variations on the public interface for closing a database 867 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 868 ** leaves the connection option if there are unfinalized prepared 869 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 870 ** version forces the connection to become a zombie if there are 871 ** unclosed resources, and arranges for deallocation when the last 872 ** prepare statement or sqlite3_backup closes. 873 */ 874 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 875 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 876 877 878 /* 879 ** Close the mutex on database connection db. 880 ** 881 ** Furthermore, if database connection db is a zombie (meaning that there 882 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 883 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 884 ** finished, then free all resources. 885 */ 886 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 887 HashElem *i; /* Hash table iterator */ 888 int j; 889 890 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 891 ** or if the connection has not yet been closed by sqlite3_close_v2(), 892 ** then just leave the mutex and return. 893 */ 894 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 895 sqlite3_mutex_leave(db->mutex); 896 return; 897 } 898 899 /* If we reach this point, it means that the database connection has 900 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 901 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 902 ** go ahead and free all resources. 903 */ 904 905 /* If a transaction is open, roll it back. This also ensures that if 906 ** any database schemas have been modified by an uncommitted transaction 907 ** they are reset. And that the required b-tree mutex is held to make 908 ** the pager rollback and schema reset an atomic operation. */ 909 sqlite3RollbackAll(db, SQLITE_OK); 910 911 /* Free any outstanding Savepoint structures. */ 912 sqlite3CloseSavepoints(db); 913 914 /* Close all database connections */ 915 for(j=0; j<db->nDb; j++){ 916 struct Db *pDb = &db->aDb[j]; 917 if( pDb->pBt ){ 918 sqlite3BtreeClose(pDb->pBt); 919 pDb->pBt = 0; 920 if( j!=1 ){ 921 pDb->pSchema = 0; 922 } 923 } 924 } 925 /* Clear the TEMP schema separately and last */ 926 if( db->aDb[1].pSchema ){ 927 sqlite3SchemaClear(db->aDb[1].pSchema); 928 } 929 sqlite3VtabUnlockList(db); 930 931 /* Free up the array of auxiliary databases */ 932 sqlite3CollapseDatabaseArray(db); 933 assert( db->nDb<=2 ); 934 assert( db->aDb==db->aDbStatic ); 935 936 /* Tell the code in notify.c that the connection no longer holds any 937 ** locks and does not require any further unlock-notify callbacks. 938 */ 939 sqlite3ConnectionClosed(db); 940 941 for(j=0; j<ArraySize(db->aFunc.a); j++){ 942 FuncDef *pNext, *pHash, *p; 943 for(p=db->aFunc.a[j]; p; p=pHash){ 944 pHash = p->pHash; 945 while( p ){ 946 functionDestroy(db, p); 947 pNext = p->pNext; 948 sqlite3DbFree(db, p); 949 p = pNext; 950 } 951 } 952 } 953 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 954 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 955 /* Invoke any destructors registered for collation sequence user data. */ 956 for(j=0; j<3; j++){ 957 if( pColl[j].xDel ){ 958 pColl[j].xDel(pColl[j].pUser); 959 } 960 } 961 sqlite3DbFree(db, pColl); 962 } 963 sqlite3HashClear(&db->aCollSeq); 964 #ifndef SQLITE_OMIT_VIRTUALTABLE 965 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 966 Module *pMod = (Module *)sqliteHashData(i); 967 if( pMod->xDestroy ){ 968 pMod->xDestroy(pMod->pAux); 969 } 970 sqlite3DbFree(db, pMod); 971 } 972 sqlite3HashClear(&db->aModule); 973 #endif 974 975 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 976 if( db->pErr ){ 977 sqlite3ValueFree(db->pErr); 978 } 979 sqlite3CloseExtensions(db); 980 981 db->magic = SQLITE_MAGIC_ERROR; 982 983 /* The temp-database schema is allocated differently from the other schema 984 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 985 ** So it needs to be freed here. Todo: Why not roll the temp schema into 986 ** the same sqliteMalloc() as the one that allocates the database 987 ** structure? 988 */ 989 sqlite3DbFree(db, db->aDb[1].pSchema); 990 sqlite3_mutex_leave(db->mutex); 991 db->magic = SQLITE_MAGIC_CLOSED; 992 sqlite3_mutex_free(db->mutex); 993 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 994 if( db->lookaside.bMalloced ){ 995 sqlite3_free(db->lookaside.pStart); 996 } 997 sqlite3_free(db); 998 } 999 1000 /* 1001 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1002 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit 1003 ** breaker") and made to return tripCode if there are any further 1004 ** attempts to use that cursor. 1005 */ 1006 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1007 int i; 1008 int inTrans = 0; 1009 assert( sqlite3_mutex_held(db->mutex) ); 1010 sqlite3BeginBenignMalloc(); 1011 1012 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1013 ** This is important in case the transaction being rolled back has 1014 ** modified the database schema. If the b-tree mutexes are not taken 1015 ** here, then another shared-cache connection might sneak in between 1016 ** the database rollback and schema reset, which can cause false 1017 ** corruption reports in some cases. */ 1018 sqlite3BtreeEnterAll(db); 1019 1020 for(i=0; i<db->nDb; i++){ 1021 Btree *p = db->aDb[i].pBt; 1022 if( p ){ 1023 if( sqlite3BtreeIsInTrans(p) ){ 1024 inTrans = 1; 1025 } 1026 sqlite3BtreeRollback(p, tripCode); 1027 db->aDb[i].inTrans = 0; 1028 } 1029 } 1030 sqlite3VtabRollback(db); 1031 sqlite3EndBenignMalloc(); 1032 1033 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1034 sqlite3ExpirePreparedStatements(db); 1035 sqlite3ResetAllSchemasOfConnection(db); 1036 } 1037 sqlite3BtreeLeaveAll(db); 1038 1039 /* Any deferred constraint violations have now been resolved. */ 1040 db->nDeferredCons = 0; 1041 1042 /* If one has been configured, invoke the rollback-hook callback */ 1043 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1044 db->xRollbackCallback(db->pRollbackArg); 1045 } 1046 } 1047 1048 /* 1049 ** Return a static string containing the name corresponding to the error code 1050 ** specified in the argument. 1051 */ 1052 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) || \ 1053 defined(SQLITE_DEBUG_OS_TRACE) 1054 const char *sqlite3ErrName(int rc){ 1055 const char *zName = 0; 1056 int i, origRc = rc; 1057 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1058 switch( rc ){ 1059 case SQLITE_OK: zName = "SQLITE_OK"; break; 1060 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1061 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1062 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1063 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1064 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1065 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1066 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1067 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1068 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1069 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1070 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1071 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1072 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1073 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1074 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1075 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1076 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1077 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1078 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1079 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1080 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1081 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1082 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1083 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1084 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1085 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1086 case SQLITE_IOERR_BLOCKED: zName = "SQLITE_IOERR_BLOCKED"; break; 1087 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1088 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1089 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1090 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1091 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1092 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1093 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1094 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1095 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1096 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1097 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1098 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1099 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1100 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1101 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1102 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1103 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1104 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1105 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1106 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1107 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1108 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1109 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1110 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1111 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1112 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1113 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1114 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1115 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1116 case SQLITE_CONSTRAINT_FOREIGNKEY: 1117 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1118 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1119 case SQLITE_CONSTRAINT_PRIMARYKEY: 1120 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1121 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1122 case SQLITE_CONSTRAINT_COMMITHOOK: 1123 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1124 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1125 case SQLITE_CONSTRAINT_FUNCTION: 1126 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1127 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1128 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1129 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1130 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1131 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1132 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1133 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1134 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1135 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1136 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1137 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1138 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1139 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1140 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1141 } 1142 } 1143 if( zName==0 ){ 1144 static char zBuf[50]; 1145 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1146 zName = zBuf; 1147 } 1148 return zName; 1149 } 1150 #endif 1151 1152 /* 1153 ** Return a static string that describes the kind of error specified in the 1154 ** argument. 1155 */ 1156 const char *sqlite3ErrStr(int rc){ 1157 static const char* const aMsg[] = { 1158 /* SQLITE_OK */ "not an error", 1159 /* SQLITE_ERROR */ "SQL logic error or missing database", 1160 /* SQLITE_INTERNAL */ 0, 1161 /* SQLITE_PERM */ "access permission denied", 1162 /* SQLITE_ABORT */ "callback requested query abort", 1163 /* SQLITE_BUSY */ "database is locked", 1164 /* SQLITE_LOCKED */ "database table is locked", 1165 /* SQLITE_NOMEM */ "out of memory", 1166 /* SQLITE_READONLY */ "attempt to write a readonly database", 1167 /* SQLITE_INTERRUPT */ "interrupted", 1168 /* SQLITE_IOERR */ "disk I/O error", 1169 /* SQLITE_CORRUPT */ "database disk image is malformed", 1170 /* SQLITE_NOTFOUND */ "unknown operation", 1171 /* SQLITE_FULL */ "database or disk is full", 1172 /* SQLITE_CANTOPEN */ "unable to open database file", 1173 /* SQLITE_PROTOCOL */ "locking protocol", 1174 /* SQLITE_EMPTY */ "table contains no data", 1175 /* SQLITE_SCHEMA */ "database schema has changed", 1176 /* SQLITE_TOOBIG */ "string or blob too big", 1177 /* SQLITE_CONSTRAINT */ "constraint failed", 1178 /* SQLITE_MISMATCH */ "datatype mismatch", 1179 /* SQLITE_MISUSE */ "library routine called out of sequence", 1180 /* SQLITE_NOLFS */ "large file support is disabled", 1181 /* SQLITE_AUTH */ "authorization denied", 1182 /* SQLITE_FORMAT */ "auxiliary database format error", 1183 /* SQLITE_RANGE */ "bind or column index out of range", 1184 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1185 }; 1186 const char *zErr = "unknown error"; 1187 switch( rc ){ 1188 case SQLITE_ABORT_ROLLBACK: { 1189 zErr = "abort due to ROLLBACK"; 1190 break; 1191 } 1192 default: { 1193 rc &= 0xff; 1194 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1195 zErr = aMsg[rc]; 1196 } 1197 break; 1198 } 1199 } 1200 return zErr; 1201 } 1202 1203 /* 1204 ** This routine implements a busy callback that sleeps and tries 1205 ** again until a timeout value is reached. The timeout value is 1206 ** an integer number of milliseconds passed in as the first 1207 ** argument. 1208 */ 1209 static int sqliteDefaultBusyCallback( 1210 void *ptr, /* Database connection */ 1211 int count /* Number of times table has been busy */ 1212 ){ 1213 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 1214 static const u8 delays[] = 1215 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1216 static const u8 totals[] = 1217 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1218 # define NDELAY ArraySize(delays) 1219 sqlite3 *db = (sqlite3 *)ptr; 1220 int timeout = db->busyTimeout; 1221 int delay, prior; 1222 1223 assert( count>=0 ); 1224 if( count < NDELAY ){ 1225 delay = delays[count]; 1226 prior = totals[count]; 1227 }else{ 1228 delay = delays[NDELAY-1]; 1229 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1230 } 1231 if( prior + delay > timeout ){ 1232 delay = timeout - prior; 1233 if( delay<=0 ) return 0; 1234 } 1235 sqlite3OsSleep(db->pVfs, delay*1000); 1236 return 1; 1237 #else 1238 sqlite3 *db = (sqlite3 *)ptr; 1239 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1240 if( (count+1)*1000 > timeout ){ 1241 return 0; 1242 } 1243 sqlite3OsSleep(db->pVfs, 1000000); 1244 return 1; 1245 #endif 1246 } 1247 1248 /* 1249 ** Invoke the given busy handler. 1250 ** 1251 ** This routine is called when an operation failed with a lock. 1252 ** If this routine returns non-zero, the lock is retried. If it 1253 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1254 */ 1255 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1256 int rc; 1257 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1258 rc = p->xFunc(p->pArg, p->nBusy); 1259 if( rc==0 ){ 1260 p->nBusy = -1; 1261 }else{ 1262 p->nBusy++; 1263 } 1264 return rc; 1265 } 1266 1267 /* 1268 ** This routine sets the busy callback for an Sqlite database to the 1269 ** given callback function with the given argument. 1270 */ 1271 int sqlite3_busy_handler( 1272 sqlite3 *db, 1273 int (*xBusy)(void*,int), 1274 void *pArg 1275 ){ 1276 sqlite3_mutex_enter(db->mutex); 1277 db->busyHandler.xFunc = xBusy; 1278 db->busyHandler.pArg = pArg; 1279 db->busyHandler.nBusy = 0; 1280 db->busyTimeout = 0; 1281 sqlite3_mutex_leave(db->mutex); 1282 return SQLITE_OK; 1283 } 1284 1285 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1286 /* 1287 ** This routine sets the progress callback for an Sqlite database to the 1288 ** given callback function with the given argument. The progress callback will 1289 ** be invoked every nOps opcodes. 1290 */ 1291 void sqlite3_progress_handler( 1292 sqlite3 *db, 1293 int nOps, 1294 int (*xProgress)(void*), 1295 void *pArg 1296 ){ 1297 sqlite3_mutex_enter(db->mutex); 1298 if( nOps>0 ){ 1299 db->xProgress = xProgress; 1300 db->nProgressOps = nOps; 1301 db->pProgressArg = pArg; 1302 }else{ 1303 db->xProgress = 0; 1304 db->nProgressOps = 0; 1305 db->pProgressArg = 0; 1306 } 1307 sqlite3_mutex_leave(db->mutex); 1308 } 1309 #endif 1310 1311 1312 /* 1313 ** This routine installs a default busy handler that waits for the 1314 ** specified number of milliseconds before returning 0. 1315 */ 1316 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1317 if( ms>0 ){ 1318 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1319 db->busyTimeout = ms; 1320 }else{ 1321 sqlite3_busy_handler(db, 0, 0); 1322 } 1323 return SQLITE_OK; 1324 } 1325 1326 /* 1327 ** Cause any pending operation to stop at its earliest opportunity. 1328 */ 1329 void sqlite3_interrupt(sqlite3 *db){ 1330 db->u1.isInterrupted = 1; 1331 } 1332 1333 1334 /* 1335 ** This function is exactly the same as sqlite3_create_function(), except 1336 ** that it is designed to be called by internal code. The difference is 1337 ** that if a malloc() fails in sqlite3_create_function(), an error code 1338 ** is returned and the mallocFailed flag cleared. 1339 */ 1340 int sqlite3CreateFunc( 1341 sqlite3 *db, 1342 const char *zFunctionName, 1343 int nArg, 1344 int enc, 1345 void *pUserData, 1346 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1347 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1348 void (*xFinal)(sqlite3_context*), 1349 FuncDestructor *pDestructor 1350 ){ 1351 FuncDef *p; 1352 int nName; 1353 1354 assert( sqlite3_mutex_held(db->mutex) ); 1355 if( zFunctionName==0 || 1356 (xFunc && (xFinal || xStep)) || 1357 (!xFunc && (xFinal && !xStep)) || 1358 (!xFunc && (!xFinal && xStep)) || 1359 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1360 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1361 return SQLITE_MISUSE_BKPT; 1362 } 1363 1364 #ifndef SQLITE_OMIT_UTF16 1365 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1366 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1367 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1368 ** 1369 ** If SQLITE_ANY is specified, add three versions of the function 1370 ** to the hash table. 1371 */ 1372 if( enc==SQLITE_UTF16 ){ 1373 enc = SQLITE_UTF16NATIVE; 1374 }else if( enc==SQLITE_ANY ){ 1375 int rc; 1376 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 1377 pUserData, xFunc, xStep, xFinal, pDestructor); 1378 if( rc==SQLITE_OK ){ 1379 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 1380 pUserData, xFunc, xStep, xFinal, pDestructor); 1381 } 1382 if( rc!=SQLITE_OK ){ 1383 return rc; 1384 } 1385 enc = SQLITE_UTF16BE; 1386 } 1387 #else 1388 enc = SQLITE_UTF8; 1389 #endif 1390 1391 /* Check if an existing function is being overridden or deleted. If so, 1392 ** and there are active VMs, then return SQLITE_BUSY. If a function 1393 ** is being overridden/deleted but there are no active VMs, allow the 1394 ** operation to continue but invalidate all precompiled statements. 1395 */ 1396 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1397 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 1398 if( db->activeVdbeCnt ){ 1399 sqlite3Error(db, SQLITE_BUSY, 1400 "unable to delete/modify user-function due to active statements"); 1401 assert( !db->mallocFailed ); 1402 return SQLITE_BUSY; 1403 }else{ 1404 sqlite3ExpirePreparedStatements(db); 1405 } 1406 } 1407 1408 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1409 assert(p || db->mallocFailed); 1410 if( !p ){ 1411 return SQLITE_NOMEM; 1412 } 1413 1414 /* If an older version of the function with a configured destructor is 1415 ** being replaced invoke the destructor function here. */ 1416 functionDestroy(db, p); 1417 1418 if( pDestructor ){ 1419 pDestructor->nRef++; 1420 } 1421 p->pDestructor = pDestructor; 1422 p->flags = 0; 1423 p->xFunc = xFunc; 1424 p->xStep = xStep; 1425 p->xFinalize = xFinal; 1426 p->pUserData = pUserData; 1427 p->nArg = (u16)nArg; 1428 return SQLITE_OK; 1429 } 1430 1431 /* 1432 ** Create new user functions. 1433 */ 1434 int sqlite3_create_function( 1435 sqlite3 *db, 1436 const char *zFunc, 1437 int nArg, 1438 int enc, 1439 void *p, 1440 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1441 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1442 void (*xFinal)(sqlite3_context*) 1443 ){ 1444 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1445 xFinal, 0); 1446 } 1447 1448 int sqlite3_create_function_v2( 1449 sqlite3 *db, 1450 const char *zFunc, 1451 int nArg, 1452 int enc, 1453 void *p, 1454 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1455 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1456 void (*xFinal)(sqlite3_context*), 1457 void (*xDestroy)(void *) 1458 ){ 1459 int rc = SQLITE_ERROR; 1460 FuncDestructor *pArg = 0; 1461 sqlite3_mutex_enter(db->mutex); 1462 if( xDestroy ){ 1463 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1464 if( !pArg ){ 1465 xDestroy(p); 1466 goto out; 1467 } 1468 pArg->xDestroy = xDestroy; 1469 pArg->pUserData = p; 1470 } 1471 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1472 if( pArg && pArg->nRef==0 ){ 1473 assert( rc!=SQLITE_OK ); 1474 xDestroy(p); 1475 sqlite3DbFree(db, pArg); 1476 } 1477 1478 out: 1479 rc = sqlite3ApiExit(db, rc); 1480 sqlite3_mutex_leave(db->mutex); 1481 return rc; 1482 } 1483 1484 #ifndef SQLITE_OMIT_UTF16 1485 int sqlite3_create_function16( 1486 sqlite3 *db, 1487 const void *zFunctionName, 1488 int nArg, 1489 int eTextRep, 1490 void *p, 1491 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1492 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1493 void (*xFinal)(sqlite3_context*) 1494 ){ 1495 int rc; 1496 char *zFunc8; 1497 sqlite3_mutex_enter(db->mutex); 1498 assert( !db->mallocFailed ); 1499 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1500 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1501 sqlite3DbFree(db, zFunc8); 1502 rc = sqlite3ApiExit(db, rc); 1503 sqlite3_mutex_leave(db->mutex); 1504 return rc; 1505 } 1506 #endif 1507 1508 1509 /* 1510 ** Declare that a function has been overloaded by a virtual table. 1511 ** 1512 ** If the function already exists as a regular global function, then 1513 ** this routine is a no-op. If the function does not exist, then create 1514 ** a new one that always throws a run-time error. 1515 ** 1516 ** When virtual tables intend to provide an overloaded function, they 1517 ** should call this routine to make sure the global function exists. 1518 ** A global function must exist in order for name resolution to work 1519 ** properly. 1520 */ 1521 int sqlite3_overload_function( 1522 sqlite3 *db, 1523 const char *zName, 1524 int nArg 1525 ){ 1526 int nName = sqlite3Strlen30(zName); 1527 int rc = SQLITE_OK; 1528 sqlite3_mutex_enter(db->mutex); 1529 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1530 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1531 0, sqlite3InvalidFunction, 0, 0, 0); 1532 } 1533 rc = sqlite3ApiExit(db, rc); 1534 sqlite3_mutex_leave(db->mutex); 1535 return rc; 1536 } 1537 1538 #ifndef SQLITE_OMIT_TRACE 1539 /* 1540 ** Register a trace function. The pArg from the previously registered trace 1541 ** is returned. 1542 ** 1543 ** A NULL trace function means that no tracing is executes. A non-NULL 1544 ** trace is a pointer to a function that is invoked at the start of each 1545 ** SQL statement. 1546 */ 1547 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1548 void *pOld; 1549 sqlite3_mutex_enter(db->mutex); 1550 pOld = db->pTraceArg; 1551 db->xTrace = xTrace; 1552 db->pTraceArg = pArg; 1553 sqlite3_mutex_leave(db->mutex); 1554 return pOld; 1555 } 1556 /* 1557 ** Register a profile function. The pArg from the previously registered 1558 ** profile function is returned. 1559 ** 1560 ** A NULL profile function means that no profiling is executes. A non-NULL 1561 ** profile is a pointer to a function that is invoked at the conclusion of 1562 ** each SQL statement that is run. 1563 */ 1564 void *sqlite3_profile( 1565 sqlite3 *db, 1566 void (*xProfile)(void*,const char*,sqlite_uint64), 1567 void *pArg 1568 ){ 1569 void *pOld; 1570 sqlite3_mutex_enter(db->mutex); 1571 pOld = db->pProfileArg; 1572 db->xProfile = xProfile; 1573 db->pProfileArg = pArg; 1574 sqlite3_mutex_leave(db->mutex); 1575 return pOld; 1576 } 1577 #endif /* SQLITE_OMIT_TRACE */ 1578 1579 /* 1580 ** Register a function to be invoked when a transaction commits. 1581 ** If the invoked function returns non-zero, then the commit becomes a 1582 ** rollback. 1583 */ 1584 void *sqlite3_commit_hook( 1585 sqlite3 *db, /* Attach the hook to this database */ 1586 int (*xCallback)(void*), /* Function to invoke on each commit */ 1587 void *pArg /* Argument to the function */ 1588 ){ 1589 void *pOld; 1590 sqlite3_mutex_enter(db->mutex); 1591 pOld = db->pCommitArg; 1592 db->xCommitCallback = xCallback; 1593 db->pCommitArg = pArg; 1594 sqlite3_mutex_leave(db->mutex); 1595 return pOld; 1596 } 1597 1598 /* 1599 ** Register a callback to be invoked each time a row is updated, 1600 ** inserted or deleted using this database connection. 1601 */ 1602 void *sqlite3_update_hook( 1603 sqlite3 *db, /* Attach the hook to this database */ 1604 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1605 void *pArg /* Argument to the function */ 1606 ){ 1607 void *pRet; 1608 sqlite3_mutex_enter(db->mutex); 1609 pRet = db->pUpdateArg; 1610 db->xUpdateCallback = xCallback; 1611 db->pUpdateArg = pArg; 1612 sqlite3_mutex_leave(db->mutex); 1613 return pRet; 1614 } 1615 1616 /* 1617 ** Register a callback to be invoked each time a transaction is rolled 1618 ** back by this database connection. 1619 */ 1620 void *sqlite3_rollback_hook( 1621 sqlite3 *db, /* Attach the hook to this database */ 1622 void (*xCallback)(void*), /* Callback function */ 1623 void *pArg /* Argument to the function */ 1624 ){ 1625 void *pRet; 1626 sqlite3_mutex_enter(db->mutex); 1627 pRet = db->pRollbackArg; 1628 db->xRollbackCallback = xCallback; 1629 db->pRollbackArg = pArg; 1630 sqlite3_mutex_leave(db->mutex); 1631 return pRet; 1632 } 1633 1634 #ifndef SQLITE_OMIT_WAL 1635 /* 1636 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1637 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1638 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1639 ** wal_autocheckpoint()). 1640 */ 1641 int sqlite3WalDefaultHook( 1642 void *pClientData, /* Argument */ 1643 sqlite3 *db, /* Connection */ 1644 const char *zDb, /* Database */ 1645 int nFrame /* Size of WAL */ 1646 ){ 1647 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1648 sqlite3BeginBenignMalloc(); 1649 sqlite3_wal_checkpoint(db, zDb); 1650 sqlite3EndBenignMalloc(); 1651 } 1652 return SQLITE_OK; 1653 } 1654 #endif /* SQLITE_OMIT_WAL */ 1655 1656 /* 1657 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1658 ** a database after committing a transaction if there are nFrame or 1659 ** more frames in the log file. Passing zero or a negative value as the 1660 ** nFrame parameter disables automatic checkpoints entirely. 1661 ** 1662 ** The callback registered by this function replaces any existing callback 1663 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1664 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1665 ** configured by this function. 1666 */ 1667 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1668 #ifdef SQLITE_OMIT_WAL 1669 UNUSED_PARAMETER(db); 1670 UNUSED_PARAMETER(nFrame); 1671 #else 1672 if( nFrame>0 ){ 1673 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1674 }else{ 1675 sqlite3_wal_hook(db, 0, 0); 1676 } 1677 #endif 1678 return SQLITE_OK; 1679 } 1680 1681 /* 1682 ** Register a callback to be invoked each time a transaction is written 1683 ** into the write-ahead-log by this database connection. 1684 */ 1685 void *sqlite3_wal_hook( 1686 sqlite3 *db, /* Attach the hook to this db handle */ 1687 int(*xCallback)(void *, sqlite3*, const char*, int), 1688 void *pArg /* First argument passed to xCallback() */ 1689 ){ 1690 #ifndef SQLITE_OMIT_WAL 1691 void *pRet; 1692 sqlite3_mutex_enter(db->mutex); 1693 pRet = db->pWalArg; 1694 db->xWalCallback = xCallback; 1695 db->pWalArg = pArg; 1696 sqlite3_mutex_leave(db->mutex); 1697 return pRet; 1698 #else 1699 return 0; 1700 #endif 1701 } 1702 1703 /* 1704 ** Checkpoint database zDb. 1705 */ 1706 int sqlite3_wal_checkpoint_v2( 1707 sqlite3 *db, /* Database handle */ 1708 const char *zDb, /* Name of attached database (or NULL) */ 1709 int eMode, /* SQLITE_CHECKPOINT_* value */ 1710 int *pnLog, /* OUT: Size of WAL log in frames */ 1711 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1712 ){ 1713 #ifdef SQLITE_OMIT_WAL 1714 return SQLITE_OK; 1715 #else 1716 int rc; /* Return code */ 1717 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1718 1719 /* Initialize the output variables to -1 in case an error occurs. */ 1720 if( pnLog ) *pnLog = -1; 1721 if( pnCkpt ) *pnCkpt = -1; 1722 1723 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); 1724 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); 1725 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); 1726 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ 1727 return SQLITE_MISUSE; 1728 } 1729 1730 sqlite3_mutex_enter(db->mutex); 1731 if( zDb && zDb[0] ){ 1732 iDb = sqlite3FindDbName(db, zDb); 1733 } 1734 if( iDb<0 ){ 1735 rc = SQLITE_ERROR; 1736 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); 1737 }else{ 1738 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1739 sqlite3Error(db, rc, 0); 1740 } 1741 rc = sqlite3ApiExit(db, rc); 1742 sqlite3_mutex_leave(db->mutex); 1743 return rc; 1744 #endif 1745 } 1746 1747 1748 /* 1749 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1750 ** to contains a zero-length string, all attached databases are 1751 ** checkpointed. 1752 */ 1753 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1754 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); 1755 } 1756 1757 #ifndef SQLITE_OMIT_WAL 1758 /* 1759 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1760 ** not currently open in WAL mode. 1761 ** 1762 ** If a transaction is open on the database being checkpointed, this 1763 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 1764 ** an error occurs while running the checkpoint, an SQLite error code is 1765 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 1766 ** 1767 ** The mutex on database handle db should be held by the caller. The mutex 1768 ** associated with the specific b-tree being checkpointed is taken by 1769 ** this function while the checkpoint is running. 1770 ** 1771 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 1772 ** checkpointed. If an error is encountered it is returned immediately - 1773 ** no attempt is made to checkpoint any remaining databases. 1774 ** 1775 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 1776 */ 1777 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 1778 int rc = SQLITE_OK; /* Return code */ 1779 int i; /* Used to iterate through attached dbs */ 1780 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 1781 1782 assert( sqlite3_mutex_held(db->mutex) ); 1783 assert( !pnLog || *pnLog==-1 ); 1784 assert( !pnCkpt || *pnCkpt==-1 ); 1785 1786 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 1787 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 1788 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 1789 pnLog = 0; 1790 pnCkpt = 0; 1791 if( rc==SQLITE_BUSY ){ 1792 bBusy = 1; 1793 rc = SQLITE_OK; 1794 } 1795 } 1796 } 1797 1798 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 1799 } 1800 #endif /* SQLITE_OMIT_WAL */ 1801 1802 /* 1803 ** This function returns true if main-memory should be used instead of 1804 ** a temporary file for transient pager files and statement journals. 1805 ** The value returned depends on the value of db->temp_store (runtime 1806 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 1807 ** following table describes the relationship between these two values 1808 ** and this functions return value. 1809 ** 1810 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1811 ** ----------------- -------------- ------------------------------ 1812 ** 0 any file (return 0) 1813 ** 1 1 file (return 0) 1814 ** 1 2 memory (return 1) 1815 ** 1 0 file (return 0) 1816 ** 2 1 file (return 0) 1817 ** 2 2 memory (return 1) 1818 ** 2 0 memory (return 1) 1819 ** 3 any memory (return 1) 1820 */ 1821 int sqlite3TempInMemory(const sqlite3 *db){ 1822 #if SQLITE_TEMP_STORE==1 1823 return ( db->temp_store==2 ); 1824 #endif 1825 #if SQLITE_TEMP_STORE==2 1826 return ( db->temp_store!=1 ); 1827 #endif 1828 #if SQLITE_TEMP_STORE==3 1829 return 1; 1830 #endif 1831 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 1832 return 0; 1833 #endif 1834 } 1835 1836 /* 1837 ** Return UTF-8 encoded English language explanation of the most recent 1838 ** error. 1839 */ 1840 const char *sqlite3_errmsg(sqlite3 *db){ 1841 const char *z; 1842 if( !db ){ 1843 return sqlite3ErrStr(SQLITE_NOMEM); 1844 } 1845 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1846 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 1847 } 1848 sqlite3_mutex_enter(db->mutex); 1849 if( db->mallocFailed ){ 1850 z = sqlite3ErrStr(SQLITE_NOMEM); 1851 }else{ 1852 z = (char*)sqlite3_value_text(db->pErr); 1853 assert( !db->mallocFailed ); 1854 if( z==0 ){ 1855 z = sqlite3ErrStr(db->errCode); 1856 } 1857 } 1858 sqlite3_mutex_leave(db->mutex); 1859 return z; 1860 } 1861 1862 #ifndef SQLITE_OMIT_UTF16 1863 /* 1864 ** Return UTF-16 encoded English language explanation of the most recent 1865 ** error. 1866 */ 1867 const void *sqlite3_errmsg16(sqlite3 *db){ 1868 static const u16 outOfMem[] = { 1869 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 1870 }; 1871 static const u16 misuse[] = { 1872 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 1873 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 1874 'c', 'a', 'l', 'l', 'e', 'd', ' ', 1875 'o', 'u', 't', ' ', 1876 'o', 'f', ' ', 1877 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 1878 }; 1879 1880 const void *z; 1881 if( !db ){ 1882 return (void *)outOfMem; 1883 } 1884 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1885 return (void *)misuse; 1886 } 1887 sqlite3_mutex_enter(db->mutex); 1888 if( db->mallocFailed ){ 1889 z = (void *)outOfMem; 1890 }else{ 1891 z = sqlite3_value_text16(db->pErr); 1892 if( z==0 ){ 1893 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1894 SQLITE_UTF8, SQLITE_STATIC); 1895 z = sqlite3_value_text16(db->pErr); 1896 } 1897 /* A malloc() may have failed within the call to sqlite3_value_text16() 1898 ** above. If this is the case, then the db->mallocFailed flag needs to 1899 ** be cleared before returning. Do this directly, instead of via 1900 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1901 */ 1902 db->mallocFailed = 0; 1903 } 1904 sqlite3_mutex_leave(db->mutex); 1905 return z; 1906 } 1907 #endif /* SQLITE_OMIT_UTF16 */ 1908 1909 /* 1910 ** Return the most recent error code generated by an SQLite routine. If NULL is 1911 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1912 */ 1913 int sqlite3_errcode(sqlite3 *db){ 1914 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1915 return SQLITE_MISUSE_BKPT; 1916 } 1917 if( !db || db->mallocFailed ){ 1918 return SQLITE_NOMEM; 1919 } 1920 return db->errCode & db->errMask; 1921 } 1922 int sqlite3_extended_errcode(sqlite3 *db){ 1923 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1924 return SQLITE_MISUSE_BKPT; 1925 } 1926 if( !db || db->mallocFailed ){ 1927 return SQLITE_NOMEM; 1928 } 1929 return db->errCode; 1930 } 1931 1932 /* 1933 ** Return a string that describes the kind of error specified in the 1934 ** argument. For now, this simply calls the internal sqlite3ErrStr() 1935 ** function. 1936 */ 1937 const char *sqlite3_errstr(int rc){ 1938 return sqlite3ErrStr(rc); 1939 } 1940 1941 /* 1942 ** Create a new collating function for database "db". The name is zName 1943 ** and the encoding is enc. 1944 */ 1945 static int createCollation( 1946 sqlite3* db, 1947 const char *zName, 1948 u8 enc, 1949 void* pCtx, 1950 int(*xCompare)(void*,int,const void*,int,const void*), 1951 void(*xDel)(void*) 1952 ){ 1953 CollSeq *pColl; 1954 int enc2; 1955 int nName = sqlite3Strlen30(zName); 1956 1957 assert( sqlite3_mutex_held(db->mutex) ); 1958 1959 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1960 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1961 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1962 */ 1963 enc2 = enc; 1964 testcase( enc2==SQLITE_UTF16 ); 1965 testcase( enc2==SQLITE_UTF16_ALIGNED ); 1966 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 1967 enc2 = SQLITE_UTF16NATIVE; 1968 } 1969 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 1970 return SQLITE_MISUSE_BKPT; 1971 } 1972 1973 /* Check if this call is removing or replacing an existing collation 1974 ** sequence. If so, and there are active VMs, return busy. If there 1975 ** are no active VMs, invalidate any pre-compiled statements. 1976 */ 1977 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 1978 if( pColl && pColl->xCmp ){ 1979 if( db->activeVdbeCnt ){ 1980 sqlite3Error(db, SQLITE_BUSY, 1981 "unable to delete/modify collation sequence due to active statements"); 1982 return SQLITE_BUSY; 1983 } 1984 sqlite3ExpirePreparedStatements(db); 1985 1986 /* If collation sequence pColl was created directly by a call to 1987 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1988 ** then any copies made by synthCollSeq() need to be invalidated. 1989 ** Also, collation destructor - CollSeq.xDel() - function may need 1990 ** to be called. 1991 */ 1992 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1993 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1994 int j; 1995 for(j=0; j<3; j++){ 1996 CollSeq *p = &aColl[j]; 1997 if( p->enc==pColl->enc ){ 1998 if( p->xDel ){ 1999 p->xDel(p->pUser); 2000 } 2001 p->xCmp = 0; 2002 } 2003 } 2004 } 2005 } 2006 2007 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2008 if( pColl==0 ) return SQLITE_NOMEM; 2009 pColl->xCmp = xCompare; 2010 pColl->pUser = pCtx; 2011 pColl->xDel = xDel; 2012 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2013 sqlite3Error(db, SQLITE_OK, 0); 2014 return SQLITE_OK; 2015 } 2016 2017 2018 /* 2019 ** This array defines hard upper bounds on limit values. The 2020 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2021 ** #defines in sqlite3.h. 2022 */ 2023 static const int aHardLimit[] = { 2024 SQLITE_MAX_LENGTH, 2025 SQLITE_MAX_SQL_LENGTH, 2026 SQLITE_MAX_COLUMN, 2027 SQLITE_MAX_EXPR_DEPTH, 2028 SQLITE_MAX_COMPOUND_SELECT, 2029 SQLITE_MAX_VDBE_OP, 2030 SQLITE_MAX_FUNCTION_ARG, 2031 SQLITE_MAX_ATTACHED, 2032 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2033 SQLITE_MAX_VARIABLE_NUMBER, 2034 SQLITE_MAX_TRIGGER_DEPTH, 2035 }; 2036 2037 /* 2038 ** Make sure the hard limits are set to reasonable values 2039 */ 2040 #if SQLITE_MAX_LENGTH<100 2041 # error SQLITE_MAX_LENGTH must be at least 100 2042 #endif 2043 #if SQLITE_MAX_SQL_LENGTH<100 2044 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2045 #endif 2046 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2047 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2048 #endif 2049 #if SQLITE_MAX_COMPOUND_SELECT<2 2050 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2051 #endif 2052 #if SQLITE_MAX_VDBE_OP<40 2053 # error SQLITE_MAX_VDBE_OP must be at least 40 2054 #endif 2055 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 2056 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 2057 #endif 2058 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 2059 # error SQLITE_MAX_ATTACHED must be between 0 and 62 2060 #endif 2061 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2062 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2063 #endif 2064 #if SQLITE_MAX_COLUMN>32767 2065 # error SQLITE_MAX_COLUMN must not exceed 32767 2066 #endif 2067 #if SQLITE_MAX_TRIGGER_DEPTH<1 2068 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2069 #endif 2070 2071 2072 /* 2073 ** Change the value of a limit. Report the old value. 2074 ** If an invalid limit index is supplied, report -1. 2075 ** Make no changes but still report the old value if the 2076 ** new limit is negative. 2077 ** 2078 ** A new lower limit does not shrink existing constructs. 2079 ** It merely prevents new constructs that exceed the limit 2080 ** from forming. 2081 */ 2082 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2083 int oldLimit; 2084 2085 2086 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2087 ** there is a hard upper bound set at compile-time by a C preprocessor 2088 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2089 ** "_MAX_".) 2090 */ 2091 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2092 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2093 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2094 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2095 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2096 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2097 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2098 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2099 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2100 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2101 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2102 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2103 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); 2104 2105 2106 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2107 return -1; 2108 } 2109 oldLimit = db->aLimit[limitId]; 2110 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2111 if( newLimit>aHardLimit[limitId] ){ 2112 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2113 } 2114 db->aLimit[limitId] = newLimit; 2115 } 2116 return oldLimit; /* IMP: R-53341-35419 */ 2117 } 2118 2119 /* 2120 ** This function is used to parse both URIs and non-URI filenames passed by the 2121 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2122 ** URIs specified as part of ATTACH statements. 2123 ** 2124 ** The first argument to this function is the name of the VFS to use (or 2125 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2126 ** query parameter. The second argument contains the URI (or non-URI filename) 2127 ** itself. When this function is called the *pFlags variable should contain 2128 ** the default flags to open the database handle with. The value stored in 2129 ** *pFlags may be updated before returning if the URI filename contains 2130 ** "cache=xxx" or "mode=xxx" query parameters. 2131 ** 2132 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2133 ** the VFS that should be used to open the database file. *pzFile is set to 2134 ** point to a buffer containing the name of the file to open. It is the 2135 ** responsibility of the caller to eventually call sqlite3_free() to release 2136 ** this buffer. 2137 ** 2138 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2139 ** may be set to point to a buffer containing an English language error 2140 ** message. It is the responsibility of the caller to eventually release 2141 ** this buffer by calling sqlite3_free(). 2142 */ 2143 int sqlite3ParseUri( 2144 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2145 const char *zUri, /* Nul-terminated URI to parse */ 2146 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2147 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2148 char **pzFile, /* OUT: Filename component of URI */ 2149 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2150 ){ 2151 int rc = SQLITE_OK; 2152 unsigned int flags = *pFlags; 2153 const char *zVfs = zDefaultVfs; 2154 char *zFile; 2155 char c; 2156 int nUri = sqlite3Strlen30(zUri); 2157 2158 assert( *pzErrMsg==0 ); 2159 2160 if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 2161 && nUri>=5 && memcmp(zUri, "file:", 5)==0 2162 ){ 2163 char *zOpt; 2164 int eState; /* Parser state when parsing URI */ 2165 int iIn; /* Input character index */ 2166 int iOut = 0; /* Output character index */ 2167 int nByte = nUri+2; /* Bytes of space to allocate */ 2168 2169 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2170 ** method that there may be extra parameters following the file-name. */ 2171 flags |= SQLITE_OPEN_URI; 2172 2173 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2174 zFile = sqlite3_malloc(nByte); 2175 if( !zFile ) return SQLITE_NOMEM; 2176 2177 /* Discard the scheme and authority segments of the URI. */ 2178 if( zUri[5]=='/' && zUri[6]=='/' ){ 2179 iIn = 7; 2180 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2181 2182 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2183 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2184 iIn-7, &zUri[7]); 2185 rc = SQLITE_ERROR; 2186 goto parse_uri_out; 2187 } 2188 }else{ 2189 iIn = 5; 2190 } 2191 2192 /* Copy the filename and any query parameters into the zFile buffer. 2193 ** Decode %HH escape codes along the way. 2194 ** 2195 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2196 ** on the parsing context. As follows: 2197 ** 2198 ** 0: Parsing file-name. 2199 ** 1: Parsing name section of a name=value query parameter. 2200 ** 2: Parsing value section of a name=value query parameter. 2201 */ 2202 eState = 0; 2203 while( (c = zUri[iIn])!=0 && c!='#' ){ 2204 iIn++; 2205 if( c=='%' 2206 && sqlite3Isxdigit(zUri[iIn]) 2207 && sqlite3Isxdigit(zUri[iIn+1]) 2208 ){ 2209 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2210 octet += sqlite3HexToInt(zUri[iIn++]); 2211 2212 assert( octet>=0 && octet<256 ); 2213 if( octet==0 ){ 2214 /* This branch is taken when "%00" appears within the URI. In this 2215 ** case we ignore all text in the remainder of the path, name or 2216 ** value currently being parsed. So ignore the current character 2217 ** and skip to the next "?", "=" or "&", as appropriate. */ 2218 while( (c = zUri[iIn])!=0 && c!='#' 2219 && (eState!=0 || c!='?') 2220 && (eState!=1 || (c!='=' && c!='&')) 2221 && (eState!=2 || c!='&') 2222 ){ 2223 iIn++; 2224 } 2225 continue; 2226 } 2227 c = octet; 2228 }else if( eState==1 && (c=='&' || c=='=') ){ 2229 if( zFile[iOut-1]==0 ){ 2230 /* An empty option name. Ignore this option altogether. */ 2231 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2232 continue; 2233 } 2234 if( c=='&' ){ 2235 zFile[iOut++] = '\0'; 2236 }else{ 2237 eState = 2; 2238 } 2239 c = 0; 2240 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2241 c = 0; 2242 eState = 1; 2243 } 2244 zFile[iOut++] = c; 2245 } 2246 if( eState==1 ) zFile[iOut++] = '\0'; 2247 zFile[iOut++] = '\0'; 2248 zFile[iOut++] = '\0'; 2249 2250 /* Check if there were any options specified that should be interpreted 2251 ** here. Options that are interpreted here include "vfs" and those that 2252 ** correspond to flags that may be passed to the sqlite3_open_v2() 2253 ** method. */ 2254 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2255 while( zOpt[0] ){ 2256 int nOpt = sqlite3Strlen30(zOpt); 2257 char *zVal = &zOpt[nOpt+1]; 2258 int nVal = sqlite3Strlen30(zVal); 2259 2260 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2261 zVfs = zVal; 2262 }else{ 2263 struct OpenMode { 2264 const char *z; 2265 int mode; 2266 } *aMode = 0; 2267 char *zModeType = 0; 2268 int mask = 0; 2269 int limit = 0; 2270 2271 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2272 static struct OpenMode aCacheMode[] = { 2273 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2274 { "private", SQLITE_OPEN_PRIVATECACHE }, 2275 { 0, 0 } 2276 }; 2277 2278 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2279 aMode = aCacheMode; 2280 limit = mask; 2281 zModeType = "cache"; 2282 } 2283 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2284 static struct OpenMode aOpenMode[] = { 2285 { "ro", SQLITE_OPEN_READONLY }, 2286 { "rw", SQLITE_OPEN_READWRITE }, 2287 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2288 { "memory", SQLITE_OPEN_MEMORY }, 2289 { 0, 0 } 2290 }; 2291 2292 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2293 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2294 aMode = aOpenMode; 2295 limit = mask & flags; 2296 zModeType = "access"; 2297 } 2298 2299 if( aMode ){ 2300 int i; 2301 int mode = 0; 2302 for(i=0; aMode[i].z; i++){ 2303 const char *z = aMode[i].z; 2304 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2305 mode = aMode[i].mode; 2306 break; 2307 } 2308 } 2309 if( mode==0 ){ 2310 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2311 rc = SQLITE_ERROR; 2312 goto parse_uri_out; 2313 } 2314 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2315 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2316 zModeType, zVal); 2317 rc = SQLITE_PERM; 2318 goto parse_uri_out; 2319 } 2320 flags = (flags & ~mask) | mode; 2321 } 2322 } 2323 2324 zOpt = &zVal[nVal+1]; 2325 } 2326 2327 }else{ 2328 zFile = sqlite3_malloc(nUri+2); 2329 if( !zFile ) return SQLITE_NOMEM; 2330 memcpy(zFile, zUri, nUri); 2331 zFile[nUri] = '\0'; 2332 zFile[nUri+1] = '\0'; 2333 flags &= ~SQLITE_OPEN_URI; 2334 } 2335 2336 *ppVfs = sqlite3_vfs_find(zVfs); 2337 if( *ppVfs==0 ){ 2338 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2339 rc = SQLITE_ERROR; 2340 } 2341 parse_uri_out: 2342 if( rc!=SQLITE_OK ){ 2343 sqlite3_free(zFile); 2344 zFile = 0; 2345 } 2346 *pFlags = flags; 2347 *pzFile = zFile; 2348 return rc; 2349 } 2350 2351 2352 /* 2353 ** This routine does the work of opening a database on behalf of 2354 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2355 ** is UTF-8 encoded. 2356 */ 2357 static int openDatabase( 2358 const char *zFilename, /* Database filename UTF-8 encoded */ 2359 sqlite3 **ppDb, /* OUT: Returned database handle */ 2360 unsigned int flags, /* Operational flags */ 2361 const char *zVfs /* Name of the VFS to use */ 2362 ){ 2363 sqlite3 *db; /* Store allocated handle here */ 2364 int rc; /* Return code */ 2365 int isThreadsafe; /* True for threadsafe connections */ 2366 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2367 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2368 2369 *ppDb = 0; 2370 #ifndef SQLITE_OMIT_AUTOINIT 2371 rc = sqlite3_initialize(); 2372 if( rc ) return rc; 2373 #endif 2374 2375 /* Only allow sensible combinations of bits in the flags argument. 2376 ** Throw an error if any non-sense combination is used. If we 2377 ** do not block illegal combinations here, it could trigger 2378 ** assert() statements in deeper layers. Sensible combinations 2379 ** are: 2380 ** 2381 ** 1: SQLITE_OPEN_READONLY 2382 ** 2: SQLITE_OPEN_READWRITE 2383 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2384 */ 2385 assert( SQLITE_OPEN_READONLY == 0x01 ); 2386 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2387 assert( SQLITE_OPEN_CREATE == 0x04 ); 2388 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2389 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2390 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2391 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; 2392 2393 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2394 isThreadsafe = 0; 2395 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2396 isThreadsafe = 0; 2397 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2398 isThreadsafe = 1; 2399 }else{ 2400 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2401 } 2402 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2403 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2404 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2405 flags |= SQLITE_OPEN_SHAREDCACHE; 2406 } 2407 2408 /* Remove harmful bits from the flags parameter 2409 ** 2410 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2411 ** dealt with in the previous code block. Besides these, the only 2412 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2413 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2414 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2415 ** off all other flags. 2416 */ 2417 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2418 SQLITE_OPEN_EXCLUSIVE | 2419 SQLITE_OPEN_MAIN_DB | 2420 SQLITE_OPEN_TEMP_DB | 2421 SQLITE_OPEN_TRANSIENT_DB | 2422 SQLITE_OPEN_MAIN_JOURNAL | 2423 SQLITE_OPEN_TEMP_JOURNAL | 2424 SQLITE_OPEN_SUBJOURNAL | 2425 SQLITE_OPEN_MASTER_JOURNAL | 2426 SQLITE_OPEN_NOMUTEX | 2427 SQLITE_OPEN_FULLMUTEX | 2428 SQLITE_OPEN_WAL 2429 ); 2430 2431 /* Allocate the sqlite data structure */ 2432 db = sqlite3MallocZero( sizeof(sqlite3) ); 2433 if( db==0 ) goto opendb_out; 2434 if( isThreadsafe ){ 2435 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2436 if( db->mutex==0 ){ 2437 sqlite3_free(db); 2438 db = 0; 2439 goto opendb_out; 2440 } 2441 } 2442 sqlite3_mutex_enter(db->mutex); 2443 db->errMask = 0xff; 2444 db->nDb = 2; 2445 db->magic = SQLITE_MAGIC_BUSY; 2446 db->aDb = db->aDbStatic; 2447 2448 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2449 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2450 db->autoCommit = 1; 2451 db->nextAutovac = -1; 2452 db->szMmap = sqlite3GlobalConfig.szMmap; 2453 db->nextPagesize = 0; 2454 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger 2455 #if SQLITE_DEFAULT_FILE_FORMAT<4 2456 | SQLITE_LegacyFileFmt 2457 #endif 2458 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2459 | SQLITE_LoadExtension 2460 #endif 2461 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2462 | SQLITE_RecTriggers 2463 #endif 2464 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2465 | SQLITE_ForeignKeys 2466 #endif 2467 ; 2468 sqlite3HashInit(&db->aCollSeq); 2469 #ifndef SQLITE_OMIT_VIRTUALTABLE 2470 sqlite3HashInit(&db->aModule); 2471 #endif 2472 2473 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2474 ** and UTF-16, so add a version for each to avoid any unnecessary 2475 ** conversions. The only error that can occur here is a malloc() failure. 2476 */ 2477 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2478 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2479 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2480 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2481 if( db->mallocFailed ){ 2482 goto opendb_out; 2483 } 2484 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2485 assert( db->pDfltColl!=0 ); 2486 2487 /* Also add a UTF-8 case-insensitive collation sequence. */ 2488 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2489 2490 /* Parse the filename/URI argument. */ 2491 db->openFlags = flags; 2492 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2493 if( rc!=SQLITE_OK ){ 2494 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2495 sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2496 sqlite3_free(zErrMsg); 2497 goto opendb_out; 2498 } 2499 2500 /* Open the backend database driver */ 2501 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2502 flags | SQLITE_OPEN_MAIN_DB); 2503 if( rc!=SQLITE_OK ){ 2504 if( rc==SQLITE_IOERR_NOMEM ){ 2505 rc = SQLITE_NOMEM; 2506 } 2507 sqlite3Error(db, rc, 0); 2508 goto opendb_out; 2509 } 2510 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2511 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2512 2513 2514 /* The default safety_level for the main database is 'full'; for the temp 2515 ** database it is 'NONE'. This matches the pager layer defaults. 2516 */ 2517 db->aDb[0].zName = "main"; 2518 db->aDb[0].safety_level = 3; 2519 db->aDb[1].zName = "temp"; 2520 db->aDb[1].safety_level = 1; 2521 2522 db->magic = SQLITE_MAGIC_OPEN; 2523 if( db->mallocFailed ){ 2524 goto opendb_out; 2525 } 2526 2527 /* Register all built-in functions, but do not attempt to read the 2528 ** database schema yet. This is delayed until the first time the database 2529 ** is accessed. 2530 */ 2531 sqlite3Error(db, SQLITE_OK, 0); 2532 sqlite3RegisterBuiltinFunctions(db); 2533 2534 /* Load automatic extensions - extensions that have been registered 2535 ** using the sqlite3_automatic_extension() API. 2536 */ 2537 rc = sqlite3_errcode(db); 2538 if( rc==SQLITE_OK ){ 2539 sqlite3AutoLoadExtensions(db); 2540 rc = sqlite3_errcode(db); 2541 if( rc!=SQLITE_OK ){ 2542 goto opendb_out; 2543 } 2544 } 2545 2546 #ifdef SQLITE_ENABLE_FTS1 2547 if( !db->mallocFailed ){ 2548 extern int sqlite3Fts1Init(sqlite3*); 2549 rc = sqlite3Fts1Init(db); 2550 } 2551 #endif 2552 2553 #ifdef SQLITE_ENABLE_FTS2 2554 if( !db->mallocFailed && rc==SQLITE_OK ){ 2555 extern int sqlite3Fts2Init(sqlite3*); 2556 rc = sqlite3Fts2Init(db); 2557 } 2558 #endif 2559 2560 #ifdef SQLITE_ENABLE_FTS3 2561 if( !db->mallocFailed && rc==SQLITE_OK ){ 2562 rc = sqlite3Fts3Init(db); 2563 } 2564 #endif 2565 2566 #ifdef SQLITE_ENABLE_ICU 2567 if( !db->mallocFailed && rc==SQLITE_OK ){ 2568 rc = sqlite3IcuInit(db); 2569 } 2570 #endif 2571 2572 #ifdef SQLITE_ENABLE_RTREE 2573 if( !db->mallocFailed && rc==SQLITE_OK){ 2574 rc = sqlite3RtreeInit(db); 2575 } 2576 #endif 2577 2578 sqlite3Error(db, rc, 0); 2579 2580 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2581 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2582 ** mode. Doing nothing at all also makes NORMAL the default. 2583 */ 2584 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2585 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2586 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2587 SQLITE_DEFAULT_LOCKING_MODE); 2588 #endif 2589 2590 /* Enable the lookaside-malloc subsystem */ 2591 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2592 sqlite3GlobalConfig.nLookaside); 2593 2594 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2595 2596 opendb_out: 2597 sqlite3_free(zOpen); 2598 if( db ){ 2599 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 2600 sqlite3_mutex_leave(db->mutex); 2601 } 2602 rc = sqlite3_errcode(db); 2603 assert( db!=0 || rc==SQLITE_NOMEM ); 2604 if( rc==SQLITE_NOMEM ){ 2605 sqlite3_close(db); 2606 db = 0; 2607 }else if( rc!=SQLITE_OK ){ 2608 db->magic = SQLITE_MAGIC_SICK; 2609 } 2610 *ppDb = db; 2611 #ifdef SQLITE_ENABLE_SQLLOG 2612 if( sqlite3GlobalConfig.xSqllog ){ 2613 /* Opening a db handle. Fourth parameter is passed 0. */ 2614 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2615 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2616 } 2617 #endif 2618 return sqlite3ApiExit(0, rc); 2619 } 2620 2621 /* 2622 ** Open a new database handle. 2623 */ 2624 int sqlite3_open( 2625 const char *zFilename, 2626 sqlite3 **ppDb 2627 ){ 2628 return openDatabase(zFilename, ppDb, 2629 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2630 } 2631 int sqlite3_open_v2( 2632 const char *filename, /* Database filename (UTF-8) */ 2633 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2634 int flags, /* Flags */ 2635 const char *zVfs /* Name of VFS module to use */ 2636 ){ 2637 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2638 } 2639 2640 #ifndef SQLITE_OMIT_UTF16 2641 /* 2642 ** Open a new database handle. 2643 */ 2644 int sqlite3_open16( 2645 const void *zFilename, 2646 sqlite3 **ppDb 2647 ){ 2648 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2649 sqlite3_value *pVal; 2650 int rc; 2651 2652 assert( zFilename ); 2653 assert( ppDb ); 2654 *ppDb = 0; 2655 #ifndef SQLITE_OMIT_AUTOINIT 2656 rc = sqlite3_initialize(); 2657 if( rc ) return rc; 2658 #endif 2659 pVal = sqlite3ValueNew(0); 2660 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2661 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2662 if( zFilename8 ){ 2663 rc = openDatabase(zFilename8, ppDb, 2664 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2665 assert( *ppDb || rc==SQLITE_NOMEM ); 2666 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2667 ENC(*ppDb) = SQLITE_UTF16NATIVE; 2668 } 2669 }else{ 2670 rc = SQLITE_NOMEM; 2671 } 2672 sqlite3ValueFree(pVal); 2673 2674 return sqlite3ApiExit(0, rc); 2675 } 2676 #endif /* SQLITE_OMIT_UTF16 */ 2677 2678 /* 2679 ** Register a new collation sequence with the database handle db. 2680 */ 2681 int sqlite3_create_collation( 2682 sqlite3* db, 2683 const char *zName, 2684 int enc, 2685 void* pCtx, 2686 int(*xCompare)(void*,int,const void*,int,const void*) 2687 ){ 2688 int rc; 2689 sqlite3_mutex_enter(db->mutex); 2690 assert( !db->mallocFailed ); 2691 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0); 2692 rc = sqlite3ApiExit(db, rc); 2693 sqlite3_mutex_leave(db->mutex); 2694 return rc; 2695 } 2696 2697 /* 2698 ** Register a new collation sequence with the database handle db. 2699 */ 2700 int sqlite3_create_collation_v2( 2701 sqlite3* db, 2702 const char *zName, 2703 int enc, 2704 void* pCtx, 2705 int(*xCompare)(void*,int,const void*,int,const void*), 2706 void(*xDel)(void*) 2707 ){ 2708 int rc; 2709 sqlite3_mutex_enter(db->mutex); 2710 assert( !db->mallocFailed ); 2711 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 2712 rc = sqlite3ApiExit(db, rc); 2713 sqlite3_mutex_leave(db->mutex); 2714 return rc; 2715 } 2716 2717 #ifndef SQLITE_OMIT_UTF16 2718 /* 2719 ** Register a new collation sequence with the database handle db. 2720 */ 2721 int sqlite3_create_collation16( 2722 sqlite3* db, 2723 const void *zName, 2724 int enc, 2725 void* pCtx, 2726 int(*xCompare)(void*,int,const void*,int,const void*) 2727 ){ 2728 int rc = SQLITE_OK; 2729 char *zName8; 2730 sqlite3_mutex_enter(db->mutex); 2731 assert( !db->mallocFailed ); 2732 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 2733 if( zName8 ){ 2734 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 2735 sqlite3DbFree(db, zName8); 2736 } 2737 rc = sqlite3ApiExit(db, rc); 2738 sqlite3_mutex_leave(db->mutex); 2739 return rc; 2740 } 2741 #endif /* SQLITE_OMIT_UTF16 */ 2742 2743 /* 2744 ** Register a collation sequence factory callback with the database handle 2745 ** db. Replace any previously installed collation sequence factory. 2746 */ 2747 int sqlite3_collation_needed( 2748 sqlite3 *db, 2749 void *pCollNeededArg, 2750 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 2751 ){ 2752 sqlite3_mutex_enter(db->mutex); 2753 db->xCollNeeded = xCollNeeded; 2754 db->xCollNeeded16 = 0; 2755 db->pCollNeededArg = pCollNeededArg; 2756 sqlite3_mutex_leave(db->mutex); 2757 return SQLITE_OK; 2758 } 2759 2760 #ifndef SQLITE_OMIT_UTF16 2761 /* 2762 ** Register a collation sequence factory callback with the database handle 2763 ** db. Replace any previously installed collation sequence factory. 2764 */ 2765 int sqlite3_collation_needed16( 2766 sqlite3 *db, 2767 void *pCollNeededArg, 2768 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 2769 ){ 2770 sqlite3_mutex_enter(db->mutex); 2771 db->xCollNeeded = 0; 2772 db->xCollNeeded16 = xCollNeeded16; 2773 db->pCollNeededArg = pCollNeededArg; 2774 sqlite3_mutex_leave(db->mutex); 2775 return SQLITE_OK; 2776 } 2777 #endif /* SQLITE_OMIT_UTF16 */ 2778 2779 #ifndef SQLITE_OMIT_DEPRECATED 2780 /* 2781 ** This function is now an anachronism. It used to be used to recover from a 2782 ** malloc() failure, but SQLite now does this automatically. 2783 */ 2784 int sqlite3_global_recover(void){ 2785 return SQLITE_OK; 2786 } 2787 #endif 2788 2789 /* 2790 ** Test to see whether or not the database connection is in autocommit 2791 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 2792 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 2793 ** by the next COMMIT or ROLLBACK. 2794 */ 2795 int sqlite3_get_autocommit(sqlite3 *db){ 2796 return db->autoCommit; 2797 } 2798 2799 /* 2800 ** The following routines are subtitutes for constants SQLITE_CORRUPT, 2801 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 2802 ** constants. They server two purposes: 2803 ** 2804 ** 1. Serve as a convenient place to set a breakpoint in a debugger 2805 ** to detect when version error conditions occurs. 2806 ** 2807 ** 2. Invoke sqlite3_log() to provide the source code location where 2808 ** a low-level error is first detected. 2809 */ 2810 int sqlite3CorruptError(int lineno){ 2811 testcase( sqlite3GlobalConfig.xLog!=0 ); 2812 sqlite3_log(SQLITE_CORRUPT, 2813 "database corruption at line %d of [%.10s]", 2814 lineno, 20+sqlite3_sourceid()); 2815 return SQLITE_CORRUPT; 2816 } 2817 int sqlite3MisuseError(int lineno){ 2818 testcase( sqlite3GlobalConfig.xLog!=0 ); 2819 sqlite3_log(SQLITE_MISUSE, 2820 "misuse at line %d of [%.10s]", 2821 lineno, 20+sqlite3_sourceid()); 2822 return SQLITE_MISUSE; 2823 } 2824 int sqlite3CantopenError(int lineno){ 2825 testcase( sqlite3GlobalConfig.xLog!=0 ); 2826 sqlite3_log(SQLITE_CANTOPEN, 2827 "cannot open file at line %d of [%.10s]", 2828 lineno, 20+sqlite3_sourceid()); 2829 return SQLITE_CANTOPEN; 2830 } 2831 2832 2833 #ifndef SQLITE_OMIT_DEPRECATED 2834 /* 2835 ** This is a convenience routine that makes sure that all thread-specific 2836 ** data for this thread has been deallocated. 2837 ** 2838 ** SQLite no longer uses thread-specific data so this routine is now a 2839 ** no-op. It is retained for historical compatibility. 2840 */ 2841 void sqlite3_thread_cleanup(void){ 2842 } 2843 #endif 2844 2845 /* 2846 ** Return meta information about a specific column of a database table. 2847 ** See comment in sqlite3.h (sqlite.h.in) for details. 2848 */ 2849 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2850 int sqlite3_table_column_metadata( 2851 sqlite3 *db, /* Connection handle */ 2852 const char *zDbName, /* Database name or NULL */ 2853 const char *zTableName, /* Table name */ 2854 const char *zColumnName, /* Column name */ 2855 char const **pzDataType, /* OUTPUT: Declared data type */ 2856 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 2857 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 2858 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 2859 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 2860 ){ 2861 int rc; 2862 char *zErrMsg = 0; 2863 Table *pTab = 0; 2864 Column *pCol = 0; 2865 int iCol; 2866 2867 char const *zDataType = 0; 2868 char const *zCollSeq = 0; 2869 int notnull = 0; 2870 int primarykey = 0; 2871 int autoinc = 0; 2872 2873 /* Ensure the database schema has been loaded */ 2874 sqlite3_mutex_enter(db->mutex); 2875 sqlite3BtreeEnterAll(db); 2876 rc = sqlite3Init(db, &zErrMsg); 2877 if( SQLITE_OK!=rc ){ 2878 goto error_out; 2879 } 2880 2881 /* Locate the table in question */ 2882 pTab = sqlite3FindTable(db, zTableName, zDbName); 2883 if( !pTab || pTab->pSelect ){ 2884 pTab = 0; 2885 goto error_out; 2886 } 2887 2888 /* Find the column for which info is requested */ 2889 if( sqlite3IsRowid(zColumnName) ){ 2890 iCol = pTab->iPKey; 2891 if( iCol>=0 ){ 2892 pCol = &pTab->aCol[iCol]; 2893 } 2894 }else{ 2895 for(iCol=0; iCol<pTab->nCol; iCol++){ 2896 pCol = &pTab->aCol[iCol]; 2897 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 2898 break; 2899 } 2900 } 2901 if( iCol==pTab->nCol ){ 2902 pTab = 0; 2903 goto error_out; 2904 } 2905 } 2906 2907 /* The following block stores the meta information that will be returned 2908 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 2909 ** and autoinc. At this point there are two possibilities: 2910 ** 2911 ** 1. The specified column name was rowid", "oid" or "_rowid_" 2912 ** and there is no explicitly declared IPK column. 2913 ** 2914 ** 2. The table is not a view and the column name identified an 2915 ** explicitly declared column. Copy meta information from *pCol. 2916 */ 2917 if( pCol ){ 2918 zDataType = pCol->zType; 2919 zCollSeq = pCol->zColl; 2920 notnull = pCol->notNull!=0; 2921 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 2922 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 2923 }else{ 2924 zDataType = "INTEGER"; 2925 primarykey = 1; 2926 } 2927 if( !zCollSeq ){ 2928 zCollSeq = "BINARY"; 2929 } 2930 2931 error_out: 2932 sqlite3BtreeLeaveAll(db); 2933 2934 /* Whether the function call succeeded or failed, set the output parameters 2935 ** to whatever their local counterparts contain. If an error did occur, 2936 ** this has the effect of zeroing all output parameters. 2937 */ 2938 if( pzDataType ) *pzDataType = zDataType; 2939 if( pzCollSeq ) *pzCollSeq = zCollSeq; 2940 if( pNotNull ) *pNotNull = notnull; 2941 if( pPrimaryKey ) *pPrimaryKey = primarykey; 2942 if( pAutoinc ) *pAutoinc = autoinc; 2943 2944 if( SQLITE_OK==rc && !pTab ){ 2945 sqlite3DbFree(db, zErrMsg); 2946 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2947 zColumnName); 2948 rc = SQLITE_ERROR; 2949 } 2950 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2951 sqlite3DbFree(db, zErrMsg); 2952 rc = sqlite3ApiExit(db, rc); 2953 sqlite3_mutex_leave(db->mutex); 2954 return rc; 2955 } 2956 #endif 2957 2958 /* 2959 ** Sleep for a little while. Return the amount of time slept. 2960 */ 2961 int sqlite3_sleep(int ms){ 2962 sqlite3_vfs *pVfs; 2963 int rc; 2964 pVfs = sqlite3_vfs_find(0); 2965 if( pVfs==0 ) return 0; 2966 2967 /* This function works in milliseconds, but the underlying OsSleep() 2968 ** API uses microseconds. Hence the 1000's. 2969 */ 2970 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2971 return rc; 2972 } 2973 2974 /* 2975 ** Enable or disable the extended result codes. 2976 */ 2977 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2978 sqlite3_mutex_enter(db->mutex); 2979 db->errMask = onoff ? 0xffffffff : 0xff; 2980 sqlite3_mutex_leave(db->mutex); 2981 return SQLITE_OK; 2982 } 2983 2984 /* 2985 ** Invoke the xFileControl method on a particular database. 2986 */ 2987 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2988 int rc = SQLITE_ERROR; 2989 Btree *pBtree; 2990 2991 sqlite3_mutex_enter(db->mutex); 2992 pBtree = sqlite3DbNameToBtree(db, zDbName); 2993 if( pBtree ){ 2994 Pager *pPager; 2995 sqlite3_file *fd; 2996 sqlite3BtreeEnter(pBtree); 2997 pPager = sqlite3BtreePager(pBtree); 2998 assert( pPager!=0 ); 2999 fd = sqlite3PagerFile(pPager); 3000 assert( fd!=0 ); 3001 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3002 *(sqlite3_file**)pArg = fd; 3003 rc = SQLITE_OK; 3004 }else if( fd->pMethods ){ 3005 rc = sqlite3OsFileControl(fd, op, pArg); 3006 }else{ 3007 rc = SQLITE_NOTFOUND; 3008 } 3009 sqlite3BtreeLeave(pBtree); 3010 } 3011 sqlite3_mutex_leave(db->mutex); 3012 return rc; 3013 } 3014 3015 /* 3016 ** Interface to the testing logic. 3017 */ 3018 int sqlite3_test_control(int op, ...){ 3019 int rc = 0; 3020 #ifndef SQLITE_OMIT_BUILTIN_TEST 3021 va_list ap; 3022 va_start(ap, op); 3023 switch( op ){ 3024 3025 /* 3026 ** Save the current state of the PRNG. 3027 */ 3028 case SQLITE_TESTCTRL_PRNG_SAVE: { 3029 sqlite3PrngSaveState(); 3030 break; 3031 } 3032 3033 /* 3034 ** Restore the state of the PRNG to the last state saved using 3035 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3036 ** this verb acts like PRNG_RESET. 3037 */ 3038 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3039 sqlite3PrngRestoreState(); 3040 break; 3041 } 3042 3043 /* 3044 ** Reset the PRNG back to its uninitialized state. The next call 3045 ** to sqlite3_randomness() will reseed the PRNG using a single call 3046 ** to the xRandomness method of the default VFS. 3047 */ 3048 case SQLITE_TESTCTRL_PRNG_RESET: { 3049 sqlite3PrngResetState(); 3050 break; 3051 } 3052 3053 /* 3054 ** sqlite3_test_control(BITVEC_TEST, size, program) 3055 ** 3056 ** Run a test against a Bitvec object of size. The program argument 3057 ** is an array of integers that defines the test. Return -1 on a 3058 ** memory allocation error, 0 on success, or non-zero for an error. 3059 ** See the sqlite3BitvecBuiltinTest() for additional information. 3060 */ 3061 case SQLITE_TESTCTRL_BITVEC_TEST: { 3062 int sz = va_arg(ap, int); 3063 int *aProg = va_arg(ap, int*); 3064 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3065 break; 3066 } 3067 3068 /* 3069 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3070 ** 3071 ** Register hooks to call to indicate which malloc() failures 3072 ** are benign. 3073 */ 3074 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3075 typedef void (*void_function)(void); 3076 void_function xBenignBegin; 3077 void_function xBenignEnd; 3078 xBenignBegin = va_arg(ap, void_function); 3079 xBenignEnd = va_arg(ap, void_function); 3080 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3081 break; 3082 } 3083 3084 /* 3085 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3086 ** 3087 ** Set the PENDING byte to the value in the argument, if X>0. 3088 ** Make no changes if X==0. Return the value of the pending byte 3089 ** as it existing before this routine was called. 3090 ** 3091 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3092 ** an incompatible database file format. Changing the PENDING byte 3093 ** while any database connection is open results in undefined and 3094 ** dileterious behavior. 3095 */ 3096 case SQLITE_TESTCTRL_PENDING_BYTE: { 3097 rc = PENDING_BYTE; 3098 #ifndef SQLITE_OMIT_WSD 3099 { 3100 unsigned int newVal = va_arg(ap, unsigned int); 3101 if( newVal ) sqlite3PendingByte = newVal; 3102 } 3103 #endif 3104 break; 3105 } 3106 3107 /* 3108 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3109 ** 3110 ** This action provides a run-time test to see whether or not 3111 ** assert() was enabled at compile-time. If X is true and assert() 3112 ** is enabled, then the return value is true. If X is true and 3113 ** assert() is disabled, then the return value is zero. If X is 3114 ** false and assert() is enabled, then the assertion fires and the 3115 ** process aborts. If X is false and assert() is disabled, then the 3116 ** return value is zero. 3117 */ 3118 case SQLITE_TESTCTRL_ASSERT: { 3119 volatile int x = 0; 3120 assert( (x = va_arg(ap,int))!=0 ); 3121 rc = x; 3122 break; 3123 } 3124 3125 3126 /* 3127 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3128 ** 3129 ** This action provides a run-time test to see how the ALWAYS and 3130 ** NEVER macros were defined at compile-time. 3131 ** 3132 ** The return value is ALWAYS(X). 3133 ** 3134 ** The recommended test is X==2. If the return value is 2, that means 3135 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3136 ** default setting. If the return value is 1, then ALWAYS() is either 3137 ** hard-coded to true or else it asserts if its argument is false. 3138 ** The first behavior (hard-coded to true) is the case if 3139 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3140 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3141 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3142 ** 3143 ** The run-time test procedure might look something like this: 3144 ** 3145 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3146 ** // ALWAYS() and NEVER() are no-op pass-through macros 3147 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3148 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3149 ** }else{ 3150 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3151 ** } 3152 */ 3153 case SQLITE_TESTCTRL_ALWAYS: { 3154 int x = va_arg(ap,int); 3155 rc = ALWAYS(x); 3156 break; 3157 } 3158 3159 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3160 ** 3161 ** Set the nReserve size to N for the main database on the database 3162 ** connection db. 3163 */ 3164 case SQLITE_TESTCTRL_RESERVE: { 3165 sqlite3 *db = va_arg(ap, sqlite3*); 3166 int x = va_arg(ap,int); 3167 sqlite3_mutex_enter(db->mutex); 3168 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3169 sqlite3_mutex_leave(db->mutex); 3170 break; 3171 } 3172 3173 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3174 ** 3175 ** Enable or disable various optimizations for testing purposes. The 3176 ** argument N is a bitmask of optimizations to be disabled. For normal 3177 ** operation N should be 0. The idea is that a test program (like the 3178 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3179 ** with various optimizations disabled to verify that the same answer 3180 ** is obtained in every case. 3181 */ 3182 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3183 sqlite3 *db = va_arg(ap, sqlite3*); 3184 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3185 break; 3186 } 3187 3188 #ifdef SQLITE_N_KEYWORD 3189 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3190 ** 3191 ** If zWord is a keyword recognized by the parser, then return the 3192 ** number of keywords. Or if zWord is not a keyword, return 0. 3193 ** 3194 ** This test feature is only available in the amalgamation since 3195 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3196 ** is built using separate source files. 3197 */ 3198 case SQLITE_TESTCTRL_ISKEYWORD: { 3199 const char *zWord = va_arg(ap, const char*); 3200 int n = sqlite3Strlen30(zWord); 3201 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3202 break; 3203 } 3204 #endif 3205 3206 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3207 ** 3208 ** Pass pFree into sqlite3ScratchFree(). 3209 ** If sz>0 then allocate a scratch buffer into pNew. 3210 */ 3211 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3212 void *pFree, **ppNew; 3213 int sz; 3214 sz = va_arg(ap, int); 3215 ppNew = va_arg(ap, void**); 3216 pFree = va_arg(ap, void*); 3217 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3218 sqlite3ScratchFree(pFree); 3219 break; 3220 } 3221 3222 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3223 ** 3224 ** If parameter onoff is non-zero, configure the wrappers so that all 3225 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3226 ** undo this setting. 3227 */ 3228 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3229 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3230 break; 3231 } 3232 3233 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3234 /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, 3235 ** sqlite3_stmt*,const char**); 3236 ** 3237 ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds 3238 ** a string that describes the optimized parse tree. This test-control 3239 ** returns a pointer to that string. 3240 */ 3241 case SQLITE_TESTCTRL_EXPLAIN_STMT: { 3242 sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); 3243 const char **pzRet = va_arg(ap, const char**); 3244 *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); 3245 break; 3246 } 3247 #endif 3248 3249 } 3250 va_end(ap); 3251 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3252 return rc; 3253 } 3254 3255 /* 3256 ** This is a utility routine, useful to VFS implementations, that checks 3257 ** to see if a database file was a URI that contained a specific query 3258 ** parameter, and if so obtains the value of the query parameter. 3259 ** 3260 ** The zFilename argument is the filename pointer passed into the xOpen() 3261 ** method of a VFS implementation. The zParam argument is the name of the 3262 ** query parameter we seek. This routine returns the value of the zParam 3263 ** parameter if it exists. If the parameter does not exist, this routine 3264 ** returns a NULL pointer. 3265 */ 3266 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3267 if( zFilename==0 ) return 0; 3268 zFilename += sqlite3Strlen30(zFilename) + 1; 3269 while( zFilename[0] ){ 3270 int x = strcmp(zFilename, zParam); 3271 zFilename += sqlite3Strlen30(zFilename) + 1; 3272 if( x==0 ) return zFilename; 3273 zFilename += sqlite3Strlen30(zFilename) + 1; 3274 } 3275 return 0; 3276 } 3277 3278 /* 3279 ** Return a boolean value for a query parameter. 3280 */ 3281 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3282 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3283 bDflt = bDflt!=0; 3284 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3285 } 3286 3287 /* 3288 ** Return a 64-bit integer value for a query parameter. 3289 */ 3290 sqlite3_int64 sqlite3_uri_int64( 3291 const char *zFilename, /* Filename as passed to xOpen */ 3292 const char *zParam, /* URI parameter sought */ 3293 sqlite3_int64 bDflt /* return if parameter is missing */ 3294 ){ 3295 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3296 sqlite3_int64 v; 3297 if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ 3298 bDflt = v; 3299 } 3300 return bDflt; 3301 } 3302 3303 /* 3304 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3305 */ 3306 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3307 int i; 3308 for(i=0; i<db->nDb; i++){ 3309 if( db->aDb[i].pBt 3310 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3311 ){ 3312 return db->aDb[i].pBt; 3313 } 3314 } 3315 return 0; 3316 } 3317 3318 /* 3319 ** Return the filename of the database associated with a database 3320 ** connection. 3321 */ 3322 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3323 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3324 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3325 } 3326 3327 /* 3328 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3329 ** no such database exists. 3330 */ 3331 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3332 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3333 return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1; 3334 } 3335