xref: /sqlite-3.40.0/src/main.c (revision edf5b165)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Main file for the SQLite library.  The routines in this file
13 ** implement the programmer interface to the library.  Routines in
14 ** other files are for internal use by SQLite and should not be
15 ** accessed by users of the library.
16 */
17 #include "sqliteInt.h"
18 
19 #ifdef SQLITE_ENABLE_FTS3
20 # include "fts3.h"
21 #endif
22 #ifdef SQLITE_ENABLE_RTREE
23 # include "rtree.h"
24 #endif
25 #ifdef SQLITE_ENABLE_ICU
26 # include "sqliteicu.h"
27 #endif
28 
29 #ifndef SQLITE_AMALGAMATION
30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
31 ** contains the text of SQLITE_VERSION macro.
32 */
33 const char sqlite3_version[] = SQLITE_VERSION;
34 #endif
35 
36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
37 ** a pointer to the to the sqlite3_version[] string constant.
38 */
39 const char *sqlite3_libversion(void){ return sqlite3_version; }
40 
41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
42 ** pointer to a string constant whose value is the same as the
43 ** SQLITE_SOURCE_ID C preprocessor macro.
44 */
45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
46 
47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
48 ** returns an integer equal to SQLITE_VERSION_NUMBER.
49 */
50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
51 
52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
53 ** zero if and only if SQLite was compiled with mutexing code omitted due to
54 ** the SQLITE_THREADSAFE compile-time option being set to 0.
55 */
56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
57 
58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
59 /*
60 ** If the following function pointer is not NULL and if
61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
62 ** I/O active are written using this function.  These messages
63 ** are intended for debugging activity only.
64 */
65 void (*sqlite3IoTrace)(const char*, ...) = 0;
66 #endif
67 
68 /*
69 ** If the following global variable points to a string which is the
70 ** name of a directory, then that directory will be used to store
71 ** temporary files.
72 **
73 ** See also the "PRAGMA temp_store_directory" SQL command.
74 */
75 char *sqlite3_temp_directory = 0;
76 
77 /*
78 ** If the following global variable points to a string which is the
79 ** name of a directory, then that directory will be used to store
80 ** all database files specified with a relative pathname.
81 **
82 ** See also the "PRAGMA data_store_directory" SQL command.
83 */
84 char *sqlite3_data_directory = 0;
85 
86 /*
87 ** Initialize SQLite.
88 **
89 ** This routine must be called to initialize the memory allocation,
90 ** VFS, and mutex subsystems prior to doing any serious work with
91 ** SQLite.  But as long as you do not compile with SQLITE_OMIT_AUTOINIT
92 ** this routine will be called automatically by key routines such as
93 ** sqlite3_open().
94 **
95 ** This routine is a no-op except on its very first call for the process,
96 ** or for the first call after a call to sqlite3_shutdown.
97 **
98 ** The first thread to call this routine runs the initialization to
99 ** completion.  If subsequent threads call this routine before the first
100 ** thread has finished the initialization process, then the subsequent
101 ** threads must block until the first thread finishes with the initialization.
102 **
103 ** The first thread might call this routine recursively.  Recursive
104 ** calls to this routine should not block, of course.  Otherwise the
105 ** initialization process would never complete.
106 **
107 ** Let X be the first thread to enter this routine.  Let Y be some other
108 ** thread.  Then while the initial invocation of this routine by X is
109 ** incomplete, it is required that:
110 **
111 **    *  Calls to this routine from Y must block until the outer-most
112 **       call by X completes.
113 **
114 **    *  Recursive calls to this routine from thread X return immediately
115 **       without blocking.
116 */
117 int sqlite3_initialize(void){
118   MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
119   int rc;                                      /* Result code */
120 #ifdef SQLITE_EXTRA_INIT
121   int bRunExtraInit = 0;                       /* Extra initialization needed */
122 #endif
123 
124 #ifdef SQLITE_OMIT_WSD
125   rc = sqlite3_wsd_init(4096, 24);
126   if( rc!=SQLITE_OK ){
127     return rc;
128   }
129 #endif
130 
131   /* If SQLite is already completely initialized, then this call
132   ** to sqlite3_initialize() should be a no-op.  But the initialization
133   ** must be complete.  So isInit must not be set until the very end
134   ** of this routine.
135   */
136   if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
137 
138   /* Make sure the mutex subsystem is initialized.  If unable to
139   ** initialize the mutex subsystem, return early with the error.
140   ** If the system is so sick that we are unable to allocate a mutex,
141   ** there is not much SQLite is going to be able to do.
142   **
143   ** The mutex subsystem must take care of serializing its own
144   ** initialization.
145   */
146   rc = sqlite3MutexInit();
147   if( rc ) return rc;
148 
149   /* Initialize the malloc() system and the recursive pInitMutex mutex.
150   ** This operation is protected by the STATIC_MASTER mutex.  Note that
151   ** MutexAlloc() is called for a static mutex prior to initializing the
152   ** malloc subsystem - this implies that the allocation of a static
153   ** mutex must not require support from the malloc subsystem.
154   */
155   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
156   sqlite3_mutex_enter(pMaster);
157   sqlite3GlobalConfig.isMutexInit = 1;
158   if( !sqlite3GlobalConfig.isMallocInit ){
159     rc = sqlite3MallocInit();
160   }
161   if( rc==SQLITE_OK ){
162     sqlite3GlobalConfig.isMallocInit = 1;
163     if( !sqlite3GlobalConfig.pInitMutex ){
164       sqlite3GlobalConfig.pInitMutex =
165            sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
166       if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
167         rc = SQLITE_NOMEM;
168       }
169     }
170   }
171   if( rc==SQLITE_OK ){
172     sqlite3GlobalConfig.nRefInitMutex++;
173   }
174   sqlite3_mutex_leave(pMaster);
175 
176   /* If rc is not SQLITE_OK at this point, then either the malloc
177   ** subsystem could not be initialized or the system failed to allocate
178   ** the pInitMutex mutex. Return an error in either case.  */
179   if( rc!=SQLITE_OK ){
180     return rc;
181   }
182 
183   /* Do the rest of the initialization under the recursive mutex so
184   ** that we will be able to handle recursive calls into
185   ** sqlite3_initialize().  The recursive calls normally come through
186   ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
187   ** recursive calls might also be possible.
188   **
189   ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
190   ** to the xInit method, so the xInit method need not be threadsafe.
191   **
192   ** The following mutex is what serializes access to the appdef pcache xInit
193   ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
194   ** call to sqlite3PcacheInitialize().
195   */
196   sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
197   if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
198     FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
199     sqlite3GlobalConfig.inProgress = 1;
200     memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
201     sqlite3RegisterGlobalFunctions();
202     if( sqlite3GlobalConfig.isPCacheInit==0 ){
203       rc = sqlite3PcacheInitialize();
204     }
205     if( rc==SQLITE_OK ){
206       sqlite3GlobalConfig.isPCacheInit = 1;
207       rc = sqlite3OsInit();
208     }
209     if( rc==SQLITE_OK ){
210       sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
211           sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
212       sqlite3GlobalConfig.isInit = 1;
213 #ifdef SQLITE_EXTRA_INIT
214       bRunExtraInit = 1;
215 #endif
216     }
217     sqlite3GlobalConfig.inProgress = 0;
218   }
219   sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
220 
221   /* Go back under the static mutex and clean up the recursive
222   ** mutex to prevent a resource leak.
223   */
224   sqlite3_mutex_enter(pMaster);
225   sqlite3GlobalConfig.nRefInitMutex--;
226   if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
227     assert( sqlite3GlobalConfig.nRefInitMutex==0 );
228     sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
229     sqlite3GlobalConfig.pInitMutex = 0;
230   }
231   sqlite3_mutex_leave(pMaster);
232 
233   /* The following is just a sanity check to make sure SQLite has
234   ** been compiled correctly.  It is important to run this code, but
235   ** we don't want to run it too often and soak up CPU cycles for no
236   ** reason.  So we run it once during initialization.
237   */
238 #ifndef NDEBUG
239 #ifndef SQLITE_OMIT_FLOATING_POINT
240   /* This section of code's only "output" is via assert() statements. */
241   if ( rc==SQLITE_OK ){
242     u64 x = (((u64)1)<<63)-1;
243     double y;
244     assert(sizeof(x)==8);
245     assert(sizeof(x)==sizeof(y));
246     memcpy(&y, &x, 8);
247     assert( sqlite3IsNaN(y) );
248   }
249 #endif
250 #endif
251 
252   /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
253   ** compile-time option.
254   */
255 #ifdef SQLITE_EXTRA_INIT
256   if( bRunExtraInit ){
257     int SQLITE_EXTRA_INIT(const char*);
258     rc = SQLITE_EXTRA_INIT(0);
259   }
260 #endif
261 
262   return rc;
263 }
264 
265 /*
266 ** Undo the effects of sqlite3_initialize().  Must not be called while
267 ** there are outstanding database connections or memory allocations or
268 ** while any part of SQLite is otherwise in use in any thread.  This
269 ** routine is not threadsafe.  But it is safe to invoke this routine
270 ** on when SQLite is already shut down.  If SQLite is already shut down
271 ** when this routine is invoked, then this routine is a harmless no-op.
272 */
273 int sqlite3_shutdown(void){
274   if( sqlite3GlobalConfig.isInit ){
275 #ifdef SQLITE_EXTRA_SHUTDOWN
276     void SQLITE_EXTRA_SHUTDOWN(void);
277     SQLITE_EXTRA_SHUTDOWN();
278 #endif
279     sqlite3_os_end();
280     sqlite3_reset_auto_extension();
281     sqlite3GlobalConfig.isInit = 0;
282   }
283   if( sqlite3GlobalConfig.isPCacheInit ){
284     sqlite3PcacheShutdown();
285     sqlite3GlobalConfig.isPCacheInit = 0;
286   }
287   if( sqlite3GlobalConfig.isMallocInit ){
288     sqlite3MallocEnd();
289     sqlite3GlobalConfig.isMallocInit = 0;
290 
291 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
292     /* The heap subsystem has now been shutdown and these values are supposed
293     ** to be NULL or point to memory that was obtained from sqlite3_malloc(),
294     ** which would rely on that heap subsystem; therefore, make sure these
295     ** values cannot refer to heap memory that was just invalidated when the
296     ** heap subsystem was shutdown.  This is only done if the current call to
297     ** this function resulted in the heap subsystem actually being shutdown.
298     */
299     sqlite3_data_directory = 0;
300     sqlite3_temp_directory = 0;
301 #endif
302   }
303   if( sqlite3GlobalConfig.isMutexInit ){
304     sqlite3MutexEnd();
305     sqlite3GlobalConfig.isMutexInit = 0;
306   }
307 
308   return SQLITE_OK;
309 }
310 
311 /*
312 ** This API allows applications to modify the global configuration of
313 ** the SQLite library at run-time.
314 **
315 ** This routine should only be called when there are no outstanding
316 ** database connections or memory allocations.  This routine is not
317 ** threadsafe.  Failure to heed these warnings can lead to unpredictable
318 ** behavior.
319 */
320 int sqlite3_config(int op, ...){
321   va_list ap;
322   int rc = SQLITE_OK;
323 
324   /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
325   ** the SQLite library is in use. */
326   if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
327 
328   va_start(ap, op);
329   switch( op ){
330 
331     /* Mutex configuration options are only available in a threadsafe
332     ** compile.
333     */
334 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
335     case SQLITE_CONFIG_SINGLETHREAD: {
336       /* Disable all mutexing */
337       sqlite3GlobalConfig.bCoreMutex = 0;
338       sqlite3GlobalConfig.bFullMutex = 0;
339       break;
340     }
341     case SQLITE_CONFIG_MULTITHREAD: {
342       /* Disable mutexing of database connections */
343       /* Enable mutexing of core data structures */
344       sqlite3GlobalConfig.bCoreMutex = 1;
345       sqlite3GlobalConfig.bFullMutex = 0;
346       break;
347     }
348     case SQLITE_CONFIG_SERIALIZED: {
349       /* Enable all mutexing */
350       sqlite3GlobalConfig.bCoreMutex = 1;
351       sqlite3GlobalConfig.bFullMutex = 1;
352       break;
353     }
354     case SQLITE_CONFIG_MUTEX: {
355       /* Specify an alternative mutex implementation */
356       sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
357       break;
358     }
359     case SQLITE_CONFIG_GETMUTEX: {
360       /* Retrieve the current mutex implementation */
361       *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
362       break;
363     }
364 #endif
365 
366 
367     case SQLITE_CONFIG_MALLOC: {
368       /* Specify an alternative malloc implementation */
369       sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
370       break;
371     }
372     case SQLITE_CONFIG_GETMALLOC: {
373       /* Retrieve the current malloc() implementation */
374       if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
375       *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
376       break;
377     }
378     case SQLITE_CONFIG_MEMSTATUS: {
379       /* Enable or disable the malloc status collection */
380       sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
381       break;
382     }
383     case SQLITE_CONFIG_SCRATCH: {
384       /* Designate a buffer for scratch memory space */
385       sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
386       sqlite3GlobalConfig.szScratch = va_arg(ap, int);
387       sqlite3GlobalConfig.nScratch = va_arg(ap, int);
388       break;
389     }
390     case SQLITE_CONFIG_PAGECACHE: {
391       /* Designate a buffer for page cache memory space */
392       sqlite3GlobalConfig.pPage = va_arg(ap, void*);
393       sqlite3GlobalConfig.szPage = va_arg(ap, int);
394       sqlite3GlobalConfig.nPage = va_arg(ap, int);
395       break;
396     }
397 
398     case SQLITE_CONFIG_PCACHE: {
399       /* no-op */
400       break;
401     }
402     case SQLITE_CONFIG_GETPCACHE: {
403       /* now an error */
404       rc = SQLITE_ERROR;
405       break;
406     }
407 
408     case SQLITE_CONFIG_PCACHE2: {
409       /* Specify an alternative page cache implementation */
410       sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
411       break;
412     }
413     case SQLITE_CONFIG_GETPCACHE2: {
414       if( sqlite3GlobalConfig.pcache2.xInit==0 ){
415         sqlite3PCacheSetDefault();
416       }
417       *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
418       break;
419     }
420 
421 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
422     case SQLITE_CONFIG_HEAP: {
423       /* Designate a buffer for heap memory space */
424       sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
425       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
426       sqlite3GlobalConfig.mnReq = va_arg(ap, int);
427 
428       if( sqlite3GlobalConfig.mnReq<1 ){
429         sqlite3GlobalConfig.mnReq = 1;
430       }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
431         /* cap min request size at 2^12 */
432         sqlite3GlobalConfig.mnReq = (1<<12);
433       }
434 
435       if( sqlite3GlobalConfig.pHeap==0 ){
436         /* If the heap pointer is NULL, then restore the malloc implementation
437         ** back to NULL pointers too.  This will cause the malloc to go
438         ** back to its default implementation when sqlite3_initialize() is
439         ** run.
440         */
441         memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
442       }else{
443         /* The heap pointer is not NULL, then install one of the
444         ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
445         ** least one of these methods is currently enabled.
446         */
447 #ifdef SQLITE_ENABLE_MEMSYS3
448         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
449 #endif
450 #ifdef SQLITE_ENABLE_MEMSYS5
451         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
452 #endif
453       }
454       break;
455     }
456 #endif
457 
458     case SQLITE_CONFIG_LOOKASIDE: {
459       sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
460       sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
461       break;
462     }
463 
464     /* Record a pointer to the logger function and its first argument.
465     ** The default is NULL.  Logging is disabled if the function pointer is
466     ** NULL.
467     */
468     case SQLITE_CONFIG_LOG: {
469       /* MSVC is picky about pulling func ptrs from va lists.
470       ** http://support.microsoft.com/kb/47961
471       ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
472       */
473       typedef void(*LOGFUNC_t)(void*,int,const char*);
474       sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
475       sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
476       break;
477     }
478 
479     case SQLITE_CONFIG_URI: {
480       sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
481       break;
482     }
483 
484     case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
485       sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
486       break;
487     }
488 
489 #ifdef SQLITE_ENABLE_SQLLOG
490     case SQLITE_CONFIG_SQLLOG: {
491       typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
492       sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
493       sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
494       break;
495     }
496 #endif
497 
498     case SQLITE_CONFIG_MMAP_SIZE: {
499       sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
500       sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
501       if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
502         mxMmap = SQLITE_MAX_MMAP_SIZE;
503       }
504       sqlite3GlobalConfig.mxMmap = mxMmap;
505       if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
506       if( szMmap>mxMmap) szMmap = mxMmap;
507       sqlite3GlobalConfig.szMmap = szMmap;
508       break;
509     }
510 
511 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC)
512     case SQLITE_CONFIG_WIN32_HEAPSIZE: {
513       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
514       break;
515     }
516 #endif
517 
518     default: {
519       rc = SQLITE_ERROR;
520       break;
521     }
522   }
523   va_end(ap);
524   return rc;
525 }
526 
527 /*
528 ** Set up the lookaside buffers for a database connection.
529 ** Return SQLITE_OK on success.
530 ** If lookaside is already active, return SQLITE_BUSY.
531 **
532 ** The sz parameter is the number of bytes in each lookaside slot.
533 ** The cnt parameter is the number of slots.  If pStart is NULL the
534 ** space for the lookaside memory is obtained from sqlite3_malloc().
535 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for
536 ** the lookaside memory.
537 */
538 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
539   void *pStart;
540   if( db->lookaside.nOut ){
541     return SQLITE_BUSY;
542   }
543   /* Free any existing lookaside buffer for this handle before
544   ** allocating a new one so we don't have to have space for
545   ** both at the same time.
546   */
547   if( db->lookaside.bMalloced ){
548     sqlite3_free(db->lookaside.pStart);
549   }
550   /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
551   ** than a pointer to be useful.
552   */
553   sz = ROUNDDOWN8(sz);  /* IMP: R-33038-09382 */
554   if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
555   if( cnt<0 ) cnt = 0;
556   if( sz==0 || cnt==0 ){
557     sz = 0;
558     pStart = 0;
559   }else if( pBuf==0 ){
560     sqlite3BeginBenignMalloc();
561     pStart = sqlite3Malloc( sz*cnt );  /* IMP: R-61949-35727 */
562     sqlite3EndBenignMalloc();
563     if( pStart ) cnt = sqlite3MallocSize(pStart)/sz;
564   }else{
565     pStart = pBuf;
566   }
567   db->lookaside.pStart = pStart;
568   db->lookaside.pFree = 0;
569   db->lookaside.sz = (u16)sz;
570   if( pStart ){
571     int i;
572     LookasideSlot *p;
573     assert( sz > (int)sizeof(LookasideSlot*) );
574     p = (LookasideSlot*)pStart;
575     for(i=cnt-1; i>=0; i--){
576       p->pNext = db->lookaside.pFree;
577       db->lookaside.pFree = p;
578       p = (LookasideSlot*)&((u8*)p)[sz];
579     }
580     db->lookaside.pEnd = p;
581     db->lookaside.bEnabled = 1;
582     db->lookaside.bMalloced = pBuf==0 ?1:0;
583   }else{
584     db->lookaside.pStart = db;
585     db->lookaside.pEnd = db;
586     db->lookaside.bEnabled = 0;
587     db->lookaside.bMalloced = 0;
588   }
589   return SQLITE_OK;
590 }
591 
592 /*
593 ** Return the mutex associated with a database connection.
594 */
595 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
596   return db->mutex;
597 }
598 
599 /*
600 ** Free up as much memory as we can from the given database
601 ** connection.
602 */
603 int sqlite3_db_release_memory(sqlite3 *db){
604   int i;
605   sqlite3_mutex_enter(db->mutex);
606   sqlite3BtreeEnterAll(db);
607   for(i=0; i<db->nDb; i++){
608     Btree *pBt = db->aDb[i].pBt;
609     if( pBt ){
610       Pager *pPager = sqlite3BtreePager(pBt);
611       sqlite3PagerShrink(pPager);
612     }
613   }
614   sqlite3BtreeLeaveAll(db);
615   sqlite3_mutex_leave(db->mutex);
616   return SQLITE_OK;
617 }
618 
619 /*
620 ** Configuration settings for an individual database connection
621 */
622 int sqlite3_db_config(sqlite3 *db, int op, ...){
623   va_list ap;
624   int rc;
625   va_start(ap, op);
626   switch( op ){
627     case SQLITE_DBCONFIG_LOOKASIDE: {
628       void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
629       int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
630       int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
631       rc = setupLookaside(db, pBuf, sz, cnt);
632       break;
633     }
634     default: {
635       static const struct {
636         int op;      /* The opcode */
637         u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
638       } aFlagOp[] = {
639         { SQLITE_DBCONFIG_ENABLE_FKEY,    SQLITE_ForeignKeys    },
640         { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger  },
641       };
642       unsigned int i;
643       rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
644       for(i=0; i<ArraySize(aFlagOp); i++){
645         if( aFlagOp[i].op==op ){
646           int onoff = va_arg(ap, int);
647           int *pRes = va_arg(ap, int*);
648           int oldFlags = db->flags;
649           if( onoff>0 ){
650             db->flags |= aFlagOp[i].mask;
651           }else if( onoff==0 ){
652             db->flags &= ~aFlagOp[i].mask;
653           }
654           if( oldFlags!=db->flags ){
655             sqlite3ExpirePreparedStatements(db);
656           }
657           if( pRes ){
658             *pRes = (db->flags & aFlagOp[i].mask)!=0;
659           }
660           rc = SQLITE_OK;
661           break;
662         }
663       }
664       break;
665     }
666   }
667   va_end(ap);
668   return rc;
669 }
670 
671 
672 /*
673 ** Return true if the buffer z[0..n-1] contains all spaces.
674 */
675 static int allSpaces(const char *z, int n){
676   while( n>0 && z[n-1]==' ' ){ n--; }
677   return n==0;
678 }
679 
680 /*
681 ** This is the default collating function named "BINARY" which is always
682 ** available.
683 **
684 ** If the padFlag argument is not NULL then space padding at the end
685 ** of strings is ignored.  This implements the RTRIM collation.
686 */
687 static int binCollFunc(
688   void *padFlag,
689   int nKey1, const void *pKey1,
690   int nKey2, const void *pKey2
691 ){
692   int rc, n;
693   n = nKey1<nKey2 ? nKey1 : nKey2;
694   rc = memcmp(pKey1, pKey2, n);
695   if( rc==0 ){
696     if( padFlag
697      && allSpaces(((char*)pKey1)+n, nKey1-n)
698      && allSpaces(((char*)pKey2)+n, nKey2-n)
699     ){
700       /* Leave rc unchanged at 0 */
701     }else{
702       rc = nKey1 - nKey2;
703     }
704   }
705   return rc;
706 }
707 
708 /*
709 ** Another built-in collating sequence: NOCASE.
710 **
711 ** This collating sequence is intended to be used for "case independent
712 ** comparison". SQLite's knowledge of upper and lower case equivalents
713 ** extends only to the 26 characters used in the English language.
714 **
715 ** At the moment there is only a UTF-8 implementation.
716 */
717 static int nocaseCollatingFunc(
718   void *NotUsed,
719   int nKey1, const void *pKey1,
720   int nKey2, const void *pKey2
721 ){
722   int r = sqlite3StrNICmp(
723       (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
724   UNUSED_PARAMETER(NotUsed);
725   if( 0==r ){
726     r = nKey1-nKey2;
727   }
728   return r;
729 }
730 
731 /*
732 ** Return the ROWID of the most recent insert
733 */
734 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
735   return db->lastRowid;
736 }
737 
738 /*
739 ** Return the number of changes in the most recent call to sqlite3_exec().
740 */
741 int sqlite3_changes(sqlite3 *db){
742   return db->nChange;
743 }
744 
745 /*
746 ** Return the number of changes since the database handle was opened.
747 */
748 int sqlite3_total_changes(sqlite3 *db){
749   return db->nTotalChange;
750 }
751 
752 /*
753 ** Close all open savepoints. This function only manipulates fields of the
754 ** database handle object, it does not close any savepoints that may be open
755 ** at the b-tree/pager level.
756 */
757 void sqlite3CloseSavepoints(sqlite3 *db){
758   while( db->pSavepoint ){
759     Savepoint *pTmp = db->pSavepoint;
760     db->pSavepoint = pTmp->pNext;
761     sqlite3DbFree(db, pTmp);
762   }
763   db->nSavepoint = 0;
764   db->nStatement = 0;
765   db->isTransactionSavepoint = 0;
766 }
767 
768 /*
769 ** Invoke the destructor function associated with FuncDef p, if any. Except,
770 ** if this is not the last copy of the function, do not invoke it. Multiple
771 ** copies of a single function are created when create_function() is called
772 ** with SQLITE_ANY as the encoding.
773 */
774 static void functionDestroy(sqlite3 *db, FuncDef *p){
775   FuncDestructor *pDestructor = p->pDestructor;
776   if( pDestructor ){
777     pDestructor->nRef--;
778     if( pDestructor->nRef==0 ){
779       pDestructor->xDestroy(pDestructor->pUserData);
780       sqlite3DbFree(db, pDestructor);
781     }
782   }
783 }
784 
785 /*
786 ** Disconnect all sqlite3_vtab objects that belong to database connection
787 ** db. This is called when db is being closed.
788 */
789 static void disconnectAllVtab(sqlite3 *db){
790 #ifndef SQLITE_OMIT_VIRTUALTABLE
791   int i;
792   sqlite3BtreeEnterAll(db);
793   for(i=0; i<db->nDb; i++){
794     Schema *pSchema = db->aDb[i].pSchema;
795     if( db->aDb[i].pSchema ){
796       HashElem *p;
797       for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
798         Table *pTab = (Table *)sqliteHashData(p);
799         if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
800       }
801     }
802   }
803   sqlite3VtabUnlockList(db);
804   sqlite3BtreeLeaveAll(db);
805 #else
806   UNUSED_PARAMETER(db);
807 #endif
808 }
809 
810 /*
811 ** Return TRUE if database connection db has unfinalized prepared
812 ** statements or unfinished sqlite3_backup objects.
813 */
814 static int connectionIsBusy(sqlite3 *db){
815   int j;
816   assert( sqlite3_mutex_held(db->mutex) );
817   if( db->pVdbe ) return 1;
818   for(j=0; j<db->nDb; j++){
819     Btree *pBt = db->aDb[j].pBt;
820     if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
821   }
822   return 0;
823 }
824 
825 /*
826 ** Close an existing SQLite database
827 */
828 static int sqlite3Close(sqlite3 *db, int forceZombie){
829   if( !db ){
830     /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or
831     ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */
832     return SQLITE_OK;
833   }
834   if( !sqlite3SafetyCheckSickOrOk(db) ){
835     return SQLITE_MISUSE_BKPT;
836   }
837   sqlite3_mutex_enter(db->mutex);
838 
839   /* Force xDisconnect calls on all virtual tables */
840   disconnectAllVtab(db);
841 
842   /* If a transaction is open, the disconnectAllVtab() call above
843   ** will not have called the xDisconnect() method on any virtual
844   ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
845   ** call will do so. We need to do this before the check for active
846   ** SQL statements below, as the v-table implementation may be storing
847   ** some prepared statements internally.
848   */
849   sqlite3VtabRollback(db);
850 
851   /* Legacy behavior (sqlite3_close() behavior) is to return
852   ** SQLITE_BUSY if the connection can not be closed immediately.
853   */
854   if( !forceZombie && connectionIsBusy(db) ){
855     sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized "
856        "statements or unfinished backups");
857     sqlite3_mutex_leave(db->mutex);
858     return SQLITE_BUSY;
859   }
860 
861 #ifdef SQLITE_ENABLE_SQLLOG
862   if( sqlite3GlobalConfig.xSqllog ){
863     /* Closing the handle. Fourth parameter is passed the value 2. */
864     sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
865   }
866 #endif
867 
868   /* Convert the connection into a zombie and then close it.
869   */
870   db->magic = SQLITE_MAGIC_ZOMBIE;
871   sqlite3LeaveMutexAndCloseZombie(db);
872   return SQLITE_OK;
873 }
874 
875 /*
876 ** Two variations on the public interface for closing a database
877 ** connection. The sqlite3_close() version returns SQLITE_BUSY and
878 ** leaves the connection option if there are unfinalized prepared
879 ** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
880 ** version forces the connection to become a zombie if there are
881 ** unclosed resources, and arranges for deallocation when the last
882 ** prepare statement or sqlite3_backup closes.
883 */
884 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
885 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
886 
887 
888 /*
889 ** Close the mutex on database connection db.
890 **
891 ** Furthermore, if database connection db is a zombie (meaning that there
892 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
893 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has
894 ** finished, then free all resources.
895 */
896 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
897   HashElem *i;                    /* Hash table iterator */
898   int j;
899 
900   /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
901   ** or if the connection has not yet been closed by sqlite3_close_v2(),
902   ** then just leave the mutex and return.
903   */
904   if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){
905     sqlite3_mutex_leave(db->mutex);
906     return;
907   }
908 
909   /* If we reach this point, it means that the database connection has
910   ** closed all sqlite3_stmt and sqlite3_backup objects and has been
911   ** passed to sqlite3_close (meaning that it is a zombie).  Therefore,
912   ** go ahead and free all resources.
913   */
914 
915   /* If a transaction is open, roll it back. This also ensures that if
916   ** any database schemas have been modified by an uncommitted transaction
917   ** they are reset. And that the required b-tree mutex is held to make
918   ** the pager rollback and schema reset an atomic operation. */
919   sqlite3RollbackAll(db, SQLITE_OK);
920 
921   /* Free any outstanding Savepoint structures. */
922   sqlite3CloseSavepoints(db);
923 
924   /* Close all database connections */
925   for(j=0; j<db->nDb; j++){
926     struct Db *pDb = &db->aDb[j];
927     if( pDb->pBt ){
928       sqlite3BtreeClose(pDb->pBt);
929       pDb->pBt = 0;
930       if( j!=1 ){
931         pDb->pSchema = 0;
932       }
933     }
934   }
935   /* Clear the TEMP schema separately and last */
936   if( db->aDb[1].pSchema ){
937     sqlite3SchemaClear(db->aDb[1].pSchema);
938   }
939   sqlite3VtabUnlockList(db);
940 
941   /* Free up the array of auxiliary databases */
942   sqlite3CollapseDatabaseArray(db);
943   assert( db->nDb<=2 );
944   assert( db->aDb==db->aDbStatic );
945 
946   /* Tell the code in notify.c that the connection no longer holds any
947   ** locks and does not require any further unlock-notify callbacks.
948   */
949   sqlite3ConnectionClosed(db);
950 
951   for(j=0; j<ArraySize(db->aFunc.a); j++){
952     FuncDef *pNext, *pHash, *p;
953     for(p=db->aFunc.a[j]; p; p=pHash){
954       pHash = p->pHash;
955       while( p ){
956         functionDestroy(db, p);
957         pNext = p->pNext;
958         sqlite3DbFree(db, p);
959         p = pNext;
960       }
961     }
962   }
963   for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
964     CollSeq *pColl = (CollSeq *)sqliteHashData(i);
965     /* Invoke any destructors registered for collation sequence user data. */
966     for(j=0; j<3; j++){
967       if( pColl[j].xDel ){
968         pColl[j].xDel(pColl[j].pUser);
969       }
970     }
971     sqlite3DbFree(db, pColl);
972   }
973   sqlite3HashClear(&db->aCollSeq);
974 #ifndef SQLITE_OMIT_VIRTUALTABLE
975   for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
976     Module *pMod = (Module *)sqliteHashData(i);
977     if( pMod->xDestroy ){
978       pMod->xDestroy(pMod->pAux);
979     }
980     sqlite3DbFree(db, pMod);
981   }
982   sqlite3HashClear(&db->aModule);
983 #endif
984 
985   sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
986   sqlite3ValueFree(db->pErr);
987   sqlite3CloseExtensions(db);
988 
989   db->magic = SQLITE_MAGIC_ERROR;
990 
991   /* The temp-database schema is allocated differently from the other schema
992   ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
993   ** So it needs to be freed here. Todo: Why not roll the temp schema into
994   ** the same sqliteMalloc() as the one that allocates the database
995   ** structure?
996   */
997   sqlite3DbFree(db, db->aDb[1].pSchema);
998   sqlite3_mutex_leave(db->mutex);
999   db->magic = SQLITE_MAGIC_CLOSED;
1000   sqlite3_mutex_free(db->mutex);
1001   assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
1002   if( db->lookaside.bMalloced ){
1003     sqlite3_free(db->lookaside.pStart);
1004   }
1005   sqlite3_free(db);
1006 }
1007 
1008 /*
1009 ** Rollback all database files.  If tripCode is not SQLITE_OK, then
1010 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit
1011 ** breaker") and made to return tripCode if there are any further
1012 ** attempts to use that cursor.
1013 */
1014 void sqlite3RollbackAll(sqlite3 *db, int tripCode){
1015   int i;
1016   int inTrans = 0;
1017   assert( sqlite3_mutex_held(db->mutex) );
1018   sqlite3BeginBenignMalloc();
1019 
1020   /* Obtain all b-tree mutexes before making any calls to BtreeRollback().
1021   ** This is important in case the transaction being rolled back has
1022   ** modified the database schema. If the b-tree mutexes are not taken
1023   ** here, then another shared-cache connection might sneak in between
1024   ** the database rollback and schema reset, which can cause false
1025   ** corruption reports in some cases.  */
1026   sqlite3BtreeEnterAll(db);
1027 
1028   for(i=0; i<db->nDb; i++){
1029     Btree *p = db->aDb[i].pBt;
1030     if( p ){
1031       if( sqlite3BtreeIsInTrans(p) ){
1032         inTrans = 1;
1033       }
1034       sqlite3BtreeRollback(p, tripCode);
1035     }
1036   }
1037   sqlite3VtabRollback(db);
1038   sqlite3EndBenignMalloc();
1039 
1040   if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
1041     sqlite3ExpirePreparedStatements(db);
1042     sqlite3ResetAllSchemasOfConnection(db);
1043   }
1044   sqlite3BtreeLeaveAll(db);
1045 
1046   /* Any deferred constraint violations have now been resolved. */
1047   db->nDeferredCons = 0;
1048   db->nDeferredImmCons = 0;
1049   db->flags &= ~SQLITE_DeferFKs;
1050 
1051   /* If one has been configured, invoke the rollback-hook callback */
1052   if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
1053     db->xRollbackCallback(db->pRollbackArg);
1054   }
1055 }
1056 
1057 /*
1058 ** Return a static string containing the name corresponding to the error code
1059 ** specified in the argument.
1060 */
1061 #if (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) || defined(SQLITE_TEST)
1062 const char *sqlite3ErrName(int rc){
1063   const char *zName = 0;
1064   int i, origRc = rc;
1065   for(i=0; i<2 && zName==0; i++, rc &= 0xff){
1066     switch( rc ){
1067       case SQLITE_OK:                 zName = "SQLITE_OK";                break;
1068       case SQLITE_ERROR:              zName = "SQLITE_ERROR";             break;
1069       case SQLITE_INTERNAL:           zName = "SQLITE_INTERNAL";          break;
1070       case SQLITE_PERM:               zName = "SQLITE_PERM";              break;
1071       case SQLITE_ABORT:              zName = "SQLITE_ABORT";             break;
1072       case SQLITE_ABORT_ROLLBACK:     zName = "SQLITE_ABORT_ROLLBACK";    break;
1073       case SQLITE_BUSY:               zName = "SQLITE_BUSY";              break;
1074       case SQLITE_BUSY_RECOVERY:      zName = "SQLITE_BUSY_RECOVERY";     break;
1075       case SQLITE_BUSY_SNAPSHOT:      zName = "SQLITE_BUSY_SNAPSHOT";     break;
1076       case SQLITE_LOCKED:             zName = "SQLITE_LOCKED";            break;
1077       case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
1078       case SQLITE_NOMEM:              zName = "SQLITE_NOMEM";             break;
1079       case SQLITE_READONLY:           zName = "SQLITE_READONLY";          break;
1080       case SQLITE_READONLY_RECOVERY:  zName = "SQLITE_READONLY_RECOVERY"; break;
1081       case SQLITE_READONLY_CANTLOCK:  zName = "SQLITE_READONLY_CANTLOCK"; break;
1082       case SQLITE_READONLY_ROLLBACK:  zName = "SQLITE_READONLY_ROLLBACK"; break;
1083       case SQLITE_READONLY_DBMOVED:   zName = "SQLITE_READONLY_DBMOVED";  break;
1084       case SQLITE_INTERRUPT:          zName = "SQLITE_INTERRUPT";         break;
1085       case SQLITE_IOERR:              zName = "SQLITE_IOERR";             break;
1086       case SQLITE_IOERR_READ:         zName = "SQLITE_IOERR_READ";        break;
1087       case SQLITE_IOERR_SHORT_READ:   zName = "SQLITE_IOERR_SHORT_READ";  break;
1088       case SQLITE_IOERR_WRITE:        zName = "SQLITE_IOERR_WRITE";       break;
1089       case SQLITE_IOERR_FSYNC:        zName = "SQLITE_IOERR_FSYNC";       break;
1090       case SQLITE_IOERR_DIR_FSYNC:    zName = "SQLITE_IOERR_DIR_FSYNC";   break;
1091       case SQLITE_IOERR_TRUNCATE:     zName = "SQLITE_IOERR_TRUNCATE";    break;
1092       case SQLITE_IOERR_FSTAT:        zName = "SQLITE_IOERR_FSTAT";       break;
1093       case SQLITE_IOERR_UNLOCK:       zName = "SQLITE_IOERR_UNLOCK";      break;
1094       case SQLITE_IOERR_RDLOCK:       zName = "SQLITE_IOERR_RDLOCK";      break;
1095       case SQLITE_IOERR_DELETE:       zName = "SQLITE_IOERR_DELETE";      break;
1096       case SQLITE_IOERR_NOMEM:        zName = "SQLITE_IOERR_NOMEM";       break;
1097       case SQLITE_IOERR_ACCESS:       zName = "SQLITE_IOERR_ACCESS";      break;
1098       case SQLITE_IOERR_CHECKRESERVEDLOCK:
1099                                 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
1100       case SQLITE_IOERR_LOCK:         zName = "SQLITE_IOERR_LOCK";        break;
1101       case SQLITE_IOERR_CLOSE:        zName = "SQLITE_IOERR_CLOSE";       break;
1102       case SQLITE_IOERR_DIR_CLOSE:    zName = "SQLITE_IOERR_DIR_CLOSE";   break;
1103       case SQLITE_IOERR_SHMOPEN:      zName = "SQLITE_IOERR_SHMOPEN";     break;
1104       case SQLITE_IOERR_SHMSIZE:      zName = "SQLITE_IOERR_SHMSIZE";     break;
1105       case SQLITE_IOERR_SHMLOCK:      zName = "SQLITE_IOERR_SHMLOCK";     break;
1106       case SQLITE_IOERR_SHMMAP:       zName = "SQLITE_IOERR_SHMMAP";      break;
1107       case SQLITE_IOERR_SEEK:         zName = "SQLITE_IOERR_SEEK";        break;
1108       case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
1109       case SQLITE_IOERR_MMAP:         zName = "SQLITE_IOERR_MMAP";        break;
1110       case SQLITE_IOERR_GETTEMPPATH:  zName = "SQLITE_IOERR_GETTEMPPATH"; break;
1111       case SQLITE_IOERR_CONVPATH:     zName = "SQLITE_IOERR_CONVPATH";    break;
1112       case SQLITE_CORRUPT:            zName = "SQLITE_CORRUPT";           break;
1113       case SQLITE_CORRUPT_VTAB:       zName = "SQLITE_CORRUPT_VTAB";      break;
1114       case SQLITE_NOTFOUND:           zName = "SQLITE_NOTFOUND";          break;
1115       case SQLITE_FULL:               zName = "SQLITE_FULL";              break;
1116       case SQLITE_CANTOPEN:           zName = "SQLITE_CANTOPEN";          break;
1117       case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
1118       case SQLITE_CANTOPEN_ISDIR:     zName = "SQLITE_CANTOPEN_ISDIR";    break;
1119       case SQLITE_CANTOPEN_FULLPATH:  zName = "SQLITE_CANTOPEN_FULLPATH"; break;
1120       case SQLITE_CANTOPEN_CONVPATH:  zName = "SQLITE_CANTOPEN_CONVPATH"; break;
1121       case SQLITE_PROTOCOL:           zName = "SQLITE_PROTOCOL";          break;
1122       case SQLITE_EMPTY:              zName = "SQLITE_EMPTY";             break;
1123       case SQLITE_SCHEMA:             zName = "SQLITE_SCHEMA";            break;
1124       case SQLITE_TOOBIG:             zName = "SQLITE_TOOBIG";            break;
1125       case SQLITE_CONSTRAINT:         zName = "SQLITE_CONSTRAINT";        break;
1126       case SQLITE_CONSTRAINT_UNIQUE:  zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
1127       case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
1128       case SQLITE_CONSTRAINT_FOREIGNKEY:
1129                                 zName = "SQLITE_CONSTRAINT_FOREIGNKEY";   break;
1130       case SQLITE_CONSTRAINT_CHECK:   zName = "SQLITE_CONSTRAINT_CHECK";  break;
1131       case SQLITE_CONSTRAINT_PRIMARYKEY:
1132                                 zName = "SQLITE_CONSTRAINT_PRIMARYKEY";   break;
1133       case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
1134       case SQLITE_CONSTRAINT_COMMITHOOK:
1135                                 zName = "SQLITE_CONSTRAINT_COMMITHOOK";   break;
1136       case SQLITE_CONSTRAINT_VTAB:    zName = "SQLITE_CONSTRAINT_VTAB";   break;
1137       case SQLITE_CONSTRAINT_FUNCTION:
1138                                 zName = "SQLITE_CONSTRAINT_FUNCTION";     break;
1139       case SQLITE_CONSTRAINT_ROWID:   zName = "SQLITE_CONSTRAINT_ROWID";  break;
1140       case SQLITE_MISMATCH:           zName = "SQLITE_MISMATCH";          break;
1141       case SQLITE_MISUSE:             zName = "SQLITE_MISUSE";            break;
1142       case SQLITE_NOLFS:              zName = "SQLITE_NOLFS";             break;
1143       case SQLITE_AUTH:               zName = "SQLITE_AUTH";              break;
1144       case SQLITE_FORMAT:             zName = "SQLITE_FORMAT";            break;
1145       case SQLITE_RANGE:              zName = "SQLITE_RANGE";             break;
1146       case SQLITE_NOTADB:             zName = "SQLITE_NOTADB";            break;
1147       case SQLITE_ROW:                zName = "SQLITE_ROW";               break;
1148       case SQLITE_NOTICE:             zName = "SQLITE_NOTICE";            break;
1149       case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
1150       case SQLITE_NOTICE_RECOVER_ROLLBACK:
1151                                 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
1152       case SQLITE_WARNING:            zName = "SQLITE_WARNING";           break;
1153       case SQLITE_WARNING_AUTOINDEX:  zName = "SQLITE_WARNING_AUTOINDEX"; break;
1154       case SQLITE_DONE:               zName = "SQLITE_DONE";              break;
1155     }
1156   }
1157   if( zName==0 ){
1158     static char zBuf[50];
1159     sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
1160     zName = zBuf;
1161   }
1162   return zName;
1163 }
1164 #endif
1165 
1166 /*
1167 ** Return a static string that describes the kind of error specified in the
1168 ** argument.
1169 */
1170 const char *sqlite3ErrStr(int rc){
1171   static const char* const aMsg[] = {
1172     /* SQLITE_OK          */ "not an error",
1173     /* SQLITE_ERROR       */ "SQL logic error or missing database",
1174     /* SQLITE_INTERNAL    */ 0,
1175     /* SQLITE_PERM        */ "access permission denied",
1176     /* SQLITE_ABORT       */ "callback requested query abort",
1177     /* SQLITE_BUSY        */ "database is locked",
1178     /* SQLITE_LOCKED      */ "database table is locked",
1179     /* SQLITE_NOMEM       */ "out of memory",
1180     /* SQLITE_READONLY    */ "attempt to write a readonly database",
1181     /* SQLITE_INTERRUPT   */ "interrupted",
1182     /* SQLITE_IOERR       */ "disk I/O error",
1183     /* SQLITE_CORRUPT     */ "database disk image is malformed",
1184     /* SQLITE_NOTFOUND    */ "unknown operation",
1185     /* SQLITE_FULL        */ "database or disk is full",
1186     /* SQLITE_CANTOPEN    */ "unable to open database file",
1187     /* SQLITE_PROTOCOL    */ "locking protocol",
1188     /* SQLITE_EMPTY       */ "table contains no data",
1189     /* SQLITE_SCHEMA      */ "database schema has changed",
1190     /* SQLITE_TOOBIG      */ "string or blob too big",
1191     /* SQLITE_CONSTRAINT  */ "constraint failed",
1192     /* SQLITE_MISMATCH    */ "datatype mismatch",
1193     /* SQLITE_MISUSE      */ "library routine called out of sequence",
1194     /* SQLITE_NOLFS       */ "large file support is disabled",
1195     /* SQLITE_AUTH        */ "authorization denied",
1196     /* SQLITE_FORMAT      */ "auxiliary database format error",
1197     /* SQLITE_RANGE       */ "bind or column index out of range",
1198     /* SQLITE_NOTADB      */ "file is encrypted or is not a database",
1199   };
1200   const char *zErr = "unknown error";
1201   switch( rc ){
1202     case SQLITE_ABORT_ROLLBACK: {
1203       zErr = "abort due to ROLLBACK";
1204       break;
1205     }
1206     default: {
1207       rc &= 0xff;
1208       if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
1209         zErr = aMsg[rc];
1210       }
1211       break;
1212     }
1213   }
1214   return zErr;
1215 }
1216 
1217 /*
1218 ** This routine implements a busy callback that sleeps and tries
1219 ** again until a timeout value is reached.  The timeout value is
1220 ** an integer number of milliseconds passed in as the first
1221 ** argument.
1222 */
1223 static int sqliteDefaultBusyCallback(
1224  void *ptr,               /* Database connection */
1225  int count                /* Number of times table has been busy */
1226 ){
1227 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
1228   static const u8 delays[] =
1229      { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50, 100 };
1230   static const u8 totals[] =
1231      { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228 };
1232 # define NDELAY ArraySize(delays)
1233   sqlite3 *db = (sqlite3 *)ptr;
1234   int timeout = db->busyTimeout;
1235   int delay, prior;
1236 
1237   assert( count>=0 );
1238   if( count < NDELAY ){
1239     delay = delays[count];
1240     prior = totals[count];
1241   }else{
1242     delay = delays[NDELAY-1];
1243     prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
1244   }
1245   if( prior + delay > timeout ){
1246     delay = timeout - prior;
1247     if( delay<=0 ) return 0;
1248   }
1249   sqlite3OsSleep(db->pVfs, delay*1000);
1250   return 1;
1251 #else
1252   sqlite3 *db = (sqlite3 *)ptr;
1253   int timeout = ((sqlite3 *)ptr)->busyTimeout;
1254   if( (count+1)*1000 > timeout ){
1255     return 0;
1256   }
1257   sqlite3OsSleep(db->pVfs, 1000000);
1258   return 1;
1259 #endif
1260 }
1261 
1262 /*
1263 ** Invoke the given busy handler.
1264 **
1265 ** This routine is called when an operation failed with a lock.
1266 ** If this routine returns non-zero, the lock is retried.  If it
1267 ** returns 0, the operation aborts with an SQLITE_BUSY error.
1268 */
1269 int sqlite3InvokeBusyHandler(BusyHandler *p){
1270   int rc;
1271   if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
1272   rc = p->xFunc(p->pArg, p->nBusy);
1273   if( rc==0 ){
1274     p->nBusy = -1;
1275   }else{
1276     p->nBusy++;
1277   }
1278   return rc;
1279 }
1280 
1281 /*
1282 ** This routine sets the busy callback for an Sqlite database to the
1283 ** given callback function with the given argument.
1284 */
1285 int sqlite3_busy_handler(
1286   sqlite3 *db,
1287   int (*xBusy)(void*,int),
1288   void *pArg
1289 ){
1290   sqlite3_mutex_enter(db->mutex);
1291   db->busyHandler.xFunc = xBusy;
1292   db->busyHandler.pArg = pArg;
1293   db->busyHandler.nBusy = 0;
1294   db->busyTimeout = 0;
1295   sqlite3_mutex_leave(db->mutex);
1296   return SQLITE_OK;
1297 }
1298 
1299 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1300 /*
1301 ** This routine sets the progress callback for an Sqlite database to the
1302 ** given callback function with the given argument. The progress callback will
1303 ** be invoked every nOps opcodes.
1304 */
1305 void sqlite3_progress_handler(
1306   sqlite3 *db,
1307   int nOps,
1308   int (*xProgress)(void*),
1309   void *pArg
1310 ){
1311   sqlite3_mutex_enter(db->mutex);
1312   if( nOps>0 ){
1313     db->xProgress = xProgress;
1314     db->nProgressOps = (unsigned)nOps;
1315     db->pProgressArg = pArg;
1316   }else{
1317     db->xProgress = 0;
1318     db->nProgressOps = 0;
1319     db->pProgressArg = 0;
1320   }
1321   sqlite3_mutex_leave(db->mutex);
1322 }
1323 #endif
1324 
1325 
1326 /*
1327 ** This routine installs a default busy handler that waits for the
1328 ** specified number of milliseconds before returning 0.
1329 */
1330 int sqlite3_busy_timeout(sqlite3 *db, int ms){
1331   if( ms>0 ){
1332     sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
1333     db->busyTimeout = ms;
1334   }else{
1335     sqlite3_busy_handler(db, 0, 0);
1336   }
1337   return SQLITE_OK;
1338 }
1339 
1340 /*
1341 ** Cause any pending operation to stop at its earliest opportunity.
1342 */
1343 void sqlite3_interrupt(sqlite3 *db){
1344   db->u1.isInterrupted = 1;
1345 }
1346 
1347 
1348 /*
1349 ** This function is exactly the same as sqlite3_create_function(), except
1350 ** that it is designed to be called by internal code. The difference is
1351 ** that if a malloc() fails in sqlite3_create_function(), an error code
1352 ** is returned and the mallocFailed flag cleared.
1353 */
1354 int sqlite3CreateFunc(
1355   sqlite3 *db,
1356   const char *zFunctionName,
1357   int nArg,
1358   int enc,
1359   void *pUserData,
1360   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1361   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1362   void (*xFinal)(sqlite3_context*),
1363   FuncDestructor *pDestructor
1364 ){
1365   FuncDef *p;
1366   int nName;
1367   int extraFlags;
1368 
1369   assert( sqlite3_mutex_held(db->mutex) );
1370   if( zFunctionName==0 ||
1371       (xFunc && (xFinal || xStep)) ||
1372       (!xFunc && (xFinal && !xStep)) ||
1373       (!xFunc && (!xFinal && xStep)) ||
1374       (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
1375       (255<(nName = sqlite3Strlen30( zFunctionName))) ){
1376     return SQLITE_MISUSE_BKPT;
1377   }
1378 
1379   assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
1380   extraFlags = enc &  SQLITE_DETERMINISTIC;
1381   enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
1382 
1383 #ifndef SQLITE_OMIT_UTF16
1384   /* If SQLITE_UTF16 is specified as the encoding type, transform this
1385   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
1386   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
1387   **
1388   ** If SQLITE_ANY is specified, add three versions of the function
1389   ** to the hash table.
1390   */
1391   if( enc==SQLITE_UTF16 ){
1392     enc = SQLITE_UTF16NATIVE;
1393   }else if( enc==SQLITE_ANY ){
1394     int rc;
1395     rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags,
1396          pUserData, xFunc, xStep, xFinal, pDestructor);
1397     if( rc==SQLITE_OK ){
1398       rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags,
1399           pUserData, xFunc, xStep, xFinal, pDestructor);
1400     }
1401     if( rc!=SQLITE_OK ){
1402       return rc;
1403     }
1404     enc = SQLITE_UTF16BE;
1405   }
1406 #else
1407   enc = SQLITE_UTF8;
1408 #endif
1409 
1410   /* Check if an existing function is being overridden or deleted. If so,
1411   ** and there are active VMs, then return SQLITE_BUSY. If a function
1412   ** is being overridden/deleted but there are no active VMs, allow the
1413   ** operation to continue but invalidate all precompiled statements.
1414   */
1415   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
1416   if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){
1417     if( db->nVdbeActive ){
1418       sqlite3Error(db, SQLITE_BUSY,
1419         "unable to delete/modify user-function due to active statements");
1420       assert( !db->mallocFailed );
1421       return SQLITE_BUSY;
1422     }else{
1423       sqlite3ExpirePreparedStatements(db);
1424     }
1425   }
1426 
1427   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
1428   assert(p || db->mallocFailed);
1429   if( !p ){
1430     return SQLITE_NOMEM;
1431   }
1432 
1433   /* If an older version of the function with a configured destructor is
1434   ** being replaced invoke the destructor function here. */
1435   functionDestroy(db, p);
1436 
1437   if( pDestructor ){
1438     pDestructor->nRef++;
1439   }
1440   p->pDestructor = pDestructor;
1441   p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
1442   testcase( p->funcFlags & SQLITE_DETERMINISTIC );
1443   p->xFunc = xFunc;
1444   p->xStep = xStep;
1445   p->xFinalize = xFinal;
1446   p->pUserData = pUserData;
1447   p->nArg = (u16)nArg;
1448   return SQLITE_OK;
1449 }
1450 
1451 /*
1452 ** Create new user functions.
1453 */
1454 int sqlite3_create_function(
1455   sqlite3 *db,
1456   const char *zFunc,
1457   int nArg,
1458   int enc,
1459   void *p,
1460   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1461   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1462   void (*xFinal)(sqlite3_context*)
1463 ){
1464   return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
1465                                     xFinal, 0);
1466 }
1467 
1468 int sqlite3_create_function_v2(
1469   sqlite3 *db,
1470   const char *zFunc,
1471   int nArg,
1472   int enc,
1473   void *p,
1474   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1475   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1476   void (*xFinal)(sqlite3_context*),
1477   void (*xDestroy)(void *)
1478 ){
1479   int rc = SQLITE_ERROR;
1480   FuncDestructor *pArg = 0;
1481   sqlite3_mutex_enter(db->mutex);
1482   if( xDestroy ){
1483     pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
1484     if( !pArg ){
1485       xDestroy(p);
1486       goto out;
1487     }
1488     pArg->xDestroy = xDestroy;
1489     pArg->pUserData = p;
1490   }
1491   rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
1492   if( pArg && pArg->nRef==0 ){
1493     assert( rc!=SQLITE_OK );
1494     xDestroy(p);
1495     sqlite3DbFree(db, pArg);
1496   }
1497 
1498  out:
1499   rc = sqlite3ApiExit(db, rc);
1500   sqlite3_mutex_leave(db->mutex);
1501   return rc;
1502 }
1503 
1504 #ifndef SQLITE_OMIT_UTF16
1505 int sqlite3_create_function16(
1506   sqlite3 *db,
1507   const void *zFunctionName,
1508   int nArg,
1509   int eTextRep,
1510   void *p,
1511   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
1512   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
1513   void (*xFinal)(sqlite3_context*)
1514 ){
1515   int rc;
1516   char *zFunc8;
1517   sqlite3_mutex_enter(db->mutex);
1518   assert( !db->mallocFailed );
1519   zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
1520   rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
1521   sqlite3DbFree(db, zFunc8);
1522   rc = sqlite3ApiExit(db, rc);
1523   sqlite3_mutex_leave(db->mutex);
1524   return rc;
1525 }
1526 #endif
1527 
1528 
1529 /*
1530 ** Declare that a function has been overloaded by a virtual table.
1531 **
1532 ** If the function already exists as a regular global function, then
1533 ** this routine is a no-op.  If the function does not exist, then create
1534 ** a new one that always throws a run-time error.
1535 **
1536 ** When virtual tables intend to provide an overloaded function, they
1537 ** should call this routine to make sure the global function exists.
1538 ** A global function must exist in order for name resolution to work
1539 ** properly.
1540 */
1541 int sqlite3_overload_function(
1542   sqlite3 *db,
1543   const char *zName,
1544   int nArg
1545 ){
1546   int nName = sqlite3Strlen30(zName);
1547   int rc = SQLITE_OK;
1548   sqlite3_mutex_enter(db->mutex);
1549   if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
1550     rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
1551                            0, sqlite3InvalidFunction, 0, 0, 0);
1552   }
1553   rc = sqlite3ApiExit(db, rc);
1554   sqlite3_mutex_leave(db->mutex);
1555   return rc;
1556 }
1557 
1558 #ifndef SQLITE_OMIT_TRACE
1559 /*
1560 ** Register a trace function.  The pArg from the previously registered trace
1561 ** is returned.
1562 **
1563 ** A NULL trace function means that no tracing is executes.  A non-NULL
1564 ** trace is a pointer to a function that is invoked at the start of each
1565 ** SQL statement.
1566 */
1567 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
1568   void *pOld;
1569   sqlite3_mutex_enter(db->mutex);
1570   pOld = db->pTraceArg;
1571   db->xTrace = xTrace;
1572   db->pTraceArg = pArg;
1573   sqlite3_mutex_leave(db->mutex);
1574   return pOld;
1575 }
1576 /*
1577 ** Register a profile function.  The pArg from the previously registered
1578 ** profile function is returned.
1579 **
1580 ** A NULL profile function means that no profiling is executes.  A non-NULL
1581 ** profile is a pointer to a function that is invoked at the conclusion of
1582 ** each SQL statement that is run.
1583 */
1584 void *sqlite3_profile(
1585   sqlite3 *db,
1586   void (*xProfile)(void*,const char*,sqlite_uint64),
1587   void *pArg
1588 ){
1589   void *pOld;
1590   sqlite3_mutex_enter(db->mutex);
1591   pOld = db->pProfileArg;
1592   db->xProfile = xProfile;
1593   db->pProfileArg = pArg;
1594   sqlite3_mutex_leave(db->mutex);
1595   return pOld;
1596 }
1597 #endif /* SQLITE_OMIT_TRACE */
1598 
1599 /*
1600 ** Register a function to be invoked when a transaction commits.
1601 ** If the invoked function returns non-zero, then the commit becomes a
1602 ** rollback.
1603 */
1604 void *sqlite3_commit_hook(
1605   sqlite3 *db,              /* Attach the hook to this database */
1606   int (*xCallback)(void*),  /* Function to invoke on each commit */
1607   void *pArg                /* Argument to the function */
1608 ){
1609   void *pOld;
1610   sqlite3_mutex_enter(db->mutex);
1611   pOld = db->pCommitArg;
1612   db->xCommitCallback = xCallback;
1613   db->pCommitArg = pArg;
1614   sqlite3_mutex_leave(db->mutex);
1615   return pOld;
1616 }
1617 
1618 /*
1619 ** Register a callback to be invoked each time a row is updated,
1620 ** inserted or deleted using this database connection.
1621 */
1622 void *sqlite3_update_hook(
1623   sqlite3 *db,              /* Attach the hook to this database */
1624   void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
1625   void *pArg                /* Argument to the function */
1626 ){
1627   void *pRet;
1628   sqlite3_mutex_enter(db->mutex);
1629   pRet = db->pUpdateArg;
1630   db->xUpdateCallback = xCallback;
1631   db->pUpdateArg = pArg;
1632   sqlite3_mutex_leave(db->mutex);
1633   return pRet;
1634 }
1635 
1636 /*
1637 ** Register a callback to be invoked each time a transaction is rolled
1638 ** back by this database connection.
1639 */
1640 void *sqlite3_rollback_hook(
1641   sqlite3 *db,              /* Attach the hook to this database */
1642   void (*xCallback)(void*), /* Callback function */
1643   void *pArg                /* Argument to the function */
1644 ){
1645   void *pRet;
1646   sqlite3_mutex_enter(db->mutex);
1647   pRet = db->pRollbackArg;
1648   db->xRollbackCallback = xCallback;
1649   db->pRollbackArg = pArg;
1650   sqlite3_mutex_leave(db->mutex);
1651   return pRet;
1652 }
1653 
1654 #ifndef SQLITE_OMIT_WAL
1655 /*
1656 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
1657 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
1658 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by
1659 ** wal_autocheckpoint()).
1660 */
1661 int sqlite3WalDefaultHook(
1662   void *pClientData,     /* Argument */
1663   sqlite3 *db,           /* Connection */
1664   const char *zDb,       /* Database */
1665   int nFrame             /* Size of WAL */
1666 ){
1667   if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
1668     sqlite3BeginBenignMalloc();
1669     sqlite3_wal_checkpoint(db, zDb);
1670     sqlite3EndBenignMalloc();
1671   }
1672   return SQLITE_OK;
1673 }
1674 #endif /* SQLITE_OMIT_WAL */
1675 
1676 /*
1677 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint
1678 ** a database after committing a transaction if there are nFrame or
1679 ** more frames in the log file. Passing zero or a negative value as the
1680 ** nFrame parameter disables automatic checkpoints entirely.
1681 **
1682 ** The callback registered by this function replaces any existing callback
1683 ** registered using sqlite3_wal_hook(). Likewise, registering a callback
1684 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
1685 ** configured by this function.
1686 */
1687 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
1688 #ifdef SQLITE_OMIT_WAL
1689   UNUSED_PARAMETER(db);
1690   UNUSED_PARAMETER(nFrame);
1691 #else
1692   if( nFrame>0 ){
1693     sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
1694   }else{
1695     sqlite3_wal_hook(db, 0, 0);
1696   }
1697 #endif
1698   return SQLITE_OK;
1699 }
1700 
1701 /*
1702 ** Register a callback to be invoked each time a transaction is written
1703 ** into the write-ahead-log by this database connection.
1704 */
1705 void *sqlite3_wal_hook(
1706   sqlite3 *db,                    /* Attach the hook to this db handle */
1707   int(*xCallback)(void *, sqlite3*, const char*, int),
1708   void *pArg                      /* First argument passed to xCallback() */
1709 ){
1710 #ifndef SQLITE_OMIT_WAL
1711   void *pRet;
1712   sqlite3_mutex_enter(db->mutex);
1713   pRet = db->pWalArg;
1714   db->xWalCallback = xCallback;
1715   db->pWalArg = pArg;
1716   sqlite3_mutex_leave(db->mutex);
1717   return pRet;
1718 #else
1719   return 0;
1720 #endif
1721 }
1722 
1723 /*
1724 ** Checkpoint database zDb.
1725 */
1726 int sqlite3_wal_checkpoint_v2(
1727   sqlite3 *db,                    /* Database handle */
1728   const char *zDb,                /* Name of attached database (or NULL) */
1729   int eMode,                      /* SQLITE_CHECKPOINT_* value */
1730   int *pnLog,                     /* OUT: Size of WAL log in frames */
1731   int *pnCkpt                     /* OUT: Total number of frames checkpointed */
1732 ){
1733 #ifdef SQLITE_OMIT_WAL
1734   return SQLITE_OK;
1735 #else
1736   int rc;                         /* Return code */
1737   int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */
1738 
1739   /* Initialize the output variables to -1 in case an error occurs. */
1740   if( pnLog ) *pnLog = -1;
1741   if( pnCkpt ) *pnCkpt = -1;
1742 
1743   assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
1744   assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
1745   assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
1746   if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
1747     return SQLITE_MISUSE;
1748   }
1749 
1750   sqlite3_mutex_enter(db->mutex);
1751   if( zDb && zDb[0] ){
1752     iDb = sqlite3FindDbName(db, zDb);
1753   }
1754   if( iDb<0 ){
1755     rc = SQLITE_ERROR;
1756     sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
1757   }else{
1758     rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
1759     sqlite3Error(db, rc, 0);
1760   }
1761   rc = sqlite3ApiExit(db, rc);
1762   sqlite3_mutex_leave(db->mutex);
1763   return rc;
1764 #endif
1765 }
1766 
1767 
1768 /*
1769 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
1770 ** to contains a zero-length string, all attached databases are
1771 ** checkpointed.
1772 */
1773 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
1774   return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
1775 }
1776 
1777 #ifndef SQLITE_OMIT_WAL
1778 /*
1779 ** Run a checkpoint on database iDb. This is a no-op if database iDb is
1780 ** not currently open in WAL mode.
1781 **
1782 ** If a transaction is open on the database being checkpointed, this
1783 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
1784 ** an error occurs while running the checkpoint, an SQLite error code is
1785 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
1786 **
1787 ** The mutex on database handle db should be held by the caller. The mutex
1788 ** associated with the specific b-tree being checkpointed is taken by
1789 ** this function while the checkpoint is running.
1790 **
1791 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
1792 ** checkpointed. If an error is encountered it is returned immediately -
1793 ** no attempt is made to checkpoint any remaining databases.
1794 **
1795 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
1796 */
1797 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
1798   int rc = SQLITE_OK;             /* Return code */
1799   int i;                          /* Used to iterate through attached dbs */
1800   int bBusy = 0;                  /* True if SQLITE_BUSY has been encountered */
1801 
1802   assert( sqlite3_mutex_held(db->mutex) );
1803   assert( !pnLog || *pnLog==-1 );
1804   assert( !pnCkpt || *pnCkpt==-1 );
1805 
1806   for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
1807     if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
1808       rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
1809       pnLog = 0;
1810       pnCkpt = 0;
1811       if( rc==SQLITE_BUSY ){
1812         bBusy = 1;
1813         rc = SQLITE_OK;
1814       }
1815     }
1816   }
1817 
1818   return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
1819 }
1820 #endif /* SQLITE_OMIT_WAL */
1821 
1822 /*
1823 ** This function returns true if main-memory should be used instead of
1824 ** a temporary file for transient pager files and statement journals.
1825 ** The value returned depends on the value of db->temp_store (runtime
1826 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The
1827 ** following table describes the relationship between these two values
1828 ** and this functions return value.
1829 **
1830 **   SQLITE_TEMP_STORE     db->temp_store     Location of temporary database
1831 **   -----------------     --------------     ------------------------------
1832 **   0                     any                file      (return 0)
1833 **   1                     1                  file      (return 0)
1834 **   1                     2                  memory    (return 1)
1835 **   1                     0                  file      (return 0)
1836 **   2                     1                  file      (return 0)
1837 **   2                     2                  memory    (return 1)
1838 **   2                     0                  memory    (return 1)
1839 **   3                     any                memory    (return 1)
1840 */
1841 int sqlite3TempInMemory(const sqlite3 *db){
1842 #if SQLITE_TEMP_STORE==1
1843   return ( db->temp_store==2 );
1844 #endif
1845 #if SQLITE_TEMP_STORE==2
1846   return ( db->temp_store!=1 );
1847 #endif
1848 #if SQLITE_TEMP_STORE==3
1849   return 1;
1850 #endif
1851 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
1852   return 0;
1853 #endif
1854 }
1855 
1856 /*
1857 ** Return UTF-8 encoded English language explanation of the most recent
1858 ** error.
1859 */
1860 const char *sqlite3_errmsg(sqlite3 *db){
1861   const char *z;
1862   if( !db ){
1863     return sqlite3ErrStr(SQLITE_NOMEM);
1864   }
1865   if( !sqlite3SafetyCheckSickOrOk(db) ){
1866     return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
1867   }
1868   sqlite3_mutex_enter(db->mutex);
1869   if( db->mallocFailed ){
1870     z = sqlite3ErrStr(SQLITE_NOMEM);
1871   }else{
1872     testcase( db->pErr==0 );
1873     z = (char*)sqlite3_value_text(db->pErr);
1874     assert( !db->mallocFailed );
1875     if( z==0 ){
1876       z = sqlite3ErrStr(db->errCode);
1877     }
1878   }
1879   sqlite3_mutex_leave(db->mutex);
1880   return z;
1881 }
1882 
1883 #ifndef SQLITE_OMIT_UTF16
1884 /*
1885 ** Return UTF-16 encoded English language explanation of the most recent
1886 ** error.
1887 */
1888 const void *sqlite3_errmsg16(sqlite3 *db){
1889   static const u16 outOfMem[] = {
1890     'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
1891   };
1892   static const u16 misuse[] = {
1893     'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
1894     'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
1895     'c', 'a', 'l', 'l', 'e', 'd', ' ',
1896     'o', 'u', 't', ' ',
1897     'o', 'f', ' ',
1898     's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
1899   };
1900 
1901   const void *z;
1902   if( !db ){
1903     return (void *)outOfMem;
1904   }
1905   if( !sqlite3SafetyCheckSickOrOk(db) ){
1906     return (void *)misuse;
1907   }
1908   sqlite3_mutex_enter(db->mutex);
1909   if( db->mallocFailed ){
1910     z = (void *)outOfMem;
1911   }else{
1912     z = sqlite3_value_text16(db->pErr);
1913     if( z==0 ){
1914       sqlite3Error(db, db->errCode, sqlite3ErrStr(db->errCode));
1915       z = sqlite3_value_text16(db->pErr);
1916     }
1917     /* A malloc() may have failed within the call to sqlite3_value_text16()
1918     ** above. If this is the case, then the db->mallocFailed flag needs to
1919     ** be cleared before returning. Do this directly, instead of via
1920     ** sqlite3ApiExit(), to avoid setting the database handle error message.
1921     */
1922     db->mallocFailed = 0;
1923   }
1924   sqlite3_mutex_leave(db->mutex);
1925   return z;
1926 }
1927 #endif /* SQLITE_OMIT_UTF16 */
1928 
1929 /*
1930 ** Return the most recent error code generated by an SQLite routine. If NULL is
1931 ** passed to this function, we assume a malloc() failed during sqlite3_open().
1932 */
1933 int sqlite3_errcode(sqlite3 *db){
1934   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1935     return SQLITE_MISUSE_BKPT;
1936   }
1937   if( !db || db->mallocFailed ){
1938     return SQLITE_NOMEM;
1939   }
1940   return db->errCode & db->errMask;
1941 }
1942 int sqlite3_extended_errcode(sqlite3 *db){
1943   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1944     return SQLITE_MISUSE_BKPT;
1945   }
1946   if( !db || db->mallocFailed ){
1947     return SQLITE_NOMEM;
1948   }
1949   return db->errCode;
1950 }
1951 
1952 /*
1953 ** Return a string that describes the kind of error specified in the
1954 ** argument.  For now, this simply calls the internal sqlite3ErrStr()
1955 ** function.
1956 */
1957 const char *sqlite3_errstr(int rc){
1958   return sqlite3ErrStr(rc);
1959 }
1960 
1961 /*
1962 ** Invalidate all cached KeyInfo objects for database connection "db"
1963 */
1964 static void invalidateCachedKeyInfo(sqlite3 *db){
1965   Db *pDb;                    /* A single database */
1966   int iDb;                    /* The database index number */
1967   HashElem *k;                /* For looping over tables in pDb */
1968   Table *pTab;                /* A table in the database */
1969   Index *pIdx;                /* Each index */
1970 
1971   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
1972     if( pDb->pBt==0 ) continue;
1973     sqlite3BtreeEnter(pDb->pBt);
1974     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
1975       pTab = (Table*)sqliteHashData(k);
1976       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1977         if( pIdx->pKeyInfo && pIdx->pKeyInfo->db==db ){
1978           sqlite3KeyInfoUnref(pIdx->pKeyInfo);
1979           pIdx->pKeyInfo = 0;
1980         }
1981       }
1982     }
1983     sqlite3BtreeLeave(pDb->pBt);
1984   }
1985 }
1986 
1987 /*
1988 ** Create a new collating function for database "db".  The name is zName
1989 ** and the encoding is enc.
1990 */
1991 static int createCollation(
1992   sqlite3* db,
1993   const char *zName,
1994   u8 enc,
1995   void* pCtx,
1996   int(*xCompare)(void*,int,const void*,int,const void*),
1997   void(*xDel)(void*)
1998 ){
1999   CollSeq *pColl;
2000   int enc2;
2001   int nName = sqlite3Strlen30(zName);
2002 
2003   assert( sqlite3_mutex_held(db->mutex) );
2004 
2005   /* If SQLITE_UTF16 is specified as the encoding type, transform this
2006   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
2007   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
2008   */
2009   enc2 = enc;
2010   testcase( enc2==SQLITE_UTF16 );
2011   testcase( enc2==SQLITE_UTF16_ALIGNED );
2012   if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
2013     enc2 = SQLITE_UTF16NATIVE;
2014   }
2015   if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
2016     return SQLITE_MISUSE_BKPT;
2017   }
2018 
2019   /* Check if this call is removing or replacing an existing collation
2020   ** sequence. If so, and there are active VMs, return busy. If there
2021   ** are no active VMs, invalidate any pre-compiled statements.
2022   */
2023   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
2024   if( pColl && pColl->xCmp ){
2025     if( db->nVdbeActive ){
2026       sqlite3Error(db, SQLITE_BUSY,
2027         "unable to delete/modify collation sequence due to active statements");
2028       return SQLITE_BUSY;
2029     }
2030     sqlite3ExpirePreparedStatements(db);
2031     invalidateCachedKeyInfo(db);
2032 
2033     /* If collation sequence pColl was created directly by a call to
2034     ** sqlite3_create_collation, and not generated by synthCollSeq(),
2035     ** then any copies made by synthCollSeq() need to be invalidated.
2036     ** Also, collation destructor - CollSeq.xDel() - function may need
2037     ** to be called.
2038     */
2039     if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
2040       CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
2041       int j;
2042       for(j=0; j<3; j++){
2043         CollSeq *p = &aColl[j];
2044         if( p->enc==pColl->enc ){
2045           if( p->xDel ){
2046             p->xDel(p->pUser);
2047           }
2048           p->xCmp = 0;
2049         }
2050       }
2051     }
2052   }
2053 
2054   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
2055   if( pColl==0 ) return SQLITE_NOMEM;
2056   pColl->xCmp = xCompare;
2057   pColl->pUser = pCtx;
2058   pColl->xDel = xDel;
2059   pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
2060   sqlite3Error(db, SQLITE_OK, 0);
2061   return SQLITE_OK;
2062 }
2063 
2064 
2065 /*
2066 ** This array defines hard upper bounds on limit values.  The
2067 ** initializer must be kept in sync with the SQLITE_LIMIT_*
2068 ** #defines in sqlite3.h.
2069 */
2070 static const int aHardLimit[] = {
2071   SQLITE_MAX_LENGTH,
2072   SQLITE_MAX_SQL_LENGTH,
2073   SQLITE_MAX_COLUMN,
2074   SQLITE_MAX_EXPR_DEPTH,
2075   SQLITE_MAX_COMPOUND_SELECT,
2076   SQLITE_MAX_VDBE_OP,
2077   SQLITE_MAX_FUNCTION_ARG,
2078   SQLITE_MAX_ATTACHED,
2079   SQLITE_MAX_LIKE_PATTERN_LENGTH,
2080   SQLITE_MAX_VARIABLE_NUMBER,      /* IMP: R-38091-32352 */
2081   SQLITE_MAX_TRIGGER_DEPTH,
2082 };
2083 
2084 /*
2085 ** Make sure the hard limits are set to reasonable values
2086 */
2087 #if SQLITE_MAX_LENGTH<100
2088 # error SQLITE_MAX_LENGTH must be at least 100
2089 #endif
2090 #if SQLITE_MAX_SQL_LENGTH<100
2091 # error SQLITE_MAX_SQL_LENGTH must be at least 100
2092 #endif
2093 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
2094 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
2095 #endif
2096 #if SQLITE_MAX_COMPOUND_SELECT<2
2097 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2
2098 #endif
2099 #if SQLITE_MAX_VDBE_OP<40
2100 # error SQLITE_MAX_VDBE_OP must be at least 40
2101 #endif
2102 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
2103 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
2104 #endif
2105 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
2106 # error SQLITE_MAX_ATTACHED must be between 0 and 125
2107 #endif
2108 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
2109 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
2110 #endif
2111 #if SQLITE_MAX_COLUMN>32767
2112 # error SQLITE_MAX_COLUMN must not exceed 32767
2113 #endif
2114 #if SQLITE_MAX_TRIGGER_DEPTH<1
2115 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
2116 #endif
2117 
2118 
2119 /*
2120 ** Change the value of a limit.  Report the old value.
2121 ** If an invalid limit index is supplied, report -1.
2122 ** Make no changes but still report the old value if the
2123 ** new limit is negative.
2124 **
2125 ** A new lower limit does not shrink existing constructs.
2126 ** It merely prevents new constructs that exceed the limit
2127 ** from forming.
2128 */
2129 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
2130   int oldLimit;
2131 
2132 
2133   /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
2134   ** there is a hard upper bound set at compile-time by a C preprocessor
2135   ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
2136   ** "_MAX_".)
2137   */
2138   assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
2139   assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
2140   assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
2141   assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
2142   assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
2143   assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
2144   assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
2145   assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
2146   assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
2147                                                SQLITE_MAX_LIKE_PATTERN_LENGTH );
2148   assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
2149   assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
2150   assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
2151 
2152 
2153   if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
2154     return -1;
2155   }
2156   oldLimit = db->aLimit[limitId];
2157   if( newLimit>=0 ){                   /* IMP: R-52476-28732 */
2158     if( newLimit>aHardLimit[limitId] ){
2159       newLimit = aHardLimit[limitId];  /* IMP: R-51463-25634 */
2160     }
2161     db->aLimit[limitId] = newLimit;
2162   }
2163   return oldLimit;                     /* IMP: R-53341-35419 */
2164 }
2165 
2166 /*
2167 ** This function is used to parse both URIs and non-URI filenames passed by the
2168 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
2169 ** URIs specified as part of ATTACH statements.
2170 **
2171 ** The first argument to this function is the name of the VFS to use (or
2172 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
2173 ** query parameter. The second argument contains the URI (or non-URI filename)
2174 ** itself. When this function is called the *pFlags variable should contain
2175 ** the default flags to open the database handle with. The value stored in
2176 ** *pFlags may be updated before returning if the URI filename contains
2177 ** "cache=xxx" or "mode=xxx" query parameters.
2178 **
2179 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
2180 ** the VFS that should be used to open the database file. *pzFile is set to
2181 ** point to a buffer containing the name of the file to open. It is the
2182 ** responsibility of the caller to eventually call sqlite3_free() to release
2183 ** this buffer.
2184 **
2185 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg
2186 ** may be set to point to a buffer containing an English language error
2187 ** message. It is the responsibility of the caller to eventually release
2188 ** this buffer by calling sqlite3_free().
2189 */
2190 int sqlite3ParseUri(
2191   const char *zDefaultVfs,        /* VFS to use if no "vfs=xxx" query option */
2192   const char *zUri,               /* Nul-terminated URI to parse */
2193   unsigned int *pFlags,           /* IN/OUT: SQLITE_OPEN_XXX flags */
2194   sqlite3_vfs **ppVfs,            /* OUT: VFS to use */
2195   char **pzFile,                  /* OUT: Filename component of URI */
2196   char **pzErrMsg                 /* OUT: Error message (if rc!=SQLITE_OK) */
2197 ){
2198   int rc = SQLITE_OK;
2199   unsigned int flags = *pFlags;
2200   const char *zVfs = zDefaultVfs;
2201   char *zFile;
2202   char c;
2203   int nUri = sqlite3Strlen30(zUri);
2204 
2205   assert( *pzErrMsg==0 );
2206 
2207   if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri)
2208    && nUri>=5 && memcmp(zUri, "file:", 5)==0
2209   ){
2210     char *zOpt;
2211     int eState;                   /* Parser state when parsing URI */
2212     int iIn;                      /* Input character index */
2213     int iOut = 0;                 /* Output character index */
2214     int nByte = nUri+2;           /* Bytes of space to allocate */
2215 
2216     /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
2217     ** method that there may be extra parameters following the file-name.  */
2218     flags |= SQLITE_OPEN_URI;
2219 
2220     for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
2221     zFile = sqlite3_malloc(nByte);
2222     if( !zFile ) return SQLITE_NOMEM;
2223 
2224     iIn = 5;
2225 #ifndef SQLITE_ALLOW_URI_AUTHORITY
2226     /* Discard the scheme and authority segments of the URI. */
2227     if( zUri[5]=='/' && zUri[6]=='/' ){
2228       iIn = 7;
2229       while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
2230       if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
2231         *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
2232             iIn-7, &zUri[7]);
2233         rc = SQLITE_ERROR;
2234         goto parse_uri_out;
2235       }
2236     }
2237 #endif
2238 
2239     /* Copy the filename and any query parameters into the zFile buffer.
2240     ** Decode %HH escape codes along the way.
2241     **
2242     ** Within this loop, variable eState may be set to 0, 1 or 2, depending
2243     ** on the parsing context. As follows:
2244     **
2245     **   0: Parsing file-name.
2246     **   1: Parsing name section of a name=value query parameter.
2247     **   2: Parsing value section of a name=value query parameter.
2248     */
2249     eState = 0;
2250     while( (c = zUri[iIn])!=0 && c!='#' ){
2251       iIn++;
2252       if( c=='%'
2253        && sqlite3Isxdigit(zUri[iIn])
2254        && sqlite3Isxdigit(zUri[iIn+1])
2255       ){
2256         int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
2257         octet += sqlite3HexToInt(zUri[iIn++]);
2258 
2259         assert( octet>=0 && octet<256 );
2260         if( octet==0 ){
2261           /* This branch is taken when "%00" appears within the URI. In this
2262           ** case we ignore all text in the remainder of the path, name or
2263           ** value currently being parsed. So ignore the current character
2264           ** and skip to the next "?", "=" or "&", as appropriate. */
2265           while( (c = zUri[iIn])!=0 && c!='#'
2266               && (eState!=0 || c!='?')
2267               && (eState!=1 || (c!='=' && c!='&'))
2268               && (eState!=2 || c!='&')
2269           ){
2270             iIn++;
2271           }
2272           continue;
2273         }
2274         c = octet;
2275       }else if( eState==1 && (c=='&' || c=='=') ){
2276         if( zFile[iOut-1]==0 ){
2277           /* An empty option name. Ignore this option altogether. */
2278           while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
2279           continue;
2280         }
2281         if( c=='&' ){
2282           zFile[iOut++] = '\0';
2283         }else{
2284           eState = 2;
2285         }
2286         c = 0;
2287       }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
2288         c = 0;
2289         eState = 1;
2290       }
2291       zFile[iOut++] = c;
2292     }
2293     if( eState==1 ) zFile[iOut++] = '\0';
2294     zFile[iOut++] = '\0';
2295     zFile[iOut++] = '\0';
2296 
2297     /* Check if there were any options specified that should be interpreted
2298     ** here. Options that are interpreted here include "vfs" and those that
2299     ** correspond to flags that may be passed to the sqlite3_open_v2()
2300     ** method. */
2301     zOpt = &zFile[sqlite3Strlen30(zFile)+1];
2302     while( zOpt[0] ){
2303       int nOpt = sqlite3Strlen30(zOpt);
2304       char *zVal = &zOpt[nOpt+1];
2305       int nVal = sqlite3Strlen30(zVal);
2306 
2307       if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
2308         zVfs = zVal;
2309       }else{
2310         struct OpenMode {
2311           const char *z;
2312           int mode;
2313         } *aMode = 0;
2314         char *zModeType = 0;
2315         int mask = 0;
2316         int limit = 0;
2317 
2318         if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
2319           static struct OpenMode aCacheMode[] = {
2320             { "shared",  SQLITE_OPEN_SHAREDCACHE },
2321             { "private", SQLITE_OPEN_PRIVATECACHE },
2322             { 0, 0 }
2323           };
2324 
2325           mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
2326           aMode = aCacheMode;
2327           limit = mask;
2328           zModeType = "cache";
2329         }
2330         if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
2331           static struct OpenMode aOpenMode[] = {
2332             { "ro",  SQLITE_OPEN_READONLY },
2333             { "rw",  SQLITE_OPEN_READWRITE },
2334             { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
2335             { "memory", SQLITE_OPEN_MEMORY },
2336             { 0, 0 }
2337           };
2338 
2339           mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
2340                    | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
2341           aMode = aOpenMode;
2342           limit = mask & flags;
2343           zModeType = "access";
2344         }
2345 
2346         if( aMode ){
2347           int i;
2348           int mode = 0;
2349           for(i=0; aMode[i].z; i++){
2350             const char *z = aMode[i].z;
2351             if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
2352               mode = aMode[i].mode;
2353               break;
2354             }
2355           }
2356           if( mode==0 ){
2357             *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
2358             rc = SQLITE_ERROR;
2359             goto parse_uri_out;
2360           }
2361           if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
2362             *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
2363                                         zModeType, zVal);
2364             rc = SQLITE_PERM;
2365             goto parse_uri_out;
2366           }
2367           flags = (flags & ~mask) | mode;
2368         }
2369       }
2370 
2371       zOpt = &zVal[nVal+1];
2372     }
2373 
2374   }else{
2375     zFile = sqlite3_malloc(nUri+2);
2376     if( !zFile ) return SQLITE_NOMEM;
2377     memcpy(zFile, zUri, nUri);
2378     zFile[nUri] = '\0';
2379     zFile[nUri+1] = '\0';
2380     flags &= ~SQLITE_OPEN_URI;
2381   }
2382 
2383   *ppVfs = sqlite3_vfs_find(zVfs);
2384   if( *ppVfs==0 ){
2385     *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
2386     rc = SQLITE_ERROR;
2387   }
2388  parse_uri_out:
2389   if( rc!=SQLITE_OK ){
2390     sqlite3_free(zFile);
2391     zFile = 0;
2392   }
2393   *pFlags = flags;
2394   *pzFile = zFile;
2395   return rc;
2396 }
2397 
2398 
2399 /*
2400 ** This routine does the work of opening a database on behalf of
2401 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
2402 ** is UTF-8 encoded.
2403 */
2404 static int openDatabase(
2405   const char *zFilename, /* Database filename UTF-8 encoded */
2406   sqlite3 **ppDb,        /* OUT: Returned database handle */
2407   unsigned int flags,    /* Operational flags */
2408   const char *zVfs       /* Name of the VFS to use */
2409 ){
2410   sqlite3 *db;                    /* Store allocated handle here */
2411   int rc;                         /* Return code */
2412   int isThreadsafe;               /* True for threadsafe connections */
2413   char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
2414   char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */
2415 
2416   *ppDb = 0;
2417 #ifndef SQLITE_OMIT_AUTOINIT
2418   rc = sqlite3_initialize();
2419   if( rc ) return rc;
2420 #endif
2421 
2422   /* Only allow sensible combinations of bits in the flags argument.
2423   ** Throw an error if any non-sense combination is used.  If we
2424   ** do not block illegal combinations here, it could trigger
2425   ** assert() statements in deeper layers.  Sensible combinations
2426   ** are:
2427   **
2428   **  1:  SQLITE_OPEN_READONLY
2429   **  2:  SQLITE_OPEN_READWRITE
2430   **  6:  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
2431   */
2432   assert( SQLITE_OPEN_READONLY  == 0x01 );
2433   assert( SQLITE_OPEN_READWRITE == 0x02 );
2434   assert( SQLITE_OPEN_CREATE    == 0x04 );
2435   testcase( (1<<(flags&7))==0x02 ); /* READONLY */
2436   testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
2437   testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
2438   if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;
2439 
2440   if( sqlite3GlobalConfig.bCoreMutex==0 ){
2441     isThreadsafe = 0;
2442   }else if( flags & SQLITE_OPEN_NOMUTEX ){
2443     isThreadsafe = 0;
2444   }else if( flags & SQLITE_OPEN_FULLMUTEX ){
2445     isThreadsafe = 1;
2446   }else{
2447     isThreadsafe = sqlite3GlobalConfig.bFullMutex;
2448   }
2449   if( flags & SQLITE_OPEN_PRIVATECACHE ){
2450     flags &= ~SQLITE_OPEN_SHAREDCACHE;
2451   }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
2452     flags |= SQLITE_OPEN_SHAREDCACHE;
2453   }
2454 
2455   /* Remove harmful bits from the flags parameter
2456   **
2457   ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
2458   ** dealt with in the previous code block.  Besides these, the only
2459   ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
2460   ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
2461   ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits.  Silently mask
2462   ** off all other flags.
2463   */
2464   flags &=  ~( SQLITE_OPEN_DELETEONCLOSE |
2465                SQLITE_OPEN_EXCLUSIVE |
2466                SQLITE_OPEN_MAIN_DB |
2467                SQLITE_OPEN_TEMP_DB |
2468                SQLITE_OPEN_TRANSIENT_DB |
2469                SQLITE_OPEN_MAIN_JOURNAL |
2470                SQLITE_OPEN_TEMP_JOURNAL |
2471                SQLITE_OPEN_SUBJOURNAL |
2472                SQLITE_OPEN_MASTER_JOURNAL |
2473                SQLITE_OPEN_NOMUTEX |
2474                SQLITE_OPEN_FULLMUTEX |
2475                SQLITE_OPEN_WAL
2476              );
2477 
2478   /* Allocate the sqlite data structure */
2479   db = sqlite3MallocZero( sizeof(sqlite3) );
2480   if( db==0 ) goto opendb_out;
2481   if( isThreadsafe ){
2482     db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
2483     if( db->mutex==0 ){
2484       sqlite3_free(db);
2485       db = 0;
2486       goto opendb_out;
2487     }
2488   }
2489   sqlite3_mutex_enter(db->mutex);
2490   db->errMask = 0xff;
2491   db->nDb = 2;
2492   db->magic = SQLITE_MAGIC_BUSY;
2493   db->aDb = db->aDbStatic;
2494 
2495   assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
2496   memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
2497   db->autoCommit = 1;
2498   db->nextAutovac = -1;
2499   db->szMmap = sqlite3GlobalConfig.szMmap;
2500   db->nextPagesize = 0;
2501   db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
2502 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
2503                  | SQLITE_AutoIndex
2504 #endif
2505 #if SQLITE_DEFAULT_FILE_FORMAT<4
2506                  | SQLITE_LegacyFileFmt
2507 #endif
2508 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
2509                  | SQLITE_LoadExtension
2510 #endif
2511 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
2512                  | SQLITE_RecTriggers
2513 #endif
2514 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
2515                  | SQLITE_ForeignKeys
2516 #endif
2517       ;
2518   sqlite3HashInit(&db->aCollSeq);
2519 #ifndef SQLITE_OMIT_VIRTUALTABLE
2520   sqlite3HashInit(&db->aModule);
2521 #endif
2522 
2523   /* Add the default collation sequence BINARY. BINARY works for both UTF-8
2524   ** and UTF-16, so add a version for each to avoid any unnecessary
2525   ** conversions. The only error that can occur here is a malloc() failure.
2526   */
2527   createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
2528   createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
2529   createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
2530   createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
2531   if( db->mallocFailed ){
2532     goto opendb_out;
2533   }
2534   db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
2535   assert( db->pDfltColl!=0 );
2536 
2537   /* Also add a UTF-8 case-insensitive collation sequence. */
2538   createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
2539 
2540   /* Parse the filename/URI argument. */
2541   db->openFlags = flags;
2542   rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
2543   if( rc!=SQLITE_OK ){
2544     if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
2545     sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
2546     sqlite3_free(zErrMsg);
2547     goto opendb_out;
2548   }
2549 
2550   /* Open the backend database driver */
2551   rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
2552                         flags | SQLITE_OPEN_MAIN_DB);
2553   if( rc!=SQLITE_OK ){
2554     if( rc==SQLITE_IOERR_NOMEM ){
2555       rc = SQLITE_NOMEM;
2556     }
2557     sqlite3Error(db, rc, 0);
2558     goto opendb_out;
2559   }
2560   db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
2561   db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
2562 
2563 
2564   /* The default safety_level for the main database is 'full'; for the temp
2565   ** database it is 'NONE'. This matches the pager layer defaults.
2566   */
2567   db->aDb[0].zName = "main";
2568   db->aDb[0].safety_level = 3;
2569   db->aDb[1].zName = "temp";
2570   db->aDb[1].safety_level = 1;
2571 
2572   db->magic = SQLITE_MAGIC_OPEN;
2573   if( db->mallocFailed ){
2574     goto opendb_out;
2575   }
2576 
2577   /* Register all built-in functions, but do not attempt to read the
2578   ** database schema yet. This is delayed until the first time the database
2579   ** is accessed.
2580   */
2581   sqlite3Error(db, SQLITE_OK, 0);
2582   sqlite3RegisterBuiltinFunctions(db);
2583 
2584   /* Load automatic extensions - extensions that have been registered
2585   ** using the sqlite3_automatic_extension() API.
2586   */
2587   rc = sqlite3_errcode(db);
2588   if( rc==SQLITE_OK ){
2589     sqlite3AutoLoadExtensions(db);
2590     rc = sqlite3_errcode(db);
2591     if( rc!=SQLITE_OK ){
2592       goto opendb_out;
2593     }
2594   }
2595 
2596 #ifdef SQLITE_ENABLE_FTS1
2597   if( !db->mallocFailed ){
2598     extern int sqlite3Fts1Init(sqlite3*);
2599     rc = sqlite3Fts1Init(db);
2600   }
2601 #endif
2602 
2603 #ifdef SQLITE_ENABLE_FTS2
2604   if( !db->mallocFailed && rc==SQLITE_OK ){
2605     extern int sqlite3Fts2Init(sqlite3*);
2606     rc = sqlite3Fts2Init(db);
2607   }
2608 #endif
2609 
2610 #ifdef SQLITE_ENABLE_FTS3
2611   if( !db->mallocFailed && rc==SQLITE_OK ){
2612     rc = sqlite3Fts3Init(db);
2613   }
2614 #endif
2615 
2616 #ifdef SQLITE_ENABLE_ICU
2617   if( !db->mallocFailed && rc==SQLITE_OK ){
2618     rc = sqlite3IcuInit(db);
2619   }
2620 #endif
2621 
2622 #ifdef SQLITE_ENABLE_RTREE
2623   if( !db->mallocFailed && rc==SQLITE_OK){
2624     rc = sqlite3RtreeInit(db);
2625   }
2626 #endif
2627 
2628   /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
2629   ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
2630   ** mode.  Doing nothing at all also makes NORMAL the default.
2631   */
2632 #ifdef SQLITE_DEFAULT_LOCKING_MODE
2633   db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
2634   sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
2635                           SQLITE_DEFAULT_LOCKING_MODE);
2636 #endif
2637 
2638   if( rc ) sqlite3Error(db, rc, 0);
2639 
2640   /* Enable the lookaside-malloc subsystem */
2641   setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
2642                         sqlite3GlobalConfig.nLookaside);
2643 
2644   sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
2645 
2646 opendb_out:
2647   sqlite3_free(zOpen);
2648   if( db ){
2649     assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
2650     sqlite3_mutex_leave(db->mutex);
2651   }
2652   rc = sqlite3_errcode(db);
2653   assert( db!=0 || rc==SQLITE_NOMEM );
2654   if( rc==SQLITE_NOMEM ){
2655     sqlite3_close(db);
2656     db = 0;
2657   }else if( rc!=SQLITE_OK ){
2658     db->magic = SQLITE_MAGIC_SICK;
2659   }
2660   *ppDb = db;
2661 #ifdef SQLITE_ENABLE_SQLLOG
2662   if( sqlite3GlobalConfig.xSqllog ){
2663     /* Opening a db handle. Fourth parameter is passed 0. */
2664     void *pArg = sqlite3GlobalConfig.pSqllogArg;
2665     sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
2666   }
2667 #endif
2668   return sqlite3ApiExit(0, rc);
2669 }
2670 
2671 /*
2672 ** Open a new database handle.
2673 */
2674 int sqlite3_open(
2675   const char *zFilename,
2676   sqlite3 **ppDb
2677 ){
2678   return openDatabase(zFilename, ppDb,
2679                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2680 }
2681 int sqlite3_open_v2(
2682   const char *filename,   /* Database filename (UTF-8) */
2683   sqlite3 **ppDb,         /* OUT: SQLite db handle */
2684   int flags,              /* Flags */
2685   const char *zVfs        /* Name of VFS module to use */
2686 ){
2687   return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
2688 }
2689 
2690 #ifndef SQLITE_OMIT_UTF16
2691 /*
2692 ** Open a new database handle.
2693 */
2694 int sqlite3_open16(
2695   const void *zFilename,
2696   sqlite3 **ppDb
2697 ){
2698   char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
2699   sqlite3_value *pVal;
2700   int rc;
2701 
2702   assert( zFilename );
2703   assert( ppDb );
2704   *ppDb = 0;
2705 #ifndef SQLITE_OMIT_AUTOINIT
2706   rc = sqlite3_initialize();
2707   if( rc ) return rc;
2708 #endif
2709   pVal = sqlite3ValueNew(0);
2710   sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
2711   zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
2712   if( zFilename8 ){
2713     rc = openDatabase(zFilename8, ppDb,
2714                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2715     assert( *ppDb || rc==SQLITE_NOMEM );
2716     if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
2717       ENC(*ppDb) = SQLITE_UTF16NATIVE;
2718     }
2719   }else{
2720     rc = SQLITE_NOMEM;
2721   }
2722   sqlite3ValueFree(pVal);
2723 
2724   return sqlite3ApiExit(0, rc);
2725 }
2726 #endif /* SQLITE_OMIT_UTF16 */
2727 
2728 /*
2729 ** Register a new collation sequence with the database handle db.
2730 */
2731 int sqlite3_create_collation(
2732   sqlite3* db,
2733   const char *zName,
2734   int enc,
2735   void* pCtx,
2736   int(*xCompare)(void*,int,const void*,int,const void*)
2737 ){
2738   int rc;
2739   sqlite3_mutex_enter(db->mutex);
2740   assert( !db->mallocFailed );
2741   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
2742   rc = sqlite3ApiExit(db, rc);
2743   sqlite3_mutex_leave(db->mutex);
2744   return rc;
2745 }
2746 
2747 /*
2748 ** Register a new collation sequence with the database handle db.
2749 */
2750 int sqlite3_create_collation_v2(
2751   sqlite3* db,
2752   const char *zName,
2753   int enc,
2754   void* pCtx,
2755   int(*xCompare)(void*,int,const void*,int,const void*),
2756   void(*xDel)(void*)
2757 ){
2758   int rc;
2759   sqlite3_mutex_enter(db->mutex);
2760   assert( !db->mallocFailed );
2761   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
2762   rc = sqlite3ApiExit(db, rc);
2763   sqlite3_mutex_leave(db->mutex);
2764   return rc;
2765 }
2766 
2767 #ifndef SQLITE_OMIT_UTF16
2768 /*
2769 ** Register a new collation sequence with the database handle db.
2770 */
2771 int sqlite3_create_collation16(
2772   sqlite3* db,
2773   const void *zName,
2774   int enc,
2775   void* pCtx,
2776   int(*xCompare)(void*,int,const void*,int,const void*)
2777 ){
2778   int rc = SQLITE_OK;
2779   char *zName8;
2780   sqlite3_mutex_enter(db->mutex);
2781   assert( !db->mallocFailed );
2782   zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
2783   if( zName8 ){
2784     rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
2785     sqlite3DbFree(db, zName8);
2786   }
2787   rc = sqlite3ApiExit(db, rc);
2788   sqlite3_mutex_leave(db->mutex);
2789   return rc;
2790 }
2791 #endif /* SQLITE_OMIT_UTF16 */
2792 
2793 /*
2794 ** Register a collation sequence factory callback with the database handle
2795 ** db. Replace any previously installed collation sequence factory.
2796 */
2797 int sqlite3_collation_needed(
2798   sqlite3 *db,
2799   void *pCollNeededArg,
2800   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
2801 ){
2802   sqlite3_mutex_enter(db->mutex);
2803   db->xCollNeeded = xCollNeeded;
2804   db->xCollNeeded16 = 0;
2805   db->pCollNeededArg = pCollNeededArg;
2806   sqlite3_mutex_leave(db->mutex);
2807   return SQLITE_OK;
2808 }
2809 
2810 #ifndef SQLITE_OMIT_UTF16
2811 /*
2812 ** Register a collation sequence factory callback with the database handle
2813 ** db. Replace any previously installed collation sequence factory.
2814 */
2815 int sqlite3_collation_needed16(
2816   sqlite3 *db,
2817   void *pCollNeededArg,
2818   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
2819 ){
2820   sqlite3_mutex_enter(db->mutex);
2821   db->xCollNeeded = 0;
2822   db->xCollNeeded16 = xCollNeeded16;
2823   db->pCollNeededArg = pCollNeededArg;
2824   sqlite3_mutex_leave(db->mutex);
2825   return SQLITE_OK;
2826 }
2827 #endif /* SQLITE_OMIT_UTF16 */
2828 
2829 #ifndef SQLITE_OMIT_DEPRECATED
2830 /*
2831 ** This function is now an anachronism. It used to be used to recover from a
2832 ** malloc() failure, but SQLite now does this automatically.
2833 */
2834 int sqlite3_global_recover(void){
2835   return SQLITE_OK;
2836 }
2837 #endif
2838 
2839 /*
2840 ** Test to see whether or not the database connection is in autocommit
2841 ** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
2842 ** by default.  Autocommit is disabled by a BEGIN statement and reenabled
2843 ** by the next COMMIT or ROLLBACK.
2844 */
2845 int sqlite3_get_autocommit(sqlite3 *db){
2846   return db->autoCommit;
2847 }
2848 
2849 /*
2850 ** The following routines are subtitutes for constants SQLITE_CORRUPT,
2851 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
2852 ** constants.  They server two purposes:
2853 **
2854 **   1.  Serve as a convenient place to set a breakpoint in a debugger
2855 **       to detect when version error conditions occurs.
2856 **
2857 **   2.  Invoke sqlite3_log() to provide the source code location where
2858 **       a low-level error is first detected.
2859 */
2860 int sqlite3CorruptError(int lineno){
2861   testcase( sqlite3GlobalConfig.xLog!=0 );
2862   sqlite3_log(SQLITE_CORRUPT,
2863               "database corruption at line %d of [%.10s]",
2864               lineno, 20+sqlite3_sourceid());
2865   return SQLITE_CORRUPT;
2866 }
2867 int sqlite3MisuseError(int lineno){
2868   testcase( sqlite3GlobalConfig.xLog!=0 );
2869   sqlite3_log(SQLITE_MISUSE,
2870               "misuse at line %d of [%.10s]",
2871               lineno, 20+sqlite3_sourceid());
2872   return SQLITE_MISUSE;
2873 }
2874 int sqlite3CantopenError(int lineno){
2875   testcase( sqlite3GlobalConfig.xLog!=0 );
2876   sqlite3_log(SQLITE_CANTOPEN,
2877               "cannot open file at line %d of [%.10s]",
2878               lineno, 20+sqlite3_sourceid());
2879   return SQLITE_CANTOPEN;
2880 }
2881 
2882 
2883 #ifndef SQLITE_OMIT_DEPRECATED
2884 /*
2885 ** This is a convenience routine that makes sure that all thread-specific
2886 ** data for this thread has been deallocated.
2887 **
2888 ** SQLite no longer uses thread-specific data so this routine is now a
2889 ** no-op.  It is retained for historical compatibility.
2890 */
2891 void sqlite3_thread_cleanup(void){
2892 }
2893 #endif
2894 
2895 /*
2896 ** Return meta information about a specific column of a database table.
2897 ** See comment in sqlite3.h (sqlite.h.in) for details.
2898 */
2899 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2900 int sqlite3_table_column_metadata(
2901   sqlite3 *db,                /* Connection handle */
2902   const char *zDbName,        /* Database name or NULL */
2903   const char *zTableName,     /* Table name */
2904   const char *zColumnName,    /* Column name */
2905   char const **pzDataType,    /* OUTPUT: Declared data type */
2906   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
2907   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
2908   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
2909   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
2910 ){
2911   int rc;
2912   char *zErrMsg = 0;
2913   Table *pTab = 0;
2914   Column *pCol = 0;
2915   int iCol;
2916 
2917   char const *zDataType = 0;
2918   char const *zCollSeq = 0;
2919   int notnull = 0;
2920   int primarykey = 0;
2921   int autoinc = 0;
2922 
2923   /* Ensure the database schema has been loaded */
2924   sqlite3_mutex_enter(db->mutex);
2925   sqlite3BtreeEnterAll(db);
2926   rc = sqlite3Init(db, &zErrMsg);
2927   if( SQLITE_OK!=rc ){
2928     goto error_out;
2929   }
2930 
2931   /* Locate the table in question */
2932   pTab = sqlite3FindTable(db, zTableName, zDbName);
2933   if( !pTab || pTab->pSelect ){
2934     pTab = 0;
2935     goto error_out;
2936   }
2937 
2938   /* Find the column for which info is requested */
2939   if( sqlite3IsRowid(zColumnName) ){
2940     iCol = pTab->iPKey;
2941     if( iCol>=0 ){
2942       pCol = &pTab->aCol[iCol];
2943     }
2944   }else{
2945     for(iCol=0; iCol<pTab->nCol; iCol++){
2946       pCol = &pTab->aCol[iCol];
2947       if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
2948         break;
2949       }
2950     }
2951     if( iCol==pTab->nCol ){
2952       pTab = 0;
2953       goto error_out;
2954     }
2955   }
2956 
2957   /* The following block stores the meta information that will be returned
2958   ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
2959   ** and autoinc. At this point there are two possibilities:
2960   **
2961   **     1. The specified column name was rowid", "oid" or "_rowid_"
2962   **        and there is no explicitly declared IPK column.
2963   **
2964   **     2. The table is not a view and the column name identified an
2965   **        explicitly declared column. Copy meta information from *pCol.
2966   */
2967   if( pCol ){
2968     zDataType = pCol->zType;
2969     zCollSeq = pCol->zColl;
2970     notnull = pCol->notNull!=0;
2971     primarykey  = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
2972     autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
2973   }else{
2974     zDataType = "INTEGER";
2975     primarykey = 1;
2976   }
2977   if( !zCollSeq ){
2978     zCollSeq = "BINARY";
2979   }
2980 
2981 error_out:
2982   sqlite3BtreeLeaveAll(db);
2983 
2984   /* Whether the function call succeeded or failed, set the output parameters
2985   ** to whatever their local counterparts contain. If an error did occur,
2986   ** this has the effect of zeroing all output parameters.
2987   */
2988   if( pzDataType ) *pzDataType = zDataType;
2989   if( pzCollSeq ) *pzCollSeq = zCollSeq;
2990   if( pNotNull ) *pNotNull = notnull;
2991   if( pPrimaryKey ) *pPrimaryKey = primarykey;
2992   if( pAutoinc ) *pAutoinc = autoinc;
2993 
2994   if( SQLITE_OK==rc && !pTab ){
2995     sqlite3DbFree(db, zErrMsg);
2996     zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
2997         zColumnName);
2998     rc = SQLITE_ERROR;
2999   }
3000   sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
3001   sqlite3DbFree(db, zErrMsg);
3002   rc = sqlite3ApiExit(db, rc);
3003   sqlite3_mutex_leave(db->mutex);
3004   return rc;
3005 }
3006 #endif
3007 
3008 /*
3009 ** Sleep for a little while.  Return the amount of time slept.
3010 */
3011 int sqlite3_sleep(int ms){
3012   sqlite3_vfs *pVfs;
3013   int rc;
3014   pVfs = sqlite3_vfs_find(0);
3015   if( pVfs==0 ) return 0;
3016 
3017   /* This function works in milliseconds, but the underlying OsSleep()
3018   ** API uses microseconds. Hence the 1000's.
3019   */
3020   rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
3021   return rc;
3022 }
3023 
3024 /*
3025 ** Enable or disable the extended result codes.
3026 */
3027 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
3028   sqlite3_mutex_enter(db->mutex);
3029   db->errMask = onoff ? 0xffffffff : 0xff;
3030   sqlite3_mutex_leave(db->mutex);
3031   return SQLITE_OK;
3032 }
3033 
3034 /*
3035 ** Invoke the xFileControl method on a particular database.
3036 */
3037 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
3038   int rc = SQLITE_ERROR;
3039   Btree *pBtree;
3040 
3041   sqlite3_mutex_enter(db->mutex);
3042   pBtree = sqlite3DbNameToBtree(db, zDbName);
3043   if( pBtree ){
3044     Pager *pPager;
3045     sqlite3_file *fd;
3046     sqlite3BtreeEnter(pBtree);
3047     pPager = sqlite3BtreePager(pBtree);
3048     assert( pPager!=0 );
3049     fd = sqlite3PagerFile(pPager);
3050     assert( fd!=0 );
3051     if( op==SQLITE_FCNTL_FILE_POINTER ){
3052       *(sqlite3_file**)pArg = fd;
3053       rc = SQLITE_OK;
3054     }else if( fd->pMethods ){
3055       rc = sqlite3OsFileControl(fd, op, pArg);
3056     }else{
3057       rc = SQLITE_NOTFOUND;
3058     }
3059     sqlite3BtreeLeave(pBtree);
3060   }
3061   sqlite3_mutex_leave(db->mutex);
3062   return rc;
3063 }
3064 
3065 /*
3066 ** Interface to the testing logic.
3067 */
3068 int sqlite3_test_control(int op, ...){
3069   int rc = 0;
3070 #ifndef SQLITE_OMIT_BUILTIN_TEST
3071   va_list ap;
3072   va_start(ap, op);
3073   switch( op ){
3074 
3075     /*
3076     ** Save the current state of the PRNG.
3077     */
3078     case SQLITE_TESTCTRL_PRNG_SAVE: {
3079       sqlite3PrngSaveState();
3080       break;
3081     }
3082 
3083     /*
3084     ** Restore the state of the PRNG to the last state saved using
3085     ** PRNG_SAVE.  If PRNG_SAVE has never before been called, then
3086     ** this verb acts like PRNG_RESET.
3087     */
3088     case SQLITE_TESTCTRL_PRNG_RESTORE: {
3089       sqlite3PrngRestoreState();
3090       break;
3091     }
3092 
3093     /*
3094     ** Reset the PRNG back to its uninitialized state.  The next call
3095     ** to sqlite3_randomness() will reseed the PRNG using a single call
3096     ** to the xRandomness method of the default VFS.
3097     */
3098     case SQLITE_TESTCTRL_PRNG_RESET: {
3099       sqlite3_randomness(0,0);
3100       break;
3101     }
3102 
3103     /*
3104     **  sqlite3_test_control(BITVEC_TEST, size, program)
3105     **
3106     ** Run a test against a Bitvec object of size.  The program argument
3107     ** is an array of integers that defines the test.  Return -1 on a
3108     ** memory allocation error, 0 on success, or non-zero for an error.
3109     ** See the sqlite3BitvecBuiltinTest() for additional information.
3110     */
3111     case SQLITE_TESTCTRL_BITVEC_TEST: {
3112       int sz = va_arg(ap, int);
3113       int *aProg = va_arg(ap, int*);
3114       rc = sqlite3BitvecBuiltinTest(sz, aProg);
3115       break;
3116     }
3117 
3118     /*
3119     **  sqlite3_test_control(FAULT_INSTALL, xCallback)
3120     **
3121     ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
3122     ** if xCallback is not NULL.
3123     **
3124     ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
3125     ** is called immediately after installing the new callback and the return
3126     ** value from sqlite3FaultSim(0) becomes the return from
3127     ** sqlite3_test_control().
3128     */
3129     case SQLITE_TESTCTRL_FAULT_INSTALL: {
3130       /* MSVC is picky about pulling func ptrs from va lists.
3131       ** http://support.microsoft.com/kb/47961
3132       ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int));
3133       */
3134       typedef int(*TESTCALLBACKFUNC_t)(int);
3135       sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t);
3136       rc = sqlite3FaultSim(0);
3137       break;
3138     }
3139 
3140     /*
3141     **  sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
3142     **
3143     ** Register hooks to call to indicate which malloc() failures
3144     ** are benign.
3145     */
3146     case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
3147       typedef void (*void_function)(void);
3148       void_function xBenignBegin;
3149       void_function xBenignEnd;
3150       xBenignBegin = va_arg(ap, void_function);
3151       xBenignEnd = va_arg(ap, void_function);
3152       sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
3153       break;
3154     }
3155 
3156     /*
3157     **  sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
3158     **
3159     ** Set the PENDING byte to the value in the argument, if X>0.
3160     ** Make no changes if X==0.  Return the value of the pending byte
3161     ** as it existing before this routine was called.
3162     **
3163     ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
3164     ** an incompatible database file format.  Changing the PENDING byte
3165     ** while any database connection is open results in undefined and
3166     ** dileterious behavior.
3167     */
3168     case SQLITE_TESTCTRL_PENDING_BYTE: {
3169       rc = PENDING_BYTE;
3170 #ifndef SQLITE_OMIT_WSD
3171       {
3172         unsigned int newVal = va_arg(ap, unsigned int);
3173         if( newVal ) sqlite3PendingByte = newVal;
3174       }
3175 #endif
3176       break;
3177     }
3178 
3179     /*
3180     **  sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
3181     **
3182     ** This action provides a run-time test to see whether or not
3183     ** assert() was enabled at compile-time.  If X is true and assert()
3184     ** is enabled, then the return value is true.  If X is true and
3185     ** assert() is disabled, then the return value is zero.  If X is
3186     ** false and assert() is enabled, then the assertion fires and the
3187     ** process aborts.  If X is false and assert() is disabled, then the
3188     ** return value is zero.
3189     */
3190     case SQLITE_TESTCTRL_ASSERT: {
3191       volatile int x = 0;
3192       assert( (x = va_arg(ap,int))!=0 );
3193       rc = x;
3194       break;
3195     }
3196 
3197 
3198     /*
3199     **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
3200     **
3201     ** This action provides a run-time test to see how the ALWAYS and
3202     ** NEVER macros were defined at compile-time.
3203     **
3204     ** The return value is ALWAYS(X).
3205     **
3206     ** The recommended test is X==2.  If the return value is 2, that means
3207     ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
3208     ** default setting.  If the return value is 1, then ALWAYS() is either
3209     ** hard-coded to true or else it asserts if its argument is false.
3210     ** The first behavior (hard-coded to true) is the case if
3211     ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
3212     ** behavior (assert if the argument to ALWAYS() is false) is the case if
3213     ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
3214     **
3215     ** The run-time test procedure might look something like this:
3216     **
3217     **    if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
3218     **      // ALWAYS() and NEVER() are no-op pass-through macros
3219     **    }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
3220     **      // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
3221     **    }else{
3222     **      // ALWAYS(x) is a constant 1.  NEVER(x) is a constant 0.
3223     **    }
3224     */
3225     case SQLITE_TESTCTRL_ALWAYS: {
3226       int x = va_arg(ap,int);
3227       rc = ALWAYS(x);
3228       break;
3229     }
3230 
3231     /*
3232     **   sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
3233     **
3234     ** The integer returned reveals the byte-order of the computer on which
3235     ** SQLite is running:
3236     **
3237     **       1     big-endian,    determined at run-time
3238     **      10     little-endian, determined at run-time
3239     **  432101     big-endian,    determined at compile-time
3240     **  123410     little-endian, determined at compile-time
3241     */
3242     case SQLITE_TESTCTRL_BYTEORDER: {
3243       rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
3244       break;
3245     }
3246 
3247     /*   sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
3248     **
3249     ** Set the nReserve size to N for the main database on the database
3250     ** connection db.
3251     */
3252     case SQLITE_TESTCTRL_RESERVE: {
3253       sqlite3 *db = va_arg(ap, sqlite3*);
3254       int x = va_arg(ap,int);
3255       sqlite3_mutex_enter(db->mutex);
3256       sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
3257       sqlite3_mutex_leave(db->mutex);
3258       break;
3259     }
3260 
3261     /*  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
3262     **
3263     ** Enable or disable various optimizations for testing purposes.  The
3264     ** argument N is a bitmask of optimizations to be disabled.  For normal
3265     ** operation N should be 0.  The idea is that a test program (like the
3266     ** SQL Logic Test or SLT test module) can run the same SQL multiple times
3267     ** with various optimizations disabled to verify that the same answer
3268     ** is obtained in every case.
3269     */
3270     case SQLITE_TESTCTRL_OPTIMIZATIONS: {
3271       sqlite3 *db = va_arg(ap, sqlite3*);
3272       db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
3273       break;
3274     }
3275 
3276 #ifdef SQLITE_N_KEYWORD
3277     /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
3278     **
3279     ** If zWord is a keyword recognized by the parser, then return the
3280     ** number of keywords.  Or if zWord is not a keyword, return 0.
3281     **
3282     ** This test feature is only available in the amalgamation since
3283     ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
3284     ** is built using separate source files.
3285     */
3286     case SQLITE_TESTCTRL_ISKEYWORD: {
3287       const char *zWord = va_arg(ap, const char*);
3288       int n = sqlite3Strlen30(zWord);
3289       rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
3290       break;
3291     }
3292 #endif
3293 
3294     /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
3295     **
3296     ** Pass pFree into sqlite3ScratchFree().
3297     ** If sz>0 then allocate a scratch buffer into pNew.
3298     */
3299     case SQLITE_TESTCTRL_SCRATCHMALLOC: {
3300       void *pFree, **ppNew;
3301       int sz;
3302       sz = va_arg(ap, int);
3303       ppNew = va_arg(ap, void**);
3304       pFree = va_arg(ap, void*);
3305       if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
3306       sqlite3ScratchFree(pFree);
3307       break;
3308     }
3309 
3310     /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
3311     **
3312     ** If parameter onoff is non-zero, configure the wrappers so that all
3313     ** subsequent calls to localtime() and variants fail. If onoff is zero,
3314     ** undo this setting.
3315     */
3316     case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
3317       sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
3318       break;
3319     }
3320 
3321 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3322     /*   sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
3323     **                        sqlite3_stmt*,const char**);
3324     **
3325     ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
3326     ** a string that describes the optimized parse tree.  This test-control
3327     ** returns a pointer to that string.
3328     */
3329     case SQLITE_TESTCTRL_EXPLAIN_STMT: {
3330       sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
3331       const char **pzRet = va_arg(ap, const char**);
3332       *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
3333       break;
3334     }
3335 #endif
3336 
3337     /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
3338     **
3339     ** Set or clear a flag that indicates that the database file is always well-
3340     ** formed and never corrupt.  This flag is clear by default, indicating that
3341     ** database files might have arbitrary corruption.  Setting the flag during
3342     ** testing causes certain assert() statements in the code to be activated
3343     ** that demonstrat invariants on well-formed database files.
3344     */
3345     case SQLITE_TESTCTRL_NEVER_CORRUPT: {
3346       sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
3347       break;
3348     }
3349 
3350 
3351     /*   sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
3352     **
3353     ** Set the VDBE coverage callback function to xCallback with context
3354     ** pointer ptr.
3355     */
3356     case SQLITE_TESTCTRL_VDBE_COVERAGE: {
3357 #ifdef SQLITE_VDBE_COVERAGE
3358       typedef void (*branch_callback)(void*,int,u8,u8);
3359       sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
3360       sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
3361 #endif
3362       break;
3363     }
3364 
3365     /*   sqlite3_test_control(SQLITE_TESTCTRL_ISINIT);
3366     **
3367     ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
3368     ** not.
3369     */
3370     case SQLITE_TESTCTRL_ISINIT: {
3371       if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
3372       break;
3373     }
3374 
3375   }
3376   va_end(ap);
3377 #endif /* SQLITE_OMIT_BUILTIN_TEST */
3378   return rc;
3379 }
3380 
3381 /*
3382 ** This is a utility routine, useful to VFS implementations, that checks
3383 ** to see if a database file was a URI that contained a specific query
3384 ** parameter, and if so obtains the value of the query parameter.
3385 **
3386 ** The zFilename argument is the filename pointer passed into the xOpen()
3387 ** method of a VFS implementation.  The zParam argument is the name of the
3388 ** query parameter we seek.  This routine returns the value of the zParam
3389 ** parameter if it exists.  If the parameter does not exist, this routine
3390 ** returns a NULL pointer.
3391 */
3392 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
3393   if( zFilename==0 ) return 0;
3394   zFilename += sqlite3Strlen30(zFilename) + 1;
3395   while( zFilename[0] ){
3396     int x = strcmp(zFilename, zParam);
3397     zFilename += sqlite3Strlen30(zFilename) + 1;
3398     if( x==0 ) return zFilename;
3399     zFilename += sqlite3Strlen30(zFilename) + 1;
3400   }
3401   return 0;
3402 }
3403 
3404 /*
3405 ** Return a boolean value for a query parameter.
3406 */
3407 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
3408   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3409   bDflt = bDflt!=0;
3410   return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
3411 }
3412 
3413 /*
3414 ** Return a 64-bit integer value for a query parameter.
3415 */
3416 sqlite3_int64 sqlite3_uri_int64(
3417   const char *zFilename,    /* Filename as passed to xOpen */
3418   const char *zParam,       /* URI parameter sought */
3419   sqlite3_int64 bDflt       /* return if parameter is missing */
3420 ){
3421   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3422   sqlite3_int64 v;
3423   if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){
3424     bDflt = v;
3425   }
3426   return bDflt;
3427 }
3428 
3429 /*
3430 ** Return the Btree pointer identified by zDbName.  Return NULL if not found.
3431 */
3432 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
3433   int i;
3434   for(i=0; i<db->nDb; i++){
3435     if( db->aDb[i].pBt
3436      && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0)
3437     ){
3438       return db->aDb[i].pBt;
3439     }
3440   }
3441   return 0;
3442 }
3443 
3444 /*
3445 ** Return the filename of the database associated with a database
3446 ** connection.
3447 */
3448 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
3449   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3450   return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
3451 }
3452 
3453 /*
3454 ** Return 1 if database is read-only or 0 if read/write.  Return -1 if
3455 ** no such database exists.
3456 */
3457 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
3458   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3459   return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
3460 }
3461