1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 26 # include "sqliteicu.h" 27 #endif 28 29 /* 30 ** This is an extension initializer that is a no-op and always 31 ** succeeds, except that it fails if the fault-simulation is set 32 ** to 500. 33 */ 34 static int sqlite3TestExtInit(sqlite3 *db){ 35 (void)db; 36 return sqlite3FaultSim(500); 37 } 38 39 40 /* 41 ** Forward declarations of external module initializer functions 42 ** for modules that need them. 43 */ 44 #ifdef SQLITE_ENABLE_FTS1 45 int sqlite3Fts1Init(sqlite3*); 46 #endif 47 #ifdef SQLITE_ENABLE_FTS2 48 int sqlite3Fts2Init(sqlite3*); 49 #endif 50 #ifdef SQLITE_ENABLE_FTS5 51 int sqlite3Fts5Init(sqlite3*); 52 #endif 53 #ifdef SQLITE_ENABLE_STMTVTAB 54 int sqlite3StmtVtabInit(sqlite3*); 55 #endif 56 57 /* 58 ** An array of pointers to extension initializer functions for 59 ** built-in extensions. 60 */ 61 static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { 62 #ifdef SQLITE_ENABLE_FTS1 63 sqlite3Fts1Init, 64 #endif 65 #ifdef SQLITE_ENABLE_FTS2 66 sqlite3Fts2Init, 67 #endif 68 #ifdef SQLITE_ENABLE_FTS3 69 sqlite3Fts3Init, 70 #endif 71 #ifdef SQLITE_ENABLE_FTS5 72 sqlite3Fts5Init, 73 #endif 74 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 75 sqlite3IcuInit, 76 #endif 77 #ifdef SQLITE_ENABLE_RTREE 78 sqlite3RtreeInit, 79 #endif 80 #ifdef SQLITE_ENABLE_DBPAGE_VTAB 81 sqlite3DbpageRegister, 82 #endif 83 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 84 sqlite3DbstatRegister, 85 #endif 86 sqlite3TestExtInit, 87 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) 88 sqlite3JsonTableFunctions, 89 #endif 90 #ifdef SQLITE_ENABLE_STMTVTAB 91 sqlite3StmtVtabInit, 92 #endif 93 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 94 sqlite3VdbeBytecodeVtabInit, 95 #endif 96 }; 97 98 #ifndef SQLITE_AMALGAMATION 99 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 100 ** contains the text of SQLITE_VERSION macro. 101 */ 102 const char sqlite3_version[] = SQLITE_VERSION; 103 #endif 104 105 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 106 ** a pointer to the to the sqlite3_version[] string constant. 107 */ 108 const char *sqlite3_libversion(void){ return sqlite3_version; } 109 110 /* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a 111 ** pointer to a string constant whose value is the same as the 112 ** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using 113 ** an edited copy of the amalgamation, then the last four characters of 114 ** the hash might be different from SQLITE_SOURCE_ID. 115 */ 116 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 117 118 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 119 ** returns an integer equal to SQLITE_VERSION_NUMBER. 120 */ 121 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 122 123 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 124 ** zero if and only if SQLite was compiled with mutexing code omitted due to 125 ** the SQLITE_THREADSAFE compile-time option being set to 0. 126 */ 127 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 128 129 /* 130 ** When compiling the test fixture or with debugging enabled (on Win32), 131 ** this variable being set to non-zero will cause OSTRACE macros to emit 132 ** extra diagnostic information. 133 */ 134 #ifdef SQLITE_HAVE_OS_TRACE 135 # ifndef SQLITE_DEBUG_OS_TRACE 136 # define SQLITE_DEBUG_OS_TRACE 0 137 # endif 138 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 139 #endif 140 141 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 142 /* 143 ** If the following function pointer is not NULL and if 144 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 145 ** I/O active are written using this function. These messages 146 ** are intended for debugging activity only. 147 */ 148 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 149 #endif 150 151 /* 152 ** If the following global variable points to a string which is the 153 ** name of a directory, then that directory will be used to store 154 ** temporary files. 155 ** 156 ** See also the "PRAGMA temp_store_directory" SQL command. 157 */ 158 char *sqlite3_temp_directory = 0; 159 160 /* 161 ** If the following global variable points to a string which is the 162 ** name of a directory, then that directory will be used to store 163 ** all database files specified with a relative pathname. 164 ** 165 ** See also the "PRAGMA data_store_directory" SQL command. 166 */ 167 char *sqlite3_data_directory = 0; 168 169 /* 170 ** Initialize SQLite. 171 ** 172 ** This routine must be called to initialize the memory allocation, 173 ** VFS, and mutex subsystems prior to doing any serious work with 174 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 175 ** this routine will be called automatically by key routines such as 176 ** sqlite3_open(). 177 ** 178 ** This routine is a no-op except on its very first call for the process, 179 ** or for the first call after a call to sqlite3_shutdown. 180 ** 181 ** The first thread to call this routine runs the initialization to 182 ** completion. If subsequent threads call this routine before the first 183 ** thread has finished the initialization process, then the subsequent 184 ** threads must block until the first thread finishes with the initialization. 185 ** 186 ** The first thread might call this routine recursively. Recursive 187 ** calls to this routine should not block, of course. Otherwise the 188 ** initialization process would never complete. 189 ** 190 ** Let X be the first thread to enter this routine. Let Y be some other 191 ** thread. Then while the initial invocation of this routine by X is 192 ** incomplete, it is required that: 193 ** 194 ** * Calls to this routine from Y must block until the outer-most 195 ** call by X completes. 196 ** 197 ** * Recursive calls to this routine from thread X return immediately 198 ** without blocking. 199 */ 200 int sqlite3_initialize(void){ 201 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */ 202 int rc; /* Result code */ 203 #ifdef SQLITE_EXTRA_INIT 204 int bRunExtraInit = 0; /* Extra initialization needed */ 205 #endif 206 207 #ifdef SQLITE_OMIT_WSD 208 rc = sqlite3_wsd_init(4096, 24); 209 if( rc!=SQLITE_OK ){ 210 return rc; 211 } 212 #endif 213 214 /* If the following assert() fails on some obscure processor/compiler 215 ** combination, the work-around is to set the correct pointer 216 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 217 assert( SQLITE_PTRSIZE==sizeof(char*) ); 218 219 /* If SQLite is already completely initialized, then this call 220 ** to sqlite3_initialize() should be a no-op. But the initialization 221 ** must be complete. So isInit must not be set until the very end 222 ** of this routine. 223 */ 224 if( sqlite3GlobalConfig.isInit ){ 225 sqlite3MemoryBarrier(); 226 return SQLITE_OK; 227 } 228 229 /* Make sure the mutex subsystem is initialized. If unable to 230 ** initialize the mutex subsystem, return early with the error. 231 ** If the system is so sick that we are unable to allocate a mutex, 232 ** there is not much SQLite is going to be able to do. 233 ** 234 ** The mutex subsystem must take care of serializing its own 235 ** initialization. 236 */ 237 rc = sqlite3MutexInit(); 238 if( rc ) return rc; 239 240 /* Initialize the malloc() system and the recursive pInitMutex mutex. 241 ** This operation is protected by the STATIC_MAIN mutex. Note that 242 ** MutexAlloc() is called for a static mutex prior to initializing the 243 ** malloc subsystem - this implies that the allocation of a static 244 ** mutex must not require support from the malloc subsystem. 245 */ 246 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 247 sqlite3_mutex_enter(pMainMtx); 248 sqlite3GlobalConfig.isMutexInit = 1; 249 if( !sqlite3GlobalConfig.isMallocInit ){ 250 rc = sqlite3MallocInit(); 251 } 252 if( rc==SQLITE_OK ){ 253 sqlite3GlobalConfig.isMallocInit = 1; 254 if( !sqlite3GlobalConfig.pInitMutex ){ 255 sqlite3GlobalConfig.pInitMutex = 256 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 257 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 258 rc = SQLITE_NOMEM_BKPT; 259 } 260 } 261 } 262 if( rc==SQLITE_OK ){ 263 sqlite3GlobalConfig.nRefInitMutex++; 264 } 265 sqlite3_mutex_leave(pMainMtx); 266 267 /* If rc is not SQLITE_OK at this point, then either the malloc 268 ** subsystem could not be initialized or the system failed to allocate 269 ** the pInitMutex mutex. Return an error in either case. */ 270 if( rc!=SQLITE_OK ){ 271 return rc; 272 } 273 274 /* Do the rest of the initialization under the recursive mutex so 275 ** that we will be able to handle recursive calls into 276 ** sqlite3_initialize(). The recursive calls normally come through 277 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 278 ** recursive calls might also be possible. 279 ** 280 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 281 ** to the xInit method, so the xInit method need not be threadsafe. 282 ** 283 ** The following mutex is what serializes access to the appdef pcache xInit 284 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 285 ** call to sqlite3PcacheInitialize(). 286 */ 287 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 288 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 289 sqlite3GlobalConfig.inProgress = 1; 290 #ifdef SQLITE_ENABLE_SQLLOG 291 { 292 extern void sqlite3_init_sqllog(void); 293 sqlite3_init_sqllog(); 294 } 295 #endif 296 memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); 297 sqlite3RegisterBuiltinFunctions(); 298 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 299 rc = sqlite3PcacheInitialize(); 300 } 301 if( rc==SQLITE_OK ){ 302 sqlite3GlobalConfig.isPCacheInit = 1; 303 rc = sqlite3OsInit(); 304 } 305 #ifndef SQLITE_OMIT_DESERIALIZE 306 if( rc==SQLITE_OK ){ 307 rc = sqlite3MemdbInit(); 308 } 309 #endif 310 if( rc==SQLITE_OK ){ 311 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 312 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 313 sqlite3MemoryBarrier(); 314 sqlite3GlobalConfig.isInit = 1; 315 #ifdef SQLITE_EXTRA_INIT 316 bRunExtraInit = 1; 317 #endif 318 } 319 sqlite3GlobalConfig.inProgress = 0; 320 } 321 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 322 323 /* Go back under the static mutex and clean up the recursive 324 ** mutex to prevent a resource leak. 325 */ 326 sqlite3_mutex_enter(pMainMtx); 327 sqlite3GlobalConfig.nRefInitMutex--; 328 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 329 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 330 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 331 sqlite3GlobalConfig.pInitMutex = 0; 332 } 333 sqlite3_mutex_leave(pMainMtx); 334 335 /* The following is just a sanity check to make sure SQLite has 336 ** been compiled correctly. It is important to run this code, but 337 ** we don't want to run it too often and soak up CPU cycles for no 338 ** reason. So we run it once during initialization. 339 */ 340 #ifndef NDEBUG 341 #ifndef SQLITE_OMIT_FLOATING_POINT 342 /* This section of code's only "output" is via assert() statements. */ 343 if( rc==SQLITE_OK ){ 344 u64 x = (((u64)1)<<63)-1; 345 double y; 346 assert(sizeof(x)==8); 347 assert(sizeof(x)==sizeof(y)); 348 memcpy(&y, &x, 8); 349 assert( sqlite3IsNaN(y) ); 350 } 351 #endif 352 #endif 353 354 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 355 ** compile-time option. 356 */ 357 #ifdef SQLITE_EXTRA_INIT 358 if( bRunExtraInit ){ 359 int SQLITE_EXTRA_INIT(const char*); 360 rc = SQLITE_EXTRA_INIT(0); 361 } 362 #endif 363 364 return rc; 365 } 366 367 /* 368 ** Undo the effects of sqlite3_initialize(). Must not be called while 369 ** there are outstanding database connections or memory allocations or 370 ** while any part of SQLite is otherwise in use in any thread. This 371 ** routine is not threadsafe. But it is safe to invoke this routine 372 ** on when SQLite is already shut down. If SQLite is already shut down 373 ** when this routine is invoked, then this routine is a harmless no-op. 374 */ 375 int sqlite3_shutdown(void){ 376 #ifdef SQLITE_OMIT_WSD 377 int rc = sqlite3_wsd_init(4096, 24); 378 if( rc!=SQLITE_OK ){ 379 return rc; 380 } 381 #endif 382 383 if( sqlite3GlobalConfig.isInit ){ 384 #ifdef SQLITE_EXTRA_SHUTDOWN 385 void SQLITE_EXTRA_SHUTDOWN(void); 386 SQLITE_EXTRA_SHUTDOWN(); 387 #endif 388 sqlite3_os_end(); 389 sqlite3_reset_auto_extension(); 390 sqlite3GlobalConfig.isInit = 0; 391 } 392 if( sqlite3GlobalConfig.isPCacheInit ){ 393 sqlite3PcacheShutdown(); 394 sqlite3GlobalConfig.isPCacheInit = 0; 395 } 396 if( sqlite3GlobalConfig.isMallocInit ){ 397 sqlite3MallocEnd(); 398 sqlite3GlobalConfig.isMallocInit = 0; 399 400 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 401 /* The heap subsystem has now been shutdown and these values are supposed 402 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 403 ** which would rely on that heap subsystem; therefore, make sure these 404 ** values cannot refer to heap memory that was just invalidated when the 405 ** heap subsystem was shutdown. This is only done if the current call to 406 ** this function resulted in the heap subsystem actually being shutdown. 407 */ 408 sqlite3_data_directory = 0; 409 sqlite3_temp_directory = 0; 410 #endif 411 } 412 if( sqlite3GlobalConfig.isMutexInit ){ 413 sqlite3MutexEnd(); 414 sqlite3GlobalConfig.isMutexInit = 0; 415 } 416 417 return SQLITE_OK; 418 } 419 420 /* 421 ** This API allows applications to modify the global configuration of 422 ** the SQLite library at run-time. 423 ** 424 ** This routine should only be called when there are no outstanding 425 ** database connections or memory allocations. This routine is not 426 ** threadsafe. Failure to heed these warnings can lead to unpredictable 427 ** behavior. 428 */ 429 int sqlite3_config(int op, ...){ 430 va_list ap; 431 int rc = SQLITE_OK; 432 433 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 434 ** the SQLite library is in use. */ 435 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 436 437 va_start(ap, op); 438 switch( op ){ 439 440 /* Mutex configuration options are only available in a threadsafe 441 ** compile. 442 */ 443 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 444 case SQLITE_CONFIG_SINGLETHREAD: { 445 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 446 ** Single-thread. */ 447 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 448 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 449 break; 450 } 451 #endif 452 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 453 case SQLITE_CONFIG_MULTITHREAD: { 454 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 455 ** Multi-thread. */ 456 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 457 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 458 break; 459 } 460 #endif 461 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 462 case SQLITE_CONFIG_SERIALIZED: { 463 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 464 ** Serialized. */ 465 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 466 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 467 break; 468 } 469 #endif 470 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 471 case SQLITE_CONFIG_MUTEX: { 472 /* Specify an alternative mutex implementation */ 473 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 474 break; 475 } 476 #endif 477 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 478 case SQLITE_CONFIG_GETMUTEX: { 479 /* Retrieve the current mutex implementation */ 480 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 481 break; 482 } 483 #endif 484 485 case SQLITE_CONFIG_MALLOC: { 486 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 487 ** single argument which is a pointer to an instance of the 488 ** sqlite3_mem_methods structure. The argument specifies alternative 489 ** low-level memory allocation routines to be used in place of the memory 490 ** allocation routines built into SQLite. */ 491 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 492 break; 493 } 494 case SQLITE_CONFIG_GETMALLOC: { 495 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 496 ** single argument which is a pointer to an instance of the 497 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 498 ** filled with the currently defined memory allocation routines. */ 499 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 500 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 501 break; 502 } 503 case SQLITE_CONFIG_MEMSTATUS: { 504 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 505 ** single argument of type int, interpreted as a boolean, which enables 506 ** or disables the collection of memory allocation statistics. */ 507 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 508 break; 509 } 510 case SQLITE_CONFIG_SMALL_MALLOC: { 511 sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int); 512 break; 513 } 514 case SQLITE_CONFIG_PAGECACHE: { 515 /* EVIDENCE-OF: R-18761-36601 There are three arguments to 516 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), 517 ** the size of each page cache line (sz), and the number of cache lines 518 ** (N). */ 519 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 520 sqlite3GlobalConfig.szPage = va_arg(ap, int); 521 sqlite3GlobalConfig.nPage = va_arg(ap, int); 522 break; 523 } 524 case SQLITE_CONFIG_PCACHE_HDRSZ: { 525 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 526 ** a single parameter which is a pointer to an integer and writes into 527 ** that integer the number of extra bytes per page required for each page 528 ** in SQLITE_CONFIG_PAGECACHE. */ 529 *va_arg(ap, int*) = 530 sqlite3HeaderSizeBtree() + 531 sqlite3HeaderSizePcache() + 532 sqlite3HeaderSizePcache1(); 533 break; 534 } 535 536 case SQLITE_CONFIG_PCACHE: { 537 /* no-op */ 538 break; 539 } 540 case SQLITE_CONFIG_GETPCACHE: { 541 /* now an error */ 542 rc = SQLITE_ERROR; 543 break; 544 } 545 546 case SQLITE_CONFIG_PCACHE2: { 547 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 548 ** single argument which is a pointer to an sqlite3_pcache_methods2 549 ** object. This object specifies the interface to a custom page cache 550 ** implementation. */ 551 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 552 break; 553 } 554 case SQLITE_CONFIG_GETPCACHE2: { 555 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 556 ** single argument which is a pointer to an sqlite3_pcache_methods2 557 ** object. SQLite copies of the current page cache implementation into 558 ** that object. */ 559 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 560 sqlite3PCacheSetDefault(); 561 } 562 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 563 break; 564 } 565 566 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 567 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 568 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 569 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 570 case SQLITE_CONFIG_HEAP: { 571 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 572 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 573 ** number of bytes in the memory buffer, and the minimum allocation size. 574 */ 575 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 576 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 577 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 578 579 if( sqlite3GlobalConfig.mnReq<1 ){ 580 sqlite3GlobalConfig.mnReq = 1; 581 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 582 /* cap min request size at 2^12 */ 583 sqlite3GlobalConfig.mnReq = (1<<12); 584 } 585 586 if( sqlite3GlobalConfig.pHeap==0 ){ 587 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 588 ** is NULL, then SQLite reverts to using its default memory allocator 589 ** (the system malloc() implementation), undoing any prior invocation of 590 ** SQLITE_CONFIG_MALLOC. 591 ** 592 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 593 ** revert to its default implementation when sqlite3_initialize() is run 594 */ 595 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 596 }else{ 597 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 598 ** alternative memory allocator is engaged to handle all of SQLites 599 ** memory allocation needs. */ 600 #ifdef SQLITE_ENABLE_MEMSYS3 601 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 602 #endif 603 #ifdef SQLITE_ENABLE_MEMSYS5 604 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 605 #endif 606 } 607 break; 608 } 609 #endif 610 611 case SQLITE_CONFIG_LOOKASIDE: { 612 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 613 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 614 break; 615 } 616 617 /* Record a pointer to the logger function and its first argument. 618 ** The default is NULL. Logging is disabled if the function pointer is 619 ** NULL. 620 */ 621 case SQLITE_CONFIG_LOG: { 622 /* MSVC is picky about pulling func ptrs from va lists. 623 ** http://support.microsoft.com/kb/47961 624 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 625 */ 626 typedef void(*LOGFUNC_t)(void*,int,const char*); 627 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 628 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 629 break; 630 } 631 632 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 633 ** can be changed at start-time using the 634 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 635 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 636 */ 637 case SQLITE_CONFIG_URI: { 638 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 639 ** argument of type int. If non-zero, then URI handling is globally 640 ** enabled. If the parameter is zero, then URI handling is globally 641 ** disabled. */ 642 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 643 break; 644 } 645 646 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 647 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 648 ** option takes a single integer argument which is interpreted as a 649 ** boolean in order to enable or disable the use of covering indices for 650 ** full table scans in the query optimizer. */ 651 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 652 break; 653 } 654 655 #ifdef SQLITE_ENABLE_SQLLOG 656 case SQLITE_CONFIG_SQLLOG: { 657 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 658 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 659 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 660 break; 661 } 662 #endif 663 664 case SQLITE_CONFIG_MMAP_SIZE: { 665 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 666 ** integer (sqlite3_int64) values that are the default mmap size limit 667 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 668 ** mmap size limit. */ 669 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 670 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 671 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 672 ** negative, then that argument is changed to its compile-time default. 673 ** 674 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 675 ** silently truncated if necessary so that it does not exceed the 676 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 677 ** compile-time option. 678 */ 679 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 680 mxMmap = SQLITE_MAX_MMAP_SIZE; 681 } 682 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 683 if( szMmap>mxMmap) szMmap = mxMmap; 684 sqlite3GlobalConfig.mxMmap = mxMmap; 685 sqlite3GlobalConfig.szMmap = szMmap; 686 break; 687 } 688 689 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 690 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 691 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 692 ** unsigned integer value that specifies the maximum size of the created 693 ** heap. */ 694 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 695 break; 696 } 697 #endif 698 699 case SQLITE_CONFIG_PMASZ: { 700 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 701 break; 702 } 703 704 case SQLITE_CONFIG_STMTJRNL_SPILL: { 705 sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); 706 break; 707 } 708 709 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 710 case SQLITE_CONFIG_SORTERREF_SIZE: { 711 int iVal = va_arg(ap, int); 712 if( iVal<0 ){ 713 iVal = SQLITE_DEFAULT_SORTERREF_SIZE; 714 } 715 sqlite3GlobalConfig.szSorterRef = (u32)iVal; 716 break; 717 } 718 #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ 719 720 #ifndef SQLITE_OMIT_DESERIALIZE 721 case SQLITE_CONFIG_MEMDB_MAXSIZE: { 722 sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64); 723 break; 724 } 725 #endif /* SQLITE_OMIT_DESERIALIZE */ 726 727 default: { 728 rc = SQLITE_ERROR; 729 break; 730 } 731 } 732 va_end(ap); 733 return rc; 734 } 735 736 /* 737 ** Set up the lookaside buffers for a database connection. 738 ** Return SQLITE_OK on success. 739 ** If lookaside is already active, return SQLITE_BUSY. 740 ** 741 ** The sz parameter is the number of bytes in each lookaside slot. 742 ** The cnt parameter is the number of slots. If pStart is NULL the 743 ** space for the lookaside memory is obtained from sqlite3_malloc(). 744 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 745 ** the lookaside memory. 746 */ 747 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 748 #ifndef SQLITE_OMIT_LOOKASIDE 749 void *pStart; 750 sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt; 751 int nBig; /* Number of full-size slots */ 752 int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */ 753 754 if( sqlite3LookasideUsed(db,0)>0 ){ 755 return SQLITE_BUSY; 756 } 757 /* Free any existing lookaside buffer for this handle before 758 ** allocating a new one so we don't have to have space for 759 ** both at the same time. 760 */ 761 if( db->lookaside.bMalloced ){ 762 sqlite3_free(db->lookaside.pStart); 763 } 764 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 765 ** than a pointer to be useful. 766 */ 767 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 768 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 769 if( cnt<0 ) cnt = 0; 770 if( sz==0 || cnt==0 ){ 771 sz = 0; 772 pStart = 0; 773 }else if( pBuf==0 ){ 774 sqlite3BeginBenignMalloc(); 775 pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */ 776 sqlite3EndBenignMalloc(); 777 if( pStart ) szAlloc = sqlite3MallocSize(pStart); 778 }else{ 779 pStart = pBuf; 780 } 781 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 782 if( sz>=LOOKASIDE_SMALL*3 ){ 783 nBig = szAlloc/(3*LOOKASIDE_SMALL+sz); 784 nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; 785 }else if( sz>=LOOKASIDE_SMALL*2 ){ 786 nBig = szAlloc/(LOOKASIDE_SMALL+sz); 787 nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; 788 }else 789 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 790 if( sz>0 ){ 791 nBig = szAlloc/sz; 792 nSm = 0; 793 }else{ 794 nBig = nSm = 0; 795 } 796 db->lookaside.pStart = pStart; 797 db->lookaside.pInit = 0; 798 db->lookaside.pFree = 0; 799 db->lookaside.sz = (u16)sz; 800 db->lookaside.szTrue = (u16)sz; 801 if( pStart ){ 802 int i; 803 LookasideSlot *p; 804 assert( sz > (int)sizeof(LookasideSlot*) ); 805 p = (LookasideSlot*)pStart; 806 for(i=0; i<nBig; i++){ 807 p->pNext = db->lookaside.pInit; 808 db->lookaside.pInit = p; 809 p = (LookasideSlot*)&((u8*)p)[sz]; 810 } 811 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 812 db->lookaside.pSmallInit = 0; 813 db->lookaside.pSmallFree = 0; 814 db->lookaside.pMiddle = p; 815 for(i=0; i<nSm; i++){ 816 p->pNext = db->lookaside.pSmallInit; 817 db->lookaside.pSmallInit = p; 818 p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL]; 819 } 820 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 821 assert( ((uptr)p)<=szAlloc + (uptr)pStart ); 822 db->lookaside.pEnd = p; 823 db->lookaside.bDisable = 0; 824 db->lookaside.bMalloced = pBuf==0 ?1:0; 825 db->lookaside.nSlot = nBig+nSm; 826 }else{ 827 db->lookaside.pStart = 0; 828 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 829 db->lookaside.pSmallInit = 0; 830 db->lookaside.pSmallFree = 0; 831 db->lookaside.pMiddle = 0; 832 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 833 db->lookaside.pEnd = 0; 834 db->lookaside.bDisable = 1; 835 db->lookaside.sz = 0; 836 db->lookaside.bMalloced = 0; 837 db->lookaside.nSlot = 0; 838 } 839 db->lookaside.pTrueEnd = db->lookaside.pEnd; 840 assert( sqlite3LookasideUsed(db,0)==0 ); 841 #endif /* SQLITE_OMIT_LOOKASIDE */ 842 return SQLITE_OK; 843 } 844 845 /* 846 ** Return the mutex associated with a database connection. 847 */ 848 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 849 #ifdef SQLITE_ENABLE_API_ARMOR 850 if( !sqlite3SafetyCheckOk(db) ){ 851 (void)SQLITE_MISUSE_BKPT; 852 return 0; 853 } 854 #endif 855 return db->mutex; 856 } 857 858 /* 859 ** Free up as much memory as we can from the given database 860 ** connection. 861 */ 862 int sqlite3_db_release_memory(sqlite3 *db){ 863 int i; 864 865 #ifdef SQLITE_ENABLE_API_ARMOR 866 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 867 #endif 868 sqlite3_mutex_enter(db->mutex); 869 sqlite3BtreeEnterAll(db); 870 for(i=0; i<db->nDb; i++){ 871 Btree *pBt = db->aDb[i].pBt; 872 if( pBt ){ 873 Pager *pPager = sqlite3BtreePager(pBt); 874 sqlite3PagerShrink(pPager); 875 } 876 } 877 sqlite3BtreeLeaveAll(db); 878 sqlite3_mutex_leave(db->mutex); 879 return SQLITE_OK; 880 } 881 882 /* 883 ** Flush any dirty pages in the pager-cache for any attached database 884 ** to disk. 885 */ 886 int sqlite3_db_cacheflush(sqlite3 *db){ 887 int i; 888 int rc = SQLITE_OK; 889 int bSeenBusy = 0; 890 891 #ifdef SQLITE_ENABLE_API_ARMOR 892 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 893 #endif 894 sqlite3_mutex_enter(db->mutex); 895 sqlite3BtreeEnterAll(db); 896 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 897 Btree *pBt = db->aDb[i].pBt; 898 if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 899 Pager *pPager = sqlite3BtreePager(pBt); 900 rc = sqlite3PagerFlush(pPager); 901 if( rc==SQLITE_BUSY ){ 902 bSeenBusy = 1; 903 rc = SQLITE_OK; 904 } 905 } 906 } 907 sqlite3BtreeLeaveAll(db); 908 sqlite3_mutex_leave(db->mutex); 909 return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); 910 } 911 912 /* 913 ** Configuration settings for an individual database connection 914 */ 915 int sqlite3_db_config(sqlite3 *db, int op, ...){ 916 va_list ap; 917 int rc; 918 sqlite3_mutex_enter(db->mutex); 919 va_start(ap, op); 920 switch( op ){ 921 case SQLITE_DBCONFIG_MAINDBNAME: { 922 /* IMP: R-06824-28531 */ 923 /* IMP: R-36257-52125 */ 924 db->aDb[0].zDbSName = va_arg(ap,char*); 925 rc = SQLITE_OK; 926 break; 927 } 928 case SQLITE_DBCONFIG_LOOKASIDE: { 929 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 930 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 931 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 932 rc = setupLookaside(db, pBuf, sz, cnt); 933 break; 934 } 935 default: { 936 static const struct { 937 int op; /* The opcode */ 938 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 939 } aFlagOp[] = { 940 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 941 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 942 { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView }, 943 { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, 944 { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, 945 { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, 946 { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, 947 { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, 948 { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, 949 { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, 950 { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema| 951 SQLITE_NoSchemaError }, 952 { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter }, 953 { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL }, 954 { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML }, 955 { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt }, 956 { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema }, 957 }; 958 unsigned int i; 959 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 960 for(i=0; i<ArraySize(aFlagOp); i++){ 961 if( aFlagOp[i].op==op ){ 962 int onoff = va_arg(ap, int); 963 int *pRes = va_arg(ap, int*); 964 u64 oldFlags = db->flags; 965 if( onoff>0 ){ 966 db->flags |= aFlagOp[i].mask; 967 }else if( onoff==0 ){ 968 db->flags &= ~(u64)aFlagOp[i].mask; 969 } 970 if( oldFlags!=db->flags ){ 971 sqlite3ExpirePreparedStatements(db, 0); 972 } 973 if( pRes ){ 974 *pRes = (db->flags & aFlagOp[i].mask)!=0; 975 } 976 rc = SQLITE_OK; 977 break; 978 } 979 } 980 break; 981 } 982 } 983 va_end(ap); 984 sqlite3_mutex_leave(db->mutex); 985 return rc; 986 } 987 988 /* 989 ** This is the default collating function named "BINARY" which is always 990 ** available. 991 */ 992 static int binCollFunc( 993 void *NotUsed, 994 int nKey1, const void *pKey1, 995 int nKey2, const void *pKey2 996 ){ 997 int rc, n; 998 UNUSED_PARAMETER(NotUsed); 999 n = nKey1<nKey2 ? nKey1 : nKey2; 1000 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 1001 ** strings byte by byte using the memcmp() function from the standard C 1002 ** library. */ 1003 assert( pKey1 && pKey2 ); 1004 rc = memcmp(pKey1, pKey2, n); 1005 if( rc==0 ){ 1006 rc = nKey1 - nKey2; 1007 } 1008 return rc; 1009 } 1010 1011 /* 1012 ** This is the collating function named "RTRIM" which is always 1013 ** available. Ignore trailing spaces. 1014 */ 1015 static int rtrimCollFunc( 1016 void *pUser, 1017 int nKey1, const void *pKey1, 1018 int nKey2, const void *pKey2 1019 ){ 1020 const u8 *pK1 = (const u8*)pKey1; 1021 const u8 *pK2 = (const u8*)pKey2; 1022 while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--; 1023 while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--; 1024 return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2); 1025 } 1026 1027 /* 1028 ** Return true if CollSeq is the default built-in BINARY. 1029 */ 1030 int sqlite3IsBinary(const CollSeq *p){ 1031 assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 ); 1032 return p==0 || p->xCmp==binCollFunc; 1033 } 1034 1035 /* 1036 ** Another built-in collating sequence: NOCASE. 1037 ** 1038 ** This collating sequence is intended to be used for "case independent 1039 ** comparison". SQLite's knowledge of upper and lower case equivalents 1040 ** extends only to the 26 characters used in the English language. 1041 ** 1042 ** At the moment there is only a UTF-8 implementation. 1043 */ 1044 static int nocaseCollatingFunc( 1045 void *NotUsed, 1046 int nKey1, const void *pKey1, 1047 int nKey2, const void *pKey2 1048 ){ 1049 int r = sqlite3StrNICmp( 1050 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 1051 UNUSED_PARAMETER(NotUsed); 1052 if( 0==r ){ 1053 r = nKey1-nKey2; 1054 } 1055 return r; 1056 } 1057 1058 /* 1059 ** Return the ROWID of the most recent insert 1060 */ 1061 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 1062 #ifdef SQLITE_ENABLE_API_ARMOR 1063 if( !sqlite3SafetyCheckOk(db) ){ 1064 (void)SQLITE_MISUSE_BKPT; 1065 return 0; 1066 } 1067 #endif 1068 return db->lastRowid; 1069 } 1070 1071 /* 1072 ** Set the value returned by the sqlite3_last_insert_rowid() API function. 1073 */ 1074 void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ 1075 #ifdef SQLITE_ENABLE_API_ARMOR 1076 if( !sqlite3SafetyCheckOk(db) ){ 1077 (void)SQLITE_MISUSE_BKPT; 1078 return; 1079 } 1080 #endif 1081 sqlite3_mutex_enter(db->mutex); 1082 db->lastRowid = iRowid; 1083 sqlite3_mutex_leave(db->mutex); 1084 } 1085 1086 /* 1087 ** Return the number of changes in the most recent call to sqlite3_exec(). 1088 */ 1089 sqlite3_int64 sqlite3_changes64(sqlite3 *db){ 1090 #ifdef SQLITE_ENABLE_API_ARMOR 1091 if( !sqlite3SafetyCheckOk(db) ){ 1092 (void)SQLITE_MISUSE_BKPT; 1093 return 0; 1094 } 1095 #endif 1096 return db->nChange; 1097 } 1098 int sqlite3_changes(sqlite3 *db){ 1099 return (int)sqlite3_changes64(db); 1100 } 1101 1102 /* 1103 ** Return the number of changes since the database handle was opened. 1104 */ 1105 sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){ 1106 #ifdef SQLITE_ENABLE_API_ARMOR 1107 if( !sqlite3SafetyCheckOk(db) ){ 1108 (void)SQLITE_MISUSE_BKPT; 1109 return 0; 1110 } 1111 #endif 1112 return db->nTotalChange; 1113 } 1114 int sqlite3_total_changes(sqlite3 *db){ 1115 return (int)sqlite3_total_changes64(db); 1116 } 1117 1118 /* 1119 ** Close all open savepoints. This function only manipulates fields of the 1120 ** database handle object, it does not close any savepoints that may be open 1121 ** at the b-tree/pager level. 1122 */ 1123 void sqlite3CloseSavepoints(sqlite3 *db){ 1124 while( db->pSavepoint ){ 1125 Savepoint *pTmp = db->pSavepoint; 1126 db->pSavepoint = pTmp->pNext; 1127 sqlite3DbFree(db, pTmp); 1128 } 1129 db->nSavepoint = 0; 1130 db->nStatement = 0; 1131 db->isTransactionSavepoint = 0; 1132 } 1133 1134 /* 1135 ** Invoke the destructor function associated with FuncDef p, if any. Except, 1136 ** if this is not the last copy of the function, do not invoke it. Multiple 1137 ** copies of a single function are created when create_function() is called 1138 ** with SQLITE_ANY as the encoding. 1139 */ 1140 static void functionDestroy(sqlite3 *db, FuncDef *p){ 1141 FuncDestructor *pDestructor; 1142 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); 1143 pDestructor = p->u.pDestructor; 1144 if( pDestructor ){ 1145 pDestructor->nRef--; 1146 if( pDestructor->nRef==0 ){ 1147 pDestructor->xDestroy(pDestructor->pUserData); 1148 sqlite3DbFree(db, pDestructor); 1149 } 1150 } 1151 } 1152 1153 /* 1154 ** Disconnect all sqlite3_vtab objects that belong to database connection 1155 ** db. This is called when db is being closed. 1156 */ 1157 static void disconnectAllVtab(sqlite3 *db){ 1158 #ifndef SQLITE_OMIT_VIRTUALTABLE 1159 int i; 1160 HashElem *p; 1161 sqlite3BtreeEnterAll(db); 1162 for(i=0; i<db->nDb; i++){ 1163 Schema *pSchema = db->aDb[i].pSchema; 1164 if( pSchema ){ 1165 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 1166 Table *pTab = (Table *)sqliteHashData(p); 1167 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 1168 } 1169 } 1170 } 1171 for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ 1172 Module *pMod = (Module *)sqliteHashData(p); 1173 if( pMod->pEpoTab ){ 1174 sqlite3VtabDisconnect(db, pMod->pEpoTab); 1175 } 1176 } 1177 sqlite3VtabUnlockList(db); 1178 sqlite3BtreeLeaveAll(db); 1179 #else 1180 UNUSED_PARAMETER(db); 1181 #endif 1182 } 1183 1184 /* 1185 ** Return TRUE if database connection db has unfinalized prepared 1186 ** statements or unfinished sqlite3_backup objects. 1187 */ 1188 static int connectionIsBusy(sqlite3 *db){ 1189 int j; 1190 assert( sqlite3_mutex_held(db->mutex) ); 1191 if( db->pVdbe ) return 1; 1192 for(j=0; j<db->nDb; j++){ 1193 Btree *pBt = db->aDb[j].pBt; 1194 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 1195 } 1196 return 0; 1197 } 1198 1199 /* 1200 ** Close an existing SQLite database 1201 */ 1202 static int sqlite3Close(sqlite3 *db, int forceZombie){ 1203 if( !db ){ 1204 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 1205 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 1206 return SQLITE_OK; 1207 } 1208 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1209 return SQLITE_MISUSE_BKPT; 1210 } 1211 sqlite3_mutex_enter(db->mutex); 1212 if( db->mTrace & SQLITE_TRACE_CLOSE ){ 1213 db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); 1214 } 1215 1216 /* Force xDisconnect calls on all virtual tables */ 1217 disconnectAllVtab(db); 1218 1219 /* If a transaction is open, the disconnectAllVtab() call above 1220 ** will not have called the xDisconnect() method on any virtual 1221 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 1222 ** call will do so. We need to do this before the check for active 1223 ** SQL statements below, as the v-table implementation may be storing 1224 ** some prepared statements internally. 1225 */ 1226 sqlite3VtabRollback(db); 1227 1228 /* Legacy behavior (sqlite3_close() behavior) is to return 1229 ** SQLITE_BUSY if the connection can not be closed immediately. 1230 */ 1231 if( !forceZombie && connectionIsBusy(db) ){ 1232 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 1233 "statements or unfinished backups"); 1234 sqlite3_mutex_leave(db->mutex); 1235 return SQLITE_BUSY; 1236 } 1237 1238 #ifdef SQLITE_ENABLE_SQLLOG 1239 if( sqlite3GlobalConfig.xSqllog ){ 1240 /* Closing the handle. Fourth parameter is passed the value 2. */ 1241 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 1242 } 1243 #endif 1244 1245 /* Convert the connection into a zombie and then close it. 1246 */ 1247 db->eOpenState = SQLITE_STATE_ZOMBIE; 1248 sqlite3LeaveMutexAndCloseZombie(db); 1249 return SQLITE_OK; 1250 } 1251 1252 /* 1253 ** Return the transaction state for a single databse, or the maximum 1254 ** transaction state over all attached databases if zSchema is null. 1255 */ 1256 int sqlite3_txn_state(sqlite3 *db, const char *zSchema){ 1257 int iDb, nDb; 1258 int iTxn = -1; 1259 #ifdef SQLITE_ENABLE_API_ARMOR 1260 if( !sqlite3SafetyCheckOk(db) ){ 1261 (void)SQLITE_MISUSE_BKPT; 1262 return -1; 1263 } 1264 #endif 1265 sqlite3_mutex_enter(db->mutex); 1266 if( zSchema ){ 1267 nDb = iDb = sqlite3FindDbName(db, zSchema); 1268 if( iDb<0 ) nDb--; 1269 }else{ 1270 iDb = 0; 1271 nDb = db->nDb-1; 1272 } 1273 for(; iDb<=nDb; iDb++){ 1274 Btree *pBt = db->aDb[iDb].pBt; 1275 int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE; 1276 if( x>iTxn ) iTxn = x; 1277 } 1278 sqlite3_mutex_leave(db->mutex); 1279 return iTxn; 1280 } 1281 1282 /* 1283 ** Two variations on the public interface for closing a database 1284 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1285 ** leaves the connection open if there are unfinalized prepared 1286 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1287 ** version forces the connection to become a zombie if there are 1288 ** unclosed resources, and arranges for deallocation when the last 1289 ** prepare statement or sqlite3_backup closes. 1290 */ 1291 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1292 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1293 1294 1295 /* 1296 ** Close the mutex on database connection db. 1297 ** 1298 ** Furthermore, if database connection db is a zombie (meaning that there 1299 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1300 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1301 ** finished, then free all resources. 1302 */ 1303 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1304 HashElem *i; /* Hash table iterator */ 1305 int j; 1306 1307 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1308 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1309 ** then just leave the mutex and return. 1310 */ 1311 if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){ 1312 sqlite3_mutex_leave(db->mutex); 1313 return; 1314 } 1315 1316 /* If we reach this point, it means that the database connection has 1317 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1318 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1319 ** go ahead and free all resources. 1320 */ 1321 1322 /* If a transaction is open, roll it back. This also ensures that if 1323 ** any database schemas have been modified by an uncommitted transaction 1324 ** they are reset. And that the required b-tree mutex is held to make 1325 ** the pager rollback and schema reset an atomic operation. */ 1326 sqlite3RollbackAll(db, SQLITE_OK); 1327 1328 /* Free any outstanding Savepoint structures. */ 1329 sqlite3CloseSavepoints(db); 1330 1331 /* Close all database connections */ 1332 for(j=0; j<db->nDb; j++){ 1333 struct Db *pDb = &db->aDb[j]; 1334 if( pDb->pBt ){ 1335 sqlite3BtreeClose(pDb->pBt); 1336 pDb->pBt = 0; 1337 if( j!=1 ){ 1338 pDb->pSchema = 0; 1339 } 1340 } 1341 } 1342 /* Clear the TEMP schema separately and last */ 1343 if( db->aDb[1].pSchema ){ 1344 sqlite3SchemaClear(db->aDb[1].pSchema); 1345 } 1346 sqlite3VtabUnlockList(db); 1347 1348 /* Free up the array of auxiliary databases */ 1349 sqlite3CollapseDatabaseArray(db); 1350 assert( db->nDb<=2 ); 1351 assert( db->aDb==db->aDbStatic ); 1352 1353 /* Tell the code in notify.c that the connection no longer holds any 1354 ** locks and does not require any further unlock-notify callbacks. 1355 */ 1356 sqlite3ConnectionClosed(db); 1357 1358 for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ 1359 FuncDef *pNext, *p; 1360 p = sqliteHashData(i); 1361 do{ 1362 functionDestroy(db, p); 1363 pNext = p->pNext; 1364 sqlite3DbFree(db, p); 1365 p = pNext; 1366 }while( p ); 1367 } 1368 sqlite3HashClear(&db->aFunc); 1369 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1370 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1371 /* Invoke any destructors registered for collation sequence user data. */ 1372 for(j=0; j<3; j++){ 1373 if( pColl[j].xDel ){ 1374 pColl[j].xDel(pColl[j].pUser); 1375 } 1376 } 1377 sqlite3DbFree(db, pColl); 1378 } 1379 sqlite3HashClear(&db->aCollSeq); 1380 #ifndef SQLITE_OMIT_VIRTUALTABLE 1381 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1382 Module *pMod = (Module *)sqliteHashData(i); 1383 sqlite3VtabEponymousTableClear(db, pMod); 1384 sqlite3VtabModuleUnref(db, pMod); 1385 } 1386 sqlite3HashClear(&db->aModule); 1387 #endif 1388 1389 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1390 sqlite3ValueFree(db->pErr); 1391 sqlite3CloseExtensions(db); 1392 #if SQLITE_USER_AUTHENTICATION 1393 sqlite3_free(db->auth.zAuthUser); 1394 sqlite3_free(db->auth.zAuthPW); 1395 #endif 1396 1397 db->eOpenState = SQLITE_STATE_ERROR; 1398 1399 /* The temp-database schema is allocated differently from the other schema 1400 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1401 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1402 ** the same sqliteMalloc() as the one that allocates the database 1403 ** structure? 1404 */ 1405 sqlite3DbFree(db, db->aDb[1].pSchema); 1406 if( db->xAutovacDestr ){ 1407 db->xAutovacDestr(db->pAutovacPagesArg); 1408 } 1409 sqlite3_mutex_leave(db->mutex); 1410 db->eOpenState = SQLITE_STATE_CLOSED; 1411 sqlite3_mutex_free(db->mutex); 1412 assert( sqlite3LookasideUsed(db,0)==0 ); 1413 if( db->lookaside.bMalloced ){ 1414 sqlite3_free(db->lookaside.pStart); 1415 } 1416 sqlite3_free(db); 1417 } 1418 1419 /* 1420 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1421 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1422 ** breaker") and made to return tripCode if there are any further 1423 ** attempts to use that cursor. Read cursors remain open and valid 1424 ** but are "saved" in case the table pages are moved around. 1425 */ 1426 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1427 int i; 1428 int inTrans = 0; 1429 int schemaChange; 1430 assert( sqlite3_mutex_held(db->mutex) ); 1431 sqlite3BeginBenignMalloc(); 1432 1433 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1434 ** This is important in case the transaction being rolled back has 1435 ** modified the database schema. If the b-tree mutexes are not taken 1436 ** here, then another shared-cache connection might sneak in between 1437 ** the database rollback and schema reset, which can cause false 1438 ** corruption reports in some cases. */ 1439 sqlite3BtreeEnterAll(db); 1440 schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0; 1441 1442 for(i=0; i<db->nDb; i++){ 1443 Btree *p = db->aDb[i].pBt; 1444 if( p ){ 1445 if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){ 1446 inTrans = 1; 1447 } 1448 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1449 } 1450 } 1451 sqlite3VtabRollback(db); 1452 sqlite3EndBenignMalloc(); 1453 1454 if( schemaChange ){ 1455 sqlite3ExpirePreparedStatements(db, 0); 1456 sqlite3ResetAllSchemasOfConnection(db); 1457 } 1458 sqlite3BtreeLeaveAll(db); 1459 1460 /* Any deferred constraint violations have now been resolved. */ 1461 db->nDeferredCons = 0; 1462 db->nDeferredImmCons = 0; 1463 db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly); 1464 1465 /* If one has been configured, invoke the rollback-hook callback */ 1466 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1467 db->xRollbackCallback(db->pRollbackArg); 1468 } 1469 } 1470 1471 /* 1472 ** Return a static string containing the name corresponding to the error code 1473 ** specified in the argument. 1474 */ 1475 #if defined(SQLITE_NEED_ERR_NAME) 1476 const char *sqlite3ErrName(int rc){ 1477 const char *zName = 0; 1478 int i, origRc = rc; 1479 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1480 switch( rc ){ 1481 case SQLITE_OK: zName = "SQLITE_OK"; break; 1482 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1483 case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break; 1484 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1485 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1486 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1487 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1488 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1489 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1490 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1491 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1492 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1493 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1494 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1495 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1496 case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; 1497 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1498 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1499 case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break; 1500 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1501 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1502 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1503 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1504 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1505 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1506 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1507 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1508 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1509 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1510 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1511 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1512 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1513 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1514 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1515 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1516 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1517 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1518 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1519 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1520 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1521 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1522 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1523 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1524 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1525 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1526 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1527 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1528 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1529 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1530 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1531 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1532 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1533 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1534 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1535 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1536 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1537 case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break; 1538 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1539 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1540 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1541 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1542 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1543 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1544 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1545 case SQLITE_CONSTRAINT_FOREIGNKEY: 1546 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1547 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1548 case SQLITE_CONSTRAINT_PRIMARYKEY: 1549 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1550 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1551 case SQLITE_CONSTRAINT_COMMITHOOK: 1552 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1553 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1554 case SQLITE_CONSTRAINT_FUNCTION: 1555 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1556 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1557 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1558 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1559 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1560 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1561 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1562 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1563 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1564 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1565 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1566 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1567 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1568 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1569 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1570 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1571 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1572 } 1573 } 1574 if( zName==0 ){ 1575 static char zBuf[50]; 1576 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1577 zName = zBuf; 1578 } 1579 return zName; 1580 } 1581 #endif 1582 1583 /* 1584 ** Return a static string that describes the kind of error specified in the 1585 ** argument. 1586 */ 1587 const char *sqlite3ErrStr(int rc){ 1588 static const char* const aMsg[] = { 1589 /* SQLITE_OK */ "not an error", 1590 /* SQLITE_ERROR */ "SQL logic error", 1591 /* SQLITE_INTERNAL */ 0, 1592 /* SQLITE_PERM */ "access permission denied", 1593 /* SQLITE_ABORT */ "query aborted", 1594 /* SQLITE_BUSY */ "database is locked", 1595 /* SQLITE_LOCKED */ "database table is locked", 1596 /* SQLITE_NOMEM */ "out of memory", 1597 /* SQLITE_READONLY */ "attempt to write a readonly database", 1598 /* SQLITE_INTERRUPT */ "interrupted", 1599 /* SQLITE_IOERR */ "disk I/O error", 1600 /* SQLITE_CORRUPT */ "database disk image is malformed", 1601 /* SQLITE_NOTFOUND */ "unknown operation", 1602 /* SQLITE_FULL */ "database or disk is full", 1603 /* SQLITE_CANTOPEN */ "unable to open database file", 1604 /* SQLITE_PROTOCOL */ "locking protocol", 1605 /* SQLITE_EMPTY */ 0, 1606 /* SQLITE_SCHEMA */ "database schema has changed", 1607 /* SQLITE_TOOBIG */ "string or blob too big", 1608 /* SQLITE_CONSTRAINT */ "constraint failed", 1609 /* SQLITE_MISMATCH */ "datatype mismatch", 1610 /* SQLITE_MISUSE */ "bad parameter or other API misuse", 1611 #ifdef SQLITE_DISABLE_LFS 1612 /* SQLITE_NOLFS */ "large file support is disabled", 1613 #else 1614 /* SQLITE_NOLFS */ 0, 1615 #endif 1616 /* SQLITE_AUTH */ "authorization denied", 1617 /* SQLITE_FORMAT */ 0, 1618 /* SQLITE_RANGE */ "column index out of range", 1619 /* SQLITE_NOTADB */ "file is not a database", 1620 /* SQLITE_NOTICE */ "notification message", 1621 /* SQLITE_WARNING */ "warning message", 1622 }; 1623 const char *zErr = "unknown error"; 1624 switch( rc ){ 1625 case SQLITE_ABORT_ROLLBACK: { 1626 zErr = "abort due to ROLLBACK"; 1627 break; 1628 } 1629 case SQLITE_ROW: { 1630 zErr = "another row available"; 1631 break; 1632 } 1633 case SQLITE_DONE: { 1634 zErr = "no more rows available"; 1635 break; 1636 } 1637 default: { 1638 rc &= 0xff; 1639 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1640 zErr = aMsg[rc]; 1641 } 1642 break; 1643 } 1644 } 1645 return zErr; 1646 } 1647 1648 /* 1649 ** This routine implements a busy callback that sleeps and tries 1650 ** again until a timeout value is reached. The timeout value is 1651 ** an integer number of milliseconds passed in as the first 1652 ** argument. 1653 ** 1654 ** Return non-zero to retry the lock. Return zero to stop trying 1655 ** and cause SQLite to return SQLITE_BUSY. 1656 */ 1657 static int sqliteDefaultBusyCallback( 1658 void *ptr, /* Database connection */ 1659 int count /* Number of times table has been busy */ 1660 ){ 1661 #if SQLITE_OS_WIN || HAVE_USLEEP 1662 /* This case is for systems that have support for sleeping for fractions of 1663 ** a second. Examples: All windows systems, unix systems with usleep() */ 1664 static const u8 delays[] = 1665 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1666 static const u8 totals[] = 1667 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1668 # define NDELAY ArraySize(delays) 1669 sqlite3 *db = (sqlite3 *)ptr; 1670 int tmout = db->busyTimeout; 1671 int delay, prior; 1672 1673 assert( count>=0 ); 1674 if( count < NDELAY ){ 1675 delay = delays[count]; 1676 prior = totals[count]; 1677 }else{ 1678 delay = delays[NDELAY-1]; 1679 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1680 } 1681 if( prior + delay > tmout ){ 1682 delay = tmout - prior; 1683 if( delay<=0 ) return 0; 1684 } 1685 sqlite3OsSleep(db->pVfs, delay*1000); 1686 return 1; 1687 #else 1688 /* This case for unix systems that lack usleep() support. Sleeping 1689 ** must be done in increments of whole seconds */ 1690 sqlite3 *db = (sqlite3 *)ptr; 1691 int tmout = ((sqlite3 *)ptr)->busyTimeout; 1692 if( (count+1)*1000 > tmout ){ 1693 return 0; 1694 } 1695 sqlite3OsSleep(db->pVfs, 1000000); 1696 return 1; 1697 #endif 1698 } 1699 1700 /* 1701 ** Invoke the given busy handler. 1702 ** 1703 ** This routine is called when an operation failed to acquire a 1704 ** lock on VFS file pFile. 1705 ** 1706 ** If this routine returns non-zero, the lock is retried. If it 1707 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1708 */ 1709 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1710 int rc; 1711 if( p->xBusyHandler==0 || p->nBusy<0 ) return 0; 1712 rc = p->xBusyHandler(p->pBusyArg, p->nBusy); 1713 if( rc==0 ){ 1714 p->nBusy = -1; 1715 }else{ 1716 p->nBusy++; 1717 } 1718 return rc; 1719 } 1720 1721 /* 1722 ** This routine sets the busy callback for an Sqlite database to the 1723 ** given callback function with the given argument. 1724 */ 1725 int sqlite3_busy_handler( 1726 sqlite3 *db, 1727 int (*xBusy)(void*,int), 1728 void *pArg 1729 ){ 1730 #ifdef SQLITE_ENABLE_API_ARMOR 1731 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1732 #endif 1733 sqlite3_mutex_enter(db->mutex); 1734 db->busyHandler.xBusyHandler = xBusy; 1735 db->busyHandler.pBusyArg = pArg; 1736 db->busyHandler.nBusy = 0; 1737 db->busyTimeout = 0; 1738 sqlite3_mutex_leave(db->mutex); 1739 return SQLITE_OK; 1740 } 1741 1742 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1743 /* 1744 ** This routine sets the progress callback for an Sqlite database to the 1745 ** given callback function with the given argument. The progress callback will 1746 ** be invoked every nOps opcodes. 1747 */ 1748 void sqlite3_progress_handler( 1749 sqlite3 *db, 1750 int nOps, 1751 int (*xProgress)(void*), 1752 void *pArg 1753 ){ 1754 #ifdef SQLITE_ENABLE_API_ARMOR 1755 if( !sqlite3SafetyCheckOk(db) ){ 1756 (void)SQLITE_MISUSE_BKPT; 1757 return; 1758 } 1759 #endif 1760 sqlite3_mutex_enter(db->mutex); 1761 if( nOps>0 ){ 1762 db->xProgress = xProgress; 1763 db->nProgressOps = (unsigned)nOps; 1764 db->pProgressArg = pArg; 1765 }else{ 1766 db->xProgress = 0; 1767 db->nProgressOps = 0; 1768 db->pProgressArg = 0; 1769 } 1770 sqlite3_mutex_leave(db->mutex); 1771 } 1772 #endif 1773 1774 1775 /* 1776 ** This routine installs a default busy handler that waits for the 1777 ** specified number of milliseconds before returning 0. 1778 */ 1779 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1780 #ifdef SQLITE_ENABLE_API_ARMOR 1781 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1782 #endif 1783 if( ms>0 ){ 1784 sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback, 1785 (void*)db); 1786 db->busyTimeout = ms; 1787 }else{ 1788 sqlite3_busy_handler(db, 0, 0); 1789 } 1790 return SQLITE_OK; 1791 } 1792 1793 /* 1794 ** Cause any pending operation to stop at its earliest opportunity. 1795 */ 1796 void sqlite3_interrupt(sqlite3 *db){ 1797 #ifdef SQLITE_ENABLE_API_ARMOR 1798 if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){ 1799 (void)SQLITE_MISUSE_BKPT; 1800 return; 1801 } 1802 #endif 1803 AtomicStore(&db->u1.isInterrupted, 1); 1804 } 1805 1806 1807 /* 1808 ** This function is exactly the same as sqlite3_create_function(), except 1809 ** that it is designed to be called by internal code. The difference is 1810 ** that if a malloc() fails in sqlite3_create_function(), an error code 1811 ** is returned and the mallocFailed flag cleared. 1812 */ 1813 int sqlite3CreateFunc( 1814 sqlite3 *db, 1815 const char *zFunctionName, 1816 int nArg, 1817 int enc, 1818 void *pUserData, 1819 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 1820 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1821 void (*xFinal)(sqlite3_context*), 1822 void (*xValue)(sqlite3_context*), 1823 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 1824 FuncDestructor *pDestructor 1825 ){ 1826 FuncDef *p; 1827 int extraFlags; 1828 1829 assert( sqlite3_mutex_held(db->mutex) ); 1830 assert( xValue==0 || xSFunc==0 ); 1831 if( zFunctionName==0 /* Must have a valid name */ 1832 || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */ 1833 || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */ 1834 || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */ 1835 || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) 1836 || (255<sqlite3Strlen30(zFunctionName)) 1837 ){ 1838 return SQLITE_MISUSE_BKPT; 1839 } 1840 1841 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1842 assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY ); 1843 extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY| 1844 SQLITE_SUBTYPE|SQLITE_INNOCUOUS); 1845 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1846 1847 /* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But 1848 ** the meaning is inverted. So flip the bit. */ 1849 assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS ); 1850 extraFlags ^= SQLITE_FUNC_UNSAFE; 1851 1852 1853 #ifndef SQLITE_OMIT_UTF16 1854 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1855 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1856 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1857 ** 1858 ** If SQLITE_ANY is specified, add three versions of the function 1859 ** to the hash table. 1860 */ 1861 switch( enc ){ 1862 case SQLITE_UTF16: 1863 enc = SQLITE_UTF16NATIVE; 1864 break; 1865 case SQLITE_ANY: { 1866 int rc; 1867 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 1868 (SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE, 1869 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 1870 if( rc==SQLITE_OK ){ 1871 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 1872 (SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE, 1873 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 1874 } 1875 if( rc!=SQLITE_OK ){ 1876 return rc; 1877 } 1878 enc = SQLITE_UTF16BE; 1879 break; 1880 } 1881 case SQLITE_UTF8: 1882 case SQLITE_UTF16LE: 1883 case SQLITE_UTF16BE: 1884 break; 1885 default: 1886 enc = SQLITE_UTF8; 1887 break; 1888 } 1889 #else 1890 enc = SQLITE_UTF8; 1891 #endif 1892 1893 /* Check if an existing function is being overridden or deleted. If so, 1894 ** and there are active VMs, then return SQLITE_BUSY. If a function 1895 ** is being overridden/deleted but there are no active VMs, allow the 1896 ** operation to continue but invalidate all precompiled statements. 1897 */ 1898 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0); 1899 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){ 1900 if( db->nVdbeActive ){ 1901 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1902 "unable to delete/modify user-function due to active statements"); 1903 assert( !db->mallocFailed ); 1904 return SQLITE_BUSY; 1905 }else{ 1906 sqlite3ExpirePreparedStatements(db, 0); 1907 } 1908 }else if( xSFunc==0 && xFinal==0 ){ 1909 /* Trying to delete a function that does not exist. This is a no-op. 1910 ** https://sqlite.org/forum/forumpost/726219164b */ 1911 return SQLITE_OK; 1912 } 1913 1914 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); 1915 assert(p || db->mallocFailed); 1916 if( !p ){ 1917 return SQLITE_NOMEM_BKPT; 1918 } 1919 1920 /* If an older version of the function with a configured destructor is 1921 ** being replaced invoke the destructor function here. */ 1922 functionDestroy(db, p); 1923 1924 if( pDestructor ){ 1925 pDestructor->nRef++; 1926 } 1927 p->u.pDestructor = pDestructor; 1928 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1929 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1930 testcase( p->funcFlags & SQLITE_DIRECTONLY ); 1931 p->xSFunc = xSFunc ? xSFunc : xStep; 1932 p->xFinalize = xFinal; 1933 p->xValue = xValue; 1934 p->xInverse = xInverse; 1935 p->pUserData = pUserData; 1936 p->nArg = (u16)nArg; 1937 return SQLITE_OK; 1938 } 1939 1940 /* 1941 ** Worker function used by utf-8 APIs that create new functions: 1942 ** 1943 ** sqlite3_create_function() 1944 ** sqlite3_create_function_v2() 1945 ** sqlite3_create_window_function() 1946 */ 1947 static int createFunctionApi( 1948 sqlite3 *db, 1949 const char *zFunc, 1950 int nArg, 1951 int enc, 1952 void *p, 1953 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 1954 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1955 void (*xFinal)(sqlite3_context*), 1956 void (*xValue)(sqlite3_context*), 1957 void (*xInverse)(sqlite3_context*,int,sqlite3_value**), 1958 void(*xDestroy)(void*) 1959 ){ 1960 int rc = SQLITE_ERROR; 1961 FuncDestructor *pArg = 0; 1962 1963 #ifdef SQLITE_ENABLE_API_ARMOR 1964 if( !sqlite3SafetyCheckOk(db) ){ 1965 return SQLITE_MISUSE_BKPT; 1966 } 1967 #endif 1968 sqlite3_mutex_enter(db->mutex); 1969 if( xDestroy ){ 1970 pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); 1971 if( !pArg ){ 1972 sqlite3OomFault(db); 1973 xDestroy(p); 1974 goto out; 1975 } 1976 pArg->nRef = 0; 1977 pArg->xDestroy = xDestroy; 1978 pArg->pUserData = p; 1979 } 1980 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, 1981 xSFunc, xStep, xFinal, xValue, xInverse, pArg 1982 ); 1983 if( pArg && pArg->nRef==0 ){ 1984 assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) ); 1985 xDestroy(p); 1986 sqlite3_free(pArg); 1987 } 1988 1989 out: 1990 rc = sqlite3ApiExit(db, rc); 1991 sqlite3_mutex_leave(db->mutex); 1992 return rc; 1993 } 1994 1995 /* 1996 ** Create new user functions. 1997 */ 1998 int sqlite3_create_function( 1999 sqlite3 *db, 2000 const char *zFunc, 2001 int nArg, 2002 int enc, 2003 void *p, 2004 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 2005 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 2006 void (*xFinal)(sqlite3_context*) 2007 ){ 2008 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 2009 xFinal, 0, 0, 0); 2010 } 2011 int sqlite3_create_function_v2( 2012 sqlite3 *db, 2013 const char *zFunc, 2014 int nArg, 2015 int enc, 2016 void *p, 2017 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 2018 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 2019 void (*xFinal)(sqlite3_context*), 2020 void (*xDestroy)(void *) 2021 ){ 2022 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 2023 xFinal, 0, 0, xDestroy); 2024 } 2025 int sqlite3_create_window_function( 2026 sqlite3 *db, 2027 const char *zFunc, 2028 int nArg, 2029 int enc, 2030 void *p, 2031 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 2032 void (*xFinal)(sqlite3_context*), 2033 void (*xValue)(sqlite3_context*), 2034 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 2035 void (*xDestroy)(void *) 2036 ){ 2037 return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep, 2038 xFinal, xValue, xInverse, xDestroy); 2039 } 2040 2041 #ifndef SQLITE_OMIT_UTF16 2042 int sqlite3_create_function16( 2043 sqlite3 *db, 2044 const void *zFunctionName, 2045 int nArg, 2046 int eTextRep, 2047 void *p, 2048 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 2049 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 2050 void (*xFinal)(sqlite3_context*) 2051 ){ 2052 int rc; 2053 char *zFunc8; 2054 2055 #ifdef SQLITE_ENABLE_API_ARMOR 2056 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 2057 #endif 2058 sqlite3_mutex_enter(db->mutex); 2059 assert( !db->mallocFailed ); 2060 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 2061 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0); 2062 sqlite3DbFree(db, zFunc8); 2063 rc = sqlite3ApiExit(db, rc); 2064 sqlite3_mutex_leave(db->mutex); 2065 return rc; 2066 } 2067 #endif 2068 2069 2070 /* 2071 ** The following is the implementation of an SQL function that always 2072 ** fails with an error message stating that the function is used in the 2073 ** wrong context. The sqlite3_overload_function() API might construct 2074 ** SQL function that use this routine so that the functions will exist 2075 ** for name resolution but are actually overloaded by the xFindFunction 2076 ** method of virtual tables. 2077 */ 2078 static void sqlite3InvalidFunction( 2079 sqlite3_context *context, /* The function calling context */ 2080 int NotUsed, /* Number of arguments to the function */ 2081 sqlite3_value **NotUsed2 /* Value of each argument */ 2082 ){ 2083 const char *zName = (const char*)sqlite3_user_data(context); 2084 char *zErr; 2085 UNUSED_PARAMETER2(NotUsed, NotUsed2); 2086 zErr = sqlite3_mprintf( 2087 "unable to use function %s in the requested context", zName); 2088 sqlite3_result_error(context, zErr, -1); 2089 sqlite3_free(zErr); 2090 } 2091 2092 /* 2093 ** Declare that a function has been overloaded by a virtual table. 2094 ** 2095 ** If the function already exists as a regular global function, then 2096 ** this routine is a no-op. If the function does not exist, then create 2097 ** a new one that always throws a run-time error. 2098 ** 2099 ** When virtual tables intend to provide an overloaded function, they 2100 ** should call this routine to make sure the global function exists. 2101 ** A global function must exist in order for name resolution to work 2102 ** properly. 2103 */ 2104 int sqlite3_overload_function( 2105 sqlite3 *db, 2106 const char *zName, 2107 int nArg 2108 ){ 2109 int rc; 2110 char *zCopy; 2111 2112 #ifdef SQLITE_ENABLE_API_ARMOR 2113 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 2114 return SQLITE_MISUSE_BKPT; 2115 } 2116 #endif 2117 sqlite3_mutex_enter(db->mutex); 2118 rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; 2119 sqlite3_mutex_leave(db->mutex); 2120 if( rc ) return SQLITE_OK; 2121 zCopy = sqlite3_mprintf(zName); 2122 if( zCopy==0 ) return SQLITE_NOMEM; 2123 return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, 2124 zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); 2125 } 2126 2127 #ifndef SQLITE_OMIT_TRACE 2128 /* 2129 ** Register a trace function. The pArg from the previously registered trace 2130 ** is returned. 2131 ** 2132 ** A NULL trace function means that no tracing is executes. A non-NULL 2133 ** trace is a pointer to a function that is invoked at the start of each 2134 ** SQL statement. 2135 */ 2136 #ifndef SQLITE_OMIT_DEPRECATED 2137 void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ 2138 void *pOld; 2139 2140 #ifdef SQLITE_ENABLE_API_ARMOR 2141 if( !sqlite3SafetyCheckOk(db) ){ 2142 (void)SQLITE_MISUSE_BKPT; 2143 return 0; 2144 } 2145 #endif 2146 sqlite3_mutex_enter(db->mutex); 2147 pOld = db->pTraceArg; 2148 db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; 2149 db->trace.xLegacy = xTrace; 2150 db->pTraceArg = pArg; 2151 sqlite3_mutex_leave(db->mutex); 2152 return pOld; 2153 } 2154 #endif /* SQLITE_OMIT_DEPRECATED */ 2155 2156 /* Register a trace callback using the version-2 interface. 2157 */ 2158 int sqlite3_trace_v2( 2159 sqlite3 *db, /* Trace this connection */ 2160 unsigned mTrace, /* Mask of events to be traced */ 2161 int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ 2162 void *pArg /* Context */ 2163 ){ 2164 #ifdef SQLITE_ENABLE_API_ARMOR 2165 if( !sqlite3SafetyCheckOk(db) ){ 2166 return SQLITE_MISUSE_BKPT; 2167 } 2168 #endif 2169 sqlite3_mutex_enter(db->mutex); 2170 if( mTrace==0 ) xTrace = 0; 2171 if( xTrace==0 ) mTrace = 0; 2172 db->mTrace = mTrace; 2173 db->trace.xV2 = xTrace; 2174 db->pTraceArg = pArg; 2175 sqlite3_mutex_leave(db->mutex); 2176 return SQLITE_OK; 2177 } 2178 2179 #ifndef SQLITE_OMIT_DEPRECATED 2180 /* 2181 ** Register a profile function. The pArg from the previously registered 2182 ** profile function is returned. 2183 ** 2184 ** A NULL profile function means that no profiling is executes. A non-NULL 2185 ** profile is a pointer to a function that is invoked at the conclusion of 2186 ** each SQL statement that is run. 2187 */ 2188 void *sqlite3_profile( 2189 sqlite3 *db, 2190 void (*xProfile)(void*,const char*,sqlite_uint64), 2191 void *pArg 2192 ){ 2193 void *pOld; 2194 2195 #ifdef SQLITE_ENABLE_API_ARMOR 2196 if( !sqlite3SafetyCheckOk(db) ){ 2197 (void)SQLITE_MISUSE_BKPT; 2198 return 0; 2199 } 2200 #endif 2201 sqlite3_mutex_enter(db->mutex); 2202 pOld = db->pProfileArg; 2203 db->xProfile = xProfile; 2204 db->pProfileArg = pArg; 2205 db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK; 2206 if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE; 2207 sqlite3_mutex_leave(db->mutex); 2208 return pOld; 2209 } 2210 #endif /* SQLITE_OMIT_DEPRECATED */ 2211 #endif /* SQLITE_OMIT_TRACE */ 2212 2213 /* 2214 ** Register a function to be invoked when a transaction commits. 2215 ** If the invoked function returns non-zero, then the commit becomes a 2216 ** rollback. 2217 */ 2218 void *sqlite3_commit_hook( 2219 sqlite3 *db, /* Attach the hook to this database */ 2220 int (*xCallback)(void*), /* Function to invoke on each commit */ 2221 void *pArg /* Argument to the function */ 2222 ){ 2223 void *pOld; 2224 2225 #ifdef SQLITE_ENABLE_API_ARMOR 2226 if( !sqlite3SafetyCheckOk(db) ){ 2227 (void)SQLITE_MISUSE_BKPT; 2228 return 0; 2229 } 2230 #endif 2231 sqlite3_mutex_enter(db->mutex); 2232 pOld = db->pCommitArg; 2233 db->xCommitCallback = xCallback; 2234 db->pCommitArg = pArg; 2235 sqlite3_mutex_leave(db->mutex); 2236 return pOld; 2237 } 2238 2239 /* 2240 ** Register a callback to be invoked each time a row is updated, 2241 ** inserted or deleted using this database connection. 2242 */ 2243 void *sqlite3_update_hook( 2244 sqlite3 *db, /* Attach the hook to this database */ 2245 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 2246 void *pArg /* Argument to the function */ 2247 ){ 2248 void *pRet; 2249 2250 #ifdef SQLITE_ENABLE_API_ARMOR 2251 if( !sqlite3SafetyCheckOk(db) ){ 2252 (void)SQLITE_MISUSE_BKPT; 2253 return 0; 2254 } 2255 #endif 2256 sqlite3_mutex_enter(db->mutex); 2257 pRet = db->pUpdateArg; 2258 db->xUpdateCallback = xCallback; 2259 db->pUpdateArg = pArg; 2260 sqlite3_mutex_leave(db->mutex); 2261 return pRet; 2262 } 2263 2264 /* 2265 ** Register a callback to be invoked each time a transaction is rolled 2266 ** back by this database connection. 2267 */ 2268 void *sqlite3_rollback_hook( 2269 sqlite3 *db, /* Attach the hook to this database */ 2270 void (*xCallback)(void*), /* Callback function */ 2271 void *pArg /* Argument to the function */ 2272 ){ 2273 void *pRet; 2274 2275 #ifdef SQLITE_ENABLE_API_ARMOR 2276 if( !sqlite3SafetyCheckOk(db) ){ 2277 (void)SQLITE_MISUSE_BKPT; 2278 return 0; 2279 } 2280 #endif 2281 sqlite3_mutex_enter(db->mutex); 2282 pRet = db->pRollbackArg; 2283 db->xRollbackCallback = xCallback; 2284 db->pRollbackArg = pArg; 2285 sqlite3_mutex_leave(db->mutex); 2286 return pRet; 2287 } 2288 2289 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2290 /* 2291 ** Register a callback to be invoked each time a row is updated, 2292 ** inserted or deleted using this database connection. 2293 */ 2294 void *sqlite3_preupdate_hook( 2295 sqlite3 *db, /* Attach the hook to this database */ 2296 void(*xCallback)( /* Callback function */ 2297 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), 2298 void *pArg /* First callback argument */ 2299 ){ 2300 void *pRet; 2301 sqlite3_mutex_enter(db->mutex); 2302 pRet = db->pPreUpdateArg; 2303 db->xPreUpdateCallback = xCallback; 2304 db->pPreUpdateArg = pArg; 2305 sqlite3_mutex_leave(db->mutex); 2306 return pRet; 2307 } 2308 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2309 2310 /* 2311 ** Register a function to be invoked prior to each autovacuum that 2312 ** determines the number of pages to vacuum. 2313 */ 2314 int sqlite3_autovacuum_pages( 2315 sqlite3 *db, /* Attach the hook to this database */ 2316 unsigned int (*xCallback)(void*,const char*,u32,u32,u32), 2317 void *pArg, /* Argument to the function */ 2318 void (*xDestructor)(void*) /* Destructor for pArg */ 2319 ){ 2320 #ifdef SQLITE_ENABLE_API_ARMOR 2321 if( !sqlite3SafetyCheckOk(db) ){ 2322 if( xDestructor ) xDestructor(pArg); 2323 return SQLITE_MISUSE_BKPT; 2324 } 2325 #endif 2326 sqlite3_mutex_enter(db->mutex); 2327 if( db->xAutovacDestr ){ 2328 db->xAutovacDestr(db->pAutovacPagesArg); 2329 } 2330 db->xAutovacPages = xCallback; 2331 db->pAutovacPagesArg = pArg; 2332 db->xAutovacDestr = xDestructor; 2333 sqlite3_mutex_leave(db->mutex); 2334 return SQLITE_OK; 2335 } 2336 2337 2338 #ifndef SQLITE_OMIT_WAL 2339 /* 2340 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 2341 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 2342 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 2343 ** wal_autocheckpoint()). 2344 */ 2345 int sqlite3WalDefaultHook( 2346 void *pClientData, /* Argument */ 2347 sqlite3 *db, /* Connection */ 2348 const char *zDb, /* Database */ 2349 int nFrame /* Size of WAL */ 2350 ){ 2351 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 2352 sqlite3BeginBenignMalloc(); 2353 sqlite3_wal_checkpoint(db, zDb); 2354 sqlite3EndBenignMalloc(); 2355 } 2356 return SQLITE_OK; 2357 } 2358 #endif /* SQLITE_OMIT_WAL */ 2359 2360 /* 2361 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 2362 ** a database after committing a transaction if there are nFrame or 2363 ** more frames in the log file. Passing zero or a negative value as the 2364 ** nFrame parameter disables automatic checkpoints entirely. 2365 ** 2366 ** The callback registered by this function replaces any existing callback 2367 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 2368 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 2369 ** configured by this function. 2370 */ 2371 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 2372 #ifdef SQLITE_OMIT_WAL 2373 UNUSED_PARAMETER(db); 2374 UNUSED_PARAMETER(nFrame); 2375 #else 2376 #ifdef SQLITE_ENABLE_API_ARMOR 2377 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 2378 #endif 2379 if( nFrame>0 ){ 2380 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 2381 }else{ 2382 sqlite3_wal_hook(db, 0, 0); 2383 } 2384 #endif 2385 return SQLITE_OK; 2386 } 2387 2388 /* 2389 ** Register a callback to be invoked each time a transaction is written 2390 ** into the write-ahead-log by this database connection. 2391 */ 2392 void *sqlite3_wal_hook( 2393 sqlite3 *db, /* Attach the hook to this db handle */ 2394 int(*xCallback)(void *, sqlite3*, const char*, int), 2395 void *pArg /* First argument passed to xCallback() */ 2396 ){ 2397 #ifndef SQLITE_OMIT_WAL 2398 void *pRet; 2399 #ifdef SQLITE_ENABLE_API_ARMOR 2400 if( !sqlite3SafetyCheckOk(db) ){ 2401 (void)SQLITE_MISUSE_BKPT; 2402 return 0; 2403 } 2404 #endif 2405 sqlite3_mutex_enter(db->mutex); 2406 pRet = db->pWalArg; 2407 db->xWalCallback = xCallback; 2408 db->pWalArg = pArg; 2409 sqlite3_mutex_leave(db->mutex); 2410 return pRet; 2411 #else 2412 return 0; 2413 #endif 2414 } 2415 2416 /* 2417 ** Checkpoint database zDb. 2418 */ 2419 int sqlite3_wal_checkpoint_v2( 2420 sqlite3 *db, /* Database handle */ 2421 const char *zDb, /* Name of attached database (or NULL) */ 2422 int eMode, /* SQLITE_CHECKPOINT_* value */ 2423 int *pnLog, /* OUT: Size of WAL log in frames */ 2424 int *pnCkpt /* OUT: Total number of frames checkpointed */ 2425 ){ 2426 #ifdef SQLITE_OMIT_WAL 2427 return SQLITE_OK; 2428 #else 2429 int rc; /* Return code */ 2430 int iDb; /* Schema to checkpoint */ 2431 2432 #ifdef SQLITE_ENABLE_API_ARMOR 2433 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 2434 #endif 2435 2436 /* Initialize the output variables to -1 in case an error occurs. */ 2437 if( pnLog ) *pnLog = -1; 2438 if( pnCkpt ) *pnCkpt = -1; 2439 2440 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 2441 assert( SQLITE_CHECKPOINT_FULL==1 ); 2442 assert( SQLITE_CHECKPOINT_RESTART==2 ); 2443 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 2444 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 2445 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 2446 ** mode: */ 2447 return SQLITE_MISUSE; 2448 } 2449 2450 sqlite3_mutex_enter(db->mutex); 2451 if( zDb && zDb[0] ){ 2452 iDb = sqlite3FindDbName(db, zDb); 2453 }else{ 2454 iDb = SQLITE_MAX_DB; /* This means process all schemas */ 2455 } 2456 if( iDb<0 ){ 2457 rc = SQLITE_ERROR; 2458 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 2459 }else{ 2460 db->busyHandler.nBusy = 0; 2461 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 2462 sqlite3Error(db, rc); 2463 } 2464 rc = sqlite3ApiExit(db, rc); 2465 2466 /* If there are no active statements, clear the interrupt flag at this 2467 ** point. */ 2468 if( db->nVdbeActive==0 ){ 2469 AtomicStore(&db->u1.isInterrupted, 0); 2470 } 2471 2472 sqlite3_mutex_leave(db->mutex); 2473 return rc; 2474 #endif 2475 } 2476 2477 2478 /* 2479 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 2480 ** to contains a zero-length string, all attached databases are 2481 ** checkpointed. 2482 */ 2483 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 2484 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 2485 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 2486 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 2487 } 2488 2489 #ifndef SQLITE_OMIT_WAL 2490 /* 2491 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 2492 ** not currently open in WAL mode. 2493 ** 2494 ** If a transaction is open on the database being checkpointed, this 2495 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2496 ** an error occurs while running the checkpoint, an SQLite error code is 2497 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2498 ** 2499 ** The mutex on database handle db should be held by the caller. The mutex 2500 ** associated with the specific b-tree being checkpointed is taken by 2501 ** this function while the checkpoint is running. 2502 ** 2503 ** If iDb is passed SQLITE_MAX_DB then all attached databases are 2504 ** checkpointed. If an error is encountered it is returned immediately - 2505 ** no attempt is made to checkpoint any remaining databases. 2506 ** 2507 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART 2508 ** or TRUNCATE. 2509 */ 2510 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2511 int rc = SQLITE_OK; /* Return code */ 2512 int i; /* Used to iterate through attached dbs */ 2513 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2514 2515 assert( sqlite3_mutex_held(db->mutex) ); 2516 assert( !pnLog || *pnLog==-1 ); 2517 assert( !pnCkpt || *pnCkpt==-1 ); 2518 testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */ 2519 testcase( iDb==SQLITE_MAX_DB ); 2520 2521 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2522 if( i==iDb || iDb==SQLITE_MAX_DB ){ 2523 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2524 pnLog = 0; 2525 pnCkpt = 0; 2526 if( rc==SQLITE_BUSY ){ 2527 bBusy = 1; 2528 rc = SQLITE_OK; 2529 } 2530 } 2531 } 2532 2533 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2534 } 2535 #endif /* SQLITE_OMIT_WAL */ 2536 2537 /* 2538 ** This function returns true if main-memory should be used instead of 2539 ** a temporary file for transient pager files and statement journals. 2540 ** The value returned depends on the value of db->temp_store (runtime 2541 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2542 ** following table describes the relationship between these two values 2543 ** and this functions return value. 2544 ** 2545 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2546 ** ----------------- -------------- ------------------------------ 2547 ** 0 any file (return 0) 2548 ** 1 1 file (return 0) 2549 ** 1 2 memory (return 1) 2550 ** 1 0 file (return 0) 2551 ** 2 1 file (return 0) 2552 ** 2 2 memory (return 1) 2553 ** 2 0 memory (return 1) 2554 ** 3 any memory (return 1) 2555 */ 2556 int sqlite3TempInMemory(const sqlite3 *db){ 2557 #if SQLITE_TEMP_STORE==1 2558 return ( db->temp_store==2 ); 2559 #endif 2560 #if SQLITE_TEMP_STORE==2 2561 return ( db->temp_store!=1 ); 2562 #endif 2563 #if SQLITE_TEMP_STORE==3 2564 UNUSED_PARAMETER(db); 2565 return 1; 2566 #endif 2567 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2568 UNUSED_PARAMETER(db); 2569 return 0; 2570 #endif 2571 } 2572 2573 /* 2574 ** Return UTF-8 encoded English language explanation of the most recent 2575 ** error. 2576 */ 2577 const char *sqlite3_errmsg(sqlite3 *db){ 2578 const char *z; 2579 if( !db ){ 2580 return sqlite3ErrStr(SQLITE_NOMEM_BKPT); 2581 } 2582 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2583 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2584 } 2585 sqlite3_mutex_enter(db->mutex); 2586 if( db->mallocFailed ){ 2587 z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); 2588 }else{ 2589 testcase( db->pErr==0 ); 2590 z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0; 2591 assert( !db->mallocFailed ); 2592 if( z==0 ){ 2593 z = sqlite3ErrStr(db->errCode); 2594 } 2595 } 2596 sqlite3_mutex_leave(db->mutex); 2597 return z; 2598 } 2599 2600 /* 2601 ** Return the byte offset of the most recent error 2602 */ 2603 int sqlite3_error_offset(sqlite3 *db){ 2604 int iOffset = -1; 2605 if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){ 2606 sqlite3_mutex_enter(db->mutex); 2607 iOffset = db->errByteOffset; 2608 sqlite3_mutex_leave(db->mutex); 2609 } 2610 return iOffset; 2611 } 2612 2613 #ifndef SQLITE_OMIT_UTF16 2614 /* 2615 ** Return UTF-16 encoded English language explanation of the most recent 2616 ** error. 2617 */ 2618 const void *sqlite3_errmsg16(sqlite3 *db){ 2619 static const u16 outOfMem[] = { 2620 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2621 }; 2622 static const u16 misuse[] = { 2623 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 2624 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 2625 'm', 'i', 's', 'u', 's', 'e', 0 2626 }; 2627 2628 const void *z; 2629 if( !db ){ 2630 return (void *)outOfMem; 2631 } 2632 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2633 return (void *)misuse; 2634 } 2635 sqlite3_mutex_enter(db->mutex); 2636 if( db->mallocFailed ){ 2637 z = (void *)outOfMem; 2638 }else{ 2639 z = sqlite3_value_text16(db->pErr); 2640 if( z==0 ){ 2641 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2642 z = sqlite3_value_text16(db->pErr); 2643 } 2644 /* A malloc() may have failed within the call to sqlite3_value_text16() 2645 ** above. If this is the case, then the db->mallocFailed flag needs to 2646 ** be cleared before returning. Do this directly, instead of via 2647 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2648 */ 2649 sqlite3OomClear(db); 2650 } 2651 sqlite3_mutex_leave(db->mutex); 2652 return z; 2653 } 2654 #endif /* SQLITE_OMIT_UTF16 */ 2655 2656 /* 2657 ** Return the most recent error code generated by an SQLite routine. If NULL is 2658 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2659 */ 2660 int sqlite3_errcode(sqlite3 *db){ 2661 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2662 return SQLITE_MISUSE_BKPT; 2663 } 2664 if( !db || db->mallocFailed ){ 2665 return SQLITE_NOMEM_BKPT; 2666 } 2667 return db->errCode & db->errMask; 2668 } 2669 int sqlite3_extended_errcode(sqlite3 *db){ 2670 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2671 return SQLITE_MISUSE_BKPT; 2672 } 2673 if( !db || db->mallocFailed ){ 2674 return SQLITE_NOMEM_BKPT; 2675 } 2676 return db->errCode; 2677 } 2678 int sqlite3_system_errno(sqlite3 *db){ 2679 return db ? db->iSysErrno : 0; 2680 } 2681 2682 /* 2683 ** Return a string that describes the kind of error specified in the 2684 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2685 ** function. 2686 */ 2687 const char *sqlite3_errstr(int rc){ 2688 return sqlite3ErrStr(rc); 2689 } 2690 2691 /* 2692 ** Create a new collating function for database "db". The name is zName 2693 ** and the encoding is enc. 2694 */ 2695 static int createCollation( 2696 sqlite3* db, 2697 const char *zName, 2698 u8 enc, 2699 void* pCtx, 2700 int(*xCompare)(void*,int,const void*,int,const void*), 2701 void(*xDel)(void*) 2702 ){ 2703 CollSeq *pColl; 2704 int enc2; 2705 2706 assert( sqlite3_mutex_held(db->mutex) ); 2707 2708 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2709 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2710 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2711 */ 2712 enc2 = enc; 2713 testcase( enc2==SQLITE_UTF16 ); 2714 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2715 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2716 enc2 = SQLITE_UTF16NATIVE; 2717 } 2718 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2719 return SQLITE_MISUSE_BKPT; 2720 } 2721 2722 /* Check if this call is removing or replacing an existing collation 2723 ** sequence. If so, and there are active VMs, return busy. If there 2724 ** are no active VMs, invalidate any pre-compiled statements. 2725 */ 2726 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2727 if( pColl && pColl->xCmp ){ 2728 if( db->nVdbeActive ){ 2729 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2730 "unable to delete/modify collation sequence due to active statements"); 2731 return SQLITE_BUSY; 2732 } 2733 sqlite3ExpirePreparedStatements(db, 0); 2734 2735 /* If collation sequence pColl was created directly by a call to 2736 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2737 ** then any copies made by synthCollSeq() need to be invalidated. 2738 ** Also, collation destructor - CollSeq.xDel() - function may need 2739 ** to be called. 2740 */ 2741 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2742 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2743 int j; 2744 for(j=0; j<3; j++){ 2745 CollSeq *p = &aColl[j]; 2746 if( p->enc==pColl->enc ){ 2747 if( p->xDel ){ 2748 p->xDel(p->pUser); 2749 } 2750 p->xCmp = 0; 2751 } 2752 } 2753 } 2754 } 2755 2756 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2757 if( pColl==0 ) return SQLITE_NOMEM_BKPT; 2758 pColl->xCmp = xCompare; 2759 pColl->pUser = pCtx; 2760 pColl->xDel = xDel; 2761 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2762 sqlite3Error(db, SQLITE_OK); 2763 return SQLITE_OK; 2764 } 2765 2766 2767 /* 2768 ** This array defines hard upper bounds on limit values. The 2769 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2770 ** #defines in sqlite3.h. 2771 */ 2772 static const int aHardLimit[] = { 2773 SQLITE_MAX_LENGTH, 2774 SQLITE_MAX_SQL_LENGTH, 2775 SQLITE_MAX_COLUMN, 2776 SQLITE_MAX_EXPR_DEPTH, 2777 SQLITE_MAX_COMPOUND_SELECT, 2778 SQLITE_MAX_VDBE_OP, 2779 SQLITE_MAX_FUNCTION_ARG, 2780 SQLITE_MAX_ATTACHED, 2781 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2782 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2783 SQLITE_MAX_TRIGGER_DEPTH, 2784 SQLITE_MAX_WORKER_THREADS, 2785 }; 2786 2787 /* 2788 ** Make sure the hard limits are set to reasonable values 2789 */ 2790 #if SQLITE_MAX_LENGTH<100 2791 # error SQLITE_MAX_LENGTH must be at least 100 2792 #endif 2793 #if SQLITE_MAX_SQL_LENGTH<100 2794 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2795 #endif 2796 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2797 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2798 #endif 2799 #if SQLITE_MAX_COMPOUND_SELECT<2 2800 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2801 #endif 2802 #if SQLITE_MAX_VDBE_OP<40 2803 # error SQLITE_MAX_VDBE_OP must be at least 40 2804 #endif 2805 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 2806 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 2807 #endif 2808 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2809 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2810 #endif 2811 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2812 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2813 #endif 2814 #if SQLITE_MAX_COLUMN>32767 2815 # error SQLITE_MAX_COLUMN must not exceed 32767 2816 #endif 2817 #if SQLITE_MAX_TRIGGER_DEPTH<1 2818 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2819 #endif 2820 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2821 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2822 #endif 2823 2824 2825 /* 2826 ** Change the value of a limit. Report the old value. 2827 ** If an invalid limit index is supplied, report -1. 2828 ** Make no changes but still report the old value if the 2829 ** new limit is negative. 2830 ** 2831 ** A new lower limit does not shrink existing constructs. 2832 ** It merely prevents new constructs that exceed the limit 2833 ** from forming. 2834 */ 2835 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2836 int oldLimit; 2837 2838 #ifdef SQLITE_ENABLE_API_ARMOR 2839 if( !sqlite3SafetyCheckOk(db) ){ 2840 (void)SQLITE_MISUSE_BKPT; 2841 return -1; 2842 } 2843 #endif 2844 2845 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2846 ** there is a hard upper bound set at compile-time by a C preprocessor 2847 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2848 ** "_MAX_".) 2849 */ 2850 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2851 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2852 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2853 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2854 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2855 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2856 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2857 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2858 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2859 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2860 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2861 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2862 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2863 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2864 2865 2866 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2867 return -1; 2868 } 2869 oldLimit = db->aLimit[limitId]; 2870 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2871 if( newLimit>aHardLimit[limitId] ){ 2872 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2873 }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){ 2874 newLimit = 1; 2875 } 2876 db->aLimit[limitId] = newLimit; 2877 } 2878 return oldLimit; /* IMP: R-53341-35419 */ 2879 } 2880 2881 /* 2882 ** This function is used to parse both URIs and non-URI filenames passed by the 2883 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2884 ** URIs specified as part of ATTACH statements. 2885 ** 2886 ** The first argument to this function is the name of the VFS to use (or 2887 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2888 ** query parameter. The second argument contains the URI (or non-URI filename) 2889 ** itself. When this function is called the *pFlags variable should contain 2890 ** the default flags to open the database handle with. The value stored in 2891 ** *pFlags may be updated before returning if the URI filename contains 2892 ** "cache=xxx" or "mode=xxx" query parameters. 2893 ** 2894 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2895 ** the VFS that should be used to open the database file. *pzFile is set to 2896 ** point to a buffer containing the name of the file to open. The value 2897 ** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter() 2898 ** and is in the same format as names created using sqlite3_create_filename(). 2899 ** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on 2900 ** the value returned in *pzFile to avoid a memory leak. 2901 ** 2902 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2903 ** may be set to point to a buffer containing an English language error 2904 ** message. It is the responsibility of the caller to eventually release 2905 ** this buffer by calling sqlite3_free(). 2906 */ 2907 int sqlite3ParseUri( 2908 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2909 const char *zUri, /* Nul-terminated URI to parse */ 2910 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2911 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2912 char **pzFile, /* OUT: Filename component of URI */ 2913 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2914 ){ 2915 int rc = SQLITE_OK; 2916 unsigned int flags = *pFlags; 2917 const char *zVfs = zDefaultVfs; 2918 char *zFile; 2919 char c; 2920 int nUri = sqlite3Strlen30(zUri); 2921 2922 assert( *pzErrMsg==0 ); 2923 2924 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2925 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2926 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2927 ){ 2928 char *zOpt; 2929 int eState; /* Parser state when parsing URI */ 2930 int iIn; /* Input character index */ 2931 int iOut = 0; /* Output character index */ 2932 u64 nByte = nUri+8; /* Bytes of space to allocate */ 2933 2934 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2935 ** method that there may be extra parameters following the file-name. */ 2936 flags |= SQLITE_OPEN_URI; 2937 2938 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2939 zFile = sqlite3_malloc64(nByte); 2940 if( !zFile ) return SQLITE_NOMEM_BKPT; 2941 2942 memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */ 2943 zFile += 4; 2944 2945 iIn = 5; 2946 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2947 if( strncmp(zUri+5, "///", 3)==0 ){ 2948 iIn = 7; 2949 /* The following condition causes URIs with five leading / characters 2950 ** like file://///host/path to be converted into UNCs like //host/path. 2951 ** The correct URI for that UNC has only two or four leading / characters 2952 ** file://host/path or file:////host/path. But 5 leading slashes is a 2953 ** common error, we are told, so we handle it as a special case. */ 2954 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2955 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2956 iIn = 16; 2957 } 2958 #else 2959 /* Discard the scheme and authority segments of the URI. */ 2960 if( zUri[5]=='/' && zUri[6]=='/' ){ 2961 iIn = 7; 2962 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2963 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2964 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2965 iIn-7, &zUri[7]); 2966 rc = SQLITE_ERROR; 2967 goto parse_uri_out; 2968 } 2969 } 2970 #endif 2971 2972 /* Copy the filename and any query parameters into the zFile buffer. 2973 ** Decode %HH escape codes along the way. 2974 ** 2975 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2976 ** on the parsing context. As follows: 2977 ** 2978 ** 0: Parsing file-name. 2979 ** 1: Parsing name section of a name=value query parameter. 2980 ** 2: Parsing value section of a name=value query parameter. 2981 */ 2982 eState = 0; 2983 while( (c = zUri[iIn])!=0 && c!='#' ){ 2984 iIn++; 2985 if( c=='%' 2986 && sqlite3Isxdigit(zUri[iIn]) 2987 && sqlite3Isxdigit(zUri[iIn+1]) 2988 ){ 2989 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2990 octet += sqlite3HexToInt(zUri[iIn++]); 2991 2992 assert( octet>=0 && octet<256 ); 2993 if( octet==0 ){ 2994 #ifndef SQLITE_ENABLE_URI_00_ERROR 2995 /* This branch is taken when "%00" appears within the URI. In this 2996 ** case we ignore all text in the remainder of the path, name or 2997 ** value currently being parsed. So ignore the current character 2998 ** and skip to the next "?", "=" or "&", as appropriate. */ 2999 while( (c = zUri[iIn])!=0 && c!='#' 3000 && (eState!=0 || c!='?') 3001 && (eState!=1 || (c!='=' && c!='&')) 3002 && (eState!=2 || c!='&') 3003 ){ 3004 iIn++; 3005 } 3006 continue; 3007 #else 3008 /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ 3009 *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); 3010 rc = SQLITE_ERROR; 3011 goto parse_uri_out; 3012 #endif 3013 } 3014 c = octet; 3015 }else if( eState==1 && (c=='&' || c=='=') ){ 3016 if( zFile[iOut-1]==0 ){ 3017 /* An empty option name. Ignore this option altogether. */ 3018 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 3019 continue; 3020 } 3021 if( c=='&' ){ 3022 zFile[iOut++] = '\0'; 3023 }else{ 3024 eState = 2; 3025 } 3026 c = 0; 3027 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 3028 c = 0; 3029 eState = 1; 3030 } 3031 zFile[iOut++] = c; 3032 } 3033 if( eState==1 ) zFile[iOut++] = '\0'; 3034 memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */ 3035 3036 /* Check if there were any options specified that should be interpreted 3037 ** here. Options that are interpreted here include "vfs" and those that 3038 ** correspond to flags that may be passed to the sqlite3_open_v2() 3039 ** method. */ 3040 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 3041 while( zOpt[0] ){ 3042 int nOpt = sqlite3Strlen30(zOpt); 3043 char *zVal = &zOpt[nOpt+1]; 3044 int nVal = sqlite3Strlen30(zVal); 3045 3046 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 3047 zVfs = zVal; 3048 }else{ 3049 struct OpenMode { 3050 const char *z; 3051 int mode; 3052 } *aMode = 0; 3053 char *zModeType = 0; 3054 int mask = 0; 3055 int limit = 0; 3056 3057 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 3058 static struct OpenMode aCacheMode[] = { 3059 { "shared", SQLITE_OPEN_SHAREDCACHE }, 3060 { "private", SQLITE_OPEN_PRIVATECACHE }, 3061 { 0, 0 } 3062 }; 3063 3064 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 3065 aMode = aCacheMode; 3066 limit = mask; 3067 zModeType = "cache"; 3068 } 3069 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 3070 static struct OpenMode aOpenMode[] = { 3071 { "ro", SQLITE_OPEN_READONLY }, 3072 { "rw", SQLITE_OPEN_READWRITE }, 3073 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 3074 { "memory", SQLITE_OPEN_MEMORY }, 3075 { 0, 0 } 3076 }; 3077 3078 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 3079 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 3080 aMode = aOpenMode; 3081 limit = mask & flags; 3082 zModeType = "access"; 3083 } 3084 3085 if( aMode ){ 3086 int i; 3087 int mode = 0; 3088 for(i=0; aMode[i].z; i++){ 3089 const char *z = aMode[i].z; 3090 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 3091 mode = aMode[i].mode; 3092 break; 3093 } 3094 } 3095 if( mode==0 ){ 3096 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 3097 rc = SQLITE_ERROR; 3098 goto parse_uri_out; 3099 } 3100 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 3101 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 3102 zModeType, zVal); 3103 rc = SQLITE_PERM; 3104 goto parse_uri_out; 3105 } 3106 flags = (flags & ~mask) | mode; 3107 } 3108 } 3109 3110 zOpt = &zVal[nVal+1]; 3111 } 3112 3113 }else{ 3114 zFile = sqlite3_malloc64(nUri+8); 3115 if( !zFile ) return SQLITE_NOMEM_BKPT; 3116 memset(zFile, 0, 4); 3117 zFile += 4; 3118 if( nUri ){ 3119 memcpy(zFile, zUri, nUri); 3120 } 3121 memset(zFile+nUri, 0, 4); 3122 flags &= ~SQLITE_OPEN_URI; 3123 } 3124 3125 *ppVfs = sqlite3_vfs_find(zVfs); 3126 if( *ppVfs==0 ){ 3127 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 3128 rc = SQLITE_ERROR; 3129 } 3130 parse_uri_out: 3131 if( rc!=SQLITE_OK ){ 3132 sqlite3_free_filename(zFile); 3133 zFile = 0; 3134 } 3135 *pFlags = flags; 3136 *pzFile = zFile; 3137 return rc; 3138 } 3139 3140 /* 3141 ** This routine does the core work of extracting URI parameters from a 3142 ** database filename for the sqlite3_uri_parameter() interface. 3143 */ 3144 static const char *uriParameter(const char *zFilename, const char *zParam){ 3145 zFilename += sqlite3Strlen30(zFilename) + 1; 3146 while( ALWAYS(zFilename!=0) && zFilename[0] ){ 3147 int x = strcmp(zFilename, zParam); 3148 zFilename += sqlite3Strlen30(zFilename) + 1; 3149 if( x==0 ) return zFilename; 3150 zFilename += sqlite3Strlen30(zFilename) + 1; 3151 } 3152 return 0; 3153 } 3154 3155 3156 3157 /* 3158 ** This routine does the work of opening a database on behalf of 3159 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 3160 ** is UTF-8 encoded. 3161 */ 3162 static int openDatabase( 3163 const char *zFilename, /* Database filename UTF-8 encoded */ 3164 sqlite3 **ppDb, /* OUT: Returned database handle */ 3165 unsigned int flags, /* Operational flags */ 3166 const char *zVfs /* Name of the VFS to use */ 3167 ){ 3168 sqlite3 *db; /* Store allocated handle here */ 3169 int rc; /* Return code */ 3170 int isThreadsafe; /* True for threadsafe connections */ 3171 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 3172 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 3173 int i; /* Loop counter */ 3174 3175 #ifdef SQLITE_ENABLE_API_ARMOR 3176 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 3177 #endif 3178 *ppDb = 0; 3179 #ifndef SQLITE_OMIT_AUTOINIT 3180 rc = sqlite3_initialize(); 3181 if( rc ) return rc; 3182 #endif 3183 3184 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 3185 isThreadsafe = 0; 3186 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 3187 isThreadsafe = 0; 3188 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 3189 isThreadsafe = 1; 3190 }else{ 3191 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 3192 } 3193 3194 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 3195 flags &= ~SQLITE_OPEN_SHAREDCACHE; 3196 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 3197 flags |= SQLITE_OPEN_SHAREDCACHE; 3198 } 3199 3200 /* Remove harmful bits from the flags parameter 3201 ** 3202 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 3203 ** dealt with in the previous code block. Besides these, the only 3204 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 3205 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 3206 ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved 3207 ** bits. Silently mask off all other flags. 3208 */ 3209 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 3210 SQLITE_OPEN_EXCLUSIVE | 3211 SQLITE_OPEN_MAIN_DB | 3212 SQLITE_OPEN_TEMP_DB | 3213 SQLITE_OPEN_TRANSIENT_DB | 3214 SQLITE_OPEN_MAIN_JOURNAL | 3215 SQLITE_OPEN_TEMP_JOURNAL | 3216 SQLITE_OPEN_SUBJOURNAL | 3217 SQLITE_OPEN_SUPER_JOURNAL | 3218 SQLITE_OPEN_NOMUTEX | 3219 SQLITE_OPEN_FULLMUTEX | 3220 SQLITE_OPEN_WAL 3221 ); 3222 3223 /* Allocate the sqlite data structure */ 3224 db = sqlite3MallocZero( sizeof(sqlite3) ); 3225 if( db==0 ) goto opendb_out; 3226 if( isThreadsafe 3227 #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS 3228 || sqlite3GlobalConfig.bCoreMutex 3229 #endif 3230 ){ 3231 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 3232 if( db->mutex==0 ){ 3233 sqlite3_free(db); 3234 db = 0; 3235 goto opendb_out; 3236 } 3237 if( isThreadsafe==0 ){ 3238 sqlite3MutexWarnOnContention(db->mutex); 3239 } 3240 } 3241 sqlite3_mutex_enter(db->mutex); 3242 db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff; 3243 db->nDb = 2; 3244 db->eOpenState = SQLITE_STATE_BUSY; 3245 db->aDb = db->aDbStatic; 3246 db->lookaside.bDisable = 1; 3247 db->lookaside.sz = 0; 3248 3249 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 3250 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 3251 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 3252 db->autoCommit = 1; 3253 db->nextAutovac = -1; 3254 db->szMmap = sqlite3GlobalConfig.szMmap; 3255 db->nextPagesize = 0; 3256 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 3257 #ifdef SQLITE_ENABLE_SORTER_MMAP 3258 /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map 3259 ** the temporary files used to do external sorts (see code in vdbesort.c) 3260 ** is disabled. It can still be used either by defining 3261 ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the 3262 ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */ 3263 db->nMaxSorterMmap = 0x7FFFFFFF; 3264 #endif 3265 db->flags |= SQLITE_ShortColNames 3266 | SQLITE_EnableTrigger 3267 | SQLITE_EnableView 3268 | SQLITE_CacheSpill 3269 #if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0 3270 | SQLITE_TrustedSchema 3271 #endif 3272 /* The SQLITE_DQS compile-time option determines the default settings 3273 ** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML. 3274 ** 3275 ** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML 3276 ** ---------- ----------------------- ----------------------- 3277 ** undefined on on 3278 ** 3 on on 3279 ** 2 on off 3280 ** 1 off on 3281 ** 0 off off 3282 ** 3283 ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) 3284 ** and so that is the default. But developers are encouranged to use 3285 ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. 3286 */ 3287 #if !defined(SQLITE_DQS) 3288 # define SQLITE_DQS 3 3289 #endif 3290 #if (SQLITE_DQS&1)==1 3291 | SQLITE_DqsDML 3292 #endif 3293 #if (SQLITE_DQS&2)==2 3294 | SQLITE_DqsDDL 3295 #endif 3296 3297 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 3298 | SQLITE_AutoIndex 3299 #endif 3300 #if SQLITE_DEFAULT_CKPTFULLFSYNC 3301 | SQLITE_CkptFullFSync 3302 #endif 3303 #if SQLITE_DEFAULT_FILE_FORMAT<4 3304 | SQLITE_LegacyFileFmt 3305 #endif 3306 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 3307 | SQLITE_LoadExtension 3308 #endif 3309 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 3310 | SQLITE_RecTriggers 3311 #endif 3312 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 3313 | SQLITE_ForeignKeys 3314 #endif 3315 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 3316 | SQLITE_ReverseOrder 3317 #endif 3318 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 3319 | SQLITE_CellSizeCk 3320 #endif 3321 #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) 3322 | SQLITE_Fts3Tokenizer 3323 #endif 3324 #if defined(SQLITE_ENABLE_QPSG) 3325 | SQLITE_EnableQPSG 3326 #endif 3327 #if defined(SQLITE_DEFAULT_DEFENSIVE) 3328 | SQLITE_Defensive 3329 #endif 3330 #if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE) 3331 | SQLITE_LegacyAlter 3332 #endif 3333 ; 3334 sqlite3HashInit(&db->aCollSeq); 3335 #ifndef SQLITE_OMIT_VIRTUALTABLE 3336 sqlite3HashInit(&db->aModule); 3337 #endif 3338 3339 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 3340 ** and UTF-16, so add a version for each to avoid any unnecessary 3341 ** conversions. The only error that can occur here is a malloc() failure. 3342 ** 3343 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 3344 ** functions: 3345 */ 3346 createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); 3347 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); 3348 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); 3349 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 3350 createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0); 3351 if( db->mallocFailed ){ 3352 goto opendb_out; 3353 } 3354 3355 #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) 3356 /* Process magic filenames ":localStorage:" and ":sessionStorage:" */ 3357 if( zFilename && zFilename[0]==':' ){ 3358 if( strcmp(zFilename, ":localStorage:")==0 ){ 3359 zFilename = "file:local?vfs=kvvfs"; 3360 flags |= SQLITE_OPEN_URI; 3361 }else if( strcmp(zFilename, ":sessionStorage:")==0 ){ 3362 zFilename = "file:session?vfs=kvvfs"; 3363 flags |= SQLITE_OPEN_URI; 3364 } 3365 } 3366 #endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */ 3367 3368 /* Parse the filename/URI argument 3369 ** 3370 ** Only allow sensible combinations of bits in the flags argument. 3371 ** Throw an error if any non-sense combination is used. If we 3372 ** do not block illegal combinations here, it could trigger 3373 ** assert() statements in deeper layers. Sensible combinations 3374 ** are: 3375 ** 3376 ** 1: SQLITE_OPEN_READONLY 3377 ** 2: SQLITE_OPEN_READWRITE 3378 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 3379 */ 3380 db->openFlags = flags; 3381 assert( SQLITE_OPEN_READONLY == 0x01 ); 3382 assert( SQLITE_OPEN_READWRITE == 0x02 ); 3383 assert( SQLITE_OPEN_CREATE == 0x04 ); 3384 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 3385 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 3386 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 3387 if( ((1<<(flags&7)) & 0x46)==0 ){ 3388 rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */ 3389 }else{ 3390 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 3391 } 3392 if( rc!=SQLITE_OK ){ 3393 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 3394 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 3395 sqlite3_free(zErrMsg); 3396 goto opendb_out; 3397 } 3398 assert( db->pVfs!=0 ); 3399 #if defined(SQLITE_OS_KV) || defined(SQLITE_OS_KV_OPTIONAL) 3400 if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){ 3401 db->temp_store = 2; 3402 } 3403 #endif 3404 3405 /* Open the backend database driver */ 3406 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 3407 flags | SQLITE_OPEN_MAIN_DB); 3408 if( rc!=SQLITE_OK ){ 3409 if( rc==SQLITE_IOERR_NOMEM ){ 3410 rc = SQLITE_NOMEM_BKPT; 3411 } 3412 sqlite3Error(db, rc); 3413 goto opendb_out; 3414 } 3415 sqlite3BtreeEnter(db->aDb[0].pBt); 3416 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 3417 if( !db->mallocFailed ){ 3418 sqlite3SetTextEncoding(db, SCHEMA_ENC(db)); 3419 } 3420 sqlite3BtreeLeave(db->aDb[0].pBt); 3421 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 3422 3423 /* The default safety_level for the main database is FULL; for the temp 3424 ** database it is OFF. This matches the pager layer defaults. 3425 */ 3426 db->aDb[0].zDbSName = "main"; 3427 db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; 3428 db->aDb[1].zDbSName = "temp"; 3429 db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; 3430 3431 db->eOpenState = SQLITE_STATE_OPEN; 3432 if( db->mallocFailed ){ 3433 goto opendb_out; 3434 } 3435 3436 /* Register all built-in functions, but do not attempt to read the 3437 ** database schema yet. This is delayed until the first time the database 3438 ** is accessed. 3439 */ 3440 sqlite3Error(db, SQLITE_OK); 3441 sqlite3RegisterPerConnectionBuiltinFunctions(db); 3442 rc = sqlite3_errcode(db); 3443 3444 3445 /* Load compiled-in extensions */ 3446 for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){ 3447 rc = sqlite3BuiltinExtensions[i](db); 3448 } 3449 3450 /* Load automatic extensions - extensions that have been registered 3451 ** using the sqlite3_automatic_extension() API. 3452 */ 3453 if( rc==SQLITE_OK ){ 3454 sqlite3AutoLoadExtensions(db); 3455 rc = sqlite3_errcode(db); 3456 if( rc!=SQLITE_OK ){ 3457 goto opendb_out; 3458 } 3459 } 3460 3461 #ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS 3462 /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time 3463 ** option gives access to internal functions by default. 3464 ** Testing use only!!! */ 3465 db->mDbFlags |= DBFLAG_InternalFunc; 3466 #endif 3467 3468 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 3469 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 3470 ** mode. Doing nothing at all also makes NORMAL the default. 3471 */ 3472 #ifdef SQLITE_DEFAULT_LOCKING_MODE 3473 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 3474 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 3475 SQLITE_DEFAULT_LOCKING_MODE); 3476 #endif 3477 3478 if( rc ) sqlite3Error(db, rc); 3479 3480 /* Enable the lookaside-malloc subsystem */ 3481 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 3482 sqlite3GlobalConfig.nLookaside); 3483 3484 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 3485 3486 opendb_out: 3487 if( db ){ 3488 assert( db->mutex!=0 || isThreadsafe==0 3489 || sqlite3GlobalConfig.bFullMutex==0 ); 3490 sqlite3_mutex_leave(db->mutex); 3491 } 3492 rc = sqlite3_errcode(db); 3493 assert( db!=0 || (rc&0xff)==SQLITE_NOMEM ); 3494 if( (rc&0xff)==SQLITE_NOMEM ){ 3495 sqlite3_close(db); 3496 db = 0; 3497 }else if( rc!=SQLITE_OK ){ 3498 db->eOpenState = SQLITE_STATE_SICK; 3499 } 3500 *ppDb = db; 3501 #ifdef SQLITE_ENABLE_SQLLOG 3502 if( sqlite3GlobalConfig.xSqllog ){ 3503 /* Opening a db handle. Fourth parameter is passed 0. */ 3504 void *pArg = sqlite3GlobalConfig.pSqllogArg; 3505 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 3506 } 3507 #endif 3508 sqlite3_free_filename(zOpen); 3509 return rc; 3510 } 3511 3512 3513 /* 3514 ** Open a new database handle. 3515 */ 3516 int sqlite3_open( 3517 const char *zFilename, 3518 sqlite3 **ppDb 3519 ){ 3520 return openDatabase(zFilename, ppDb, 3521 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 3522 } 3523 int sqlite3_open_v2( 3524 const char *filename, /* Database filename (UTF-8) */ 3525 sqlite3 **ppDb, /* OUT: SQLite db handle */ 3526 int flags, /* Flags */ 3527 const char *zVfs /* Name of VFS module to use */ 3528 ){ 3529 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 3530 } 3531 3532 #ifndef SQLITE_OMIT_UTF16 3533 /* 3534 ** Open a new database handle. 3535 */ 3536 int sqlite3_open16( 3537 const void *zFilename, 3538 sqlite3 **ppDb 3539 ){ 3540 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 3541 sqlite3_value *pVal; 3542 int rc; 3543 3544 #ifdef SQLITE_ENABLE_API_ARMOR 3545 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 3546 #endif 3547 *ppDb = 0; 3548 #ifndef SQLITE_OMIT_AUTOINIT 3549 rc = sqlite3_initialize(); 3550 if( rc ) return rc; 3551 #endif 3552 if( zFilename==0 ) zFilename = "\000\000"; 3553 pVal = sqlite3ValueNew(0); 3554 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 3555 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 3556 if( zFilename8 ){ 3557 rc = openDatabase(zFilename8, ppDb, 3558 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 3559 assert( *ppDb || rc==SQLITE_NOMEM ); 3560 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 3561 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 3562 } 3563 }else{ 3564 rc = SQLITE_NOMEM_BKPT; 3565 } 3566 sqlite3ValueFree(pVal); 3567 3568 return rc & 0xff; 3569 } 3570 #endif /* SQLITE_OMIT_UTF16 */ 3571 3572 /* 3573 ** Register a new collation sequence with the database handle db. 3574 */ 3575 int sqlite3_create_collation( 3576 sqlite3* db, 3577 const char *zName, 3578 int enc, 3579 void* pCtx, 3580 int(*xCompare)(void*,int,const void*,int,const void*) 3581 ){ 3582 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 3583 } 3584 3585 /* 3586 ** Register a new collation sequence with the database handle db. 3587 */ 3588 int sqlite3_create_collation_v2( 3589 sqlite3* db, 3590 const char *zName, 3591 int enc, 3592 void* pCtx, 3593 int(*xCompare)(void*,int,const void*,int,const void*), 3594 void(*xDel)(void*) 3595 ){ 3596 int rc; 3597 3598 #ifdef SQLITE_ENABLE_API_ARMOR 3599 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3600 #endif 3601 sqlite3_mutex_enter(db->mutex); 3602 assert( !db->mallocFailed ); 3603 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 3604 rc = sqlite3ApiExit(db, rc); 3605 sqlite3_mutex_leave(db->mutex); 3606 return rc; 3607 } 3608 3609 #ifndef SQLITE_OMIT_UTF16 3610 /* 3611 ** Register a new collation sequence with the database handle db. 3612 */ 3613 int sqlite3_create_collation16( 3614 sqlite3* db, 3615 const void *zName, 3616 int enc, 3617 void* pCtx, 3618 int(*xCompare)(void*,int,const void*,int,const void*) 3619 ){ 3620 int rc = SQLITE_OK; 3621 char *zName8; 3622 3623 #ifdef SQLITE_ENABLE_API_ARMOR 3624 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3625 #endif 3626 sqlite3_mutex_enter(db->mutex); 3627 assert( !db->mallocFailed ); 3628 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3629 if( zName8 ){ 3630 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3631 sqlite3DbFree(db, zName8); 3632 } 3633 rc = sqlite3ApiExit(db, rc); 3634 sqlite3_mutex_leave(db->mutex); 3635 return rc; 3636 } 3637 #endif /* SQLITE_OMIT_UTF16 */ 3638 3639 /* 3640 ** Register a collation sequence factory callback with the database handle 3641 ** db. Replace any previously installed collation sequence factory. 3642 */ 3643 int sqlite3_collation_needed( 3644 sqlite3 *db, 3645 void *pCollNeededArg, 3646 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3647 ){ 3648 #ifdef SQLITE_ENABLE_API_ARMOR 3649 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3650 #endif 3651 sqlite3_mutex_enter(db->mutex); 3652 db->xCollNeeded = xCollNeeded; 3653 db->xCollNeeded16 = 0; 3654 db->pCollNeededArg = pCollNeededArg; 3655 sqlite3_mutex_leave(db->mutex); 3656 return SQLITE_OK; 3657 } 3658 3659 #ifndef SQLITE_OMIT_UTF16 3660 /* 3661 ** Register a collation sequence factory callback with the database handle 3662 ** db. Replace any previously installed collation sequence factory. 3663 */ 3664 int sqlite3_collation_needed16( 3665 sqlite3 *db, 3666 void *pCollNeededArg, 3667 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3668 ){ 3669 #ifdef SQLITE_ENABLE_API_ARMOR 3670 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3671 #endif 3672 sqlite3_mutex_enter(db->mutex); 3673 db->xCollNeeded = 0; 3674 db->xCollNeeded16 = xCollNeeded16; 3675 db->pCollNeededArg = pCollNeededArg; 3676 sqlite3_mutex_leave(db->mutex); 3677 return SQLITE_OK; 3678 } 3679 #endif /* SQLITE_OMIT_UTF16 */ 3680 3681 #ifndef SQLITE_OMIT_DEPRECATED 3682 /* 3683 ** This function is now an anachronism. It used to be used to recover from a 3684 ** malloc() failure, but SQLite now does this automatically. 3685 */ 3686 int sqlite3_global_recover(void){ 3687 return SQLITE_OK; 3688 } 3689 #endif 3690 3691 /* 3692 ** Test to see whether or not the database connection is in autocommit 3693 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3694 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3695 ** by the next COMMIT or ROLLBACK. 3696 */ 3697 int sqlite3_get_autocommit(sqlite3 *db){ 3698 #ifdef SQLITE_ENABLE_API_ARMOR 3699 if( !sqlite3SafetyCheckOk(db) ){ 3700 (void)SQLITE_MISUSE_BKPT; 3701 return 0; 3702 } 3703 #endif 3704 return db->autoCommit; 3705 } 3706 3707 /* 3708 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3709 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error 3710 ** constants. They serve two purposes: 3711 ** 3712 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3713 ** to detect when version error conditions occurs. 3714 ** 3715 ** 2. Invoke sqlite3_log() to provide the source code location where 3716 ** a low-level error is first detected. 3717 */ 3718 int sqlite3ReportError(int iErr, int lineno, const char *zType){ 3719 sqlite3_log(iErr, "%s at line %d of [%.10s]", 3720 zType, lineno, 20+sqlite3_sourceid()); 3721 return iErr; 3722 } 3723 int sqlite3CorruptError(int lineno){ 3724 testcase( sqlite3GlobalConfig.xLog!=0 ); 3725 return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); 3726 } 3727 int sqlite3MisuseError(int lineno){ 3728 testcase( sqlite3GlobalConfig.xLog!=0 ); 3729 return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); 3730 } 3731 int sqlite3CantopenError(int lineno){ 3732 testcase( sqlite3GlobalConfig.xLog!=0 ); 3733 return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); 3734 } 3735 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) 3736 int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ 3737 char zMsg[100]; 3738 sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); 3739 testcase( sqlite3GlobalConfig.xLog!=0 ); 3740 return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 3741 } 3742 #endif 3743 #ifdef SQLITE_DEBUG 3744 int sqlite3NomemError(int lineno){ 3745 testcase( sqlite3GlobalConfig.xLog!=0 ); 3746 return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); 3747 } 3748 int sqlite3IoerrnomemError(int lineno){ 3749 testcase( sqlite3GlobalConfig.xLog!=0 ); 3750 return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); 3751 } 3752 #endif 3753 3754 #ifndef SQLITE_OMIT_DEPRECATED 3755 /* 3756 ** This is a convenience routine that makes sure that all thread-specific 3757 ** data for this thread has been deallocated. 3758 ** 3759 ** SQLite no longer uses thread-specific data so this routine is now a 3760 ** no-op. It is retained for historical compatibility. 3761 */ 3762 void sqlite3_thread_cleanup(void){ 3763 } 3764 #endif 3765 3766 /* 3767 ** Return meta information about a specific column of a database table. 3768 ** See comment in sqlite3.h (sqlite.h.in) for details. 3769 */ 3770 int sqlite3_table_column_metadata( 3771 sqlite3 *db, /* Connection handle */ 3772 const char *zDbName, /* Database name or NULL */ 3773 const char *zTableName, /* Table name */ 3774 const char *zColumnName, /* Column name */ 3775 char const **pzDataType, /* OUTPUT: Declared data type */ 3776 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3777 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3778 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3779 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3780 ){ 3781 int rc; 3782 char *zErrMsg = 0; 3783 Table *pTab = 0; 3784 Column *pCol = 0; 3785 int iCol = 0; 3786 char const *zDataType = 0; 3787 char const *zCollSeq = 0; 3788 int notnull = 0; 3789 int primarykey = 0; 3790 int autoinc = 0; 3791 3792 3793 #ifdef SQLITE_ENABLE_API_ARMOR 3794 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3795 return SQLITE_MISUSE_BKPT; 3796 } 3797 #endif 3798 3799 /* Ensure the database schema has been loaded */ 3800 sqlite3_mutex_enter(db->mutex); 3801 sqlite3BtreeEnterAll(db); 3802 rc = sqlite3Init(db, &zErrMsg); 3803 if( SQLITE_OK!=rc ){ 3804 goto error_out; 3805 } 3806 3807 /* Locate the table in question */ 3808 pTab = sqlite3FindTable(db, zTableName, zDbName); 3809 if( !pTab || IsView(pTab) ){ 3810 pTab = 0; 3811 goto error_out; 3812 } 3813 3814 /* Find the column for which info is requested */ 3815 if( zColumnName==0 ){ 3816 /* Query for existance of table only */ 3817 }else{ 3818 for(iCol=0; iCol<pTab->nCol; iCol++){ 3819 pCol = &pTab->aCol[iCol]; 3820 if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ 3821 break; 3822 } 3823 } 3824 if( iCol==pTab->nCol ){ 3825 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3826 iCol = pTab->iPKey; 3827 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3828 }else{ 3829 pTab = 0; 3830 goto error_out; 3831 } 3832 } 3833 } 3834 3835 /* The following block stores the meta information that will be returned 3836 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3837 ** and autoinc. At this point there are two possibilities: 3838 ** 3839 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3840 ** and there is no explicitly declared IPK column. 3841 ** 3842 ** 2. The table is not a view and the column name identified an 3843 ** explicitly declared column. Copy meta information from *pCol. 3844 */ 3845 if( pCol ){ 3846 zDataType = sqlite3ColumnType(pCol,0); 3847 zCollSeq = sqlite3ColumnColl(pCol); 3848 notnull = pCol->notNull!=0; 3849 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3850 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3851 }else{ 3852 zDataType = "INTEGER"; 3853 primarykey = 1; 3854 } 3855 if( !zCollSeq ){ 3856 zCollSeq = sqlite3StrBINARY; 3857 } 3858 3859 error_out: 3860 sqlite3BtreeLeaveAll(db); 3861 3862 /* Whether the function call succeeded or failed, set the output parameters 3863 ** to whatever their local counterparts contain. If an error did occur, 3864 ** this has the effect of zeroing all output parameters. 3865 */ 3866 if( pzDataType ) *pzDataType = zDataType; 3867 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3868 if( pNotNull ) *pNotNull = notnull; 3869 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3870 if( pAutoinc ) *pAutoinc = autoinc; 3871 3872 if( SQLITE_OK==rc && !pTab ){ 3873 sqlite3DbFree(db, zErrMsg); 3874 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3875 zColumnName); 3876 rc = SQLITE_ERROR; 3877 } 3878 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3879 sqlite3DbFree(db, zErrMsg); 3880 rc = sqlite3ApiExit(db, rc); 3881 sqlite3_mutex_leave(db->mutex); 3882 return rc; 3883 } 3884 3885 /* 3886 ** Sleep for a little while. Return the amount of time slept. 3887 */ 3888 int sqlite3_sleep(int ms){ 3889 sqlite3_vfs *pVfs; 3890 int rc; 3891 pVfs = sqlite3_vfs_find(0); 3892 if( pVfs==0 ) return 0; 3893 3894 /* This function works in milliseconds, but the underlying OsSleep() 3895 ** API uses microseconds. Hence the 1000's. 3896 */ 3897 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3898 return rc; 3899 } 3900 3901 /* 3902 ** Enable or disable the extended result codes. 3903 */ 3904 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3905 #ifdef SQLITE_ENABLE_API_ARMOR 3906 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3907 #endif 3908 sqlite3_mutex_enter(db->mutex); 3909 db->errMask = onoff ? 0xffffffff : 0xff; 3910 sqlite3_mutex_leave(db->mutex); 3911 return SQLITE_OK; 3912 } 3913 3914 /* 3915 ** Invoke the xFileControl method on a particular database. 3916 */ 3917 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3918 int rc = SQLITE_ERROR; 3919 Btree *pBtree; 3920 3921 #ifdef SQLITE_ENABLE_API_ARMOR 3922 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3923 #endif 3924 sqlite3_mutex_enter(db->mutex); 3925 pBtree = sqlite3DbNameToBtree(db, zDbName); 3926 if( pBtree ){ 3927 Pager *pPager; 3928 sqlite3_file *fd; 3929 sqlite3BtreeEnter(pBtree); 3930 pPager = sqlite3BtreePager(pBtree); 3931 assert( pPager!=0 ); 3932 fd = sqlite3PagerFile(pPager); 3933 assert( fd!=0 ); 3934 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3935 *(sqlite3_file**)pArg = fd; 3936 rc = SQLITE_OK; 3937 }else if( op==SQLITE_FCNTL_VFS_POINTER ){ 3938 *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); 3939 rc = SQLITE_OK; 3940 }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ 3941 *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); 3942 rc = SQLITE_OK; 3943 }else if( op==SQLITE_FCNTL_DATA_VERSION ){ 3944 *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager); 3945 rc = SQLITE_OK; 3946 }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){ 3947 int iNew = *(int*)pArg; 3948 *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree); 3949 if( iNew>=0 && iNew<=255 ){ 3950 sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0); 3951 } 3952 rc = SQLITE_OK; 3953 }else{ 3954 int nSave = db->busyHandler.nBusy; 3955 rc = sqlite3OsFileControl(fd, op, pArg); 3956 db->busyHandler.nBusy = nSave; 3957 } 3958 sqlite3BtreeLeave(pBtree); 3959 } 3960 sqlite3_mutex_leave(db->mutex); 3961 return rc; 3962 } 3963 3964 /* 3965 ** Interface to the testing logic. 3966 */ 3967 int sqlite3_test_control(int op, ...){ 3968 int rc = 0; 3969 #ifdef SQLITE_UNTESTABLE 3970 UNUSED_PARAMETER(op); 3971 #else 3972 va_list ap; 3973 va_start(ap, op); 3974 switch( op ){ 3975 3976 /* 3977 ** Save the current state of the PRNG. 3978 */ 3979 case SQLITE_TESTCTRL_PRNG_SAVE: { 3980 sqlite3PrngSaveState(); 3981 break; 3982 } 3983 3984 /* 3985 ** Restore the state of the PRNG to the last state saved using 3986 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3987 ** this verb acts like PRNG_RESET. 3988 */ 3989 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3990 sqlite3PrngRestoreState(); 3991 break; 3992 } 3993 3994 /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db); 3995 ** 3996 ** Control the seed for the pseudo-random number generator (PRNG) that 3997 ** is built into SQLite. Cases: 3998 ** 3999 ** x!=0 && db!=0 Seed the PRNG to the current value of the 4000 ** schema cookie in the main database for db, or 4001 ** x if the schema cookie is zero. This case 4002 ** is convenient to use with database fuzzers 4003 ** as it allows the fuzzer some control over the 4004 ** the PRNG seed. 4005 ** 4006 ** x!=0 && db==0 Seed the PRNG to the value of x. 4007 ** 4008 ** x==0 && db==0 Revert to default behavior of using the 4009 ** xRandomness method on the primary VFS. 4010 ** 4011 ** This test-control also resets the PRNG so that the new seed will 4012 ** be used for the next call to sqlite3_randomness(). 4013 */ 4014 #ifndef SQLITE_OMIT_WSD 4015 case SQLITE_TESTCTRL_PRNG_SEED: { 4016 int x = va_arg(ap, int); 4017 int y; 4018 sqlite3 *db = va_arg(ap, sqlite3*); 4019 assert( db==0 || db->aDb[0].pSchema!=0 ); 4020 if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; } 4021 sqlite3Config.iPrngSeed = x; 4022 sqlite3_randomness(0,0); 4023 break; 4024 } 4025 #endif 4026 4027 /* 4028 ** sqlite3_test_control(BITVEC_TEST, size, program) 4029 ** 4030 ** Run a test against a Bitvec object of size. The program argument 4031 ** is an array of integers that defines the test. Return -1 on a 4032 ** memory allocation error, 0 on success, or non-zero for an error. 4033 ** See the sqlite3BitvecBuiltinTest() for additional information. 4034 */ 4035 case SQLITE_TESTCTRL_BITVEC_TEST: { 4036 int sz = va_arg(ap, int); 4037 int *aProg = va_arg(ap, int*); 4038 rc = sqlite3BitvecBuiltinTest(sz, aProg); 4039 break; 4040 } 4041 4042 /* 4043 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 4044 ** 4045 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 4046 ** if xCallback is not NULL. 4047 ** 4048 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 4049 ** is called immediately after installing the new callback and the return 4050 ** value from sqlite3FaultSim(0) becomes the return from 4051 ** sqlite3_test_control(). 4052 */ 4053 case SQLITE_TESTCTRL_FAULT_INSTALL: { 4054 /* A bug in MSVC prevents it from understanding pointers to functions 4055 ** types in the second argument to va_arg(). Work around the problem 4056 ** using a typedef. 4057 ** http://support.microsoft.com/kb/47961 <-- dead hyperlink 4058 ** Search at http://web.archive.org/ to find the 2015-03-16 archive 4059 ** of the link above to see the original text. 4060 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 4061 */ 4062 typedef int(*sqlite3FaultFuncType)(int); 4063 sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType); 4064 rc = sqlite3FaultSim(0); 4065 break; 4066 } 4067 4068 /* 4069 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 4070 ** 4071 ** Register hooks to call to indicate which malloc() failures 4072 ** are benign. 4073 */ 4074 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 4075 typedef void (*void_function)(void); 4076 void_function xBenignBegin; 4077 void_function xBenignEnd; 4078 xBenignBegin = va_arg(ap, void_function); 4079 xBenignEnd = va_arg(ap, void_function); 4080 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 4081 break; 4082 } 4083 4084 /* 4085 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 4086 ** 4087 ** Set the PENDING byte to the value in the argument, if X>0. 4088 ** Make no changes if X==0. Return the value of the pending byte 4089 ** as it existing before this routine was called. 4090 ** 4091 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 4092 ** an incompatible database file format. Changing the PENDING byte 4093 ** while any database connection is open results in undefined and 4094 ** deleterious behavior. 4095 */ 4096 case SQLITE_TESTCTRL_PENDING_BYTE: { 4097 rc = PENDING_BYTE; 4098 #ifndef SQLITE_OMIT_WSD 4099 { 4100 unsigned int newVal = va_arg(ap, unsigned int); 4101 if( newVal ) sqlite3PendingByte = newVal; 4102 } 4103 #endif 4104 break; 4105 } 4106 4107 /* 4108 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 4109 ** 4110 ** This action provides a run-time test to see whether or not 4111 ** assert() was enabled at compile-time. If X is true and assert() 4112 ** is enabled, then the return value is true. If X is true and 4113 ** assert() is disabled, then the return value is zero. If X is 4114 ** false and assert() is enabled, then the assertion fires and the 4115 ** process aborts. If X is false and assert() is disabled, then the 4116 ** return value is zero. 4117 */ 4118 case SQLITE_TESTCTRL_ASSERT: { 4119 volatile int x = 0; 4120 assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); 4121 rc = x; 4122 #if defined(SQLITE_DEBUG) 4123 /* Invoke these debugging routines so that the compiler does not 4124 ** issue "defined but not used" warnings. */ 4125 if( x==9999 ){ 4126 sqlite3ShowExpr(0); 4127 sqlite3ShowExpr(0); 4128 sqlite3ShowExprList(0); 4129 sqlite3ShowIdList(0); 4130 sqlite3ShowSrcList(0); 4131 sqlite3ShowWith(0); 4132 sqlite3ShowUpsert(0); 4133 sqlite3ShowTriggerStep(0); 4134 sqlite3ShowTriggerStepList(0); 4135 sqlite3ShowTrigger(0); 4136 sqlite3ShowTriggerList(0); 4137 #ifndef SQLITE_OMIT_WINDOWFUNC 4138 sqlite3ShowWindow(0); 4139 sqlite3ShowWinFunc(0); 4140 #endif 4141 sqlite3ShowSelect(0); 4142 } 4143 #endif 4144 break; 4145 } 4146 4147 4148 /* 4149 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 4150 ** 4151 ** This action provides a run-time test to see how the ALWAYS and 4152 ** NEVER macros were defined at compile-time. 4153 ** 4154 ** The return value is ALWAYS(X) if X is true, or 0 if X is false. 4155 ** 4156 ** The recommended test is X==2. If the return value is 2, that means 4157 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 4158 ** default setting. If the return value is 1, then ALWAYS() is either 4159 ** hard-coded to true or else it asserts if its argument is false. 4160 ** The first behavior (hard-coded to true) is the case if 4161 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 4162 ** behavior (assert if the argument to ALWAYS() is false) is the case if 4163 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 4164 ** 4165 ** The run-time test procedure might look something like this: 4166 ** 4167 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 4168 ** // ALWAYS() and NEVER() are no-op pass-through macros 4169 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 4170 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 4171 ** }else{ 4172 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 4173 ** } 4174 */ 4175 case SQLITE_TESTCTRL_ALWAYS: { 4176 int x = va_arg(ap,int); 4177 rc = x ? ALWAYS(x) : 0; 4178 break; 4179 } 4180 4181 /* 4182 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 4183 ** 4184 ** The integer returned reveals the byte-order of the computer on which 4185 ** SQLite is running: 4186 ** 4187 ** 1 big-endian, determined at run-time 4188 ** 10 little-endian, determined at run-time 4189 ** 432101 big-endian, determined at compile-time 4190 ** 123410 little-endian, determined at compile-time 4191 */ 4192 case SQLITE_TESTCTRL_BYTEORDER: { 4193 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 4194 break; 4195 } 4196 4197 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 4198 ** 4199 ** Enable or disable various optimizations for testing purposes. The 4200 ** argument N is a bitmask of optimizations to be disabled. For normal 4201 ** operation N should be 0. The idea is that a test program (like the 4202 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 4203 ** with various optimizations disabled to verify that the same answer 4204 ** is obtained in every case. 4205 */ 4206 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 4207 sqlite3 *db = va_arg(ap, sqlite3*); 4208 db->dbOptFlags = va_arg(ap, u32); 4209 break; 4210 } 4211 4212 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt); 4213 ** 4214 ** If parameter onoff is 1, subsequent calls to localtime() fail. 4215 ** If 2, then invoke xAlt() instead of localtime(). If 0, normal 4216 ** processing. 4217 ** 4218 ** xAlt arguments are void pointers, but they really want to be: 4219 ** 4220 ** int xAlt(const time_t*, struct tm*); 4221 ** 4222 ** xAlt should write results in to struct tm object of its 2nd argument 4223 ** and return zero on success, or return non-zero on failure. 4224 */ 4225 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 4226 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 4227 if( sqlite3GlobalConfig.bLocaltimeFault==2 ){ 4228 typedef int(*sqlite3LocaltimeType)(const void*,void*); 4229 sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType); 4230 }else{ 4231 sqlite3GlobalConfig.xAltLocaltime = 0; 4232 } 4233 break; 4234 } 4235 4236 /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*); 4237 ** 4238 ** Toggle the ability to use internal functions on or off for 4239 ** the database connection given in the argument. 4240 */ 4241 case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { 4242 sqlite3 *db = va_arg(ap, sqlite3*); 4243 db->mDbFlags ^= DBFLAG_InternalFunc; 4244 break; 4245 } 4246 4247 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 4248 ** 4249 ** Set or clear a flag that indicates that the database file is always well- 4250 ** formed and never corrupt. This flag is clear by default, indicating that 4251 ** database files might have arbitrary corruption. Setting the flag during 4252 ** testing causes certain assert() statements in the code to be activated 4253 ** that demonstrat invariants on well-formed database files. 4254 */ 4255 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 4256 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 4257 break; 4258 } 4259 4260 /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); 4261 ** 4262 ** Set or clear a flag that causes SQLite to verify that type, name, 4263 ** and tbl_name fields of the sqlite_schema table. This is normally 4264 ** on, but it is sometimes useful to turn it off for testing. 4265 ** 4266 ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the 4267 ** verification of rootpage numbers when parsing the schema. This 4268 ** is useful to make it easier to reach strange internal error states 4269 ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled 4270 ** in production. 4271 */ 4272 case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: { 4273 sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int); 4274 break; 4275 } 4276 4277 /* Set the threshold at which OP_Once counters reset back to zero. 4278 ** By default this is 0x7ffffffe (over 2 billion), but that value is 4279 ** too big to test in a reasonable amount of time, so this control is 4280 ** provided to set a small and easily reachable reset value. 4281 */ 4282 case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { 4283 sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); 4284 break; 4285 } 4286 4287 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 4288 ** 4289 ** Set the VDBE coverage callback function to xCallback with context 4290 ** pointer ptr. 4291 */ 4292 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 4293 #ifdef SQLITE_VDBE_COVERAGE 4294 typedef void (*branch_callback)(void*,unsigned int, 4295 unsigned char,unsigned char); 4296 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 4297 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 4298 #endif 4299 break; 4300 } 4301 4302 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 4303 case SQLITE_TESTCTRL_SORTER_MMAP: { 4304 sqlite3 *db = va_arg(ap, sqlite3*); 4305 db->nMaxSorterMmap = va_arg(ap, int); 4306 break; 4307 } 4308 4309 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 4310 ** 4311 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 4312 ** not. 4313 */ 4314 case SQLITE_TESTCTRL_ISINIT: { 4315 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 4316 break; 4317 } 4318 4319 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 4320 ** 4321 ** This test control is used to create imposter tables. "db" is a pointer 4322 ** to the database connection. dbName is the database name (ex: "main" or 4323 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 4324 ** or off. "tnum" is the root page of the b-tree to which the imposter 4325 ** table should connect. 4326 ** 4327 ** Enable imposter mode only when the schema has already been parsed. Then 4328 ** run a single CREATE TABLE statement to construct the imposter table in 4329 ** the parsed schema. Then turn imposter mode back off again. 4330 ** 4331 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 4332 ** the schema to be reparsed the next time it is needed. This has the 4333 ** effect of erasing all imposter tables. 4334 */ 4335 case SQLITE_TESTCTRL_IMPOSTER: { 4336 sqlite3 *db = va_arg(ap, sqlite3*); 4337 int iDb; 4338 sqlite3_mutex_enter(db->mutex); 4339 iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 4340 if( iDb>=0 ){ 4341 db->init.iDb = iDb; 4342 db->init.busy = db->init.imposterTable = va_arg(ap,int); 4343 db->init.newTnum = va_arg(ap,int); 4344 if( db->init.busy==0 && db->init.newTnum>0 ){ 4345 sqlite3ResetAllSchemasOfConnection(db); 4346 } 4347 } 4348 sqlite3_mutex_leave(db->mutex); 4349 break; 4350 } 4351 4352 #if defined(YYCOVERAGE) 4353 /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out) 4354 ** 4355 ** This test control (only available when SQLite is compiled with 4356 ** -DYYCOVERAGE) writes a report onto "out" that shows all 4357 ** state/lookahead combinations in the parser state machine 4358 ** which are never exercised. If any state is missed, make the 4359 ** return code SQLITE_ERROR. 4360 */ 4361 case SQLITE_TESTCTRL_PARSER_COVERAGE: { 4362 FILE *out = va_arg(ap, FILE*); 4363 if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; 4364 break; 4365 } 4366 #endif /* defined(YYCOVERAGE) */ 4367 4368 /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); 4369 ** 4370 ** This test-control causes the most recent sqlite3_result_int64() value 4371 ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, 4372 ** MEM_IntReal values only arise during an INSERT operation of integer 4373 ** values into a REAL column, so they can be challenging to test. This 4374 ** test-control enables us to write an intreal() SQL function that can 4375 ** inject an intreal() value at arbitrary places in an SQL statement, 4376 ** for testing purposes. 4377 */ 4378 case SQLITE_TESTCTRL_RESULT_INTREAL: { 4379 sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); 4380 sqlite3ResultIntReal(pCtx); 4381 break; 4382 } 4383 4384 /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT, 4385 ** sqlite3 *db, // Database connection 4386 ** u64 *pnSeek // Write seek count here 4387 ** ); 4388 ** 4389 ** This test-control queries the seek-counter on the "main" database 4390 ** file. The seek-counter is written into *pnSeek and is then reset. 4391 ** The seek-count is only available if compiled with SQLITE_DEBUG. 4392 */ 4393 case SQLITE_TESTCTRL_SEEK_COUNT: { 4394 sqlite3 *db = va_arg(ap, sqlite3*); 4395 u64 *pn = va_arg(ap, sqlite3_uint64*); 4396 *pn = sqlite3BtreeSeekCount(db->aDb->pBt); 4397 (void)db; /* Silence harmless unused variable warning */ 4398 break; 4399 } 4400 4401 /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) 4402 ** 4403 ** "ptr" is a pointer to a u32. 4404 ** 4405 ** op==0 Store the current sqlite3TreeTrace in *ptr 4406 ** op==1 Set sqlite3TreeTrace to the value *ptr 4407 ** op==3 Store the current sqlite3WhereTrace in *ptr 4408 ** op==3 Set sqlite3WhereTrace to the value *ptr 4409 */ 4410 case SQLITE_TESTCTRL_TRACEFLAGS: { 4411 int opTrace = va_arg(ap, int); 4412 u32 *ptr = va_arg(ap, u32*); 4413 switch( opTrace ){ 4414 case 0: *ptr = sqlite3TreeTrace; break; 4415 case 1: sqlite3TreeTrace = *ptr; break; 4416 case 2: *ptr = sqlite3WhereTrace; break; 4417 case 3: sqlite3WhereTrace = *ptr; break; 4418 } 4419 break; 4420 } 4421 4422 /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST, 4423 ** double fIn, // Input value 4424 ** int *pLogEst, // sqlite3LogEstFromDouble(fIn) 4425 ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst) 4426 ** int *pLogEst2 // sqlite3LogEst(*pInt) 4427 ** ); 4428 ** 4429 ** Test access for the LogEst conversion routines. 4430 */ 4431 case SQLITE_TESTCTRL_LOGEST: { 4432 double rIn = va_arg(ap, double); 4433 LogEst rLogEst = sqlite3LogEstFromDouble(rIn); 4434 int *pI1 = va_arg(ap,int*); 4435 u64 *pU64 = va_arg(ap,u64*); 4436 int *pI2 = va_arg(ap,int*); 4437 *pI1 = rLogEst; 4438 *pU64 = sqlite3LogEstToInt(rLogEst); 4439 *pI2 = sqlite3LogEst(*pU64); 4440 break; 4441 } 4442 4443 4444 #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) 4445 /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) 4446 ** 4447 ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value 4448 ** of the id-th tuning parameter to *piValue. If "id" is between -1 4449 ** and -SQLITE_NTUNE, then write the current value of the (-id)-th 4450 ** tuning parameter into *piValue. 4451 ** 4452 ** Tuning parameters are for use during transient development builds, 4453 ** to help find the best values for constants in the query planner. 4454 ** Access tuning parameters using the Tuning(ID) macro. Set the 4455 ** parameters in the CLI using ".testctrl tune ID VALUE". 4456 ** 4457 ** Transient use only. Tuning parameters should not be used in 4458 ** checked-in code. 4459 */ 4460 case SQLITE_TESTCTRL_TUNE: { 4461 int id = va_arg(ap, int); 4462 int *piValue = va_arg(ap, int*); 4463 if( id>0 && id<=SQLITE_NTUNE ){ 4464 Tuning(id) = *piValue; 4465 }else if( id<0 && id>=-SQLITE_NTUNE ){ 4466 *piValue = Tuning(-id); 4467 }else{ 4468 rc = SQLITE_NOTFOUND; 4469 } 4470 break; 4471 } 4472 #endif 4473 } 4474 va_end(ap); 4475 #endif /* SQLITE_UNTESTABLE */ 4476 return rc; 4477 } 4478 4479 /* 4480 ** The Pager stores the Database filename, Journal filename, and WAL filename 4481 ** consecutively in memory, in that order. The database filename is prefixed 4482 ** by four zero bytes. Locate the start of the database filename by searching 4483 ** backwards for the first byte following four consecutive zero bytes. 4484 ** 4485 ** This only works if the filename passed in was obtained from the Pager. 4486 */ 4487 static const char *databaseName(const char *zName){ 4488 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 4489 zName--; 4490 } 4491 return zName; 4492 } 4493 4494 /* 4495 ** Append text z[] to the end of p[]. Return a pointer to the first 4496 ** character after then zero terminator on the new text in p[]. 4497 */ 4498 static char *appendText(char *p, const char *z){ 4499 size_t n = strlen(z); 4500 memcpy(p, z, n+1); 4501 return p+n+1; 4502 } 4503 4504 /* 4505 ** Allocate memory to hold names for a database, journal file, WAL file, 4506 ** and query parameters. The pointer returned is valid for use by 4507 ** sqlite3_filename_database() and sqlite3_uri_parameter() and related 4508 ** functions. 4509 ** 4510 ** Memory layout must be compatible with that generated by the pager 4511 ** and expected by sqlite3_uri_parameter() and databaseName(). 4512 */ 4513 char *sqlite3_create_filename( 4514 const char *zDatabase, 4515 const char *zJournal, 4516 const char *zWal, 4517 int nParam, 4518 const char **azParam 4519 ){ 4520 sqlite3_int64 nByte; 4521 int i; 4522 char *pResult, *p; 4523 nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10; 4524 for(i=0; i<nParam*2; i++){ 4525 nByte += strlen(azParam[i])+1; 4526 } 4527 pResult = p = sqlite3_malloc64( nByte ); 4528 if( p==0 ) return 0; 4529 memset(p, 0, 4); 4530 p += 4; 4531 p = appendText(p, zDatabase); 4532 for(i=0; i<nParam*2; i++){ 4533 p = appendText(p, azParam[i]); 4534 } 4535 *(p++) = 0; 4536 p = appendText(p, zJournal); 4537 p = appendText(p, zWal); 4538 *(p++) = 0; 4539 *(p++) = 0; 4540 assert( (sqlite3_int64)(p - pResult)==nByte ); 4541 return pResult + 4; 4542 } 4543 4544 /* 4545 ** Free memory obtained from sqlite3_create_filename(). It is a severe 4546 ** error to call this routine with any parameter other than a pointer 4547 ** previously obtained from sqlite3_create_filename() or a NULL pointer. 4548 */ 4549 void sqlite3_free_filename(char *p){ 4550 if( p==0 ) return; 4551 p = (char*)databaseName(p); 4552 sqlite3_free(p - 4); 4553 } 4554 4555 4556 /* 4557 ** This is a utility routine, useful to VFS implementations, that checks 4558 ** to see if a database file was a URI that contained a specific query 4559 ** parameter, and if so obtains the value of the query parameter. 4560 ** 4561 ** The zFilename argument is the filename pointer passed into the xOpen() 4562 ** method of a VFS implementation. The zParam argument is the name of the 4563 ** query parameter we seek. This routine returns the value of the zParam 4564 ** parameter if it exists. If the parameter does not exist, this routine 4565 ** returns a NULL pointer. 4566 */ 4567 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 4568 if( zFilename==0 || zParam==0 ) return 0; 4569 zFilename = databaseName(zFilename); 4570 return uriParameter(zFilename, zParam); 4571 } 4572 4573 /* 4574 ** Return a pointer to the name of Nth query parameter of the filename. 4575 */ 4576 const char *sqlite3_uri_key(const char *zFilename, int N){ 4577 if( zFilename==0 || N<0 ) return 0; 4578 zFilename = databaseName(zFilename); 4579 zFilename += sqlite3Strlen30(zFilename) + 1; 4580 while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){ 4581 zFilename += sqlite3Strlen30(zFilename) + 1; 4582 zFilename += sqlite3Strlen30(zFilename) + 1; 4583 } 4584 return zFilename[0] ? zFilename : 0; 4585 } 4586 4587 /* 4588 ** Return a boolean value for a query parameter. 4589 */ 4590 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 4591 const char *z = sqlite3_uri_parameter(zFilename, zParam); 4592 bDflt = bDflt!=0; 4593 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 4594 } 4595 4596 /* 4597 ** Return a 64-bit integer value for a query parameter. 4598 */ 4599 sqlite3_int64 sqlite3_uri_int64( 4600 const char *zFilename, /* Filename as passed to xOpen */ 4601 const char *zParam, /* URI parameter sought */ 4602 sqlite3_int64 bDflt /* return if parameter is missing */ 4603 ){ 4604 const char *z = sqlite3_uri_parameter(zFilename, zParam); 4605 sqlite3_int64 v; 4606 if( z && sqlite3DecOrHexToI64(z, &v)==0 ){ 4607 bDflt = v; 4608 } 4609 return bDflt; 4610 } 4611 4612 /* 4613 ** Translate a filename that was handed to a VFS routine into the corresponding 4614 ** database, journal, or WAL file. 4615 ** 4616 ** It is an error to pass this routine a filename string that was not 4617 ** passed into the VFS from the SQLite core. Doing so is similar to 4618 ** passing free() a pointer that was not obtained from malloc() - it is 4619 ** an error that we cannot easily detect but that will likely cause memory 4620 ** corruption. 4621 */ 4622 const char *sqlite3_filename_database(const char *zFilename){ 4623 if( zFilename==0 ) return 0; 4624 return databaseName(zFilename); 4625 } 4626 const char *sqlite3_filename_journal(const char *zFilename){ 4627 if( zFilename==0 ) return 0; 4628 zFilename = databaseName(zFilename); 4629 zFilename += sqlite3Strlen30(zFilename) + 1; 4630 while( ALWAYS(zFilename) && zFilename[0] ){ 4631 zFilename += sqlite3Strlen30(zFilename) + 1; 4632 zFilename += sqlite3Strlen30(zFilename) + 1; 4633 } 4634 return zFilename + 1; 4635 } 4636 const char *sqlite3_filename_wal(const char *zFilename){ 4637 #ifdef SQLITE_OMIT_WAL 4638 return 0; 4639 #else 4640 zFilename = sqlite3_filename_journal(zFilename); 4641 if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1; 4642 return zFilename; 4643 #endif 4644 } 4645 4646 /* 4647 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 4648 */ 4649 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 4650 int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; 4651 return iDb<0 ? 0 : db->aDb[iDb].pBt; 4652 } 4653 4654 /* 4655 ** Return the name of the N-th database schema. Return NULL if N is out 4656 ** of range. 4657 */ 4658 const char *sqlite3_db_name(sqlite3 *db, int N){ 4659 #ifdef SQLITE_ENABLE_API_ARMOR 4660 if( !sqlite3SafetyCheckOk(db) ){ 4661 (void)SQLITE_MISUSE_BKPT; 4662 return 0; 4663 } 4664 #endif 4665 if( N<0 || N>=db->nDb ){ 4666 return 0; 4667 }else{ 4668 return db->aDb[N].zDbSName; 4669 } 4670 } 4671 4672 /* 4673 ** Return the filename of the database associated with a database 4674 ** connection. 4675 */ 4676 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 4677 Btree *pBt; 4678 #ifdef SQLITE_ENABLE_API_ARMOR 4679 if( !sqlite3SafetyCheckOk(db) ){ 4680 (void)SQLITE_MISUSE_BKPT; 4681 return 0; 4682 } 4683 #endif 4684 pBt = sqlite3DbNameToBtree(db, zDbName); 4685 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 4686 } 4687 4688 /* 4689 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 4690 ** no such database exists. 4691 */ 4692 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 4693 Btree *pBt; 4694 #ifdef SQLITE_ENABLE_API_ARMOR 4695 if( !sqlite3SafetyCheckOk(db) ){ 4696 (void)SQLITE_MISUSE_BKPT; 4697 return -1; 4698 } 4699 #endif 4700 pBt = sqlite3DbNameToBtree(db, zDbName); 4701 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 4702 } 4703 4704 #ifdef SQLITE_ENABLE_SNAPSHOT 4705 /* 4706 ** Obtain a snapshot handle for the snapshot of database zDb currently 4707 ** being read by handle db. 4708 */ 4709 int sqlite3_snapshot_get( 4710 sqlite3 *db, 4711 const char *zDb, 4712 sqlite3_snapshot **ppSnapshot 4713 ){ 4714 int rc = SQLITE_ERROR; 4715 #ifndef SQLITE_OMIT_WAL 4716 4717 #ifdef SQLITE_ENABLE_API_ARMOR 4718 if( !sqlite3SafetyCheckOk(db) ){ 4719 return SQLITE_MISUSE_BKPT; 4720 } 4721 #endif 4722 sqlite3_mutex_enter(db->mutex); 4723 4724 if( db->autoCommit==0 ){ 4725 int iDb = sqlite3FindDbName(db, zDb); 4726 if( iDb==0 || iDb>1 ){ 4727 Btree *pBt = db->aDb[iDb].pBt; 4728 if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){ 4729 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 4730 if( rc==SQLITE_OK ){ 4731 rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); 4732 } 4733 } 4734 } 4735 } 4736 4737 sqlite3_mutex_leave(db->mutex); 4738 #endif /* SQLITE_OMIT_WAL */ 4739 return rc; 4740 } 4741 4742 /* 4743 ** Open a read-transaction on the snapshot idendified by pSnapshot. 4744 */ 4745 int sqlite3_snapshot_open( 4746 sqlite3 *db, 4747 const char *zDb, 4748 sqlite3_snapshot *pSnapshot 4749 ){ 4750 int rc = SQLITE_ERROR; 4751 #ifndef SQLITE_OMIT_WAL 4752 4753 #ifdef SQLITE_ENABLE_API_ARMOR 4754 if( !sqlite3SafetyCheckOk(db) ){ 4755 return SQLITE_MISUSE_BKPT; 4756 } 4757 #endif 4758 sqlite3_mutex_enter(db->mutex); 4759 if( db->autoCommit==0 ){ 4760 int iDb; 4761 iDb = sqlite3FindDbName(db, zDb); 4762 if( iDb==0 || iDb>1 ){ 4763 Btree *pBt = db->aDb[iDb].pBt; 4764 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){ 4765 Pager *pPager = sqlite3BtreePager(pBt); 4766 int bUnlock = 0; 4767 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){ 4768 if( db->nVdbeActive==0 ){ 4769 rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot); 4770 if( rc==SQLITE_OK ){ 4771 bUnlock = 1; 4772 rc = sqlite3BtreeCommit(pBt); 4773 } 4774 } 4775 }else{ 4776 rc = SQLITE_OK; 4777 } 4778 if( rc==SQLITE_OK ){ 4779 rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot); 4780 } 4781 if( rc==SQLITE_OK ){ 4782 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 4783 sqlite3PagerSnapshotOpen(pPager, 0); 4784 } 4785 if( bUnlock ){ 4786 sqlite3PagerSnapshotUnlock(pPager); 4787 } 4788 } 4789 } 4790 } 4791 4792 sqlite3_mutex_leave(db->mutex); 4793 #endif /* SQLITE_OMIT_WAL */ 4794 return rc; 4795 } 4796 4797 /* 4798 ** Recover as many snapshots as possible from the wal file associated with 4799 ** schema zDb of database db. 4800 */ 4801 int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ 4802 int rc = SQLITE_ERROR; 4803 #ifndef SQLITE_OMIT_WAL 4804 int iDb; 4805 4806 #ifdef SQLITE_ENABLE_API_ARMOR 4807 if( !sqlite3SafetyCheckOk(db) ){ 4808 return SQLITE_MISUSE_BKPT; 4809 } 4810 #endif 4811 4812 sqlite3_mutex_enter(db->mutex); 4813 iDb = sqlite3FindDbName(db, zDb); 4814 if( iDb==0 || iDb>1 ){ 4815 Btree *pBt = db->aDb[iDb].pBt; 4816 if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){ 4817 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 4818 if( rc==SQLITE_OK ){ 4819 rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); 4820 sqlite3BtreeCommit(pBt); 4821 } 4822 } 4823 } 4824 sqlite3_mutex_leave(db->mutex); 4825 #endif /* SQLITE_OMIT_WAL */ 4826 return rc; 4827 } 4828 4829 /* 4830 ** Free a snapshot handle obtained from sqlite3_snapshot_get(). 4831 */ 4832 void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ 4833 sqlite3_free(pSnapshot); 4834 } 4835 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4836 4837 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 4838 /* 4839 ** Given the name of a compile-time option, return true if that option 4840 ** was used and false if not. 4841 ** 4842 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix 4843 ** is not required for a match. 4844 */ 4845 int sqlite3_compileoption_used(const char *zOptName){ 4846 int i, n; 4847 int nOpt; 4848 const char **azCompileOpt; 4849 4850 #if SQLITE_ENABLE_API_ARMOR 4851 if( zOptName==0 ){ 4852 (void)SQLITE_MISUSE_BKPT; 4853 return 0; 4854 } 4855 #endif 4856 4857 azCompileOpt = sqlite3CompileOptions(&nOpt); 4858 4859 if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; 4860 n = sqlite3Strlen30(zOptName); 4861 4862 /* Since nOpt is normally in single digits, a linear search is 4863 ** adequate. No need for a binary search. */ 4864 for(i=0; i<nOpt; i++){ 4865 if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 4866 && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0 4867 ){ 4868 return 1; 4869 } 4870 } 4871 return 0; 4872 } 4873 4874 /* 4875 ** Return the N-th compile-time option string. If N is out of range, 4876 ** return a NULL pointer. 4877 */ 4878 const char *sqlite3_compileoption_get(int N){ 4879 int nOpt; 4880 const char **azCompileOpt; 4881 azCompileOpt = sqlite3CompileOptions(&nOpt); 4882 if( N>=0 && N<nOpt ){ 4883 return azCompileOpt[N]; 4884 } 4885 return 0; 4886 } 4887 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 4888