1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** If the following global variable points to a string which is the 79 ** name of a directory, then that directory will be used to store 80 ** all database files specified with a relative pathname. 81 ** 82 ** See also the "PRAGMA data_store_directory" SQL command. 83 */ 84 char *sqlite3_data_directory = 0; 85 86 /* 87 ** Initialize SQLite. 88 ** 89 ** This routine must be called to initialize the memory allocation, 90 ** VFS, and mutex subsystems prior to doing any serious work with 91 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 92 ** this routine will be called automatically by key routines such as 93 ** sqlite3_open(). 94 ** 95 ** This routine is a no-op except on its very first call for the process, 96 ** or for the first call after a call to sqlite3_shutdown. 97 ** 98 ** The first thread to call this routine runs the initialization to 99 ** completion. If subsequent threads call this routine before the first 100 ** thread has finished the initialization process, then the subsequent 101 ** threads must block until the first thread finishes with the initialization. 102 ** 103 ** The first thread might call this routine recursively. Recursive 104 ** calls to this routine should not block, of course. Otherwise the 105 ** initialization process would never complete. 106 ** 107 ** Let X be the first thread to enter this routine. Let Y be some other 108 ** thread. Then while the initial invocation of this routine by X is 109 ** incomplete, it is required that: 110 ** 111 ** * Calls to this routine from Y must block until the outer-most 112 ** call by X completes. 113 ** 114 ** * Recursive calls to this routine from thread X return immediately 115 ** without blocking. 116 */ 117 int sqlite3_initialize(void){ 118 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 119 int rc; /* Result code */ 120 #ifdef SQLITE_EXTRA_INIT 121 int bRunExtraInit = 0; /* Extra initialization needed */ 122 #endif 123 124 #ifdef SQLITE_OMIT_WSD 125 rc = sqlite3_wsd_init(4096, 24); 126 if( rc!=SQLITE_OK ){ 127 return rc; 128 } 129 #endif 130 131 /* If the following assert() fails on some obscure processor/compiler 132 ** combination, the work-around is to set the correct pointer 133 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 134 assert( SQLITE_PTRSIZE==sizeof(char*) ); 135 136 /* If SQLite is already completely initialized, then this call 137 ** to sqlite3_initialize() should be a no-op. But the initialization 138 ** must be complete. So isInit must not be set until the very end 139 ** of this routine. 140 */ 141 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 142 143 /* Make sure the mutex subsystem is initialized. If unable to 144 ** initialize the mutex subsystem, return early with the error. 145 ** If the system is so sick that we are unable to allocate a mutex, 146 ** there is not much SQLite is going to be able to do. 147 ** 148 ** The mutex subsystem must take care of serializing its own 149 ** initialization. 150 */ 151 rc = sqlite3MutexInit(); 152 if( rc ) return rc; 153 154 /* Initialize the malloc() system and the recursive pInitMutex mutex. 155 ** This operation is protected by the STATIC_MASTER mutex. Note that 156 ** MutexAlloc() is called for a static mutex prior to initializing the 157 ** malloc subsystem - this implies that the allocation of a static 158 ** mutex must not require support from the malloc subsystem. 159 */ 160 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 161 sqlite3_mutex_enter(pMaster); 162 sqlite3GlobalConfig.isMutexInit = 1; 163 if( !sqlite3GlobalConfig.isMallocInit ){ 164 rc = sqlite3MallocInit(); 165 } 166 if( rc==SQLITE_OK ){ 167 sqlite3GlobalConfig.isMallocInit = 1; 168 if( !sqlite3GlobalConfig.pInitMutex ){ 169 sqlite3GlobalConfig.pInitMutex = 170 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 171 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 172 rc = SQLITE_NOMEM; 173 } 174 } 175 } 176 if( rc==SQLITE_OK ){ 177 sqlite3GlobalConfig.nRefInitMutex++; 178 } 179 sqlite3_mutex_leave(pMaster); 180 181 /* If rc is not SQLITE_OK at this point, then either the malloc 182 ** subsystem could not be initialized or the system failed to allocate 183 ** the pInitMutex mutex. Return an error in either case. */ 184 if( rc!=SQLITE_OK ){ 185 return rc; 186 } 187 188 /* Do the rest of the initialization under the recursive mutex so 189 ** that we will be able to handle recursive calls into 190 ** sqlite3_initialize(). The recursive calls normally come through 191 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 192 ** recursive calls might also be possible. 193 ** 194 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 195 ** to the xInit method, so the xInit method need not be threadsafe. 196 ** 197 ** The following mutex is what serializes access to the appdef pcache xInit 198 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 199 ** call to sqlite3PcacheInitialize(). 200 */ 201 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 202 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 203 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 204 sqlite3GlobalConfig.inProgress = 1; 205 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 206 sqlite3RegisterGlobalFunctions(); 207 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 208 rc = sqlite3PcacheInitialize(); 209 } 210 if( rc==SQLITE_OK ){ 211 sqlite3GlobalConfig.isPCacheInit = 1; 212 rc = sqlite3OsInit(); 213 } 214 if( rc==SQLITE_OK ){ 215 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 216 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 217 sqlite3GlobalConfig.isInit = 1; 218 #ifdef SQLITE_EXTRA_INIT 219 bRunExtraInit = 1; 220 #endif 221 } 222 sqlite3GlobalConfig.inProgress = 0; 223 } 224 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 225 226 /* Go back under the static mutex and clean up the recursive 227 ** mutex to prevent a resource leak. 228 */ 229 sqlite3_mutex_enter(pMaster); 230 sqlite3GlobalConfig.nRefInitMutex--; 231 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 232 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 233 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 234 sqlite3GlobalConfig.pInitMutex = 0; 235 } 236 sqlite3_mutex_leave(pMaster); 237 238 /* The following is just a sanity check to make sure SQLite has 239 ** been compiled correctly. It is important to run this code, but 240 ** we don't want to run it too often and soak up CPU cycles for no 241 ** reason. So we run it once during initialization. 242 */ 243 #ifndef NDEBUG 244 #ifndef SQLITE_OMIT_FLOATING_POINT 245 /* This section of code's only "output" is via assert() statements. */ 246 if ( rc==SQLITE_OK ){ 247 u64 x = (((u64)1)<<63)-1; 248 double y; 249 assert(sizeof(x)==8); 250 assert(sizeof(x)==sizeof(y)); 251 memcpy(&y, &x, 8); 252 assert( sqlite3IsNaN(y) ); 253 } 254 #endif 255 #endif 256 257 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 258 ** compile-time option. 259 */ 260 #ifdef SQLITE_EXTRA_INIT 261 if( bRunExtraInit ){ 262 int SQLITE_EXTRA_INIT(const char*); 263 rc = SQLITE_EXTRA_INIT(0); 264 } 265 #endif 266 267 return rc; 268 } 269 270 /* 271 ** Undo the effects of sqlite3_initialize(). Must not be called while 272 ** there are outstanding database connections or memory allocations or 273 ** while any part of SQLite is otherwise in use in any thread. This 274 ** routine is not threadsafe. But it is safe to invoke this routine 275 ** on when SQLite is already shut down. If SQLite is already shut down 276 ** when this routine is invoked, then this routine is a harmless no-op. 277 */ 278 int sqlite3_shutdown(void){ 279 #ifdef SQLITE_OMIT_WSD 280 int rc = sqlite3_wsd_init(4096, 24); 281 if( rc!=SQLITE_OK ){ 282 return rc; 283 } 284 #endif 285 286 if( sqlite3GlobalConfig.isInit ){ 287 #ifdef SQLITE_EXTRA_SHUTDOWN 288 void SQLITE_EXTRA_SHUTDOWN(void); 289 SQLITE_EXTRA_SHUTDOWN(); 290 #endif 291 sqlite3_os_end(); 292 sqlite3_reset_auto_extension(); 293 sqlite3GlobalConfig.isInit = 0; 294 } 295 if( sqlite3GlobalConfig.isPCacheInit ){ 296 sqlite3PcacheShutdown(); 297 sqlite3GlobalConfig.isPCacheInit = 0; 298 } 299 if( sqlite3GlobalConfig.isMallocInit ){ 300 sqlite3MallocEnd(); 301 sqlite3GlobalConfig.isMallocInit = 0; 302 303 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 304 /* The heap subsystem has now been shutdown and these values are supposed 305 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 306 ** which would rely on that heap subsystem; therefore, make sure these 307 ** values cannot refer to heap memory that was just invalidated when the 308 ** heap subsystem was shutdown. This is only done if the current call to 309 ** this function resulted in the heap subsystem actually being shutdown. 310 */ 311 sqlite3_data_directory = 0; 312 sqlite3_temp_directory = 0; 313 #endif 314 } 315 if( sqlite3GlobalConfig.isMutexInit ){ 316 sqlite3MutexEnd(); 317 sqlite3GlobalConfig.isMutexInit = 0; 318 } 319 320 return SQLITE_OK; 321 } 322 323 /* 324 ** This API allows applications to modify the global configuration of 325 ** the SQLite library at run-time. 326 ** 327 ** This routine should only be called when there are no outstanding 328 ** database connections or memory allocations. This routine is not 329 ** threadsafe. Failure to heed these warnings can lead to unpredictable 330 ** behavior. 331 */ 332 int sqlite3_config(int op, ...){ 333 va_list ap; 334 int rc = SQLITE_OK; 335 336 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 337 ** the SQLite library is in use. */ 338 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 339 340 va_start(ap, op); 341 switch( op ){ 342 343 /* Mutex configuration options are only available in a threadsafe 344 ** compile. 345 */ 346 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 347 case SQLITE_CONFIG_SINGLETHREAD: { 348 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 349 ** Single-thread. */ 350 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 351 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 352 break; 353 } 354 #endif 355 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 356 case SQLITE_CONFIG_MULTITHREAD: { 357 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 358 ** Multi-thread. */ 359 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 360 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 361 break; 362 } 363 #endif 364 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 365 case SQLITE_CONFIG_SERIALIZED: { 366 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 367 ** Serialized. */ 368 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 369 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 370 break; 371 } 372 #endif 373 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 374 case SQLITE_CONFIG_MUTEX: { 375 /* Specify an alternative mutex implementation */ 376 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 377 break; 378 } 379 #endif 380 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 381 case SQLITE_CONFIG_GETMUTEX: { 382 /* Retrieve the current mutex implementation */ 383 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 384 break; 385 } 386 #endif 387 388 case SQLITE_CONFIG_MALLOC: { 389 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 390 ** single argument which is a pointer to an instance of the 391 ** sqlite3_mem_methods structure. The argument specifies alternative 392 ** low-level memory allocation routines to be used in place of the memory 393 ** allocation routines built into SQLite. */ 394 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 395 break; 396 } 397 case SQLITE_CONFIG_GETMALLOC: { 398 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 399 ** single argument which is a pointer to an instance of the 400 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 401 ** filled with the currently defined memory allocation routines. */ 402 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 403 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 404 break; 405 } 406 case SQLITE_CONFIG_MEMSTATUS: { 407 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 408 ** single argument of type int, interpreted as a boolean, which enables 409 ** or disables the collection of memory allocation statistics. */ 410 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 411 break; 412 } 413 case SQLITE_CONFIG_SCRATCH: { 414 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 415 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 416 ** which the scratch allocations will be drawn, the size of each scratch 417 ** allocation (sz), and the maximum number of scratch allocations (N). */ 418 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 419 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 420 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 421 break; 422 } 423 case SQLITE_CONFIG_PAGECACHE: { 424 /* EVIDENCE-OF: R-31408-40510 There are three arguments to 425 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size 426 ** of each page buffer (sz), and the number of pages (N). */ 427 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 428 sqlite3GlobalConfig.szPage = va_arg(ap, int); 429 sqlite3GlobalConfig.nPage = va_arg(ap, int); 430 break; 431 } 432 case SQLITE_CONFIG_PCACHE_HDRSZ: { 433 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 434 ** a single parameter which is a pointer to an integer and writes into 435 ** that integer the number of extra bytes per page required for each page 436 ** in SQLITE_CONFIG_PAGECACHE. */ 437 *va_arg(ap, int*) = 438 sqlite3HeaderSizeBtree() + 439 sqlite3HeaderSizePcache() + 440 sqlite3HeaderSizePcache1(); 441 break; 442 } 443 444 case SQLITE_CONFIG_PCACHE: { 445 /* no-op */ 446 break; 447 } 448 case SQLITE_CONFIG_GETPCACHE: { 449 /* now an error */ 450 rc = SQLITE_ERROR; 451 break; 452 } 453 454 case SQLITE_CONFIG_PCACHE2: { 455 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 456 ** single argument which is a pointer to an sqlite3_pcache_methods2 457 ** object. This object specifies the interface to a custom page cache 458 ** implementation. */ 459 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 460 break; 461 } 462 case SQLITE_CONFIG_GETPCACHE2: { 463 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 464 ** single argument which is a pointer to an sqlite3_pcache_methods2 465 ** object. SQLite copies of the current page cache implementation into 466 ** that object. */ 467 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 468 sqlite3PCacheSetDefault(); 469 } 470 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 471 break; 472 } 473 474 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 475 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 476 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 477 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 478 case SQLITE_CONFIG_HEAP: { 479 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 480 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 481 ** number of bytes in the memory buffer, and the minimum allocation size. 482 */ 483 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 484 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 485 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 486 487 if( sqlite3GlobalConfig.mnReq<1 ){ 488 sqlite3GlobalConfig.mnReq = 1; 489 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 490 /* cap min request size at 2^12 */ 491 sqlite3GlobalConfig.mnReq = (1<<12); 492 } 493 494 if( sqlite3GlobalConfig.pHeap==0 ){ 495 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 496 ** is NULL, then SQLite reverts to using its default memory allocator 497 ** (the system malloc() implementation), undoing any prior invocation of 498 ** SQLITE_CONFIG_MALLOC. 499 ** 500 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 501 ** revert to its default implementation when sqlite3_initialize() is run 502 */ 503 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 504 }else{ 505 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 506 ** alternative memory allocator is engaged to handle all of SQLites 507 ** memory allocation needs. */ 508 #ifdef SQLITE_ENABLE_MEMSYS3 509 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 510 #endif 511 #ifdef SQLITE_ENABLE_MEMSYS5 512 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 513 #endif 514 } 515 break; 516 } 517 #endif 518 519 case SQLITE_CONFIG_LOOKASIDE: { 520 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 521 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 522 break; 523 } 524 525 /* Record a pointer to the logger function and its first argument. 526 ** The default is NULL. Logging is disabled if the function pointer is 527 ** NULL. 528 */ 529 case SQLITE_CONFIG_LOG: { 530 /* MSVC is picky about pulling func ptrs from va lists. 531 ** http://support.microsoft.com/kb/47961 532 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 533 */ 534 typedef void(*LOGFUNC_t)(void*,int,const char*); 535 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 536 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 537 break; 538 } 539 540 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 541 ** can be changed at start-time using the 542 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 543 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 544 */ 545 case SQLITE_CONFIG_URI: { 546 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 547 ** argument of type int. If non-zero, then URI handling is globally 548 ** enabled. If the parameter is zero, then URI handling is globally 549 ** disabled. */ 550 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 551 break; 552 } 553 554 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 555 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 556 ** option takes a single integer argument which is interpreted as a 557 ** boolean in order to enable or disable the use of covering indices for 558 ** full table scans in the query optimizer. */ 559 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 560 break; 561 } 562 563 #ifdef SQLITE_ENABLE_SQLLOG 564 case SQLITE_CONFIG_SQLLOG: { 565 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 566 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 567 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 568 break; 569 } 570 #endif 571 572 case SQLITE_CONFIG_MMAP_SIZE: { 573 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 574 ** integer (sqlite3_int64) values that are the default mmap size limit 575 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 576 ** mmap size limit. */ 577 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 578 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 579 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 580 ** negative, then that argument is changed to its compile-time default. 581 ** 582 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 583 ** silently truncated if necessary so that it does not exceed the 584 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 585 ** compile-time option. 586 */ 587 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 588 mxMmap = SQLITE_MAX_MMAP_SIZE; 589 } 590 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 591 if( szMmap>mxMmap) szMmap = mxMmap; 592 sqlite3GlobalConfig.mxMmap = mxMmap; 593 sqlite3GlobalConfig.szMmap = szMmap; 594 break; 595 } 596 597 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 598 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 599 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 600 ** unsigned integer value that specifies the maximum size of the created 601 ** heap. */ 602 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 603 break; 604 } 605 #endif 606 607 case SQLITE_CONFIG_PMASZ: { 608 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 609 break; 610 } 611 612 default: { 613 rc = SQLITE_ERROR; 614 break; 615 } 616 } 617 va_end(ap); 618 return rc; 619 } 620 621 /* 622 ** Set up the lookaside buffers for a database connection. 623 ** Return SQLITE_OK on success. 624 ** If lookaside is already active, return SQLITE_BUSY. 625 ** 626 ** The sz parameter is the number of bytes in each lookaside slot. 627 ** The cnt parameter is the number of slots. If pStart is NULL the 628 ** space for the lookaside memory is obtained from sqlite3_malloc(). 629 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 630 ** the lookaside memory. 631 */ 632 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 633 void *pStart; 634 if( db->lookaside.nOut ){ 635 return SQLITE_BUSY; 636 } 637 /* Free any existing lookaside buffer for this handle before 638 ** allocating a new one so we don't have to have space for 639 ** both at the same time. 640 */ 641 if( db->lookaside.bMalloced ){ 642 sqlite3_free(db->lookaside.pStart); 643 } 644 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 645 ** than a pointer to be useful. 646 */ 647 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 648 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 649 if( cnt<0 ) cnt = 0; 650 if( sz==0 || cnt==0 ){ 651 sz = 0; 652 pStart = 0; 653 }else if( pBuf==0 ){ 654 sqlite3BeginBenignMalloc(); 655 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 656 sqlite3EndBenignMalloc(); 657 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 658 }else{ 659 pStart = pBuf; 660 } 661 db->lookaside.pStart = pStart; 662 db->lookaside.pFree = 0; 663 db->lookaside.sz = (u16)sz; 664 if( pStart ){ 665 int i; 666 LookasideSlot *p; 667 assert( sz > (int)sizeof(LookasideSlot*) ); 668 p = (LookasideSlot*)pStart; 669 for(i=cnt-1; i>=0; i--){ 670 p->pNext = db->lookaside.pFree; 671 db->lookaside.pFree = p; 672 p = (LookasideSlot*)&((u8*)p)[sz]; 673 } 674 db->lookaside.pEnd = p; 675 db->lookaside.bEnabled = 1; 676 db->lookaside.bMalloced = pBuf==0 ?1:0; 677 }else{ 678 db->lookaside.pStart = db; 679 db->lookaside.pEnd = db; 680 db->lookaside.bEnabled = 0; 681 db->lookaside.bMalloced = 0; 682 } 683 return SQLITE_OK; 684 } 685 686 /* 687 ** Return the mutex associated with a database connection. 688 */ 689 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 690 #ifdef SQLITE_ENABLE_API_ARMOR 691 if( !sqlite3SafetyCheckOk(db) ){ 692 (void)SQLITE_MISUSE_BKPT; 693 return 0; 694 } 695 #endif 696 return db->mutex; 697 } 698 699 /* 700 ** Free up as much memory as we can from the given database 701 ** connection. 702 */ 703 int sqlite3_db_release_memory(sqlite3 *db){ 704 int i; 705 706 #ifdef SQLITE_ENABLE_API_ARMOR 707 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 708 #endif 709 sqlite3_mutex_enter(db->mutex); 710 sqlite3BtreeEnterAll(db); 711 for(i=0; i<db->nDb; i++){ 712 Btree *pBt = db->aDb[i].pBt; 713 if( pBt ){ 714 Pager *pPager = sqlite3BtreePager(pBt); 715 sqlite3PagerShrink(pPager); 716 } 717 } 718 sqlite3BtreeLeaveAll(db); 719 sqlite3_mutex_leave(db->mutex); 720 return SQLITE_OK; 721 } 722 723 /* 724 ** Configuration settings for an individual database connection 725 */ 726 int sqlite3_db_config(sqlite3 *db, int op, ...){ 727 va_list ap; 728 int rc; 729 va_start(ap, op); 730 switch( op ){ 731 case SQLITE_DBCONFIG_LOOKASIDE: { 732 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 733 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 734 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 735 rc = setupLookaside(db, pBuf, sz, cnt); 736 break; 737 } 738 default: { 739 static const struct { 740 int op; /* The opcode */ 741 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 742 } aFlagOp[] = { 743 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 744 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 745 }; 746 unsigned int i; 747 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 748 for(i=0; i<ArraySize(aFlagOp); i++){ 749 if( aFlagOp[i].op==op ){ 750 int onoff = va_arg(ap, int); 751 int *pRes = va_arg(ap, int*); 752 int oldFlags = db->flags; 753 if( onoff>0 ){ 754 db->flags |= aFlagOp[i].mask; 755 }else if( onoff==0 ){ 756 db->flags &= ~aFlagOp[i].mask; 757 } 758 if( oldFlags!=db->flags ){ 759 sqlite3ExpirePreparedStatements(db); 760 } 761 if( pRes ){ 762 *pRes = (db->flags & aFlagOp[i].mask)!=0; 763 } 764 rc = SQLITE_OK; 765 break; 766 } 767 } 768 break; 769 } 770 } 771 va_end(ap); 772 return rc; 773 } 774 775 776 /* 777 ** Return true if the buffer z[0..n-1] contains all spaces. 778 */ 779 static int allSpaces(const char *z, int n){ 780 while( n>0 && z[n-1]==' ' ){ n--; } 781 return n==0; 782 } 783 784 /* 785 ** This is the default collating function named "BINARY" which is always 786 ** available. 787 ** 788 ** If the padFlag argument is not NULL then space padding at the end 789 ** of strings is ignored. This implements the RTRIM collation. 790 */ 791 static int binCollFunc( 792 void *padFlag, 793 int nKey1, const void *pKey1, 794 int nKey2, const void *pKey2 795 ){ 796 int rc, n; 797 n = nKey1<nKey2 ? nKey1 : nKey2; 798 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 799 ** strings byte by byte using the memcmp() function from the standard C 800 ** library. */ 801 rc = memcmp(pKey1, pKey2, n); 802 if( rc==0 ){ 803 if( padFlag 804 && allSpaces(((char*)pKey1)+n, nKey1-n) 805 && allSpaces(((char*)pKey2)+n, nKey2-n) 806 ){ 807 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 808 ** spaces at the end of either string do not change the result. In other 809 ** words, strings will compare equal to one another as long as they 810 ** differ only in the number of spaces at the end. 811 */ 812 }else{ 813 rc = nKey1 - nKey2; 814 } 815 } 816 return rc; 817 } 818 819 /* 820 ** Another built-in collating sequence: NOCASE. 821 ** 822 ** This collating sequence is intended to be used for "case independent 823 ** comparison". SQLite's knowledge of upper and lower case equivalents 824 ** extends only to the 26 characters used in the English language. 825 ** 826 ** At the moment there is only a UTF-8 implementation. 827 */ 828 static int nocaseCollatingFunc( 829 void *NotUsed, 830 int nKey1, const void *pKey1, 831 int nKey2, const void *pKey2 832 ){ 833 int r = sqlite3StrNICmp( 834 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 835 UNUSED_PARAMETER(NotUsed); 836 if( 0==r ){ 837 r = nKey1-nKey2; 838 } 839 return r; 840 } 841 842 /* 843 ** Return the ROWID of the most recent insert 844 */ 845 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 846 #ifdef SQLITE_ENABLE_API_ARMOR 847 if( !sqlite3SafetyCheckOk(db) ){ 848 (void)SQLITE_MISUSE_BKPT; 849 return 0; 850 } 851 #endif 852 return db->lastRowid; 853 } 854 855 /* 856 ** Return the number of changes in the most recent call to sqlite3_exec(). 857 */ 858 int sqlite3_changes(sqlite3 *db){ 859 #ifdef SQLITE_ENABLE_API_ARMOR 860 if( !sqlite3SafetyCheckOk(db) ){ 861 (void)SQLITE_MISUSE_BKPT; 862 return 0; 863 } 864 #endif 865 return db->nChange; 866 } 867 868 /* 869 ** Return the number of changes since the database handle was opened. 870 */ 871 int sqlite3_total_changes(sqlite3 *db){ 872 #ifdef SQLITE_ENABLE_API_ARMOR 873 if( !sqlite3SafetyCheckOk(db) ){ 874 (void)SQLITE_MISUSE_BKPT; 875 return 0; 876 } 877 #endif 878 return db->nTotalChange; 879 } 880 881 /* 882 ** Close all open savepoints. This function only manipulates fields of the 883 ** database handle object, it does not close any savepoints that may be open 884 ** at the b-tree/pager level. 885 */ 886 void sqlite3CloseSavepoints(sqlite3 *db){ 887 while( db->pSavepoint ){ 888 Savepoint *pTmp = db->pSavepoint; 889 db->pSavepoint = pTmp->pNext; 890 sqlite3DbFree(db, pTmp); 891 } 892 db->nSavepoint = 0; 893 db->nStatement = 0; 894 db->isTransactionSavepoint = 0; 895 } 896 897 /* 898 ** Invoke the destructor function associated with FuncDef p, if any. Except, 899 ** if this is not the last copy of the function, do not invoke it. Multiple 900 ** copies of a single function are created when create_function() is called 901 ** with SQLITE_ANY as the encoding. 902 */ 903 static void functionDestroy(sqlite3 *db, FuncDef *p){ 904 FuncDestructor *pDestructor = p->pDestructor; 905 if( pDestructor ){ 906 pDestructor->nRef--; 907 if( pDestructor->nRef==0 ){ 908 pDestructor->xDestroy(pDestructor->pUserData); 909 sqlite3DbFree(db, pDestructor); 910 } 911 } 912 } 913 914 /* 915 ** Disconnect all sqlite3_vtab objects that belong to database connection 916 ** db. This is called when db is being closed. 917 */ 918 static void disconnectAllVtab(sqlite3 *db){ 919 #ifndef SQLITE_OMIT_VIRTUALTABLE 920 int i; 921 sqlite3BtreeEnterAll(db); 922 for(i=0; i<db->nDb; i++){ 923 Schema *pSchema = db->aDb[i].pSchema; 924 if( db->aDb[i].pSchema ){ 925 HashElem *p; 926 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 927 Table *pTab = (Table *)sqliteHashData(p); 928 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 929 } 930 } 931 } 932 sqlite3VtabUnlockList(db); 933 sqlite3BtreeLeaveAll(db); 934 #else 935 UNUSED_PARAMETER(db); 936 #endif 937 } 938 939 /* 940 ** Return TRUE if database connection db has unfinalized prepared 941 ** statements or unfinished sqlite3_backup objects. 942 */ 943 static int connectionIsBusy(sqlite3 *db){ 944 int j; 945 assert( sqlite3_mutex_held(db->mutex) ); 946 if( db->pVdbe ) return 1; 947 for(j=0; j<db->nDb; j++){ 948 Btree *pBt = db->aDb[j].pBt; 949 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 950 } 951 return 0; 952 } 953 954 /* 955 ** Close an existing SQLite database 956 */ 957 static int sqlite3Close(sqlite3 *db, int forceZombie){ 958 if( !db ){ 959 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 960 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 961 return SQLITE_OK; 962 } 963 if( !sqlite3SafetyCheckSickOrOk(db) ){ 964 return SQLITE_MISUSE_BKPT; 965 } 966 sqlite3_mutex_enter(db->mutex); 967 968 /* Force xDisconnect calls on all virtual tables */ 969 disconnectAllVtab(db); 970 971 /* If a transaction is open, the disconnectAllVtab() call above 972 ** will not have called the xDisconnect() method on any virtual 973 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 974 ** call will do so. We need to do this before the check for active 975 ** SQL statements below, as the v-table implementation may be storing 976 ** some prepared statements internally. 977 */ 978 sqlite3VtabRollback(db); 979 980 /* Legacy behavior (sqlite3_close() behavior) is to return 981 ** SQLITE_BUSY if the connection can not be closed immediately. 982 */ 983 if( !forceZombie && connectionIsBusy(db) ){ 984 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 985 "statements or unfinished backups"); 986 sqlite3_mutex_leave(db->mutex); 987 return SQLITE_BUSY; 988 } 989 990 #ifdef SQLITE_ENABLE_SQLLOG 991 if( sqlite3GlobalConfig.xSqllog ){ 992 /* Closing the handle. Fourth parameter is passed the value 2. */ 993 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 994 } 995 #endif 996 997 /* Convert the connection into a zombie and then close it. 998 */ 999 db->magic = SQLITE_MAGIC_ZOMBIE; 1000 sqlite3LeaveMutexAndCloseZombie(db); 1001 return SQLITE_OK; 1002 } 1003 1004 /* 1005 ** Two variations on the public interface for closing a database 1006 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1007 ** leaves the connection option if there are unfinalized prepared 1008 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1009 ** version forces the connection to become a zombie if there are 1010 ** unclosed resources, and arranges for deallocation when the last 1011 ** prepare statement or sqlite3_backup closes. 1012 */ 1013 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1014 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1015 1016 1017 /* 1018 ** Close the mutex on database connection db. 1019 ** 1020 ** Furthermore, if database connection db is a zombie (meaning that there 1021 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1022 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1023 ** finished, then free all resources. 1024 */ 1025 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1026 HashElem *i; /* Hash table iterator */ 1027 int j; 1028 1029 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1030 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1031 ** then just leave the mutex and return. 1032 */ 1033 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 1034 sqlite3_mutex_leave(db->mutex); 1035 return; 1036 } 1037 1038 /* If we reach this point, it means that the database connection has 1039 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1040 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1041 ** go ahead and free all resources. 1042 */ 1043 1044 /* If a transaction is open, roll it back. This also ensures that if 1045 ** any database schemas have been modified by an uncommitted transaction 1046 ** they are reset. And that the required b-tree mutex is held to make 1047 ** the pager rollback and schema reset an atomic operation. */ 1048 sqlite3RollbackAll(db, SQLITE_OK); 1049 1050 /* Free any outstanding Savepoint structures. */ 1051 sqlite3CloseSavepoints(db); 1052 1053 /* Close all database connections */ 1054 for(j=0; j<db->nDb; j++){ 1055 struct Db *pDb = &db->aDb[j]; 1056 if( pDb->pBt ){ 1057 sqlite3BtreeClose(pDb->pBt); 1058 pDb->pBt = 0; 1059 if( j!=1 ){ 1060 pDb->pSchema = 0; 1061 } 1062 } 1063 } 1064 /* Clear the TEMP schema separately and last */ 1065 if( db->aDb[1].pSchema ){ 1066 sqlite3SchemaClear(db->aDb[1].pSchema); 1067 } 1068 sqlite3VtabUnlockList(db); 1069 1070 /* Free up the array of auxiliary databases */ 1071 sqlite3CollapseDatabaseArray(db); 1072 assert( db->nDb<=2 ); 1073 assert( db->aDb==db->aDbStatic ); 1074 1075 /* Tell the code in notify.c that the connection no longer holds any 1076 ** locks and does not require any further unlock-notify callbacks. 1077 */ 1078 sqlite3ConnectionClosed(db); 1079 1080 for(j=0; j<ArraySize(db->aFunc.a); j++){ 1081 FuncDef *pNext, *pHash, *p; 1082 for(p=db->aFunc.a[j]; p; p=pHash){ 1083 pHash = p->pHash; 1084 while( p ){ 1085 functionDestroy(db, p); 1086 pNext = p->pNext; 1087 sqlite3DbFree(db, p); 1088 p = pNext; 1089 } 1090 } 1091 } 1092 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1093 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1094 /* Invoke any destructors registered for collation sequence user data. */ 1095 for(j=0; j<3; j++){ 1096 if( pColl[j].xDel ){ 1097 pColl[j].xDel(pColl[j].pUser); 1098 } 1099 } 1100 sqlite3DbFree(db, pColl); 1101 } 1102 sqlite3HashClear(&db->aCollSeq); 1103 #ifndef SQLITE_OMIT_VIRTUALTABLE 1104 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1105 Module *pMod = (Module *)sqliteHashData(i); 1106 if( pMod->xDestroy ){ 1107 pMod->xDestroy(pMod->pAux); 1108 } 1109 sqlite3DbFree(db, pMod); 1110 } 1111 sqlite3HashClear(&db->aModule); 1112 #endif 1113 1114 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1115 sqlite3ValueFree(db->pErr); 1116 sqlite3CloseExtensions(db); 1117 #if SQLITE_USER_AUTHENTICATION 1118 sqlite3_free(db->auth.zAuthUser); 1119 sqlite3_free(db->auth.zAuthPW); 1120 #endif 1121 1122 db->magic = SQLITE_MAGIC_ERROR; 1123 1124 /* The temp-database schema is allocated differently from the other schema 1125 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1126 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1127 ** the same sqliteMalloc() as the one that allocates the database 1128 ** structure? 1129 */ 1130 sqlite3DbFree(db, db->aDb[1].pSchema); 1131 sqlite3_mutex_leave(db->mutex); 1132 db->magic = SQLITE_MAGIC_CLOSED; 1133 sqlite3_mutex_free(db->mutex); 1134 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 1135 if( db->lookaside.bMalloced ){ 1136 sqlite3_free(db->lookaside.pStart); 1137 } 1138 sqlite3_free(db); 1139 } 1140 1141 /* 1142 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1143 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1144 ** breaker") and made to return tripCode if there are any further 1145 ** attempts to use that cursor. Read cursors remain open and valid 1146 ** but are "saved" in case the table pages are moved around. 1147 */ 1148 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1149 int i; 1150 int inTrans = 0; 1151 int schemaChange; 1152 assert( sqlite3_mutex_held(db->mutex) ); 1153 sqlite3BeginBenignMalloc(); 1154 1155 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1156 ** This is important in case the transaction being rolled back has 1157 ** modified the database schema. If the b-tree mutexes are not taken 1158 ** here, then another shared-cache connection might sneak in between 1159 ** the database rollback and schema reset, which can cause false 1160 ** corruption reports in some cases. */ 1161 sqlite3BtreeEnterAll(db); 1162 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 1163 1164 for(i=0; i<db->nDb; i++){ 1165 Btree *p = db->aDb[i].pBt; 1166 if( p ){ 1167 if( sqlite3BtreeIsInTrans(p) ){ 1168 inTrans = 1; 1169 } 1170 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1171 } 1172 } 1173 sqlite3VtabRollback(db); 1174 sqlite3EndBenignMalloc(); 1175 1176 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1177 sqlite3ExpirePreparedStatements(db); 1178 sqlite3ResetAllSchemasOfConnection(db); 1179 } 1180 sqlite3BtreeLeaveAll(db); 1181 1182 /* Any deferred constraint violations have now been resolved. */ 1183 db->nDeferredCons = 0; 1184 db->nDeferredImmCons = 0; 1185 db->flags &= ~SQLITE_DeferFKs; 1186 1187 /* If one has been configured, invoke the rollback-hook callback */ 1188 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1189 db->xRollbackCallback(db->pRollbackArg); 1190 } 1191 } 1192 1193 /* 1194 ** Return a static string containing the name corresponding to the error code 1195 ** specified in the argument. 1196 */ 1197 #if defined(SQLITE_DEBUG) && \ 1198 (defined(SQLITE_TEST) || defined(SQLITE_FORCE_OS_TRACE)) 1199 const char *sqlite3ErrName(int rc){ 1200 const char *zName = 0; 1201 int i, origRc = rc; 1202 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1203 switch( rc ){ 1204 case SQLITE_OK: zName = "SQLITE_OK"; break; 1205 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1206 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1207 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1208 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1209 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1210 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1211 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1212 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1213 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1214 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1215 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1216 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1217 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1218 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1219 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1220 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1221 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1222 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1223 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1224 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1225 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1226 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1227 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1228 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1229 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1230 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1231 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1232 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1233 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1234 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1235 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1236 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1237 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1238 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1239 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1240 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1241 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1242 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1243 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1244 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1245 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1246 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1247 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1248 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1249 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1250 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1251 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1252 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1253 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1254 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1255 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1256 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1257 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1258 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1259 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1260 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1261 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1262 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1263 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1264 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1265 case SQLITE_CONSTRAINT_FOREIGNKEY: 1266 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1267 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1268 case SQLITE_CONSTRAINT_PRIMARYKEY: 1269 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1270 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1271 case SQLITE_CONSTRAINT_COMMITHOOK: 1272 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1273 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1274 case SQLITE_CONSTRAINT_FUNCTION: 1275 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1276 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1277 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1278 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1279 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1280 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1281 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1282 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1283 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1284 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1285 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1286 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1287 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1288 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1289 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1290 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1291 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1292 } 1293 } 1294 if( zName==0 ){ 1295 static char zBuf[50]; 1296 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1297 zName = zBuf; 1298 } 1299 return zName; 1300 } 1301 #endif 1302 1303 /* 1304 ** Return a static string that describes the kind of error specified in the 1305 ** argument. 1306 */ 1307 const char *sqlite3ErrStr(int rc){ 1308 static const char* const aMsg[] = { 1309 /* SQLITE_OK */ "not an error", 1310 /* SQLITE_ERROR */ "SQL logic error or missing database", 1311 /* SQLITE_INTERNAL */ 0, 1312 /* SQLITE_PERM */ "access permission denied", 1313 /* SQLITE_ABORT */ "callback requested query abort", 1314 /* SQLITE_BUSY */ "database is locked", 1315 /* SQLITE_LOCKED */ "database table is locked", 1316 /* SQLITE_NOMEM */ "out of memory", 1317 /* SQLITE_READONLY */ "attempt to write a readonly database", 1318 /* SQLITE_INTERRUPT */ "interrupted", 1319 /* SQLITE_IOERR */ "disk I/O error", 1320 /* SQLITE_CORRUPT */ "database disk image is malformed", 1321 /* SQLITE_NOTFOUND */ "unknown operation", 1322 /* SQLITE_FULL */ "database or disk is full", 1323 /* SQLITE_CANTOPEN */ "unable to open database file", 1324 /* SQLITE_PROTOCOL */ "locking protocol", 1325 /* SQLITE_EMPTY */ "table contains no data", 1326 /* SQLITE_SCHEMA */ "database schema has changed", 1327 /* SQLITE_TOOBIG */ "string or blob too big", 1328 /* SQLITE_CONSTRAINT */ "constraint failed", 1329 /* SQLITE_MISMATCH */ "datatype mismatch", 1330 /* SQLITE_MISUSE */ "library routine called out of sequence", 1331 /* SQLITE_NOLFS */ "large file support is disabled", 1332 /* SQLITE_AUTH */ "authorization denied", 1333 /* SQLITE_FORMAT */ "auxiliary database format error", 1334 /* SQLITE_RANGE */ "bind or column index out of range", 1335 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1336 }; 1337 const char *zErr = "unknown error"; 1338 switch( rc ){ 1339 case SQLITE_ABORT_ROLLBACK: { 1340 zErr = "abort due to ROLLBACK"; 1341 break; 1342 } 1343 default: { 1344 rc &= 0xff; 1345 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1346 zErr = aMsg[rc]; 1347 } 1348 break; 1349 } 1350 } 1351 return zErr; 1352 } 1353 1354 /* 1355 ** This routine implements a busy callback that sleeps and tries 1356 ** again until a timeout value is reached. The timeout value is 1357 ** an integer number of milliseconds passed in as the first 1358 ** argument. 1359 */ 1360 static int sqliteDefaultBusyCallback( 1361 void *ptr, /* Database connection */ 1362 int count /* Number of times table has been busy */ 1363 ){ 1364 #if SQLITE_OS_WIN || HAVE_USLEEP 1365 static const u8 delays[] = 1366 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1367 static const u8 totals[] = 1368 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1369 # define NDELAY ArraySize(delays) 1370 sqlite3 *db = (sqlite3 *)ptr; 1371 int timeout = db->busyTimeout; 1372 int delay, prior; 1373 1374 assert( count>=0 ); 1375 if( count < NDELAY ){ 1376 delay = delays[count]; 1377 prior = totals[count]; 1378 }else{ 1379 delay = delays[NDELAY-1]; 1380 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1381 } 1382 if( prior + delay > timeout ){ 1383 delay = timeout - prior; 1384 if( delay<=0 ) return 0; 1385 } 1386 sqlite3OsSleep(db->pVfs, delay*1000); 1387 return 1; 1388 #else 1389 sqlite3 *db = (sqlite3 *)ptr; 1390 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1391 if( (count+1)*1000 > timeout ){ 1392 return 0; 1393 } 1394 sqlite3OsSleep(db->pVfs, 1000000); 1395 return 1; 1396 #endif 1397 } 1398 1399 /* 1400 ** Invoke the given busy handler. 1401 ** 1402 ** This routine is called when an operation failed with a lock. 1403 ** If this routine returns non-zero, the lock is retried. If it 1404 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1405 */ 1406 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1407 int rc; 1408 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1409 rc = p->xFunc(p->pArg, p->nBusy); 1410 if( rc==0 ){ 1411 p->nBusy = -1; 1412 }else{ 1413 p->nBusy++; 1414 } 1415 return rc; 1416 } 1417 1418 /* 1419 ** This routine sets the busy callback for an Sqlite database to the 1420 ** given callback function with the given argument. 1421 */ 1422 int sqlite3_busy_handler( 1423 sqlite3 *db, 1424 int (*xBusy)(void*,int), 1425 void *pArg 1426 ){ 1427 #ifdef SQLITE_ENABLE_API_ARMOR 1428 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1429 #endif 1430 sqlite3_mutex_enter(db->mutex); 1431 db->busyHandler.xFunc = xBusy; 1432 db->busyHandler.pArg = pArg; 1433 db->busyHandler.nBusy = 0; 1434 db->busyTimeout = 0; 1435 sqlite3_mutex_leave(db->mutex); 1436 return SQLITE_OK; 1437 } 1438 1439 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1440 /* 1441 ** This routine sets the progress callback for an Sqlite database to the 1442 ** given callback function with the given argument. The progress callback will 1443 ** be invoked every nOps opcodes. 1444 */ 1445 void sqlite3_progress_handler( 1446 sqlite3 *db, 1447 int nOps, 1448 int (*xProgress)(void*), 1449 void *pArg 1450 ){ 1451 #ifdef SQLITE_ENABLE_API_ARMOR 1452 if( !sqlite3SafetyCheckOk(db) ){ 1453 (void)SQLITE_MISUSE_BKPT; 1454 return; 1455 } 1456 #endif 1457 sqlite3_mutex_enter(db->mutex); 1458 if( nOps>0 ){ 1459 db->xProgress = xProgress; 1460 db->nProgressOps = (unsigned)nOps; 1461 db->pProgressArg = pArg; 1462 }else{ 1463 db->xProgress = 0; 1464 db->nProgressOps = 0; 1465 db->pProgressArg = 0; 1466 } 1467 sqlite3_mutex_leave(db->mutex); 1468 } 1469 #endif 1470 1471 1472 /* 1473 ** This routine installs a default busy handler that waits for the 1474 ** specified number of milliseconds before returning 0. 1475 */ 1476 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1477 #ifdef SQLITE_ENABLE_API_ARMOR 1478 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1479 #endif 1480 if( ms>0 ){ 1481 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1482 db->busyTimeout = ms; 1483 }else{ 1484 sqlite3_busy_handler(db, 0, 0); 1485 } 1486 return SQLITE_OK; 1487 } 1488 1489 /* 1490 ** Cause any pending operation to stop at its earliest opportunity. 1491 */ 1492 void sqlite3_interrupt(sqlite3 *db){ 1493 #ifdef SQLITE_ENABLE_API_ARMOR 1494 if( !sqlite3SafetyCheckOk(db) ){ 1495 (void)SQLITE_MISUSE_BKPT; 1496 return; 1497 } 1498 #endif 1499 db->u1.isInterrupted = 1; 1500 } 1501 1502 1503 /* 1504 ** This function is exactly the same as sqlite3_create_function(), except 1505 ** that it is designed to be called by internal code. The difference is 1506 ** that if a malloc() fails in sqlite3_create_function(), an error code 1507 ** is returned and the mallocFailed flag cleared. 1508 */ 1509 int sqlite3CreateFunc( 1510 sqlite3 *db, 1511 const char *zFunctionName, 1512 int nArg, 1513 int enc, 1514 void *pUserData, 1515 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1516 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1517 void (*xFinal)(sqlite3_context*), 1518 FuncDestructor *pDestructor 1519 ){ 1520 FuncDef *p; 1521 int nName; 1522 int extraFlags; 1523 1524 assert( sqlite3_mutex_held(db->mutex) ); 1525 if( zFunctionName==0 || 1526 (xFunc && (xFinal || xStep)) || 1527 (!xFunc && (xFinal && !xStep)) || 1528 (!xFunc && (!xFinal && xStep)) || 1529 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1530 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1531 return SQLITE_MISUSE_BKPT; 1532 } 1533 1534 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1535 extraFlags = enc & SQLITE_DETERMINISTIC; 1536 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1537 1538 #ifndef SQLITE_OMIT_UTF16 1539 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1540 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1541 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1542 ** 1543 ** If SQLITE_ANY is specified, add three versions of the function 1544 ** to the hash table. 1545 */ 1546 if( enc==SQLITE_UTF16 ){ 1547 enc = SQLITE_UTF16NATIVE; 1548 }else if( enc==SQLITE_ANY ){ 1549 int rc; 1550 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 1551 pUserData, xFunc, xStep, xFinal, pDestructor); 1552 if( rc==SQLITE_OK ){ 1553 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 1554 pUserData, xFunc, xStep, xFinal, pDestructor); 1555 } 1556 if( rc!=SQLITE_OK ){ 1557 return rc; 1558 } 1559 enc = SQLITE_UTF16BE; 1560 } 1561 #else 1562 enc = SQLITE_UTF8; 1563 #endif 1564 1565 /* Check if an existing function is being overridden or deleted. If so, 1566 ** and there are active VMs, then return SQLITE_BUSY. If a function 1567 ** is being overridden/deleted but there are no active VMs, allow the 1568 ** operation to continue but invalidate all precompiled statements. 1569 */ 1570 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1571 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 1572 if( db->nVdbeActive ){ 1573 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1574 "unable to delete/modify user-function due to active statements"); 1575 assert( !db->mallocFailed ); 1576 return SQLITE_BUSY; 1577 }else{ 1578 sqlite3ExpirePreparedStatements(db); 1579 } 1580 } 1581 1582 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1583 assert(p || db->mallocFailed); 1584 if( !p ){ 1585 return SQLITE_NOMEM; 1586 } 1587 1588 /* If an older version of the function with a configured destructor is 1589 ** being replaced invoke the destructor function here. */ 1590 functionDestroy(db, p); 1591 1592 if( pDestructor ){ 1593 pDestructor->nRef++; 1594 } 1595 p->pDestructor = pDestructor; 1596 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1597 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1598 p->xFunc = xFunc; 1599 p->xStep = xStep; 1600 p->xFinalize = xFinal; 1601 p->pUserData = pUserData; 1602 p->nArg = (u16)nArg; 1603 return SQLITE_OK; 1604 } 1605 1606 /* 1607 ** Create new user functions. 1608 */ 1609 int sqlite3_create_function( 1610 sqlite3 *db, 1611 const char *zFunc, 1612 int nArg, 1613 int enc, 1614 void *p, 1615 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1616 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1617 void (*xFinal)(sqlite3_context*) 1618 ){ 1619 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1620 xFinal, 0); 1621 } 1622 1623 int sqlite3_create_function_v2( 1624 sqlite3 *db, 1625 const char *zFunc, 1626 int nArg, 1627 int enc, 1628 void *p, 1629 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1630 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1631 void (*xFinal)(sqlite3_context*), 1632 void (*xDestroy)(void *) 1633 ){ 1634 int rc = SQLITE_ERROR; 1635 FuncDestructor *pArg = 0; 1636 1637 #ifdef SQLITE_ENABLE_API_ARMOR 1638 if( !sqlite3SafetyCheckOk(db) ){ 1639 return SQLITE_MISUSE_BKPT; 1640 } 1641 #endif 1642 sqlite3_mutex_enter(db->mutex); 1643 if( xDestroy ){ 1644 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1645 if( !pArg ){ 1646 xDestroy(p); 1647 goto out; 1648 } 1649 pArg->xDestroy = xDestroy; 1650 pArg->pUserData = p; 1651 } 1652 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1653 if( pArg && pArg->nRef==0 ){ 1654 assert( rc!=SQLITE_OK ); 1655 xDestroy(p); 1656 sqlite3DbFree(db, pArg); 1657 } 1658 1659 out: 1660 rc = sqlite3ApiExit(db, rc); 1661 sqlite3_mutex_leave(db->mutex); 1662 return rc; 1663 } 1664 1665 #ifndef SQLITE_OMIT_UTF16 1666 int sqlite3_create_function16( 1667 sqlite3 *db, 1668 const void *zFunctionName, 1669 int nArg, 1670 int eTextRep, 1671 void *p, 1672 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1673 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1674 void (*xFinal)(sqlite3_context*) 1675 ){ 1676 int rc; 1677 char *zFunc8; 1678 1679 #ifdef SQLITE_ENABLE_API_ARMOR 1680 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 1681 #endif 1682 sqlite3_mutex_enter(db->mutex); 1683 assert( !db->mallocFailed ); 1684 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1685 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1686 sqlite3DbFree(db, zFunc8); 1687 rc = sqlite3ApiExit(db, rc); 1688 sqlite3_mutex_leave(db->mutex); 1689 return rc; 1690 } 1691 #endif 1692 1693 1694 /* 1695 ** Declare that a function has been overloaded by a virtual table. 1696 ** 1697 ** If the function already exists as a regular global function, then 1698 ** this routine is a no-op. If the function does not exist, then create 1699 ** a new one that always throws a run-time error. 1700 ** 1701 ** When virtual tables intend to provide an overloaded function, they 1702 ** should call this routine to make sure the global function exists. 1703 ** A global function must exist in order for name resolution to work 1704 ** properly. 1705 */ 1706 int sqlite3_overload_function( 1707 sqlite3 *db, 1708 const char *zName, 1709 int nArg 1710 ){ 1711 int nName = sqlite3Strlen30(zName); 1712 int rc = SQLITE_OK; 1713 1714 #ifdef SQLITE_ENABLE_API_ARMOR 1715 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 1716 return SQLITE_MISUSE_BKPT; 1717 } 1718 #endif 1719 sqlite3_mutex_enter(db->mutex); 1720 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1721 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1722 0, sqlite3InvalidFunction, 0, 0, 0); 1723 } 1724 rc = sqlite3ApiExit(db, rc); 1725 sqlite3_mutex_leave(db->mutex); 1726 return rc; 1727 } 1728 1729 #ifndef SQLITE_OMIT_TRACE 1730 /* 1731 ** Register a trace function. The pArg from the previously registered trace 1732 ** is returned. 1733 ** 1734 ** A NULL trace function means that no tracing is executes. A non-NULL 1735 ** trace is a pointer to a function that is invoked at the start of each 1736 ** SQL statement. 1737 */ 1738 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1739 void *pOld; 1740 1741 #ifdef SQLITE_ENABLE_API_ARMOR 1742 if( !sqlite3SafetyCheckOk(db) ){ 1743 (void)SQLITE_MISUSE_BKPT; 1744 return 0; 1745 } 1746 #endif 1747 sqlite3_mutex_enter(db->mutex); 1748 pOld = db->pTraceArg; 1749 db->xTrace = xTrace; 1750 db->pTraceArg = pArg; 1751 sqlite3_mutex_leave(db->mutex); 1752 return pOld; 1753 } 1754 /* 1755 ** Register a profile function. The pArg from the previously registered 1756 ** profile function is returned. 1757 ** 1758 ** A NULL profile function means that no profiling is executes. A non-NULL 1759 ** profile is a pointer to a function that is invoked at the conclusion of 1760 ** each SQL statement that is run. 1761 */ 1762 void *sqlite3_profile( 1763 sqlite3 *db, 1764 void (*xProfile)(void*,const char*,sqlite_uint64), 1765 void *pArg 1766 ){ 1767 void *pOld; 1768 1769 #ifdef SQLITE_ENABLE_API_ARMOR 1770 if( !sqlite3SafetyCheckOk(db) ){ 1771 (void)SQLITE_MISUSE_BKPT; 1772 return 0; 1773 } 1774 #endif 1775 sqlite3_mutex_enter(db->mutex); 1776 pOld = db->pProfileArg; 1777 db->xProfile = xProfile; 1778 db->pProfileArg = pArg; 1779 sqlite3_mutex_leave(db->mutex); 1780 return pOld; 1781 } 1782 #endif /* SQLITE_OMIT_TRACE */ 1783 1784 /* 1785 ** Register a function to be invoked when a transaction commits. 1786 ** If the invoked function returns non-zero, then the commit becomes a 1787 ** rollback. 1788 */ 1789 void *sqlite3_commit_hook( 1790 sqlite3 *db, /* Attach the hook to this database */ 1791 int (*xCallback)(void*), /* Function to invoke on each commit */ 1792 void *pArg /* Argument to the function */ 1793 ){ 1794 void *pOld; 1795 1796 #ifdef SQLITE_ENABLE_API_ARMOR 1797 if( !sqlite3SafetyCheckOk(db) ){ 1798 (void)SQLITE_MISUSE_BKPT; 1799 return 0; 1800 } 1801 #endif 1802 sqlite3_mutex_enter(db->mutex); 1803 pOld = db->pCommitArg; 1804 db->xCommitCallback = xCallback; 1805 db->pCommitArg = pArg; 1806 sqlite3_mutex_leave(db->mutex); 1807 return pOld; 1808 } 1809 1810 /* 1811 ** Register a callback to be invoked each time a row is updated, 1812 ** inserted or deleted using this database connection. 1813 */ 1814 void *sqlite3_update_hook( 1815 sqlite3 *db, /* Attach the hook to this database */ 1816 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1817 void *pArg /* Argument to the function */ 1818 ){ 1819 void *pRet; 1820 1821 #ifdef SQLITE_ENABLE_API_ARMOR 1822 if( !sqlite3SafetyCheckOk(db) ){ 1823 (void)SQLITE_MISUSE_BKPT; 1824 return 0; 1825 } 1826 #endif 1827 sqlite3_mutex_enter(db->mutex); 1828 pRet = db->pUpdateArg; 1829 db->xUpdateCallback = xCallback; 1830 db->pUpdateArg = pArg; 1831 sqlite3_mutex_leave(db->mutex); 1832 return pRet; 1833 } 1834 1835 /* 1836 ** Register a callback to be invoked each time a transaction is rolled 1837 ** back by this database connection. 1838 */ 1839 void *sqlite3_rollback_hook( 1840 sqlite3 *db, /* Attach the hook to this database */ 1841 void (*xCallback)(void*), /* Callback function */ 1842 void *pArg /* Argument to the function */ 1843 ){ 1844 void *pRet; 1845 1846 #ifdef SQLITE_ENABLE_API_ARMOR 1847 if( !sqlite3SafetyCheckOk(db) ){ 1848 (void)SQLITE_MISUSE_BKPT; 1849 return 0; 1850 } 1851 #endif 1852 sqlite3_mutex_enter(db->mutex); 1853 pRet = db->pRollbackArg; 1854 db->xRollbackCallback = xCallback; 1855 db->pRollbackArg = pArg; 1856 sqlite3_mutex_leave(db->mutex); 1857 return pRet; 1858 } 1859 1860 #ifndef SQLITE_OMIT_WAL 1861 /* 1862 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1863 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1864 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1865 ** wal_autocheckpoint()). 1866 */ 1867 int sqlite3WalDefaultHook( 1868 void *pClientData, /* Argument */ 1869 sqlite3 *db, /* Connection */ 1870 const char *zDb, /* Database */ 1871 int nFrame /* Size of WAL */ 1872 ){ 1873 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1874 sqlite3BeginBenignMalloc(); 1875 sqlite3_wal_checkpoint(db, zDb); 1876 sqlite3EndBenignMalloc(); 1877 } 1878 return SQLITE_OK; 1879 } 1880 #endif /* SQLITE_OMIT_WAL */ 1881 1882 /* 1883 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1884 ** a database after committing a transaction if there are nFrame or 1885 ** more frames in the log file. Passing zero or a negative value as the 1886 ** nFrame parameter disables automatic checkpoints entirely. 1887 ** 1888 ** The callback registered by this function replaces any existing callback 1889 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1890 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1891 ** configured by this function. 1892 */ 1893 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1894 #ifdef SQLITE_OMIT_WAL 1895 UNUSED_PARAMETER(db); 1896 UNUSED_PARAMETER(nFrame); 1897 #else 1898 #ifdef SQLITE_ENABLE_API_ARMOR 1899 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1900 #endif 1901 if( nFrame>0 ){ 1902 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1903 }else{ 1904 sqlite3_wal_hook(db, 0, 0); 1905 } 1906 #endif 1907 return SQLITE_OK; 1908 } 1909 1910 /* 1911 ** Register a callback to be invoked each time a transaction is written 1912 ** into the write-ahead-log by this database connection. 1913 */ 1914 void *sqlite3_wal_hook( 1915 sqlite3 *db, /* Attach the hook to this db handle */ 1916 int(*xCallback)(void *, sqlite3*, const char*, int), 1917 void *pArg /* First argument passed to xCallback() */ 1918 ){ 1919 #ifndef SQLITE_OMIT_WAL 1920 void *pRet; 1921 #ifdef SQLITE_ENABLE_API_ARMOR 1922 if( !sqlite3SafetyCheckOk(db) ){ 1923 (void)SQLITE_MISUSE_BKPT; 1924 return 0; 1925 } 1926 #endif 1927 sqlite3_mutex_enter(db->mutex); 1928 pRet = db->pWalArg; 1929 db->xWalCallback = xCallback; 1930 db->pWalArg = pArg; 1931 sqlite3_mutex_leave(db->mutex); 1932 return pRet; 1933 #else 1934 return 0; 1935 #endif 1936 } 1937 1938 /* 1939 ** Checkpoint database zDb. 1940 */ 1941 int sqlite3_wal_checkpoint_v2( 1942 sqlite3 *db, /* Database handle */ 1943 const char *zDb, /* Name of attached database (or NULL) */ 1944 int eMode, /* SQLITE_CHECKPOINT_* value */ 1945 int *pnLog, /* OUT: Size of WAL log in frames */ 1946 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1947 ){ 1948 #ifdef SQLITE_OMIT_WAL 1949 return SQLITE_OK; 1950 #else 1951 int rc; /* Return code */ 1952 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1953 1954 #ifdef SQLITE_ENABLE_API_ARMOR 1955 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1956 #endif 1957 1958 /* Initialize the output variables to -1 in case an error occurs. */ 1959 if( pnLog ) *pnLog = -1; 1960 if( pnCkpt ) *pnCkpt = -1; 1961 1962 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 1963 assert( SQLITE_CHECKPOINT_FULL==1 ); 1964 assert( SQLITE_CHECKPOINT_RESTART==2 ); 1965 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 1966 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 1967 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 1968 ** mode: */ 1969 return SQLITE_MISUSE; 1970 } 1971 1972 sqlite3_mutex_enter(db->mutex); 1973 if( zDb && zDb[0] ){ 1974 iDb = sqlite3FindDbName(db, zDb); 1975 } 1976 if( iDb<0 ){ 1977 rc = SQLITE_ERROR; 1978 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 1979 }else{ 1980 db->busyHandler.nBusy = 0; 1981 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1982 sqlite3Error(db, rc); 1983 } 1984 rc = sqlite3ApiExit(db, rc); 1985 sqlite3_mutex_leave(db->mutex); 1986 return rc; 1987 #endif 1988 } 1989 1990 1991 /* 1992 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1993 ** to contains a zero-length string, all attached databases are 1994 ** checkpointed. 1995 */ 1996 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1997 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 1998 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 1999 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 2000 } 2001 2002 #ifndef SQLITE_OMIT_WAL 2003 /* 2004 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 2005 ** not currently open in WAL mode. 2006 ** 2007 ** If a transaction is open on the database being checkpointed, this 2008 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2009 ** an error occurs while running the checkpoint, an SQLite error code is 2010 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2011 ** 2012 ** The mutex on database handle db should be held by the caller. The mutex 2013 ** associated with the specific b-tree being checkpointed is taken by 2014 ** this function while the checkpoint is running. 2015 ** 2016 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 2017 ** checkpointed. If an error is encountered it is returned immediately - 2018 ** no attempt is made to checkpoint any remaining databases. 2019 ** 2020 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 2021 */ 2022 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2023 int rc = SQLITE_OK; /* Return code */ 2024 int i; /* Used to iterate through attached dbs */ 2025 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2026 2027 assert( sqlite3_mutex_held(db->mutex) ); 2028 assert( !pnLog || *pnLog==-1 ); 2029 assert( !pnCkpt || *pnCkpt==-1 ); 2030 2031 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2032 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 2033 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2034 pnLog = 0; 2035 pnCkpt = 0; 2036 if( rc==SQLITE_BUSY ){ 2037 bBusy = 1; 2038 rc = SQLITE_OK; 2039 } 2040 } 2041 } 2042 2043 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2044 } 2045 #endif /* SQLITE_OMIT_WAL */ 2046 2047 /* 2048 ** This function returns true if main-memory should be used instead of 2049 ** a temporary file for transient pager files and statement journals. 2050 ** The value returned depends on the value of db->temp_store (runtime 2051 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2052 ** following table describes the relationship between these two values 2053 ** and this functions return value. 2054 ** 2055 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2056 ** ----------------- -------------- ------------------------------ 2057 ** 0 any file (return 0) 2058 ** 1 1 file (return 0) 2059 ** 1 2 memory (return 1) 2060 ** 1 0 file (return 0) 2061 ** 2 1 file (return 0) 2062 ** 2 2 memory (return 1) 2063 ** 2 0 memory (return 1) 2064 ** 3 any memory (return 1) 2065 */ 2066 int sqlite3TempInMemory(const sqlite3 *db){ 2067 #if SQLITE_TEMP_STORE==1 2068 return ( db->temp_store==2 ); 2069 #endif 2070 #if SQLITE_TEMP_STORE==2 2071 return ( db->temp_store!=1 ); 2072 #endif 2073 #if SQLITE_TEMP_STORE==3 2074 return 1; 2075 #endif 2076 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2077 return 0; 2078 #endif 2079 } 2080 2081 /* 2082 ** Return UTF-8 encoded English language explanation of the most recent 2083 ** error. 2084 */ 2085 const char *sqlite3_errmsg(sqlite3 *db){ 2086 const char *z; 2087 if( !db ){ 2088 return sqlite3ErrStr(SQLITE_NOMEM); 2089 } 2090 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2091 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2092 } 2093 sqlite3_mutex_enter(db->mutex); 2094 if( db->mallocFailed ){ 2095 z = sqlite3ErrStr(SQLITE_NOMEM); 2096 }else{ 2097 testcase( db->pErr==0 ); 2098 z = (char*)sqlite3_value_text(db->pErr); 2099 assert( !db->mallocFailed ); 2100 if( z==0 ){ 2101 z = sqlite3ErrStr(db->errCode); 2102 } 2103 } 2104 sqlite3_mutex_leave(db->mutex); 2105 return z; 2106 } 2107 2108 #ifndef SQLITE_OMIT_UTF16 2109 /* 2110 ** Return UTF-16 encoded English language explanation of the most recent 2111 ** error. 2112 */ 2113 const void *sqlite3_errmsg16(sqlite3 *db){ 2114 static const u16 outOfMem[] = { 2115 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2116 }; 2117 static const u16 misuse[] = { 2118 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 2119 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 2120 'c', 'a', 'l', 'l', 'e', 'd', ' ', 2121 'o', 'u', 't', ' ', 2122 'o', 'f', ' ', 2123 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 2124 }; 2125 2126 const void *z; 2127 if( !db ){ 2128 return (void *)outOfMem; 2129 } 2130 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2131 return (void *)misuse; 2132 } 2133 sqlite3_mutex_enter(db->mutex); 2134 if( db->mallocFailed ){ 2135 z = (void *)outOfMem; 2136 }else{ 2137 z = sqlite3_value_text16(db->pErr); 2138 if( z==0 ){ 2139 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2140 z = sqlite3_value_text16(db->pErr); 2141 } 2142 /* A malloc() may have failed within the call to sqlite3_value_text16() 2143 ** above. If this is the case, then the db->mallocFailed flag needs to 2144 ** be cleared before returning. Do this directly, instead of via 2145 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2146 */ 2147 db->mallocFailed = 0; 2148 } 2149 sqlite3_mutex_leave(db->mutex); 2150 return z; 2151 } 2152 #endif /* SQLITE_OMIT_UTF16 */ 2153 2154 /* 2155 ** Return the most recent error code generated by an SQLite routine. If NULL is 2156 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2157 */ 2158 int sqlite3_errcode(sqlite3 *db){ 2159 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2160 return SQLITE_MISUSE_BKPT; 2161 } 2162 if( !db || db->mallocFailed ){ 2163 return SQLITE_NOMEM; 2164 } 2165 return db->errCode & db->errMask; 2166 } 2167 int sqlite3_extended_errcode(sqlite3 *db){ 2168 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2169 return SQLITE_MISUSE_BKPT; 2170 } 2171 if( !db || db->mallocFailed ){ 2172 return SQLITE_NOMEM; 2173 } 2174 return db->errCode; 2175 } 2176 2177 /* 2178 ** Return a string that describes the kind of error specified in the 2179 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2180 ** function. 2181 */ 2182 const char *sqlite3_errstr(int rc){ 2183 return sqlite3ErrStr(rc); 2184 } 2185 2186 /* 2187 ** Create a new collating function for database "db". The name is zName 2188 ** and the encoding is enc. 2189 */ 2190 static int createCollation( 2191 sqlite3* db, 2192 const char *zName, 2193 u8 enc, 2194 void* pCtx, 2195 int(*xCompare)(void*,int,const void*,int,const void*), 2196 void(*xDel)(void*) 2197 ){ 2198 CollSeq *pColl; 2199 int enc2; 2200 2201 assert( sqlite3_mutex_held(db->mutex) ); 2202 2203 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2204 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2205 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2206 */ 2207 enc2 = enc; 2208 testcase( enc2==SQLITE_UTF16 ); 2209 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2210 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2211 enc2 = SQLITE_UTF16NATIVE; 2212 } 2213 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2214 return SQLITE_MISUSE_BKPT; 2215 } 2216 2217 /* Check if this call is removing or replacing an existing collation 2218 ** sequence. If so, and there are active VMs, return busy. If there 2219 ** are no active VMs, invalidate any pre-compiled statements. 2220 */ 2221 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2222 if( pColl && pColl->xCmp ){ 2223 if( db->nVdbeActive ){ 2224 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2225 "unable to delete/modify collation sequence due to active statements"); 2226 return SQLITE_BUSY; 2227 } 2228 sqlite3ExpirePreparedStatements(db); 2229 2230 /* If collation sequence pColl was created directly by a call to 2231 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2232 ** then any copies made by synthCollSeq() need to be invalidated. 2233 ** Also, collation destructor - CollSeq.xDel() - function may need 2234 ** to be called. 2235 */ 2236 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2237 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2238 int j; 2239 for(j=0; j<3; j++){ 2240 CollSeq *p = &aColl[j]; 2241 if( p->enc==pColl->enc ){ 2242 if( p->xDel ){ 2243 p->xDel(p->pUser); 2244 } 2245 p->xCmp = 0; 2246 } 2247 } 2248 } 2249 } 2250 2251 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2252 if( pColl==0 ) return SQLITE_NOMEM; 2253 pColl->xCmp = xCompare; 2254 pColl->pUser = pCtx; 2255 pColl->xDel = xDel; 2256 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2257 sqlite3Error(db, SQLITE_OK); 2258 return SQLITE_OK; 2259 } 2260 2261 2262 /* 2263 ** This array defines hard upper bounds on limit values. The 2264 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2265 ** #defines in sqlite3.h. 2266 */ 2267 static const int aHardLimit[] = { 2268 SQLITE_MAX_LENGTH, 2269 SQLITE_MAX_SQL_LENGTH, 2270 SQLITE_MAX_COLUMN, 2271 SQLITE_MAX_EXPR_DEPTH, 2272 SQLITE_MAX_COMPOUND_SELECT, 2273 SQLITE_MAX_VDBE_OP, 2274 SQLITE_MAX_FUNCTION_ARG, 2275 SQLITE_MAX_ATTACHED, 2276 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2277 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2278 SQLITE_MAX_TRIGGER_DEPTH, 2279 SQLITE_MAX_WORKER_THREADS, 2280 }; 2281 2282 /* 2283 ** Make sure the hard limits are set to reasonable values 2284 */ 2285 #if SQLITE_MAX_LENGTH<100 2286 # error SQLITE_MAX_LENGTH must be at least 100 2287 #endif 2288 #if SQLITE_MAX_SQL_LENGTH<100 2289 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2290 #endif 2291 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2292 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2293 #endif 2294 #if SQLITE_MAX_COMPOUND_SELECT<2 2295 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2296 #endif 2297 #if SQLITE_MAX_VDBE_OP<40 2298 # error SQLITE_MAX_VDBE_OP must be at least 40 2299 #endif 2300 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 2301 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 2302 #endif 2303 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2304 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2305 #endif 2306 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2307 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2308 #endif 2309 #if SQLITE_MAX_COLUMN>32767 2310 # error SQLITE_MAX_COLUMN must not exceed 32767 2311 #endif 2312 #if SQLITE_MAX_TRIGGER_DEPTH<1 2313 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2314 #endif 2315 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2316 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2317 #endif 2318 2319 2320 /* 2321 ** Change the value of a limit. Report the old value. 2322 ** If an invalid limit index is supplied, report -1. 2323 ** Make no changes but still report the old value if the 2324 ** new limit is negative. 2325 ** 2326 ** A new lower limit does not shrink existing constructs. 2327 ** It merely prevents new constructs that exceed the limit 2328 ** from forming. 2329 */ 2330 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2331 int oldLimit; 2332 2333 #ifdef SQLITE_ENABLE_API_ARMOR 2334 if( !sqlite3SafetyCheckOk(db) ){ 2335 (void)SQLITE_MISUSE_BKPT; 2336 return -1; 2337 } 2338 #endif 2339 2340 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2341 ** there is a hard upper bound set at compile-time by a C preprocessor 2342 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2343 ** "_MAX_".) 2344 */ 2345 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2346 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2347 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2348 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2349 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2350 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2351 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2352 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2353 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2354 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2355 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2356 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2357 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2358 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2359 2360 2361 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2362 return -1; 2363 } 2364 oldLimit = db->aLimit[limitId]; 2365 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2366 if( newLimit>aHardLimit[limitId] ){ 2367 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2368 } 2369 db->aLimit[limitId] = newLimit; 2370 } 2371 return oldLimit; /* IMP: R-53341-35419 */ 2372 } 2373 2374 /* 2375 ** This function is used to parse both URIs and non-URI filenames passed by the 2376 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2377 ** URIs specified as part of ATTACH statements. 2378 ** 2379 ** The first argument to this function is the name of the VFS to use (or 2380 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2381 ** query parameter. The second argument contains the URI (or non-URI filename) 2382 ** itself. When this function is called the *pFlags variable should contain 2383 ** the default flags to open the database handle with. The value stored in 2384 ** *pFlags may be updated before returning if the URI filename contains 2385 ** "cache=xxx" or "mode=xxx" query parameters. 2386 ** 2387 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2388 ** the VFS that should be used to open the database file. *pzFile is set to 2389 ** point to a buffer containing the name of the file to open. It is the 2390 ** responsibility of the caller to eventually call sqlite3_free() to release 2391 ** this buffer. 2392 ** 2393 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2394 ** may be set to point to a buffer containing an English language error 2395 ** message. It is the responsibility of the caller to eventually release 2396 ** this buffer by calling sqlite3_free(). 2397 */ 2398 int sqlite3ParseUri( 2399 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2400 const char *zUri, /* Nul-terminated URI to parse */ 2401 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2402 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2403 char **pzFile, /* OUT: Filename component of URI */ 2404 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2405 ){ 2406 int rc = SQLITE_OK; 2407 unsigned int flags = *pFlags; 2408 const char *zVfs = zDefaultVfs; 2409 char *zFile; 2410 char c; 2411 int nUri = sqlite3Strlen30(zUri); 2412 2413 assert( *pzErrMsg==0 ); 2414 2415 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2416 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2417 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2418 ){ 2419 char *zOpt; 2420 int eState; /* Parser state when parsing URI */ 2421 int iIn; /* Input character index */ 2422 int iOut = 0; /* Output character index */ 2423 int nByte = nUri+2; /* Bytes of space to allocate */ 2424 2425 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2426 ** method that there may be extra parameters following the file-name. */ 2427 flags |= SQLITE_OPEN_URI; 2428 2429 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2430 zFile = sqlite3_malloc(nByte); 2431 if( !zFile ) return SQLITE_NOMEM; 2432 2433 iIn = 5; 2434 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2435 if( strncmp(zUri+5, "///", 3)==0 ){ 2436 iIn = 7; 2437 /* The following condition causes URIs with five leading / characters 2438 ** like file://///host/path to be converted into UNCs like //host/path. 2439 ** The correct URI for that UNC has only two or four leading / characters 2440 ** file://host/path or file:////host/path. But 5 leading slashes is a 2441 ** common error, we are told, so we handle it as a special case. */ 2442 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2443 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2444 iIn = 16; 2445 } 2446 #else 2447 /* Discard the scheme and authority segments of the URI. */ 2448 if( zUri[5]=='/' && zUri[6]=='/' ){ 2449 iIn = 7; 2450 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2451 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2452 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2453 iIn-7, &zUri[7]); 2454 rc = SQLITE_ERROR; 2455 goto parse_uri_out; 2456 } 2457 } 2458 #endif 2459 2460 /* Copy the filename and any query parameters into the zFile buffer. 2461 ** Decode %HH escape codes along the way. 2462 ** 2463 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2464 ** on the parsing context. As follows: 2465 ** 2466 ** 0: Parsing file-name. 2467 ** 1: Parsing name section of a name=value query parameter. 2468 ** 2: Parsing value section of a name=value query parameter. 2469 */ 2470 eState = 0; 2471 while( (c = zUri[iIn])!=0 && c!='#' ){ 2472 iIn++; 2473 if( c=='%' 2474 && sqlite3Isxdigit(zUri[iIn]) 2475 && sqlite3Isxdigit(zUri[iIn+1]) 2476 ){ 2477 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2478 octet += sqlite3HexToInt(zUri[iIn++]); 2479 2480 assert( octet>=0 && octet<256 ); 2481 if( octet==0 ){ 2482 /* This branch is taken when "%00" appears within the URI. In this 2483 ** case we ignore all text in the remainder of the path, name or 2484 ** value currently being parsed. So ignore the current character 2485 ** and skip to the next "?", "=" or "&", as appropriate. */ 2486 while( (c = zUri[iIn])!=0 && c!='#' 2487 && (eState!=0 || c!='?') 2488 && (eState!=1 || (c!='=' && c!='&')) 2489 && (eState!=2 || c!='&') 2490 ){ 2491 iIn++; 2492 } 2493 continue; 2494 } 2495 c = octet; 2496 }else if( eState==1 && (c=='&' || c=='=') ){ 2497 if( zFile[iOut-1]==0 ){ 2498 /* An empty option name. Ignore this option altogether. */ 2499 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2500 continue; 2501 } 2502 if( c=='&' ){ 2503 zFile[iOut++] = '\0'; 2504 }else{ 2505 eState = 2; 2506 } 2507 c = 0; 2508 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2509 c = 0; 2510 eState = 1; 2511 } 2512 zFile[iOut++] = c; 2513 } 2514 if( eState==1 ) zFile[iOut++] = '\0'; 2515 zFile[iOut++] = '\0'; 2516 zFile[iOut++] = '\0'; 2517 2518 /* Check if there were any options specified that should be interpreted 2519 ** here. Options that are interpreted here include "vfs" and those that 2520 ** correspond to flags that may be passed to the sqlite3_open_v2() 2521 ** method. */ 2522 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2523 while( zOpt[0] ){ 2524 int nOpt = sqlite3Strlen30(zOpt); 2525 char *zVal = &zOpt[nOpt+1]; 2526 int nVal = sqlite3Strlen30(zVal); 2527 2528 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2529 zVfs = zVal; 2530 }else{ 2531 struct OpenMode { 2532 const char *z; 2533 int mode; 2534 } *aMode = 0; 2535 char *zModeType = 0; 2536 int mask = 0; 2537 int limit = 0; 2538 2539 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2540 static struct OpenMode aCacheMode[] = { 2541 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2542 { "private", SQLITE_OPEN_PRIVATECACHE }, 2543 { 0, 0 } 2544 }; 2545 2546 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2547 aMode = aCacheMode; 2548 limit = mask; 2549 zModeType = "cache"; 2550 } 2551 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2552 static struct OpenMode aOpenMode[] = { 2553 { "ro", SQLITE_OPEN_READONLY }, 2554 { "rw", SQLITE_OPEN_READWRITE }, 2555 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2556 { "memory", SQLITE_OPEN_MEMORY }, 2557 { 0, 0 } 2558 }; 2559 2560 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2561 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2562 aMode = aOpenMode; 2563 limit = mask & flags; 2564 zModeType = "access"; 2565 } 2566 2567 if( aMode ){ 2568 int i; 2569 int mode = 0; 2570 for(i=0; aMode[i].z; i++){ 2571 const char *z = aMode[i].z; 2572 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2573 mode = aMode[i].mode; 2574 break; 2575 } 2576 } 2577 if( mode==0 ){ 2578 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2579 rc = SQLITE_ERROR; 2580 goto parse_uri_out; 2581 } 2582 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2583 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2584 zModeType, zVal); 2585 rc = SQLITE_PERM; 2586 goto parse_uri_out; 2587 } 2588 flags = (flags & ~mask) | mode; 2589 } 2590 } 2591 2592 zOpt = &zVal[nVal+1]; 2593 } 2594 2595 }else{ 2596 zFile = sqlite3_malloc(nUri+2); 2597 if( !zFile ) return SQLITE_NOMEM; 2598 memcpy(zFile, zUri, nUri); 2599 zFile[nUri] = '\0'; 2600 zFile[nUri+1] = '\0'; 2601 flags &= ~SQLITE_OPEN_URI; 2602 } 2603 2604 *ppVfs = sqlite3_vfs_find(zVfs); 2605 if( *ppVfs==0 ){ 2606 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2607 rc = SQLITE_ERROR; 2608 } 2609 parse_uri_out: 2610 if( rc!=SQLITE_OK ){ 2611 sqlite3_free(zFile); 2612 zFile = 0; 2613 } 2614 *pFlags = flags; 2615 *pzFile = zFile; 2616 return rc; 2617 } 2618 2619 2620 /* 2621 ** This routine does the work of opening a database on behalf of 2622 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2623 ** is UTF-8 encoded. 2624 */ 2625 static int openDatabase( 2626 const char *zFilename, /* Database filename UTF-8 encoded */ 2627 sqlite3 **ppDb, /* OUT: Returned database handle */ 2628 unsigned int flags, /* Operational flags */ 2629 const char *zVfs /* Name of the VFS to use */ 2630 ){ 2631 sqlite3 *db; /* Store allocated handle here */ 2632 int rc; /* Return code */ 2633 int isThreadsafe; /* True for threadsafe connections */ 2634 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2635 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2636 2637 #ifdef SQLITE_ENABLE_API_ARMOR 2638 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2639 #endif 2640 *ppDb = 0; 2641 #ifndef SQLITE_OMIT_AUTOINIT 2642 rc = sqlite3_initialize(); 2643 if( rc ) return rc; 2644 #endif 2645 2646 /* Only allow sensible combinations of bits in the flags argument. 2647 ** Throw an error if any non-sense combination is used. If we 2648 ** do not block illegal combinations here, it could trigger 2649 ** assert() statements in deeper layers. Sensible combinations 2650 ** are: 2651 ** 2652 ** 1: SQLITE_OPEN_READONLY 2653 ** 2: SQLITE_OPEN_READWRITE 2654 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2655 */ 2656 assert( SQLITE_OPEN_READONLY == 0x01 ); 2657 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2658 assert( SQLITE_OPEN_CREATE == 0x04 ); 2659 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2660 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2661 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2662 if( ((1<<(flags&7)) & 0x46)==0 ){ 2663 return SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 2664 } 2665 2666 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2667 isThreadsafe = 0; 2668 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2669 isThreadsafe = 0; 2670 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2671 isThreadsafe = 1; 2672 }else{ 2673 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2674 } 2675 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2676 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2677 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2678 flags |= SQLITE_OPEN_SHAREDCACHE; 2679 } 2680 2681 /* Remove harmful bits from the flags parameter 2682 ** 2683 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2684 ** dealt with in the previous code block. Besides these, the only 2685 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2686 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2687 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2688 ** off all other flags. 2689 */ 2690 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2691 SQLITE_OPEN_EXCLUSIVE | 2692 SQLITE_OPEN_MAIN_DB | 2693 SQLITE_OPEN_TEMP_DB | 2694 SQLITE_OPEN_TRANSIENT_DB | 2695 SQLITE_OPEN_MAIN_JOURNAL | 2696 SQLITE_OPEN_TEMP_JOURNAL | 2697 SQLITE_OPEN_SUBJOURNAL | 2698 SQLITE_OPEN_MASTER_JOURNAL | 2699 SQLITE_OPEN_NOMUTEX | 2700 SQLITE_OPEN_FULLMUTEX | 2701 SQLITE_OPEN_WAL 2702 ); 2703 2704 /* Allocate the sqlite data structure */ 2705 db = sqlite3MallocZero( sizeof(sqlite3) ); 2706 if( db==0 ) goto opendb_out; 2707 if( isThreadsafe ){ 2708 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2709 if( db->mutex==0 ){ 2710 sqlite3_free(db); 2711 db = 0; 2712 goto opendb_out; 2713 } 2714 } 2715 sqlite3_mutex_enter(db->mutex); 2716 db->errMask = 0xff; 2717 db->nDb = 2; 2718 db->magic = SQLITE_MAGIC_BUSY; 2719 db->aDb = db->aDbStatic; 2720 2721 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2722 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2723 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 2724 db->autoCommit = 1; 2725 db->nextAutovac = -1; 2726 db->szMmap = sqlite3GlobalConfig.szMmap; 2727 db->nextPagesize = 0; 2728 db->nMaxSorterMmap = 0x7FFFFFFF; 2729 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 2730 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 2731 | SQLITE_AutoIndex 2732 #endif 2733 #if SQLITE_DEFAULT_CKPTFULLFSYNC 2734 | SQLITE_CkptFullFSync 2735 #endif 2736 #if SQLITE_DEFAULT_FILE_FORMAT<4 2737 | SQLITE_LegacyFileFmt 2738 #endif 2739 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2740 | SQLITE_LoadExtension 2741 #endif 2742 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2743 | SQLITE_RecTriggers 2744 #endif 2745 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2746 | SQLITE_ForeignKeys 2747 #endif 2748 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 2749 | SQLITE_ReverseOrder 2750 #endif 2751 ; 2752 sqlite3HashInit(&db->aCollSeq); 2753 #ifndef SQLITE_OMIT_VIRTUALTABLE 2754 sqlite3HashInit(&db->aModule); 2755 #endif 2756 2757 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2758 ** and UTF-16, so add a version for each to avoid any unnecessary 2759 ** conversions. The only error that can occur here is a malloc() failure. 2760 ** 2761 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 2762 ** functions: 2763 */ 2764 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2765 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2766 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2767 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2768 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2769 if( db->mallocFailed ){ 2770 goto opendb_out; 2771 } 2772 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 2773 ** strings is BINARY. 2774 */ 2775 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2776 assert( db->pDfltColl!=0 ); 2777 2778 /* Parse the filename/URI argument. */ 2779 db->openFlags = flags; 2780 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2781 if( rc!=SQLITE_OK ){ 2782 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2783 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2784 sqlite3_free(zErrMsg); 2785 goto opendb_out; 2786 } 2787 2788 /* Open the backend database driver */ 2789 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2790 flags | SQLITE_OPEN_MAIN_DB); 2791 if( rc!=SQLITE_OK ){ 2792 if( rc==SQLITE_IOERR_NOMEM ){ 2793 rc = SQLITE_NOMEM; 2794 } 2795 sqlite3Error(db, rc); 2796 goto opendb_out; 2797 } 2798 sqlite3BtreeEnter(db->aDb[0].pBt); 2799 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2800 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 2801 sqlite3BtreeLeave(db->aDb[0].pBt); 2802 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2803 2804 /* The default safety_level for the main database is 'full'; for the temp 2805 ** database it is 'NONE'. This matches the pager layer defaults. 2806 */ 2807 db->aDb[0].zName = "main"; 2808 db->aDb[0].safety_level = 3; 2809 db->aDb[1].zName = "temp"; 2810 db->aDb[1].safety_level = 1; 2811 2812 db->magic = SQLITE_MAGIC_OPEN; 2813 if( db->mallocFailed ){ 2814 goto opendb_out; 2815 } 2816 2817 /* Register all built-in functions, but do not attempt to read the 2818 ** database schema yet. This is delayed until the first time the database 2819 ** is accessed. 2820 */ 2821 sqlite3Error(db, SQLITE_OK); 2822 sqlite3RegisterBuiltinFunctions(db); 2823 2824 /* Load automatic extensions - extensions that have been registered 2825 ** using the sqlite3_automatic_extension() API. 2826 */ 2827 rc = sqlite3_errcode(db); 2828 if( rc==SQLITE_OK ){ 2829 sqlite3AutoLoadExtensions(db); 2830 rc = sqlite3_errcode(db); 2831 if( rc!=SQLITE_OK ){ 2832 goto opendb_out; 2833 } 2834 } 2835 2836 #ifdef SQLITE_ENABLE_FTS1 2837 if( !db->mallocFailed ){ 2838 extern int sqlite3Fts1Init(sqlite3*); 2839 rc = sqlite3Fts1Init(db); 2840 } 2841 #endif 2842 2843 #ifdef SQLITE_ENABLE_FTS2 2844 if( !db->mallocFailed && rc==SQLITE_OK ){ 2845 extern int sqlite3Fts2Init(sqlite3*); 2846 rc = sqlite3Fts2Init(db); 2847 } 2848 #endif 2849 2850 #ifdef SQLITE_ENABLE_FTS3 2851 if( !db->mallocFailed && rc==SQLITE_OK ){ 2852 rc = sqlite3Fts3Init(db); 2853 } 2854 #endif 2855 2856 #ifdef SQLITE_ENABLE_ICU 2857 if( !db->mallocFailed && rc==SQLITE_OK ){ 2858 rc = sqlite3IcuInit(db); 2859 } 2860 #endif 2861 2862 #ifdef SQLITE_ENABLE_RTREE 2863 if( !db->mallocFailed && rc==SQLITE_OK){ 2864 rc = sqlite3RtreeInit(db); 2865 } 2866 #endif 2867 2868 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2869 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2870 ** mode. Doing nothing at all also makes NORMAL the default. 2871 */ 2872 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2873 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2874 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2875 SQLITE_DEFAULT_LOCKING_MODE); 2876 #endif 2877 2878 if( rc ) sqlite3Error(db, rc); 2879 2880 /* Enable the lookaside-malloc subsystem */ 2881 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2882 sqlite3GlobalConfig.nLookaside); 2883 2884 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2885 2886 opendb_out: 2887 sqlite3_free(zOpen); 2888 if( db ){ 2889 assert( db->mutex!=0 || isThreadsafe==0 2890 || sqlite3GlobalConfig.bFullMutex==0 ); 2891 sqlite3_mutex_leave(db->mutex); 2892 } 2893 rc = sqlite3_errcode(db); 2894 assert( db!=0 || rc==SQLITE_NOMEM ); 2895 if( rc==SQLITE_NOMEM ){ 2896 sqlite3_close(db); 2897 db = 0; 2898 }else if( rc!=SQLITE_OK ){ 2899 db->magic = SQLITE_MAGIC_SICK; 2900 } 2901 *ppDb = db; 2902 #ifdef SQLITE_ENABLE_SQLLOG 2903 if( sqlite3GlobalConfig.xSqllog ){ 2904 /* Opening a db handle. Fourth parameter is passed 0. */ 2905 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2906 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2907 } 2908 #endif 2909 return sqlite3ApiExit(0, rc); 2910 } 2911 2912 /* 2913 ** Open a new database handle. 2914 */ 2915 int sqlite3_open( 2916 const char *zFilename, 2917 sqlite3 **ppDb 2918 ){ 2919 return openDatabase(zFilename, ppDb, 2920 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2921 } 2922 int sqlite3_open_v2( 2923 const char *filename, /* Database filename (UTF-8) */ 2924 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2925 int flags, /* Flags */ 2926 const char *zVfs /* Name of VFS module to use */ 2927 ){ 2928 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2929 } 2930 2931 #ifndef SQLITE_OMIT_UTF16 2932 /* 2933 ** Open a new database handle. 2934 */ 2935 int sqlite3_open16( 2936 const void *zFilename, 2937 sqlite3 **ppDb 2938 ){ 2939 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2940 sqlite3_value *pVal; 2941 int rc; 2942 2943 #ifdef SQLITE_ENABLE_API_ARMOR 2944 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2945 #endif 2946 *ppDb = 0; 2947 #ifndef SQLITE_OMIT_AUTOINIT 2948 rc = sqlite3_initialize(); 2949 if( rc ) return rc; 2950 #endif 2951 if( zFilename==0 ) zFilename = "\000\000"; 2952 pVal = sqlite3ValueNew(0); 2953 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2954 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2955 if( zFilename8 ){ 2956 rc = openDatabase(zFilename8, ppDb, 2957 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2958 assert( *ppDb || rc==SQLITE_NOMEM ); 2959 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2960 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 2961 } 2962 }else{ 2963 rc = SQLITE_NOMEM; 2964 } 2965 sqlite3ValueFree(pVal); 2966 2967 return sqlite3ApiExit(0, rc); 2968 } 2969 #endif /* SQLITE_OMIT_UTF16 */ 2970 2971 /* 2972 ** Register a new collation sequence with the database handle db. 2973 */ 2974 int sqlite3_create_collation( 2975 sqlite3* db, 2976 const char *zName, 2977 int enc, 2978 void* pCtx, 2979 int(*xCompare)(void*,int,const void*,int,const void*) 2980 ){ 2981 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 2982 } 2983 2984 /* 2985 ** Register a new collation sequence with the database handle db. 2986 */ 2987 int sqlite3_create_collation_v2( 2988 sqlite3* db, 2989 const char *zName, 2990 int enc, 2991 void* pCtx, 2992 int(*xCompare)(void*,int,const void*,int,const void*), 2993 void(*xDel)(void*) 2994 ){ 2995 int rc; 2996 2997 #ifdef SQLITE_ENABLE_API_ARMOR 2998 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 2999 #endif 3000 sqlite3_mutex_enter(db->mutex); 3001 assert( !db->mallocFailed ); 3002 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 3003 rc = sqlite3ApiExit(db, rc); 3004 sqlite3_mutex_leave(db->mutex); 3005 return rc; 3006 } 3007 3008 #ifndef SQLITE_OMIT_UTF16 3009 /* 3010 ** Register a new collation sequence with the database handle db. 3011 */ 3012 int sqlite3_create_collation16( 3013 sqlite3* db, 3014 const void *zName, 3015 int enc, 3016 void* pCtx, 3017 int(*xCompare)(void*,int,const void*,int,const void*) 3018 ){ 3019 int rc = SQLITE_OK; 3020 char *zName8; 3021 3022 #ifdef SQLITE_ENABLE_API_ARMOR 3023 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3024 #endif 3025 sqlite3_mutex_enter(db->mutex); 3026 assert( !db->mallocFailed ); 3027 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3028 if( zName8 ){ 3029 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3030 sqlite3DbFree(db, zName8); 3031 } 3032 rc = sqlite3ApiExit(db, rc); 3033 sqlite3_mutex_leave(db->mutex); 3034 return rc; 3035 } 3036 #endif /* SQLITE_OMIT_UTF16 */ 3037 3038 /* 3039 ** Register a collation sequence factory callback with the database handle 3040 ** db. Replace any previously installed collation sequence factory. 3041 */ 3042 int sqlite3_collation_needed( 3043 sqlite3 *db, 3044 void *pCollNeededArg, 3045 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3046 ){ 3047 #ifdef SQLITE_ENABLE_API_ARMOR 3048 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3049 #endif 3050 sqlite3_mutex_enter(db->mutex); 3051 db->xCollNeeded = xCollNeeded; 3052 db->xCollNeeded16 = 0; 3053 db->pCollNeededArg = pCollNeededArg; 3054 sqlite3_mutex_leave(db->mutex); 3055 return SQLITE_OK; 3056 } 3057 3058 #ifndef SQLITE_OMIT_UTF16 3059 /* 3060 ** Register a collation sequence factory callback with the database handle 3061 ** db. Replace any previously installed collation sequence factory. 3062 */ 3063 int sqlite3_collation_needed16( 3064 sqlite3 *db, 3065 void *pCollNeededArg, 3066 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3067 ){ 3068 #ifdef SQLITE_ENABLE_API_ARMOR 3069 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3070 #endif 3071 sqlite3_mutex_enter(db->mutex); 3072 db->xCollNeeded = 0; 3073 db->xCollNeeded16 = xCollNeeded16; 3074 db->pCollNeededArg = pCollNeededArg; 3075 sqlite3_mutex_leave(db->mutex); 3076 return SQLITE_OK; 3077 } 3078 #endif /* SQLITE_OMIT_UTF16 */ 3079 3080 #ifndef SQLITE_OMIT_DEPRECATED 3081 /* 3082 ** This function is now an anachronism. It used to be used to recover from a 3083 ** malloc() failure, but SQLite now does this automatically. 3084 */ 3085 int sqlite3_global_recover(void){ 3086 return SQLITE_OK; 3087 } 3088 #endif 3089 3090 /* 3091 ** Test to see whether or not the database connection is in autocommit 3092 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3093 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3094 ** by the next COMMIT or ROLLBACK. 3095 */ 3096 int sqlite3_get_autocommit(sqlite3 *db){ 3097 #ifdef SQLITE_ENABLE_API_ARMOR 3098 if( !sqlite3SafetyCheckOk(db) ){ 3099 (void)SQLITE_MISUSE_BKPT; 3100 return 0; 3101 } 3102 #endif 3103 return db->autoCommit; 3104 } 3105 3106 /* 3107 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3108 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 3109 ** constants. They serve two purposes: 3110 ** 3111 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3112 ** to detect when version error conditions occurs. 3113 ** 3114 ** 2. Invoke sqlite3_log() to provide the source code location where 3115 ** a low-level error is first detected. 3116 */ 3117 int sqlite3CorruptError(int lineno){ 3118 testcase( sqlite3GlobalConfig.xLog!=0 ); 3119 sqlite3_log(SQLITE_CORRUPT, 3120 "database corruption at line %d of [%.10s]", 3121 lineno, 20+sqlite3_sourceid()); 3122 return SQLITE_CORRUPT; 3123 } 3124 int sqlite3MisuseError(int lineno){ 3125 testcase( sqlite3GlobalConfig.xLog!=0 ); 3126 sqlite3_log(SQLITE_MISUSE, 3127 "misuse at line %d of [%.10s]", 3128 lineno, 20+sqlite3_sourceid()); 3129 return SQLITE_MISUSE; 3130 } 3131 int sqlite3CantopenError(int lineno){ 3132 testcase( sqlite3GlobalConfig.xLog!=0 ); 3133 sqlite3_log(SQLITE_CANTOPEN, 3134 "cannot open file at line %d of [%.10s]", 3135 lineno, 20+sqlite3_sourceid()); 3136 return SQLITE_CANTOPEN; 3137 } 3138 3139 3140 #ifndef SQLITE_OMIT_DEPRECATED 3141 /* 3142 ** This is a convenience routine that makes sure that all thread-specific 3143 ** data for this thread has been deallocated. 3144 ** 3145 ** SQLite no longer uses thread-specific data so this routine is now a 3146 ** no-op. It is retained for historical compatibility. 3147 */ 3148 void sqlite3_thread_cleanup(void){ 3149 } 3150 #endif 3151 3152 /* 3153 ** Return meta information about a specific column of a database table. 3154 ** See comment in sqlite3.h (sqlite.h.in) for details. 3155 */ 3156 int sqlite3_table_column_metadata( 3157 sqlite3 *db, /* Connection handle */ 3158 const char *zDbName, /* Database name or NULL */ 3159 const char *zTableName, /* Table name */ 3160 const char *zColumnName, /* Column name */ 3161 char const **pzDataType, /* OUTPUT: Declared data type */ 3162 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3163 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3164 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3165 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3166 ){ 3167 int rc; 3168 char *zErrMsg = 0; 3169 Table *pTab = 0; 3170 Column *pCol = 0; 3171 int iCol = 0; 3172 char const *zDataType = 0; 3173 char const *zCollSeq = 0; 3174 int notnull = 0; 3175 int primarykey = 0; 3176 int autoinc = 0; 3177 3178 3179 #ifdef SQLITE_ENABLE_API_ARMOR 3180 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3181 return SQLITE_MISUSE_BKPT; 3182 } 3183 #endif 3184 3185 /* Ensure the database schema has been loaded */ 3186 sqlite3_mutex_enter(db->mutex); 3187 sqlite3BtreeEnterAll(db); 3188 rc = sqlite3Init(db, &zErrMsg); 3189 if( SQLITE_OK!=rc ){ 3190 goto error_out; 3191 } 3192 3193 /* Locate the table in question */ 3194 pTab = sqlite3FindTable(db, zTableName, zDbName); 3195 if( !pTab || pTab->pSelect ){ 3196 pTab = 0; 3197 goto error_out; 3198 } 3199 3200 /* Find the column for which info is requested */ 3201 if( zColumnName==0 ){ 3202 /* Query for existance of table only */ 3203 }else{ 3204 for(iCol=0; iCol<pTab->nCol; iCol++){ 3205 pCol = &pTab->aCol[iCol]; 3206 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 3207 break; 3208 } 3209 } 3210 if( iCol==pTab->nCol ){ 3211 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3212 iCol = pTab->iPKey; 3213 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3214 }else{ 3215 pTab = 0; 3216 goto error_out; 3217 } 3218 } 3219 } 3220 3221 /* The following block stores the meta information that will be returned 3222 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3223 ** and autoinc. At this point there are two possibilities: 3224 ** 3225 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3226 ** and there is no explicitly declared IPK column. 3227 ** 3228 ** 2. The table is not a view and the column name identified an 3229 ** explicitly declared column. Copy meta information from *pCol. 3230 */ 3231 if( pCol ){ 3232 zDataType = pCol->zType; 3233 zCollSeq = pCol->zColl; 3234 notnull = pCol->notNull!=0; 3235 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3236 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3237 }else{ 3238 zDataType = "INTEGER"; 3239 primarykey = 1; 3240 } 3241 if( !zCollSeq ){ 3242 zCollSeq = "BINARY"; 3243 } 3244 3245 error_out: 3246 sqlite3BtreeLeaveAll(db); 3247 3248 /* Whether the function call succeeded or failed, set the output parameters 3249 ** to whatever their local counterparts contain. If an error did occur, 3250 ** this has the effect of zeroing all output parameters. 3251 */ 3252 if( pzDataType ) *pzDataType = zDataType; 3253 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3254 if( pNotNull ) *pNotNull = notnull; 3255 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3256 if( pAutoinc ) *pAutoinc = autoinc; 3257 3258 if( SQLITE_OK==rc && !pTab ){ 3259 sqlite3DbFree(db, zErrMsg); 3260 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3261 zColumnName); 3262 rc = SQLITE_ERROR; 3263 } 3264 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3265 sqlite3DbFree(db, zErrMsg); 3266 rc = sqlite3ApiExit(db, rc); 3267 sqlite3_mutex_leave(db->mutex); 3268 return rc; 3269 } 3270 3271 /* 3272 ** Sleep for a little while. Return the amount of time slept. 3273 */ 3274 int sqlite3_sleep(int ms){ 3275 sqlite3_vfs *pVfs; 3276 int rc; 3277 pVfs = sqlite3_vfs_find(0); 3278 if( pVfs==0 ) return 0; 3279 3280 /* This function works in milliseconds, but the underlying OsSleep() 3281 ** API uses microseconds. Hence the 1000's. 3282 */ 3283 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3284 return rc; 3285 } 3286 3287 /* 3288 ** Enable or disable the extended result codes. 3289 */ 3290 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3291 #ifdef SQLITE_ENABLE_API_ARMOR 3292 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3293 #endif 3294 sqlite3_mutex_enter(db->mutex); 3295 db->errMask = onoff ? 0xffffffff : 0xff; 3296 sqlite3_mutex_leave(db->mutex); 3297 return SQLITE_OK; 3298 } 3299 3300 /* 3301 ** Invoke the xFileControl method on a particular database. 3302 */ 3303 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3304 int rc = SQLITE_ERROR; 3305 Btree *pBtree; 3306 3307 #ifdef SQLITE_ENABLE_API_ARMOR 3308 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3309 #endif 3310 sqlite3_mutex_enter(db->mutex); 3311 pBtree = sqlite3DbNameToBtree(db, zDbName); 3312 if( pBtree ){ 3313 Pager *pPager; 3314 sqlite3_file *fd; 3315 sqlite3BtreeEnter(pBtree); 3316 pPager = sqlite3BtreePager(pBtree); 3317 assert( pPager!=0 ); 3318 fd = sqlite3PagerFile(pPager); 3319 assert( fd!=0 ); 3320 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3321 *(sqlite3_file**)pArg = fd; 3322 rc = SQLITE_OK; 3323 }else if( fd->pMethods ){ 3324 rc = sqlite3OsFileControl(fd, op, pArg); 3325 }else{ 3326 rc = SQLITE_NOTFOUND; 3327 } 3328 sqlite3BtreeLeave(pBtree); 3329 } 3330 sqlite3_mutex_leave(db->mutex); 3331 return rc; 3332 } 3333 3334 /* 3335 ** Interface to the testing logic. 3336 */ 3337 int sqlite3_test_control(int op, ...){ 3338 int rc = 0; 3339 #ifndef SQLITE_OMIT_BUILTIN_TEST 3340 va_list ap; 3341 va_start(ap, op); 3342 switch( op ){ 3343 3344 /* 3345 ** Save the current state of the PRNG. 3346 */ 3347 case SQLITE_TESTCTRL_PRNG_SAVE: { 3348 sqlite3PrngSaveState(); 3349 break; 3350 } 3351 3352 /* 3353 ** Restore the state of the PRNG to the last state saved using 3354 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3355 ** this verb acts like PRNG_RESET. 3356 */ 3357 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3358 sqlite3PrngRestoreState(); 3359 break; 3360 } 3361 3362 /* 3363 ** Reset the PRNG back to its uninitialized state. The next call 3364 ** to sqlite3_randomness() will reseed the PRNG using a single call 3365 ** to the xRandomness method of the default VFS. 3366 */ 3367 case SQLITE_TESTCTRL_PRNG_RESET: { 3368 sqlite3_randomness(0,0); 3369 break; 3370 } 3371 3372 /* 3373 ** sqlite3_test_control(BITVEC_TEST, size, program) 3374 ** 3375 ** Run a test against a Bitvec object of size. The program argument 3376 ** is an array of integers that defines the test. Return -1 on a 3377 ** memory allocation error, 0 on success, or non-zero for an error. 3378 ** See the sqlite3BitvecBuiltinTest() for additional information. 3379 */ 3380 case SQLITE_TESTCTRL_BITVEC_TEST: { 3381 int sz = va_arg(ap, int); 3382 int *aProg = va_arg(ap, int*); 3383 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3384 break; 3385 } 3386 3387 /* 3388 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 3389 ** 3390 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 3391 ** if xCallback is not NULL. 3392 ** 3393 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 3394 ** is called immediately after installing the new callback and the return 3395 ** value from sqlite3FaultSim(0) becomes the return from 3396 ** sqlite3_test_control(). 3397 */ 3398 case SQLITE_TESTCTRL_FAULT_INSTALL: { 3399 /* MSVC is picky about pulling func ptrs from va lists. 3400 ** http://support.microsoft.com/kb/47961 3401 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 3402 */ 3403 typedef int(*TESTCALLBACKFUNC_t)(int); 3404 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 3405 rc = sqlite3FaultSim(0); 3406 break; 3407 } 3408 3409 /* 3410 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3411 ** 3412 ** Register hooks to call to indicate which malloc() failures 3413 ** are benign. 3414 */ 3415 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3416 typedef void (*void_function)(void); 3417 void_function xBenignBegin; 3418 void_function xBenignEnd; 3419 xBenignBegin = va_arg(ap, void_function); 3420 xBenignEnd = va_arg(ap, void_function); 3421 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3422 break; 3423 } 3424 3425 /* 3426 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3427 ** 3428 ** Set the PENDING byte to the value in the argument, if X>0. 3429 ** Make no changes if X==0. Return the value of the pending byte 3430 ** as it existing before this routine was called. 3431 ** 3432 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3433 ** an incompatible database file format. Changing the PENDING byte 3434 ** while any database connection is open results in undefined and 3435 ** deleterious behavior. 3436 */ 3437 case SQLITE_TESTCTRL_PENDING_BYTE: { 3438 rc = PENDING_BYTE; 3439 #ifndef SQLITE_OMIT_WSD 3440 { 3441 unsigned int newVal = va_arg(ap, unsigned int); 3442 if( newVal ) sqlite3PendingByte = newVal; 3443 } 3444 #endif 3445 break; 3446 } 3447 3448 /* 3449 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3450 ** 3451 ** This action provides a run-time test to see whether or not 3452 ** assert() was enabled at compile-time. If X is true and assert() 3453 ** is enabled, then the return value is true. If X is true and 3454 ** assert() is disabled, then the return value is zero. If X is 3455 ** false and assert() is enabled, then the assertion fires and the 3456 ** process aborts. If X is false and assert() is disabled, then the 3457 ** return value is zero. 3458 */ 3459 case SQLITE_TESTCTRL_ASSERT: { 3460 volatile int x = 0; 3461 assert( (x = va_arg(ap,int))!=0 ); 3462 rc = x; 3463 break; 3464 } 3465 3466 3467 /* 3468 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3469 ** 3470 ** This action provides a run-time test to see how the ALWAYS and 3471 ** NEVER macros were defined at compile-time. 3472 ** 3473 ** The return value is ALWAYS(X). 3474 ** 3475 ** The recommended test is X==2. If the return value is 2, that means 3476 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3477 ** default setting. If the return value is 1, then ALWAYS() is either 3478 ** hard-coded to true or else it asserts if its argument is false. 3479 ** The first behavior (hard-coded to true) is the case if 3480 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3481 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3482 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3483 ** 3484 ** The run-time test procedure might look something like this: 3485 ** 3486 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3487 ** // ALWAYS() and NEVER() are no-op pass-through macros 3488 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3489 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3490 ** }else{ 3491 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3492 ** } 3493 */ 3494 case SQLITE_TESTCTRL_ALWAYS: { 3495 int x = va_arg(ap,int); 3496 rc = ALWAYS(x); 3497 break; 3498 } 3499 3500 /* 3501 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 3502 ** 3503 ** The integer returned reveals the byte-order of the computer on which 3504 ** SQLite is running: 3505 ** 3506 ** 1 big-endian, determined at run-time 3507 ** 10 little-endian, determined at run-time 3508 ** 432101 big-endian, determined at compile-time 3509 ** 123410 little-endian, determined at compile-time 3510 */ 3511 case SQLITE_TESTCTRL_BYTEORDER: { 3512 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 3513 break; 3514 } 3515 3516 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3517 ** 3518 ** Set the nReserve size to N for the main database on the database 3519 ** connection db. 3520 */ 3521 case SQLITE_TESTCTRL_RESERVE: { 3522 sqlite3 *db = va_arg(ap, sqlite3*); 3523 int x = va_arg(ap,int); 3524 sqlite3_mutex_enter(db->mutex); 3525 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3526 sqlite3_mutex_leave(db->mutex); 3527 break; 3528 } 3529 3530 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3531 ** 3532 ** Enable or disable various optimizations for testing purposes. The 3533 ** argument N is a bitmask of optimizations to be disabled. For normal 3534 ** operation N should be 0. The idea is that a test program (like the 3535 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3536 ** with various optimizations disabled to verify that the same answer 3537 ** is obtained in every case. 3538 */ 3539 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3540 sqlite3 *db = va_arg(ap, sqlite3*); 3541 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3542 break; 3543 } 3544 3545 #ifdef SQLITE_N_KEYWORD 3546 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3547 ** 3548 ** If zWord is a keyword recognized by the parser, then return the 3549 ** number of keywords. Or if zWord is not a keyword, return 0. 3550 ** 3551 ** This test feature is only available in the amalgamation since 3552 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3553 ** is built using separate source files. 3554 */ 3555 case SQLITE_TESTCTRL_ISKEYWORD: { 3556 const char *zWord = va_arg(ap, const char*); 3557 int n = sqlite3Strlen30(zWord); 3558 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3559 break; 3560 } 3561 #endif 3562 3563 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3564 ** 3565 ** Pass pFree into sqlite3ScratchFree(). 3566 ** If sz>0 then allocate a scratch buffer into pNew. 3567 */ 3568 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3569 void *pFree, **ppNew; 3570 int sz; 3571 sz = va_arg(ap, int); 3572 ppNew = va_arg(ap, void**); 3573 pFree = va_arg(ap, void*); 3574 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3575 sqlite3ScratchFree(pFree); 3576 break; 3577 } 3578 3579 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3580 ** 3581 ** If parameter onoff is non-zero, configure the wrappers so that all 3582 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3583 ** undo this setting. 3584 */ 3585 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3586 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3587 break; 3588 } 3589 3590 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 3591 ** 3592 ** Set or clear a flag that indicates that the database file is always well- 3593 ** formed and never corrupt. This flag is clear by default, indicating that 3594 ** database files might have arbitrary corruption. Setting the flag during 3595 ** testing causes certain assert() statements in the code to be activated 3596 ** that demonstrat invariants on well-formed database files. 3597 */ 3598 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 3599 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 3600 break; 3601 } 3602 3603 3604 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 3605 ** 3606 ** Set the VDBE coverage callback function to xCallback with context 3607 ** pointer ptr. 3608 */ 3609 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 3610 #ifdef SQLITE_VDBE_COVERAGE 3611 typedef void (*branch_callback)(void*,int,u8,u8); 3612 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 3613 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 3614 #endif 3615 break; 3616 } 3617 3618 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 3619 case SQLITE_TESTCTRL_SORTER_MMAP: { 3620 sqlite3 *db = va_arg(ap, sqlite3*); 3621 db->nMaxSorterMmap = va_arg(ap, int); 3622 break; 3623 } 3624 3625 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 3626 ** 3627 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 3628 ** not. 3629 */ 3630 case SQLITE_TESTCTRL_ISINIT: { 3631 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 3632 break; 3633 } 3634 3635 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 3636 ** 3637 ** This test control is used to create imposter tables. "db" is a pointer 3638 ** to the database connection. dbName is the database name (ex: "main" or 3639 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 3640 ** or off. "tnum" is the root page of the b-tree to which the imposter 3641 ** table should connect. 3642 ** 3643 ** Enable imposter mode only when the schema has already been parsed. Then 3644 ** run a single CREATE TABLE statement to construct the imposter table in 3645 ** the parsed schema. Then turn imposter mode back off again. 3646 ** 3647 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 3648 ** the schema to be reparsed the next time it is needed. This has the 3649 ** effect of erasing all imposter tables. 3650 */ 3651 case SQLITE_TESTCTRL_IMPOSTER: { 3652 sqlite3 *db = va_arg(ap, sqlite3*); 3653 sqlite3_mutex_enter(db->mutex); 3654 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 3655 db->init.busy = db->init.imposterTable = va_arg(ap,int); 3656 db->init.newTnum = va_arg(ap,int); 3657 if( db->init.busy==0 && db->init.newTnum>0 ){ 3658 sqlite3ResetAllSchemasOfConnection(db); 3659 } 3660 sqlite3_mutex_leave(db->mutex); 3661 break; 3662 } 3663 } 3664 va_end(ap); 3665 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3666 return rc; 3667 } 3668 3669 /* 3670 ** This is a utility routine, useful to VFS implementations, that checks 3671 ** to see if a database file was a URI that contained a specific query 3672 ** parameter, and if so obtains the value of the query parameter. 3673 ** 3674 ** The zFilename argument is the filename pointer passed into the xOpen() 3675 ** method of a VFS implementation. The zParam argument is the name of the 3676 ** query parameter we seek. This routine returns the value of the zParam 3677 ** parameter if it exists. If the parameter does not exist, this routine 3678 ** returns a NULL pointer. 3679 */ 3680 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3681 if( zFilename==0 || zParam==0 ) return 0; 3682 zFilename += sqlite3Strlen30(zFilename) + 1; 3683 while( zFilename[0] ){ 3684 int x = strcmp(zFilename, zParam); 3685 zFilename += sqlite3Strlen30(zFilename) + 1; 3686 if( x==0 ) return zFilename; 3687 zFilename += sqlite3Strlen30(zFilename) + 1; 3688 } 3689 return 0; 3690 } 3691 3692 /* 3693 ** Return a boolean value for a query parameter. 3694 */ 3695 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3696 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3697 bDflt = bDflt!=0; 3698 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3699 } 3700 3701 /* 3702 ** Return a 64-bit integer value for a query parameter. 3703 */ 3704 sqlite3_int64 sqlite3_uri_int64( 3705 const char *zFilename, /* Filename as passed to xOpen */ 3706 const char *zParam, /* URI parameter sought */ 3707 sqlite3_int64 bDflt /* return if parameter is missing */ 3708 ){ 3709 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3710 sqlite3_int64 v; 3711 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 3712 bDflt = v; 3713 } 3714 return bDflt; 3715 } 3716 3717 /* 3718 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3719 */ 3720 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3721 int i; 3722 for(i=0; i<db->nDb; i++){ 3723 if( db->aDb[i].pBt 3724 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3725 ){ 3726 return db->aDb[i].pBt; 3727 } 3728 } 3729 return 0; 3730 } 3731 3732 /* 3733 ** Return the filename of the database associated with a database 3734 ** connection. 3735 */ 3736 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3737 Btree *pBt; 3738 #ifdef SQLITE_ENABLE_API_ARMOR 3739 if( !sqlite3SafetyCheckOk(db) ){ 3740 (void)SQLITE_MISUSE_BKPT; 3741 return 0; 3742 } 3743 #endif 3744 pBt = sqlite3DbNameToBtree(db, zDbName); 3745 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3746 } 3747 3748 /* 3749 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3750 ** no such database exists. 3751 */ 3752 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3753 Btree *pBt; 3754 #ifdef SQLITE_ENABLE_API_ARMOR 3755 if( !sqlite3SafetyCheckOk(db) ){ 3756 (void)SQLITE_MISUSE_BKPT; 3757 return -1; 3758 } 3759 #endif 3760 pBt = sqlite3DbNameToBtree(db, zDbName); 3761 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 3762 } 3763