xref: /sqlite-3.40.0/src/main.c (revision e8f2c9dc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Main file for the SQLite library.  The routines in this file
13 ** implement the programmer interface to the library.  Routines in
14 ** other files are for internal use by SQLite and should not be
15 ** accessed by users of the library.
16 */
17 #include "sqliteInt.h"
18 
19 #ifdef SQLITE_ENABLE_FTS3
20 # include "fts3.h"
21 #endif
22 #ifdef SQLITE_ENABLE_RTREE
23 # include "rtree.h"
24 #endif
25 #ifdef SQLITE_ENABLE_ICU
26 # include "sqliteicu.h"
27 #endif
28 
29 #ifndef SQLITE_AMALGAMATION
30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
31 ** contains the text of SQLITE_VERSION macro.
32 */
33 const char sqlite3_version[] = SQLITE_VERSION;
34 #endif
35 
36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
37 ** a pointer to the to the sqlite3_version[] string constant.
38 */
39 const char *sqlite3_libversion(void){ return sqlite3_version; }
40 
41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
42 ** pointer to a string constant whose value is the same as the
43 ** SQLITE_SOURCE_ID C preprocessor macro.
44 */
45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
46 
47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
48 ** returns an integer equal to SQLITE_VERSION_NUMBER.
49 */
50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
51 
52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
53 ** zero if and only if SQLite was compiled with mutexing code omitted due to
54 ** the SQLITE_THREADSAFE compile-time option being set to 0.
55 */
56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
57 
58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
59 /*
60 ** If the following function pointer is not NULL and if
61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
62 ** I/O active are written using this function.  These messages
63 ** are intended for debugging activity only.
64 */
65 void (*sqlite3IoTrace)(const char*, ...) = 0;
66 #endif
67 
68 /*
69 ** If the following global variable points to a string which is the
70 ** name of a directory, then that directory will be used to store
71 ** temporary files.
72 **
73 ** See also the "PRAGMA temp_store_directory" SQL command.
74 */
75 char *sqlite3_temp_directory = 0;
76 
77 /*
78 ** If the following global variable points to a string which is the
79 ** name of a directory, then that directory will be used to store
80 ** all database files specified with a relative pathname.
81 **
82 ** See also the "PRAGMA data_store_directory" SQL command.
83 */
84 char *sqlite3_data_directory = 0;
85 
86 /*
87 ** Initialize SQLite.
88 **
89 ** This routine must be called to initialize the memory allocation,
90 ** VFS, and mutex subsystems prior to doing any serious work with
91 ** SQLite.  But as long as you do not compile with SQLITE_OMIT_AUTOINIT
92 ** this routine will be called automatically by key routines such as
93 ** sqlite3_open().
94 **
95 ** This routine is a no-op except on its very first call for the process,
96 ** or for the first call after a call to sqlite3_shutdown.
97 **
98 ** The first thread to call this routine runs the initialization to
99 ** completion.  If subsequent threads call this routine before the first
100 ** thread has finished the initialization process, then the subsequent
101 ** threads must block until the first thread finishes with the initialization.
102 **
103 ** The first thread might call this routine recursively.  Recursive
104 ** calls to this routine should not block, of course.  Otherwise the
105 ** initialization process would never complete.
106 **
107 ** Let X be the first thread to enter this routine.  Let Y be some other
108 ** thread.  Then while the initial invocation of this routine by X is
109 ** incomplete, it is required that:
110 **
111 **    *  Calls to this routine from Y must block until the outer-most
112 **       call by X completes.
113 **
114 **    *  Recursive calls to this routine from thread X return immediately
115 **       without blocking.
116 */
117 int sqlite3_initialize(void){
118   MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
119   int rc;                                      /* Result code */
120 #ifdef SQLITE_EXTRA_INIT
121   int bRunExtraInit = 0;                       /* Extra initialization needed */
122 #endif
123 
124 #ifdef SQLITE_OMIT_WSD
125   rc = sqlite3_wsd_init(4096, 24);
126   if( rc!=SQLITE_OK ){
127     return rc;
128   }
129 #endif
130 
131   /* If SQLite is already completely initialized, then this call
132   ** to sqlite3_initialize() should be a no-op.  But the initialization
133   ** must be complete.  So isInit must not be set until the very end
134   ** of this routine.
135   */
136   if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
137 
138   /* Make sure the mutex subsystem is initialized.  If unable to
139   ** initialize the mutex subsystem, return early with the error.
140   ** If the system is so sick that we are unable to allocate a mutex,
141   ** there is not much SQLite is going to be able to do.
142   **
143   ** The mutex subsystem must take care of serializing its own
144   ** initialization.
145   */
146   rc = sqlite3MutexInit();
147   if( rc ) return rc;
148 
149   /* Initialize the malloc() system and the recursive pInitMutex mutex.
150   ** This operation is protected by the STATIC_MASTER mutex.  Note that
151   ** MutexAlloc() is called for a static mutex prior to initializing the
152   ** malloc subsystem - this implies that the allocation of a static
153   ** mutex must not require support from the malloc subsystem.
154   */
155   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
156   sqlite3_mutex_enter(pMaster);
157   sqlite3GlobalConfig.isMutexInit = 1;
158   if( !sqlite3GlobalConfig.isMallocInit ){
159     rc = sqlite3MallocInit();
160   }
161   if( rc==SQLITE_OK ){
162     sqlite3GlobalConfig.isMallocInit = 1;
163     if( !sqlite3GlobalConfig.pInitMutex ){
164       sqlite3GlobalConfig.pInitMutex =
165            sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
166       if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
167         rc = SQLITE_NOMEM;
168       }
169     }
170   }
171   if( rc==SQLITE_OK ){
172     sqlite3GlobalConfig.nRefInitMutex++;
173   }
174   sqlite3_mutex_leave(pMaster);
175 
176   /* If rc is not SQLITE_OK at this point, then either the malloc
177   ** subsystem could not be initialized or the system failed to allocate
178   ** the pInitMutex mutex. Return an error in either case.  */
179   if( rc!=SQLITE_OK ){
180     return rc;
181   }
182 
183   /* Do the rest of the initialization under the recursive mutex so
184   ** that we will be able to handle recursive calls into
185   ** sqlite3_initialize().  The recursive calls normally come through
186   ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
187   ** recursive calls might also be possible.
188   **
189   ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
190   ** to the xInit method, so the xInit method need not be threadsafe.
191   **
192   ** The following mutex is what serializes access to the appdef pcache xInit
193   ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
194   ** call to sqlite3PcacheInitialize().
195   */
196   sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
197   if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
198     FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
199     sqlite3GlobalConfig.inProgress = 1;
200     memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
201     sqlite3RegisterGlobalFunctions();
202     if( sqlite3GlobalConfig.isPCacheInit==0 ){
203       rc = sqlite3PcacheInitialize();
204     }
205     if( rc==SQLITE_OK ){
206       sqlite3GlobalConfig.isPCacheInit = 1;
207       rc = sqlite3OsInit();
208     }
209     if( rc==SQLITE_OK ){
210       sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
211           sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
212       sqlite3GlobalConfig.isInit = 1;
213 #ifdef SQLITE_EXTRA_INIT
214       bRunExtraInit = 1;
215 #endif
216     }
217     sqlite3GlobalConfig.inProgress = 0;
218   }
219   sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
220 
221   /* Go back under the static mutex and clean up the recursive
222   ** mutex to prevent a resource leak.
223   */
224   sqlite3_mutex_enter(pMaster);
225   sqlite3GlobalConfig.nRefInitMutex--;
226   if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
227     assert( sqlite3GlobalConfig.nRefInitMutex==0 );
228     sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
229     sqlite3GlobalConfig.pInitMutex = 0;
230   }
231   sqlite3_mutex_leave(pMaster);
232 
233   /* The following is just a sanity check to make sure SQLite has
234   ** been compiled correctly.  It is important to run this code, but
235   ** we don't want to run it too often and soak up CPU cycles for no
236   ** reason.  So we run it once during initialization.
237   */
238 #ifndef NDEBUG
239 #ifndef SQLITE_OMIT_FLOATING_POINT
240   /* This section of code's only "output" is via assert() statements. */
241   if ( rc==SQLITE_OK ){
242     u64 x = (((u64)1)<<63)-1;
243     double y;
244     assert(sizeof(x)==8);
245     assert(sizeof(x)==sizeof(y));
246     memcpy(&y, &x, 8);
247     assert( sqlite3IsNaN(y) );
248   }
249 #endif
250 #endif
251 
252   /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
253   ** compile-time option.
254   */
255 #ifdef SQLITE_EXTRA_INIT
256   if( bRunExtraInit ){
257     int SQLITE_EXTRA_INIT(const char*);
258     rc = SQLITE_EXTRA_INIT(0);
259   }
260 #endif
261 
262   return rc;
263 }
264 
265 /*
266 ** Undo the effects of sqlite3_initialize().  Must not be called while
267 ** there are outstanding database connections or memory allocations or
268 ** while any part of SQLite is otherwise in use in any thread.  This
269 ** routine is not threadsafe.  But it is safe to invoke this routine
270 ** on when SQLite is already shut down.  If SQLite is already shut down
271 ** when this routine is invoked, then this routine is a harmless no-op.
272 */
273 int sqlite3_shutdown(void){
274   if( sqlite3GlobalConfig.isInit ){
275 #ifdef SQLITE_EXTRA_SHUTDOWN
276     void SQLITE_EXTRA_SHUTDOWN(void);
277     SQLITE_EXTRA_SHUTDOWN();
278 #endif
279     sqlite3_os_end();
280     sqlite3_reset_auto_extension();
281     sqlite3GlobalConfig.isInit = 0;
282   }
283   if( sqlite3GlobalConfig.isPCacheInit ){
284     sqlite3PcacheShutdown();
285     sqlite3GlobalConfig.isPCacheInit = 0;
286   }
287   if( sqlite3GlobalConfig.isMallocInit ){
288     sqlite3MallocEnd();
289     sqlite3GlobalConfig.isMallocInit = 0;
290 
291 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
292     /* The heap subsystem has now been shutdown and these values are supposed
293     ** to be NULL or point to memory that was obtained from sqlite3_malloc(),
294     ** which would rely on that heap subsystem; therefore, make sure these
295     ** values cannot refer to heap memory that was just invalidated when the
296     ** heap subsystem was shutdown.  This is only done if the current call to
297     ** this function resulted in the heap subsystem actually being shutdown.
298     */
299     sqlite3_data_directory = 0;
300     sqlite3_temp_directory = 0;
301 #endif
302   }
303   if( sqlite3GlobalConfig.isMutexInit ){
304     sqlite3MutexEnd();
305     sqlite3GlobalConfig.isMutexInit = 0;
306   }
307 
308   return SQLITE_OK;
309 }
310 
311 /*
312 ** This API allows applications to modify the global configuration of
313 ** the SQLite library at run-time.
314 **
315 ** This routine should only be called when there are no outstanding
316 ** database connections or memory allocations.  This routine is not
317 ** threadsafe.  Failure to heed these warnings can lead to unpredictable
318 ** behavior.
319 */
320 int sqlite3_config(int op, ...){
321   va_list ap;
322   int rc = SQLITE_OK;
323 
324   /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
325   ** the SQLite library is in use. */
326   if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
327 
328   va_start(ap, op);
329   switch( op ){
330 
331     /* Mutex configuration options are only available in a threadsafe
332     ** compile.
333     */
334 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
335     case SQLITE_CONFIG_SINGLETHREAD: {
336       /* Disable all mutexing */
337       sqlite3GlobalConfig.bCoreMutex = 0;
338       sqlite3GlobalConfig.bFullMutex = 0;
339       break;
340     }
341     case SQLITE_CONFIG_MULTITHREAD: {
342       /* Disable mutexing of database connections */
343       /* Enable mutexing of core data structures */
344       sqlite3GlobalConfig.bCoreMutex = 1;
345       sqlite3GlobalConfig.bFullMutex = 0;
346       break;
347     }
348     case SQLITE_CONFIG_SERIALIZED: {
349       /* Enable all mutexing */
350       sqlite3GlobalConfig.bCoreMutex = 1;
351       sqlite3GlobalConfig.bFullMutex = 1;
352       break;
353     }
354     case SQLITE_CONFIG_MUTEX: {
355       /* Specify an alternative mutex implementation */
356       sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
357       break;
358     }
359     case SQLITE_CONFIG_GETMUTEX: {
360       /* Retrieve the current mutex implementation */
361       *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
362       break;
363     }
364 #endif
365 
366 
367     case SQLITE_CONFIG_MALLOC: {
368       /* Specify an alternative malloc implementation */
369       sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
370       break;
371     }
372     case SQLITE_CONFIG_GETMALLOC: {
373       /* Retrieve the current malloc() implementation */
374       if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
375       *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
376       break;
377     }
378     case SQLITE_CONFIG_MEMSTATUS: {
379       /* Enable or disable the malloc status collection */
380       sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
381       break;
382     }
383     case SQLITE_CONFIG_SCRATCH: {
384       /* Designate a buffer for scratch memory space */
385       sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
386       sqlite3GlobalConfig.szScratch = va_arg(ap, int);
387       sqlite3GlobalConfig.nScratch = va_arg(ap, int);
388       break;
389     }
390     case SQLITE_CONFIG_PAGECACHE: {
391       /* Designate a buffer for page cache memory space */
392       sqlite3GlobalConfig.pPage = va_arg(ap, void*);
393       sqlite3GlobalConfig.szPage = va_arg(ap, int);
394       sqlite3GlobalConfig.nPage = va_arg(ap, int);
395       break;
396     }
397 
398     case SQLITE_CONFIG_PCACHE: {
399       /* no-op */
400       break;
401     }
402     case SQLITE_CONFIG_GETPCACHE: {
403       /* now an error */
404       rc = SQLITE_ERROR;
405       break;
406     }
407 
408     case SQLITE_CONFIG_PCACHE2: {
409       /* Specify an alternative page cache implementation */
410       sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
411       break;
412     }
413     case SQLITE_CONFIG_GETPCACHE2: {
414       if( sqlite3GlobalConfig.pcache2.xInit==0 ){
415         sqlite3PCacheSetDefault();
416       }
417       *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
418       break;
419     }
420 
421 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
422     case SQLITE_CONFIG_HEAP: {
423       /* Designate a buffer for heap memory space */
424       sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
425       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
426       sqlite3GlobalConfig.mnReq = va_arg(ap, int);
427 
428       if( sqlite3GlobalConfig.mnReq<1 ){
429         sqlite3GlobalConfig.mnReq = 1;
430       }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
431         /* cap min request size at 2^12 */
432         sqlite3GlobalConfig.mnReq = (1<<12);
433       }
434 
435       if( sqlite3GlobalConfig.pHeap==0 ){
436         /* If the heap pointer is NULL, then restore the malloc implementation
437         ** back to NULL pointers too.  This will cause the malloc to go
438         ** back to its default implementation when sqlite3_initialize() is
439         ** run.
440         */
441         memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
442       }else{
443         /* The heap pointer is not NULL, then install one of the
444         ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
445         ** least one of these methods is currently enabled.
446         */
447 #ifdef SQLITE_ENABLE_MEMSYS3
448         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
449 #endif
450 #ifdef SQLITE_ENABLE_MEMSYS5
451         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
452 #endif
453       }
454       break;
455     }
456 #endif
457 
458     case SQLITE_CONFIG_LOOKASIDE: {
459       sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
460       sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
461       break;
462     }
463 
464     /* Record a pointer to the logger function and its first argument.
465     ** The default is NULL.  Logging is disabled if the function pointer is
466     ** NULL.
467     */
468     case SQLITE_CONFIG_LOG: {
469       /* MSVC is picky about pulling func ptrs from va lists.
470       ** http://support.microsoft.com/kb/47961
471       ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
472       */
473       typedef void(*LOGFUNC_t)(void*,int,const char*);
474       sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
475       sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
476       break;
477     }
478 
479     case SQLITE_CONFIG_URI: {
480       sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
481       break;
482     }
483 
484     case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
485       sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
486       break;
487     }
488 
489 #ifdef SQLITE_ENABLE_SQLLOG
490     case SQLITE_CONFIG_SQLLOG: {
491       typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
492       sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
493       sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
494       break;
495     }
496 #endif
497 
498     case SQLITE_CONFIG_MMAP_SIZE: {
499       sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
500       sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
501       if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
502         mxMmap = SQLITE_MAX_MMAP_SIZE;
503       }
504       sqlite3GlobalConfig.mxMmap = mxMmap;
505       if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
506       if( szMmap>mxMmap) szMmap = mxMmap;
507       sqlite3GlobalConfig.szMmap = szMmap;
508       break;
509     }
510 
511 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC)
512     case SQLITE_CONFIG_WIN32_HEAPSIZE: {
513       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
514       break;
515     }
516 #endif
517 
518     default: {
519       rc = SQLITE_ERROR;
520       break;
521     }
522   }
523   va_end(ap);
524   return rc;
525 }
526 
527 /*
528 ** Set up the lookaside buffers for a database connection.
529 ** Return SQLITE_OK on success.
530 ** If lookaside is already active, return SQLITE_BUSY.
531 **
532 ** The sz parameter is the number of bytes in each lookaside slot.
533 ** The cnt parameter is the number of slots.  If pStart is NULL the
534 ** space for the lookaside memory is obtained from sqlite3_malloc().
535 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for
536 ** the lookaside memory.
537 */
538 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
539   void *pStart;
540   if( db->lookaside.nOut ){
541     return SQLITE_BUSY;
542   }
543   /* Free any existing lookaside buffer for this handle before
544   ** allocating a new one so we don't have to have space for
545   ** both at the same time.
546   */
547   if( db->lookaside.bMalloced ){
548     sqlite3_free(db->lookaside.pStart);
549   }
550   /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
551   ** than a pointer to be useful.
552   */
553   sz = ROUNDDOWN8(sz);  /* IMP: R-33038-09382 */
554   if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
555   if( cnt<0 ) cnt = 0;
556   if( sz==0 || cnt==0 ){
557     sz = 0;
558     pStart = 0;
559   }else if( pBuf==0 ){
560     sqlite3BeginBenignMalloc();
561     pStart = sqlite3Malloc( sz*cnt );  /* IMP: R-61949-35727 */
562     sqlite3EndBenignMalloc();
563     if( pStart ) cnt = sqlite3MallocSize(pStart)/sz;
564   }else{
565     pStart = pBuf;
566   }
567   db->lookaside.pStart = pStart;
568   db->lookaside.pFree = 0;
569   db->lookaside.sz = (u16)sz;
570   if( pStart ){
571     int i;
572     LookasideSlot *p;
573     assert( sz > (int)sizeof(LookasideSlot*) );
574     p = (LookasideSlot*)pStart;
575     for(i=cnt-1; i>=0; i--){
576       p->pNext = db->lookaside.pFree;
577       db->lookaside.pFree = p;
578       p = (LookasideSlot*)&((u8*)p)[sz];
579     }
580     db->lookaside.pEnd = p;
581     db->lookaside.bEnabled = 1;
582     db->lookaside.bMalloced = pBuf==0 ?1:0;
583   }else{
584     db->lookaside.pStart = db;
585     db->lookaside.pEnd = db;
586     db->lookaside.bEnabled = 0;
587     db->lookaside.bMalloced = 0;
588   }
589   return SQLITE_OK;
590 }
591 
592 /*
593 ** Return the mutex associated with a database connection.
594 */
595 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
596   return db->mutex;
597 }
598 
599 /*
600 ** Free up as much memory as we can from the given database
601 ** connection.
602 */
603 int sqlite3_db_release_memory(sqlite3 *db){
604   int i;
605   sqlite3_mutex_enter(db->mutex);
606   sqlite3BtreeEnterAll(db);
607   for(i=0; i<db->nDb; i++){
608     Btree *pBt = db->aDb[i].pBt;
609     if( pBt ){
610       Pager *pPager = sqlite3BtreePager(pBt);
611       sqlite3PagerShrink(pPager);
612     }
613   }
614   sqlite3BtreeLeaveAll(db);
615   sqlite3_mutex_leave(db->mutex);
616   return SQLITE_OK;
617 }
618 
619 /*
620 ** Configuration settings for an individual database connection
621 */
622 int sqlite3_db_config(sqlite3 *db, int op, ...){
623   va_list ap;
624   int rc;
625   va_start(ap, op);
626   switch( op ){
627     case SQLITE_DBCONFIG_LOOKASIDE: {
628       void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
629       int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
630       int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
631       rc = setupLookaside(db, pBuf, sz, cnt);
632       break;
633     }
634     default: {
635       static const struct {
636         int op;      /* The opcode */
637         u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
638       } aFlagOp[] = {
639         { SQLITE_DBCONFIG_ENABLE_FKEY,    SQLITE_ForeignKeys    },
640         { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger  },
641       };
642       unsigned int i;
643       rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
644       for(i=0; i<ArraySize(aFlagOp); i++){
645         if( aFlagOp[i].op==op ){
646           int onoff = va_arg(ap, int);
647           int *pRes = va_arg(ap, int*);
648           int oldFlags = db->flags;
649           if( onoff>0 ){
650             db->flags |= aFlagOp[i].mask;
651           }else if( onoff==0 ){
652             db->flags &= ~aFlagOp[i].mask;
653           }
654           if( oldFlags!=db->flags ){
655             sqlite3ExpirePreparedStatements(db);
656           }
657           if( pRes ){
658             *pRes = (db->flags & aFlagOp[i].mask)!=0;
659           }
660           rc = SQLITE_OK;
661           break;
662         }
663       }
664       break;
665     }
666   }
667   va_end(ap);
668   return rc;
669 }
670 
671 
672 /*
673 ** Return true if the buffer z[0..n-1] contains all spaces.
674 */
675 static int allSpaces(const char *z, int n){
676   while( n>0 && z[n-1]==' ' ){ n--; }
677   return n==0;
678 }
679 
680 /*
681 ** This is the default collating function named "BINARY" which is always
682 ** available.
683 **
684 ** If the padFlag argument is not NULL then space padding at the end
685 ** of strings is ignored.  This implements the RTRIM collation.
686 */
687 static int binCollFunc(
688   void *padFlag,
689   int nKey1, const void *pKey1,
690   int nKey2, const void *pKey2
691 ){
692   int rc, n;
693   n = nKey1<nKey2 ? nKey1 : nKey2;
694   rc = memcmp(pKey1, pKey2, n);
695   if( rc==0 ){
696     if( padFlag
697      && allSpaces(((char*)pKey1)+n, nKey1-n)
698      && allSpaces(((char*)pKey2)+n, nKey2-n)
699     ){
700       /* Leave rc unchanged at 0 */
701     }else{
702       rc = nKey1 - nKey2;
703     }
704   }
705   return rc;
706 }
707 
708 /*
709 ** Another built-in collating sequence: NOCASE.
710 **
711 ** This collating sequence is intended to be used for "case independent
712 ** comparison". SQLite's knowledge of upper and lower case equivalents
713 ** extends only to the 26 characters used in the English language.
714 **
715 ** At the moment there is only a UTF-8 implementation.
716 */
717 static int nocaseCollatingFunc(
718   void *NotUsed,
719   int nKey1, const void *pKey1,
720   int nKey2, const void *pKey2
721 ){
722   int r = sqlite3StrNICmp(
723       (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
724   UNUSED_PARAMETER(NotUsed);
725   if( 0==r ){
726     r = nKey1-nKey2;
727   }
728   return r;
729 }
730 
731 /*
732 ** Return the ROWID of the most recent insert
733 */
734 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
735   return db->lastRowid;
736 }
737 
738 /*
739 ** Return the number of changes in the most recent call to sqlite3_exec().
740 */
741 int sqlite3_changes(sqlite3 *db){
742   return db->nChange;
743 }
744 
745 /*
746 ** Return the number of changes since the database handle was opened.
747 */
748 int sqlite3_total_changes(sqlite3 *db){
749   return db->nTotalChange;
750 }
751 
752 /*
753 ** Close all open savepoints. This function only manipulates fields of the
754 ** database handle object, it does not close any savepoints that may be open
755 ** at the b-tree/pager level.
756 */
757 void sqlite3CloseSavepoints(sqlite3 *db){
758   while( db->pSavepoint ){
759     Savepoint *pTmp = db->pSavepoint;
760     db->pSavepoint = pTmp->pNext;
761     sqlite3DbFree(db, pTmp);
762   }
763   db->nSavepoint = 0;
764   db->nStatement = 0;
765   db->isTransactionSavepoint = 0;
766 }
767 
768 /*
769 ** Invoke the destructor function associated with FuncDef p, if any. Except,
770 ** if this is not the last copy of the function, do not invoke it. Multiple
771 ** copies of a single function are created when create_function() is called
772 ** with SQLITE_ANY as the encoding.
773 */
774 static void functionDestroy(sqlite3 *db, FuncDef *p){
775   FuncDestructor *pDestructor = p->pDestructor;
776   if( pDestructor ){
777     pDestructor->nRef--;
778     if( pDestructor->nRef==0 ){
779       pDestructor->xDestroy(pDestructor->pUserData);
780       sqlite3DbFree(db, pDestructor);
781     }
782   }
783 }
784 
785 /*
786 ** Disconnect all sqlite3_vtab objects that belong to database connection
787 ** db. This is called when db is being closed.
788 */
789 static void disconnectAllVtab(sqlite3 *db){
790 #ifndef SQLITE_OMIT_VIRTUALTABLE
791   int i;
792   sqlite3BtreeEnterAll(db);
793   for(i=0; i<db->nDb; i++){
794     Schema *pSchema = db->aDb[i].pSchema;
795     if( db->aDb[i].pSchema ){
796       HashElem *p;
797       for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
798         Table *pTab = (Table *)sqliteHashData(p);
799         if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
800       }
801     }
802   }
803   sqlite3VtabUnlockList(db);
804   sqlite3BtreeLeaveAll(db);
805 #else
806   UNUSED_PARAMETER(db);
807 #endif
808 }
809 
810 /*
811 ** Return TRUE if database connection db has unfinalized prepared
812 ** statements or unfinished sqlite3_backup objects.
813 */
814 static int connectionIsBusy(sqlite3 *db){
815   int j;
816   assert( sqlite3_mutex_held(db->mutex) );
817   if( db->pVdbe ) return 1;
818   for(j=0; j<db->nDb; j++){
819     Btree *pBt = db->aDb[j].pBt;
820     if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
821   }
822   return 0;
823 }
824 
825 /*
826 ** Close an existing SQLite database
827 */
828 static int sqlite3Close(sqlite3 *db, int forceZombie){
829   if( !db ){
830     return SQLITE_OK;
831   }
832   if( !sqlite3SafetyCheckSickOrOk(db) ){
833     return SQLITE_MISUSE_BKPT;
834   }
835   sqlite3_mutex_enter(db->mutex);
836 
837   /* Force xDisconnect calls on all virtual tables */
838   disconnectAllVtab(db);
839 
840   /* If a transaction is open, the disconnectAllVtab() call above
841   ** will not have called the xDisconnect() method on any virtual
842   ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
843   ** call will do so. We need to do this before the check for active
844   ** SQL statements below, as the v-table implementation may be storing
845   ** some prepared statements internally.
846   */
847   sqlite3VtabRollback(db);
848 
849   /* Legacy behavior (sqlite3_close() behavior) is to return
850   ** SQLITE_BUSY if the connection can not be closed immediately.
851   */
852   if( !forceZombie && connectionIsBusy(db) ){
853     sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized "
854        "statements or unfinished backups");
855     sqlite3_mutex_leave(db->mutex);
856     return SQLITE_BUSY;
857   }
858 
859 #ifdef SQLITE_ENABLE_SQLLOG
860   if( sqlite3GlobalConfig.xSqllog ){
861     /* Closing the handle. Fourth parameter is passed the value 2. */
862     sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
863   }
864 #endif
865 
866   /* Convert the connection into a zombie and then close it.
867   */
868   db->magic = SQLITE_MAGIC_ZOMBIE;
869   sqlite3LeaveMutexAndCloseZombie(db);
870   return SQLITE_OK;
871 }
872 
873 /*
874 ** Two variations on the public interface for closing a database
875 ** connection. The sqlite3_close() version returns SQLITE_BUSY and
876 ** leaves the connection option if there are unfinalized prepared
877 ** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
878 ** version forces the connection to become a zombie if there are
879 ** unclosed resources, and arranges for deallocation when the last
880 ** prepare statement or sqlite3_backup closes.
881 */
882 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
883 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
884 
885 
886 /*
887 ** Close the mutex on database connection db.
888 **
889 ** Furthermore, if database connection db is a zombie (meaning that there
890 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
891 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has
892 ** finished, then free all resources.
893 */
894 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
895   HashElem *i;                    /* Hash table iterator */
896   int j;
897 
898   /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
899   ** or if the connection has not yet been closed by sqlite3_close_v2(),
900   ** then just leave the mutex and return.
901   */
902   if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){
903     sqlite3_mutex_leave(db->mutex);
904     return;
905   }
906 
907   /* If we reach this point, it means that the database connection has
908   ** closed all sqlite3_stmt and sqlite3_backup objects and has been
909   ** passed to sqlite3_close (meaning that it is a zombie).  Therefore,
910   ** go ahead and free all resources.
911   */
912 
913   /* If a transaction is open, roll it back. This also ensures that if
914   ** any database schemas have been modified by an uncommitted transaction
915   ** they are reset. And that the required b-tree mutex is held to make
916   ** the pager rollback and schema reset an atomic operation. */
917   sqlite3RollbackAll(db, SQLITE_OK);
918 
919   /* Free any outstanding Savepoint structures. */
920   sqlite3CloseSavepoints(db);
921 
922   /* Close all database connections */
923   for(j=0; j<db->nDb; j++){
924     struct Db *pDb = &db->aDb[j];
925     if( pDb->pBt ){
926       sqlite3BtreeClose(pDb->pBt);
927       pDb->pBt = 0;
928       if( j!=1 ){
929         pDb->pSchema = 0;
930       }
931     }
932   }
933   /* Clear the TEMP schema separately and last */
934   if( db->aDb[1].pSchema ){
935     sqlite3SchemaClear(db->aDb[1].pSchema);
936   }
937   sqlite3VtabUnlockList(db);
938 
939   /* Free up the array of auxiliary databases */
940   sqlite3CollapseDatabaseArray(db);
941   assert( db->nDb<=2 );
942   assert( db->aDb==db->aDbStatic );
943 
944   /* Tell the code in notify.c that the connection no longer holds any
945   ** locks and does not require any further unlock-notify callbacks.
946   */
947   sqlite3ConnectionClosed(db);
948 
949   for(j=0; j<ArraySize(db->aFunc.a); j++){
950     FuncDef *pNext, *pHash, *p;
951     for(p=db->aFunc.a[j]; p; p=pHash){
952       pHash = p->pHash;
953       while( p ){
954         functionDestroy(db, p);
955         pNext = p->pNext;
956         sqlite3DbFree(db, p);
957         p = pNext;
958       }
959     }
960   }
961   for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
962     CollSeq *pColl = (CollSeq *)sqliteHashData(i);
963     /* Invoke any destructors registered for collation sequence user data. */
964     for(j=0; j<3; j++){
965       if( pColl[j].xDel ){
966         pColl[j].xDel(pColl[j].pUser);
967       }
968     }
969     sqlite3DbFree(db, pColl);
970   }
971   sqlite3HashClear(&db->aCollSeq);
972 #ifndef SQLITE_OMIT_VIRTUALTABLE
973   for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
974     Module *pMod = (Module *)sqliteHashData(i);
975     if( pMod->xDestroy ){
976       pMod->xDestroy(pMod->pAux);
977     }
978     sqlite3DbFree(db, pMod);
979   }
980   sqlite3HashClear(&db->aModule);
981 #endif
982 
983   sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
984   sqlite3ValueFree(db->pErr);
985   sqlite3CloseExtensions(db);
986 
987   db->magic = SQLITE_MAGIC_ERROR;
988 
989   /* The temp-database schema is allocated differently from the other schema
990   ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
991   ** So it needs to be freed here. Todo: Why not roll the temp schema into
992   ** the same sqliteMalloc() as the one that allocates the database
993   ** structure?
994   */
995   sqlite3DbFree(db, db->aDb[1].pSchema);
996   sqlite3_mutex_leave(db->mutex);
997   db->magic = SQLITE_MAGIC_CLOSED;
998   sqlite3_mutex_free(db->mutex);
999   assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
1000   if( db->lookaside.bMalloced ){
1001     sqlite3_free(db->lookaside.pStart);
1002   }
1003   sqlite3_free(db);
1004 }
1005 
1006 /*
1007 ** Rollback all database files.  If tripCode is not SQLITE_OK, then
1008 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit
1009 ** breaker") and made to return tripCode if there are any further
1010 ** attempts to use that cursor.
1011 */
1012 void sqlite3RollbackAll(sqlite3 *db, int tripCode){
1013   int i;
1014   int inTrans = 0;
1015   assert( sqlite3_mutex_held(db->mutex) );
1016   sqlite3BeginBenignMalloc();
1017 
1018   /* Obtain all b-tree mutexes before making any calls to BtreeRollback().
1019   ** This is important in case the transaction being rolled back has
1020   ** modified the database schema. If the b-tree mutexes are not taken
1021   ** here, then another shared-cache connection might sneak in between
1022   ** the database rollback and schema reset, which can cause false
1023   ** corruption reports in some cases.  */
1024   sqlite3BtreeEnterAll(db);
1025 
1026   for(i=0; i<db->nDb; i++){
1027     Btree *p = db->aDb[i].pBt;
1028     if( p ){
1029       if( sqlite3BtreeIsInTrans(p) ){
1030         inTrans = 1;
1031       }
1032       sqlite3BtreeRollback(p, tripCode);
1033     }
1034   }
1035   sqlite3VtabRollback(db);
1036   sqlite3EndBenignMalloc();
1037 
1038   if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
1039     sqlite3ExpirePreparedStatements(db);
1040     sqlite3ResetAllSchemasOfConnection(db);
1041   }
1042   sqlite3BtreeLeaveAll(db);
1043 
1044   /* Any deferred constraint violations have now been resolved. */
1045   db->nDeferredCons = 0;
1046   db->nDeferredImmCons = 0;
1047   db->flags &= ~SQLITE_DeferFKs;
1048 
1049   /* If one has been configured, invoke the rollback-hook callback */
1050   if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
1051     db->xRollbackCallback(db->pRollbackArg);
1052   }
1053 }
1054 
1055 /*
1056 ** Return a static string containing the name corresponding to the error code
1057 ** specified in the argument.
1058 */
1059 #if (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) || defined(SQLITE_TEST)
1060 const char *sqlite3ErrName(int rc){
1061   const char *zName = 0;
1062   int i, origRc = rc;
1063   for(i=0; i<2 && zName==0; i++, rc &= 0xff){
1064     switch( rc ){
1065       case SQLITE_OK:                 zName = "SQLITE_OK";                break;
1066       case SQLITE_ERROR:              zName = "SQLITE_ERROR";             break;
1067       case SQLITE_INTERNAL:           zName = "SQLITE_INTERNAL";          break;
1068       case SQLITE_PERM:               zName = "SQLITE_PERM";              break;
1069       case SQLITE_ABORT:              zName = "SQLITE_ABORT";             break;
1070       case SQLITE_ABORT_ROLLBACK:     zName = "SQLITE_ABORT_ROLLBACK";    break;
1071       case SQLITE_BUSY:               zName = "SQLITE_BUSY";              break;
1072       case SQLITE_BUSY_RECOVERY:      zName = "SQLITE_BUSY_RECOVERY";     break;
1073       case SQLITE_BUSY_SNAPSHOT:      zName = "SQLITE_BUSY_SNAPSHOT";     break;
1074       case SQLITE_LOCKED:             zName = "SQLITE_LOCKED";            break;
1075       case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
1076       case SQLITE_NOMEM:              zName = "SQLITE_NOMEM";             break;
1077       case SQLITE_READONLY:           zName = "SQLITE_READONLY";          break;
1078       case SQLITE_READONLY_RECOVERY:  zName = "SQLITE_READONLY_RECOVERY"; break;
1079       case SQLITE_READONLY_CANTLOCK:  zName = "SQLITE_READONLY_CANTLOCK"; break;
1080       case SQLITE_READONLY_ROLLBACK:  zName = "SQLITE_READONLY_ROLLBACK"; break;
1081       case SQLITE_READONLY_DBMOVED:   zName = "SQLITE_READONLY_DBMOVED";  break;
1082       case SQLITE_INTERRUPT:          zName = "SQLITE_INTERRUPT";         break;
1083       case SQLITE_IOERR:              zName = "SQLITE_IOERR";             break;
1084       case SQLITE_IOERR_READ:         zName = "SQLITE_IOERR_READ";        break;
1085       case SQLITE_IOERR_SHORT_READ:   zName = "SQLITE_IOERR_SHORT_READ";  break;
1086       case SQLITE_IOERR_WRITE:        zName = "SQLITE_IOERR_WRITE";       break;
1087       case SQLITE_IOERR_FSYNC:        zName = "SQLITE_IOERR_FSYNC";       break;
1088       case SQLITE_IOERR_DIR_FSYNC:    zName = "SQLITE_IOERR_DIR_FSYNC";   break;
1089       case SQLITE_IOERR_TRUNCATE:     zName = "SQLITE_IOERR_TRUNCATE";    break;
1090       case SQLITE_IOERR_FSTAT:        zName = "SQLITE_IOERR_FSTAT";       break;
1091       case SQLITE_IOERR_UNLOCK:       zName = "SQLITE_IOERR_UNLOCK";      break;
1092       case SQLITE_IOERR_RDLOCK:       zName = "SQLITE_IOERR_RDLOCK";      break;
1093       case SQLITE_IOERR_DELETE:       zName = "SQLITE_IOERR_DELETE";      break;
1094       case SQLITE_IOERR_BLOCKED:      zName = "SQLITE_IOERR_BLOCKED";     break;
1095       case SQLITE_IOERR_NOMEM:        zName = "SQLITE_IOERR_NOMEM";       break;
1096       case SQLITE_IOERR_ACCESS:       zName = "SQLITE_IOERR_ACCESS";      break;
1097       case SQLITE_IOERR_CHECKRESERVEDLOCK:
1098                                 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
1099       case SQLITE_IOERR_LOCK:         zName = "SQLITE_IOERR_LOCK";        break;
1100       case SQLITE_IOERR_CLOSE:        zName = "SQLITE_IOERR_CLOSE";       break;
1101       case SQLITE_IOERR_DIR_CLOSE:    zName = "SQLITE_IOERR_DIR_CLOSE";   break;
1102       case SQLITE_IOERR_SHMOPEN:      zName = "SQLITE_IOERR_SHMOPEN";     break;
1103       case SQLITE_IOERR_SHMSIZE:      zName = "SQLITE_IOERR_SHMSIZE";     break;
1104       case SQLITE_IOERR_SHMLOCK:      zName = "SQLITE_IOERR_SHMLOCK";     break;
1105       case SQLITE_IOERR_SHMMAP:       zName = "SQLITE_IOERR_SHMMAP";      break;
1106       case SQLITE_IOERR_SEEK:         zName = "SQLITE_IOERR_SEEK";        break;
1107       case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
1108       case SQLITE_IOERR_MMAP:         zName = "SQLITE_IOERR_MMAP";        break;
1109       case SQLITE_IOERR_GETTEMPPATH:  zName = "SQLITE_IOERR_GETTEMPPATH"; break;
1110       case SQLITE_IOERR_CONVPATH:     zName = "SQLITE_IOERR_CONVPATH";    break;
1111       case SQLITE_CORRUPT:            zName = "SQLITE_CORRUPT";           break;
1112       case SQLITE_CORRUPT_VTAB:       zName = "SQLITE_CORRUPT_VTAB";      break;
1113       case SQLITE_NOTFOUND:           zName = "SQLITE_NOTFOUND";          break;
1114       case SQLITE_FULL:               zName = "SQLITE_FULL";              break;
1115       case SQLITE_CANTOPEN:           zName = "SQLITE_CANTOPEN";          break;
1116       case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
1117       case SQLITE_CANTOPEN_ISDIR:     zName = "SQLITE_CANTOPEN_ISDIR";    break;
1118       case SQLITE_CANTOPEN_FULLPATH:  zName = "SQLITE_CANTOPEN_FULLPATH"; break;
1119       case SQLITE_CANTOPEN_CONVPATH:  zName = "SQLITE_CANTOPEN_CONVPATH"; break;
1120       case SQLITE_PROTOCOL:           zName = "SQLITE_PROTOCOL";          break;
1121       case SQLITE_EMPTY:              zName = "SQLITE_EMPTY";             break;
1122       case SQLITE_SCHEMA:             zName = "SQLITE_SCHEMA";            break;
1123       case SQLITE_TOOBIG:             zName = "SQLITE_TOOBIG";            break;
1124       case SQLITE_CONSTRAINT:         zName = "SQLITE_CONSTRAINT";        break;
1125       case SQLITE_CONSTRAINT_UNIQUE:  zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
1126       case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
1127       case SQLITE_CONSTRAINT_FOREIGNKEY:
1128                                 zName = "SQLITE_CONSTRAINT_FOREIGNKEY";   break;
1129       case SQLITE_CONSTRAINT_CHECK:   zName = "SQLITE_CONSTRAINT_CHECK";  break;
1130       case SQLITE_CONSTRAINT_PRIMARYKEY:
1131                                 zName = "SQLITE_CONSTRAINT_PRIMARYKEY";   break;
1132       case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
1133       case SQLITE_CONSTRAINT_COMMITHOOK:
1134                                 zName = "SQLITE_CONSTRAINT_COMMITHOOK";   break;
1135       case SQLITE_CONSTRAINT_VTAB:    zName = "SQLITE_CONSTRAINT_VTAB";   break;
1136       case SQLITE_CONSTRAINT_FUNCTION:
1137                                 zName = "SQLITE_CONSTRAINT_FUNCTION";     break;
1138       case SQLITE_CONSTRAINT_ROWID:   zName = "SQLITE_CONSTRAINT_ROWID";  break;
1139       case SQLITE_MISMATCH:           zName = "SQLITE_MISMATCH";          break;
1140       case SQLITE_MISUSE:             zName = "SQLITE_MISUSE";            break;
1141       case SQLITE_NOLFS:              zName = "SQLITE_NOLFS";             break;
1142       case SQLITE_AUTH:               zName = "SQLITE_AUTH";              break;
1143       case SQLITE_FORMAT:             zName = "SQLITE_FORMAT";            break;
1144       case SQLITE_RANGE:              zName = "SQLITE_RANGE";             break;
1145       case SQLITE_NOTADB:             zName = "SQLITE_NOTADB";            break;
1146       case SQLITE_ROW:                zName = "SQLITE_ROW";               break;
1147       case SQLITE_NOTICE:             zName = "SQLITE_NOTICE";            break;
1148       case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
1149       case SQLITE_NOTICE_RECOVER_ROLLBACK:
1150                                 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
1151       case SQLITE_WARNING:            zName = "SQLITE_WARNING";           break;
1152       case SQLITE_WARNING_AUTOINDEX:  zName = "SQLITE_WARNING_AUTOINDEX"; break;
1153       case SQLITE_DONE:               zName = "SQLITE_DONE";              break;
1154     }
1155   }
1156   if( zName==0 ){
1157     static char zBuf[50];
1158     sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
1159     zName = zBuf;
1160   }
1161   return zName;
1162 }
1163 #endif
1164 
1165 /*
1166 ** Return a static string that describes the kind of error specified in the
1167 ** argument.
1168 */
1169 const char *sqlite3ErrStr(int rc){
1170   static const char* const aMsg[] = {
1171     /* SQLITE_OK          */ "not an error",
1172     /* SQLITE_ERROR       */ "SQL logic error or missing database",
1173     /* SQLITE_INTERNAL    */ 0,
1174     /* SQLITE_PERM        */ "access permission denied",
1175     /* SQLITE_ABORT       */ "callback requested query abort",
1176     /* SQLITE_BUSY        */ "database is locked",
1177     /* SQLITE_LOCKED      */ "database table is locked",
1178     /* SQLITE_NOMEM       */ "out of memory",
1179     /* SQLITE_READONLY    */ "attempt to write a readonly database",
1180     /* SQLITE_INTERRUPT   */ "interrupted",
1181     /* SQLITE_IOERR       */ "disk I/O error",
1182     /* SQLITE_CORRUPT     */ "database disk image is malformed",
1183     /* SQLITE_NOTFOUND    */ "unknown operation",
1184     /* SQLITE_FULL        */ "database or disk is full",
1185     /* SQLITE_CANTOPEN    */ "unable to open database file",
1186     /* SQLITE_PROTOCOL    */ "locking protocol",
1187     /* SQLITE_EMPTY       */ "table contains no data",
1188     /* SQLITE_SCHEMA      */ "database schema has changed",
1189     /* SQLITE_TOOBIG      */ "string or blob too big",
1190     /* SQLITE_CONSTRAINT  */ "constraint failed",
1191     /* SQLITE_MISMATCH    */ "datatype mismatch",
1192     /* SQLITE_MISUSE      */ "library routine called out of sequence",
1193     /* SQLITE_NOLFS       */ "large file support is disabled",
1194     /* SQLITE_AUTH        */ "authorization denied",
1195     /* SQLITE_FORMAT      */ "auxiliary database format error",
1196     /* SQLITE_RANGE       */ "bind or column index out of range",
1197     /* SQLITE_NOTADB      */ "file is encrypted or is not a database",
1198   };
1199   const char *zErr = "unknown error";
1200   switch( rc ){
1201     case SQLITE_ABORT_ROLLBACK: {
1202       zErr = "abort due to ROLLBACK";
1203       break;
1204     }
1205     default: {
1206       rc &= 0xff;
1207       if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
1208         zErr = aMsg[rc];
1209       }
1210       break;
1211     }
1212   }
1213   return zErr;
1214 }
1215 
1216 /*
1217 ** This routine implements a busy callback that sleeps and tries
1218 ** again until a timeout value is reached.  The timeout value is
1219 ** an integer number of milliseconds passed in as the first
1220 ** argument.
1221 */
1222 static int sqliteDefaultBusyCallback(
1223  void *ptr,               /* Database connection */
1224  int count                /* Number of times table has been busy */
1225 ){
1226 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
1227   static const u8 delays[] =
1228      { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50, 100 };
1229   static const u8 totals[] =
1230      { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228 };
1231 # define NDELAY ArraySize(delays)
1232   sqlite3 *db = (sqlite3 *)ptr;
1233   int timeout = db->busyTimeout;
1234   int delay, prior;
1235 
1236   assert( count>=0 );
1237   if( count < NDELAY ){
1238     delay = delays[count];
1239     prior = totals[count];
1240   }else{
1241     delay = delays[NDELAY-1];
1242     prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
1243   }
1244   if( prior + delay > timeout ){
1245     delay = timeout - prior;
1246     if( delay<=0 ) return 0;
1247   }
1248   sqlite3OsSleep(db->pVfs, delay*1000);
1249   return 1;
1250 #else
1251   sqlite3 *db = (sqlite3 *)ptr;
1252   int timeout = ((sqlite3 *)ptr)->busyTimeout;
1253   if( (count+1)*1000 > timeout ){
1254     return 0;
1255   }
1256   sqlite3OsSleep(db->pVfs, 1000000);
1257   return 1;
1258 #endif
1259 }
1260 
1261 /*
1262 ** Invoke the given busy handler.
1263 **
1264 ** This routine is called when an operation failed with a lock.
1265 ** If this routine returns non-zero, the lock is retried.  If it
1266 ** returns 0, the operation aborts with an SQLITE_BUSY error.
1267 */
1268 int sqlite3InvokeBusyHandler(BusyHandler *p){
1269   int rc;
1270   if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
1271   rc = p->xFunc(p->pArg, p->nBusy);
1272   if( rc==0 ){
1273     p->nBusy = -1;
1274   }else{
1275     p->nBusy++;
1276   }
1277   return rc;
1278 }
1279 
1280 /*
1281 ** This routine sets the busy callback for an Sqlite database to the
1282 ** given callback function with the given argument.
1283 */
1284 int sqlite3_busy_handler(
1285   sqlite3 *db,
1286   int (*xBusy)(void*,int),
1287   void *pArg
1288 ){
1289   sqlite3_mutex_enter(db->mutex);
1290   db->busyHandler.xFunc = xBusy;
1291   db->busyHandler.pArg = pArg;
1292   db->busyHandler.nBusy = 0;
1293   db->busyTimeout = 0;
1294   sqlite3_mutex_leave(db->mutex);
1295   return SQLITE_OK;
1296 }
1297 
1298 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1299 /*
1300 ** This routine sets the progress callback for an Sqlite database to the
1301 ** given callback function with the given argument. The progress callback will
1302 ** be invoked every nOps opcodes.
1303 */
1304 void sqlite3_progress_handler(
1305   sqlite3 *db,
1306   int nOps,
1307   int (*xProgress)(void*),
1308   void *pArg
1309 ){
1310   sqlite3_mutex_enter(db->mutex);
1311   if( nOps>0 ){
1312     db->xProgress = xProgress;
1313     db->nProgressOps = (unsigned)nOps;
1314     db->pProgressArg = pArg;
1315   }else{
1316     db->xProgress = 0;
1317     db->nProgressOps = 0;
1318     db->pProgressArg = 0;
1319   }
1320   sqlite3_mutex_leave(db->mutex);
1321 }
1322 #endif
1323 
1324 
1325 /*
1326 ** This routine installs a default busy handler that waits for the
1327 ** specified number of milliseconds before returning 0.
1328 */
1329 int sqlite3_busy_timeout(sqlite3 *db, int ms){
1330   if( ms>0 ){
1331     sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
1332     db->busyTimeout = ms;
1333   }else{
1334     sqlite3_busy_handler(db, 0, 0);
1335   }
1336   return SQLITE_OK;
1337 }
1338 
1339 /*
1340 ** Cause any pending operation to stop at its earliest opportunity.
1341 */
1342 void sqlite3_interrupt(sqlite3 *db){
1343   db->u1.isInterrupted = 1;
1344 }
1345 
1346 
1347 /*
1348 ** This function is exactly the same as sqlite3_create_function(), except
1349 ** that it is designed to be called by internal code. The difference is
1350 ** that if a malloc() fails in sqlite3_create_function(), an error code
1351 ** is returned and the mallocFailed flag cleared.
1352 */
1353 int sqlite3CreateFunc(
1354   sqlite3 *db,
1355   const char *zFunctionName,
1356   int nArg,
1357   int enc,
1358   void *pUserData,
1359   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1360   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1361   void (*xFinal)(sqlite3_context*),
1362   FuncDestructor *pDestructor
1363 ){
1364   FuncDef *p;
1365   int nName;
1366   int extraFlags;
1367 
1368   assert( sqlite3_mutex_held(db->mutex) );
1369   if( zFunctionName==0 ||
1370       (xFunc && (xFinal || xStep)) ||
1371       (!xFunc && (xFinal && !xStep)) ||
1372       (!xFunc && (!xFinal && xStep)) ||
1373       (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
1374       (255<(nName = sqlite3Strlen30( zFunctionName))) ){
1375     return SQLITE_MISUSE_BKPT;
1376   }
1377 
1378   assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
1379   extraFlags = enc &  SQLITE_DETERMINISTIC;
1380   enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
1381 
1382 #ifndef SQLITE_OMIT_UTF16
1383   /* If SQLITE_UTF16 is specified as the encoding type, transform this
1384   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
1385   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
1386   **
1387   ** If SQLITE_ANY is specified, add three versions of the function
1388   ** to the hash table.
1389   */
1390   if( enc==SQLITE_UTF16 ){
1391     enc = SQLITE_UTF16NATIVE;
1392   }else if( enc==SQLITE_ANY ){
1393     int rc;
1394     rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags,
1395          pUserData, xFunc, xStep, xFinal, pDestructor);
1396     if( rc==SQLITE_OK ){
1397       rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags,
1398           pUserData, xFunc, xStep, xFinal, pDestructor);
1399     }
1400     if( rc!=SQLITE_OK ){
1401       return rc;
1402     }
1403     enc = SQLITE_UTF16BE;
1404   }
1405 #else
1406   enc = SQLITE_UTF8;
1407 #endif
1408 
1409   /* Check if an existing function is being overridden or deleted. If so,
1410   ** and there are active VMs, then return SQLITE_BUSY. If a function
1411   ** is being overridden/deleted but there are no active VMs, allow the
1412   ** operation to continue but invalidate all precompiled statements.
1413   */
1414   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
1415   if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){
1416     if( db->nVdbeActive ){
1417       sqlite3Error(db, SQLITE_BUSY,
1418         "unable to delete/modify user-function due to active statements");
1419       assert( !db->mallocFailed );
1420       return SQLITE_BUSY;
1421     }else{
1422       sqlite3ExpirePreparedStatements(db);
1423     }
1424   }
1425 
1426   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
1427   assert(p || db->mallocFailed);
1428   if( !p ){
1429     return SQLITE_NOMEM;
1430   }
1431 
1432   /* If an older version of the function with a configured destructor is
1433   ** being replaced invoke the destructor function here. */
1434   functionDestroy(db, p);
1435 
1436   if( pDestructor ){
1437     pDestructor->nRef++;
1438   }
1439   p->pDestructor = pDestructor;
1440   p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
1441   testcase( p->funcFlags & SQLITE_DETERMINISTIC );
1442   p->xFunc = xFunc;
1443   p->xStep = xStep;
1444   p->xFinalize = xFinal;
1445   p->pUserData = pUserData;
1446   p->nArg = (u16)nArg;
1447   return SQLITE_OK;
1448 }
1449 
1450 /*
1451 ** Create new user functions.
1452 */
1453 int sqlite3_create_function(
1454   sqlite3 *db,
1455   const char *zFunc,
1456   int nArg,
1457   int enc,
1458   void *p,
1459   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1460   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1461   void (*xFinal)(sqlite3_context*)
1462 ){
1463   return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
1464                                     xFinal, 0);
1465 }
1466 
1467 int sqlite3_create_function_v2(
1468   sqlite3 *db,
1469   const char *zFunc,
1470   int nArg,
1471   int enc,
1472   void *p,
1473   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1474   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1475   void (*xFinal)(sqlite3_context*),
1476   void (*xDestroy)(void *)
1477 ){
1478   int rc = SQLITE_ERROR;
1479   FuncDestructor *pArg = 0;
1480   sqlite3_mutex_enter(db->mutex);
1481   if( xDestroy ){
1482     pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
1483     if( !pArg ){
1484       xDestroy(p);
1485       goto out;
1486     }
1487     pArg->xDestroy = xDestroy;
1488     pArg->pUserData = p;
1489   }
1490   rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
1491   if( pArg && pArg->nRef==0 ){
1492     assert( rc!=SQLITE_OK );
1493     xDestroy(p);
1494     sqlite3DbFree(db, pArg);
1495   }
1496 
1497  out:
1498   rc = sqlite3ApiExit(db, rc);
1499   sqlite3_mutex_leave(db->mutex);
1500   return rc;
1501 }
1502 
1503 #ifndef SQLITE_OMIT_UTF16
1504 int sqlite3_create_function16(
1505   sqlite3 *db,
1506   const void *zFunctionName,
1507   int nArg,
1508   int eTextRep,
1509   void *p,
1510   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
1511   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
1512   void (*xFinal)(sqlite3_context*)
1513 ){
1514   int rc;
1515   char *zFunc8;
1516   sqlite3_mutex_enter(db->mutex);
1517   assert( !db->mallocFailed );
1518   zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
1519   rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
1520   sqlite3DbFree(db, zFunc8);
1521   rc = sqlite3ApiExit(db, rc);
1522   sqlite3_mutex_leave(db->mutex);
1523   return rc;
1524 }
1525 #endif
1526 
1527 
1528 /*
1529 ** Declare that a function has been overloaded by a virtual table.
1530 **
1531 ** If the function already exists as a regular global function, then
1532 ** this routine is a no-op.  If the function does not exist, then create
1533 ** a new one that always throws a run-time error.
1534 **
1535 ** When virtual tables intend to provide an overloaded function, they
1536 ** should call this routine to make sure the global function exists.
1537 ** A global function must exist in order for name resolution to work
1538 ** properly.
1539 */
1540 int sqlite3_overload_function(
1541   sqlite3 *db,
1542   const char *zName,
1543   int nArg
1544 ){
1545   int nName = sqlite3Strlen30(zName);
1546   int rc = SQLITE_OK;
1547   sqlite3_mutex_enter(db->mutex);
1548   if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
1549     rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
1550                            0, sqlite3InvalidFunction, 0, 0, 0);
1551   }
1552   rc = sqlite3ApiExit(db, rc);
1553   sqlite3_mutex_leave(db->mutex);
1554   return rc;
1555 }
1556 
1557 #ifndef SQLITE_OMIT_TRACE
1558 /*
1559 ** Register a trace function.  The pArg from the previously registered trace
1560 ** is returned.
1561 **
1562 ** A NULL trace function means that no tracing is executes.  A non-NULL
1563 ** trace is a pointer to a function that is invoked at the start of each
1564 ** SQL statement.
1565 */
1566 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
1567   void *pOld;
1568   sqlite3_mutex_enter(db->mutex);
1569   pOld = db->pTraceArg;
1570   db->xTrace = xTrace;
1571   db->pTraceArg = pArg;
1572   sqlite3_mutex_leave(db->mutex);
1573   return pOld;
1574 }
1575 /*
1576 ** Register a profile function.  The pArg from the previously registered
1577 ** profile function is returned.
1578 **
1579 ** A NULL profile function means that no profiling is executes.  A non-NULL
1580 ** profile is a pointer to a function that is invoked at the conclusion of
1581 ** each SQL statement that is run.
1582 */
1583 void *sqlite3_profile(
1584   sqlite3 *db,
1585   void (*xProfile)(void*,const char*,sqlite_uint64),
1586   void *pArg
1587 ){
1588   void *pOld;
1589   sqlite3_mutex_enter(db->mutex);
1590   pOld = db->pProfileArg;
1591   db->xProfile = xProfile;
1592   db->pProfileArg = pArg;
1593   sqlite3_mutex_leave(db->mutex);
1594   return pOld;
1595 }
1596 #endif /* SQLITE_OMIT_TRACE */
1597 
1598 /*
1599 ** Register a function to be invoked when a transaction commits.
1600 ** If the invoked function returns non-zero, then the commit becomes a
1601 ** rollback.
1602 */
1603 void *sqlite3_commit_hook(
1604   sqlite3 *db,              /* Attach the hook to this database */
1605   int (*xCallback)(void*),  /* Function to invoke on each commit */
1606   void *pArg                /* Argument to the function */
1607 ){
1608   void *pOld;
1609   sqlite3_mutex_enter(db->mutex);
1610   pOld = db->pCommitArg;
1611   db->xCommitCallback = xCallback;
1612   db->pCommitArg = pArg;
1613   sqlite3_mutex_leave(db->mutex);
1614   return pOld;
1615 }
1616 
1617 /*
1618 ** Register a callback to be invoked each time a row is updated,
1619 ** inserted or deleted using this database connection.
1620 */
1621 void *sqlite3_update_hook(
1622   sqlite3 *db,              /* Attach the hook to this database */
1623   void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
1624   void *pArg                /* Argument to the function */
1625 ){
1626   void *pRet;
1627   sqlite3_mutex_enter(db->mutex);
1628   pRet = db->pUpdateArg;
1629   db->xUpdateCallback = xCallback;
1630   db->pUpdateArg = pArg;
1631   sqlite3_mutex_leave(db->mutex);
1632   return pRet;
1633 }
1634 
1635 /*
1636 ** Register a callback to be invoked each time a transaction is rolled
1637 ** back by this database connection.
1638 */
1639 void *sqlite3_rollback_hook(
1640   sqlite3 *db,              /* Attach the hook to this database */
1641   void (*xCallback)(void*), /* Callback function */
1642   void *pArg                /* Argument to the function */
1643 ){
1644   void *pRet;
1645   sqlite3_mutex_enter(db->mutex);
1646   pRet = db->pRollbackArg;
1647   db->xRollbackCallback = xCallback;
1648   db->pRollbackArg = pArg;
1649   sqlite3_mutex_leave(db->mutex);
1650   return pRet;
1651 }
1652 
1653 #ifndef SQLITE_OMIT_WAL
1654 /*
1655 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
1656 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
1657 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by
1658 ** wal_autocheckpoint()).
1659 */
1660 int sqlite3WalDefaultHook(
1661   void *pClientData,     /* Argument */
1662   sqlite3 *db,           /* Connection */
1663   const char *zDb,       /* Database */
1664   int nFrame             /* Size of WAL */
1665 ){
1666   if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
1667     sqlite3BeginBenignMalloc();
1668     sqlite3_wal_checkpoint(db, zDb);
1669     sqlite3EndBenignMalloc();
1670   }
1671   return SQLITE_OK;
1672 }
1673 #endif /* SQLITE_OMIT_WAL */
1674 
1675 /*
1676 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint
1677 ** a database after committing a transaction if there are nFrame or
1678 ** more frames in the log file. Passing zero or a negative value as the
1679 ** nFrame parameter disables automatic checkpoints entirely.
1680 **
1681 ** The callback registered by this function replaces any existing callback
1682 ** registered using sqlite3_wal_hook(). Likewise, registering a callback
1683 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
1684 ** configured by this function.
1685 */
1686 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
1687 #ifdef SQLITE_OMIT_WAL
1688   UNUSED_PARAMETER(db);
1689   UNUSED_PARAMETER(nFrame);
1690 #else
1691   if( nFrame>0 ){
1692     sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
1693   }else{
1694     sqlite3_wal_hook(db, 0, 0);
1695   }
1696 #endif
1697   return SQLITE_OK;
1698 }
1699 
1700 /*
1701 ** Register a callback to be invoked each time a transaction is written
1702 ** into the write-ahead-log by this database connection.
1703 */
1704 void *sqlite3_wal_hook(
1705   sqlite3 *db,                    /* Attach the hook to this db handle */
1706   int(*xCallback)(void *, sqlite3*, const char*, int),
1707   void *pArg                      /* First argument passed to xCallback() */
1708 ){
1709 #ifndef SQLITE_OMIT_WAL
1710   void *pRet;
1711   sqlite3_mutex_enter(db->mutex);
1712   pRet = db->pWalArg;
1713   db->xWalCallback = xCallback;
1714   db->pWalArg = pArg;
1715   sqlite3_mutex_leave(db->mutex);
1716   return pRet;
1717 #else
1718   return 0;
1719 #endif
1720 }
1721 
1722 /*
1723 ** Checkpoint database zDb.
1724 */
1725 int sqlite3_wal_checkpoint_v2(
1726   sqlite3 *db,                    /* Database handle */
1727   const char *zDb,                /* Name of attached database (or NULL) */
1728   int eMode,                      /* SQLITE_CHECKPOINT_* value */
1729   int *pnLog,                     /* OUT: Size of WAL log in frames */
1730   int *pnCkpt                     /* OUT: Total number of frames checkpointed */
1731 ){
1732 #ifdef SQLITE_OMIT_WAL
1733   return SQLITE_OK;
1734 #else
1735   int rc;                         /* Return code */
1736   int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */
1737 
1738   /* Initialize the output variables to -1 in case an error occurs. */
1739   if( pnLog ) *pnLog = -1;
1740   if( pnCkpt ) *pnCkpt = -1;
1741 
1742   assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
1743   assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
1744   assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
1745   if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
1746     return SQLITE_MISUSE;
1747   }
1748 
1749   sqlite3_mutex_enter(db->mutex);
1750   if( zDb && zDb[0] ){
1751     iDb = sqlite3FindDbName(db, zDb);
1752   }
1753   if( iDb<0 ){
1754     rc = SQLITE_ERROR;
1755     sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
1756   }else{
1757     rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
1758     sqlite3Error(db, rc, 0);
1759   }
1760   rc = sqlite3ApiExit(db, rc);
1761   sqlite3_mutex_leave(db->mutex);
1762   return rc;
1763 #endif
1764 }
1765 
1766 
1767 /*
1768 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
1769 ** to contains a zero-length string, all attached databases are
1770 ** checkpointed.
1771 */
1772 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
1773   return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
1774 }
1775 
1776 #ifndef SQLITE_OMIT_WAL
1777 /*
1778 ** Run a checkpoint on database iDb. This is a no-op if database iDb is
1779 ** not currently open in WAL mode.
1780 **
1781 ** If a transaction is open on the database being checkpointed, this
1782 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
1783 ** an error occurs while running the checkpoint, an SQLite error code is
1784 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
1785 **
1786 ** The mutex on database handle db should be held by the caller. The mutex
1787 ** associated with the specific b-tree being checkpointed is taken by
1788 ** this function while the checkpoint is running.
1789 **
1790 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
1791 ** checkpointed. If an error is encountered it is returned immediately -
1792 ** no attempt is made to checkpoint any remaining databases.
1793 **
1794 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
1795 */
1796 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
1797   int rc = SQLITE_OK;             /* Return code */
1798   int i;                          /* Used to iterate through attached dbs */
1799   int bBusy = 0;                  /* True if SQLITE_BUSY has been encountered */
1800 
1801   assert( sqlite3_mutex_held(db->mutex) );
1802   assert( !pnLog || *pnLog==-1 );
1803   assert( !pnCkpt || *pnCkpt==-1 );
1804 
1805   for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
1806     if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
1807       rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
1808       pnLog = 0;
1809       pnCkpt = 0;
1810       if( rc==SQLITE_BUSY ){
1811         bBusy = 1;
1812         rc = SQLITE_OK;
1813       }
1814     }
1815   }
1816 
1817   return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
1818 }
1819 #endif /* SQLITE_OMIT_WAL */
1820 
1821 /*
1822 ** This function returns true if main-memory should be used instead of
1823 ** a temporary file for transient pager files and statement journals.
1824 ** The value returned depends on the value of db->temp_store (runtime
1825 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The
1826 ** following table describes the relationship between these two values
1827 ** and this functions return value.
1828 **
1829 **   SQLITE_TEMP_STORE     db->temp_store     Location of temporary database
1830 **   -----------------     --------------     ------------------------------
1831 **   0                     any                file      (return 0)
1832 **   1                     1                  file      (return 0)
1833 **   1                     2                  memory    (return 1)
1834 **   1                     0                  file      (return 0)
1835 **   2                     1                  file      (return 0)
1836 **   2                     2                  memory    (return 1)
1837 **   2                     0                  memory    (return 1)
1838 **   3                     any                memory    (return 1)
1839 */
1840 int sqlite3TempInMemory(const sqlite3 *db){
1841 #if SQLITE_TEMP_STORE==1
1842   return ( db->temp_store==2 );
1843 #endif
1844 #if SQLITE_TEMP_STORE==2
1845   return ( db->temp_store!=1 );
1846 #endif
1847 #if SQLITE_TEMP_STORE==3
1848   return 1;
1849 #endif
1850 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
1851   return 0;
1852 #endif
1853 }
1854 
1855 /*
1856 ** Return UTF-8 encoded English language explanation of the most recent
1857 ** error.
1858 */
1859 const char *sqlite3_errmsg(sqlite3 *db){
1860   const char *z;
1861   if( !db ){
1862     return sqlite3ErrStr(SQLITE_NOMEM);
1863   }
1864   if( !sqlite3SafetyCheckSickOrOk(db) ){
1865     return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
1866   }
1867   sqlite3_mutex_enter(db->mutex);
1868   if( db->mallocFailed ){
1869     z = sqlite3ErrStr(SQLITE_NOMEM);
1870   }else{
1871     testcase( db->pErr==0 );
1872     z = (char*)sqlite3_value_text(db->pErr);
1873     assert( !db->mallocFailed );
1874     if( z==0 ){
1875       z = sqlite3ErrStr(db->errCode);
1876     }
1877   }
1878   sqlite3_mutex_leave(db->mutex);
1879   return z;
1880 }
1881 
1882 #ifndef SQLITE_OMIT_UTF16
1883 /*
1884 ** Return UTF-16 encoded English language explanation of the most recent
1885 ** error.
1886 */
1887 const void *sqlite3_errmsg16(sqlite3 *db){
1888   static const u16 outOfMem[] = {
1889     'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
1890   };
1891   static const u16 misuse[] = {
1892     'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
1893     'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
1894     'c', 'a', 'l', 'l', 'e', 'd', ' ',
1895     'o', 'u', 't', ' ',
1896     'o', 'f', ' ',
1897     's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
1898   };
1899 
1900   const void *z;
1901   if( !db ){
1902     return (void *)outOfMem;
1903   }
1904   if( !sqlite3SafetyCheckSickOrOk(db) ){
1905     return (void *)misuse;
1906   }
1907   sqlite3_mutex_enter(db->mutex);
1908   if( db->mallocFailed ){
1909     z = (void *)outOfMem;
1910   }else{
1911     z = sqlite3_value_text16(db->pErr);
1912     if( z==0 ){
1913       sqlite3Error(db, db->errCode, sqlite3ErrStr(db->errCode));
1914       z = sqlite3_value_text16(db->pErr);
1915     }
1916     /* A malloc() may have failed within the call to sqlite3_value_text16()
1917     ** above. If this is the case, then the db->mallocFailed flag needs to
1918     ** be cleared before returning. Do this directly, instead of via
1919     ** sqlite3ApiExit(), to avoid setting the database handle error message.
1920     */
1921     db->mallocFailed = 0;
1922   }
1923   sqlite3_mutex_leave(db->mutex);
1924   return z;
1925 }
1926 #endif /* SQLITE_OMIT_UTF16 */
1927 
1928 /*
1929 ** Return the most recent error code generated by an SQLite routine. If NULL is
1930 ** passed to this function, we assume a malloc() failed during sqlite3_open().
1931 */
1932 int sqlite3_errcode(sqlite3 *db){
1933   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1934     return SQLITE_MISUSE_BKPT;
1935   }
1936   if( !db || db->mallocFailed ){
1937     return SQLITE_NOMEM;
1938   }
1939   return db->errCode & db->errMask;
1940 }
1941 int sqlite3_extended_errcode(sqlite3 *db){
1942   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1943     return SQLITE_MISUSE_BKPT;
1944   }
1945   if( !db || db->mallocFailed ){
1946     return SQLITE_NOMEM;
1947   }
1948   return db->errCode;
1949 }
1950 
1951 /*
1952 ** Return a string that describes the kind of error specified in the
1953 ** argument.  For now, this simply calls the internal sqlite3ErrStr()
1954 ** function.
1955 */
1956 const char *sqlite3_errstr(int rc){
1957   return sqlite3ErrStr(rc);
1958 }
1959 
1960 /*
1961 ** Invalidate all cached KeyInfo objects for database connection "db"
1962 */
1963 static void invalidateCachedKeyInfo(sqlite3 *db){
1964   Db *pDb;                    /* A single database */
1965   int iDb;                    /* The database index number */
1966   HashElem *k;                /* For looping over tables in pDb */
1967   Table *pTab;                /* A table in the database */
1968   Index *pIdx;                /* Each index */
1969 
1970   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
1971     if( pDb->pBt==0 ) continue;
1972     sqlite3BtreeEnter(pDb->pBt);
1973     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
1974       pTab = (Table*)sqliteHashData(k);
1975       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1976         if( pIdx->pKeyInfo && pIdx->pKeyInfo->db==db ){
1977           sqlite3KeyInfoUnref(pIdx->pKeyInfo);
1978           pIdx->pKeyInfo = 0;
1979         }
1980       }
1981     }
1982     sqlite3BtreeLeave(pDb->pBt);
1983   }
1984 }
1985 
1986 /*
1987 ** Create a new collating function for database "db".  The name is zName
1988 ** and the encoding is enc.
1989 */
1990 static int createCollation(
1991   sqlite3* db,
1992   const char *zName,
1993   u8 enc,
1994   void* pCtx,
1995   int(*xCompare)(void*,int,const void*,int,const void*),
1996   void(*xDel)(void*)
1997 ){
1998   CollSeq *pColl;
1999   int enc2;
2000   int nName = sqlite3Strlen30(zName);
2001 
2002   assert( sqlite3_mutex_held(db->mutex) );
2003 
2004   /* If SQLITE_UTF16 is specified as the encoding type, transform this
2005   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
2006   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
2007   */
2008   enc2 = enc;
2009   testcase( enc2==SQLITE_UTF16 );
2010   testcase( enc2==SQLITE_UTF16_ALIGNED );
2011   if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
2012     enc2 = SQLITE_UTF16NATIVE;
2013   }
2014   if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
2015     return SQLITE_MISUSE_BKPT;
2016   }
2017 
2018   /* Check if this call is removing or replacing an existing collation
2019   ** sequence. If so, and there are active VMs, return busy. If there
2020   ** are no active VMs, invalidate any pre-compiled statements.
2021   */
2022   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
2023   if( pColl && pColl->xCmp ){
2024     if( db->nVdbeActive ){
2025       sqlite3Error(db, SQLITE_BUSY,
2026         "unable to delete/modify collation sequence due to active statements");
2027       return SQLITE_BUSY;
2028     }
2029     sqlite3ExpirePreparedStatements(db);
2030     invalidateCachedKeyInfo(db);
2031 
2032     /* If collation sequence pColl was created directly by a call to
2033     ** sqlite3_create_collation, and not generated by synthCollSeq(),
2034     ** then any copies made by synthCollSeq() need to be invalidated.
2035     ** Also, collation destructor - CollSeq.xDel() - function may need
2036     ** to be called.
2037     */
2038     if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
2039       CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
2040       int j;
2041       for(j=0; j<3; j++){
2042         CollSeq *p = &aColl[j];
2043         if( p->enc==pColl->enc ){
2044           if( p->xDel ){
2045             p->xDel(p->pUser);
2046           }
2047           p->xCmp = 0;
2048         }
2049       }
2050     }
2051   }
2052 
2053   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
2054   if( pColl==0 ) return SQLITE_NOMEM;
2055   pColl->xCmp = xCompare;
2056   pColl->pUser = pCtx;
2057   pColl->xDel = xDel;
2058   pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
2059   sqlite3Error(db, SQLITE_OK, 0);
2060   return SQLITE_OK;
2061 }
2062 
2063 
2064 /*
2065 ** This array defines hard upper bounds on limit values.  The
2066 ** initializer must be kept in sync with the SQLITE_LIMIT_*
2067 ** #defines in sqlite3.h.
2068 */
2069 static const int aHardLimit[] = {
2070   SQLITE_MAX_LENGTH,
2071   SQLITE_MAX_SQL_LENGTH,
2072   SQLITE_MAX_COLUMN,
2073   SQLITE_MAX_EXPR_DEPTH,
2074   SQLITE_MAX_COMPOUND_SELECT,
2075   SQLITE_MAX_VDBE_OP,
2076   SQLITE_MAX_FUNCTION_ARG,
2077   SQLITE_MAX_ATTACHED,
2078   SQLITE_MAX_LIKE_PATTERN_LENGTH,
2079   SQLITE_MAX_VARIABLE_NUMBER,
2080   SQLITE_MAX_TRIGGER_DEPTH,
2081 };
2082 
2083 /*
2084 ** Make sure the hard limits are set to reasonable values
2085 */
2086 #if SQLITE_MAX_LENGTH<100
2087 # error SQLITE_MAX_LENGTH must be at least 100
2088 #endif
2089 #if SQLITE_MAX_SQL_LENGTH<100
2090 # error SQLITE_MAX_SQL_LENGTH must be at least 100
2091 #endif
2092 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
2093 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
2094 #endif
2095 #if SQLITE_MAX_COMPOUND_SELECT<2
2096 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2
2097 #endif
2098 #if SQLITE_MAX_VDBE_OP<40
2099 # error SQLITE_MAX_VDBE_OP must be at least 40
2100 #endif
2101 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
2102 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
2103 #endif
2104 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
2105 # error SQLITE_MAX_ATTACHED must be between 0 and 125
2106 #endif
2107 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
2108 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
2109 #endif
2110 #if SQLITE_MAX_COLUMN>32767
2111 # error SQLITE_MAX_COLUMN must not exceed 32767
2112 #endif
2113 #if SQLITE_MAX_TRIGGER_DEPTH<1
2114 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
2115 #endif
2116 
2117 
2118 /*
2119 ** Change the value of a limit.  Report the old value.
2120 ** If an invalid limit index is supplied, report -1.
2121 ** Make no changes but still report the old value if the
2122 ** new limit is negative.
2123 **
2124 ** A new lower limit does not shrink existing constructs.
2125 ** It merely prevents new constructs that exceed the limit
2126 ** from forming.
2127 */
2128 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
2129   int oldLimit;
2130 
2131 
2132   /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
2133   ** there is a hard upper bound set at compile-time by a C preprocessor
2134   ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
2135   ** "_MAX_".)
2136   */
2137   assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
2138   assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
2139   assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
2140   assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
2141   assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
2142   assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
2143   assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
2144   assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
2145   assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
2146                                                SQLITE_MAX_LIKE_PATTERN_LENGTH );
2147   assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
2148   assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
2149   assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
2150 
2151 
2152   if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
2153     return -1;
2154   }
2155   oldLimit = db->aLimit[limitId];
2156   if( newLimit>=0 ){                   /* IMP: R-52476-28732 */
2157     if( newLimit>aHardLimit[limitId] ){
2158       newLimit = aHardLimit[limitId];  /* IMP: R-51463-25634 */
2159     }
2160     db->aLimit[limitId] = newLimit;
2161   }
2162   return oldLimit;                     /* IMP: R-53341-35419 */
2163 }
2164 
2165 /*
2166 ** This function is used to parse both URIs and non-URI filenames passed by the
2167 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
2168 ** URIs specified as part of ATTACH statements.
2169 **
2170 ** The first argument to this function is the name of the VFS to use (or
2171 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
2172 ** query parameter. The second argument contains the URI (or non-URI filename)
2173 ** itself. When this function is called the *pFlags variable should contain
2174 ** the default flags to open the database handle with. The value stored in
2175 ** *pFlags may be updated before returning if the URI filename contains
2176 ** "cache=xxx" or "mode=xxx" query parameters.
2177 **
2178 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
2179 ** the VFS that should be used to open the database file. *pzFile is set to
2180 ** point to a buffer containing the name of the file to open. It is the
2181 ** responsibility of the caller to eventually call sqlite3_free() to release
2182 ** this buffer.
2183 **
2184 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg
2185 ** may be set to point to a buffer containing an English language error
2186 ** message. It is the responsibility of the caller to eventually release
2187 ** this buffer by calling sqlite3_free().
2188 */
2189 int sqlite3ParseUri(
2190   const char *zDefaultVfs,        /* VFS to use if no "vfs=xxx" query option */
2191   const char *zUri,               /* Nul-terminated URI to parse */
2192   unsigned int *pFlags,           /* IN/OUT: SQLITE_OPEN_XXX flags */
2193   sqlite3_vfs **ppVfs,            /* OUT: VFS to use */
2194   char **pzFile,                  /* OUT: Filename component of URI */
2195   char **pzErrMsg                 /* OUT: Error message (if rc!=SQLITE_OK) */
2196 ){
2197   int rc = SQLITE_OK;
2198   unsigned int flags = *pFlags;
2199   const char *zVfs = zDefaultVfs;
2200   char *zFile;
2201   char c;
2202   int nUri = sqlite3Strlen30(zUri);
2203 
2204   assert( *pzErrMsg==0 );
2205 
2206   if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri)
2207    && nUri>=5 && memcmp(zUri, "file:", 5)==0
2208   ){
2209     char *zOpt;
2210     int eState;                   /* Parser state when parsing URI */
2211     int iIn;                      /* Input character index */
2212     int iOut = 0;                 /* Output character index */
2213     int nByte = nUri+2;           /* Bytes of space to allocate */
2214 
2215     /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
2216     ** method that there may be extra parameters following the file-name.  */
2217     flags |= SQLITE_OPEN_URI;
2218 
2219     for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
2220     zFile = sqlite3_malloc(nByte);
2221     if( !zFile ) return SQLITE_NOMEM;
2222 
2223     iIn = 5;
2224 #ifndef SQLITE_ALLOW_URI_AUTHORITY
2225     /* Discard the scheme and authority segments of the URI. */
2226     if( zUri[5]=='/' && zUri[6]=='/' ){
2227       iIn = 7;
2228       while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
2229       if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
2230         *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
2231             iIn-7, &zUri[7]);
2232         rc = SQLITE_ERROR;
2233         goto parse_uri_out;
2234       }
2235     }
2236 #endif
2237 
2238     /* Copy the filename and any query parameters into the zFile buffer.
2239     ** Decode %HH escape codes along the way.
2240     **
2241     ** Within this loop, variable eState may be set to 0, 1 or 2, depending
2242     ** on the parsing context. As follows:
2243     **
2244     **   0: Parsing file-name.
2245     **   1: Parsing name section of a name=value query parameter.
2246     **   2: Parsing value section of a name=value query parameter.
2247     */
2248     eState = 0;
2249     while( (c = zUri[iIn])!=0 && c!='#' ){
2250       iIn++;
2251       if( c=='%'
2252        && sqlite3Isxdigit(zUri[iIn])
2253        && sqlite3Isxdigit(zUri[iIn+1])
2254       ){
2255         int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
2256         octet += sqlite3HexToInt(zUri[iIn++]);
2257 
2258         assert( octet>=0 && octet<256 );
2259         if( octet==0 ){
2260           /* This branch is taken when "%00" appears within the URI. In this
2261           ** case we ignore all text in the remainder of the path, name or
2262           ** value currently being parsed. So ignore the current character
2263           ** and skip to the next "?", "=" or "&", as appropriate. */
2264           while( (c = zUri[iIn])!=0 && c!='#'
2265               && (eState!=0 || c!='?')
2266               && (eState!=1 || (c!='=' && c!='&'))
2267               && (eState!=2 || c!='&')
2268           ){
2269             iIn++;
2270           }
2271           continue;
2272         }
2273         c = octet;
2274       }else if( eState==1 && (c=='&' || c=='=') ){
2275         if( zFile[iOut-1]==0 ){
2276           /* An empty option name. Ignore this option altogether. */
2277           while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
2278           continue;
2279         }
2280         if( c=='&' ){
2281           zFile[iOut++] = '\0';
2282         }else{
2283           eState = 2;
2284         }
2285         c = 0;
2286       }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
2287         c = 0;
2288         eState = 1;
2289       }
2290       zFile[iOut++] = c;
2291     }
2292     if( eState==1 ) zFile[iOut++] = '\0';
2293     zFile[iOut++] = '\0';
2294     zFile[iOut++] = '\0';
2295 
2296     /* Check if there were any options specified that should be interpreted
2297     ** here. Options that are interpreted here include "vfs" and those that
2298     ** correspond to flags that may be passed to the sqlite3_open_v2()
2299     ** method. */
2300     zOpt = &zFile[sqlite3Strlen30(zFile)+1];
2301     while( zOpt[0] ){
2302       int nOpt = sqlite3Strlen30(zOpt);
2303       char *zVal = &zOpt[nOpt+1];
2304       int nVal = sqlite3Strlen30(zVal);
2305 
2306       if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
2307         zVfs = zVal;
2308       }else{
2309         struct OpenMode {
2310           const char *z;
2311           int mode;
2312         } *aMode = 0;
2313         char *zModeType = 0;
2314         int mask = 0;
2315         int limit = 0;
2316 
2317         if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
2318           static struct OpenMode aCacheMode[] = {
2319             { "shared",  SQLITE_OPEN_SHAREDCACHE },
2320             { "private", SQLITE_OPEN_PRIVATECACHE },
2321             { 0, 0 }
2322           };
2323 
2324           mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
2325           aMode = aCacheMode;
2326           limit = mask;
2327           zModeType = "cache";
2328         }
2329         if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
2330           static struct OpenMode aOpenMode[] = {
2331             { "ro",  SQLITE_OPEN_READONLY },
2332             { "rw",  SQLITE_OPEN_READWRITE },
2333             { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
2334             { "memory", SQLITE_OPEN_MEMORY },
2335             { 0, 0 }
2336           };
2337 
2338           mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
2339                    | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
2340           aMode = aOpenMode;
2341           limit = mask & flags;
2342           zModeType = "access";
2343         }
2344 
2345         if( aMode ){
2346           int i;
2347           int mode = 0;
2348           for(i=0; aMode[i].z; i++){
2349             const char *z = aMode[i].z;
2350             if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
2351               mode = aMode[i].mode;
2352               break;
2353             }
2354           }
2355           if( mode==0 ){
2356             *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
2357             rc = SQLITE_ERROR;
2358             goto parse_uri_out;
2359           }
2360           if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
2361             *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
2362                                         zModeType, zVal);
2363             rc = SQLITE_PERM;
2364             goto parse_uri_out;
2365           }
2366           flags = (flags & ~mask) | mode;
2367         }
2368       }
2369 
2370       zOpt = &zVal[nVal+1];
2371     }
2372 
2373   }else{
2374     zFile = sqlite3_malloc(nUri+2);
2375     if( !zFile ) return SQLITE_NOMEM;
2376     memcpy(zFile, zUri, nUri);
2377     zFile[nUri] = '\0';
2378     zFile[nUri+1] = '\0';
2379     flags &= ~SQLITE_OPEN_URI;
2380   }
2381 
2382   *ppVfs = sqlite3_vfs_find(zVfs);
2383   if( *ppVfs==0 ){
2384     *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
2385     rc = SQLITE_ERROR;
2386   }
2387  parse_uri_out:
2388   if( rc!=SQLITE_OK ){
2389     sqlite3_free(zFile);
2390     zFile = 0;
2391   }
2392   *pFlags = flags;
2393   *pzFile = zFile;
2394   return rc;
2395 }
2396 
2397 
2398 /*
2399 ** This routine does the work of opening a database on behalf of
2400 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
2401 ** is UTF-8 encoded.
2402 */
2403 static int openDatabase(
2404   const char *zFilename, /* Database filename UTF-8 encoded */
2405   sqlite3 **ppDb,        /* OUT: Returned database handle */
2406   unsigned int flags,    /* Operational flags */
2407   const char *zVfs       /* Name of the VFS to use */
2408 ){
2409   sqlite3 *db;                    /* Store allocated handle here */
2410   int rc;                         /* Return code */
2411   int isThreadsafe;               /* True for threadsafe connections */
2412   char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
2413   char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */
2414 
2415   *ppDb = 0;
2416 #ifndef SQLITE_OMIT_AUTOINIT
2417   rc = sqlite3_initialize();
2418   if( rc ) return rc;
2419 #endif
2420 
2421   /* Only allow sensible combinations of bits in the flags argument.
2422   ** Throw an error if any non-sense combination is used.  If we
2423   ** do not block illegal combinations here, it could trigger
2424   ** assert() statements in deeper layers.  Sensible combinations
2425   ** are:
2426   **
2427   **  1:  SQLITE_OPEN_READONLY
2428   **  2:  SQLITE_OPEN_READWRITE
2429   **  6:  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
2430   */
2431   assert( SQLITE_OPEN_READONLY  == 0x01 );
2432   assert( SQLITE_OPEN_READWRITE == 0x02 );
2433   assert( SQLITE_OPEN_CREATE    == 0x04 );
2434   testcase( (1<<(flags&7))==0x02 ); /* READONLY */
2435   testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
2436   testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
2437   if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;
2438 
2439   if( sqlite3GlobalConfig.bCoreMutex==0 ){
2440     isThreadsafe = 0;
2441   }else if( flags & SQLITE_OPEN_NOMUTEX ){
2442     isThreadsafe = 0;
2443   }else if( flags & SQLITE_OPEN_FULLMUTEX ){
2444     isThreadsafe = 1;
2445   }else{
2446     isThreadsafe = sqlite3GlobalConfig.bFullMutex;
2447   }
2448   if( flags & SQLITE_OPEN_PRIVATECACHE ){
2449     flags &= ~SQLITE_OPEN_SHAREDCACHE;
2450   }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
2451     flags |= SQLITE_OPEN_SHAREDCACHE;
2452   }
2453 
2454   /* Remove harmful bits from the flags parameter
2455   **
2456   ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
2457   ** dealt with in the previous code block.  Besides these, the only
2458   ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
2459   ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
2460   ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits.  Silently mask
2461   ** off all other flags.
2462   */
2463   flags &=  ~( SQLITE_OPEN_DELETEONCLOSE |
2464                SQLITE_OPEN_EXCLUSIVE |
2465                SQLITE_OPEN_MAIN_DB |
2466                SQLITE_OPEN_TEMP_DB |
2467                SQLITE_OPEN_TRANSIENT_DB |
2468                SQLITE_OPEN_MAIN_JOURNAL |
2469                SQLITE_OPEN_TEMP_JOURNAL |
2470                SQLITE_OPEN_SUBJOURNAL |
2471                SQLITE_OPEN_MASTER_JOURNAL |
2472                SQLITE_OPEN_NOMUTEX |
2473                SQLITE_OPEN_FULLMUTEX |
2474                SQLITE_OPEN_WAL
2475              );
2476 
2477   /* Allocate the sqlite data structure */
2478   db = sqlite3MallocZero( sizeof(sqlite3) );
2479   if( db==0 ) goto opendb_out;
2480   if( isThreadsafe ){
2481     db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
2482     if( db->mutex==0 ){
2483       sqlite3_free(db);
2484       db = 0;
2485       goto opendb_out;
2486     }
2487   }
2488   sqlite3_mutex_enter(db->mutex);
2489   db->errMask = 0xff;
2490   db->nDb = 2;
2491   db->magic = SQLITE_MAGIC_BUSY;
2492   db->aDb = db->aDbStatic;
2493 
2494   assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
2495   memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
2496   db->autoCommit = 1;
2497   db->nextAutovac = -1;
2498   db->szMmap = sqlite3GlobalConfig.szMmap;
2499   db->nextPagesize = 0;
2500   db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
2501 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
2502                  | SQLITE_AutoIndex
2503 #endif
2504 #if SQLITE_DEFAULT_FILE_FORMAT<4
2505                  | SQLITE_LegacyFileFmt
2506 #endif
2507 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
2508                  | SQLITE_LoadExtension
2509 #endif
2510 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
2511                  | SQLITE_RecTriggers
2512 #endif
2513 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
2514                  | SQLITE_ForeignKeys
2515 #endif
2516       ;
2517   sqlite3HashInit(&db->aCollSeq);
2518 #ifndef SQLITE_OMIT_VIRTUALTABLE
2519   sqlite3HashInit(&db->aModule);
2520 #endif
2521 
2522   /* Add the default collation sequence BINARY. BINARY works for both UTF-8
2523   ** and UTF-16, so add a version for each to avoid any unnecessary
2524   ** conversions. The only error that can occur here is a malloc() failure.
2525   */
2526   createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
2527   createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
2528   createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
2529   createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
2530   if( db->mallocFailed ){
2531     goto opendb_out;
2532   }
2533   db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
2534   assert( db->pDfltColl!=0 );
2535 
2536   /* Also add a UTF-8 case-insensitive collation sequence. */
2537   createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
2538 
2539   /* Parse the filename/URI argument. */
2540   db->openFlags = flags;
2541   rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
2542   if( rc!=SQLITE_OK ){
2543     if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
2544     sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
2545     sqlite3_free(zErrMsg);
2546     goto opendb_out;
2547   }
2548 
2549   /* Open the backend database driver */
2550   rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
2551                         flags | SQLITE_OPEN_MAIN_DB);
2552   if( rc!=SQLITE_OK ){
2553     if( rc==SQLITE_IOERR_NOMEM ){
2554       rc = SQLITE_NOMEM;
2555     }
2556     sqlite3Error(db, rc, 0);
2557     goto opendb_out;
2558   }
2559   db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
2560   db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
2561 
2562 
2563   /* The default safety_level for the main database is 'full'; for the temp
2564   ** database it is 'NONE'. This matches the pager layer defaults.
2565   */
2566   db->aDb[0].zName = "main";
2567   db->aDb[0].safety_level = 3;
2568   db->aDb[1].zName = "temp";
2569   db->aDb[1].safety_level = 1;
2570 
2571   db->magic = SQLITE_MAGIC_OPEN;
2572   if( db->mallocFailed ){
2573     goto opendb_out;
2574   }
2575 
2576   /* Register all built-in functions, but do not attempt to read the
2577   ** database schema yet. This is delayed until the first time the database
2578   ** is accessed.
2579   */
2580   sqlite3Error(db, SQLITE_OK, 0);
2581   sqlite3RegisterBuiltinFunctions(db);
2582 
2583   /* Load automatic extensions - extensions that have been registered
2584   ** using the sqlite3_automatic_extension() API.
2585   */
2586   rc = sqlite3_errcode(db);
2587   if( rc==SQLITE_OK ){
2588     sqlite3AutoLoadExtensions(db);
2589     rc = sqlite3_errcode(db);
2590     if( rc!=SQLITE_OK ){
2591       goto opendb_out;
2592     }
2593   }
2594 
2595 #ifdef SQLITE_ENABLE_FTS1
2596   if( !db->mallocFailed ){
2597     extern int sqlite3Fts1Init(sqlite3*);
2598     rc = sqlite3Fts1Init(db);
2599   }
2600 #endif
2601 
2602 #ifdef SQLITE_ENABLE_FTS2
2603   if( !db->mallocFailed && rc==SQLITE_OK ){
2604     extern int sqlite3Fts2Init(sqlite3*);
2605     rc = sqlite3Fts2Init(db);
2606   }
2607 #endif
2608 
2609 #ifdef SQLITE_ENABLE_FTS3
2610   if( !db->mallocFailed && rc==SQLITE_OK ){
2611     rc = sqlite3Fts3Init(db);
2612   }
2613 #endif
2614 
2615 #ifdef SQLITE_ENABLE_ICU
2616   if( !db->mallocFailed && rc==SQLITE_OK ){
2617     rc = sqlite3IcuInit(db);
2618   }
2619 #endif
2620 
2621 #ifdef SQLITE_ENABLE_RTREE
2622   if( !db->mallocFailed && rc==SQLITE_OK){
2623     rc = sqlite3RtreeInit(db);
2624   }
2625 #endif
2626 
2627   /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
2628   ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
2629   ** mode.  Doing nothing at all also makes NORMAL the default.
2630   */
2631 #ifdef SQLITE_DEFAULT_LOCKING_MODE
2632   db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
2633   sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
2634                           SQLITE_DEFAULT_LOCKING_MODE);
2635 #endif
2636 
2637   if( rc ) sqlite3Error(db, rc, 0);
2638 
2639   /* Enable the lookaside-malloc subsystem */
2640   setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
2641                         sqlite3GlobalConfig.nLookaside);
2642 
2643   sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
2644 
2645 opendb_out:
2646   sqlite3_free(zOpen);
2647   if( db ){
2648     assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
2649     sqlite3_mutex_leave(db->mutex);
2650   }
2651   rc = sqlite3_errcode(db);
2652   assert( db!=0 || rc==SQLITE_NOMEM );
2653   if( rc==SQLITE_NOMEM ){
2654     sqlite3_close(db);
2655     db = 0;
2656   }else if( rc!=SQLITE_OK ){
2657     db->magic = SQLITE_MAGIC_SICK;
2658   }
2659   *ppDb = db;
2660 #ifdef SQLITE_ENABLE_SQLLOG
2661   if( sqlite3GlobalConfig.xSqllog ){
2662     /* Opening a db handle. Fourth parameter is passed 0. */
2663     void *pArg = sqlite3GlobalConfig.pSqllogArg;
2664     sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
2665   }
2666 #endif
2667   return sqlite3ApiExit(0, rc);
2668 }
2669 
2670 /*
2671 ** Open a new database handle.
2672 */
2673 int sqlite3_open(
2674   const char *zFilename,
2675   sqlite3 **ppDb
2676 ){
2677   return openDatabase(zFilename, ppDb,
2678                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2679 }
2680 int sqlite3_open_v2(
2681   const char *filename,   /* Database filename (UTF-8) */
2682   sqlite3 **ppDb,         /* OUT: SQLite db handle */
2683   int flags,              /* Flags */
2684   const char *zVfs        /* Name of VFS module to use */
2685 ){
2686   return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
2687 }
2688 
2689 #ifndef SQLITE_OMIT_UTF16
2690 /*
2691 ** Open a new database handle.
2692 */
2693 int sqlite3_open16(
2694   const void *zFilename,
2695   sqlite3 **ppDb
2696 ){
2697   char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
2698   sqlite3_value *pVal;
2699   int rc;
2700 
2701   assert( zFilename );
2702   assert( ppDb );
2703   *ppDb = 0;
2704 #ifndef SQLITE_OMIT_AUTOINIT
2705   rc = sqlite3_initialize();
2706   if( rc ) return rc;
2707 #endif
2708   pVal = sqlite3ValueNew(0);
2709   sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
2710   zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
2711   if( zFilename8 ){
2712     rc = openDatabase(zFilename8, ppDb,
2713                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2714     assert( *ppDb || rc==SQLITE_NOMEM );
2715     if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
2716       ENC(*ppDb) = SQLITE_UTF16NATIVE;
2717     }
2718   }else{
2719     rc = SQLITE_NOMEM;
2720   }
2721   sqlite3ValueFree(pVal);
2722 
2723   return sqlite3ApiExit(0, rc);
2724 }
2725 #endif /* SQLITE_OMIT_UTF16 */
2726 
2727 /*
2728 ** Register a new collation sequence with the database handle db.
2729 */
2730 int sqlite3_create_collation(
2731   sqlite3* db,
2732   const char *zName,
2733   int enc,
2734   void* pCtx,
2735   int(*xCompare)(void*,int,const void*,int,const void*)
2736 ){
2737   int rc;
2738   sqlite3_mutex_enter(db->mutex);
2739   assert( !db->mallocFailed );
2740   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
2741   rc = sqlite3ApiExit(db, rc);
2742   sqlite3_mutex_leave(db->mutex);
2743   return rc;
2744 }
2745 
2746 /*
2747 ** Register a new collation sequence with the database handle db.
2748 */
2749 int sqlite3_create_collation_v2(
2750   sqlite3* db,
2751   const char *zName,
2752   int enc,
2753   void* pCtx,
2754   int(*xCompare)(void*,int,const void*,int,const void*),
2755   void(*xDel)(void*)
2756 ){
2757   int rc;
2758   sqlite3_mutex_enter(db->mutex);
2759   assert( !db->mallocFailed );
2760   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
2761   rc = sqlite3ApiExit(db, rc);
2762   sqlite3_mutex_leave(db->mutex);
2763   return rc;
2764 }
2765 
2766 #ifndef SQLITE_OMIT_UTF16
2767 /*
2768 ** Register a new collation sequence with the database handle db.
2769 */
2770 int sqlite3_create_collation16(
2771   sqlite3* db,
2772   const void *zName,
2773   int enc,
2774   void* pCtx,
2775   int(*xCompare)(void*,int,const void*,int,const void*)
2776 ){
2777   int rc = SQLITE_OK;
2778   char *zName8;
2779   sqlite3_mutex_enter(db->mutex);
2780   assert( !db->mallocFailed );
2781   zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
2782   if( zName8 ){
2783     rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
2784     sqlite3DbFree(db, zName8);
2785   }
2786   rc = sqlite3ApiExit(db, rc);
2787   sqlite3_mutex_leave(db->mutex);
2788   return rc;
2789 }
2790 #endif /* SQLITE_OMIT_UTF16 */
2791 
2792 /*
2793 ** Register a collation sequence factory callback with the database handle
2794 ** db. Replace any previously installed collation sequence factory.
2795 */
2796 int sqlite3_collation_needed(
2797   sqlite3 *db,
2798   void *pCollNeededArg,
2799   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
2800 ){
2801   sqlite3_mutex_enter(db->mutex);
2802   db->xCollNeeded = xCollNeeded;
2803   db->xCollNeeded16 = 0;
2804   db->pCollNeededArg = pCollNeededArg;
2805   sqlite3_mutex_leave(db->mutex);
2806   return SQLITE_OK;
2807 }
2808 
2809 #ifndef SQLITE_OMIT_UTF16
2810 /*
2811 ** Register a collation sequence factory callback with the database handle
2812 ** db. Replace any previously installed collation sequence factory.
2813 */
2814 int sqlite3_collation_needed16(
2815   sqlite3 *db,
2816   void *pCollNeededArg,
2817   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
2818 ){
2819   sqlite3_mutex_enter(db->mutex);
2820   db->xCollNeeded = 0;
2821   db->xCollNeeded16 = xCollNeeded16;
2822   db->pCollNeededArg = pCollNeededArg;
2823   sqlite3_mutex_leave(db->mutex);
2824   return SQLITE_OK;
2825 }
2826 #endif /* SQLITE_OMIT_UTF16 */
2827 
2828 #ifndef SQLITE_OMIT_DEPRECATED
2829 /*
2830 ** This function is now an anachronism. It used to be used to recover from a
2831 ** malloc() failure, but SQLite now does this automatically.
2832 */
2833 int sqlite3_global_recover(void){
2834   return SQLITE_OK;
2835 }
2836 #endif
2837 
2838 /*
2839 ** Test to see whether or not the database connection is in autocommit
2840 ** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
2841 ** by default.  Autocommit is disabled by a BEGIN statement and reenabled
2842 ** by the next COMMIT or ROLLBACK.
2843 */
2844 int sqlite3_get_autocommit(sqlite3 *db){
2845   return db->autoCommit;
2846 }
2847 
2848 /*
2849 ** The following routines are subtitutes for constants SQLITE_CORRUPT,
2850 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
2851 ** constants.  They server two purposes:
2852 **
2853 **   1.  Serve as a convenient place to set a breakpoint in a debugger
2854 **       to detect when version error conditions occurs.
2855 **
2856 **   2.  Invoke sqlite3_log() to provide the source code location where
2857 **       a low-level error is first detected.
2858 */
2859 int sqlite3CorruptError(int lineno){
2860   testcase( sqlite3GlobalConfig.xLog!=0 );
2861   sqlite3_log(SQLITE_CORRUPT,
2862               "database corruption at line %d of [%.10s]",
2863               lineno, 20+sqlite3_sourceid());
2864   return SQLITE_CORRUPT;
2865 }
2866 int sqlite3MisuseError(int lineno){
2867   testcase( sqlite3GlobalConfig.xLog!=0 );
2868   sqlite3_log(SQLITE_MISUSE,
2869               "misuse at line %d of [%.10s]",
2870               lineno, 20+sqlite3_sourceid());
2871   return SQLITE_MISUSE;
2872 }
2873 int sqlite3CantopenError(int lineno){
2874   testcase( sqlite3GlobalConfig.xLog!=0 );
2875   sqlite3_log(SQLITE_CANTOPEN,
2876               "cannot open file at line %d of [%.10s]",
2877               lineno, 20+sqlite3_sourceid());
2878   return SQLITE_CANTOPEN;
2879 }
2880 
2881 
2882 #ifndef SQLITE_OMIT_DEPRECATED
2883 /*
2884 ** This is a convenience routine that makes sure that all thread-specific
2885 ** data for this thread has been deallocated.
2886 **
2887 ** SQLite no longer uses thread-specific data so this routine is now a
2888 ** no-op.  It is retained for historical compatibility.
2889 */
2890 void sqlite3_thread_cleanup(void){
2891 }
2892 #endif
2893 
2894 /*
2895 ** Return meta information about a specific column of a database table.
2896 ** See comment in sqlite3.h (sqlite.h.in) for details.
2897 */
2898 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2899 int sqlite3_table_column_metadata(
2900   sqlite3 *db,                /* Connection handle */
2901   const char *zDbName,        /* Database name or NULL */
2902   const char *zTableName,     /* Table name */
2903   const char *zColumnName,    /* Column name */
2904   char const **pzDataType,    /* OUTPUT: Declared data type */
2905   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
2906   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
2907   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
2908   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
2909 ){
2910   int rc;
2911   char *zErrMsg = 0;
2912   Table *pTab = 0;
2913   Column *pCol = 0;
2914   int iCol;
2915 
2916   char const *zDataType = 0;
2917   char const *zCollSeq = 0;
2918   int notnull = 0;
2919   int primarykey = 0;
2920   int autoinc = 0;
2921 
2922   /* Ensure the database schema has been loaded */
2923   sqlite3_mutex_enter(db->mutex);
2924   sqlite3BtreeEnterAll(db);
2925   rc = sqlite3Init(db, &zErrMsg);
2926   if( SQLITE_OK!=rc ){
2927     goto error_out;
2928   }
2929 
2930   /* Locate the table in question */
2931   pTab = sqlite3FindTable(db, zTableName, zDbName);
2932   if( !pTab || pTab->pSelect ){
2933     pTab = 0;
2934     goto error_out;
2935   }
2936 
2937   /* Find the column for which info is requested */
2938   if( sqlite3IsRowid(zColumnName) ){
2939     iCol = pTab->iPKey;
2940     if( iCol>=0 ){
2941       pCol = &pTab->aCol[iCol];
2942     }
2943   }else{
2944     for(iCol=0; iCol<pTab->nCol; iCol++){
2945       pCol = &pTab->aCol[iCol];
2946       if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
2947         break;
2948       }
2949     }
2950     if( iCol==pTab->nCol ){
2951       pTab = 0;
2952       goto error_out;
2953     }
2954   }
2955 
2956   /* The following block stores the meta information that will be returned
2957   ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
2958   ** and autoinc. At this point there are two possibilities:
2959   **
2960   **     1. The specified column name was rowid", "oid" or "_rowid_"
2961   **        and there is no explicitly declared IPK column.
2962   **
2963   **     2. The table is not a view and the column name identified an
2964   **        explicitly declared column. Copy meta information from *pCol.
2965   */
2966   if( pCol ){
2967     zDataType = pCol->zType;
2968     zCollSeq = pCol->zColl;
2969     notnull = pCol->notNull!=0;
2970     primarykey  = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
2971     autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
2972   }else{
2973     zDataType = "INTEGER";
2974     primarykey = 1;
2975   }
2976   if( !zCollSeq ){
2977     zCollSeq = "BINARY";
2978   }
2979 
2980 error_out:
2981   sqlite3BtreeLeaveAll(db);
2982 
2983   /* Whether the function call succeeded or failed, set the output parameters
2984   ** to whatever their local counterparts contain. If an error did occur,
2985   ** this has the effect of zeroing all output parameters.
2986   */
2987   if( pzDataType ) *pzDataType = zDataType;
2988   if( pzCollSeq ) *pzCollSeq = zCollSeq;
2989   if( pNotNull ) *pNotNull = notnull;
2990   if( pPrimaryKey ) *pPrimaryKey = primarykey;
2991   if( pAutoinc ) *pAutoinc = autoinc;
2992 
2993   if( SQLITE_OK==rc && !pTab ){
2994     sqlite3DbFree(db, zErrMsg);
2995     zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
2996         zColumnName);
2997     rc = SQLITE_ERROR;
2998   }
2999   sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
3000   sqlite3DbFree(db, zErrMsg);
3001   rc = sqlite3ApiExit(db, rc);
3002   sqlite3_mutex_leave(db->mutex);
3003   return rc;
3004 }
3005 #endif
3006 
3007 /*
3008 ** Sleep for a little while.  Return the amount of time slept.
3009 */
3010 int sqlite3_sleep(int ms){
3011   sqlite3_vfs *pVfs;
3012   int rc;
3013   pVfs = sqlite3_vfs_find(0);
3014   if( pVfs==0 ) return 0;
3015 
3016   /* This function works in milliseconds, but the underlying OsSleep()
3017   ** API uses microseconds. Hence the 1000's.
3018   */
3019   rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
3020   return rc;
3021 }
3022 
3023 /*
3024 ** Enable or disable the extended result codes.
3025 */
3026 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
3027   sqlite3_mutex_enter(db->mutex);
3028   db->errMask = onoff ? 0xffffffff : 0xff;
3029   sqlite3_mutex_leave(db->mutex);
3030   return SQLITE_OK;
3031 }
3032 
3033 /*
3034 ** Invoke the xFileControl method on a particular database.
3035 */
3036 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
3037   int rc = SQLITE_ERROR;
3038   Btree *pBtree;
3039 
3040   sqlite3_mutex_enter(db->mutex);
3041   pBtree = sqlite3DbNameToBtree(db, zDbName);
3042   if( pBtree ){
3043     Pager *pPager;
3044     sqlite3_file *fd;
3045     sqlite3BtreeEnter(pBtree);
3046     pPager = sqlite3BtreePager(pBtree);
3047     assert( pPager!=0 );
3048     fd = sqlite3PagerFile(pPager);
3049     assert( fd!=0 );
3050     if( op==SQLITE_FCNTL_FILE_POINTER ){
3051       *(sqlite3_file**)pArg = fd;
3052       rc = SQLITE_OK;
3053     }else if( fd->pMethods ){
3054       rc = sqlite3OsFileControl(fd, op, pArg);
3055     }else{
3056       rc = SQLITE_NOTFOUND;
3057     }
3058     sqlite3BtreeLeave(pBtree);
3059   }
3060   sqlite3_mutex_leave(db->mutex);
3061   return rc;
3062 }
3063 
3064 /*
3065 ** Interface to the testing logic.
3066 */
3067 int sqlite3_test_control(int op, ...){
3068   int rc = 0;
3069 #ifndef SQLITE_OMIT_BUILTIN_TEST
3070   va_list ap;
3071   va_start(ap, op);
3072   switch( op ){
3073 
3074     /*
3075     ** Save the current state of the PRNG.
3076     */
3077     case SQLITE_TESTCTRL_PRNG_SAVE: {
3078       sqlite3PrngSaveState();
3079       break;
3080     }
3081 
3082     /*
3083     ** Restore the state of the PRNG to the last state saved using
3084     ** PRNG_SAVE.  If PRNG_SAVE has never before been called, then
3085     ** this verb acts like PRNG_RESET.
3086     */
3087     case SQLITE_TESTCTRL_PRNG_RESTORE: {
3088       sqlite3PrngRestoreState();
3089       break;
3090     }
3091 
3092     /*
3093     ** Reset the PRNG back to its uninitialized state.  The next call
3094     ** to sqlite3_randomness() will reseed the PRNG using a single call
3095     ** to the xRandomness method of the default VFS.
3096     */
3097     case SQLITE_TESTCTRL_PRNG_RESET: {
3098       sqlite3_randomness(0,0);
3099       break;
3100     }
3101 
3102     /*
3103     **  sqlite3_test_control(BITVEC_TEST, size, program)
3104     **
3105     ** Run a test against a Bitvec object of size.  The program argument
3106     ** is an array of integers that defines the test.  Return -1 on a
3107     ** memory allocation error, 0 on success, or non-zero for an error.
3108     ** See the sqlite3BitvecBuiltinTest() for additional information.
3109     */
3110     case SQLITE_TESTCTRL_BITVEC_TEST: {
3111       int sz = va_arg(ap, int);
3112       int *aProg = va_arg(ap, int*);
3113       rc = sqlite3BitvecBuiltinTest(sz, aProg);
3114       break;
3115     }
3116 
3117     /*
3118     **  sqlite3_test_control(FAULT_INSTALL, xCallback)
3119     **
3120     ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
3121     ** if xCallback is not NULL.
3122     **
3123     ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
3124     ** is called immediately after installing the new callback and the return
3125     ** value from sqlite3FaultSim(0) becomes the return from
3126     ** sqlite3_test_control().
3127     */
3128     case SQLITE_TESTCTRL_FAULT_INSTALL: {
3129       /* MSVC is picky about pulling func ptrs from va lists.
3130       ** http://support.microsoft.com/kb/47961
3131       ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int));
3132       */
3133       typedef int(*TESTCALLBACKFUNC_t)(int);
3134       sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t);
3135       rc = sqlite3FaultSim(0);
3136       break;
3137     }
3138 
3139     /*
3140     **  sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
3141     **
3142     ** Register hooks to call to indicate which malloc() failures
3143     ** are benign.
3144     */
3145     case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
3146       typedef void (*void_function)(void);
3147       void_function xBenignBegin;
3148       void_function xBenignEnd;
3149       xBenignBegin = va_arg(ap, void_function);
3150       xBenignEnd = va_arg(ap, void_function);
3151       sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
3152       break;
3153     }
3154 
3155     /*
3156     **  sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
3157     **
3158     ** Set the PENDING byte to the value in the argument, if X>0.
3159     ** Make no changes if X==0.  Return the value of the pending byte
3160     ** as it existing before this routine was called.
3161     **
3162     ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
3163     ** an incompatible database file format.  Changing the PENDING byte
3164     ** while any database connection is open results in undefined and
3165     ** dileterious behavior.
3166     */
3167     case SQLITE_TESTCTRL_PENDING_BYTE: {
3168       rc = PENDING_BYTE;
3169 #ifndef SQLITE_OMIT_WSD
3170       {
3171         unsigned int newVal = va_arg(ap, unsigned int);
3172         if( newVal ) sqlite3PendingByte = newVal;
3173       }
3174 #endif
3175       break;
3176     }
3177 
3178     /*
3179     **  sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
3180     **
3181     ** This action provides a run-time test to see whether or not
3182     ** assert() was enabled at compile-time.  If X is true and assert()
3183     ** is enabled, then the return value is true.  If X is true and
3184     ** assert() is disabled, then the return value is zero.  If X is
3185     ** false and assert() is enabled, then the assertion fires and the
3186     ** process aborts.  If X is false and assert() is disabled, then the
3187     ** return value is zero.
3188     */
3189     case SQLITE_TESTCTRL_ASSERT: {
3190       volatile int x = 0;
3191       assert( (x = va_arg(ap,int))!=0 );
3192       rc = x;
3193       break;
3194     }
3195 
3196 
3197     /*
3198     **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
3199     **
3200     ** This action provides a run-time test to see how the ALWAYS and
3201     ** NEVER macros were defined at compile-time.
3202     **
3203     ** The return value is ALWAYS(X).
3204     **
3205     ** The recommended test is X==2.  If the return value is 2, that means
3206     ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
3207     ** default setting.  If the return value is 1, then ALWAYS() is either
3208     ** hard-coded to true or else it asserts if its argument is false.
3209     ** The first behavior (hard-coded to true) is the case if
3210     ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
3211     ** behavior (assert if the argument to ALWAYS() is false) is the case if
3212     ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
3213     **
3214     ** The run-time test procedure might look something like this:
3215     **
3216     **    if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
3217     **      // ALWAYS() and NEVER() are no-op pass-through macros
3218     **    }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
3219     **      // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
3220     **    }else{
3221     **      // ALWAYS(x) is a constant 1.  NEVER(x) is a constant 0.
3222     **    }
3223     */
3224     case SQLITE_TESTCTRL_ALWAYS: {
3225       int x = va_arg(ap,int);
3226       rc = ALWAYS(x);
3227       break;
3228     }
3229 
3230     /*
3231     **   sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
3232     **
3233     ** The integer returned reveals the byte-order of the computer on which
3234     ** SQLite is running:
3235     **
3236     **       1     big-endian,    determined at run-time
3237     **      10     little-endian, determined at run-time
3238     **  432101     big-endian,    determined at compile-time
3239     **  123410     little-endian, determined at compile-time
3240     */
3241     case SQLITE_TESTCTRL_BYTEORDER: {
3242       rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
3243       break;
3244     }
3245 
3246     /*   sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
3247     **
3248     ** Set the nReserve size to N for the main database on the database
3249     ** connection db.
3250     */
3251     case SQLITE_TESTCTRL_RESERVE: {
3252       sqlite3 *db = va_arg(ap, sqlite3*);
3253       int x = va_arg(ap,int);
3254       sqlite3_mutex_enter(db->mutex);
3255       sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
3256       sqlite3_mutex_leave(db->mutex);
3257       break;
3258     }
3259 
3260     /*  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
3261     **
3262     ** Enable or disable various optimizations for testing purposes.  The
3263     ** argument N is a bitmask of optimizations to be disabled.  For normal
3264     ** operation N should be 0.  The idea is that a test program (like the
3265     ** SQL Logic Test or SLT test module) can run the same SQL multiple times
3266     ** with various optimizations disabled to verify that the same answer
3267     ** is obtained in every case.
3268     */
3269     case SQLITE_TESTCTRL_OPTIMIZATIONS: {
3270       sqlite3 *db = va_arg(ap, sqlite3*);
3271       db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
3272       break;
3273     }
3274 
3275 #ifdef SQLITE_N_KEYWORD
3276     /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
3277     **
3278     ** If zWord is a keyword recognized by the parser, then return the
3279     ** number of keywords.  Or if zWord is not a keyword, return 0.
3280     **
3281     ** This test feature is only available in the amalgamation since
3282     ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
3283     ** is built using separate source files.
3284     */
3285     case SQLITE_TESTCTRL_ISKEYWORD: {
3286       const char *zWord = va_arg(ap, const char*);
3287       int n = sqlite3Strlen30(zWord);
3288       rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
3289       break;
3290     }
3291 #endif
3292 
3293     /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
3294     **
3295     ** Pass pFree into sqlite3ScratchFree().
3296     ** If sz>0 then allocate a scratch buffer into pNew.
3297     */
3298     case SQLITE_TESTCTRL_SCRATCHMALLOC: {
3299       void *pFree, **ppNew;
3300       int sz;
3301       sz = va_arg(ap, int);
3302       ppNew = va_arg(ap, void**);
3303       pFree = va_arg(ap, void*);
3304       if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
3305       sqlite3ScratchFree(pFree);
3306       break;
3307     }
3308 
3309     /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
3310     **
3311     ** If parameter onoff is non-zero, configure the wrappers so that all
3312     ** subsequent calls to localtime() and variants fail. If onoff is zero,
3313     ** undo this setting.
3314     */
3315     case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
3316       sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
3317       break;
3318     }
3319 
3320 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3321     /*   sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
3322     **                        sqlite3_stmt*,const char**);
3323     **
3324     ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
3325     ** a string that describes the optimized parse tree.  This test-control
3326     ** returns a pointer to that string.
3327     */
3328     case SQLITE_TESTCTRL_EXPLAIN_STMT: {
3329       sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
3330       const char **pzRet = va_arg(ap, const char**);
3331       *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
3332       break;
3333     }
3334 #endif
3335 
3336     /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
3337     **
3338     ** Set or clear a flag that indicates that the database file is always well-
3339     ** formed and never corrupt.  This flag is clear by default, indicating that
3340     ** database files might have arbitrary corruption.  Setting the flag during
3341     ** testing causes certain assert() statements in the code to be activated
3342     ** that demonstrat invariants on well-formed database files.
3343     */
3344     case SQLITE_TESTCTRL_NEVER_CORRUPT: {
3345       sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
3346       break;
3347     }
3348 
3349 
3350     /*   sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
3351     **
3352     ** Set the VDBE coverage callback function to xCallback with context
3353     ** pointer ptr.
3354     */
3355     case SQLITE_TESTCTRL_VDBE_COVERAGE: {
3356 #ifdef SQLITE_VDBE_COVERAGE
3357       typedef void (*branch_callback)(void*,int,u8,u8);
3358       sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
3359       sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
3360 #endif
3361       break;
3362     }
3363 
3364     /*   sqlite3_test_control(SQLITE_TESTCTRL_ISINIT);
3365     **
3366     ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
3367     ** not.
3368     */
3369     case SQLITE_TESTCTRL_ISINIT: {
3370       if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
3371       break;
3372     }
3373 
3374   }
3375   va_end(ap);
3376 #endif /* SQLITE_OMIT_BUILTIN_TEST */
3377   return rc;
3378 }
3379 
3380 /*
3381 ** This is a utility routine, useful to VFS implementations, that checks
3382 ** to see if a database file was a URI that contained a specific query
3383 ** parameter, and if so obtains the value of the query parameter.
3384 **
3385 ** The zFilename argument is the filename pointer passed into the xOpen()
3386 ** method of a VFS implementation.  The zParam argument is the name of the
3387 ** query parameter we seek.  This routine returns the value of the zParam
3388 ** parameter if it exists.  If the parameter does not exist, this routine
3389 ** returns a NULL pointer.
3390 */
3391 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
3392   if( zFilename==0 ) return 0;
3393   zFilename += sqlite3Strlen30(zFilename) + 1;
3394   while( zFilename[0] ){
3395     int x = strcmp(zFilename, zParam);
3396     zFilename += sqlite3Strlen30(zFilename) + 1;
3397     if( x==0 ) return zFilename;
3398     zFilename += sqlite3Strlen30(zFilename) + 1;
3399   }
3400   return 0;
3401 }
3402 
3403 /*
3404 ** Return a boolean value for a query parameter.
3405 */
3406 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
3407   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3408   bDflt = bDflt!=0;
3409   return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
3410 }
3411 
3412 /*
3413 ** Return a 64-bit integer value for a query parameter.
3414 */
3415 sqlite3_int64 sqlite3_uri_int64(
3416   const char *zFilename,    /* Filename as passed to xOpen */
3417   const char *zParam,       /* URI parameter sought */
3418   sqlite3_int64 bDflt       /* return if parameter is missing */
3419 ){
3420   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3421   sqlite3_int64 v;
3422   if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){
3423     bDflt = v;
3424   }
3425   return bDflt;
3426 }
3427 
3428 /*
3429 ** Return the Btree pointer identified by zDbName.  Return NULL if not found.
3430 */
3431 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
3432   int i;
3433   for(i=0; i<db->nDb; i++){
3434     if( db->aDb[i].pBt
3435      && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0)
3436     ){
3437       return db->aDb[i].pBt;
3438     }
3439   }
3440   return 0;
3441 }
3442 
3443 /*
3444 ** Return the filename of the database associated with a database
3445 ** connection.
3446 */
3447 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
3448   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3449   return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
3450 }
3451 
3452 /*
3453 ** Return 1 if database is read-only or 0 if read/write.  Return -1 if
3454 ** no such database exists.
3455 */
3456 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
3457   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3458   return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
3459 }
3460