1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 /* 59 ** When compiling the test fixture or with debugging enabled (on Win32), 60 ** this variable being set to non-zero will cause OSTRACE macros to emit 61 ** extra diagnostic information. 62 */ 63 #ifdef SQLITE_HAVE_OS_TRACE 64 # ifndef SQLITE_DEBUG_OS_TRACE 65 # define SQLITE_DEBUG_OS_TRACE 0 66 # endif 67 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 68 #endif 69 70 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 71 /* 72 ** If the following function pointer is not NULL and if 73 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 74 ** I/O active are written using this function. These messages 75 ** are intended for debugging activity only. 76 */ 77 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 78 #endif 79 80 /* 81 ** If the following global variable points to a string which is the 82 ** name of a directory, then that directory will be used to store 83 ** temporary files. 84 ** 85 ** See also the "PRAGMA temp_store_directory" SQL command. 86 */ 87 char *sqlite3_temp_directory = 0; 88 89 /* 90 ** If the following global variable points to a string which is the 91 ** name of a directory, then that directory will be used to store 92 ** all database files specified with a relative pathname. 93 ** 94 ** See also the "PRAGMA data_store_directory" SQL command. 95 */ 96 char *sqlite3_data_directory = 0; 97 98 /* 99 ** Initialize SQLite. 100 ** 101 ** This routine must be called to initialize the memory allocation, 102 ** VFS, and mutex subsystems prior to doing any serious work with 103 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 104 ** this routine will be called automatically by key routines such as 105 ** sqlite3_open(). 106 ** 107 ** This routine is a no-op except on its very first call for the process, 108 ** or for the first call after a call to sqlite3_shutdown. 109 ** 110 ** The first thread to call this routine runs the initialization to 111 ** completion. If subsequent threads call this routine before the first 112 ** thread has finished the initialization process, then the subsequent 113 ** threads must block until the first thread finishes with the initialization. 114 ** 115 ** The first thread might call this routine recursively. Recursive 116 ** calls to this routine should not block, of course. Otherwise the 117 ** initialization process would never complete. 118 ** 119 ** Let X be the first thread to enter this routine. Let Y be some other 120 ** thread. Then while the initial invocation of this routine by X is 121 ** incomplete, it is required that: 122 ** 123 ** * Calls to this routine from Y must block until the outer-most 124 ** call by X completes. 125 ** 126 ** * Recursive calls to this routine from thread X return immediately 127 ** without blocking. 128 */ 129 int sqlite3_initialize(void){ 130 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 131 int rc; /* Result code */ 132 #ifdef SQLITE_EXTRA_INIT 133 int bRunExtraInit = 0; /* Extra initialization needed */ 134 #endif 135 136 #ifdef SQLITE_OMIT_WSD 137 rc = sqlite3_wsd_init(4096, 24); 138 if( rc!=SQLITE_OK ){ 139 return rc; 140 } 141 #endif 142 143 /* If the following assert() fails on some obscure processor/compiler 144 ** combination, the work-around is to set the correct pointer 145 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 146 assert( SQLITE_PTRSIZE==sizeof(char*) ); 147 148 /* If SQLite is already completely initialized, then this call 149 ** to sqlite3_initialize() should be a no-op. But the initialization 150 ** must be complete. So isInit must not be set until the very end 151 ** of this routine. 152 */ 153 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 154 155 /* Make sure the mutex subsystem is initialized. If unable to 156 ** initialize the mutex subsystem, return early with the error. 157 ** If the system is so sick that we are unable to allocate a mutex, 158 ** there is not much SQLite is going to be able to do. 159 ** 160 ** The mutex subsystem must take care of serializing its own 161 ** initialization. 162 */ 163 rc = sqlite3MutexInit(); 164 if( rc ) return rc; 165 166 /* Initialize the malloc() system and the recursive pInitMutex mutex. 167 ** This operation is protected by the STATIC_MASTER mutex. Note that 168 ** MutexAlloc() is called for a static mutex prior to initializing the 169 ** malloc subsystem - this implies that the allocation of a static 170 ** mutex must not require support from the malloc subsystem. 171 */ 172 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 173 sqlite3_mutex_enter(pMaster); 174 sqlite3GlobalConfig.isMutexInit = 1; 175 if( !sqlite3GlobalConfig.isMallocInit ){ 176 rc = sqlite3MallocInit(); 177 } 178 if( rc==SQLITE_OK ){ 179 sqlite3GlobalConfig.isMallocInit = 1; 180 if( !sqlite3GlobalConfig.pInitMutex ){ 181 sqlite3GlobalConfig.pInitMutex = 182 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 183 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 184 rc = SQLITE_NOMEM; 185 } 186 } 187 } 188 if( rc==SQLITE_OK ){ 189 sqlite3GlobalConfig.nRefInitMutex++; 190 } 191 sqlite3_mutex_leave(pMaster); 192 193 /* If rc is not SQLITE_OK at this point, then either the malloc 194 ** subsystem could not be initialized or the system failed to allocate 195 ** the pInitMutex mutex. Return an error in either case. */ 196 if( rc!=SQLITE_OK ){ 197 return rc; 198 } 199 200 /* Do the rest of the initialization under the recursive mutex so 201 ** that we will be able to handle recursive calls into 202 ** sqlite3_initialize(). The recursive calls normally come through 203 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 204 ** recursive calls might also be possible. 205 ** 206 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 207 ** to the xInit method, so the xInit method need not be threadsafe. 208 ** 209 ** The following mutex is what serializes access to the appdef pcache xInit 210 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 211 ** call to sqlite3PcacheInitialize(). 212 */ 213 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 214 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 215 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 216 sqlite3GlobalConfig.inProgress = 1; 217 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 218 sqlite3RegisterGlobalFunctions(); 219 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 220 rc = sqlite3PcacheInitialize(); 221 } 222 if( rc==SQLITE_OK ){ 223 sqlite3GlobalConfig.isPCacheInit = 1; 224 rc = sqlite3OsInit(); 225 } 226 if( rc==SQLITE_OK ){ 227 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 228 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 229 sqlite3GlobalConfig.isInit = 1; 230 #ifdef SQLITE_EXTRA_INIT 231 bRunExtraInit = 1; 232 #endif 233 } 234 sqlite3GlobalConfig.inProgress = 0; 235 } 236 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 237 238 /* Go back under the static mutex and clean up the recursive 239 ** mutex to prevent a resource leak. 240 */ 241 sqlite3_mutex_enter(pMaster); 242 sqlite3GlobalConfig.nRefInitMutex--; 243 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 244 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 245 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 246 sqlite3GlobalConfig.pInitMutex = 0; 247 } 248 sqlite3_mutex_leave(pMaster); 249 250 /* The following is just a sanity check to make sure SQLite has 251 ** been compiled correctly. It is important to run this code, but 252 ** we don't want to run it too often and soak up CPU cycles for no 253 ** reason. So we run it once during initialization. 254 */ 255 #ifndef NDEBUG 256 #ifndef SQLITE_OMIT_FLOATING_POINT 257 /* This section of code's only "output" is via assert() statements. */ 258 if ( rc==SQLITE_OK ){ 259 u64 x = (((u64)1)<<63)-1; 260 double y; 261 assert(sizeof(x)==8); 262 assert(sizeof(x)==sizeof(y)); 263 memcpy(&y, &x, 8); 264 assert( sqlite3IsNaN(y) ); 265 } 266 #endif 267 #endif 268 269 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 270 ** compile-time option. 271 */ 272 #ifdef SQLITE_EXTRA_INIT 273 if( bRunExtraInit ){ 274 int SQLITE_EXTRA_INIT(const char*); 275 rc = SQLITE_EXTRA_INIT(0); 276 } 277 #endif 278 279 return rc; 280 } 281 282 /* 283 ** Undo the effects of sqlite3_initialize(). Must not be called while 284 ** there are outstanding database connections or memory allocations or 285 ** while any part of SQLite is otherwise in use in any thread. This 286 ** routine is not threadsafe. But it is safe to invoke this routine 287 ** on when SQLite is already shut down. If SQLite is already shut down 288 ** when this routine is invoked, then this routine is a harmless no-op. 289 */ 290 int sqlite3_shutdown(void){ 291 #ifdef SQLITE_OMIT_WSD 292 int rc = sqlite3_wsd_init(4096, 24); 293 if( rc!=SQLITE_OK ){ 294 return rc; 295 } 296 #endif 297 298 if( sqlite3GlobalConfig.isInit ){ 299 #ifdef SQLITE_EXTRA_SHUTDOWN 300 void SQLITE_EXTRA_SHUTDOWN(void); 301 SQLITE_EXTRA_SHUTDOWN(); 302 #endif 303 sqlite3_os_end(); 304 sqlite3_reset_auto_extension(); 305 sqlite3GlobalConfig.isInit = 0; 306 } 307 if( sqlite3GlobalConfig.isPCacheInit ){ 308 sqlite3PcacheShutdown(); 309 sqlite3GlobalConfig.isPCacheInit = 0; 310 } 311 if( sqlite3GlobalConfig.isMallocInit ){ 312 sqlite3MallocEnd(); 313 sqlite3GlobalConfig.isMallocInit = 0; 314 315 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 316 /* The heap subsystem has now been shutdown and these values are supposed 317 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 318 ** which would rely on that heap subsystem; therefore, make sure these 319 ** values cannot refer to heap memory that was just invalidated when the 320 ** heap subsystem was shutdown. This is only done if the current call to 321 ** this function resulted in the heap subsystem actually being shutdown. 322 */ 323 sqlite3_data_directory = 0; 324 sqlite3_temp_directory = 0; 325 #endif 326 } 327 if( sqlite3GlobalConfig.isMutexInit ){ 328 sqlite3MutexEnd(); 329 sqlite3GlobalConfig.isMutexInit = 0; 330 } 331 332 return SQLITE_OK; 333 } 334 335 /* 336 ** This API allows applications to modify the global configuration of 337 ** the SQLite library at run-time. 338 ** 339 ** This routine should only be called when there are no outstanding 340 ** database connections or memory allocations. This routine is not 341 ** threadsafe. Failure to heed these warnings can lead to unpredictable 342 ** behavior. 343 */ 344 int sqlite3_config(int op, ...){ 345 va_list ap; 346 int rc = SQLITE_OK; 347 348 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 349 ** the SQLite library is in use. */ 350 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 351 352 va_start(ap, op); 353 switch( op ){ 354 355 /* Mutex configuration options are only available in a threadsafe 356 ** compile. 357 */ 358 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 359 case SQLITE_CONFIG_SINGLETHREAD: { 360 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 361 ** Single-thread. */ 362 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 363 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 364 break; 365 } 366 #endif 367 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 368 case SQLITE_CONFIG_MULTITHREAD: { 369 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 370 ** Multi-thread. */ 371 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 372 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 373 break; 374 } 375 #endif 376 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 377 case SQLITE_CONFIG_SERIALIZED: { 378 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 379 ** Serialized. */ 380 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 381 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 382 break; 383 } 384 #endif 385 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 386 case SQLITE_CONFIG_MUTEX: { 387 /* Specify an alternative mutex implementation */ 388 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 389 break; 390 } 391 #endif 392 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 393 case SQLITE_CONFIG_GETMUTEX: { 394 /* Retrieve the current mutex implementation */ 395 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 396 break; 397 } 398 #endif 399 400 case SQLITE_CONFIG_MALLOC: { 401 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 402 ** single argument which is a pointer to an instance of the 403 ** sqlite3_mem_methods structure. The argument specifies alternative 404 ** low-level memory allocation routines to be used in place of the memory 405 ** allocation routines built into SQLite. */ 406 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 407 break; 408 } 409 case SQLITE_CONFIG_GETMALLOC: { 410 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 411 ** single argument which is a pointer to an instance of the 412 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 413 ** filled with the currently defined memory allocation routines. */ 414 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 415 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 416 break; 417 } 418 case SQLITE_CONFIG_MEMSTATUS: { 419 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 420 ** single argument of type int, interpreted as a boolean, which enables 421 ** or disables the collection of memory allocation statistics. */ 422 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 423 break; 424 } 425 case SQLITE_CONFIG_SCRATCH: { 426 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 427 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 428 ** which the scratch allocations will be drawn, the size of each scratch 429 ** allocation (sz), and the maximum number of scratch allocations (N). */ 430 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 431 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 432 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 433 break; 434 } 435 case SQLITE_CONFIG_PAGECACHE: { 436 /* EVIDENCE-OF: R-31408-40510 There are three arguments to 437 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size 438 ** of each page buffer (sz), and the number of pages (N). */ 439 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 440 sqlite3GlobalConfig.szPage = va_arg(ap, int); 441 sqlite3GlobalConfig.nPage = va_arg(ap, int); 442 break; 443 } 444 case SQLITE_CONFIG_PCACHE_HDRSZ: { 445 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 446 ** a single parameter which is a pointer to an integer and writes into 447 ** that integer the number of extra bytes per page required for each page 448 ** in SQLITE_CONFIG_PAGECACHE. */ 449 *va_arg(ap, int*) = 450 sqlite3HeaderSizeBtree() + 451 sqlite3HeaderSizePcache() + 452 sqlite3HeaderSizePcache1(); 453 break; 454 } 455 456 case SQLITE_CONFIG_PCACHE: { 457 /* no-op */ 458 break; 459 } 460 case SQLITE_CONFIG_GETPCACHE: { 461 /* now an error */ 462 rc = SQLITE_ERROR; 463 break; 464 } 465 466 case SQLITE_CONFIG_PCACHE2: { 467 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 468 ** single argument which is a pointer to an sqlite3_pcache_methods2 469 ** object. This object specifies the interface to a custom page cache 470 ** implementation. */ 471 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 472 break; 473 } 474 case SQLITE_CONFIG_GETPCACHE2: { 475 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 476 ** single argument which is a pointer to an sqlite3_pcache_methods2 477 ** object. SQLite copies of the current page cache implementation into 478 ** that object. */ 479 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 480 sqlite3PCacheSetDefault(); 481 } 482 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 483 break; 484 } 485 486 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 487 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 488 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 489 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 490 case SQLITE_CONFIG_HEAP: { 491 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 492 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 493 ** number of bytes in the memory buffer, and the minimum allocation size. 494 */ 495 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 496 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 497 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 498 499 if( sqlite3GlobalConfig.mnReq<1 ){ 500 sqlite3GlobalConfig.mnReq = 1; 501 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 502 /* cap min request size at 2^12 */ 503 sqlite3GlobalConfig.mnReq = (1<<12); 504 } 505 506 if( sqlite3GlobalConfig.pHeap==0 ){ 507 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 508 ** is NULL, then SQLite reverts to using its default memory allocator 509 ** (the system malloc() implementation), undoing any prior invocation of 510 ** SQLITE_CONFIG_MALLOC. 511 ** 512 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 513 ** revert to its default implementation when sqlite3_initialize() is run 514 */ 515 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 516 }else{ 517 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 518 ** alternative memory allocator is engaged to handle all of SQLites 519 ** memory allocation needs. */ 520 #ifdef SQLITE_ENABLE_MEMSYS3 521 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 522 #endif 523 #ifdef SQLITE_ENABLE_MEMSYS5 524 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 525 #endif 526 } 527 break; 528 } 529 #endif 530 531 case SQLITE_CONFIG_LOOKASIDE: { 532 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 533 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 534 break; 535 } 536 537 /* Record a pointer to the logger function and its first argument. 538 ** The default is NULL. Logging is disabled if the function pointer is 539 ** NULL. 540 */ 541 case SQLITE_CONFIG_LOG: { 542 /* MSVC is picky about pulling func ptrs from va lists. 543 ** http://support.microsoft.com/kb/47961 544 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 545 */ 546 typedef void(*LOGFUNC_t)(void*,int,const char*); 547 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 548 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 549 break; 550 } 551 552 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 553 ** can be changed at start-time using the 554 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 555 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 556 */ 557 case SQLITE_CONFIG_URI: { 558 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 559 ** argument of type int. If non-zero, then URI handling is globally 560 ** enabled. If the parameter is zero, then URI handling is globally 561 ** disabled. */ 562 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 563 break; 564 } 565 566 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 567 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 568 ** option takes a single integer argument which is interpreted as a 569 ** boolean in order to enable or disable the use of covering indices for 570 ** full table scans in the query optimizer. */ 571 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 572 break; 573 } 574 575 #ifdef SQLITE_ENABLE_SQLLOG 576 case SQLITE_CONFIG_SQLLOG: { 577 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 578 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 579 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 580 break; 581 } 582 #endif 583 584 case SQLITE_CONFIG_MMAP_SIZE: { 585 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 586 ** integer (sqlite3_int64) values that are the default mmap size limit 587 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 588 ** mmap size limit. */ 589 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 590 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 591 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 592 ** negative, then that argument is changed to its compile-time default. 593 ** 594 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 595 ** silently truncated if necessary so that it does not exceed the 596 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 597 ** compile-time option. 598 */ 599 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 600 mxMmap = SQLITE_MAX_MMAP_SIZE; 601 } 602 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 603 if( szMmap>mxMmap) szMmap = mxMmap; 604 sqlite3GlobalConfig.mxMmap = mxMmap; 605 sqlite3GlobalConfig.szMmap = szMmap; 606 break; 607 } 608 609 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 610 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 611 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 612 ** unsigned integer value that specifies the maximum size of the created 613 ** heap. */ 614 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 615 break; 616 } 617 #endif 618 619 case SQLITE_CONFIG_PMASZ: { 620 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 621 break; 622 } 623 624 default: { 625 rc = SQLITE_ERROR; 626 break; 627 } 628 } 629 va_end(ap); 630 return rc; 631 } 632 633 /* 634 ** Set up the lookaside buffers for a database connection. 635 ** Return SQLITE_OK on success. 636 ** If lookaside is already active, return SQLITE_BUSY. 637 ** 638 ** The sz parameter is the number of bytes in each lookaside slot. 639 ** The cnt parameter is the number of slots. If pStart is NULL the 640 ** space for the lookaside memory is obtained from sqlite3_malloc(). 641 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 642 ** the lookaside memory. 643 */ 644 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 645 #ifndef SQLITE_OMIT_LOOKASIDE 646 void *pStart; 647 if( db->lookaside.nOut ){ 648 return SQLITE_BUSY; 649 } 650 /* Free any existing lookaside buffer for this handle before 651 ** allocating a new one so we don't have to have space for 652 ** both at the same time. 653 */ 654 if( db->lookaside.bMalloced ){ 655 sqlite3_free(db->lookaside.pStart); 656 } 657 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 658 ** than a pointer to be useful. 659 */ 660 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 661 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 662 if( cnt<0 ) cnt = 0; 663 if( sz==0 || cnt==0 ){ 664 sz = 0; 665 pStart = 0; 666 }else if( pBuf==0 ){ 667 sqlite3BeginBenignMalloc(); 668 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 669 sqlite3EndBenignMalloc(); 670 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 671 }else{ 672 pStart = pBuf; 673 } 674 db->lookaside.pStart = pStart; 675 db->lookaside.pFree = 0; 676 db->lookaside.sz = (u16)sz; 677 if( pStart ){ 678 int i; 679 LookasideSlot *p; 680 assert( sz > (int)sizeof(LookasideSlot*) ); 681 p = (LookasideSlot*)pStart; 682 for(i=cnt-1; i>=0; i--){ 683 p->pNext = db->lookaside.pFree; 684 db->lookaside.pFree = p; 685 p = (LookasideSlot*)&((u8*)p)[sz]; 686 } 687 db->lookaside.pEnd = p; 688 db->lookaside.bEnabled = 1; 689 db->lookaside.bMalloced = pBuf==0 ?1:0; 690 }else{ 691 db->lookaside.pStart = db; 692 db->lookaside.pEnd = db; 693 db->lookaside.bEnabled = 0; 694 db->lookaside.bMalloced = 0; 695 } 696 #endif /* SQLITE_OMIT_LOOKASIDE */ 697 return SQLITE_OK; 698 } 699 700 /* 701 ** Return the mutex associated with a database connection. 702 */ 703 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 704 #ifdef SQLITE_ENABLE_API_ARMOR 705 if( !sqlite3SafetyCheckOk(db) ){ 706 (void)SQLITE_MISUSE_BKPT; 707 return 0; 708 } 709 #endif 710 return db->mutex; 711 } 712 713 /* 714 ** Free up as much memory as we can from the given database 715 ** connection. 716 */ 717 int sqlite3_db_release_memory(sqlite3 *db){ 718 int i; 719 720 #ifdef SQLITE_ENABLE_API_ARMOR 721 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 722 #endif 723 sqlite3_mutex_enter(db->mutex); 724 sqlite3BtreeEnterAll(db); 725 for(i=0; i<db->nDb; i++){ 726 Btree *pBt = db->aDb[i].pBt; 727 if( pBt ){ 728 Pager *pPager = sqlite3BtreePager(pBt); 729 sqlite3PagerShrink(pPager); 730 } 731 } 732 sqlite3BtreeLeaveAll(db); 733 sqlite3_mutex_leave(db->mutex); 734 return SQLITE_OK; 735 } 736 737 /* 738 ** Configuration settings for an individual database connection 739 */ 740 int sqlite3_db_config(sqlite3 *db, int op, ...){ 741 va_list ap; 742 int rc; 743 va_start(ap, op); 744 switch( op ){ 745 case SQLITE_DBCONFIG_LOOKASIDE: { 746 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 747 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 748 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 749 rc = setupLookaside(db, pBuf, sz, cnt); 750 break; 751 } 752 default: { 753 static const struct { 754 int op; /* The opcode */ 755 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 756 } aFlagOp[] = { 757 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 758 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 759 }; 760 unsigned int i; 761 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 762 for(i=0; i<ArraySize(aFlagOp); i++){ 763 if( aFlagOp[i].op==op ){ 764 int onoff = va_arg(ap, int); 765 int *pRes = va_arg(ap, int*); 766 int oldFlags = db->flags; 767 if( onoff>0 ){ 768 db->flags |= aFlagOp[i].mask; 769 }else if( onoff==0 ){ 770 db->flags &= ~aFlagOp[i].mask; 771 } 772 if( oldFlags!=db->flags ){ 773 sqlite3ExpirePreparedStatements(db); 774 } 775 if( pRes ){ 776 *pRes = (db->flags & aFlagOp[i].mask)!=0; 777 } 778 rc = SQLITE_OK; 779 break; 780 } 781 } 782 break; 783 } 784 } 785 va_end(ap); 786 return rc; 787 } 788 789 790 /* 791 ** Return true if the buffer z[0..n-1] contains all spaces. 792 */ 793 static int allSpaces(const char *z, int n){ 794 while( n>0 && z[n-1]==' ' ){ n--; } 795 return n==0; 796 } 797 798 /* 799 ** This is the default collating function named "BINARY" which is always 800 ** available. 801 ** 802 ** If the padFlag argument is not NULL then space padding at the end 803 ** of strings is ignored. This implements the RTRIM collation. 804 */ 805 static int binCollFunc( 806 void *padFlag, 807 int nKey1, const void *pKey1, 808 int nKey2, const void *pKey2 809 ){ 810 int rc, n; 811 n = nKey1<nKey2 ? nKey1 : nKey2; 812 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 813 ** strings byte by byte using the memcmp() function from the standard C 814 ** library. */ 815 rc = memcmp(pKey1, pKey2, n); 816 if( rc==0 ){ 817 if( padFlag 818 && allSpaces(((char*)pKey1)+n, nKey1-n) 819 && allSpaces(((char*)pKey2)+n, nKey2-n) 820 ){ 821 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 822 ** spaces at the end of either string do not change the result. In other 823 ** words, strings will compare equal to one another as long as they 824 ** differ only in the number of spaces at the end. 825 */ 826 }else{ 827 rc = nKey1 - nKey2; 828 } 829 } 830 return rc; 831 } 832 833 /* 834 ** Another built-in collating sequence: NOCASE. 835 ** 836 ** This collating sequence is intended to be used for "case independent 837 ** comparison". SQLite's knowledge of upper and lower case equivalents 838 ** extends only to the 26 characters used in the English language. 839 ** 840 ** At the moment there is only a UTF-8 implementation. 841 */ 842 static int nocaseCollatingFunc( 843 void *NotUsed, 844 int nKey1, const void *pKey1, 845 int nKey2, const void *pKey2 846 ){ 847 int r = sqlite3StrNICmp( 848 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 849 UNUSED_PARAMETER(NotUsed); 850 if( 0==r ){ 851 r = nKey1-nKey2; 852 } 853 return r; 854 } 855 856 /* 857 ** Return the ROWID of the most recent insert 858 */ 859 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 860 #ifdef SQLITE_ENABLE_API_ARMOR 861 if( !sqlite3SafetyCheckOk(db) ){ 862 (void)SQLITE_MISUSE_BKPT; 863 return 0; 864 } 865 #endif 866 return db->lastRowid; 867 } 868 869 /* 870 ** Return the number of changes in the most recent call to sqlite3_exec(). 871 */ 872 int sqlite3_changes(sqlite3 *db){ 873 #ifdef SQLITE_ENABLE_API_ARMOR 874 if( !sqlite3SafetyCheckOk(db) ){ 875 (void)SQLITE_MISUSE_BKPT; 876 return 0; 877 } 878 #endif 879 return db->nChange; 880 } 881 882 /* 883 ** Return the number of changes since the database handle was opened. 884 */ 885 int sqlite3_total_changes(sqlite3 *db){ 886 #ifdef SQLITE_ENABLE_API_ARMOR 887 if( !sqlite3SafetyCheckOk(db) ){ 888 (void)SQLITE_MISUSE_BKPT; 889 return 0; 890 } 891 #endif 892 return db->nTotalChange; 893 } 894 895 /* 896 ** Close all open savepoints. This function only manipulates fields of the 897 ** database handle object, it does not close any savepoints that may be open 898 ** at the b-tree/pager level. 899 */ 900 void sqlite3CloseSavepoints(sqlite3 *db){ 901 while( db->pSavepoint ){ 902 Savepoint *pTmp = db->pSavepoint; 903 db->pSavepoint = pTmp->pNext; 904 sqlite3DbFree(db, pTmp); 905 } 906 db->nSavepoint = 0; 907 db->nStatement = 0; 908 db->isTransactionSavepoint = 0; 909 } 910 911 /* 912 ** Invoke the destructor function associated with FuncDef p, if any. Except, 913 ** if this is not the last copy of the function, do not invoke it. Multiple 914 ** copies of a single function are created when create_function() is called 915 ** with SQLITE_ANY as the encoding. 916 */ 917 static void functionDestroy(sqlite3 *db, FuncDef *p){ 918 FuncDestructor *pDestructor = p->pDestructor; 919 if( pDestructor ){ 920 pDestructor->nRef--; 921 if( pDestructor->nRef==0 ){ 922 pDestructor->xDestroy(pDestructor->pUserData); 923 sqlite3DbFree(db, pDestructor); 924 } 925 } 926 } 927 928 /* 929 ** Disconnect all sqlite3_vtab objects that belong to database connection 930 ** db. This is called when db is being closed. 931 */ 932 static void disconnectAllVtab(sqlite3 *db){ 933 #ifndef SQLITE_OMIT_VIRTUALTABLE 934 int i; 935 sqlite3BtreeEnterAll(db); 936 for(i=0; i<db->nDb; i++){ 937 Schema *pSchema = db->aDb[i].pSchema; 938 if( db->aDb[i].pSchema ){ 939 HashElem *p; 940 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 941 Table *pTab = (Table *)sqliteHashData(p); 942 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 943 } 944 } 945 } 946 sqlite3VtabUnlockList(db); 947 sqlite3BtreeLeaveAll(db); 948 #else 949 UNUSED_PARAMETER(db); 950 #endif 951 } 952 953 /* 954 ** Return TRUE if database connection db has unfinalized prepared 955 ** statements or unfinished sqlite3_backup objects. 956 */ 957 static int connectionIsBusy(sqlite3 *db){ 958 int j; 959 assert( sqlite3_mutex_held(db->mutex) ); 960 if( db->pVdbe ) return 1; 961 for(j=0; j<db->nDb; j++){ 962 Btree *pBt = db->aDb[j].pBt; 963 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 964 } 965 return 0; 966 } 967 968 /* 969 ** Close an existing SQLite database 970 */ 971 static int sqlite3Close(sqlite3 *db, int forceZombie){ 972 if( !db ){ 973 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 974 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 975 return SQLITE_OK; 976 } 977 if( !sqlite3SafetyCheckSickOrOk(db) ){ 978 return SQLITE_MISUSE_BKPT; 979 } 980 sqlite3_mutex_enter(db->mutex); 981 982 /* Force xDisconnect calls on all virtual tables */ 983 disconnectAllVtab(db); 984 985 /* If a transaction is open, the disconnectAllVtab() call above 986 ** will not have called the xDisconnect() method on any virtual 987 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 988 ** call will do so. We need to do this before the check for active 989 ** SQL statements below, as the v-table implementation may be storing 990 ** some prepared statements internally. 991 */ 992 sqlite3VtabRollback(db); 993 994 /* Legacy behavior (sqlite3_close() behavior) is to return 995 ** SQLITE_BUSY if the connection can not be closed immediately. 996 */ 997 if( !forceZombie && connectionIsBusy(db) ){ 998 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 999 "statements or unfinished backups"); 1000 sqlite3_mutex_leave(db->mutex); 1001 return SQLITE_BUSY; 1002 } 1003 1004 #ifdef SQLITE_ENABLE_SQLLOG 1005 if( sqlite3GlobalConfig.xSqllog ){ 1006 /* Closing the handle. Fourth parameter is passed the value 2. */ 1007 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 1008 } 1009 #endif 1010 1011 /* Convert the connection into a zombie and then close it. 1012 */ 1013 db->magic = SQLITE_MAGIC_ZOMBIE; 1014 sqlite3LeaveMutexAndCloseZombie(db); 1015 return SQLITE_OK; 1016 } 1017 1018 /* 1019 ** Two variations on the public interface for closing a database 1020 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1021 ** leaves the connection option if there are unfinalized prepared 1022 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1023 ** version forces the connection to become a zombie if there are 1024 ** unclosed resources, and arranges for deallocation when the last 1025 ** prepare statement or sqlite3_backup closes. 1026 */ 1027 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1028 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1029 1030 1031 /* 1032 ** Close the mutex on database connection db. 1033 ** 1034 ** Furthermore, if database connection db is a zombie (meaning that there 1035 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1036 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1037 ** finished, then free all resources. 1038 */ 1039 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1040 HashElem *i; /* Hash table iterator */ 1041 int j; 1042 1043 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1044 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1045 ** then just leave the mutex and return. 1046 */ 1047 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 1048 sqlite3_mutex_leave(db->mutex); 1049 return; 1050 } 1051 1052 /* If we reach this point, it means that the database connection has 1053 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1054 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1055 ** go ahead and free all resources. 1056 */ 1057 1058 /* If a transaction is open, roll it back. This also ensures that if 1059 ** any database schemas have been modified by an uncommitted transaction 1060 ** they are reset. And that the required b-tree mutex is held to make 1061 ** the pager rollback and schema reset an atomic operation. */ 1062 sqlite3RollbackAll(db, SQLITE_OK); 1063 1064 /* Free any outstanding Savepoint structures. */ 1065 sqlite3CloseSavepoints(db); 1066 1067 /* Close all database connections */ 1068 for(j=0; j<db->nDb; j++){ 1069 struct Db *pDb = &db->aDb[j]; 1070 if( pDb->pBt ){ 1071 sqlite3BtreeClose(pDb->pBt); 1072 pDb->pBt = 0; 1073 if( j!=1 ){ 1074 pDb->pSchema = 0; 1075 } 1076 } 1077 } 1078 /* Clear the TEMP schema separately and last */ 1079 if( db->aDb[1].pSchema ){ 1080 sqlite3SchemaClear(db->aDb[1].pSchema); 1081 } 1082 sqlite3VtabUnlockList(db); 1083 1084 /* Free up the array of auxiliary databases */ 1085 sqlite3CollapseDatabaseArray(db); 1086 assert( db->nDb<=2 ); 1087 assert( db->aDb==db->aDbStatic ); 1088 1089 /* Tell the code in notify.c that the connection no longer holds any 1090 ** locks and does not require any further unlock-notify callbacks. 1091 */ 1092 sqlite3ConnectionClosed(db); 1093 1094 for(j=0; j<ArraySize(db->aFunc.a); j++){ 1095 FuncDef *pNext, *pHash, *p; 1096 for(p=db->aFunc.a[j]; p; p=pHash){ 1097 pHash = p->pHash; 1098 while( p ){ 1099 functionDestroy(db, p); 1100 pNext = p->pNext; 1101 sqlite3DbFree(db, p); 1102 p = pNext; 1103 } 1104 } 1105 } 1106 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1107 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1108 /* Invoke any destructors registered for collation sequence user data. */ 1109 for(j=0; j<3; j++){ 1110 if( pColl[j].xDel ){ 1111 pColl[j].xDel(pColl[j].pUser); 1112 } 1113 } 1114 sqlite3DbFree(db, pColl); 1115 } 1116 sqlite3HashClear(&db->aCollSeq); 1117 #ifndef SQLITE_OMIT_VIRTUALTABLE 1118 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1119 Module *pMod = (Module *)sqliteHashData(i); 1120 if( pMod->xDestroy ){ 1121 pMod->xDestroy(pMod->pAux); 1122 } 1123 sqlite3DbFree(db, pMod); 1124 } 1125 sqlite3HashClear(&db->aModule); 1126 #endif 1127 1128 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1129 sqlite3ValueFree(db->pErr); 1130 sqlite3CloseExtensions(db); 1131 #if SQLITE_USER_AUTHENTICATION 1132 sqlite3_free(db->auth.zAuthUser); 1133 sqlite3_free(db->auth.zAuthPW); 1134 #endif 1135 1136 db->magic = SQLITE_MAGIC_ERROR; 1137 1138 /* The temp-database schema is allocated differently from the other schema 1139 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1140 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1141 ** the same sqliteMalloc() as the one that allocates the database 1142 ** structure? 1143 */ 1144 sqlite3DbFree(db, db->aDb[1].pSchema); 1145 sqlite3_mutex_leave(db->mutex); 1146 db->magic = SQLITE_MAGIC_CLOSED; 1147 sqlite3_mutex_free(db->mutex); 1148 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 1149 if( db->lookaside.bMalloced ){ 1150 sqlite3_free(db->lookaside.pStart); 1151 } 1152 sqlite3_free(db); 1153 } 1154 1155 /* 1156 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1157 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1158 ** breaker") and made to return tripCode if there are any further 1159 ** attempts to use that cursor. Read cursors remain open and valid 1160 ** but are "saved" in case the table pages are moved around. 1161 */ 1162 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1163 int i; 1164 int inTrans = 0; 1165 int schemaChange; 1166 assert( sqlite3_mutex_held(db->mutex) ); 1167 sqlite3BeginBenignMalloc(); 1168 1169 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1170 ** This is important in case the transaction being rolled back has 1171 ** modified the database schema. If the b-tree mutexes are not taken 1172 ** here, then another shared-cache connection might sneak in between 1173 ** the database rollback and schema reset, which can cause false 1174 ** corruption reports in some cases. */ 1175 sqlite3BtreeEnterAll(db); 1176 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 1177 1178 for(i=0; i<db->nDb; i++){ 1179 Btree *p = db->aDb[i].pBt; 1180 if( p ){ 1181 if( sqlite3BtreeIsInTrans(p) ){ 1182 inTrans = 1; 1183 } 1184 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1185 } 1186 } 1187 sqlite3VtabRollback(db); 1188 sqlite3EndBenignMalloc(); 1189 1190 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1191 sqlite3ExpirePreparedStatements(db); 1192 sqlite3ResetAllSchemasOfConnection(db); 1193 } 1194 sqlite3BtreeLeaveAll(db); 1195 1196 /* Any deferred constraint violations have now been resolved. */ 1197 db->nDeferredCons = 0; 1198 db->nDeferredImmCons = 0; 1199 db->flags &= ~SQLITE_DeferFKs; 1200 1201 /* If one has been configured, invoke the rollback-hook callback */ 1202 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1203 db->xRollbackCallback(db->pRollbackArg); 1204 } 1205 } 1206 1207 /* 1208 ** Return a static string containing the name corresponding to the error code 1209 ** specified in the argument. 1210 */ 1211 #if defined(SQLITE_NEED_ERR_NAME) 1212 const char *sqlite3ErrName(int rc){ 1213 const char *zName = 0; 1214 int i, origRc = rc; 1215 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1216 switch( rc ){ 1217 case SQLITE_OK: zName = "SQLITE_OK"; break; 1218 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1219 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1220 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1221 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1222 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1223 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1224 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1225 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1226 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1227 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1228 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1229 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1230 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1231 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1232 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1233 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1234 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1235 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1236 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1237 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1238 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1239 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1240 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1241 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1242 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1243 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1244 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1245 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1246 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1247 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1248 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1249 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1250 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1251 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1252 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1253 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1254 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1255 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1256 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1257 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1258 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1259 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1260 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1261 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1262 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1263 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1264 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1265 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1266 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1267 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1268 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1269 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1270 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1271 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1272 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1273 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1274 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1275 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1276 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1277 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1278 case SQLITE_CONSTRAINT_FOREIGNKEY: 1279 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1280 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1281 case SQLITE_CONSTRAINT_PRIMARYKEY: 1282 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1283 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1284 case SQLITE_CONSTRAINT_COMMITHOOK: 1285 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1286 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1287 case SQLITE_CONSTRAINT_FUNCTION: 1288 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1289 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1290 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1291 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1292 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1293 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1294 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1295 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1296 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1297 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1298 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1299 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1300 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1301 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1302 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1303 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1304 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1305 } 1306 } 1307 if( zName==0 ){ 1308 static char zBuf[50]; 1309 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1310 zName = zBuf; 1311 } 1312 return zName; 1313 } 1314 #endif 1315 1316 /* 1317 ** Return a static string that describes the kind of error specified in the 1318 ** argument. 1319 */ 1320 const char *sqlite3ErrStr(int rc){ 1321 static const char* const aMsg[] = { 1322 /* SQLITE_OK */ "not an error", 1323 /* SQLITE_ERROR */ "SQL logic error or missing database", 1324 /* SQLITE_INTERNAL */ 0, 1325 /* SQLITE_PERM */ "access permission denied", 1326 /* SQLITE_ABORT */ "callback requested query abort", 1327 /* SQLITE_BUSY */ "database is locked", 1328 /* SQLITE_LOCKED */ "database table is locked", 1329 /* SQLITE_NOMEM */ "out of memory", 1330 /* SQLITE_READONLY */ "attempt to write a readonly database", 1331 /* SQLITE_INTERRUPT */ "interrupted", 1332 /* SQLITE_IOERR */ "disk I/O error", 1333 /* SQLITE_CORRUPT */ "database disk image is malformed", 1334 /* SQLITE_NOTFOUND */ "unknown operation", 1335 /* SQLITE_FULL */ "database or disk is full", 1336 /* SQLITE_CANTOPEN */ "unable to open database file", 1337 /* SQLITE_PROTOCOL */ "locking protocol", 1338 /* SQLITE_EMPTY */ "table contains no data", 1339 /* SQLITE_SCHEMA */ "database schema has changed", 1340 /* SQLITE_TOOBIG */ "string or blob too big", 1341 /* SQLITE_CONSTRAINT */ "constraint failed", 1342 /* SQLITE_MISMATCH */ "datatype mismatch", 1343 /* SQLITE_MISUSE */ "library routine called out of sequence", 1344 /* SQLITE_NOLFS */ "large file support is disabled", 1345 /* SQLITE_AUTH */ "authorization denied", 1346 /* SQLITE_FORMAT */ "auxiliary database format error", 1347 /* SQLITE_RANGE */ "bind or column index out of range", 1348 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1349 }; 1350 const char *zErr = "unknown error"; 1351 switch( rc ){ 1352 case SQLITE_ABORT_ROLLBACK: { 1353 zErr = "abort due to ROLLBACK"; 1354 break; 1355 } 1356 default: { 1357 rc &= 0xff; 1358 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1359 zErr = aMsg[rc]; 1360 } 1361 break; 1362 } 1363 } 1364 return zErr; 1365 } 1366 1367 /* 1368 ** This routine implements a busy callback that sleeps and tries 1369 ** again until a timeout value is reached. The timeout value is 1370 ** an integer number of milliseconds passed in as the first 1371 ** argument. 1372 */ 1373 static int sqliteDefaultBusyCallback( 1374 void *ptr, /* Database connection */ 1375 int count /* Number of times table has been busy */ 1376 ){ 1377 #if SQLITE_OS_WIN || HAVE_USLEEP 1378 static const u8 delays[] = 1379 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1380 static const u8 totals[] = 1381 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1382 # define NDELAY ArraySize(delays) 1383 sqlite3 *db = (sqlite3 *)ptr; 1384 int timeout = db->busyTimeout; 1385 int delay, prior; 1386 1387 assert( count>=0 ); 1388 if( count < NDELAY ){ 1389 delay = delays[count]; 1390 prior = totals[count]; 1391 }else{ 1392 delay = delays[NDELAY-1]; 1393 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1394 } 1395 if( prior + delay > timeout ){ 1396 delay = timeout - prior; 1397 if( delay<=0 ) return 0; 1398 } 1399 sqlite3OsSleep(db->pVfs, delay*1000); 1400 return 1; 1401 #else 1402 sqlite3 *db = (sqlite3 *)ptr; 1403 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1404 if( (count+1)*1000 > timeout ){ 1405 return 0; 1406 } 1407 sqlite3OsSleep(db->pVfs, 1000000); 1408 return 1; 1409 #endif 1410 } 1411 1412 /* 1413 ** Invoke the given busy handler. 1414 ** 1415 ** This routine is called when an operation failed with a lock. 1416 ** If this routine returns non-zero, the lock is retried. If it 1417 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1418 */ 1419 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1420 int rc; 1421 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1422 rc = p->xFunc(p->pArg, p->nBusy); 1423 if( rc==0 ){ 1424 p->nBusy = -1; 1425 }else{ 1426 p->nBusy++; 1427 } 1428 return rc; 1429 } 1430 1431 /* 1432 ** This routine sets the busy callback for an Sqlite database to the 1433 ** given callback function with the given argument. 1434 */ 1435 int sqlite3_busy_handler( 1436 sqlite3 *db, 1437 int (*xBusy)(void*,int), 1438 void *pArg 1439 ){ 1440 #ifdef SQLITE_ENABLE_API_ARMOR 1441 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1442 #endif 1443 sqlite3_mutex_enter(db->mutex); 1444 db->busyHandler.xFunc = xBusy; 1445 db->busyHandler.pArg = pArg; 1446 db->busyHandler.nBusy = 0; 1447 db->busyTimeout = 0; 1448 sqlite3_mutex_leave(db->mutex); 1449 return SQLITE_OK; 1450 } 1451 1452 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1453 /* 1454 ** This routine sets the progress callback for an Sqlite database to the 1455 ** given callback function with the given argument. The progress callback will 1456 ** be invoked every nOps opcodes. 1457 */ 1458 void sqlite3_progress_handler( 1459 sqlite3 *db, 1460 int nOps, 1461 int (*xProgress)(void*), 1462 void *pArg 1463 ){ 1464 #ifdef SQLITE_ENABLE_API_ARMOR 1465 if( !sqlite3SafetyCheckOk(db) ){ 1466 (void)SQLITE_MISUSE_BKPT; 1467 return; 1468 } 1469 #endif 1470 sqlite3_mutex_enter(db->mutex); 1471 if( nOps>0 ){ 1472 db->xProgress = xProgress; 1473 db->nProgressOps = (unsigned)nOps; 1474 db->pProgressArg = pArg; 1475 }else{ 1476 db->xProgress = 0; 1477 db->nProgressOps = 0; 1478 db->pProgressArg = 0; 1479 } 1480 sqlite3_mutex_leave(db->mutex); 1481 } 1482 #endif 1483 1484 1485 /* 1486 ** This routine installs a default busy handler that waits for the 1487 ** specified number of milliseconds before returning 0. 1488 */ 1489 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1490 #ifdef SQLITE_ENABLE_API_ARMOR 1491 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1492 #endif 1493 if( ms>0 ){ 1494 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1495 db->busyTimeout = ms; 1496 }else{ 1497 sqlite3_busy_handler(db, 0, 0); 1498 } 1499 return SQLITE_OK; 1500 } 1501 1502 /* 1503 ** Cause any pending operation to stop at its earliest opportunity. 1504 */ 1505 void sqlite3_interrupt(sqlite3 *db){ 1506 #ifdef SQLITE_ENABLE_API_ARMOR 1507 if( !sqlite3SafetyCheckOk(db) ){ 1508 (void)SQLITE_MISUSE_BKPT; 1509 return; 1510 } 1511 #endif 1512 db->u1.isInterrupted = 1; 1513 } 1514 1515 1516 /* 1517 ** This function is exactly the same as sqlite3_create_function(), except 1518 ** that it is designed to be called by internal code. The difference is 1519 ** that if a malloc() fails in sqlite3_create_function(), an error code 1520 ** is returned and the mallocFailed flag cleared. 1521 */ 1522 int sqlite3CreateFunc( 1523 sqlite3 *db, 1524 const char *zFunctionName, 1525 int nArg, 1526 int enc, 1527 void *pUserData, 1528 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1529 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1530 void (*xFinal)(sqlite3_context*), 1531 FuncDestructor *pDestructor 1532 ){ 1533 FuncDef *p; 1534 int nName; 1535 int extraFlags; 1536 1537 assert( sqlite3_mutex_held(db->mutex) ); 1538 if( zFunctionName==0 || 1539 (xFunc && (xFinal || xStep)) || 1540 (!xFunc && (xFinal && !xStep)) || 1541 (!xFunc && (!xFinal && xStep)) || 1542 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1543 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1544 return SQLITE_MISUSE_BKPT; 1545 } 1546 1547 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1548 extraFlags = enc & SQLITE_DETERMINISTIC; 1549 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1550 1551 #ifndef SQLITE_OMIT_UTF16 1552 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1553 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1554 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1555 ** 1556 ** If SQLITE_ANY is specified, add three versions of the function 1557 ** to the hash table. 1558 */ 1559 if( enc==SQLITE_UTF16 ){ 1560 enc = SQLITE_UTF16NATIVE; 1561 }else if( enc==SQLITE_ANY ){ 1562 int rc; 1563 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 1564 pUserData, xFunc, xStep, xFinal, pDestructor); 1565 if( rc==SQLITE_OK ){ 1566 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 1567 pUserData, xFunc, xStep, xFinal, pDestructor); 1568 } 1569 if( rc!=SQLITE_OK ){ 1570 return rc; 1571 } 1572 enc = SQLITE_UTF16BE; 1573 } 1574 #else 1575 enc = SQLITE_UTF8; 1576 #endif 1577 1578 /* Check if an existing function is being overridden or deleted. If so, 1579 ** and there are active VMs, then return SQLITE_BUSY. If a function 1580 ** is being overridden/deleted but there are no active VMs, allow the 1581 ** operation to continue but invalidate all precompiled statements. 1582 */ 1583 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1584 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 1585 if( db->nVdbeActive ){ 1586 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1587 "unable to delete/modify user-function due to active statements"); 1588 assert( !db->mallocFailed ); 1589 return SQLITE_BUSY; 1590 }else{ 1591 sqlite3ExpirePreparedStatements(db); 1592 } 1593 } 1594 1595 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1596 assert(p || db->mallocFailed); 1597 if( !p ){ 1598 return SQLITE_NOMEM; 1599 } 1600 1601 /* If an older version of the function with a configured destructor is 1602 ** being replaced invoke the destructor function here. */ 1603 functionDestroy(db, p); 1604 1605 if( pDestructor ){ 1606 pDestructor->nRef++; 1607 } 1608 p->pDestructor = pDestructor; 1609 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1610 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1611 p->xFunc = xFunc; 1612 p->xStep = xStep; 1613 p->xFinalize = xFinal; 1614 p->pUserData = pUserData; 1615 p->nArg = (u16)nArg; 1616 return SQLITE_OK; 1617 } 1618 1619 /* 1620 ** Create new user functions. 1621 */ 1622 int sqlite3_create_function( 1623 sqlite3 *db, 1624 const char *zFunc, 1625 int nArg, 1626 int enc, 1627 void *p, 1628 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1629 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1630 void (*xFinal)(sqlite3_context*) 1631 ){ 1632 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1633 xFinal, 0); 1634 } 1635 1636 int sqlite3_create_function_v2( 1637 sqlite3 *db, 1638 const char *zFunc, 1639 int nArg, 1640 int enc, 1641 void *p, 1642 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1643 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1644 void (*xFinal)(sqlite3_context*), 1645 void (*xDestroy)(void *) 1646 ){ 1647 int rc = SQLITE_ERROR; 1648 FuncDestructor *pArg = 0; 1649 1650 #ifdef SQLITE_ENABLE_API_ARMOR 1651 if( !sqlite3SafetyCheckOk(db) ){ 1652 return SQLITE_MISUSE_BKPT; 1653 } 1654 #endif 1655 sqlite3_mutex_enter(db->mutex); 1656 if( xDestroy ){ 1657 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1658 if( !pArg ){ 1659 xDestroy(p); 1660 goto out; 1661 } 1662 pArg->xDestroy = xDestroy; 1663 pArg->pUserData = p; 1664 } 1665 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1666 if( pArg && pArg->nRef==0 ){ 1667 assert( rc!=SQLITE_OK ); 1668 xDestroy(p); 1669 sqlite3DbFree(db, pArg); 1670 } 1671 1672 out: 1673 rc = sqlite3ApiExit(db, rc); 1674 sqlite3_mutex_leave(db->mutex); 1675 return rc; 1676 } 1677 1678 #ifndef SQLITE_OMIT_UTF16 1679 int sqlite3_create_function16( 1680 sqlite3 *db, 1681 const void *zFunctionName, 1682 int nArg, 1683 int eTextRep, 1684 void *p, 1685 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1686 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1687 void (*xFinal)(sqlite3_context*) 1688 ){ 1689 int rc; 1690 char *zFunc8; 1691 1692 #ifdef SQLITE_ENABLE_API_ARMOR 1693 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 1694 #endif 1695 sqlite3_mutex_enter(db->mutex); 1696 assert( !db->mallocFailed ); 1697 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1698 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1699 sqlite3DbFree(db, zFunc8); 1700 rc = sqlite3ApiExit(db, rc); 1701 sqlite3_mutex_leave(db->mutex); 1702 return rc; 1703 } 1704 #endif 1705 1706 1707 /* 1708 ** Declare that a function has been overloaded by a virtual table. 1709 ** 1710 ** If the function already exists as a regular global function, then 1711 ** this routine is a no-op. If the function does not exist, then create 1712 ** a new one that always throws a run-time error. 1713 ** 1714 ** When virtual tables intend to provide an overloaded function, they 1715 ** should call this routine to make sure the global function exists. 1716 ** A global function must exist in order for name resolution to work 1717 ** properly. 1718 */ 1719 int sqlite3_overload_function( 1720 sqlite3 *db, 1721 const char *zName, 1722 int nArg 1723 ){ 1724 int nName = sqlite3Strlen30(zName); 1725 int rc = SQLITE_OK; 1726 1727 #ifdef SQLITE_ENABLE_API_ARMOR 1728 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 1729 return SQLITE_MISUSE_BKPT; 1730 } 1731 #endif 1732 sqlite3_mutex_enter(db->mutex); 1733 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1734 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1735 0, sqlite3InvalidFunction, 0, 0, 0); 1736 } 1737 rc = sqlite3ApiExit(db, rc); 1738 sqlite3_mutex_leave(db->mutex); 1739 return rc; 1740 } 1741 1742 #ifndef SQLITE_OMIT_TRACE 1743 /* 1744 ** Register a trace function. The pArg from the previously registered trace 1745 ** is returned. 1746 ** 1747 ** A NULL trace function means that no tracing is executes. A non-NULL 1748 ** trace is a pointer to a function that is invoked at the start of each 1749 ** SQL statement. 1750 */ 1751 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1752 void *pOld; 1753 1754 #ifdef SQLITE_ENABLE_API_ARMOR 1755 if( !sqlite3SafetyCheckOk(db) ){ 1756 (void)SQLITE_MISUSE_BKPT; 1757 return 0; 1758 } 1759 #endif 1760 sqlite3_mutex_enter(db->mutex); 1761 pOld = db->pTraceArg; 1762 db->xTrace = xTrace; 1763 db->pTraceArg = pArg; 1764 sqlite3_mutex_leave(db->mutex); 1765 return pOld; 1766 } 1767 /* 1768 ** Register a profile function. The pArg from the previously registered 1769 ** profile function is returned. 1770 ** 1771 ** A NULL profile function means that no profiling is executes. A non-NULL 1772 ** profile is a pointer to a function that is invoked at the conclusion of 1773 ** each SQL statement that is run. 1774 */ 1775 void *sqlite3_profile( 1776 sqlite3 *db, 1777 void (*xProfile)(void*,const char*,sqlite_uint64), 1778 void *pArg 1779 ){ 1780 void *pOld; 1781 1782 #ifdef SQLITE_ENABLE_API_ARMOR 1783 if( !sqlite3SafetyCheckOk(db) ){ 1784 (void)SQLITE_MISUSE_BKPT; 1785 return 0; 1786 } 1787 #endif 1788 sqlite3_mutex_enter(db->mutex); 1789 pOld = db->pProfileArg; 1790 db->xProfile = xProfile; 1791 db->pProfileArg = pArg; 1792 sqlite3_mutex_leave(db->mutex); 1793 return pOld; 1794 } 1795 #endif /* SQLITE_OMIT_TRACE */ 1796 1797 /* 1798 ** Register a function to be invoked when a transaction commits. 1799 ** If the invoked function returns non-zero, then the commit becomes a 1800 ** rollback. 1801 */ 1802 void *sqlite3_commit_hook( 1803 sqlite3 *db, /* Attach the hook to this database */ 1804 int (*xCallback)(void*), /* Function to invoke on each commit */ 1805 void *pArg /* Argument to the function */ 1806 ){ 1807 void *pOld; 1808 1809 #ifdef SQLITE_ENABLE_API_ARMOR 1810 if( !sqlite3SafetyCheckOk(db) ){ 1811 (void)SQLITE_MISUSE_BKPT; 1812 return 0; 1813 } 1814 #endif 1815 sqlite3_mutex_enter(db->mutex); 1816 pOld = db->pCommitArg; 1817 db->xCommitCallback = xCallback; 1818 db->pCommitArg = pArg; 1819 sqlite3_mutex_leave(db->mutex); 1820 return pOld; 1821 } 1822 1823 /* 1824 ** Register a callback to be invoked each time a row is updated, 1825 ** inserted or deleted using this database connection. 1826 */ 1827 void *sqlite3_update_hook( 1828 sqlite3 *db, /* Attach the hook to this database */ 1829 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1830 void *pArg /* Argument to the function */ 1831 ){ 1832 void *pRet; 1833 1834 #ifdef SQLITE_ENABLE_API_ARMOR 1835 if( !sqlite3SafetyCheckOk(db) ){ 1836 (void)SQLITE_MISUSE_BKPT; 1837 return 0; 1838 } 1839 #endif 1840 sqlite3_mutex_enter(db->mutex); 1841 pRet = db->pUpdateArg; 1842 db->xUpdateCallback = xCallback; 1843 db->pUpdateArg = pArg; 1844 sqlite3_mutex_leave(db->mutex); 1845 return pRet; 1846 } 1847 1848 /* 1849 ** Register a callback to be invoked each time a transaction is rolled 1850 ** back by this database connection. 1851 */ 1852 void *sqlite3_rollback_hook( 1853 sqlite3 *db, /* Attach the hook to this database */ 1854 void (*xCallback)(void*), /* Callback function */ 1855 void *pArg /* Argument to the function */ 1856 ){ 1857 void *pRet; 1858 1859 #ifdef SQLITE_ENABLE_API_ARMOR 1860 if( !sqlite3SafetyCheckOk(db) ){ 1861 (void)SQLITE_MISUSE_BKPT; 1862 return 0; 1863 } 1864 #endif 1865 sqlite3_mutex_enter(db->mutex); 1866 pRet = db->pRollbackArg; 1867 db->xRollbackCallback = xCallback; 1868 db->pRollbackArg = pArg; 1869 sqlite3_mutex_leave(db->mutex); 1870 return pRet; 1871 } 1872 1873 #ifndef SQLITE_OMIT_WAL 1874 /* 1875 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1876 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1877 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1878 ** wal_autocheckpoint()). 1879 */ 1880 int sqlite3WalDefaultHook( 1881 void *pClientData, /* Argument */ 1882 sqlite3 *db, /* Connection */ 1883 const char *zDb, /* Database */ 1884 int nFrame /* Size of WAL */ 1885 ){ 1886 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1887 sqlite3BeginBenignMalloc(); 1888 sqlite3_wal_checkpoint(db, zDb); 1889 sqlite3EndBenignMalloc(); 1890 } 1891 return SQLITE_OK; 1892 } 1893 #endif /* SQLITE_OMIT_WAL */ 1894 1895 /* 1896 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1897 ** a database after committing a transaction if there are nFrame or 1898 ** more frames in the log file. Passing zero or a negative value as the 1899 ** nFrame parameter disables automatic checkpoints entirely. 1900 ** 1901 ** The callback registered by this function replaces any existing callback 1902 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1903 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1904 ** configured by this function. 1905 */ 1906 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1907 #ifdef SQLITE_OMIT_WAL 1908 UNUSED_PARAMETER(db); 1909 UNUSED_PARAMETER(nFrame); 1910 #else 1911 #ifdef SQLITE_ENABLE_API_ARMOR 1912 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1913 #endif 1914 if( nFrame>0 ){ 1915 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1916 }else{ 1917 sqlite3_wal_hook(db, 0, 0); 1918 } 1919 #endif 1920 return SQLITE_OK; 1921 } 1922 1923 /* 1924 ** Register a callback to be invoked each time a transaction is written 1925 ** into the write-ahead-log by this database connection. 1926 */ 1927 void *sqlite3_wal_hook( 1928 sqlite3 *db, /* Attach the hook to this db handle */ 1929 int(*xCallback)(void *, sqlite3*, const char*, int), 1930 void *pArg /* First argument passed to xCallback() */ 1931 ){ 1932 #ifndef SQLITE_OMIT_WAL 1933 void *pRet; 1934 #ifdef SQLITE_ENABLE_API_ARMOR 1935 if( !sqlite3SafetyCheckOk(db) ){ 1936 (void)SQLITE_MISUSE_BKPT; 1937 return 0; 1938 } 1939 #endif 1940 sqlite3_mutex_enter(db->mutex); 1941 pRet = db->pWalArg; 1942 db->xWalCallback = xCallback; 1943 db->pWalArg = pArg; 1944 sqlite3_mutex_leave(db->mutex); 1945 return pRet; 1946 #else 1947 return 0; 1948 #endif 1949 } 1950 1951 /* 1952 ** Checkpoint database zDb. 1953 */ 1954 int sqlite3_wal_checkpoint_v2( 1955 sqlite3 *db, /* Database handle */ 1956 const char *zDb, /* Name of attached database (or NULL) */ 1957 int eMode, /* SQLITE_CHECKPOINT_* value */ 1958 int *pnLog, /* OUT: Size of WAL log in frames */ 1959 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1960 ){ 1961 #ifdef SQLITE_OMIT_WAL 1962 return SQLITE_OK; 1963 #else 1964 int rc; /* Return code */ 1965 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1966 1967 #ifdef SQLITE_ENABLE_API_ARMOR 1968 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1969 #endif 1970 1971 /* Initialize the output variables to -1 in case an error occurs. */ 1972 if( pnLog ) *pnLog = -1; 1973 if( pnCkpt ) *pnCkpt = -1; 1974 1975 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 1976 assert( SQLITE_CHECKPOINT_FULL==1 ); 1977 assert( SQLITE_CHECKPOINT_RESTART==2 ); 1978 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 1979 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 1980 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 1981 ** mode: */ 1982 return SQLITE_MISUSE; 1983 } 1984 1985 sqlite3_mutex_enter(db->mutex); 1986 if( zDb && zDb[0] ){ 1987 iDb = sqlite3FindDbName(db, zDb); 1988 } 1989 if( iDb<0 ){ 1990 rc = SQLITE_ERROR; 1991 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 1992 }else{ 1993 db->busyHandler.nBusy = 0; 1994 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1995 sqlite3Error(db, rc); 1996 } 1997 rc = sqlite3ApiExit(db, rc); 1998 sqlite3_mutex_leave(db->mutex); 1999 return rc; 2000 #endif 2001 } 2002 2003 2004 /* 2005 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 2006 ** to contains a zero-length string, all attached databases are 2007 ** checkpointed. 2008 */ 2009 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 2010 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 2011 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 2012 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 2013 } 2014 2015 #ifndef SQLITE_OMIT_WAL 2016 /* 2017 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 2018 ** not currently open in WAL mode. 2019 ** 2020 ** If a transaction is open on the database being checkpointed, this 2021 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2022 ** an error occurs while running the checkpoint, an SQLite error code is 2023 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2024 ** 2025 ** The mutex on database handle db should be held by the caller. The mutex 2026 ** associated with the specific b-tree being checkpointed is taken by 2027 ** this function while the checkpoint is running. 2028 ** 2029 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 2030 ** checkpointed. If an error is encountered it is returned immediately - 2031 ** no attempt is made to checkpoint any remaining databases. 2032 ** 2033 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 2034 */ 2035 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2036 int rc = SQLITE_OK; /* Return code */ 2037 int i; /* Used to iterate through attached dbs */ 2038 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2039 2040 assert( sqlite3_mutex_held(db->mutex) ); 2041 assert( !pnLog || *pnLog==-1 ); 2042 assert( !pnCkpt || *pnCkpt==-1 ); 2043 2044 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2045 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 2046 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2047 pnLog = 0; 2048 pnCkpt = 0; 2049 if( rc==SQLITE_BUSY ){ 2050 bBusy = 1; 2051 rc = SQLITE_OK; 2052 } 2053 } 2054 } 2055 2056 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2057 } 2058 #endif /* SQLITE_OMIT_WAL */ 2059 2060 /* 2061 ** This function returns true if main-memory should be used instead of 2062 ** a temporary file for transient pager files and statement journals. 2063 ** The value returned depends on the value of db->temp_store (runtime 2064 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2065 ** following table describes the relationship between these two values 2066 ** and this functions return value. 2067 ** 2068 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2069 ** ----------------- -------------- ------------------------------ 2070 ** 0 any file (return 0) 2071 ** 1 1 file (return 0) 2072 ** 1 2 memory (return 1) 2073 ** 1 0 file (return 0) 2074 ** 2 1 file (return 0) 2075 ** 2 2 memory (return 1) 2076 ** 2 0 memory (return 1) 2077 ** 3 any memory (return 1) 2078 */ 2079 int sqlite3TempInMemory(const sqlite3 *db){ 2080 #if SQLITE_TEMP_STORE==1 2081 return ( db->temp_store==2 ); 2082 #endif 2083 #if SQLITE_TEMP_STORE==2 2084 return ( db->temp_store!=1 ); 2085 #endif 2086 #if SQLITE_TEMP_STORE==3 2087 UNUSED_PARAMETER(db); 2088 return 1; 2089 #endif 2090 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2091 UNUSED_PARAMETER(db); 2092 return 0; 2093 #endif 2094 } 2095 2096 /* 2097 ** Return UTF-8 encoded English language explanation of the most recent 2098 ** error. 2099 */ 2100 const char *sqlite3_errmsg(sqlite3 *db){ 2101 const char *z; 2102 if( !db ){ 2103 return sqlite3ErrStr(SQLITE_NOMEM); 2104 } 2105 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2106 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2107 } 2108 sqlite3_mutex_enter(db->mutex); 2109 if( db->mallocFailed ){ 2110 z = sqlite3ErrStr(SQLITE_NOMEM); 2111 }else{ 2112 testcase( db->pErr==0 ); 2113 z = (char*)sqlite3_value_text(db->pErr); 2114 assert( !db->mallocFailed ); 2115 if( z==0 ){ 2116 z = sqlite3ErrStr(db->errCode); 2117 } 2118 } 2119 sqlite3_mutex_leave(db->mutex); 2120 return z; 2121 } 2122 2123 #ifndef SQLITE_OMIT_UTF16 2124 /* 2125 ** Return UTF-16 encoded English language explanation of the most recent 2126 ** error. 2127 */ 2128 const void *sqlite3_errmsg16(sqlite3 *db){ 2129 static const u16 outOfMem[] = { 2130 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2131 }; 2132 static const u16 misuse[] = { 2133 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 2134 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 2135 'c', 'a', 'l', 'l', 'e', 'd', ' ', 2136 'o', 'u', 't', ' ', 2137 'o', 'f', ' ', 2138 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 2139 }; 2140 2141 const void *z; 2142 if( !db ){ 2143 return (void *)outOfMem; 2144 } 2145 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2146 return (void *)misuse; 2147 } 2148 sqlite3_mutex_enter(db->mutex); 2149 if( db->mallocFailed ){ 2150 z = (void *)outOfMem; 2151 }else{ 2152 z = sqlite3_value_text16(db->pErr); 2153 if( z==0 ){ 2154 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2155 z = sqlite3_value_text16(db->pErr); 2156 } 2157 /* A malloc() may have failed within the call to sqlite3_value_text16() 2158 ** above. If this is the case, then the db->mallocFailed flag needs to 2159 ** be cleared before returning. Do this directly, instead of via 2160 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2161 */ 2162 db->mallocFailed = 0; 2163 } 2164 sqlite3_mutex_leave(db->mutex); 2165 return z; 2166 } 2167 #endif /* SQLITE_OMIT_UTF16 */ 2168 2169 /* 2170 ** Return the most recent error code generated by an SQLite routine. If NULL is 2171 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2172 */ 2173 int sqlite3_errcode(sqlite3 *db){ 2174 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2175 return SQLITE_MISUSE_BKPT; 2176 } 2177 if( !db || db->mallocFailed ){ 2178 return SQLITE_NOMEM; 2179 } 2180 return db->errCode & db->errMask; 2181 } 2182 int sqlite3_extended_errcode(sqlite3 *db){ 2183 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2184 return SQLITE_MISUSE_BKPT; 2185 } 2186 if( !db || db->mallocFailed ){ 2187 return SQLITE_NOMEM; 2188 } 2189 return db->errCode; 2190 } 2191 2192 /* 2193 ** Return a string that describes the kind of error specified in the 2194 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2195 ** function. 2196 */ 2197 const char *sqlite3_errstr(int rc){ 2198 return sqlite3ErrStr(rc); 2199 } 2200 2201 /* 2202 ** Create a new collating function for database "db". The name is zName 2203 ** and the encoding is enc. 2204 */ 2205 static int createCollation( 2206 sqlite3* db, 2207 const char *zName, 2208 u8 enc, 2209 void* pCtx, 2210 int(*xCompare)(void*,int,const void*,int,const void*), 2211 void(*xDel)(void*) 2212 ){ 2213 CollSeq *pColl; 2214 int enc2; 2215 2216 assert( sqlite3_mutex_held(db->mutex) ); 2217 2218 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2219 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2220 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2221 */ 2222 enc2 = enc; 2223 testcase( enc2==SQLITE_UTF16 ); 2224 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2225 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2226 enc2 = SQLITE_UTF16NATIVE; 2227 } 2228 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2229 return SQLITE_MISUSE_BKPT; 2230 } 2231 2232 /* Check if this call is removing or replacing an existing collation 2233 ** sequence. If so, and there are active VMs, return busy. If there 2234 ** are no active VMs, invalidate any pre-compiled statements. 2235 */ 2236 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2237 if( pColl && pColl->xCmp ){ 2238 if( db->nVdbeActive ){ 2239 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2240 "unable to delete/modify collation sequence due to active statements"); 2241 return SQLITE_BUSY; 2242 } 2243 sqlite3ExpirePreparedStatements(db); 2244 2245 /* If collation sequence pColl was created directly by a call to 2246 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2247 ** then any copies made by synthCollSeq() need to be invalidated. 2248 ** Also, collation destructor - CollSeq.xDel() - function may need 2249 ** to be called. 2250 */ 2251 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2252 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2253 int j; 2254 for(j=0; j<3; j++){ 2255 CollSeq *p = &aColl[j]; 2256 if( p->enc==pColl->enc ){ 2257 if( p->xDel ){ 2258 p->xDel(p->pUser); 2259 } 2260 p->xCmp = 0; 2261 } 2262 } 2263 } 2264 } 2265 2266 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2267 if( pColl==0 ) return SQLITE_NOMEM; 2268 pColl->xCmp = xCompare; 2269 pColl->pUser = pCtx; 2270 pColl->xDel = xDel; 2271 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2272 sqlite3Error(db, SQLITE_OK); 2273 return SQLITE_OK; 2274 } 2275 2276 2277 /* 2278 ** This array defines hard upper bounds on limit values. The 2279 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2280 ** #defines in sqlite3.h. 2281 */ 2282 static const int aHardLimit[] = { 2283 SQLITE_MAX_LENGTH, 2284 SQLITE_MAX_SQL_LENGTH, 2285 SQLITE_MAX_COLUMN, 2286 SQLITE_MAX_EXPR_DEPTH, 2287 SQLITE_MAX_COMPOUND_SELECT, 2288 SQLITE_MAX_VDBE_OP, 2289 SQLITE_MAX_FUNCTION_ARG, 2290 SQLITE_MAX_ATTACHED, 2291 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2292 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2293 SQLITE_MAX_TRIGGER_DEPTH, 2294 SQLITE_MAX_WORKER_THREADS, 2295 }; 2296 2297 /* 2298 ** Make sure the hard limits are set to reasonable values 2299 */ 2300 #if SQLITE_MAX_LENGTH<100 2301 # error SQLITE_MAX_LENGTH must be at least 100 2302 #endif 2303 #if SQLITE_MAX_SQL_LENGTH<100 2304 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2305 #endif 2306 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2307 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2308 #endif 2309 #if SQLITE_MAX_COMPOUND_SELECT<2 2310 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2311 #endif 2312 #if SQLITE_MAX_VDBE_OP<40 2313 # error SQLITE_MAX_VDBE_OP must be at least 40 2314 #endif 2315 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 2316 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 2317 #endif 2318 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2319 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2320 #endif 2321 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2322 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2323 #endif 2324 #if SQLITE_MAX_COLUMN>32767 2325 # error SQLITE_MAX_COLUMN must not exceed 32767 2326 #endif 2327 #if SQLITE_MAX_TRIGGER_DEPTH<1 2328 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2329 #endif 2330 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2331 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2332 #endif 2333 2334 2335 /* 2336 ** Change the value of a limit. Report the old value. 2337 ** If an invalid limit index is supplied, report -1. 2338 ** Make no changes but still report the old value if the 2339 ** new limit is negative. 2340 ** 2341 ** A new lower limit does not shrink existing constructs. 2342 ** It merely prevents new constructs that exceed the limit 2343 ** from forming. 2344 */ 2345 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2346 int oldLimit; 2347 2348 #ifdef SQLITE_ENABLE_API_ARMOR 2349 if( !sqlite3SafetyCheckOk(db) ){ 2350 (void)SQLITE_MISUSE_BKPT; 2351 return -1; 2352 } 2353 #endif 2354 2355 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2356 ** there is a hard upper bound set at compile-time by a C preprocessor 2357 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2358 ** "_MAX_".) 2359 */ 2360 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2361 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2362 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2363 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2364 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2365 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2366 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2367 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2368 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2369 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2370 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2371 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2372 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2373 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2374 2375 2376 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2377 return -1; 2378 } 2379 oldLimit = db->aLimit[limitId]; 2380 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2381 if( newLimit>aHardLimit[limitId] ){ 2382 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2383 } 2384 db->aLimit[limitId] = newLimit; 2385 } 2386 return oldLimit; /* IMP: R-53341-35419 */ 2387 } 2388 2389 /* 2390 ** This function is used to parse both URIs and non-URI filenames passed by the 2391 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2392 ** URIs specified as part of ATTACH statements. 2393 ** 2394 ** The first argument to this function is the name of the VFS to use (or 2395 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2396 ** query parameter. The second argument contains the URI (or non-URI filename) 2397 ** itself. When this function is called the *pFlags variable should contain 2398 ** the default flags to open the database handle with. The value stored in 2399 ** *pFlags may be updated before returning if the URI filename contains 2400 ** "cache=xxx" or "mode=xxx" query parameters. 2401 ** 2402 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2403 ** the VFS that should be used to open the database file. *pzFile is set to 2404 ** point to a buffer containing the name of the file to open. It is the 2405 ** responsibility of the caller to eventually call sqlite3_free() to release 2406 ** this buffer. 2407 ** 2408 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2409 ** may be set to point to a buffer containing an English language error 2410 ** message. It is the responsibility of the caller to eventually release 2411 ** this buffer by calling sqlite3_free(). 2412 */ 2413 int sqlite3ParseUri( 2414 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2415 const char *zUri, /* Nul-terminated URI to parse */ 2416 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2417 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2418 char **pzFile, /* OUT: Filename component of URI */ 2419 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2420 ){ 2421 int rc = SQLITE_OK; 2422 unsigned int flags = *pFlags; 2423 const char *zVfs = zDefaultVfs; 2424 char *zFile; 2425 char c; 2426 int nUri = sqlite3Strlen30(zUri); 2427 2428 assert( *pzErrMsg==0 ); 2429 2430 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2431 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2432 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2433 ){ 2434 char *zOpt; 2435 int eState; /* Parser state when parsing URI */ 2436 int iIn; /* Input character index */ 2437 int iOut = 0; /* Output character index */ 2438 u64 nByte = nUri+2; /* Bytes of space to allocate */ 2439 2440 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2441 ** method that there may be extra parameters following the file-name. */ 2442 flags |= SQLITE_OPEN_URI; 2443 2444 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2445 zFile = sqlite3_malloc64(nByte); 2446 if( !zFile ) return SQLITE_NOMEM; 2447 2448 iIn = 5; 2449 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2450 if( strncmp(zUri+5, "///", 3)==0 ){ 2451 iIn = 7; 2452 /* The following condition causes URIs with five leading / characters 2453 ** like file://///host/path to be converted into UNCs like //host/path. 2454 ** The correct URI for that UNC has only two or four leading / characters 2455 ** file://host/path or file:////host/path. But 5 leading slashes is a 2456 ** common error, we are told, so we handle it as a special case. */ 2457 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2458 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2459 iIn = 16; 2460 } 2461 #else 2462 /* Discard the scheme and authority segments of the URI. */ 2463 if( zUri[5]=='/' && zUri[6]=='/' ){ 2464 iIn = 7; 2465 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2466 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2467 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2468 iIn-7, &zUri[7]); 2469 rc = SQLITE_ERROR; 2470 goto parse_uri_out; 2471 } 2472 } 2473 #endif 2474 2475 /* Copy the filename and any query parameters into the zFile buffer. 2476 ** Decode %HH escape codes along the way. 2477 ** 2478 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2479 ** on the parsing context. As follows: 2480 ** 2481 ** 0: Parsing file-name. 2482 ** 1: Parsing name section of a name=value query parameter. 2483 ** 2: Parsing value section of a name=value query parameter. 2484 */ 2485 eState = 0; 2486 while( (c = zUri[iIn])!=0 && c!='#' ){ 2487 iIn++; 2488 if( c=='%' 2489 && sqlite3Isxdigit(zUri[iIn]) 2490 && sqlite3Isxdigit(zUri[iIn+1]) 2491 ){ 2492 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2493 octet += sqlite3HexToInt(zUri[iIn++]); 2494 2495 assert( octet>=0 && octet<256 ); 2496 if( octet==0 ){ 2497 /* This branch is taken when "%00" appears within the URI. In this 2498 ** case we ignore all text in the remainder of the path, name or 2499 ** value currently being parsed. So ignore the current character 2500 ** and skip to the next "?", "=" or "&", as appropriate. */ 2501 while( (c = zUri[iIn])!=0 && c!='#' 2502 && (eState!=0 || c!='?') 2503 && (eState!=1 || (c!='=' && c!='&')) 2504 && (eState!=2 || c!='&') 2505 ){ 2506 iIn++; 2507 } 2508 continue; 2509 } 2510 c = octet; 2511 }else if( eState==1 && (c=='&' || c=='=') ){ 2512 if( zFile[iOut-1]==0 ){ 2513 /* An empty option name. Ignore this option altogether. */ 2514 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2515 continue; 2516 } 2517 if( c=='&' ){ 2518 zFile[iOut++] = '\0'; 2519 }else{ 2520 eState = 2; 2521 } 2522 c = 0; 2523 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2524 c = 0; 2525 eState = 1; 2526 } 2527 zFile[iOut++] = c; 2528 } 2529 if( eState==1 ) zFile[iOut++] = '\0'; 2530 zFile[iOut++] = '\0'; 2531 zFile[iOut++] = '\0'; 2532 2533 /* Check if there were any options specified that should be interpreted 2534 ** here. Options that are interpreted here include "vfs" and those that 2535 ** correspond to flags that may be passed to the sqlite3_open_v2() 2536 ** method. */ 2537 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2538 while( zOpt[0] ){ 2539 int nOpt = sqlite3Strlen30(zOpt); 2540 char *zVal = &zOpt[nOpt+1]; 2541 int nVal = sqlite3Strlen30(zVal); 2542 2543 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2544 zVfs = zVal; 2545 }else{ 2546 struct OpenMode { 2547 const char *z; 2548 int mode; 2549 } *aMode = 0; 2550 char *zModeType = 0; 2551 int mask = 0; 2552 int limit = 0; 2553 2554 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2555 static struct OpenMode aCacheMode[] = { 2556 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2557 { "private", SQLITE_OPEN_PRIVATECACHE }, 2558 { 0, 0 } 2559 }; 2560 2561 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2562 aMode = aCacheMode; 2563 limit = mask; 2564 zModeType = "cache"; 2565 } 2566 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2567 static struct OpenMode aOpenMode[] = { 2568 { "ro", SQLITE_OPEN_READONLY }, 2569 { "rw", SQLITE_OPEN_READWRITE }, 2570 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2571 { "memory", SQLITE_OPEN_MEMORY }, 2572 { 0, 0 } 2573 }; 2574 2575 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2576 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2577 aMode = aOpenMode; 2578 limit = mask & flags; 2579 zModeType = "access"; 2580 } 2581 2582 if( aMode ){ 2583 int i; 2584 int mode = 0; 2585 for(i=0; aMode[i].z; i++){ 2586 const char *z = aMode[i].z; 2587 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2588 mode = aMode[i].mode; 2589 break; 2590 } 2591 } 2592 if( mode==0 ){ 2593 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2594 rc = SQLITE_ERROR; 2595 goto parse_uri_out; 2596 } 2597 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2598 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2599 zModeType, zVal); 2600 rc = SQLITE_PERM; 2601 goto parse_uri_out; 2602 } 2603 flags = (flags & ~mask) | mode; 2604 } 2605 } 2606 2607 zOpt = &zVal[nVal+1]; 2608 } 2609 2610 }else{ 2611 zFile = sqlite3_malloc64(nUri+2); 2612 if( !zFile ) return SQLITE_NOMEM; 2613 memcpy(zFile, zUri, nUri); 2614 zFile[nUri] = '\0'; 2615 zFile[nUri+1] = '\0'; 2616 flags &= ~SQLITE_OPEN_URI; 2617 } 2618 2619 *ppVfs = sqlite3_vfs_find(zVfs); 2620 if( *ppVfs==0 ){ 2621 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2622 rc = SQLITE_ERROR; 2623 } 2624 parse_uri_out: 2625 if( rc!=SQLITE_OK ){ 2626 sqlite3_free(zFile); 2627 zFile = 0; 2628 } 2629 *pFlags = flags; 2630 *pzFile = zFile; 2631 return rc; 2632 } 2633 2634 2635 /* 2636 ** This routine does the work of opening a database on behalf of 2637 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2638 ** is UTF-8 encoded. 2639 */ 2640 static int openDatabase( 2641 const char *zFilename, /* Database filename UTF-8 encoded */ 2642 sqlite3 **ppDb, /* OUT: Returned database handle */ 2643 unsigned int flags, /* Operational flags */ 2644 const char *zVfs /* Name of the VFS to use */ 2645 ){ 2646 sqlite3 *db; /* Store allocated handle here */ 2647 int rc; /* Return code */ 2648 int isThreadsafe; /* True for threadsafe connections */ 2649 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2650 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2651 2652 #ifdef SQLITE_ENABLE_API_ARMOR 2653 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2654 #endif 2655 *ppDb = 0; 2656 #ifndef SQLITE_OMIT_AUTOINIT 2657 rc = sqlite3_initialize(); 2658 if( rc ) return rc; 2659 #endif 2660 2661 /* Only allow sensible combinations of bits in the flags argument. 2662 ** Throw an error if any non-sense combination is used. If we 2663 ** do not block illegal combinations here, it could trigger 2664 ** assert() statements in deeper layers. Sensible combinations 2665 ** are: 2666 ** 2667 ** 1: SQLITE_OPEN_READONLY 2668 ** 2: SQLITE_OPEN_READWRITE 2669 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2670 */ 2671 assert( SQLITE_OPEN_READONLY == 0x01 ); 2672 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2673 assert( SQLITE_OPEN_CREATE == 0x04 ); 2674 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2675 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2676 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2677 if( ((1<<(flags&7)) & 0x46)==0 ){ 2678 return SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 2679 } 2680 2681 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2682 isThreadsafe = 0; 2683 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2684 isThreadsafe = 0; 2685 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2686 isThreadsafe = 1; 2687 }else{ 2688 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2689 } 2690 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2691 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2692 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2693 flags |= SQLITE_OPEN_SHAREDCACHE; 2694 } 2695 2696 /* Remove harmful bits from the flags parameter 2697 ** 2698 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2699 ** dealt with in the previous code block. Besides these, the only 2700 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2701 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2702 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2703 ** off all other flags. 2704 */ 2705 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2706 SQLITE_OPEN_EXCLUSIVE | 2707 SQLITE_OPEN_MAIN_DB | 2708 SQLITE_OPEN_TEMP_DB | 2709 SQLITE_OPEN_TRANSIENT_DB | 2710 SQLITE_OPEN_MAIN_JOURNAL | 2711 SQLITE_OPEN_TEMP_JOURNAL | 2712 SQLITE_OPEN_SUBJOURNAL | 2713 SQLITE_OPEN_MASTER_JOURNAL | 2714 SQLITE_OPEN_NOMUTEX | 2715 SQLITE_OPEN_FULLMUTEX | 2716 SQLITE_OPEN_WAL 2717 ); 2718 2719 /* Allocate the sqlite data structure */ 2720 db = sqlite3MallocZero( sizeof(sqlite3) ); 2721 if( db==0 ) goto opendb_out; 2722 if( isThreadsafe ){ 2723 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2724 if( db->mutex==0 ){ 2725 sqlite3_free(db); 2726 db = 0; 2727 goto opendb_out; 2728 } 2729 } 2730 sqlite3_mutex_enter(db->mutex); 2731 db->errMask = 0xff; 2732 db->nDb = 2; 2733 db->magic = SQLITE_MAGIC_BUSY; 2734 db->aDb = db->aDbStatic; 2735 2736 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2737 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2738 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 2739 db->autoCommit = 1; 2740 db->nextAutovac = -1; 2741 db->szMmap = sqlite3GlobalConfig.szMmap; 2742 db->nextPagesize = 0; 2743 db->nMaxSorterMmap = 0x7FFFFFFF; 2744 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 2745 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 2746 | SQLITE_AutoIndex 2747 #endif 2748 #if SQLITE_DEFAULT_CKPTFULLFSYNC 2749 | SQLITE_CkptFullFSync 2750 #endif 2751 #if SQLITE_DEFAULT_FILE_FORMAT<4 2752 | SQLITE_LegacyFileFmt 2753 #endif 2754 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2755 | SQLITE_LoadExtension 2756 #endif 2757 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2758 | SQLITE_RecTriggers 2759 #endif 2760 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2761 | SQLITE_ForeignKeys 2762 #endif 2763 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 2764 | SQLITE_ReverseOrder 2765 #endif 2766 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 2767 | SQLITE_CellSizeCk 2768 #endif 2769 ; 2770 sqlite3HashInit(&db->aCollSeq); 2771 #ifndef SQLITE_OMIT_VIRTUALTABLE 2772 sqlite3HashInit(&db->aModule); 2773 #endif 2774 2775 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2776 ** and UTF-16, so add a version for each to avoid any unnecessary 2777 ** conversions. The only error that can occur here is a malloc() failure. 2778 ** 2779 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 2780 ** functions: 2781 */ 2782 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2783 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2784 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2785 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2786 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2787 if( db->mallocFailed ){ 2788 goto opendb_out; 2789 } 2790 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 2791 ** strings is BINARY. 2792 */ 2793 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2794 assert( db->pDfltColl!=0 ); 2795 2796 /* Parse the filename/URI argument. */ 2797 db->openFlags = flags; 2798 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2799 if( rc!=SQLITE_OK ){ 2800 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2801 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2802 sqlite3_free(zErrMsg); 2803 goto opendb_out; 2804 } 2805 2806 /* Open the backend database driver */ 2807 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2808 flags | SQLITE_OPEN_MAIN_DB); 2809 if( rc!=SQLITE_OK ){ 2810 if( rc==SQLITE_IOERR_NOMEM ){ 2811 rc = SQLITE_NOMEM; 2812 } 2813 sqlite3Error(db, rc); 2814 goto opendb_out; 2815 } 2816 sqlite3BtreeEnter(db->aDb[0].pBt); 2817 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2818 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 2819 sqlite3BtreeLeave(db->aDb[0].pBt); 2820 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2821 2822 /* The default safety_level for the main database is 'full'; for the temp 2823 ** database it is 'NONE'. This matches the pager layer defaults. 2824 */ 2825 db->aDb[0].zName = "main"; 2826 db->aDb[0].safety_level = 3; 2827 db->aDb[1].zName = "temp"; 2828 db->aDb[1].safety_level = 1; 2829 2830 db->magic = SQLITE_MAGIC_OPEN; 2831 if( db->mallocFailed ){ 2832 goto opendb_out; 2833 } 2834 2835 /* Register all built-in functions, but do not attempt to read the 2836 ** database schema yet. This is delayed until the first time the database 2837 ** is accessed. 2838 */ 2839 sqlite3Error(db, SQLITE_OK); 2840 sqlite3RegisterBuiltinFunctions(db); 2841 2842 /* Load automatic extensions - extensions that have been registered 2843 ** using the sqlite3_automatic_extension() API. 2844 */ 2845 rc = sqlite3_errcode(db); 2846 if( rc==SQLITE_OK ){ 2847 sqlite3AutoLoadExtensions(db); 2848 rc = sqlite3_errcode(db); 2849 if( rc!=SQLITE_OK ){ 2850 goto opendb_out; 2851 } 2852 } 2853 2854 #ifdef SQLITE_ENABLE_FTS1 2855 if( !db->mallocFailed ){ 2856 extern int sqlite3Fts1Init(sqlite3*); 2857 rc = sqlite3Fts1Init(db); 2858 } 2859 #endif 2860 2861 #ifdef SQLITE_ENABLE_FTS2 2862 if( !db->mallocFailed && rc==SQLITE_OK ){ 2863 extern int sqlite3Fts2Init(sqlite3*); 2864 rc = sqlite3Fts2Init(db); 2865 } 2866 #endif 2867 2868 #ifdef SQLITE_ENABLE_FTS3 2869 if( !db->mallocFailed && rc==SQLITE_OK ){ 2870 rc = sqlite3Fts3Init(db); 2871 } 2872 #endif 2873 2874 #ifdef SQLITE_ENABLE_ICU 2875 if( !db->mallocFailed && rc==SQLITE_OK ){ 2876 rc = sqlite3IcuInit(db); 2877 } 2878 #endif 2879 2880 #ifdef SQLITE_ENABLE_RTREE 2881 if( !db->mallocFailed && rc==SQLITE_OK){ 2882 rc = sqlite3RtreeInit(db); 2883 } 2884 #endif 2885 2886 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 2887 if( !db->mallocFailed && rc==SQLITE_OK){ 2888 rc = sqlite3DbstatRegister(db); 2889 } 2890 #endif 2891 2892 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2893 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2894 ** mode. Doing nothing at all also makes NORMAL the default. 2895 */ 2896 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2897 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2898 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2899 SQLITE_DEFAULT_LOCKING_MODE); 2900 #endif 2901 2902 if( rc ) sqlite3Error(db, rc); 2903 2904 /* Enable the lookaside-malloc subsystem */ 2905 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2906 sqlite3GlobalConfig.nLookaside); 2907 2908 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2909 2910 opendb_out: 2911 sqlite3_free(zOpen); 2912 if( db ){ 2913 assert( db->mutex!=0 || isThreadsafe==0 2914 || sqlite3GlobalConfig.bFullMutex==0 ); 2915 sqlite3_mutex_leave(db->mutex); 2916 } 2917 rc = sqlite3_errcode(db); 2918 assert( db!=0 || rc==SQLITE_NOMEM ); 2919 if( rc==SQLITE_NOMEM ){ 2920 sqlite3_close(db); 2921 db = 0; 2922 }else if( rc!=SQLITE_OK ){ 2923 db->magic = SQLITE_MAGIC_SICK; 2924 } 2925 *ppDb = db; 2926 #ifdef SQLITE_ENABLE_SQLLOG 2927 if( sqlite3GlobalConfig.xSqllog ){ 2928 /* Opening a db handle. Fourth parameter is passed 0. */ 2929 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2930 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2931 } 2932 #endif 2933 return rc & 0xff; 2934 } 2935 2936 /* 2937 ** Open a new database handle. 2938 */ 2939 int sqlite3_open( 2940 const char *zFilename, 2941 sqlite3 **ppDb 2942 ){ 2943 return openDatabase(zFilename, ppDb, 2944 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2945 } 2946 int sqlite3_open_v2( 2947 const char *filename, /* Database filename (UTF-8) */ 2948 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2949 int flags, /* Flags */ 2950 const char *zVfs /* Name of VFS module to use */ 2951 ){ 2952 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2953 } 2954 2955 #ifndef SQLITE_OMIT_UTF16 2956 /* 2957 ** Open a new database handle. 2958 */ 2959 int sqlite3_open16( 2960 const void *zFilename, 2961 sqlite3 **ppDb 2962 ){ 2963 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2964 sqlite3_value *pVal; 2965 int rc; 2966 2967 #ifdef SQLITE_ENABLE_API_ARMOR 2968 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2969 #endif 2970 *ppDb = 0; 2971 #ifndef SQLITE_OMIT_AUTOINIT 2972 rc = sqlite3_initialize(); 2973 if( rc ) return rc; 2974 #endif 2975 if( zFilename==0 ) zFilename = "\000\000"; 2976 pVal = sqlite3ValueNew(0); 2977 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2978 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2979 if( zFilename8 ){ 2980 rc = openDatabase(zFilename8, ppDb, 2981 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2982 assert( *ppDb || rc==SQLITE_NOMEM ); 2983 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2984 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 2985 } 2986 }else{ 2987 rc = SQLITE_NOMEM; 2988 } 2989 sqlite3ValueFree(pVal); 2990 2991 return rc & 0xff; 2992 } 2993 #endif /* SQLITE_OMIT_UTF16 */ 2994 2995 /* 2996 ** Register a new collation sequence with the database handle db. 2997 */ 2998 int sqlite3_create_collation( 2999 sqlite3* db, 3000 const char *zName, 3001 int enc, 3002 void* pCtx, 3003 int(*xCompare)(void*,int,const void*,int,const void*) 3004 ){ 3005 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 3006 } 3007 3008 /* 3009 ** Register a new collation sequence with the database handle db. 3010 */ 3011 int sqlite3_create_collation_v2( 3012 sqlite3* db, 3013 const char *zName, 3014 int enc, 3015 void* pCtx, 3016 int(*xCompare)(void*,int,const void*,int,const void*), 3017 void(*xDel)(void*) 3018 ){ 3019 int rc; 3020 3021 #ifdef SQLITE_ENABLE_API_ARMOR 3022 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3023 #endif 3024 sqlite3_mutex_enter(db->mutex); 3025 assert( !db->mallocFailed ); 3026 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 3027 rc = sqlite3ApiExit(db, rc); 3028 sqlite3_mutex_leave(db->mutex); 3029 return rc; 3030 } 3031 3032 #ifndef SQLITE_OMIT_UTF16 3033 /* 3034 ** Register a new collation sequence with the database handle db. 3035 */ 3036 int sqlite3_create_collation16( 3037 sqlite3* db, 3038 const void *zName, 3039 int enc, 3040 void* pCtx, 3041 int(*xCompare)(void*,int,const void*,int,const void*) 3042 ){ 3043 int rc = SQLITE_OK; 3044 char *zName8; 3045 3046 #ifdef SQLITE_ENABLE_API_ARMOR 3047 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3048 #endif 3049 sqlite3_mutex_enter(db->mutex); 3050 assert( !db->mallocFailed ); 3051 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3052 if( zName8 ){ 3053 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3054 sqlite3DbFree(db, zName8); 3055 } 3056 rc = sqlite3ApiExit(db, rc); 3057 sqlite3_mutex_leave(db->mutex); 3058 return rc; 3059 } 3060 #endif /* SQLITE_OMIT_UTF16 */ 3061 3062 /* 3063 ** Register a collation sequence factory callback with the database handle 3064 ** db. Replace any previously installed collation sequence factory. 3065 */ 3066 int sqlite3_collation_needed( 3067 sqlite3 *db, 3068 void *pCollNeededArg, 3069 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3070 ){ 3071 #ifdef SQLITE_ENABLE_API_ARMOR 3072 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3073 #endif 3074 sqlite3_mutex_enter(db->mutex); 3075 db->xCollNeeded = xCollNeeded; 3076 db->xCollNeeded16 = 0; 3077 db->pCollNeededArg = pCollNeededArg; 3078 sqlite3_mutex_leave(db->mutex); 3079 return SQLITE_OK; 3080 } 3081 3082 #ifndef SQLITE_OMIT_UTF16 3083 /* 3084 ** Register a collation sequence factory callback with the database handle 3085 ** db. Replace any previously installed collation sequence factory. 3086 */ 3087 int sqlite3_collation_needed16( 3088 sqlite3 *db, 3089 void *pCollNeededArg, 3090 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3091 ){ 3092 #ifdef SQLITE_ENABLE_API_ARMOR 3093 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3094 #endif 3095 sqlite3_mutex_enter(db->mutex); 3096 db->xCollNeeded = 0; 3097 db->xCollNeeded16 = xCollNeeded16; 3098 db->pCollNeededArg = pCollNeededArg; 3099 sqlite3_mutex_leave(db->mutex); 3100 return SQLITE_OK; 3101 } 3102 #endif /* SQLITE_OMIT_UTF16 */ 3103 3104 #ifndef SQLITE_OMIT_DEPRECATED 3105 /* 3106 ** This function is now an anachronism. It used to be used to recover from a 3107 ** malloc() failure, but SQLite now does this automatically. 3108 */ 3109 int sqlite3_global_recover(void){ 3110 return SQLITE_OK; 3111 } 3112 #endif 3113 3114 /* 3115 ** Test to see whether or not the database connection is in autocommit 3116 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3117 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3118 ** by the next COMMIT or ROLLBACK. 3119 */ 3120 int sqlite3_get_autocommit(sqlite3 *db){ 3121 #ifdef SQLITE_ENABLE_API_ARMOR 3122 if( !sqlite3SafetyCheckOk(db) ){ 3123 (void)SQLITE_MISUSE_BKPT; 3124 return 0; 3125 } 3126 #endif 3127 return db->autoCommit; 3128 } 3129 3130 /* 3131 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3132 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 3133 ** constants. They serve two purposes: 3134 ** 3135 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3136 ** to detect when version error conditions occurs. 3137 ** 3138 ** 2. Invoke sqlite3_log() to provide the source code location where 3139 ** a low-level error is first detected. 3140 */ 3141 int sqlite3CorruptError(int lineno){ 3142 testcase( sqlite3GlobalConfig.xLog!=0 ); 3143 sqlite3_log(SQLITE_CORRUPT, 3144 "database corruption at line %d of [%.10s]", 3145 lineno, 20+sqlite3_sourceid()); 3146 return SQLITE_CORRUPT; 3147 } 3148 int sqlite3MisuseError(int lineno){ 3149 testcase( sqlite3GlobalConfig.xLog!=0 ); 3150 sqlite3_log(SQLITE_MISUSE, 3151 "misuse at line %d of [%.10s]", 3152 lineno, 20+sqlite3_sourceid()); 3153 return SQLITE_MISUSE; 3154 } 3155 int sqlite3CantopenError(int lineno){ 3156 testcase( sqlite3GlobalConfig.xLog!=0 ); 3157 sqlite3_log(SQLITE_CANTOPEN, 3158 "cannot open file at line %d of [%.10s]", 3159 lineno, 20+sqlite3_sourceid()); 3160 return SQLITE_CANTOPEN; 3161 } 3162 3163 3164 #ifndef SQLITE_OMIT_DEPRECATED 3165 /* 3166 ** This is a convenience routine that makes sure that all thread-specific 3167 ** data for this thread has been deallocated. 3168 ** 3169 ** SQLite no longer uses thread-specific data so this routine is now a 3170 ** no-op. It is retained for historical compatibility. 3171 */ 3172 void sqlite3_thread_cleanup(void){ 3173 } 3174 #endif 3175 3176 /* 3177 ** Return meta information about a specific column of a database table. 3178 ** See comment in sqlite3.h (sqlite.h.in) for details. 3179 */ 3180 int sqlite3_table_column_metadata( 3181 sqlite3 *db, /* Connection handle */ 3182 const char *zDbName, /* Database name or NULL */ 3183 const char *zTableName, /* Table name */ 3184 const char *zColumnName, /* Column name */ 3185 char const **pzDataType, /* OUTPUT: Declared data type */ 3186 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3187 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3188 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3189 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3190 ){ 3191 int rc; 3192 char *zErrMsg = 0; 3193 Table *pTab = 0; 3194 Column *pCol = 0; 3195 int iCol = 0; 3196 char const *zDataType = 0; 3197 char const *zCollSeq = 0; 3198 int notnull = 0; 3199 int primarykey = 0; 3200 int autoinc = 0; 3201 3202 3203 #ifdef SQLITE_ENABLE_API_ARMOR 3204 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3205 return SQLITE_MISUSE_BKPT; 3206 } 3207 #endif 3208 3209 /* Ensure the database schema has been loaded */ 3210 sqlite3_mutex_enter(db->mutex); 3211 sqlite3BtreeEnterAll(db); 3212 rc = sqlite3Init(db, &zErrMsg); 3213 if( SQLITE_OK!=rc ){ 3214 goto error_out; 3215 } 3216 3217 /* Locate the table in question */ 3218 pTab = sqlite3FindTable(db, zTableName, zDbName); 3219 if( !pTab || pTab->pSelect ){ 3220 pTab = 0; 3221 goto error_out; 3222 } 3223 3224 /* Find the column for which info is requested */ 3225 if( zColumnName==0 ){ 3226 /* Query for existance of table only */ 3227 }else{ 3228 for(iCol=0; iCol<pTab->nCol; iCol++){ 3229 pCol = &pTab->aCol[iCol]; 3230 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 3231 break; 3232 } 3233 } 3234 if( iCol==pTab->nCol ){ 3235 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3236 iCol = pTab->iPKey; 3237 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3238 }else{ 3239 pTab = 0; 3240 goto error_out; 3241 } 3242 } 3243 } 3244 3245 /* The following block stores the meta information that will be returned 3246 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3247 ** and autoinc. At this point there are two possibilities: 3248 ** 3249 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3250 ** and there is no explicitly declared IPK column. 3251 ** 3252 ** 2. The table is not a view and the column name identified an 3253 ** explicitly declared column. Copy meta information from *pCol. 3254 */ 3255 if( pCol ){ 3256 zDataType = pCol->zType; 3257 zCollSeq = pCol->zColl; 3258 notnull = pCol->notNull!=0; 3259 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3260 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3261 }else{ 3262 zDataType = "INTEGER"; 3263 primarykey = 1; 3264 } 3265 if( !zCollSeq ){ 3266 zCollSeq = "BINARY"; 3267 } 3268 3269 error_out: 3270 sqlite3BtreeLeaveAll(db); 3271 3272 /* Whether the function call succeeded or failed, set the output parameters 3273 ** to whatever their local counterparts contain. If an error did occur, 3274 ** this has the effect of zeroing all output parameters. 3275 */ 3276 if( pzDataType ) *pzDataType = zDataType; 3277 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3278 if( pNotNull ) *pNotNull = notnull; 3279 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3280 if( pAutoinc ) *pAutoinc = autoinc; 3281 3282 if( SQLITE_OK==rc && !pTab ){ 3283 sqlite3DbFree(db, zErrMsg); 3284 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3285 zColumnName); 3286 rc = SQLITE_ERROR; 3287 } 3288 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3289 sqlite3DbFree(db, zErrMsg); 3290 rc = sqlite3ApiExit(db, rc); 3291 sqlite3_mutex_leave(db->mutex); 3292 return rc; 3293 } 3294 3295 /* 3296 ** Sleep for a little while. Return the amount of time slept. 3297 */ 3298 int sqlite3_sleep(int ms){ 3299 sqlite3_vfs *pVfs; 3300 int rc; 3301 pVfs = sqlite3_vfs_find(0); 3302 if( pVfs==0 ) return 0; 3303 3304 /* This function works in milliseconds, but the underlying OsSleep() 3305 ** API uses microseconds. Hence the 1000's. 3306 */ 3307 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3308 return rc; 3309 } 3310 3311 /* 3312 ** Enable or disable the extended result codes. 3313 */ 3314 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3315 #ifdef SQLITE_ENABLE_API_ARMOR 3316 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3317 #endif 3318 sqlite3_mutex_enter(db->mutex); 3319 db->errMask = onoff ? 0xffffffff : 0xff; 3320 sqlite3_mutex_leave(db->mutex); 3321 return SQLITE_OK; 3322 } 3323 3324 /* 3325 ** Invoke the xFileControl method on a particular database. 3326 */ 3327 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3328 int rc = SQLITE_ERROR; 3329 Btree *pBtree; 3330 3331 #ifdef SQLITE_ENABLE_API_ARMOR 3332 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3333 #endif 3334 sqlite3_mutex_enter(db->mutex); 3335 pBtree = sqlite3DbNameToBtree(db, zDbName); 3336 if( pBtree ){ 3337 Pager *pPager; 3338 sqlite3_file *fd; 3339 sqlite3BtreeEnter(pBtree); 3340 pPager = sqlite3BtreePager(pBtree); 3341 assert( pPager!=0 ); 3342 fd = sqlite3PagerFile(pPager); 3343 assert( fd!=0 ); 3344 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3345 *(sqlite3_file**)pArg = fd; 3346 rc = SQLITE_OK; 3347 }else if( fd->pMethods ){ 3348 rc = sqlite3OsFileControl(fd, op, pArg); 3349 }else{ 3350 rc = SQLITE_NOTFOUND; 3351 } 3352 sqlite3BtreeLeave(pBtree); 3353 } 3354 sqlite3_mutex_leave(db->mutex); 3355 return rc; 3356 } 3357 3358 /* 3359 ** Interface to the testing logic. 3360 */ 3361 int sqlite3_test_control(int op, ...){ 3362 int rc = 0; 3363 #ifdef SQLITE_OMIT_BUILTIN_TEST 3364 UNUSED_PARAMETER(op); 3365 #else 3366 va_list ap; 3367 va_start(ap, op); 3368 switch( op ){ 3369 3370 /* 3371 ** Save the current state of the PRNG. 3372 */ 3373 case SQLITE_TESTCTRL_PRNG_SAVE: { 3374 sqlite3PrngSaveState(); 3375 break; 3376 } 3377 3378 /* 3379 ** Restore the state of the PRNG to the last state saved using 3380 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3381 ** this verb acts like PRNG_RESET. 3382 */ 3383 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3384 sqlite3PrngRestoreState(); 3385 break; 3386 } 3387 3388 /* 3389 ** Reset the PRNG back to its uninitialized state. The next call 3390 ** to sqlite3_randomness() will reseed the PRNG using a single call 3391 ** to the xRandomness method of the default VFS. 3392 */ 3393 case SQLITE_TESTCTRL_PRNG_RESET: { 3394 sqlite3_randomness(0,0); 3395 break; 3396 } 3397 3398 /* 3399 ** sqlite3_test_control(BITVEC_TEST, size, program) 3400 ** 3401 ** Run a test against a Bitvec object of size. The program argument 3402 ** is an array of integers that defines the test. Return -1 on a 3403 ** memory allocation error, 0 on success, or non-zero for an error. 3404 ** See the sqlite3BitvecBuiltinTest() for additional information. 3405 */ 3406 case SQLITE_TESTCTRL_BITVEC_TEST: { 3407 int sz = va_arg(ap, int); 3408 int *aProg = va_arg(ap, int*); 3409 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3410 break; 3411 } 3412 3413 /* 3414 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 3415 ** 3416 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 3417 ** if xCallback is not NULL. 3418 ** 3419 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 3420 ** is called immediately after installing the new callback and the return 3421 ** value from sqlite3FaultSim(0) becomes the return from 3422 ** sqlite3_test_control(). 3423 */ 3424 case SQLITE_TESTCTRL_FAULT_INSTALL: { 3425 /* MSVC is picky about pulling func ptrs from va lists. 3426 ** http://support.microsoft.com/kb/47961 3427 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 3428 */ 3429 typedef int(*TESTCALLBACKFUNC_t)(int); 3430 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 3431 rc = sqlite3FaultSim(0); 3432 break; 3433 } 3434 3435 /* 3436 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3437 ** 3438 ** Register hooks to call to indicate which malloc() failures 3439 ** are benign. 3440 */ 3441 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3442 typedef void (*void_function)(void); 3443 void_function xBenignBegin; 3444 void_function xBenignEnd; 3445 xBenignBegin = va_arg(ap, void_function); 3446 xBenignEnd = va_arg(ap, void_function); 3447 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3448 break; 3449 } 3450 3451 /* 3452 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3453 ** 3454 ** Set the PENDING byte to the value in the argument, if X>0. 3455 ** Make no changes if X==0. Return the value of the pending byte 3456 ** as it existing before this routine was called. 3457 ** 3458 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3459 ** an incompatible database file format. Changing the PENDING byte 3460 ** while any database connection is open results in undefined and 3461 ** deleterious behavior. 3462 */ 3463 case SQLITE_TESTCTRL_PENDING_BYTE: { 3464 rc = PENDING_BYTE; 3465 #ifndef SQLITE_OMIT_WSD 3466 { 3467 unsigned int newVal = va_arg(ap, unsigned int); 3468 if( newVal ) sqlite3PendingByte = newVal; 3469 } 3470 #endif 3471 break; 3472 } 3473 3474 /* 3475 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3476 ** 3477 ** This action provides a run-time test to see whether or not 3478 ** assert() was enabled at compile-time. If X is true and assert() 3479 ** is enabled, then the return value is true. If X is true and 3480 ** assert() is disabled, then the return value is zero. If X is 3481 ** false and assert() is enabled, then the assertion fires and the 3482 ** process aborts. If X is false and assert() is disabled, then the 3483 ** return value is zero. 3484 */ 3485 case SQLITE_TESTCTRL_ASSERT: { 3486 volatile int x = 0; 3487 assert( (x = va_arg(ap,int))!=0 ); 3488 rc = x; 3489 break; 3490 } 3491 3492 3493 /* 3494 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3495 ** 3496 ** This action provides a run-time test to see how the ALWAYS and 3497 ** NEVER macros were defined at compile-time. 3498 ** 3499 ** The return value is ALWAYS(X). 3500 ** 3501 ** The recommended test is X==2. If the return value is 2, that means 3502 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3503 ** default setting. If the return value is 1, then ALWAYS() is either 3504 ** hard-coded to true or else it asserts if its argument is false. 3505 ** The first behavior (hard-coded to true) is the case if 3506 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3507 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3508 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3509 ** 3510 ** The run-time test procedure might look something like this: 3511 ** 3512 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3513 ** // ALWAYS() and NEVER() are no-op pass-through macros 3514 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3515 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3516 ** }else{ 3517 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3518 ** } 3519 */ 3520 case SQLITE_TESTCTRL_ALWAYS: { 3521 int x = va_arg(ap,int); 3522 rc = ALWAYS(x); 3523 break; 3524 } 3525 3526 /* 3527 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 3528 ** 3529 ** The integer returned reveals the byte-order of the computer on which 3530 ** SQLite is running: 3531 ** 3532 ** 1 big-endian, determined at run-time 3533 ** 10 little-endian, determined at run-time 3534 ** 432101 big-endian, determined at compile-time 3535 ** 123410 little-endian, determined at compile-time 3536 */ 3537 case SQLITE_TESTCTRL_BYTEORDER: { 3538 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 3539 break; 3540 } 3541 3542 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3543 ** 3544 ** Set the nReserve size to N for the main database on the database 3545 ** connection db. 3546 */ 3547 case SQLITE_TESTCTRL_RESERVE: { 3548 sqlite3 *db = va_arg(ap, sqlite3*); 3549 int x = va_arg(ap,int); 3550 sqlite3_mutex_enter(db->mutex); 3551 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3552 sqlite3_mutex_leave(db->mutex); 3553 break; 3554 } 3555 3556 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3557 ** 3558 ** Enable or disable various optimizations for testing purposes. The 3559 ** argument N is a bitmask of optimizations to be disabled. For normal 3560 ** operation N should be 0. The idea is that a test program (like the 3561 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3562 ** with various optimizations disabled to verify that the same answer 3563 ** is obtained in every case. 3564 */ 3565 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3566 sqlite3 *db = va_arg(ap, sqlite3*); 3567 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3568 break; 3569 } 3570 3571 #ifdef SQLITE_N_KEYWORD 3572 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3573 ** 3574 ** If zWord is a keyword recognized by the parser, then return the 3575 ** number of keywords. Or if zWord is not a keyword, return 0. 3576 ** 3577 ** This test feature is only available in the amalgamation since 3578 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3579 ** is built using separate source files. 3580 */ 3581 case SQLITE_TESTCTRL_ISKEYWORD: { 3582 const char *zWord = va_arg(ap, const char*); 3583 int n = sqlite3Strlen30(zWord); 3584 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3585 break; 3586 } 3587 #endif 3588 3589 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3590 ** 3591 ** Pass pFree into sqlite3ScratchFree(). 3592 ** If sz>0 then allocate a scratch buffer into pNew. 3593 */ 3594 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3595 void *pFree, **ppNew; 3596 int sz; 3597 sz = va_arg(ap, int); 3598 ppNew = va_arg(ap, void**); 3599 pFree = va_arg(ap, void*); 3600 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3601 sqlite3ScratchFree(pFree); 3602 break; 3603 } 3604 3605 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3606 ** 3607 ** If parameter onoff is non-zero, configure the wrappers so that all 3608 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3609 ** undo this setting. 3610 */ 3611 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3612 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3613 break; 3614 } 3615 3616 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 3617 ** 3618 ** Set or clear a flag that indicates that the database file is always well- 3619 ** formed and never corrupt. This flag is clear by default, indicating that 3620 ** database files might have arbitrary corruption. Setting the flag during 3621 ** testing causes certain assert() statements in the code to be activated 3622 ** that demonstrat invariants on well-formed database files. 3623 */ 3624 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 3625 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 3626 break; 3627 } 3628 3629 3630 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 3631 ** 3632 ** Set the VDBE coverage callback function to xCallback with context 3633 ** pointer ptr. 3634 */ 3635 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 3636 #ifdef SQLITE_VDBE_COVERAGE 3637 typedef void (*branch_callback)(void*,int,u8,u8); 3638 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 3639 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 3640 #endif 3641 break; 3642 } 3643 3644 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 3645 case SQLITE_TESTCTRL_SORTER_MMAP: { 3646 sqlite3 *db = va_arg(ap, sqlite3*); 3647 db->nMaxSorterMmap = va_arg(ap, int); 3648 break; 3649 } 3650 3651 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 3652 ** 3653 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 3654 ** not. 3655 */ 3656 case SQLITE_TESTCTRL_ISINIT: { 3657 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 3658 break; 3659 } 3660 3661 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 3662 ** 3663 ** This test control is used to create imposter tables. "db" is a pointer 3664 ** to the database connection. dbName is the database name (ex: "main" or 3665 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 3666 ** or off. "tnum" is the root page of the b-tree to which the imposter 3667 ** table should connect. 3668 ** 3669 ** Enable imposter mode only when the schema has already been parsed. Then 3670 ** run a single CREATE TABLE statement to construct the imposter table in 3671 ** the parsed schema. Then turn imposter mode back off again. 3672 ** 3673 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 3674 ** the schema to be reparsed the next time it is needed. This has the 3675 ** effect of erasing all imposter tables. 3676 */ 3677 case SQLITE_TESTCTRL_IMPOSTER: { 3678 sqlite3 *db = va_arg(ap, sqlite3*); 3679 sqlite3_mutex_enter(db->mutex); 3680 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 3681 db->init.busy = db->init.imposterTable = va_arg(ap,int); 3682 db->init.newTnum = va_arg(ap,int); 3683 if( db->init.busy==0 && db->init.newTnum>0 ){ 3684 sqlite3ResetAllSchemasOfConnection(db); 3685 } 3686 sqlite3_mutex_leave(db->mutex); 3687 break; 3688 } 3689 } 3690 va_end(ap); 3691 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3692 return rc; 3693 } 3694 3695 /* 3696 ** This is a utility routine, useful to VFS implementations, that checks 3697 ** to see if a database file was a URI that contained a specific query 3698 ** parameter, and if so obtains the value of the query parameter. 3699 ** 3700 ** The zFilename argument is the filename pointer passed into the xOpen() 3701 ** method of a VFS implementation. The zParam argument is the name of the 3702 ** query parameter we seek. This routine returns the value of the zParam 3703 ** parameter if it exists. If the parameter does not exist, this routine 3704 ** returns a NULL pointer. 3705 */ 3706 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3707 if( zFilename==0 || zParam==0 ) return 0; 3708 zFilename += sqlite3Strlen30(zFilename) + 1; 3709 while( zFilename[0] ){ 3710 int x = strcmp(zFilename, zParam); 3711 zFilename += sqlite3Strlen30(zFilename) + 1; 3712 if( x==0 ) return zFilename; 3713 zFilename += sqlite3Strlen30(zFilename) + 1; 3714 } 3715 return 0; 3716 } 3717 3718 /* 3719 ** Return a boolean value for a query parameter. 3720 */ 3721 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3722 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3723 bDflt = bDflt!=0; 3724 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3725 } 3726 3727 /* 3728 ** Return a 64-bit integer value for a query parameter. 3729 */ 3730 sqlite3_int64 sqlite3_uri_int64( 3731 const char *zFilename, /* Filename as passed to xOpen */ 3732 const char *zParam, /* URI parameter sought */ 3733 sqlite3_int64 bDflt /* return if parameter is missing */ 3734 ){ 3735 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3736 sqlite3_int64 v; 3737 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 3738 bDflt = v; 3739 } 3740 return bDflt; 3741 } 3742 3743 /* 3744 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3745 */ 3746 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3747 int i; 3748 for(i=0; i<db->nDb; i++){ 3749 if( db->aDb[i].pBt 3750 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3751 ){ 3752 return db->aDb[i].pBt; 3753 } 3754 } 3755 return 0; 3756 } 3757 3758 /* 3759 ** Return the filename of the database associated with a database 3760 ** connection. 3761 */ 3762 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3763 Btree *pBt; 3764 #ifdef SQLITE_ENABLE_API_ARMOR 3765 if( !sqlite3SafetyCheckOk(db) ){ 3766 (void)SQLITE_MISUSE_BKPT; 3767 return 0; 3768 } 3769 #endif 3770 pBt = sqlite3DbNameToBtree(db, zDbName); 3771 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3772 } 3773 3774 /* 3775 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3776 ** no such database exists. 3777 */ 3778 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3779 Btree *pBt; 3780 #ifdef SQLITE_ENABLE_API_ARMOR 3781 if( !sqlite3SafetyCheckOk(db) ){ 3782 (void)SQLITE_MISUSE_BKPT; 3783 return -1; 3784 } 3785 #endif 3786 pBt = sqlite3DbNameToBtree(db, zDbName); 3787 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 3788 } 3789