1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** If the following global variable points to a string which is the 79 ** name of a directory, then that directory will be used to store 80 ** all database files specified with a relative pathname. 81 ** 82 ** See also the "PRAGMA data_store_directory" SQL command. 83 */ 84 char *sqlite3_data_directory = 0; 85 86 /* 87 ** Initialize SQLite. 88 ** 89 ** This routine must be called to initialize the memory allocation, 90 ** VFS, and mutex subsystems prior to doing any serious work with 91 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 92 ** this routine will be called automatically by key routines such as 93 ** sqlite3_open(). 94 ** 95 ** This routine is a no-op except on its very first call for the process, 96 ** or for the first call after a call to sqlite3_shutdown. 97 ** 98 ** The first thread to call this routine runs the initialization to 99 ** completion. If subsequent threads call this routine before the first 100 ** thread has finished the initialization process, then the subsequent 101 ** threads must block until the first thread finishes with the initialization. 102 ** 103 ** The first thread might call this routine recursively. Recursive 104 ** calls to this routine should not block, of course. Otherwise the 105 ** initialization process would never complete. 106 ** 107 ** Let X be the first thread to enter this routine. Let Y be some other 108 ** thread. Then while the initial invocation of this routine by X is 109 ** incomplete, it is required that: 110 ** 111 ** * Calls to this routine from Y must block until the outer-most 112 ** call by X completes. 113 ** 114 ** * Recursive calls to this routine from thread X return immediately 115 ** without blocking. 116 */ 117 int sqlite3_initialize(void){ 118 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 119 int rc; /* Result code */ 120 121 #ifdef SQLITE_OMIT_WSD 122 rc = sqlite3_wsd_init(4096, 24); 123 if( rc!=SQLITE_OK ){ 124 return rc; 125 } 126 #endif 127 128 /* If SQLite is already completely initialized, then this call 129 ** to sqlite3_initialize() should be a no-op. But the initialization 130 ** must be complete. So isInit must not be set until the very end 131 ** of this routine. 132 */ 133 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 134 135 /* Make sure the mutex subsystem is initialized. If unable to 136 ** initialize the mutex subsystem, return early with the error. 137 ** If the system is so sick that we are unable to allocate a mutex, 138 ** there is not much SQLite is going to be able to do. 139 ** 140 ** The mutex subsystem must take care of serializing its own 141 ** initialization. 142 */ 143 rc = sqlite3MutexInit(); 144 if( rc ) return rc; 145 146 /* Initialize the malloc() system and the recursive pInitMutex mutex. 147 ** This operation is protected by the STATIC_MASTER mutex. Note that 148 ** MutexAlloc() is called for a static mutex prior to initializing the 149 ** malloc subsystem - this implies that the allocation of a static 150 ** mutex must not require support from the malloc subsystem. 151 */ 152 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 153 sqlite3_mutex_enter(pMaster); 154 sqlite3GlobalConfig.isMutexInit = 1; 155 if( !sqlite3GlobalConfig.isMallocInit ){ 156 rc = sqlite3MallocInit(); 157 } 158 if( rc==SQLITE_OK ){ 159 sqlite3GlobalConfig.isMallocInit = 1; 160 if( !sqlite3GlobalConfig.pInitMutex ){ 161 sqlite3GlobalConfig.pInitMutex = 162 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 163 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 164 rc = SQLITE_NOMEM; 165 } 166 } 167 } 168 if( rc==SQLITE_OK ){ 169 sqlite3GlobalConfig.nRefInitMutex++; 170 } 171 sqlite3_mutex_leave(pMaster); 172 173 /* If rc is not SQLITE_OK at this point, then either the malloc 174 ** subsystem could not be initialized or the system failed to allocate 175 ** the pInitMutex mutex. Return an error in either case. */ 176 if( rc!=SQLITE_OK ){ 177 return rc; 178 } 179 180 /* Do the rest of the initialization under the recursive mutex so 181 ** that we will be able to handle recursive calls into 182 ** sqlite3_initialize(). The recursive calls normally come through 183 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 184 ** recursive calls might also be possible. 185 ** 186 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 187 ** to the xInit method, so the xInit method need not be threadsafe. 188 ** 189 ** The following mutex is what serializes access to the appdef pcache xInit 190 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 191 ** call to sqlite3PcacheInitialize(). 192 */ 193 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 194 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 195 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 196 sqlite3GlobalConfig.inProgress = 1; 197 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 198 sqlite3RegisterGlobalFunctions(); 199 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 200 rc = sqlite3PcacheInitialize(); 201 } 202 if( rc==SQLITE_OK ){ 203 sqlite3GlobalConfig.isPCacheInit = 1; 204 rc = sqlite3OsInit(); 205 } 206 if( rc==SQLITE_OK ){ 207 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 208 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 209 sqlite3GlobalConfig.isInit = 1; 210 } 211 sqlite3GlobalConfig.inProgress = 0; 212 } 213 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 214 215 /* Go back under the static mutex and clean up the recursive 216 ** mutex to prevent a resource leak. 217 */ 218 sqlite3_mutex_enter(pMaster); 219 sqlite3GlobalConfig.nRefInitMutex--; 220 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 221 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 222 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 223 sqlite3GlobalConfig.pInitMutex = 0; 224 } 225 sqlite3_mutex_leave(pMaster); 226 227 /* The following is just a sanity check to make sure SQLite has 228 ** been compiled correctly. It is important to run this code, but 229 ** we don't want to run it too often and soak up CPU cycles for no 230 ** reason. So we run it once during initialization. 231 */ 232 #ifndef NDEBUG 233 #ifndef SQLITE_OMIT_FLOATING_POINT 234 /* This section of code's only "output" is via assert() statements. */ 235 if ( rc==SQLITE_OK ){ 236 u64 x = (((u64)1)<<63)-1; 237 double y; 238 assert(sizeof(x)==8); 239 assert(sizeof(x)==sizeof(y)); 240 memcpy(&y, &x, 8); 241 assert( sqlite3IsNaN(y) ); 242 } 243 #endif 244 #endif 245 246 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 247 ** compile-time option. 248 */ 249 #ifdef SQLITE_EXTRA_INIT 250 if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ 251 int SQLITE_EXTRA_INIT(const char*); 252 rc = SQLITE_EXTRA_INIT(0); 253 } 254 #endif 255 256 return rc; 257 } 258 259 /* 260 ** Undo the effects of sqlite3_initialize(). Must not be called while 261 ** there are outstanding database connections or memory allocations or 262 ** while any part of SQLite is otherwise in use in any thread. This 263 ** routine is not threadsafe. But it is safe to invoke this routine 264 ** on when SQLite is already shut down. If SQLite is already shut down 265 ** when this routine is invoked, then this routine is a harmless no-op. 266 */ 267 int sqlite3_shutdown(void){ 268 if( sqlite3GlobalConfig.isInit ){ 269 #ifdef SQLITE_EXTRA_SHUTDOWN 270 void SQLITE_EXTRA_SHUTDOWN(void); 271 SQLITE_EXTRA_SHUTDOWN(); 272 #endif 273 sqlite3_os_end(); 274 sqlite3_reset_auto_extension(); 275 sqlite3GlobalConfig.isInit = 0; 276 } 277 if( sqlite3GlobalConfig.isPCacheInit ){ 278 sqlite3PcacheShutdown(); 279 sqlite3GlobalConfig.isPCacheInit = 0; 280 } 281 if( sqlite3GlobalConfig.isMallocInit ){ 282 sqlite3MallocEnd(); 283 sqlite3GlobalConfig.isMallocInit = 0; 284 285 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 286 /* The heap subsystem has now been shutdown and these values are supposed 287 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 288 ** which would rely on that heap subsystem; therefore, make sure these 289 ** values cannot refer to heap memory that was just invalidated when the 290 ** heap subsystem was shutdown. This is only done if the current call to 291 ** this function resulted in the heap subsystem actually being shutdown. 292 */ 293 sqlite3_data_directory = 0; 294 sqlite3_temp_directory = 0; 295 #endif 296 } 297 if( sqlite3GlobalConfig.isMutexInit ){ 298 sqlite3MutexEnd(); 299 sqlite3GlobalConfig.isMutexInit = 0; 300 } 301 302 return SQLITE_OK; 303 } 304 305 /* 306 ** This API allows applications to modify the global configuration of 307 ** the SQLite library at run-time. 308 ** 309 ** This routine should only be called when there are no outstanding 310 ** database connections or memory allocations. This routine is not 311 ** threadsafe. Failure to heed these warnings can lead to unpredictable 312 ** behavior. 313 */ 314 int sqlite3_config(int op, ...){ 315 va_list ap; 316 int rc = SQLITE_OK; 317 318 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 319 ** the SQLite library is in use. */ 320 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 321 322 va_start(ap, op); 323 switch( op ){ 324 325 /* Mutex configuration options are only available in a threadsafe 326 ** compile. 327 */ 328 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 329 case SQLITE_CONFIG_SINGLETHREAD: { 330 /* Disable all mutexing */ 331 sqlite3GlobalConfig.bCoreMutex = 0; 332 sqlite3GlobalConfig.bFullMutex = 0; 333 break; 334 } 335 case SQLITE_CONFIG_MULTITHREAD: { 336 /* Disable mutexing of database connections */ 337 /* Enable mutexing of core data structures */ 338 sqlite3GlobalConfig.bCoreMutex = 1; 339 sqlite3GlobalConfig.bFullMutex = 0; 340 break; 341 } 342 case SQLITE_CONFIG_SERIALIZED: { 343 /* Enable all mutexing */ 344 sqlite3GlobalConfig.bCoreMutex = 1; 345 sqlite3GlobalConfig.bFullMutex = 1; 346 break; 347 } 348 case SQLITE_CONFIG_MUTEX: { 349 /* Specify an alternative mutex implementation */ 350 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 351 break; 352 } 353 case SQLITE_CONFIG_GETMUTEX: { 354 /* Retrieve the current mutex implementation */ 355 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 356 break; 357 } 358 #endif 359 360 361 case SQLITE_CONFIG_MALLOC: { 362 /* Specify an alternative malloc implementation */ 363 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 364 break; 365 } 366 case SQLITE_CONFIG_GETMALLOC: { 367 /* Retrieve the current malloc() implementation */ 368 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 369 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 370 break; 371 } 372 case SQLITE_CONFIG_MEMSTATUS: { 373 /* Enable or disable the malloc status collection */ 374 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 375 break; 376 } 377 case SQLITE_CONFIG_SCRATCH: { 378 /* Designate a buffer for scratch memory space */ 379 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 380 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 381 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 382 break; 383 } 384 case SQLITE_CONFIG_PAGECACHE: { 385 /* Designate a buffer for page cache memory space */ 386 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 387 sqlite3GlobalConfig.szPage = va_arg(ap, int); 388 sqlite3GlobalConfig.nPage = va_arg(ap, int); 389 break; 390 } 391 392 case SQLITE_CONFIG_PCACHE: { 393 /* no-op */ 394 break; 395 } 396 case SQLITE_CONFIG_GETPCACHE: { 397 /* now an error */ 398 rc = SQLITE_ERROR; 399 break; 400 } 401 402 case SQLITE_CONFIG_PCACHE2: { 403 /* Specify an alternative page cache implementation */ 404 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 405 break; 406 } 407 case SQLITE_CONFIG_GETPCACHE2: { 408 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 409 sqlite3PCacheSetDefault(); 410 } 411 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 412 break; 413 } 414 415 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 416 case SQLITE_CONFIG_HEAP: { 417 /* Designate a buffer for heap memory space */ 418 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 419 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 420 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 421 422 if( sqlite3GlobalConfig.mnReq<1 ){ 423 sqlite3GlobalConfig.mnReq = 1; 424 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 425 /* cap min request size at 2^12 */ 426 sqlite3GlobalConfig.mnReq = (1<<12); 427 } 428 429 if( sqlite3GlobalConfig.pHeap==0 ){ 430 /* If the heap pointer is NULL, then restore the malloc implementation 431 ** back to NULL pointers too. This will cause the malloc to go 432 ** back to its default implementation when sqlite3_initialize() is 433 ** run. 434 */ 435 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 436 }else{ 437 /* The heap pointer is not NULL, then install one of the 438 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 439 ** ENABLE_MEMSYS5 is defined, return an error. 440 */ 441 #ifdef SQLITE_ENABLE_MEMSYS3 442 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 443 #endif 444 #ifdef SQLITE_ENABLE_MEMSYS5 445 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 446 #endif 447 } 448 break; 449 } 450 #endif 451 452 case SQLITE_CONFIG_LOOKASIDE: { 453 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 454 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 455 break; 456 } 457 458 /* Record a pointer to the logger funcction and its first argument. 459 ** The default is NULL. Logging is disabled if the function pointer is 460 ** NULL. 461 */ 462 case SQLITE_CONFIG_LOG: { 463 /* MSVC is picky about pulling func ptrs from va lists. 464 ** http://support.microsoft.com/kb/47961 465 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 466 */ 467 typedef void(*LOGFUNC_t)(void*,int,const char*); 468 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 469 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 470 break; 471 } 472 473 case SQLITE_CONFIG_URI: { 474 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 475 break; 476 } 477 478 default: { 479 rc = SQLITE_ERROR; 480 break; 481 } 482 } 483 va_end(ap); 484 return rc; 485 } 486 487 /* 488 ** Set up the lookaside buffers for a database connection. 489 ** Return SQLITE_OK on success. 490 ** If lookaside is already active, return SQLITE_BUSY. 491 ** 492 ** The sz parameter is the number of bytes in each lookaside slot. 493 ** The cnt parameter is the number of slots. If pStart is NULL the 494 ** space for the lookaside memory is obtained from sqlite3_malloc(). 495 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 496 ** the lookaside memory. 497 */ 498 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 499 void *pStart; 500 if( db->lookaside.nOut ){ 501 return SQLITE_BUSY; 502 } 503 /* Free any existing lookaside buffer for this handle before 504 ** allocating a new one so we don't have to have space for 505 ** both at the same time. 506 */ 507 if( db->lookaside.bMalloced ){ 508 sqlite3_free(db->lookaside.pStart); 509 } 510 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 511 ** than a pointer to be useful. 512 */ 513 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 514 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 515 if( cnt<0 ) cnt = 0; 516 if( sz==0 || cnt==0 ){ 517 sz = 0; 518 pStart = 0; 519 }else if( pBuf==0 ){ 520 sqlite3BeginBenignMalloc(); 521 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 522 sqlite3EndBenignMalloc(); 523 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 524 }else{ 525 pStart = pBuf; 526 } 527 db->lookaside.pStart = pStart; 528 db->lookaside.pFree = 0; 529 db->lookaside.sz = (u16)sz; 530 if( pStart ){ 531 int i; 532 LookasideSlot *p; 533 assert( sz > (int)sizeof(LookasideSlot*) ); 534 p = (LookasideSlot*)pStart; 535 for(i=cnt-1; i>=0; i--){ 536 p->pNext = db->lookaside.pFree; 537 db->lookaside.pFree = p; 538 p = (LookasideSlot*)&((u8*)p)[sz]; 539 } 540 db->lookaside.pEnd = p; 541 db->lookaside.bEnabled = 1; 542 db->lookaside.bMalloced = pBuf==0 ?1:0; 543 }else{ 544 db->lookaside.pEnd = 0; 545 db->lookaside.bEnabled = 0; 546 db->lookaside.bMalloced = 0; 547 } 548 return SQLITE_OK; 549 } 550 551 /* 552 ** Return the mutex associated with a database connection. 553 */ 554 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 555 return db->mutex; 556 } 557 558 /* 559 ** Free up as much memory as we can from the given database 560 ** connection. 561 */ 562 int sqlite3_db_release_memory(sqlite3 *db){ 563 int i; 564 sqlite3_mutex_enter(db->mutex); 565 sqlite3BtreeEnterAll(db); 566 for(i=0; i<db->nDb; i++){ 567 Btree *pBt = db->aDb[i].pBt; 568 if( pBt ){ 569 Pager *pPager = sqlite3BtreePager(pBt); 570 sqlite3PagerShrink(pPager); 571 } 572 } 573 sqlite3BtreeLeaveAll(db); 574 sqlite3_mutex_leave(db->mutex); 575 return SQLITE_OK; 576 } 577 578 /* 579 ** Configuration settings for an individual database connection 580 */ 581 int sqlite3_db_config(sqlite3 *db, int op, ...){ 582 va_list ap; 583 int rc; 584 va_start(ap, op); 585 switch( op ){ 586 case SQLITE_DBCONFIG_LOOKASIDE: { 587 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 588 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 589 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 590 rc = setupLookaside(db, pBuf, sz, cnt); 591 break; 592 } 593 default: { 594 static const struct { 595 int op; /* The opcode */ 596 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 597 } aFlagOp[] = { 598 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 599 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 600 }; 601 unsigned int i; 602 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 603 for(i=0; i<ArraySize(aFlagOp); i++){ 604 if( aFlagOp[i].op==op ){ 605 int onoff = va_arg(ap, int); 606 int *pRes = va_arg(ap, int*); 607 int oldFlags = db->flags; 608 if( onoff>0 ){ 609 db->flags |= aFlagOp[i].mask; 610 }else if( onoff==0 ){ 611 db->flags &= ~aFlagOp[i].mask; 612 } 613 if( oldFlags!=db->flags ){ 614 sqlite3ExpirePreparedStatements(db); 615 } 616 if( pRes ){ 617 *pRes = (db->flags & aFlagOp[i].mask)!=0; 618 } 619 rc = SQLITE_OK; 620 break; 621 } 622 } 623 break; 624 } 625 } 626 va_end(ap); 627 return rc; 628 } 629 630 631 /* 632 ** Return true if the buffer z[0..n-1] contains all spaces. 633 */ 634 static int allSpaces(const char *z, int n){ 635 while( n>0 && z[n-1]==' ' ){ n--; } 636 return n==0; 637 } 638 639 /* 640 ** This is the default collating function named "BINARY" which is always 641 ** available. 642 ** 643 ** If the padFlag argument is not NULL then space padding at the end 644 ** of strings is ignored. This implements the RTRIM collation. 645 */ 646 static int binCollFunc( 647 void *padFlag, 648 int nKey1, const void *pKey1, 649 int nKey2, const void *pKey2 650 ){ 651 int rc, n; 652 n = nKey1<nKey2 ? nKey1 : nKey2; 653 rc = memcmp(pKey1, pKey2, n); 654 if( rc==0 ){ 655 if( padFlag 656 && allSpaces(((char*)pKey1)+n, nKey1-n) 657 && allSpaces(((char*)pKey2)+n, nKey2-n) 658 ){ 659 /* Leave rc unchanged at 0 */ 660 }else{ 661 rc = nKey1 - nKey2; 662 } 663 } 664 return rc; 665 } 666 667 /* 668 ** Another built-in collating sequence: NOCASE. 669 ** 670 ** This collating sequence is intended to be used for "case independant 671 ** comparison". SQLite's knowledge of upper and lower case equivalents 672 ** extends only to the 26 characters used in the English language. 673 ** 674 ** At the moment there is only a UTF-8 implementation. 675 */ 676 static int nocaseCollatingFunc( 677 void *NotUsed, 678 int nKey1, const void *pKey1, 679 int nKey2, const void *pKey2 680 ){ 681 int r = sqlite3StrNICmp( 682 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 683 UNUSED_PARAMETER(NotUsed); 684 if( 0==r ){ 685 r = nKey1-nKey2; 686 } 687 return r; 688 } 689 690 /* 691 ** Return the ROWID of the most recent insert 692 */ 693 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 694 return db->lastRowid; 695 } 696 697 /* 698 ** Return the number of changes in the most recent call to sqlite3_exec(). 699 */ 700 int sqlite3_changes(sqlite3 *db){ 701 return db->nChange; 702 } 703 704 /* 705 ** Return the number of changes since the database handle was opened. 706 */ 707 int sqlite3_total_changes(sqlite3 *db){ 708 return db->nTotalChange; 709 } 710 711 /* 712 ** Close all open savepoints. This function only manipulates fields of the 713 ** database handle object, it does not close any savepoints that may be open 714 ** at the b-tree/pager level. 715 */ 716 void sqlite3CloseSavepoints(sqlite3 *db){ 717 while( db->pSavepoint ){ 718 Savepoint *pTmp = db->pSavepoint; 719 db->pSavepoint = pTmp->pNext; 720 sqlite3DbFree(db, pTmp); 721 } 722 db->nSavepoint = 0; 723 db->nStatement = 0; 724 db->isTransactionSavepoint = 0; 725 } 726 727 /* 728 ** Invoke the destructor function associated with FuncDef p, if any. Except, 729 ** if this is not the last copy of the function, do not invoke it. Multiple 730 ** copies of a single function are created when create_function() is called 731 ** with SQLITE_ANY as the encoding. 732 */ 733 static void functionDestroy(sqlite3 *db, FuncDef *p){ 734 FuncDestructor *pDestructor = p->pDestructor; 735 if( pDestructor ){ 736 pDestructor->nRef--; 737 if( pDestructor->nRef==0 ){ 738 pDestructor->xDestroy(pDestructor->pUserData); 739 sqlite3DbFree(db, pDestructor); 740 } 741 } 742 } 743 744 /* 745 ** Disconnect all sqlite3_vtab objects that belong to database connection 746 ** db. This is called when db is being closed. 747 */ 748 static void disconnectAllVtab(sqlite3 *db){ 749 #ifndef SQLITE_OMIT_VIRTUALTABLE 750 int i; 751 sqlite3BtreeEnterAll(db); 752 for(i=0; i<db->nDb; i++){ 753 Schema *pSchema = db->aDb[i].pSchema; 754 if( db->aDb[i].pSchema ){ 755 HashElem *p; 756 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 757 Table *pTab = (Table *)sqliteHashData(p); 758 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 759 } 760 } 761 } 762 sqlite3BtreeLeaveAll(db); 763 #else 764 UNUSED_PARAMETER(db); 765 #endif 766 } 767 768 /* 769 ** Return TRUE if database connection db has unfinalized prepared 770 ** statements or unfinished sqlite3_backup objects. 771 */ 772 static int connectionIsBusy(sqlite3 *db){ 773 int j; 774 assert( sqlite3_mutex_held(db->mutex) ); 775 if( db->pVdbe ) return 1; 776 for(j=0; j<db->nDb; j++){ 777 Btree *pBt = db->aDb[j].pBt; 778 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 779 } 780 return 0; 781 } 782 783 /* 784 ** Close an existing SQLite database 785 */ 786 static int sqlite3Close(sqlite3 *db, int forceZombie){ 787 if( !db ){ 788 return SQLITE_OK; 789 } 790 if( !sqlite3SafetyCheckSickOrOk(db) ){ 791 return SQLITE_MISUSE_BKPT; 792 } 793 sqlite3_mutex_enter(db->mutex); 794 795 /* Force xDisconnect calls on all virtual tables */ 796 disconnectAllVtab(db); 797 798 /* If a transaction is open, the disconnectAllVtab() call above 799 ** will not have called the xDisconnect() method on any virtual 800 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 801 ** call will do so. We need to do this before the check for active 802 ** SQL statements below, as the v-table implementation may be storing 803 ** some prepared statements internally. 804 */ 805 sqlite3VtabRollback(db); 806 807 /* Legacy behavior (sqlite3_close() behavior) is to return 808 ** SQLITE_BUSY if the connection can not be closed immediately. 809 */ 810 if( !forceZombie && connectionIsBusy(db) ){ 811 sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " 812 "statements or unfinished backups"); 813 sqlite3_mutex_leave(db->mutex); 814 return SQLITE_BUSY; 815 } 816 817 /* Convert the connection into a zombie and then close it. 818 */ 819 db->magic = SQLITE_MAGIC_ZOMBIE; 820 sqlite3LeaveMutexAndCloseZombie(db); 821 return SQLITE_OK; 822 } 823 824 /* 825 ** Two variations on the public interface for closing a database 826 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 827 ** leaves the connection option if there are unfinalized prepared 828 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 829 ** version forces the connection to become a zombie if there are 830 ** unclosed resources, and arranges for deallocation when the last 831 ** prepare statement or sqlite3_backup closes. 832 */ 833 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 834 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 835 836 837 /* 838 ** Close the mutex on database connection db. 839 ** 840 ** Furthermore, if database connection db is a zombie (meaning that there 841 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 842 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 843 ** finished, then free all resources. 844 */ 845 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 846 HashElem *i; /* Hash table iterator */ 847 int j; 848 849 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 850 ** or if the connection has not yet been closed by sqlite3_close_v2(), 851 ** then just leave the mutex and return. 852 */ 853 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 854 sqlite3_mutex_leave(db->mutex); 855 return; 856 } 857 858 /* If we reach this point, it means that the database connection has 859 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 860 ** pased to sqlite3_close (meaning that it is a zombie). Therefore, 861 ** go ahead and free all resources. 862 */ 863 864 /* Free any outstanding Savepoint structures. */ 865 sqlite3CloseSavepoints(db); 866 867 /* Close all database connections */ 868 for(j=0; j<db->nDb; j++){ 869 struct Db *pDb = &db->aDb[j]; 870 if( pDb->pBt ){ 871 sqlite3BtreeClose(pDb->pBt); 872 pDb->pBt = 0; 873 if( j!=1 ){ 874 pDb->pSchema = 0; 875 } 876 } 877 } 878 /* Clear the TEMP schema separately and last */ 879 if( db->aDb[1].pSchema ){ 880 sqlite3SchemaClear(db->aDb[1].pSchema); 881 } 882 sqlite3VtabUnlockList(db); 883 884 /* Free up the array of auxiliary databases */ 885 sqlite3CollapseDatabaseArray(db); 886 assert( db->nDb<=2 ); 887 assert( db->aDb==db->aDbStatic ); 888 889 /* Tell the code in notify.c that the connection no longer holds any 890 ** locks and does not require any further unlock-notify callbacks. 891 */ 892 sqlite3ConnectionClosed(db); 893 894 for(j=0; j<ArraySize(db->aFunc.a); j++){ 895 FuncDef *pNext, *pHash, *p; 896 for(p=db->aFunc.a[j]; p; p=pHash){ 897 pHash = p->pHash; 898 while( p ){ 899 functionDestroy(db, p); 900 pNext = p->pNext; 901 sqlite3DbFree(db, p); 902 p = pNext; 903 } 904 } 905 } 906 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 907 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 908 /* Invoke any destructors registered for collation sequence user data. */ 909 for(j=0; j<3; j++){ 910 if( pColl[j].xDel ){ 911 pColl[j].xDel(pColl[j].pUser); 912 } 913 } 914 sqlite3DbFree(db, pColl); 915 } 916 sqlite3HashClear(&db->aCollSeq); 917 #ifndef SQLITE_OMIT_VIRTUALTABLE 918 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 919 Module *pMod = (Module *)sqliteHashData(i); 920 if( pMod->xDestroy ){ 921 pMod->xDestroy(pMod->pAux); 922 } 923 sqlite3DbFree(db, pMod); 924 } 925 sqlite3HashClear(&db->aModule); 926 #endif 927 928 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 929 if( db->pErr ){ 930 sqlite3ValueFree(db->pErr); 931 } 932 sqlite3CloseExtensions(db); 933 934 db->magic = SQLITE_MAGIC_ERROR; 935 936 /* The temp-database schema is allocated differently from the other schema 937 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 938 ** So it needs to be freed here. Todo: Why not roll the temp schema into 939 ** the same sqliteMalloc() as the one that allocates the database 940 ** structure? 941 */ 942 sqlite3DbFree(db, db->aDb[1].pSchema); 943 sqlite3_mutex_leave(db->mutex); 944 db->magic = SQLITE_MAGIC_CLOSED; 945 sqlite3_mutex_free(db->mutex); 946 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 947 if( db->lookaside.bMalloced ){ 948 sqlite3_free(db->lookaside.pStart); 949 } 950 sqlite3_free(db); 951 } 952 953 /* 954 ** Rollback all database files. If tripCode is not SQLITE_OK, then 955 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit 956 ** breaker") and made to return tripCode if there are any further 957 ** attempts to use that cursor. 958 */ 959 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 960 int i; 961 int inTrans = 0; 962 assert( sqlite3_mutex_held(db->mutex) ); 963 sqlite3BeginBenignMalloc(); 964 for(i=0; i<db->nDb; i++){ 965 Btree *p = db->aDb[i].pBt; 966 if( p ){ 967 if( sqlite3BtreeIsInTrans(p) ){ 968 inTrans = 1; 969 } 970 sqlite3BtreeRollback(p, tripCode); 971 db->aDb[i].inTrans = 0; 972 } 973 } 974 sqlite3VtabRollback(db); 975 sqlite3EndBenignMalloc(); 976 977 if( db->flags&SQLITE_InternChanges ){ 978 sqlite3ExpirePreparedStatements(db); 979 sqlite3ResetAllSchemasOfConnection(db); 980 } 981 982 /* Any deferred constraint violations have now been resolved. */ 983 db->nDeferredCons = 0; 984 985 /* If one has been configured, invoke the rollback-hook callback */ 986 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 987 db->xRollbackCallback(db->pRollbackArg); 988 } 989 } 990 991 /* 992 ** Return a static string that describes the kind of error specified in the 993 ** argument. 994 */ 995 const char *sqlite3ErrStr(int rc){ 996 static const char* const aMsg[] = { 997 /* SQLITE_OK */ "not an error", 998 /* SQLITE_ERROR */ "SQL logic error or missing database", 999 /* SQLITE_INTERNAL */ 0, 1000 /* SQLITE_PERM */ "access permission denied", 1001 /* SQLITE_ABORT */ "callback requested query abort", 1002 /* SQLITE_BUSY */ "database is locked", 1003 /* SQLITE_LOCKED */ "database table is locked", 1004 /* SQLITE_NOMEM */ "out of memory", 1005 /* SQLITE_READONLY */ "attempt to write a readonly database", 1006 /* SQLITE_INTERRUPT */ "interrupted", 1007 /* SQLITE_IOERR */ "disk I/O error", 1008 /* SQLITE_CORRUPT */ "database disk image is malformed", 1009 /* SQLITE_NOTFOUND */ "unknown operation", 1010 /* SQLITE_FULL */ "database or disk is full", 1011 /* SQLITE_CANTOPEN */ "unable to open database file", 1012 /* SQLITE_PROTOCOL */ "locking protocol", 1013 /* SQLITE_EMPTY */ "table contains no data", 1014 /* SQLITE_SCHEMA */ "database schema has changed", 1015 /* SQLITE_TOOBIG */ "string or blob too big", 1016 /* SQLITE_CONSTRAINT */ "constraint failed", 1017 /* SQLITE_MISMATCH */ "datatype mismatch", 1018 /* SQLITE_MISUSE */ "library routine called out of sequence", 1019 /* SQLITE_NOLFS */ "large file support is disabled", 1020 /* SQLITE_AUTH */ "authorization denied", 1021 /* SQLITE_FORMAT */ "auxiliary database format error", 1022 /* SQLITE_RANGE */ "bind or column index out of range", 1023 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1024 }; 1025 const char *zErr = "unknown error"; 1026 switch( rc ){ 1027 case SQLITE_ABORT_ROLLBACK: { 1028 zErr = "abort due to ROLLBACK"; 1029 break; 1030 } 1031 default: { 1032 rc &= 0xff; 1033 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1034 zErr = aMsg[rc]; 1035 } 1036 break; 1037 } 1038 } 1039 return zErr; 1040 } 1041 1042 /* 1043 ** This routine implements a busy callback that sleeps and tries 1044 ** again until a timeout value is reached. The timeout value is 1045 ** an integer number of milliseconds passed in as the first 1046 ** argument. 1047 */ 1048 static int sqliteDefaultBusyCallback( 1049 void *ptr, /* Database connection */ 1050 int count /* Number of times table has been busy */ 1051 ){ 1052 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 1053 static const u8 delays[] = 1054 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1055 static const u8 totals[] = 1056 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1057 # define NDELAY ArraySize(delays) 1058 sqlite3 *db = (sqlite3 *)ptr; 1059 int timeout = db->busyTimeout; 1060 int delay, prior; 1061 1062 assert( count>=0 ); 1063 if( count < NDELAY ){ 1064 delay = delays[count]; 1065 prior = totals[count]; 1066 }else{ 1067 delay = delays[NDELAY-1]; 1068 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1069 } 1070 if( prior + delay > timeout ){ 1071 delay = timeout - prior; 1072 if( delay<=0 ) return 0; 1073 } 1074 sqlite3OsSleep(db->pVfs, delay*1000); 1075 return 1; 1076 #else 1077 sqlite3 *db = (sqlite3 *)ptr; 1078 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1079 if( (count+1)*1000 > timeout ){ 1080 return 0; 1081 } 1082 sqlite3OsSleep(db->pVfs, 1000000); 1083 return 1; 1084 #endif 1085 } 1086 1087 /* 1088 ** Invoke the given busy handler. 1089 ** 1090 ** This routine is called when an operation failed with a lock. 1091 ** If this routine returns non-zero, the lock is retried. If it 1092 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1093 */ 1094 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1095 int rc; 1096 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1097 rc = p->xFunc(p->pArg, p->nBusy); 1098 if( rc==0 ){ 1099 p->nBusy = -1; 1100 }else{ 1101 p->nBusy++; 1102 } 1103 return rc; 1104 } 1105 1106 /* 1107 ** This routine sets the busy callback for an Sqlite database to the 1108 ** given callback function with the given argument. 1109 */ 1110 int sqlite3_busy_handler( 1111 sqlite3 *db, 1112 int (*xBusy)(void*,int), 1113 void *pArg 1114 ){ 1115 sqlite3_mutex_enter(db->mutex); 1116 db->busyHandler.xFunc = xBusy; 1117 db->busyHandler.pArg = pArg; 1118 db->busyHandler.nBusy = 0; 1119 sqlite3_mutex_leave(db->mutex); 1120 return SQLITE_OK; 1121 } 1122 1123 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1124 /* 1125 ** This routine sets the progress callback for an Sqlite database to the 1126 ** given callback function with the given argument. The progress callback will 1127 ** be invoked every nOps opcodes. 1128 */ 1129 void sqlite3_progress_handler( 1130 sqlite3 *db, 1131 int nOps, 1132 int (*xProgress)(void*), 1133 void *pArg 1134 ){ 1135 sqlite3_mutex_enter(db->mutex); 1136 if( nOps>0 ){ 1137 db->xProgress = xProgress; 1138 db->nProgressOps = nOps; 1139 db->pProgressArg = pArg; 1140 }else{ 1141 db->xProgress = 0; 1142 db->nProgressOps = 0; 1143 db->pProgressArg = 0; 1144 } 1145 sqlite3_mutex_leave(db->mutex); 1146 } 1147 #endif 1148 1149 1150 /* 1151 ** This routine installs a default busy handler that waits for the 1152 ** specified number of milliseconds before returning 0. 1153 */ 1154 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1155 if( ms>0 ){ 1156 db->busyTimeout = ms; 1157 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1158 }else{ 1159 sqlite3_busy_handler(db, 0, 0); 1160 } 1161 return SQLITE_OK; 1162 } 1163 1164 /* 1165 ** Cause any pending operation to stop at its earliest opportunity. 1166 */ 1167 void sqlite3_interrupt(sqlite3 *db){ 1168 db->u1.isInterrupted = 1; 1169 } 1170 1171 1172 /* 1173 ** This function is exactly the same as sqlite3_create_function(), except 1174 ** that it is designed to be called by internal code. The difference is 1175 ** that if a malloc() fails in sqlite3_create_function(), an error code 1176 ** is returned and the mallocFailed flag cleared. 1177 */ 1178 int sqlite3CreateFunc( 1179 sqlite3 *db, 1180 const char *zFunctionName, 1181 int nArg, 1182 int enc, 1183 void *pUserData, 1184 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1185 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1186 void (*xFinal)(sqlite3_context*), 1187 FuncDestructor *pDestructor 1188 ){ 1189 FuncDef *p; 1190 int nName; 1191 1192 assert( sqlite3_mutex_held(db->mutex) ); 1193 if( zFunctionName==0 || 1194 (xFunc && (xFinal || xStep)) || 1195 (!xFunc && (xFinal && !xStep)) || 1196 (!xFunc && (!xFinal && xStep)) || 1197 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1198 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1199 return SQLITE_MISUSE_BKPT; 1200 } 1201 1202 #ifndef SQLITE_OMIT_UTF16 1203 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1204 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1205 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1206 ** 1207 ** If SQLITE_ANY is specified, add three versions of the function 1208 ** to the hash table. 1209 */ 1210 if( enc==SQLITE_UTF16 ){ 1211 enc = SQLITE_UTF16NATIVE; 1212 }else if( enc==SQLITE_ANY ){ 1213 int rc; 1214 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 1215 pUserData, xFunc, xStep, xFinal, pDestructor); 1216 if( rc==SQLITE_OK ){ 1217 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 1218 pUserData, xFunc, xStep, xFinal, pDestructor); 1219 } 1220 if( rc!=SQLITE_OK ){ 1221 return rc; 1222 } 1223 enc = SQLITE_UTF16BE; 1224 } 1225 #else 1226 enc = SQLITE_UTF8; 1227 #endif 1228 1229 /* Check if an existing function is being overridden or deleted. If so, 1230 ** and there are active VMs, then return SQLITE_BUSY. If a function 1231 ** is being overridden/deleted but there are no active VMs, allow the 1232 ** operation to continue but invalidate all precompiled statements. 1233 */ 1234 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1235 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 1236 if( db->activeVdbeCnt ){ 1237 sqlite3Error(db, SQLITE_BUSY, 1238 "unable to delete/modify user-function due to active statements"); 1239 assert( !db->mallocFailed ); 1240 return SQLITE_BUSY; 1241 }else{ 1242 sqlite3ExpirePreparedStatements(db); 1243 } 1244 } 1245 1246 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1247 assert(p || db->mallocFailed); 1248 if( !p ){ 1249 return SQLITE_NOMEM; 1250 } 1251 1252 /* If an older version of the function with a configured destructor is 1253 ** being replaced invoke the destructor function here. */ 1254 functionDestroy(db, p); 1255 1256 if( pDestructor ){ 1257 pDestructor->nRef++; 1258 } 1259 p->pDestructor = pDestructor; 1260 p->flags = 0; 1261 p->xFunc = xFunc; 1262 p->xStep = xStep; 1263 p->xFinalize = xFinal; 1264 p->pUserData = pUserData; 1265 p->nArg = (u16)nArg; 1266 return SQLITE_OK; 1267 } 1268 1269 /* 1270 ** Create new user functions. 1271 */ 1272 int sqlite3_create_function( 1273 sqlite3 *db, 1274 const char *zFunc, 1275 int nArg, 1276 int enc, 1277 void *p, 1278 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1279 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1280 void (*xFinal)(sqlite3_context*) 1281 ){ 1282 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1283 xFinal, 0); 1284 } 1285 1286 int sqlite3_create_function_v2( 1287 sqlite3 *db, 1288 const char *zFunc, 1289 int nArg, 1290 int enc, 1291 void *p, 1292 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1293 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1294 void (*xFinal)(sqlite3_context*), 1295 void (*xDestroy)(void *) 1296 ){ 1297 int rc = SQLITE_ERROR; 1298 FuncDestructor *pArg = 0; 1299 sqlite3_mutex_enter(db->mutex); 1300 if( xDestroy ){ 1301 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1302 if( !pArg ){ 1303 xDestroy(p); 1304 goto out; 1305 } 1306 pArg->xDestroy = xDestroy; 1307 pArg->pUserData = p; 1308 } 1309 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1310 if( pArg && pArg->nRef==0 ){ 1311 assert( rc!=SQLITE_OK ); 1312 xDestroy(p); 1313 sqlite3DbFree(db, pArg); 1314 } 1315 1316 out: 1317 rc = sqlite3ApiExit(db, rc); 1318 sqlite3_mutex_leave(db->mutex); 1319 return rc; 1320 } 1321 1322 #ifndef SQLITE_OMIT_UTF16 1323 int sqlite3_create_function16( 1324 sqlite3 *db, 1325 const void *zFunctionName, 1326 int nArg, 1327 int eTextRep, 1328 void *p, 1329 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1330 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1331 void (*xFinal)(sqlite3_context*) 1332 ){ 1333 int rc; 1334 char *zFunc8; 1335 sqlite3_mutex_enter(db->mutex); 1336 assert( !db->mallocFailed ); 1337 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1338 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1339 sqlite3DbFree(db, zFunc8); 1340 rc = sqlite3ApiExit(db, rc); 1341 sqlite3_mutex_leave(db->mutex); 1342 return rc; 1343 } 1344 #endif 1345 1346 1347 /* 1348 ** Declare that a function has been overloaded by a virtual table. 1349 ** 1350 ** If the function already exists as a regular global function, then 1351 ** this routine is a no-op. If the function does not exist, then create 1352 ** a new one that always throws a run-time error. 1353 ** 1354 ** When virtual tables intend to provide an overloaded function, they 1355 ** should call this routine to make sure the global function exists. 1356 ** A global function must exist in order for name resolution to work 1357 ** properly. 1358 */ 1359 int sqlite3_overload_function( 1360 sqlite3 *db, 1361 const char *zName, 1362 int nArg 1363 ){ 1364 int nName = sqlite3Strlen30(zName); 1365 int rc = SQLITE_OK; 1366 sqlite3_mutex_enter(db->mutex); 1367 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1368 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1369 0, sqlite3InvalidFunction, 0, 0, 0); 1370 } 1371 rc = sqlite3ApiExit(db, rc); 1372 sqlite3_mutex_leave(db->mutex); 1373 return rc; 1374 } 1375 1376 #ifndef SQLITE_OMIT_TRACE 1377 /* 1378 ** Register a trace function. The pArg from the previously registered trace 1379 ** is returned. 1380 ** 1381 ** A NULL trace function means that no tracing is executes. A non-NULL 1382 ** trace is a pointer to a function that is invoked at the start of each 1383 ** SQL statement. 1384 */ 1385 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1386 void *pOld; 1387 sqlite3_mutex_enter(db->mutex); 1388 pOld = db->pTraceArg; 1389 db->xTrace = xTrace; 1390 db->pTraceArg = pArg; 1391 sqlite3_mutex_leave(db->mutex); 1392 return pOld; 1393 } 1394 /* 1395 ** Register a profile function. The pArg from the previously registered 1396 ** profile function is returned. 1397 ** 1398 ** A NULL profile function means that no profiling is executes. A non-NULL 1399 ** profile is a pointer to a function that is invoked at the conclusion of 1400 ** each SQL statement that is run. 1401 */ 1402 void *sqlite3_profile( 1403 sqlite3 *db, 1404 void (*xProfile)(void*,const char*,sqlite_uint64), 1405 void *pArg 1406 ){ 1407 void *pOld; 1408 sqlite3_mutex_enter(db->mutex); 1409 pOld = db->pProfileArg; 1410 db->xProfile = xProfile; 1411 db->pProfileArg = pArg; 1412 sqlite3_mutex_leave(db->mutex); 1413 return pOld; 1414 } 1415 #endif /* SQLITE_OMIT_TRACE */ 1416 1417 /* 1418 ** Register a function to be invoked when a transaction commits. 1419 ** If the invoked function returns non-zero, then the commit becomes a 1420 ** rollback. 1421 */ 1422 void *sqlite3_commit_hook( 1423 sqlite3 *db, /* Attach the hook to this database */ 1424 int (*xCallback)(void*), /* Function to invoke on each commit */ 1425 void *pArg /* Argument to the function */ 1426 ){ 1427 void *pOld; 1428 sqlite3_mutex_enter(db->mutex); 1429 pOld = db->pCommitArg; 1430 db->xCommitCallback = xCallback; 1431 db->pCommitArg = pArg; 1432 sqlite3_mutex_leave(db->mutex); 1433 return pOld; 1434 } 1435 1436 /* 1437 ** Register a callback to be invoked each time a row is updated, 1438 ** inserted or deleted using this database connection. 1439 */ 1440 void *sqlite3_update_hook( 1441 sqlite3 *db, /* Attach the hook to this database */ 1442 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1443 void *pArg /* Argument to the function */ 1444 ){ 1445 void *pRet; 1446 sqlite3_mutex_enter(db->mutex); 1447 pRet = db->pUpdateArg; 1448 db->xUpdateCallback = xCallback; 1449 db->pUpdateArg = pArg; 1450 sqlite3_mutex_leave(db->mutex); 1451 return pRet; 1452 } 1453 1454 /* 1455 ** Register a callback to be invoked each time a transaction is rolled 1456 ** back by this database connection. 1457 */ 1458 void *sqlite3_rollback_hook( 1459 sqlite3 *db, /* Attach the hook to this database */ 1460 void (*xCallback)(void*), /* Callback function */ 1461 void *pArg /* Argument to the function */ 1462 ){ 1463 void *pRet; 1464 sqlite3_mutex_enter(db->mutex); 1465 pRet = db->pRollbackArg; 1466 db->xRollbackCallback = xCallback; 1467 db->pRollbackArg = pArg; 1468 sqlite3_mutex_leave(db->mutex); 1469 return pRet; 1470 } 1471 1472 #ifndef SQLITE_OMIT_WAL 1473 /* 1474 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1475 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1476 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1477 ** wal_autocheckpoint()). 1478 */ 1479 int sqlite3WalDefaultHook( 1480 void *pClientData, /* Argument */ 1481 sqlite3 *db, /* Connection */ 1482 const char *zDb, /* Database */ 1483 int nFrame /* Size of WAL */ 1484 ){ 1485 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1486 sqlite3BeginBenignMalloc(); 1487 sqlite3_wal_checkpoint(db, zDb); 1488 sqlite3EndBenignMalloc(); 1489 } 1490 return SQLITE_OK; 1491 } 1492 #endif /* SQLITE_OMIT_WAL */ 1493 1494 /* 1495 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1496 ** a database after committing a transaction if there are nFrame or 1497 ** more frames in the log file. Passing zero or a negative value as the 1498 ** nFrame parameter disables automatic checkpoints entirely. 1499 ** 1500 ** The callback registered by this function replaces any existing callback 1501 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1502 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1503 ** configured by this function. 1504 */ 1505 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1506 #ifdef SQLITE_OMIT_WAL 1507 UNUSED_PARAMETER(db); 1508 UNUSED_PARAMETER(nFrame); 1509 #else 1510 if( nFrame>0 ){ 1511 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1512 }else{ 1513 sqlite3_wal_hook(db, 0, 0); 1514 } 1515 #endif 1516 return SQLITE_OK; 1517 } 1518 1519 /* 1520 ** Register a callback to be invoked each time a transaction is written 1521 ** into the write-ahead-log by this database connection. 1522 */ 1523 void *sqlite3_wal_hook( 1524 sqlite3 *db, /* Attach the hook to this db handle */ 1525 int(*xCallback)(void *, sqlite3*, const char*, int), 1526 void *pArg /* First argument passed to xCallback() */ 1527 ){ 1528 #ifndef SQLITE_OMIT_WAL 1529 void *pRet; 1530 sqlite3_mutex_enter(db->mutex); 1531 pRet = db->pWalArg; 1532 db->xWalCallback = xCallback; 1533 db->pWalArg = pArg; 1534 sqlite3_mutex_leave(db->mutex); 1535 return pRet; 1536 #else 1537 return 0; 1538 #endif 1539 } 1540 1541 /* 1542 ** Checkpoint database zDb. 1543 */ 1544 int sqlite3_wal_checkpoint_v2( 1545 sqlite3 *db, /* Database handle */ 1546 const char *zDb, /* Name of attached database (or NULL) */ 1547 int eMode, /* SQLITE_CHECKPOINT_* value */ 1548 int *pnLog, /* OUT: Size of WAL log in frames */ 1549 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1550 ){ 1551 #ifdef SQLITE_OMIT_WAL 1552 return SQLITE_OK; 1553 #else 1554 int rc; /* Return code */ 1555 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1556 1557 /* Initialize the output variables to -1 in case an error occurs. */ 1558 if( pnLog ) *pnLog = -1; 1559 if( pnCkpt ) *pnCkpt = -1; 1560 1561 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); 1562 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); 1563 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); 1564 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ 1565 return SQLITE_MISUSE; 1566 } 1567 1568 sqlite3_mutex_enter(db->mutex); 1569 if( zDb && zDb[0] ){ 1570 iDb = sqlite3FindDbName(db, zDb); 1571 } 1572 if( iDb<0 ){ 1573 rc = SQLITE_ERROR; 1574 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); 1575 }else{ 1576 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1577 sqlite3Error(db, rc, 0); 1578 } 1579 rc = sqlite3ApiExit(db, rc); 1580 sqlite3_mutex_leave(db->mutex); 1581 return rc; 1582 #endif 1583 } 1584 1585 1586 /* 1587 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1588 ** to contains a zero-length string, all attached databases are 1589 ** checkpointed. 1590 */ 1591 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1592 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); 1593 } 1594 1595 #ifndef SQLITE_OMIT_WAL 1596 /* 1597 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1598 ** not currently open in WAL mode. 1599 ** 1600 ** If a transaction is open on the database being checkpointed, this 1601 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 1602 ** an error occurs while running the checkpoint, an SQLite error code is 1603 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 1604 ** 1605 ** The mutex on database handle db should be held by the caller. The mutex 1606 ** associated with the specific b-tree being checkpointed is taken by 1607 ** this function while the checkpoint is running. 1608 ** 1609 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 1610 ** checkpointed. If an error is encountered it is returned immediately - 1611 ** no attempt is made to checkpoint any remaining databases. 1612 ** 1613 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 1614 */ 1615 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 1616 int rc = SQLITE_OK; /* Return code */ 1617 int i; /* Used to iterate through attached dbs */ 1618 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 1619 1620 assert( sqlite3_mutex_held(db->mutex) ); 1621 assert( !pnLog || *pnLog==-1 ); 1622 assert( !pnCkpt || *pnCkpt==-1 ); 1623 1624 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 1625 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 1626 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 1627 pnLog = 0; 1628 pnCkpt = 0; 1629 if( rc==SQLITE_BUSY ){ 1630 bBusy = 1; 1631 rc = SQLITE_OK; 1632 } 1633 } 1634 } 1635 1636 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 1637 } 1638 #endif /* SQLITE_OMIT_WAL */ 1639 1640 /* 1641 ** This function returns true if main-memory should be used instead of 1642 ** a temporary file for transient pager files and statement journals. 1643 ** The value returned depends on the value of db->temp_store (runtime 1644 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 1645 ** following table describes the relationship between these two values 1646 ** and this functions return value. 1647 ** 1648 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1649 ** ----------------- -------------- ------------------------------ 1650 ** 0 any file (return 0) 1651 ** 1 1 file (return 0) 1652 ** 1 2 memory (return 1) 1653 ** 1 0 file (return 0) 1654 ** 2 1 file (return 0) 1655 ** 2 2 memory (return 1) 1656 ** 2 0 memory (return 1) 1657 ** 3 any memory (return 1) 1658 */ 1659 int sqlite3TempInMemory(const sqlite3 *db){ 1660 #if SQLITE_TEMP_STORE==1 1661 return ( db->temp_store==2 ); 1662 #endif 1663 #if SQLITE_TEMP_STORE==2 1664 return ( db->temp_store!=1 ); 1665 #endif 1666 #if SQLITE_TEMP_STORE==3 1667 return 1; 1668 #endif 1669 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 1670 return 0; 1671 #endif 1672 } 1673 1674 /* 1675 ** Return UTF-8 encoded English language explanation of the most recent 1676 ** error. 1677 */ 1678 const char *sqlite3_errmsg(sqlite3 *db){ 1679 const char *z; 1680 if( !db ){ 1681 return sqlite3ErrStr(SQLITE_NOMEM); 1682 } 1683 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1684 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 1685 } 1686 sqlite3_mutex_enter(db->mutex); 1687 if( db->mallocFailed ){ 1688 z = sqlite3ErrStr(SQLITE_NOMEM); 1689 }else{ 1690 z = (char*)sqlite3_value_text(db->pErr); 1691 assert( !db->mallocFailed ); 1692 if( z==0 ){ 1693 z = sqlite3ErrStr(db->errCode); 1694 } 1695 } 1696 sqlite3_mutex_leave(db->mutex); 1697 return z; 1698 } 1699 1700 #ifndef SQLITE_OMIT_UTF16 1701 /* 1702 ** Return UTF-16 encoded English language explanation of the most recent 1703 ** error. 1704 */ 1705 const void *sqlite3_errmsg16(sqlite3 *db){ 1706 static const u16 outOfMem[] = { 1707 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 1708 }; 1709 static const u16 misuse[] = { 1710 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 1711 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 1712 'c', 'a', 'l', 'l', 'e', 'd', ' ', 1713 'o', 'u', 't', ' ', 1714 'o', 'f', ' ', 1715 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 1716 }; 1717 1718 const void *z; 1719 if( !db ){ 1720 return (void *)outOfMem; 1721 } 1722 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1723 return (void *)misuse; 1724 } 1725 sqlite3_mutex_enter(db->mutex); 1726 if( db->mallocFailed ){ 1727 z = (void *)outOfMem; 1728 }else{ 1729 z = sqlite3_value_text16(db->pErr); 1730 if( z==0 ){ 1731 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1732 SQLITE_UTF8, SQLITE_STATIC); 1733 z = sqlite3_value_text16(db->pErr); 1734 } 1735 /* A malloc() may have failed within the call to sqlite3_value_text16() 1736 ** above. If this is the case, then the db->mallocFailed flag needs to 1737 ** be cleared before returning. Do this directly, instead of via 1738 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1739 */ 1740 db->mallocFailed = 0; 1741 } 1742 sqlite3_mutex_leave(db->mutex); 1743 return z; 1744 } 1745 #endif /* SQLITE_OMIT_UTF16 */ 1746 1747 /* 1748 ** Return the most recent error code generated by an SQLite routine. If NULL is 1749 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1750 */ 1751 int sqlite3_errcode(sqlite3 *db){ 1752 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1753 return SQLITE_MISUSE_BKPT; 1754 } 1755 if( !db || db->mallocFailed ){ 1756 return SQLITE_NOMEM; 1757 } 1758 return db->errCode & db->errMask; 1759 } 1760 int sqlite3_extended_errcode(sqlite3 *db){ 1761 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1762 return SQLITE_MISUSE_BKPT; 1763 } 1764 if( !db || db->mallocFailed ){ 1765 return SQLITE_NOMEM; 1766 } 1767 return db->errCode; 1768 } 1769 1770 /* 1771 ** Create a new collating function for database "db". The name is zName 1772 ** and the encoding is enc. 1773 */ 1774 static int createCollation( 1775 sqlite3* db, 1776 const char *zName, 1777 u8 enc, 1778 void* pCtx, 1779 int(*xCompare)(void*,int,const void*,int,const void*), 1780 void(*xDel)(void*) 1781 ){ 1782 CollSeq *pColl; 1783 int enc2; 1784 int nName = sqlite3Strlen30(zName); 1785 1786 assert( sqlite3_mutex_held(db->mutex) ); 1787 1788 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1789 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1790 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1791 */ 1792 enc2 = enc; 1793 testcase( enc2==SQLITE_UTF16 ); 1794 testcase( enc2==SQLITE_UTF16_ALIGNED ); 1795 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 1796 enc2 = SQLITE_UTF16NATIVE; 1797 } 1798 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 1799 return SQLITE_MISUSE_BKPT; 1800 } 1801 1802 /* Check if this call is removing or replacing an existing collation 1803 ** sequence. If so, and there are active VMs, return busy. If there 1804 ** are no active VMs, invalidate any pre-compiled statements. 1805 */ 1806 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 1807 if( pColl && pColl->xCmp ){ 1808 if( db->activeVdbeCnt ){ 1809 sqlite3Error(db, SQLITE_BUSY, 1810 "unable to delete/modify collation sequence due to active statements"); 1811 return SQLITE_BUSY; 1812 } 1813 sqlite3ExpirePreparedStatements(db); 1814 1815 /* If collation sequence pColl was created directly by a call to 1816 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1817 ** then any copies made by synthCollSeq() need to be invalidated. 1818 ** Also, collation destructor - CollSeq.xDel() - function may need 1819 ** to be called. 1820 */ 1821 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1822 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1823 int j; 1824 for(j=0; j<3; j++){ 1825 CollSeq *p = &aColl[j]; 1826 if( p->enc==pColl->enc ){ 1827 if( p->xDel ){ 1828 p->xDel(p->pUser); 1829 } 1830 p->xCmp = 0; 1831 } 1832 } 1833 } 1834 } 1835 1836 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 1837 if( pColl==0 ) return SQLITE_NOMEM; 1838 pColl->xCmp = xCompare; 1839 pColl->pUser = pCtx; 1840 pColl->xDel = xDel; 1841 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 1842 sqlite3Error(db, SQLITE_OK, 0); 1843 return SQLITE_OK; 1844 } 1845 1846 1847 /* 1848 ** This array defines hard upper bounds on limit values. The 1849 ** initializer must be kept in sync with the SQLITE_LIMIT_* 1850 ** #defines in sqlite3.h. 1851 */ 1852 static const int aHardLimit[] = { 1853 SQLITE_MAX_LENGTH, 1854 SQLITE_MAX_SQL_LENGTH, 1855 SQLITE_MAX_COLUMN, 1856 SQLITE_MAX_EXPR_DEPTH, 1857 SQLITE_MAX_COMPOUND_SELECT, 1858 SQLITE_MAX_VDBE_OP, 1859 SQLITE_MAX_FUNCTION_ARG, 1860 SQLITE_MAX_ATTACHED, 1861 SQLITE_MAX_LIKE_PATTERN_LENGTH, 1862 SQLITE_MAX_VARIABLE_NUMBER, 1863 SQLITE_MAX_TRIGGER_DEPTH, 1864 }; 1865 1866 /* 1867 ** Make sure the hard limits are set to reasonable values 1868 */ 1869 #if SQLITE_MAX_LENGTH<100 1870 # error SQLITE_MAX_LENGTH must be at least 100 1871 #endif 1872 #if SQLITE_MAX_SQL_LENGTH<100 1873 # error SQLITE_MAX_SQL_LENGTH must be at least 100 1874 #endif 1875 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 1876 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 1877 #endif 1878 #if SQLITE_MAX_COMPOUND_SELECT<2 1879 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 1880 #endif 1881 #if SQLITE_MAX_VDBE_OP<40 1882 # error SQLITE_MAX_VDBE_OP must be at least 40 1883 #endif 1884 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 1885 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 1886 #endif 1887 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 1888 # error SQLITE_MAX_ATTACHED must be between 0 and 62 1889 #endif 1890 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 1891 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 1892 #endif 1893 #if SQLITE_MAX_COLUMN>32767 1894 # error SQLITE_MAX_COLUMN must not exceed 32767 1895 #endif 1896 #if SQLITE_MAX_TRIGGER_DEPTH<1 1897 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 1898 #endif 1899 1900 1901 /* 1902 ** Change the value of a limit. Report the old value. 1903 ** If an invalid limit index is supplied, report -1. 1904 ** Make no changes but still report the old value if the 1905 ** new limit is negative. 1906 ** 1907 ** A new lower limit does not shrink existing constructs. 1908 ** It merely prevents new constructs that exceed the limit 1909 ** from forming. 1910 */ 1911 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 1912 int oldLimit; 1913 1914 1915 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 1916 ** there is a hard upper bound set at compile-time by a C preprocessor 1917 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 1918 ** "_MAX_".) 1919 */ 1920 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 1921 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 1922 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 1923 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 1924 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 1925 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 1926 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 1927 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 1928 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 1929 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 1930 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 1931 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 1932 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); 1933 1934 1935 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 1936 return -1; 1937 } 1938 oldLimit = db->aLimit[limitId]; 1939 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 1940 if( newLimit>aHardLimit[limitId] ){ 1941 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 1942 } 1943 db->aLimit[limitId] = newLimit; 1944 } 1945 return oldLimit; /* IMP: R-53341-35419 */ 1946 } 1947 1948 /* 1949 ** This function is used to parse both URIs and non-URI filenames passed by the 1950 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 1951 ** URIs specified as part of ATTACH statements. 1952 ** 1953 ** The first argument to this function is the name of the VFS to use (or 1954 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 1955 ** query parameter. The second argument contains the URI (or non-URI filename) 1956 ** itself. When this function is called the *pFlags variable should contain 1957 ** the default flags to open the database handle with. The value stored in 1958 ** *pFlags may be updated before returning if the URI filename contains 1959 ** "cache=xxx" or "mode=xxx" query parameters. 1960 ** 1961 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 1962 ** the VFS that should be used to open the database file. *pzFile is set to 1963 ** point to a buffer containing the name of the file to open. It is the 1964 ** responsibility of the caller to eventually call sqlite3_free() to release 1965 ** this buffer. 1966 ** 1967 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 1968 ** may be set to point to a buffer containing an English language error 1969 ** message. It is the responsibility of the caller to eventually release 1970 ** this buffer by calling sqlite3_free(). 1971 */ 1972 int sqlite3ParseUri( 1973 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 1974 const char *zUri, /* Nul-terminated URI to parse */ 1975 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 1976 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 1977 char **pzFile, /* OUT: Filename component of URI */ 1978 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 1979 ){ 1980 int rc = SQLITE_OK; 1981 unsigned int flags = *pFlags; 1982 const char *zVfs = zDefaultVfs; 1983 char *zFile; 1984 char c; 1985 int nUri = sqlite3Strlen30(zUri); 1986 1987 assert( *pzErrMsg==0 ); 1988 1989 if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 1990 && nUri>=5 && memcmp(zUri, "file:", 5)==0 1991 ){ 1992 char *zOpt; 1993 int eState; /* Parser state when parsing URI */ 1994 int iIn; /* Input character index */ 1995 int iOut = 0; /* Output character index */ 1996 int nByte = nUri+2; /* Bytes of space to allocate */ 1997 1998 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 1999 ** method that there may be extra parameters following the file-name. */ 2000 flags |= SQLITE_OPEN_URI; 2001 2002 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2003 zFile = sqlite3_malloc(nByte); 2004 if( !zFile ) return SQLITE_NOMEM; 2005 2006 /* Discard the scheme and authority segments of the URI. */ 2007 if( zUri[5]=='/' && zUri[6]=='/' ){ 2008 iIn = 7; 2009 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2010 2011 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2012 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2013 iIn-7, &zUri[7]); 2014 rc = SQLITE_ERROR; 2015 goto parse_uri_out; 2016 } 2017 }else{ 2018 iIn = 5; 2019 } 2020 2021 /* Copy the filename and any query parameters into the zFile buffer. 2022 ** Decode %HH escape codes along the way. 2023 ** 2024 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2025 ** on the parsing context. As follows: 2026 ** 2027 ** 0: Parsing file-name. 2028 ** 1: Parsing name section of a name=value query parameter. 2029 ** 2: Parsing value section of a name=value query parameter. 2030 */ 2031 eState = 0; 2032 while( (c = zUri[iIn])!=0 && c!='#' ){ 2033 iIn++; 2034 if( c=='%' 2035 && sqlite3Isxdigit(zUri[iIn]) 2036 && sqlite3Isxdigit(zUri[iIn+1]) 2037 ){ 2038 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2039 octet += sqlite3HexToInt(zUri[iIn++]); 2040 2041 assert( octet>=0 && octet<256 ); 2042 if( octet==0 ){ 2043 /* This branch is taken when "%00" appears within the URI. In this 2044 ** case we ignore all text in the remainder of the path, name or 2045 ** value currently being parsed. So ignore the current character 2046 ** and skip to the next "?", "=" or "&", as appropriate. */ 2047 while( (c = zUri[iIn])!=0 && c!='#' 2048 && (eState!=0 || c!='?') 2049 && (eState!=1 || (c!='=' && c!='&')) 2050 && (eState!=2 || c!='&') 2051 ){ 2052 iIn++; 2053 } 2054 continue; 2055 } 2056 c = octet; 2057 }else if( eState==1 && (c=='&' || c=='=') ){ 2058 if( zFile[iOut-1]==0 ){ 2059 /* An empty option name. Ignore this option altogether. */ 2060 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2061 continue; 2062 } 2063 if( c=='&' ){ 2064 zFile[iOut++] = '\0'; 2065 }else{ 2066 eState = 2; 2067 } 2068 c = 0; 2069 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2070 c = 0; 2071 eState = 1; 2072 } 2073 zFile[iOut++] = c; 2074 } 2075 if( eState==1 ) zFile[iOut++] = '\0'; 2076 zFile[iOut++] = '\0'; 2077 zFile[iOut++] = '\0'; 2078 2079 /* Check if there were any options specified that should be interpreted 2080 ** here. Options that are interpreted here include "vfs" and those that 2081 ** correspond to flags that may be passed to the sqlite3_open_v2() 2082 ** method. */ 2083 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2084 while( zOpt[0] ){ 2085 int nOpt = sqlite3Strlen30(zOpt); 2086 char *zVal = &zOpt[nOpt+1]; 2087 int nVal = sqlite3Strlen30(zVal); 2088 2089 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2090 zVfs = zVal; 2091 }else{ 2092 struct OpenMode { 2093 const char *z; 2094 int mode; 2095 } *aMode = 0; 2096 char *zModeType = 0; 2097 int mask = 0; 2098 int limit = 0; 2099 2100 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2101 static struct OpenMode aCacheMode[] = { 2102 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2103 { "private", SQLITE_OPEN_PRIVATECACHE }, 2104 { 0, 0 } 2105 }; 2106 2107 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2108 aMode = aCacheMode; 2109 limit = mask; 2110 zModeType = "cache"; 2111 } 2112 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2113 static struct OpenMode aOpenMode[] = { 2114 { "ro", SQLITE_OPEN_READONLY }, 2115 { "rw", SQLITE_OPEN_READWRITE }, 2116 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2117 { "memory", SQLITE_OPEN_MEMORY }, 2118 { 0, 0 } 2119 }; 2120 2121 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2122 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2123 aMode = aOpenMode; 2124 limit = mask & flags; 2125 zModeType = "access"; 2126 } 2127 2128 if( aMode ){ 2129 int i; 2130 int mode = 0; 2131 for(i=0; aMode[i].z; i++){ 2132 const char *z = aMode[i].z; 2133 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2134 mode = aMode[i].mode; 2135 break; 2136 } 2137 } 2138 if( mode==0 ){ 2139 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2140 rc = SQLITE_ERROR; 2141 goto parse_uri_out; 2142 } 2143 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2144 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2145 zModeType, zVal); 2146 rc = SQLITE_PERM; 2147 goto parse_uri_out; 2148 } 2149 flags = (flags & ~mask) | mode; 2150 } 2151 } 2152 2153 zOpt = &zVal[nVal+1]; 2154 } 2155 2156 }else{ 2157 zFile = sqlite3_malloc(nUri+2); 2158 if( !zFile ) return SQLITE_NOMEM; 2159 memcpy(zFile, zUri, nUri); 2160 zFile[nUri] = '\0'; 2161 zFile[nUri+1] = '\0'; 2162 flags &= ~SQLITE_OPEN_URI; 2163 } 2164 2165 *ppVfs = sqlite3_vfs_find(zVfs); 2166 if( *ppVfs==0 ){ 2167 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2168 rc = SQLITE_ERROR; 2169 } 2170 parse_uri_out: 2171 if( rc!=SQLITE_OK ){ 2172 sqlite3_free(zFile); 2173 zFile = 0; 2174 } 2175 *pFlags = flags; 2176 *pzFile = zFile; 2177 return rc; 2178 } 2179 2180 2181 /* 2182 ** This routine does the work of opening a database on behalf of 2183 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2184 ** is UTF-8 encoded. 2185 */ 2186 static int openDatabase( 2187 const char *zFilename, /* Database filename UTF-8 encoded */ 2188 sqlite3 **ppDb, /* OUT: Returned database handle */ 2189 unsigned int flags, /* Operational flags */ 2190 const char *zVfs /* Name of the VFS to use */ 2191 ){ 2192 sqlite3 *db; /* Store allocated handle here */ 2193 int rc; /* Return code */ 2194 int isThreadsafe; /* True for threadsafe connections */ 2195 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2196 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2197 2198 *ppDb = 0; 2199 #ifndef SQLITE_OMIT_AUTOINIT 2200 rc = sqlite3_initialize(); 2201 if( rc ) return rc; 2202 #endif 2203 2204 /* Only allow sensible combinations of bits in the flags argument. 2205 ** Throw an error if any non-sense combination is used. If we 2206 ** do not block illegal combinations here, it could trigger 2207 ** assert() statements in deeper layers. Sensible combinations 2208 ** are: 2209 ** 2210 ** 1: SQLITE_OPEN_READONLY 2211 ** 2: SQLITE_OPEN_READWRITE 2212 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2213 */ 2214 assert( SQLITE_OPEN_READONLY == 0x01 ); 2215 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2216 assert( SQLITE_OPEN_CREATE == 0x04 ); 2217 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2218 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2219 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2220 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; 2221 2222 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2223 isThreadsafe = 0; 2224 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2225 isThreadsafe = 0; 2226 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2227 isThreadsafe = 1; 2228 }else{ 2229 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2230 } 2231 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2232 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2233 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2234 flags |= SQLITE_OPEN_SHAREDCACHE; 2235 } 2236 2237 /* Remove harmful bits from the flags parameter 2238 ** 2239 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2240 ** dealt with in the previous code block. Besides these, the only 2241 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2242 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2243 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2244 ** off all other flags. 2245 */ 2246 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2247 SQLITE_OPEN_EXCLUSIVE | 2248 SQLITE_OPEN_MAIN_DB | 2249 SQLITE_OPEN_TEMP_DB | 2250 SQLITE_OPEN_TRANSIENT_DB | 2251 SQLITE_OPEN_MAIN_JOURNAL | 2252 SQLITE_OPEN_TEMP_JOURNAL | 2253 SQLITE_OPEN_SUBJOURNAL | 2254 SQLITE_OPEN_MASTER_JOURNAL | 2255 SQLITE_OPEN_NOMUTEX | 2256 SQLITE_OPEN_FULLMUTEX | 2257 SQLITE_OPEN_WAL 2258 ); 2259 2260 /* Allocate the sqlite data structure */ 2261 db = sqlite3MallocZero( sizeof(sqlite3) ); 2262 if( db==0 ) goto opendb_out; 2263 if( isThreadsafe ){ 2264 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2265 if( db->mutex==0 ){ 2266 sqlite3_free(db); 2267 db = 0; 2268 goto opendb_out; 2269 } 2270 } 2271 sqlite3_mutex_enter(db->mutex); 2272 db->errMask = 0xff; 2273 db->nDb = 2; 2274 db->magic = SQLITE_MAGIC_BUSY; 2275 db->aDb = db->aDbStatic; 2276 2277 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2278 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2279 db->autoCommit = 1; 2280 db->nextAutovac = -1; 2281 db->nextPagesize = 0; 2282 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger 2283 #if SQLITE_DEFAULT_FILE_FORMAT<4 2284 | SQLITE_LegacyFileFmt 2285 #endif 2286 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2287 | SQLITE_LoadExtension 2288 #endif 2289 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2290 | SQLITE_RecTriggers 2291 #endif 2292 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2293 | SQLITE_ForeignKeys 2294 #endif 2295 ; 2296 sqlite3HashInit(&db->aCollSeq); 2297 #ifndef SQLITE_OMIT_VIRTUALTABLE 2298 sqlite3HashInit(&db->aModule); 2299 #endif 2300 2301 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2302 ** and UTF-16, so add a version for each to avoid any unnecessary 2303 ** conversions. The only error that can occur here is a malloc() failure. 2304 */ 2305 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2306 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2307 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2308 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2309 if( db->mallocFailed ){ 2310 goto opendb_out; 2311 } 2312 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2313 assert( db->pDfltColl!=0 ); 2314 2315 /* Also add a UTF-8 case-insensitive collation sequence. */ 2316 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2317 2318 /* Parse the filename/URI argument. */ 2319 db->openFlags = flags; 2320 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2321 if( rc!=SQLITE_OK ){ 2322 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2323 sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2324 sqlite3_free(zErrMsg); 2325 goto opendb_out; 2326 } 2327 2328 /* Open the backend database driver */ 2329 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2330 flags | SQLITE_OPEN_MAIN_DB); 2331 if( rc!=SQLITE_OK ){ 2332 if( rc==SQLITE_IOERR_NOMEM ){ 2333 rc = SQLITE_NOMEM; 2334 } 2335 sqlite3Error(db, rc, 0); 2336 goto opendb_out; 2337 } 2338 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2339 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2340 2341 2342 /* The default safety_level for the main database is 'full'; for the temp 2343 ** database it is 'NONE'. This matches the pager layer defaults. 2344 */ 2345 db->aDb[0].zName = "main"; 2346 db->aDb[0].safety_level = 3; 2347 db->aDb[1].zName = "temp"; 2348 db->aDb[1].safety_level = 1; 2349 2350 db->magic = SQLITE_MAGIC_OPEN; 2351 if( db->mallocFailed ){ 2352 goto opendb_out; 2353 } 2354 2355 /* Register all built-in functions, but do not attempt to read the 2356 ** database schema yet. This is delayed until the first time the database 2357 ** is accessed. 2358 */ 2359 sqlite3Error(db, SQLITE_OK, 0); 2360 sqlite3RegisterBuiltinFunctions(db); 2361 2362 /* Load automatic extensions - extensions that have been registered 2363 ** using the sqlite3_automatic_extension() API. 2364 */ 2365 rc = sqlite3_errcode(db); 2366 if( rc==SQLITE_OK ){ 2367 sqlite3AutoLoadExtensions(db); 2368 rc = sqlite3_errcode(db); 2369 if( rc!=SQLITE_OK ){ 2370 goto opendb_out; 2371 } 2372 } 2373 2374 #ifdef SQLITE_ENABLE_FTS1 2375 if( !db->mallocFailed ){ 2376 extern int sqlite3Fts1Init(sqlite3*); 2377 rc = sqlite3Fts1Init(db); 2378 } 2379 #endif 2380 2381 #ifdef SQLITE_ENABLE_FTS2 2382 if( !db->mallocFailed && rc==SQLITE_OK ){ 2383 extern int sqlite3Fts2Init(sqlite3*); 2384 rc = sqlite3Fts2Init(db); 2385 } 2386 #endif 2387 2388 #ifdef SQLITE_ENABLE_FTS3 2389 if( !db->mallocFailed && rc==SQLITE_OK ){ 2390 rc = sqlite3Fts3Init(db); 2391 } 2392 #endif 2393 2394 #ifdef SQLITE_ENABLE_ICU 2395 if( !db->mallocFailed && rc==SQLITE_OK ){ 2396 rc = sqlite3IcuInit(db); 2397 } 2398 #endif 2399 2400 #ifdef SQLITE_ENABLE_RTREE 2401 if( !db->mallocFailed && rc==SQLITE_OK){ 2402 rc = sqlite3RtreeInit(db); 2403 } 2404 #endif 2405 2406 sqlite3Error(db, rc, 0); 2407 2408 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2409 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2410 ** mode. Doing nothing at all also makes NORMAL the default. 2411 */ 2412 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2413 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2414 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2415 SQLITE_DEFAULT_LOCKING_MODE); 2416 #endif 2417 2418 /* Enable the lookaside-malloc subsystem */ 2419 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2420 sqlite3GlobalConfig.nLookaside); 2421 2422 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2423 2424 opendb_out: 2425 sqlite3_free(zOpen); 2426 if( db ){ 2427 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 2428 sqlite3_mutex_leave(db->mutex); 2429 } 2430 rc = sqlite3_errcode(db); 2431 assert( db!=0 || rc==SQLITE_NOMEM ); 2432 if( rc==SQLITE_NOMEM ){ 2433 sqlite3_close(db); 2434 db = 0; 2435 }else if( rc!=SQLITE_OK ){ 2436 db->magic = SQLITE_MAGIC_SICK; 2437 } 2438 *ppDb = db; 2439 return sqlite3ApiExit(0, rc); 2440 } 2441 2442 /* 2443 ** Open a new database handle. 2444 */ 2445 int sqlite3_open( 2446 const char *zFilename, 2447 sqlite3 **ppDb 2448 ){ 2449 return openDatabase(zFilename, ppDb, 2450 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2451 } 2452 int sqlite3_open_v2( 2453 const char *filename, /* Database filename (UTF-8) */ 2454 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2455 int flags, /* Flags */ 2456 const char *zVfs /* Name of VFS module to use */ 2457 ){ 2458 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2459 } 2460 2461 #ifndef SQLITE_OMIT_UTF16 2462 /* 2463 ** Open a new database handle. 2464 */ 2465 int sqlite3_open16( 2466 const void *zFilename, 2467 sqlite3 **ppDb 2468 ){ 2469 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2470 sqlite3_value *pVal; 2471 int rc; 2472 2473 assert( zFilename ); 2474 assert( ppDb ); 2475 *ppDb = 0; 2476 #ifndef SQLITE_OMIT_AUTOINIT 2477 rc = sqlite3_initialize(); 2478 if( rc ) return rc; 2479 #endif 2480 pVal = sqlite3ValueNew(0); 2481 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2482 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2483 if( zFilename8 ){ 2484 rc = openDatabase(zFilename8, ppDb, 2485 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2486 assert( *ppDb || rc==SQLITE_NOMEM ); 2487 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2488 ENC(*ppDb) = SQLITE_UTF16NATIVE; 2489 } 2490 }else{ 2491 rc = SQLITE_NOMEM; 2492 } 2493 sqlite3ValueFree(pVal); 2494 2495 return sqlite3ApiExit(0, rc); 2496 } 2497 #endif /* SQLITE_OMIT_UTF16 */ 2498 2499 /* 2500 ** Register a new collation sequence with the database handle db. 2501 */ 2502 int sqlite3_create_collation( 2503 sqlite3* db, 2504 const char *zName, 2505 int enc, 2506 void* pCtx, 2507 int(*xCompare)(void*,int,const void*,int,const void*) 2508 ){ 2509 int rc; 2510 sqlite3_mutex_enter(db->mutex); 2511 assert( !db->mallocFailed ); 2512 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0); 2513 rc = sqlite3ApiExit(db, rc); 2514 sqlite3_mutex_leave(db->mutex); 2515 return rc; 2516 } 2517 2518 /* 2519 ** Register a new collation sequence with the database handle db. 2520 */ 2521 int sqlite3_create_collation_v2( 2522 sqlite3* db, 2523 const char *zName, 2524 int enc, 2525 void* pCtx, 2526 int(*xCompare)(void*,int,const void*,int,const void*), 2527 void(*xDel)(void*) 2528 ){ 2529 int rc; 2530 sqlite3_mutex_enter(db->mutex); 2531 assert( !db->mallocFailed ); 2532 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 2533 rc = sqlite3ApiExit(db, rc); 2534 sqlite3_mutex_leave(db->mutex); 2535 return rc; 2536 } 2537 2538 #ifndef SQLITE_OMIT_UTF16 2539 /* 2540 ** Register a new collation sequence with the database handle db. 2541 */ 2542 int sqlite3_create_collation16( 2543 sqlite3* db, 2544 const void *zName, 2545 int enc, 2546 void* pCtx, 2547 int(*xCompare)(void*,int,const void*,int,const void*) 2548 ){ 2549 int rc = SQLITE_OK; 2550 char *zName8; 2551 sqlite3_mutex_enter(db->mutex); 2552 assert( !db->mallocFailed ); 2553 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 2554 if( zName8 ){ 2555 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 2556 sqlite3DbFree(db, zName8); 2557 } 2558 rc = sqlite3ApiExit(db, rc); 2559 sqlite3_mutex_leave(db->mutex); 2560 return rc; 2561 } 2562 #endif /* SQLITE_OMIT_UTF16 */ 2563 2564 /* 2565 ** Register a collation sequence factory callback with the database handle 2566 ** db. Replace any previously installed collation sequence factory. 2567 */ 2568 int sqlite3_collation_needed( 2569 sqlite3 *db, 2570 void *pCollNeededArg, 2571 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 2572 ){ 2573 sqlite3_mutex_enter(db->mutex); 2574 db->xCollNeeded = xCollNeeded; 2575 db->xCollNeeded16 = 0; 2576 db->pCollNeededArg = pCollNeededArg; 2577 sqlite3_mutex_leave(db->mutex); 2578 return SQLITE_OK; 2579 } 2580 2581 #ifndef SQLITE_OMIT_UTF16 2582 /* 2583 ** Register a collation sequence factory callback with the database handle 2584 ** db. Replace any previously installed collation sequence factory. 2585 */ 2586 int sqlite3_collation_needed16( 2587 sqlite3 *db, 2588 void *pCollNeededArg, 2589 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 2590 ){ 2591 sqlite3_mutex_enter(db->mutex); 2592 db->xCollNeeded = 0; 2593 db->xCollNeeded16 = xCollNeeded16; 2594 db->pCollNeededArg = pCollNeededArg; 2595 sqlite3_mutex_leave(db->mutex); 2596 return SQLITE_OK; 2597 } 2598 #endif /* SQLITE_OMIT_UTF16 */ 2599 2600 #ifndef SQLITE_OMIT_DEPRECATED 2601 /* 2602 ** This function is now an anachronism. It used to be used to recover from a 2603 ** malloc() failure, but SQLite now does this automatically. 2604 */ 2605 int sqlite3_global_recover(void){ 2606 return SQLITE_OK; 2607 } 2608 #endif 2609 2610 /* 2611 ** Test to see whether or not the database connection is in autocommit 2612 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 2613 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 2614 ** by the next COMMIT or ROLLBACK. 2615 ** 2616 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 2617 */ 2618 int sqlite3_get_autocommit(sqlite3 *db){ 2619 return db->autoCommit; 2620 } 2621 2622 /* 2623 ** The following routines are subtitutes for constants SQLITE_CORRUPT, 2624 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 2625 ** constants. They server two purposes: 2626 ** 2627 ** 1. Serve as a convenient place to set a breakpoint in a debugger 2628 ** to detect when version error conditions occurs. 2629 ** 2630 ** 2. Invoke sqlite3_log() to provide the source code location where 2631 ** a low-level error is first detected. 2632 */ 2633 int sqlite3CorruptError(int lineno){ 2634 testcase( sqlite3GlobalConfig.xLog!=0 ); 2635 sqlite3_log(SQLITE_CORRUPT, 2636 "database corruption at line %d of [%.10s]", 2637 lineno, 20+sqlite3_sourceid()); 2638 return SQLITE_CORRUPT; 2639 } 2640 int sqlite3MisuseError(int lineno){ 2641 testcase( sqlite3GlobalConfig.xLog!=0 ); 2642 sqlite3_log(SQLITE_MISUSE, 2643 "misuse at line %d of [%.10s]", 2644 lineno, 20+sqlite3_sourceid()); 2645 return SQLITE_MISUSE; 2646 } 2647 int sqlite3CantopenError(int lineno){ 2648 testcase( sqlite3GlobalConfig.xLog!=0 ); 2649 sqlite3_log(SQLITE_CANTOPEN, 2650 "cannot open file at line %d of [%.10s]", 2651 lineno, 20+sqlite3_sourceid()); 2652 return SQLITE_CANTOPEN; 2653 } 2654 2655 2656 #ifndef SQLITE_OMIT_DEPRECATED 2657 /* 2658 ** This is a convenience routine that makes sure that all thread-specific 2659 ** data for this thread has been deallocated. 2660 ** 2661 ** SQLite no longer uses thread-specific data so this routine is now a 2662 ** no-op. It is retained for historical compatibility. 2663 */ 2664 void sqlite3_thread_cleanup(void){ 2665 } 2666 #endif 2667 2668 /* 2669 ** Return meta information about a specific column of a database table. 2670 ** See comment in sqlite3.h (sqlite.h.in) for details. 2671 */ 2672 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2673 int sqlite3_table_column_metadata( 2674 sqlite3 *db, /* Connection handle */ 2675 const char *zDbName, /* Database name or NULL */ 2676 const char *zTableName, /* Table name */ 2677 const char *zColumnName, /* Column name */ 2678 char const **pzDataType, /* OUTPUT: Declared data type */ 2679 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 2680 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 2681 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 2682 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 2683 ){ 2684 int rc; 2685 char *zErrMsg = 0; 2686 Table *pTab = 0; 2687 Column *pCol = 0; 2688 int iCol; 2689 2690 char const *zDataType = 0; 2691 char const *zCollSeq = 0; 2692 int notnull = 0; 2693 int primarykey = 0; 2694 int autoinc = 0; 2695 2696 /* Ensure the database schema has been loaded */ 2697 sqlite3_mutex_enter(db->mutex); 2698 sqlite3BtreeEnterAll(db); 2699 rc = sqlite3Init(db, &zErrMsg); 2700 if( SQLITE_OK!=rc ){ 2701 goto error_out; 2702 } 2703 2704 /* Locate the table in question */ 2705 pTab = sqlite3FindTable(db, zTableName, zDbName); 2706 if( !pTab || pTab->pSelect ){ 2707 pTab = 0; 2708 goto error_out; 2709 } 2710 2711 /* Find the column for which info is requested */ 2712 if( sqlite3IsRowid(zColumnName) ){ 2713 iCol = pTab->iPKey; 2714 if( iCol>=0 ){ 2715 pCol = &pTab->aCol[iCol]; 2716 } 2717 }else{ 2718 for(iCol=0; iCol<pTab->nCol; iCol++){ 2719 pCol = &pTab->aCol[iCol]; 2720 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 2721 break; 2722 } 2723 } 2724 if( iCol==pTab->nCol ){ 2725 pTab = 0; 2726 goto error_out; 2727 } 2728 } 2729 2730 /* The following block stores the meta information that will be returned 2731 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 2732 ** and autoinc. At this point there are two possibilities: 2733 ** 2734 ** 1. The specified column name was rowid", "oid" or "_rowid_" 2735 ** and there is no explicitly declared IPK column. 2736 ** 2737 ** 2. The table is not a view and the column name identified an 2738 ** explicitly declared column. Copy meta information from *pCol. 2739 */ 2740 if( pCol ){ 2741 zDataType = pCol->zType; 2742 zCollSeq = pCol->zColl; 2743 notnull = pCol->notNull!=0; 2744 primarykey = pCol->isPrimKey!=0; 2745 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 2746 }else{ 2747 zDataType = "INTEGER"; 2748 primarykey = 1; 2749 } 2750 if( !zCollSeq ){ 2751 zCollSeq = "BINARY"; 2752 } 2753 2754 error_out: 2755 sqlite3BtreeLeaveAll(db); 2756 2757 /* Whether the function call succeeded or failed, set the output parameters 2758 ** to whatever their local counterparts contain. If an error did occur, 2759 ** this has the effect of zeroing all output parameters. 2760 */ 2761 if( pzDataType ) *pzDataType = zDataType; 2762 if( pzCollSeq ) *pzCollSeq = zCollSeq; 2763 if( pNotNull ) *pNotNull = notnull; 2764 if( pPrimaryKey ) *pPrimaryKey = primarykey; 2765 if( pAutoinc ) *pAutoinc = autoinc; 2766 2767 if( SQLITE_OK==rc && !pTab ){ 2768 sqlite3DbFree(db, zErrMsg); 2769 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2770 zColumnName); 2771 rc = SQLITE_ERROR; 2772 } 2773 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2774 sqlite3DbFree(db, zErrMsg); 2775 rc = sqlite3ApiExit(db, rc); 2776 sqlite3_mutex_leave(db->mutex); 2777 return rc; 2778 } 2779 #endif 2780 2781 /* 2782 ** Sleep for a little while. Return the amount of time slept. 2783 */ 2784 int sqlite3_sleep(int ms){ 2785 sqlite3_vfs *pVfs; 2786 int rc; 2787 pVfs = sqlite3_vfs_find(0); 2788 if( pVfs==0 ) return 0; 2789 2790 /* This function works in milliseconds, but the underlying OsSleep() 2791 ** API uses microseconds. Hence the 1000's. 2792 */ 2793 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2794 return rc; 2795 } 2796 2797 /* 2798 ** Enable or disable the extended result codes. 2799 */ 2800 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2801 sqlite3_mutex_enter(db->mutex); 2802 db->errMask = onoff ? 0xffffffff : 0xff; 2803 sqlite3_mutex_leave(db->mutex); 2804 return SQLITE_OK; 2805 } 2806 2807 /* 2808 ** Invoke the xFileControl method on a particular database. 2809 */ 2810 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2811 int rc = SQLITE_ERROR; 2812 Btree *pBtree; 2813 2814 sqlite3_mutex_enter(db->mutex); 2815 pBtree = sqlite3DbNameToBtree(db, zDbName); 2816 if( pBtree ){ 2817 Pager *pPager; 2818 sqlite3_file *fd; 2819 sqlite3BtreeEnter(pBtree); 2820 pPager = sqlite3BtreePager(pBtree); 2821 assert( pPager!=0 ); 2822 fd = sqlite3PagerFile(pPager); 2823 assert( fd!=0 ); 2824 if( op==SQLITE_FCNTL_FILE_POINTER ){ 2825 *(sqlite3_file**)pArg = fd; 2826 rc = SQLITE_OK; 2827 }else if( fd->pMethods ){ 2828 rc = sqlite3OsFileControl(fd, op, pArg); 2829 }else{ 2830 rc = SQLITE_NOTFOUND; 2831 } 2832 sqlite3BtreeLeave(pBtree); 2833 } 2834 sqlite3_mutex_leave(db->mutex); 2835 return rc; 2836 } 2837 2838 /* 2839 ** Interface to the testing logic. 2840 */ 2841 int sqlite3_test_control(int op, ...){ 2842 int rc = 0; 2843 #ifndef SQLITE_OMIT_BUILTIN_TEST 2844 va_list ap; 2845 va_start(ap, op); 2846 switch( op ){ 2847 2848 /* 2849 ** Save the current state of the PRNG. 2850 */ 2851 case SQLITE_TESTCTRL_PRNG_SAVE: { 2852 sqlite3PrngSaveState(); 2853 break; 2854 } 2855 2856 /* 2857 ** Restore the state of the PRNG to the last state saved using 2858 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 2859 ** this verb acts like PRNG_RESET. 2860 */ 2861 case SQLITE_TESTCTRL_PRNG_RESTORE: { 2862 sqlite3PrngRestoreState(); 2863 break; 2864 } 2865 2866 /* 2867 ** Reset the PRNG back to its uninitialized state. The next call 2868 ** to sqlite3_randomness() will reseed the PRNG using a single call 2869 ** to the xRandomness method of the default VFS. 2870 */ 2871 case SQLITE_TESTCTRL_PRNG_RESET: { 2872 sqlite3PrngResetState(); 2873 break; 2874 } 2875 2876 /* 2877 ** sqlite3_test_control(BITVEC_TEST, size, program) 2878 ** 2879 ** Run a test against a Bitvec object of size. The program argument 2880 ** is an array of integers that defines the test. Return -1 on a 2881 ** memory allocation error, 0 on success, or non-zero for an error. 2882 ** See the sqlite3BitvecBuiltinTest() for additional information. 2883 */ 2884 case SQLITE_TESTCTRL_BITVEC_TEST: { 2885 int sz = va_arg(ap, int); 2886 int *aProg = va_arg(ap, int*); 2887 rc = sqlite3BitvecBuiltinTest(sz, aProg); 2888 break; 2889 } 2890 2891 /* 2892 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 2893 ** 2894 ** Register hooks to call to indicate which malloc() failures 2895 ** are benign. 2896 */ 2897 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 2898 typedef void (*void_function)(void); 2899 void_function xBenignBegin; 2900 void_function xBenignEnd; 2901 xBenignBegin = va_arg(ap, void_function); 2902 xBenignEnd = va_arg(ap, void_function); 2903 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 2904 break; 2905 } 2906 2907 /* 2908 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 2909 ** 2910 ** Set the PENDING byte to the value in the argument, if X>0. 2911 ** Make no changes if X==0. Return the value of the pending byte 2912 ** as it existing before this routine was called. 2913 ** 2914 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 2915 ** an incompatible database file format. Changing the PENDING byte 2916 ** while any database connection is open results in undefined and 2917 ** dileterious behavior. 2918 */ 2919 case SQLITE_TESTCTRL_PENDING_BYTE: { 2920 rc = PENDING_BYTE; 2921 #ifndef SQLITE_OMIT_WSD 2922 { 2923 unsigned int newVal = va_arg(ap, unsigned int); 2924 if( newVal ) sqlite3PendingByte = newVal; 2925 } 2926 #endif 2927 break; 2928 } 2929 2930 /* 2931 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 2932 ** 2933 ** This action provides a run-time test to see whether or not 2934 ** assert() was enabled at compile-time. If X is true and assert() 2935 ** is enabled, then the return value is true. If X is true and 2936 ** assert() is disabled, then the return value is zero. If X is 2937 ** false and assert() is enabled, then the assertion fires and the 2938 ** process aborts. If X is false and assert() is disabled, then the 2939 ** return value is zero. 2940 */ 2941 case SQLITE_TESTCTRL_ASSERT: { 2942 volatile int x = 0; 2943 assert( (x = va_arg(ap,int))!=0 ); 2944 rc = x; 2945 break; 2946 } 2947 2948 2949 /* 2950 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 2951 ** 2952 ** This action provides a run-time test to see how the ALWAYS and 2953 ** NEVER macros were defined at compile-time. 2954 ** 2955 ** The return value is ALWAYS(X). 2956 ** 2957 ** The recommended test is X==2. If the return value is 2, that means 2958 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 2959 ** default setting. If the return value is 1, then ALWAYS() is either 2960 ** hard-coded to true or else it asserts if its argument is false. 2961 ** The first behavior (hard-coded to true) is the case if 2962 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 2963 ** behavior (assert if the argument to ALWAYS() is false) is the case if 2964 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 2965 ** 2966 ** The run-time test procedure might look something like this: 2967 ** 2968 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 2969 ** // ALWAYS() and NEVER() are no-op pass-through macros 2970 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 2971 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 2972 ** }else{ 2973 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 2974 ** } 2975 */ 2976 case SQLITE_TESTCTRL_ALWAYS: { 2977 int x = va_arg(ap,int); 2978 rc = ALWAYS(x); 2979 break; 2980 } 2981 2982 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 2983 ** 2984 ** Set the nReserve size to N for the main database on the database 2985 ** connection db. 2986 */ 2987 case SQLITE_TESTCTRL_RESERVE: { 2988 sqlite3 *db = va_arg(ap, sqlite3*); 2989 int x = va_arg(ap,int); 2990 sqlite3_mutex_enter(db->mutex); 2991 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 2992 sqlite3_mutex_leave(db->mutex); 2993 break; 2994 } 2995 2996 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 2997 ** 2998 ** Enable or disable various optimizations for testing purposes. The 2999 ** argument N is a bitmask of optimizations to be disabled. For normal 3000 ** operation N should be 0. The idea is that a test program (like the 3001 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3002 ** with various optimizations disabled to verify that the same answer 3003 ** is obtained in every case. 3004 */ 3005 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3006 sqlite3 *db = va_arg(ap, sqlite3*); 3007 int x = va_arg(ap,int); 3008 db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask); 3009 break; 3010 } 3011 3012 #ifdef SQLITE_N_KEYWORD 3013 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3014 ** 3015 ** If zWord is a keyword recognized by the parser, then return the 3016 ** number of keywords. Or if zWord is not a keyword, return 0. 3017 ** 3018 ** This test feature is only available in the amalgamation since 3019 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3020 ** is built using separate source files. 3021 */ 3022 case SQLITE_TESTCTRL_ISKEYWORD: { 3023 const char *zWord = va_arg(ap, const char*); 3024 int n = sqlite3Strlen30(zWord); 3025 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3026 break; 3027 } 3028 #endif 3029 3030 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3031 ** 3032 ** Pass pFree into sqlite3ScratchFree(). 3033 ** If sz>0 then allocate a scratch buffer into pNew. 3034 */ 3035 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3036 void *pFree, **ppNew; 3037 int sz; 3038 sz = va_arg(ap, int); 3039 ppNew = va_arg(ap, void**); 3040 pFree = va_arg(ap, void*); 3041 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3042 sqlite3ScratchFree(pFree); 3043 break; 3044 } 3045 3046 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3047 ** 3048 ** If parameter onoff is non-zero, configure the wrappers so that all 3049 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3050 ** undo this setting. 3051 */ 3052 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3053 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3054 break; 3055 } 3056 3057 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3058 /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, 3059 ** sqlite3_stmt*,const char**); 3060 ** 3061 ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds 3062 ** a string that describes the optimized parse tree. This test-control 3063 ** returns a pointer to that string. 3064 */ 3065 case SQLITE_TESTCTRL_EXPLAIN_STMT: { 3066 sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); 3067 const char **pzRet = va_arg(ap, const char**); 3068 *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); 3069 break; 3070 } 3071 #endif 3072 3073 } 3074 va_end(ap); 3075 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3076 return rc; 3077 } 3078 3079 /* 3080 ** This is a utility routine, useful to VFS implementations, that checks 3081 ** to see if a database file was a URI that contained a specific query 3082 ** parameter, and if so obtains the value of the query parameter. 3083 ** 3084 ** The zFilename argument is the filename pointer passed into the xOpen() 3085 ** method of a VFS implementation. The zParam argument is the name of the 3086 ** query parameter we seek. This routine returns the value of the zParam 3087 ** parameter if it exists. If the parameter does not exist, this routine 3088 ** returns a NULL pointer. 3089 */ 3090 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3091 if( zFilename==0 ) return 0; 3092 zFilename += sqlite3Strlen30(zFilename) + 1; 3093 while( zFilename[0] ){ 3094 int x = strcmp(zFilename, zParam); 3095 zFilename += sqlite3Strlen30(zFilename) + 1; 3096 if( x==0 ) return zFilename; 3097 zFilename += sqlite3Strlen30(zFilename) + 1; 3098 } 3099 return 0; 3100 } 3101 3102 /* 3103 ** Return a boolean value for a query parameter. 3104 */ 3105 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3106 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3107 bDflt = bDflt!=0; 3108 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3109 } 3110 3111 /* 3112 ** Return a 64-bit integer value for a query parameter. 3113 */ 3114 sqlite3_int64 sqlite3_uri_int64( 3115 const char *zFilename, /* Filename as passed to xOpen */ 3116 const char *zParam, /* URI parameter sought */ 3117 sqlite3_int64 bDflt /* return if parameter is missing */ 3118 ){ 3119 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3120 sqlite3_int64 v; 3121 if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ 3122 bDflt = v; 3123 } 3124 return bDflt; 3125 } 3126 3127 /* 3128 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3129 */ 3130 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3131 int i; 3132 for(i=0; i<db->nDb; i++){ 3133 if( db->aDb[i].pBt 3134 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3135 ){ 3136 return db->aDb[i].pBt; 3137 } 3138 } 3139 return 0; 3140 } 3141 3142 /* 3143 ** Return the filename of the database associated with a database 3144 ** connection. 3145 */ 3146 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3147 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3148 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3149 } 3150 3151 /* 3152 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3153 ** no such database exists. 3154 */ 3155 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3156 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3157 return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1; 3158 } 3159