1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 /* not-private */ void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** If the following global variable points to a string which is the 79 ** name of a directory, then that directory will be used to store 80 ** all database files specified with a relative pathname. 81 ** 82 ** See also the "PRAGMA data_store_directory" SQL command. 83 */ 84 char *sqlite3_data_directory = 0; 85 86 /* 87 ** Initialize SQLite. 88 ** 89 ** This routine must be called to initialize the memory allocation, 90 ** VFS, and mutex subsystems prior to doing any serious work with 91 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 92 ** this routine will be called automatically by key routines such as 93 ** sqlite3_open(). 94 ** 95 ** This routine is a no-op except on its very first call for the process, 96 ** or for the first call after a call to sqlite3_shutdown. 97 ** 98 ** The first thread to call this routine runs the initialization to 99 ** completion. If subsequent threads call this routine before the first 100 ** thread has finished the initialization process, then the subsequent 101 ** threads must block until the first thread finishes with the initialization. 102 ** 103 ** The first thread might call this routine recursively. Recursive 104 ** calls to this routine should not block, of course. Otherwise the 105 ** initialization process would never complete. 106 ** 107 ** Let X be the first thread to enter this routine. Let Y be some other 108 ** thread. Then while the initial invocation of this routine by X is 109 ** incomplete, it is required that: 110 ** 111 ** * Calls to this routine from Y must block until the outer-most 112 ** call by X completes. 113 ** 114 ** * Recursive calls to this routine from thread X return immediately 115 ** without blocking. 116 */ 117 int sqlite3_initialize(void){ 118 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 119 int rc; /* Result code */ 120 #ifdef SQLITE_EXTRA_INIT 121 int bRunExtraInit = 0; /* Extra initialization needed */ 122 #endif 123 124 #ifdef SQLITE_OMIT_WSD 125 rc = sqlite3_wsd_init(4096, 24); 126 if( rc!=SQLITE_OK ){ 127 return rc; 128 } 129 #endif 130 131 /* If SQLite is already completely initialized, then this call 132 ** to sqlite3_initialize() should be a no-op. But the initialization 133 ** must be complete. So isInit must not be set until the very end 134 ** of this routine. 135 */ 136 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 137 138 /* Make sure the mutex subsystem is initialized. If unable to 139 ** initialize the mutex subsystem, return early with the error. 140 ** If the system is so sick that we are unable to allocate a mutex, 141 ** there is not much SQLite is going to be able to do. 142 ** 143 ** The mutex subsystem must take care of serializing its own 144 ** initialization. 145 */ 146 rc = sqlite3MutexInit(); 147 if( rc ) return rc; 148 149 /* Initialize the malloc() system and the recursive pInitMutex mutex. 150 ** This operation is protected by the STATIC_MASTER mutex. Note that 151 ** MutexAlloc() is called for a static mutex prior to initializing the 152 ** malloc subsystem - this implies that the allocation of a static 153 ** mutex must not require support from the malloc subsystem. 154 */ 155 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 156 sqlite3_mutex_enter(pMaster); 157 sqlite3GlobalConfig.isMutexInit = 1; 158 if( !sqlite3GlobalConfig.isMallocInit ){ 159 rc = sqlite3MallocInit(); 160 } 161 if( rc==SQLITE_OK ){ 162 sqlite3GlobalConfig.isMallocInit = 1; 163 if( !sqlite3GlobalConfig.pInitMutex ){ 164 sqlite3GlobalConfig.pInitMutex = 165 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 166 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 167 rc = SQLITE_NOMEM; 168 } 169 } 170 } 171 if( rc==SQLITE_OK ){ 172 sqlite3GlobalConfig.nRefInitMutex++; 173 } 174 sqlite3_mutex_leave(pMaster); 175 176 /* If rc is not SQLITE_OK at this point, then either the malloc 177 ** subsystem could not be initialized or the system failed to allocate 178 ** the pInitMutex mutex. Return an error in either case. */ 179 if( rc!=SQLITE_OK ){ 180 return rc; 181 } 182 183 /* Do the rest of the initialization under the recursive mutex so 184 ** that we will be able to handle recursive calls into 185 ** sqlite3_initialize(). The recursive calls normally come through 186 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 187 ** recursive calls might also be possible. 188 ** 189 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 190 ** to the xInit method, so the xInit method need not be threadsafe. 191 ** 192 ** The following mutex is what serializes access to the appdef pcache xInit 193 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 194 ** call to sqlite3PcacheInitialize(). 195 */ 196 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 197 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 198 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 199 sqlite3GlobalConfig.inProgress = 1; 200 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 201 sqlite3RegisterGlobalFunctions(); 202 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 203 rc = sqlite3PcacheInitialize(); 204 } 205 if( rc==SQLITE_OK ){ 206 sqlite3GlobalConfig.isPCacheInit = 1; 207 rc = sqlite3OsInit(); 208 } 209 if( rc==SQLITE_OK ){ 210 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 211 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 212 sqlite3GlobalConfig.isInit = 1; 213 #ifdef SQLITE_EXTRA_INIT 214 bRunExtraInit = 1; 215 #endif 216 } 217 sqlite3GlobalConfig.inProgress = 0; 218 } 219 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 220 221 /* Go back under the static mutex and clean up the recursive 222 ** mutex to prevent a resource leak. 223 */ 224 sqlite3_mutex_enter(pMaster); 225 sqlite3GlobalConfig.nRefInitMutex--; 226 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 227 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 228 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 229 sqlite3GlobalConfig.pInitMutex = 0; 230 } 231 sqlite3_mutex_leave(pMaster); 232 233 /* The following is just a sanity check to make sure SQLite has 234 ** been compiled correctly. It is important to run this code, but 235 ** we don't want to run it too often and soak up CPU cycles for no 236 ** reason. So we run it once during initialization. 237 */ 238 #ifndef NDEBUG 239 #ifndef SQLITE_OMIT_FLOATING_POINT 240 /* This section of code's only "output" is via assert() statements. */ 241 if ( rc==SQLITE_OK ){ 242 u64 x = (((u64)1)<<63)-1; 243 double y; 244 assert(sizeof(x)==8); 245 assert(sizeof(x)==sizeof(y)); 246 memcpy(&y, &x, 8); 247 assert( sqlite3IsNaN(y) ); 248 } 249 #endif 250 #endif 251 252 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 253 ** compile-time option. 254 */ 255 #ifdef SQLITE_EXTRA_INIT 256 if( bRunExtraInit ){ 257 int SQLITE_EXTRA_INIT(const char*); 258 rc = SQLITE_EXTRA_INIT(0); 259 } 260 #endif 261 262 return rc; 263 } 264 265 /* 266 ** Undo the effects of sqlite3_initialize(). Must not be called while 267 ** there are outstanding database connections or memory allocations or 268 ** while any part of SQLite is otherwise in use in any thread. This 269 ** routine is not threadsafe. But it is safe to invoke this routine 270 ** on when SQLite is already shut down. If SQLite is already shut down 271 ** when this routine is invoked, then this routine is a harmless no-op. 272 */ 273 int sqlite3_shutdown(void){ 274 #ifdef SQLITE_OMIT_WSD 275 int rc = sqlite3_wsd_init(4096, 24); 276 if( rc!=SQLITE_OK ){ 277 return rc; 278 } 279 #endif 280 281 if( sqlite3GlobalConfig.isInit ){ 282 #ifdef SQLITE_EXTRA_SHUTDOWN 283 void SQLITE_EXTRA_SHUTDOWN(void); 284 SQLITE_EXTRA_SHUTDOWN(); 285 #endif 286 sqlite3_os_end(); 287 sqlite3_reset_auto_extension(); 288 sqlite3GlobalConfig.isInit = 0; 289 } 290 if( sqlite3GlobalConfig.isPCacheInit ){ 291 sqlite3PcacheShutdown(); 292 sqlite3GlobalConfig.isPCacheInit = 0; 293 } 294 if( sqlite3GlobalConfig.isMallocInit ){ 295 sqlite3MallocEnd(); 296 sqlite3GlobalConfig.isMallocInit = 0; 297 298 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 299 /* The heap subsystem has now been shutdown and these values are supposed 300 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 301 ** which would rely on that heap subsystem; therefore, make sure these 302 ** values cannot refer to heap memory that was just invalidated when the 303 ** heap subsystem was shutdown. This is only done if the current call to 304 ** this function resulted in the heap subsystem actually being shutdown. 305 */ 306 sqlite3_data_directory = 0; 307 sqlite3_temp_directory = 0; 308 #endif 309 } 310 if( sqlite3GlobalConfig.isMutexInit ){ 311 sqlite3MutexEnd(); 312 sqlite3GlobalConfig.isMutexInit = 0; 313 } 314 315 return SQLITE_OK; 316 } 317 318 /* 319 ** This API allows applications to modify the global configuration of 320 ** the SQLite library at run-time. 321 ** 322 ** This routine should only be called when there are no outstanding 323 ** database connections or memory allocations. This routine is not 324 ** threadsafe. Failure to heed these warnings can lead to unpredictable 325 ** behavior. 326 */ 327 int sqlite3_config(int op, ...){ 328 va_list ap; 329 int rc = SQLITE_OK; 330 331 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 332 ** the SQLite library is in use. */ 333 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 334 335 va_start(ap, op); 336 switch( op ){ 337 338 /* Mutex configuration options are only available in a threadsafe 339 ** compile. 340 */ 341 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 342 case SQLITE_CONFIG_SINGLETHREAD: { 343 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 344 ** Single-thread. */ 345 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 346 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 347 break; 348 } 349 #endif 350 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 351 case SQLITE_CONFIG_MULTITHREAD: { 352 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 353 ** Multi-thread. */ 354 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 355 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 356 break; 357 } 358 #endif 359 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 360 case SQLITE_CONFIG_SERIALIZED: { 361 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 362 ** Serialized. */ 363 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 364 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 365 break; 366 } 367 #endif 368 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 369 case SQLITE_CONFIG_MUTEX: { 370 /* Specify an alternative mutex implementation */ 371 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 372 break; 373 } 374 #endif 375 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 376 case SQLITE_CONFIG_GETMUTEX: { 377 /* Retrieve the current mutex implementation */ 378 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 379 break; 380 } 381 #endif 382 383 case SQLITE_CONFIG_MALLOC: { 384 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 385 ** single argument which is a pointer to an instance of the 386 ** sqlite3_mem_methods structure. The argument specifies alternative 387 ** low-level memory allocation routines to be used in place of the memory 388 ** allocation routines built into SQLite. */ 389 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 390 break; 391 } 392 case SQLITE_CONFIG_GETMALLOC: { 393 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 394 ** single argument which is a pointer to an instance of the 395 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 396 ** filled with the currently defined memory allocation routines. */ 397 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 398 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 399 break; 400 } 401 case SQLITE_CONFIG_MEMSTATUS: { 402 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 403 ** single argument of type int, interpreted as a boolean, which enables 404 ** or disables the collection of memory allocation statistics. */ 405 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 406 break; 407 } 408 case SQLITE_CONFIG_SCRATCH: { 409 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 410 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 411 ** which the scratch allocations will be drawn, the size of each scratch 412 ** allocation (sz), and the maximum number of scratch allocations (N). */ 413 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 414 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 415 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 416 break; 417 } 418 case SQLITE_CONFIG_PAGECACHE: { 419 /* EVIDENCE-OF: R-31408-40510 There are three arguments to 420 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size 421 ** of each page buffer (sz), and the number of pages (N). */ 422 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 423 sqlite3GlobalConfig.szPage = va_arg(ap, int); 424 sqlite3GlobalConfig.nPage = va_arg(ap, int); 425 break; 426 } 427 case SQLITE_CONFIG_PCACHE_HDRSZ: { 428 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 429 ** a single parameter which is a pointer to an integer and writes into 430 ** that integer the number of extra bytes per page required for each page 431 ** in SQLITE_CONFIG_PAGECACHE. */ 432 *va_arg(ap, int*) = 433 sqlite3HeaderSizeBtree() + 434 sqlite3HeaderSizePcache() + 435 sqlite3HeaderSizePcache1(); 436 break; 437 } 438 439 case SQLITE_CONFIG_PCACHE: { 440 /* no-op */ 441 break; 442 } 443 case SQLITE_CONFIG_GETPCACHE: { 444 /* now an error */ 445 rc = SQLITE_ERROR; 446 break; 447 } 448 449 case SQLITE_CONFIG_PCACHE2: { 450 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 451 ** single argument which is a pointer to an sqlite3_pcache_methods2 452 ** object. This object specifies the interface to a custom page cache 453 ** implementation. */ 454 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 455 break; 456 } 457 case SQLITE_CONFIG_GETPCACHE2: { 458 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 459 ** single argument which is a pointer to an sqlite3_pcache_methods2 460 ** object. SQLite copies of the current page cache implementation into 461 ** that object. */ 462 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 463 sqlite3PCacheSetDefault(); 464 } 465 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 466 break; 467 } 468 469 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 470 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 471 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 472 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 473 case SQLITE_CONFIG_HEAP: { 474 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 475 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 476 ** number of bytes in the memory buffer, and the minimum allocation size. 477 */ 478 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 479 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 480 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 481 482 if( sqlite3GlobalConfig.mnReq<1 ){ 483 sqlite3GlobalConfig.mnReq = 1; 484 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 485 /* cap min request size at 2^12 */ 486 sqlite3GlobalConfig.mnReq = (1<<12); 487 } 488 489 if( sqlite3GlobalConfig.pHeap==0 ){ 490 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 491 ** is NULL, then SQLite reverts to using its default memory allocator 492 ** (the system malloc() implementation), undoing any prior invocation of 493 ** SQLITE_CONFIG_MALLOC. 494 ** 495 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 496 ** revert to its default implementation when sqlite3_initialize() is run 497 */ 498 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 499 }else{ 500 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 501 ** alternative memory allocator is engaged to handle all of SQLites 502 ** memory allocation needs. */ 503 #ifdef SQLITE_ENABLE_MEMSYS3 504 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 505 #endif 506 #ifdef SQLITE_ENABLE_MEMSYS5 507 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 508 #endif 509 } 510 break; 511 } 512 #endif 513 514 case SQLITE_CONFIG_LOOKASIDE: { 515 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 516 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 517 break; 518 } 519 520 /* Record a pointer to the logger function and its first argument. 521 ** The default is NULL. Logging is disabled if the function pointer is 522 ** NULL. 523 */ 524 case SQLITE_CONFIG_LOG: { 525 /* MSVC is picky about pulling func ptrs from va lists. 526 ** http://support.microsoft.com/kb/47961 527 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 528 */ 529 typedef void(*LOGFUNC_t)(void*,int,const char*); 530 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 531 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 532 break; 533 } 534 535 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 536 ** can be changed at start-time using the 537 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 538 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 539 */ 540 case SQLITE_CONFIG_URI: { 541 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 542 ** argument of type int. If non-zero, then URI handling is globally 543 ** enabled. If the parameter is zero, then URI handling is globally 544 ** disabled. */ 545 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 546 break; 547 } 548 549 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 550 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 551 ** option takes a single integer argument which is interpreted as a 552 ** boolean in order to enable or disable the use of covering indices for 553 ** full table scans in the query optimizer. */ 554 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 555 break; 556 } 557 558 #ifdef SQLITE_ENABLE_SQLLOG 559 case SQLITE_CONFIG_SQLLOG: { 560 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 561 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 562 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 563 break; 564 } 565 #endif 566 567 case SQLITE_CONFIG_MMAP_SIZE: { 568 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 569 ** integer (sqlite3_int64) values that are the default mmap size limit 570 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 571 ** mmap size limit. */ 572 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 573 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 574 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 575 ** negative, then that argument is changed to its compile-time default. 576 ** 577 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 578 ** silently truncated if necessary so that it does not exceed the 579 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 580 ** compile-time option. 581 */ 582 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 583 mxMmap = SQLITE_MAX_MMAP_SIZE; 584 } 585 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 586 if( szMmap>mxMmap) szMmap = mxMmap; 587 sqlite3GlobalConfig.mxMmap = mxMmap; 588 sqlite3GlobalConfig.szMmap = szMmap; 589 break; 590 } 591 592 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 593 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 594 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 595 ** unsigned integer value that specifies the maximum size of the created 596 ** heap. */ 597 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 598 break; 599 } 600 #endif 601 602 case SQLITE_CONFIG_PMASZ: { 603 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 604 break; 605 } 606 607 default: { 608 rc = SQLITE_ERROR; 609 break; 610 } 611 } 612 va_end(ap); 613 return rc; 614 } 615 616 /* 617 ** Set up the lookaside buffers for a database connection. 618 ** Return SQLITE_OK on success. 619 ** If lookaside is already active, return SQLITE_BUSY. 620 ** 621 ** The sz parameter is the number of bytes in each lookaside slot. 622 ** The cnt parameter is the number of slots. If pStart is NULL the 623 ** space for the lookaside memory is obtained from sqlite3_malloc(). 624 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 625 ** the lookaside memory. 626 */ 627 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 628 void *pStart; 629 if( db->lookaside.nOut ){ 630 return SQLITE_BUSY; 631 } 632 /* Free any existing lookaside buffer for this handle before 633 ** allocating a new one so we don't have to have space for 634 ** both at the same time. 635 */ 636 if( db->lookaside.bMalloced ){ 637 sqlite3_free(db->lookaside.pStart); 638 } 639 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 640 ** than a pointer to be useful. 641 */ 642 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 643 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 644 if( cnt<0 ) cnt = 0; 645 if( sz==0 || cnt==0 ){ 646 sz = 0; 647 pStart = 0; 648 }else if( pBuf==0 ){ 649 sqlite3BeginBenignMalloc(); 650 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 651 sqlite3EndBenignMalloc(); 652 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 653 }else{ 654 pStart = pBuf; 655 } 656 db->lookaside.pStart = pStart; 657 db->lookaside.pFree = 0; 658 db->lookaside.sz = (u16)sz; 659 if( pStart ){ 660 int i; 661 LookasideSlot *p; 662 assert( sz > (int)sizeof(LookasideSlot*) ); 663 p = (LookasideSlot*)pStart; 664 for(i=cnt-1; i>=0; i--){ 665 p->pNext = db->lookaside.pFree; 666 db->lookaside.pFree = p; 667 p = (LookasideSlot*)&((u8*)p)[sz]; 668 } 669 db->lookaside.pEnd = p; 670 db->lookaside.bEnabled = 1; 671 db->lookaside.bMalloced = pBuf==0 ?1:0; 672 }else{ 673 db->lookaside.pStart = db; 674 db->lookaside.pEnd = db; 675 db->lookaside.bEnabled = 0; 676 db->lookaside.bMalloced = 0; 677 } 678 return SQLITE_OK; 679 } 680 681 /* 682 ** Return the mutex associated with a database connection. 683 */ 684 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 685 #ifdef SQLITE_ENABLE_API_ARMOR 686 if( !sqlite3SafetyCheckOk(db) ){ 687 (void)SQLITE_MISUSE_BKPT; 688 return 0; 689 } 690 #endif 691 return db->mutex; 692 } 693 694 /* 695 ** Free up as much memory as we can from the given database 696 ** connection. 697 */ 698 int sqlite3_db_release_memory(sqlite3 *db){ 699 int i; 700 701 #ifdef SQLITE_ENABLE_API_ARMOR 702 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 703 #endif 704 sqlite3_mutex_enter(db->mutex); 705 sqlite3BtreeEnterAll(db); 706 for(i=0; i<db->nDb; i++){ 707 Btree *pBt = db->aDb[i].pBt; 708 if( pBt ){ 709 Pager *pPager = sqlite3BtreePager(pBt); 710 sqlite3PagerShrink(pPager); 711 } 712 } 713 sqlite3BtreeLeaveAll(db); 714 sqlite3_mutex_leave(db->mutex); 715 return SQLITE_OK; 716 } 717 718 /* 719 ** Configuration settings for an individual database connection 720 */ 721 int sqlite3_db_config(sqlite3 *db, int op, ...){ 722 va_list ap; 723 int rc; 724 va_start(ap, op); 725 switch( op ){ 726 case SQLITE_DBCONFIG_LOOKASIDE: { 727 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 728 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 729 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 730 rc = setupLookaside(db, pBuf, sz, cnt); 731 break; 732 } 733 default: { 734 static const struct { 735 int op; /* The opcode */ 736 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 737 } aFlagOp[] = { 738 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 739 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 740 }; 741 unsigned int i; 742 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 743 for(i=0; i<ArraySize(aFlagOp); i++){ 744 if( aFlagOp[i].op==op ){ 745 int onoff = va_arg(ap, int); 746 int *pRes = va_arg(ap, int*); 747 int oldFlags = db->flags; 748 if( onoff>0 ){ 749 db->flags |= aFlagOp[i].mask; 750 }else if( onoff==0 ){ 751 db->flags &= ~aFlagOp[i].mask; 752 } 753 if( oldFlags!=db->flags ){ 754 sqlite3ExpirePreparedStatements(db); 755 } 756 if( pRes ){ 757 *pRes = (db->flags & aFlagOp[i].mask)!=0; 758 } 759 rc = SQLITE_OK; 760 break; 761 } 762 } 763 break; 764 } 765 } 766 va_end(ap); 767 return rc; 768 } 769 770 771 /* 772 ** Return true if the buffer z[0..n-1] contains all spaces. 773 */ 774 static int allSpaces(const char *z, int n){ 775 while( n>0 && z[n-1]==' ' ){ n--; } 776 return n==0; 777 } 778 779 /* 780 ** This is the default collating function named "BINARY" which is always 781 ** available. 782 ** 783 ** If the padFlag argument is not NULL then space padding at the end 784 ** of strings is ignored. This implements the RTRIM collation. 785 */ 786 static int binCollFunc( 787 void *padFlag, 788 int nKey1, const void *pKey1, 789 int nKey2, const void *pKey2 790 ){ 791 int rc, n; 792 n = nKey1<nKey2 ? nKey1 : nKey2; 793 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 794 ** strings byte by byte using the memcmp() function from the standard C 795 ** library. */ 796 rc = memcmp(pKey1, pKey2, n); 797 if( rc==0 ){ 798 if( padFlag 799 && allSpaces(((char*)pKey1)+n, nKey1-n) 800 && allSpaces(((char*)pKey2)+n, nKey2-n) 801 ){ 802 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 803 ** spaces at the end of either string do not change the result. In other 804 ** words, strings will compare equal to one another as long as they 805 ** differ only in the number of spaces at the end. 806 */ 807 }else{ 808 rc = nKey1 - nKey2; 809 } 810 } 811 return rc; 812 } 813 814 /* 815 ** Another built-in collating sequence: NOCASE. 816 ** 817 ** This collating sequence is intended to be used for "case independent 818 ** comparison". SQLite's knowledge of upper and lower case equivalents 819 ** extends only to the 26 characters used in the English language. 820 ** 821 ** At the moment there is only a UTF-8 implementation. 822 */ 823 static int nocaseCollatingFunc( 824 void *NotUsed, 825 int nKey1, const void *pKey1, 826 int nKey2, const void *pKey2 827 ){ 828 int r = sqlite3StrNICmp( 829 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 830 UNUSED_PARAMETER(NotUsed); 831 if( 0==r ){ 832 r = nKey1-nKey2; 833 } 834 return r; 835 } 836 837 /* 838 ** Return the ROWID of the most recent insert 839 */ 840 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 841 #ifdef SQLITE_ENABLE_API_ARMOR 842 if( !sqlite3SafetyCheckOk(db) ){ 843 (void)SQLITE_MISUSE_BKPT; 844 return 0; 845 } 846 #endif 847 return db->lastRowid; 848 } 849 850 /* 851 ** Return the number of changes in the most recent call to sqlite3_exec(). 852 */ 853 int sqlite3_changes(sqlite3 *db){ 854 #ifdef SQLITE_ENABLE_API_ARMOR 855 if( !sqlite3SafetyCheckOk(db) ){ 856 (void)SQLITE_MISUSE_BKPT; 857 return 0; 858 } 859 #endif 860 return db->nChange; 861 } 862 863 /* 864 ** Return the number of changes since the database handle was opened. 865 */ 866 int sqlite3_total_changes(sqlite3 *db){ 867 #ifdef SQLITE_ENABLE_API_ARMOR 868 if( !sqlite3SafetyCheckOk(db) ){ 869 (void)SQLITE_MISUSE_BKPT; 870 return 0; 871 } 872 #endif 873 return db->nTotalChange; 874 } 875 876 /* 877 ** Close all open savepoints. This function only manipulates fields of the 878 ** database handle object, it does not close any savepoints that may be open 879 ** at the b-tree/pager level. 880 */ 881 void sqlite3CloseSavepoints(sqlite3 *db){ 882 while( db->pSavepoint ){ 883 Savepoint *pTmp = db->pSavepoint; 884 db->pSavepoint = pTmp->pNext; 885 sqlite3DbFree(db, pTmp); 886 } 887 db->nSavepoint = 0; 888 db->nStatement = 0; 889 db->isTransactionSavepoint = 0; 890 } 891 892 /* 893 ** Invoke the destructor function associated with FuncDef p, if any. Except, 894 ** if this is not the last copy of the function, do not invoke it. Multiple 895 ** copies of a single function are created when create_function() is called 896 ** with SQLITE_ANY as the encoding. 897 */ 898 static void functionDestroy(sqlite3 *db, FuncDef *p){ 899 FuncDestructor *pDestructor = p->pDestructor; 900 if( pDestructor ){ 901 pDestructor->nRef--; 902 if( pDestructor->nRef==0 ){ 903 pDestructor->xDestroy(pDestructor->pUserData); 904 sqlite3DbFree(db, pDestructor); 905 } 906 } 907 } 908 909 /* 910 ** Disconnect all sqlite3_vtab objects that belong to database connection 911 ** db. This is called when db is being closed. 912 */ 913 static void disconnectAllVtab(sqlite3 *db){ 914 #ifndef SQLITE_OMIT_VIRTUALTABLE 915 int i; 916 sqlite3BtreeEnterAll(db); 917 for(i=0; i<db->nDb; i++){ 918 Schema *pSchema = db->aDb[i].pSchema; 919 if( db->aDb[i].pSchema ){ 920 HashElem *p; 921 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 922 Table *pTab = (Table *)sqliteHashData(p); 923 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 924 } 925 } 926 } 927 sqlite3VtabUnlockList(db); 928 sqlite3BtreeLeaveAll(db); 929 #else 930 UNUSED_PARAMETER(db); 931 #endif 932 } 933 934 /* 935 ** Return TRUE if database connection db has unfinalized prepared 936 ** statements or unfinished sqlite3_backup objects. 937 */ 938 static int connectionIsBusy(sqlite3 *db){ 939 int j; 940 assert( sqlite3_mutex_held(db->mutex) ); 941 if( db->pVdbe ) return 1; 942 for(j=0; j<db->nDb; j++){ 943 Btree *pBt = db->aDb[j].pBt; 944 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 945 } 946 return 0; 947 } 948 949 /* 950 ** Close an existing SQLite database 951 */ 952 static int sqlite3Close(sqlite3 *db, int forceZombie){ 953 if( !db ){ 954 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 955 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 956 return SQLITE_OK; 957 } 958 if( !sqlite3SafetyCheckSickOrOk(db) ){ 959 return SQLITE_MISUSE_BKPT; 960 } 961 sqlite3_mutex_enter(db->mutex); 962 963 /* Force xDisconnect calls on all virtual tables */ 964 disconnectAllVtab(db); 965 966 /* If a transaction is open, the disconnectAllVtab() call above 967 ** will not have called the xDisconnect() method on any virtual 968 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 969 ** call will do so. We need to do this before the check for active 970 ** SQL statements below, as the v-table implementation may be storing 971 ** some prepared statements internally. 972 */ 973 sqlite3VtabRollback(db); 974 975 /* Legacy behavior (sqlite3_close() behavior) is to return 976 ** SQLITE_BUSY if the connection can not be closed immediately. 977 */ 978 if( !forceZombie && connectionIsBusy(db) ){ 979 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 980 "statements or unfinished backups"); 981 sqlite3_mutex_leave(db->mutex); 982 return SQLITE_BUSY; 983 } 984 985 #ifdef SQLITE_ENABLE_SQLLOG 986 if( sqlite3GlobalConfig.xSqllog ){ 987 /* Closing the handle. Fourth parameter is passed the value 2. */ 988 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 989 } 990 #endif 991 992 /* Convert the connection into a zombie and then close it. 993 */ 994 db->magic = SQLITE_MAGIC_ZOMBIE; 995 sqlite3LeaveMutexAndCloseZombie(db); 996 return SQLITE_OK; 997 } 998 999 /* 1000 ** Two variations on the public interface for closing a database 1001 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1002 ** leaves the connection option if there are unfinalized prepared 1003 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1004 ** version forces the connection to become a zombie if there are 1005 ** unclosed resources, and arranges for deallocation when the last 1006 ** prepare statement or sqlite3_backup closes. 1007 */ 1008 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1009 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1010 1011 1012 /* 1013 ** Close the mutex on database connection db. 1014 ** 1015 ** Furthermore, if database connection db is a zombie (meaning that there 1016 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1017 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1018 ** finished, then free all resources. 1019 */ 1020 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1021 HashElem *i; /* Hash table iterator */ 1022 int j; 1023 1024 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1025 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1026 ** then just leave the mutex and return. 1027 */ 1028 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 1029 sqlite3_mutex_leave(db->mutex); 1030 return; 1031 } 1032 1033 /* If we reach this point, it means that the database connection has 1034 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1035 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1036 ** go ahead and free all resources. 1037 */ 1038 1039 /* If a transaction is open, roll it back. This also ensures that if 1040 ** any database schemas have been modified by an uncommitted transaction 1041 ** they are reset. And that the required b-tree mutex is held to make 1042 ** the pager rollback and schema reset an atomic operation. */ 1043 sqlite3RollbackAll(db, SQLITE_OK); 1044 1045 /* Free any outstanding Savepoint structures. */ 1046 sqlite3CloseSavepoints(db); 1047 1048 /* Close all database connections */ 1049 for(j=0; j<db->nDb; j++){ 1050 struct Db *pDb = &db->aDb[j]; 1051 if( pDb->pBt ){ 1052 sqlite3BtreeClose(pDb->pBt); 1053 pDb->pBt = 0; 1054 if( j!=1 ){ 1055 pDb->pSchema = 0; 1056 } 1057 } 1058 } 1059 /* Clear the TEMP schema separately and last */ 1060 if( db->aDb[1].pSchema ){ 1061 sqlite3SchemaClear(db->aDb[1].pSchema); 1062 } 1063 sqlite3VtabUnlockList(db); 1064 1065 /* Free up the array of auxiliary databases */ 1066 sqlite3CollapseDatabaseArray(db); 1067 assert( db->nDb<=2 ); 1068 assert( db->aDb==db->aDbStatic ); 1069 1070 /* Tell the code in notify.c that the connection no longer holds any 1071 ** locks and does not require any further unlock-notify callbacks. 1072 */ 1073 sqlite3ConnectionClosed(db); 1074 1075 for(j=0; j<ArraySize(db->aFunc.a); j++){ 1076 FuncDef *pNext, *pHash, *p; 1077 for(p=db->aFunc.a[j]; p; p=pHash){ 1078 pHash = p->pHash; 1079 while( p ){ 1080 functionDestroy(db, p); 1081 pNext = p->pNext; 1082 sqlite3DbFree(db, p); 1083 p = pNext; 1084 } 1085 } 1086 } 1087 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1088 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1089 /* Invoke any destructors registered for collation sequence user data. */ 1090 for(j=0; j<3; j++){ 1091 if( pColl[j].xDel ){ 1092 pColl[j].xDel(pColl[j].pUser); 1093 } 1094 } 1095 sqlite3DbFree(db, pColl); 1096 } 1097 sqlite3HashClear(&db->aCollSeq); 1098 #ifndef SQLITE_OMIT_VIRTUALTABLE 1099 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1100 Module *pMod = (Module *)sqliteHashData(i); 1101 if( pMod->xDestroy ){ 1102 pMod->xDestroy(pMod->pAux); 1103 } 1104 sqlite3DbFree(db, pMod); 1105 } 1106 sqlite3HashClear(&db->aModule); 1107 #endif 1108 1109 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1110 sqlite3ValueFree(db->pErr); 1111 sqlite3CloseExtensions(db); 1112 #if SQLITE_USER_AUTHENTICATION 1113 sqlite3_free(db->auth.zAuthUser); 1114 sqlite3_free(db->auth.zAuthPW); 1115 #endif 1116 1117 db->magic = SQLITE_MAGIC_ERROR; 1118 1119 /* The temp-database schema is allocated differently from the other schema 1120 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1121 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1122 ** the same sqliteMalloc() as the one that allocates the database 1123 ** structure? 1124 */ 1125 sqlite3DbFree(db, db->aDb[1].pSchema); 1126 sqlite3_mutex_leave(db->mutex); 1127 db->magic = SQLITE_MAGIC_CLOSED; 1128 sqlite3_mutex_free(db->mutex); 1129 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 1130 if( db->lookaside.bMalloced ){ 1131 sqlite3_free(db->lookaside.pStart); 1132 } 1133 sqlite3_free(db); 1134 } 1135 1136 /* 1137 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1138 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1139 ** breaker") and made to return tripCode if there are any further 1140 ** attempts to use that cursor. Read cursors remain open and valid 1141 ** but are "saved" in case the table pages are moved around. 1142 */ 1143 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1144 int i; 1145 int inTrans = 0; 1146 int schemaChange; 1147 assert( sqlite3_mutex_held(db->mutex) ); 1148 sqlite3BeginBenignMalloc(); 1149 1150 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1151 ** This is important in case the transaction being rolled back has 1152 ** modified the database schema. If the b-tree mutexes are not taken 1153 ** here, then another shared-cache connection might sneak in between 1154 ** the database rollback and schema reset, which can cause false 1155 ** corruption reports in some cases. */ 1156 sqlite3BtreeEnterAll(db); 1157 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 1158 1159 for(i=0; i<db->nDb; i++){ 1160 Btree *p = db->aDb[i].pBt; 1161 if( p ){ 1162 if( sqlite3BtreeIsInTrans(p) ){ 1163 inTrans = 1; 1164 } 1165 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1166 } 1167 } 1168 sqlite3VtabRollback(db); 1169 sqlite3EndBenignMalloc(); 1170 1171 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1172 sqlite3ExpirePreparedStatements(db); 1173 sqlite3ResetAllSchemasOfConnection(db); 1174 } 1175 sqlite3BtreeLeaveAll(db); 1176 1177 /* Any deferred constraint violations have now been resolved. */ 1178 db->nDeferredCons = 0; 1179 db->nDeferredImmCons = 0; 1180 db->flags &= ~SQLITE_DeferFKs; 1181 1182 /* If one has been configured, invoke the rollback-hook callback */ 1183 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1184 db->xRollbackCallback(db->pRollbackArg); 1185 } 1186 } 1187 1188 /* 1189 ** Return a static string containing the name corresponding to the error code 1190 ** specified in the argument. 1191 */ 1192 #if (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) || defined(SQLITE_TEST) 1193 const char *sqlite3ErrName(int rc){ 1194 const char *zName = 0; 1195 int i, origRc = rc; 1196 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1197 switch( rc ){ 1198 case SQLITE_OK: zName = "SQLITE_OK"; break; 1199 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1200 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1201 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1202 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1203 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1204 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1205 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1206 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1207 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1208 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1209 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1210 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1211 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1212 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1213 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1214 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1215 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1216 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1217 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1218 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1219 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1220 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1221 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1222 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1223 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1224 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1225 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1226 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1227 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1228 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1229 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1230 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1231 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1232 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1233 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1234 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1235 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1236 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1237 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1238 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1239 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1240 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1241 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1242 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1243 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1244 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1245 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1246 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1247 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1248 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1249 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1250 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1251 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1252 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1253 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1254 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1255 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1256 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1257 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1258 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1259 case SQLITE_CONSTRAINT_FOREIGNKEY: 1260 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1261 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1262 case SQLITE_CONSTRAINT_PRIMARYKEY: 1263 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1264 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1265 case SQLITE_CONSTRAINT_COMMITHOOK: 1266 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1267 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1268 case SQLITE_CONSTRAINT_FUNCTION: 1269 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1270 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1271 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1272 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1273 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1274 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1275 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1276 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1277 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1278 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1279 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1280 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1281 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1282 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1283 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1284 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1285 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1286 } 1287 } 1288 if( zName==0 ){ 1289 static char zBuf[50]; 1290 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1291 zName = zBuf; 1292 } 1293 return zName; 1294 } 1295 #endif 1296 1297 /* 1298 ** Return a static string that describes the kind of error specified in the 1299 ** argument. 1300 */ 1301 const char *sqlite3ErrStr(int rc){ 1302 static const char* const aMsg[] = { 1303 /* SQLITE_OK */ "not an error", 1304 /* SQLITE_ERROR */ "SQL logic error or missing database", 1305 /* SQLITE_INTERNAL */ 0, 1306 /* SQLITE_PERM */ "access permission denied", 1307 /* SQLITE_ABORT */ "callback requested query abort", 1308 /* SQLITE_BUSY */ "database is locked", 1309 /* SQLITE_LOCKED */ "database table is locked", 1310 /* SQLITE_NOMEM */ "out of memory", 1311 /* SQLITE_READONLY */ "attempt to write a readonly database", 1312 /* SQLITE_INTERRUPT */ "interrupted", 1313 /* SQLITE_IOERR */ "disk I/O error", 1314 /* SQLITE_CORRUPT */ "database disk image is malformed", 1315 /* SQLITE_NOTFOUND */ "unknown operation", 1316 /* SQLITE_FULL */ "database or disk is full", 1317 /* SQLITE_CANTOPEN */ "unable to open database file", 1318 /* SQLITE_PROTOCOL */ "locking protocol", 1319 /* SQLITE_EMPTY */ "table contains no data", 1320 /* SQLITE_SCHEMA */ "database schema has changed", 1321 /* SQLITE_TOOBIG */ "string or blob too big", 1322 /* SQLITE_CONSTRAINT */ "constraint failed", 1323 /* SQLITE_MISMATCH */ "datatype mismatch", 1324 /* SQLITE_MISUSE */ "library routine called out of sequence", 1325 /* SQLITE_NOLFS */ "large file support is disabled", 1326 /* SQLITE_AUTH */ "authorization denied", 1327 /* SQLITE_FORMAT */ "auxiliary database format error", 1328 /* SQLITE_RANGE */ "bind or column index out of range", 1329 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1330 }; 1331 const char *zErr = "unknown error"; 1332 switch( rc ){ 1333 case SQLITE_ABORT_ROLLBACK: { 1334 zErr = "abort due to ROLLBACK"; 1335 break; 1336 } 1337 default: { 1338 rc &= 0xff; 1339 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1340 zErr = aMsg[rc]; 1341 } 1342 break; 1343 } 1344 } 1345 return zErr; 1346 } 1347 1348 /* 1349 ** This routine implements a busy callback that sleeps and tries 1350 ** again until a timeout value is reached. The timeout value is 1351 ** an integer number of milliseconds passed in as the first 1352 ** argument. 1353 */ 1354 static int sqliteDefaultBusyCallback( 1355 void *ptr, /* Database connection */ 1356 int count /* Number of times table has been busy */ 1357 ){ 1358 #if SQLITE_OS_WIN || HAVE_USLEEP 1359 static const u8 delays[] = 1360 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1361 static const u8 totals[] = 1362 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1363 # define NDELAY ArraySize(delays) 1364 sqlite3 *db = (sqlite3 *)ptr; 1365 int timeout = db->busyTimeout; 1366 int delay, prior; 1367 1368 assert( count>=0 ); 1369 if( count < NDELAY ){ 1370 delay = delays[count]; 1371 prior = totals[count]; 1372 }else{ 1373 delay = delays[NDELAY-1]; 1374 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1375 } 1376 if( prior + delay > timeout ){ 1377 delay = timeout - prior; 1378 if( delay<=0 ) return 0; 1379 } 1380 sqlite3OsSleep(db->pVfs, delay*1000); 1381 return 1; 1382 #else 1383 sqlite3 *db = (sqlite3 *)ptr; 1384 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1385 if( (count+1)*1000 > timeout ){ 1386 return 0; 1387 } 1388 sqlite3OsSleep(db->pVfs, 1000000); 1389 return 1; 1390 #endif 1391 } 1392 1393 /* 1394 ** Invoke the given busy handler. 1395 ** 1396 ** This routine is called when an operation failed with a lock. 1397 ** If this routine returns non-zero, the lock is retried. If it 1398 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1399 */ 1400 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1401 int rc; 1402 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1403 rc = p->xFunc(p->pArg, p->nBusy); 1404 if( rc==0 ){ 1405 p->nBusy = -1; 1406 }else{ 1407 p->nBusy++; 1408 } 1409 return rc; 1410 } 1411 1412 /* 1413 ** This routine sets the busy callback for an Sqlite database to the 1414 ** given callback function with the given argument. 1415 */ 1416 int sqlite3_busy_handler( 1417 sqlite3 *db, 1418 int (*xBusy)(void*,int), 1419 void *pArg 1420 ){ 1421 #ifdef SQLITE_ENABLE_API_ARMOR 1422 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1423 #endif 1424 sqlite3_mutex_enter(db->mutex); 1425 db->busyHandler.xFunc = xBusy; 1426 db->busyHandler.pArg = pArg; 1427 db->busyHandler.nBusy = 0; 1428 db->busyTimeout = 0; 1429 sqlite3_mutex_leave(db->mutex); 1430 return SQLITE_OK; 1431 } 1432 1433 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1434 /* 1435 ** This routine sets the progress callback for an Sqlite database to the 1436 ** given callback function with the given argument. The progress callback will 1437 ** be invoked every nOps opcodes. 1438 */ 1439 void sqlite3_progress_handler( 1440 sqlite3 *db, 1441 int nOps, 1442 int (*xProgress)(void*), 1443 void *pArg 1444 ){ 1445 #ifdef SQLITE_ENABLE_API_ARMOR 1446 if( !sqlite3SafetyCheckOk(db) ){ 1447 (void)SQLITE_MISUSE_BKPT; 1448 return; 1449 } 1450 #endif 1451 sqlite3_mutex_enter(db->mutex); 1452 if( nOps>0 ){ 1453 db->xProgress = xProgress; 1454 db->nProgressOps = (unsigned)nOps; 1455 db->pProgressArg = pArg; 1456 }else{ 1457 db->xProgress = 0; 1458 db->nProgressOps = 0; 1459 db->pProgressArg = 0; 1460 } 1461 sqlite3_mutex_leave(db->mutex); 1462 } 1463 #endif 1464 1465 1466 /* 1467 ** This routine installs a default busy handler that waits for the 1468 ** specified number of milliseconds before returning 0. 1469 */ 1470 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1471 #ifdef SQLITE_ENABLE_API_ARMOR 1472 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1473 #endif 1474 if( ms>0 ){ 1475 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1476 db->busyTimeout = ms; 1477 }else{ 1478 sqlite3_busy_handler(db, 0, 0); 1479 } 1480 return SQLITE_OK; 1481 } 1482 1483 /* 1484 ** Cause any pending operation to stop at its earliest opportunity. 1485 */ 1486 void sqlite3_interrupt(sqlite3 *db){ 1487 #ifdef SQLITE_ENABLE_API_ARMOR 1488 if( !sqlite3SafetyCheckOk(db) ){ 1489 (void)SQLITE_MISUSE_BKPT; 1490 return; 1491 } 1492 #endif 1493 db->u1.isInterrupted = 1; 1494 } 1495 1496 1497 /* 1498 ** This function is exactly the same as sqlite3_create_function(), except 1499 ** that it is designed to be called by internal code. The difference is 1500 ** that if a malloc() fails in sqlite3_create_function(), an error code 1501 ** is returned and the mallocFailed flag cleared. 1502 */ 1503 int sqlite3CreateFunc( 1504 sqlite3 *db, 1505 const char *zFunctionName, 1506 int nArg, 1507 int enc, 1508 void *pUserData, 1509 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1510 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1511 void (*xFinal)(sqlite3_context*), 1512 FuncDestructor *pDestructor 1513 ){ 1514 FuncDef *p; 1515 int nName; 1516 int extraFlags; 1517 1518 assert( sqlite3_mutex_held(db->mutex) ); 1519 if( zFunctionName==0 || 1520 (xFunc && (xFinal || xStep)) || 1521 (!xFunc && (xFinal && !xStep)) || 1522 (!xFunc && (!xFinal && xStep)) || 1523 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1524 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1525 return SQLITE_MISUSE_BKPT; 1526 } 1527 1528 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1529 extraFlags = enc & SQLITE_DETERMINISTIC; 1530 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1531 1532 #ifndef SQLITE_OMIT_UTF16 1533 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1534 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1535 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1536 ** 1537 ** If SQLITE_ANY is specified, add three versions of the function 1538 ** to the hash table. 1539 */ 1540 if( enc==SQLITE_UTF16 ){ 1541 enc = SQLITE_UTF16NATIVE; 1542 }else if( enc==SQLITE_ANY ){ 1543 int rc; 1544 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 1545 pUserData, xFunc, xStep, xFinal, pDestructor); 1546 if( rc==SQLITE_OK ){ 1547 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 1548 pUserData, xFunc, xStep, xFinal, pDestructor); 1549 } 1550 if( rc!=SQLITE_OK ){ 1551 return rc; 1552 } 1553 enc = SQLITE_UTF16BE; 1554 } 1555 #else 1556 enc = SQLITE_UTF8; 1557 #endif 1558 1559 /* Check if an existing function is being overridden or deleted. If so, 1560 ** and there are active VMs, then return SQLITE_BUSY. If a function 1561 ** is being overridden/deleted but there are no active VMs, allow the 1562 ** operation to continue but invalidate all precompiled statements. 1563 */ 1564 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1565 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 1566 if( db->nVdbeActive ){ 1567 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1568 "unable to delete/modify user-function due to active statements"); 1569 assert( !db->mallocFailed ); 1570 return SQLITE_BUSY; 1571 }else{ 1572 sqlite3ExpirePreparedStatements(db); 1573 } 1574 } 1575 1576 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1577 assert(p || db->mallocFailed); 1578 if( !p ){ 1579 return SQLITE_NOMEM; 1580 } 1581 1582 /* If an older version of the function with a configured destructor is 1583 ** being replaced invoke the destructor function here. */ 1584 functionDestroy(db, p); 1585 1586 if( pDestructor ){ 1587 pDestructor->nRef++; 1588 } 1589 p->pDestructor = pDestructor; 1590 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1591 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1592 p->xFunc = xFunc; 1593 p->xStep = xStep; 1594 p->xFinalize = xFinal; 1595 p->pUserData = pUserData; 1596 p->nArg = (u16)nArg; 1597 return SQLITE_OK; 1598 } 1599 1600 /* 1601 ** Create new user functions. 1602 */ 1603 int sqlite3_create_function( 1604 sqlite3 *db, 1605 const char *zFunc, 1606 int nArg, 1607 int enc, 1608 void *p, 1609 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1610 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1611 void (*xFinal)(sqlite3_context*) 1612 ){ 1613 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1614 xFinal, 0); 1615 } 1616 1617 int sqlite3_create_function_v2( 1618 sqlite3 *db, 1619 const char *zFunc, 1620 int nArg, 1621 int enc, 1622 void *p, 1623 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1624 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1625 void (*xFinal)(sqlite3_context*), 1626 void (*xDestroy)(void *) 1627 ){ 1628 int rc = SQLITE_ERROR; 1629 FuncDestructor *pArg = 0; 1630 1631 #ifdef SQLITE_ENABLE_API_ARMOR 1632 if( !sqlite3SafetyCheckOk(db) ){ 1633 return SQLITE_MISUSE_BKPT; 1634 } 1635 #endif 1636 sqlite3_mutex_enter(db->mutex); 1637 if( xDestroy ){ 1638 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1639 if( !pArg ){ 1640 xDestroy(p); 1641 goto out; 1642 } 1643 pArg->xDestroy = xDestroy; 1644 pArg->pUserData = p; 1645 } 1646 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1647 if( pArg && pArg->nRef==0 ){ 1648 assert( rc!=SQLITE_OK ); 1649 xDestroy(p); 1650 sqlite3DbFree(db, pArg); 1651 } 1652 1653 out: 1654 rc = sqlite3ApiExit(db, rc); 1655 sqlite3_mutex_leave(db->mutex); 1656 return rc; 1657 } 1658 1659 #ifndef SQLITE_OMIT_UTF16 1660 int sqlite3_create_function16( 1661 sqlite3 *db, 1662 const void *zFunctionName, 1663 int nArg, 1664 int eTextRep, 1665 void *p, 1666 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1667 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1668 void (*xFinal)(sqlite3_context*) 1669 ){ 1670 int rc; 1671 char *zFunc8; 1672 1673 #ifdef SQLITE_ENABLE_API_ARMOR 1674 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 1675 #endif 1676 sqlite3_mutex_enter(db->mutex); 1677 assert( !db->mallocFailed ); 1678 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1679 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1680 sqlite3DbFree(db, zFunc8); 1681 rc = sqlite3ApiExit(db, rc); 1682 sqlite3_mutex_leave(db->mutex); 1683 return rc; 1684 } 1685 #endif 1686 1687 1688 /* 1689 ** Declare that a function has been overloaded by a virtual table. 1690 ** 1691 ** If the function already exists as a regular global function, then 1692 ** this routine is a no-op. If the function does not exist, then create 1693 ** a new one that always throws a run-time error. 1694 ** 1695 ** When virtual tables intend to provide an overloaded function, they 1696 ** should call this routine to make sure the global function exists. 1697 ** A global function must exist in order for name resolution to work 1698 ** properly. 1699 */ 1700 int sqlite3_overload_function( 1701 sqlite3 *db, 1702 const char *zName, 1703 int nArg 1704 ){ 1705 int nName = sqlite3Strlen30(zName); 1706 int rc = SQLITE_OK; 1707 1708 #ifdef SQLITE_ENABLE_API_ARMOR 1709 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 1710 return SQLITE_MISUSE_BKPT; 1711 } 1712 #endif 1713 sqlite3_mutex_enter(db->mutex); 1714 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1715 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1716 0, sqlite3InvalidFunction, 0, 0, 0); 1717 } 1718 rc = sqlite3ApiExit(db, rc); 1719 sqlite3_mutex_leave(db->mutex); 1720 return rc; 1721 } 1722 1723 #ifndef SQLITE_OMIT_TRACE 1724 /* 1725 ** Register a trace function. The pArg from the previously registered trace 1726 ** is returned. 1727 ** 1728 ** A NULL trace function means that no tracing is executes. A non-NULL 1729 ** trace is a pointer to a function that is invoked at the start of each 1730 ** SQL statement. 1731 */ 1732 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1733 void *pOld; 1734 1735 #ifdef SQLITE_ENABLE_API_ARMOR 1736 if( !sqlite3SafetyCheckOk(db) ){ 1737 (void)SQLITE_MISUSE_BKPT; 1738 return 0; 1739 } 1740 #endif 1741 sqlite3_mutex_enter(db->mutex); 1742 pOld = db->pTraceArg; 1743 db->xTrace = xTrace; 1744 db->pTraceArg = pArg; 1745 sqlite3_mutex_leave(db->mutex); 1746 return pOld; 1747 } 1748 /* 1749 ** Register a profile function. The pArg from the previously registered 1750 ** profile function is returned. 1751 ** 1752 ** A NULL profile function means that no profiling is executes. A non-NULL 1753 ** profile is a pointer to a function that is invoked at the conclusion of 1754 ** each SQL statement that is run. 1755 */ 1756 void *sqlite3_profile( 1757 sqlite3 *db, 1758 void (*xProfile)(void*,const char*,sqlite_uint64), 1759 void *pArg 1760 ){ 1761 void *pOld; 1762 1763 #ifdef SQLITE_ENABLE_API_ARMOR 1764 if( !sqlite3SafetyCheckOk(db) ){ 1765 (void)SQLITE_MISUSE_BKPT; 1766 return 0; 1767 } 1768 #endif 1769 sqlite3_mutex_enter(db->mutex); 1770 pOld = db->pProfileArg; 1771 db->xProfile = xProfile; 1772 db->pProfileArg = pArg; 1773 sqlite3_mutex_leave(db->mutex); 1774 return pOld; 1775 } 1776 #endif /* SQLITE_OMIT_TRACE */ 1777 1778 /* 1779 ** Register a function to be invoked when a transaction commits. 1780 ** If the invoked function returns non-zero, then the commit becomes a 1781 ** rollback. 1782 */ 1783 void *sqlite3_commit_hook( 1784 sqlite3 *db, /* Attach the hook to this database */ 1785 int (*xCallback)(void*), /* Function to invoke on each commit */ 1786 void *pArg /* Argument to the function */ 1787 ){ 1788 void *pOld; 1789 1790 #ifdef SQLITE_ENABLE_API_ARMOR 1791 if( !sqlite3SafetyCheckOk(db) ){ 1792 (void)SQLITE_MISUSE_BKPT; 1793 return 0; 1794 } 1795 #endif 1796 sqlite3_mutex_enter(db->mutex); 1797 pOld = db->pCommitArg; 1798 db->xCommitCallback = xCallback; 1799 db->pCommitArg = pArg; 1800 sqlite3_mutex_leave(db->mutex); 1801 return pOld; 1802 } 1803 1804 /* 1805 ** Register a callback to be invoked each time a row is updated, 1806 ** inserted or deleted using this database connection. 1807 */ 1808 void *sqlite3_update_hook( 1809 sqlite3 *db, /* Attach the hook to this database */ 1810 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1811 void *pArg /* Argument to the function */ 1812 ){ 1813 void *pRet; 1814 1815 #ifdef SQLITE_ENABLE_API_ARMOR 1816 if( !sqlite3SafetyCheckOk(db) ){ 1817 (void)SQLITE_MISUSE_BKPT; 1818 return 0; 1819 } 1820 #endif 1821 sqlite3_mutex_enter(db->mutex); 1822 pRet = db->pUpdateArg; 1823 db->xUpdateCallback = xCallback; 1824 db->pUpdateArg = pArg; 1825 sqlite3_mutex_leave(db->mutex); 1826 return pRet; 1827 } 1828 1829 /* 1830 ** Register a callback to be invoked each time a transaction is rolled 1831 ** back by this database connection. 1832 */ 1833 void *sqlite3_rollback_hook( 1834 sqlite3 *db, /* Attach the hook to this database */ 1835 void (*xCallback)(void*), /* Callback function */ 1836 void *pArg /* Argument to the function */ 1837 ){ 1838 void *pRet; 1839 1840 #ifdef SQLITE_ENABLE_API_ARMOR 1841 if( !sqlite3SafetyCheckOk(db) ){ 1842 (void)SQLITE_MISUSE_BKPT; 1843 return 0; 1844 } 1845 #endif 1846 sqlite3_mutex_enter(db->mutex); 1847 pRet = db->pRollbackArg; 1848 db->xRollbackCallback = xCallback; 1849 db->pRollbackArg = pArg; 1850 sqlite3_mutex_leave(db->mutex); 1851 return pRet; 1852 } 1853 1854 #ifndef SQLITE_OMIT_WAL 1855 /* 1856 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1857 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1858 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1859 ** wal_autocheckpoint()). 1860 */ 1861 int sqlite3WalDefaultHook( 1862 void *pClientData, /* Argument */ 1863 sqlite3 *db, /* Connection */ 1864 const char *zDb, /* Database */ 1865 int nFrame /* Size of WAL */ 1866 ){ 1867 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1868 sqlite3BeginBenignMalloc(); 1869 sqlite3_wal_checkpoint(db, zDb); 1870 sqlite3EndBenignMalloc(); 1871 } 1872 return SQLITE_OK; 1873 } 1874 #endif /* SQLITE_OMIT_WAL */ 1875 1876 /* 1877 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1878 ** a database after committing a transaction if there are nFrame or 1879 ** more frames in the log file. Passing zero or a negative value as the 1880 ** nFrame parameter disables automatic checkpoints entirely. 1881 ** 1882 ** The callback registered by this function replaces any existing callback 1883 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1884 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1885 ** configured by this function. 1886 */ 1887 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1888 #ifdef SQLITE_OMIT_WAL 1889 UNUSED_PARAMETER(db); 1890 UNUSED_PARAMETER(nFrame); 1891 #else 1892 #ifdef SQLITE_ENABLE_API_ARMOR 1893 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1894 #endif 1895 if( nFrame>0 ){ 1896 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1897 }else{ 1898 sqlite3_wal_hook(db, 0, 0); 1899 } 1900 #endif 1901 return SQLITE_OK; 1902 } 1903 1904 /* 1905 ** Register a callback to be invoked each time a transaction is written 1906 ** into the write-ahead-log by this database connection. 1907 */ 1908 void *sqlite3_wal_hook( 1909 sqlite3 *db, /* Attach the hook to this db handle */ 1910 int(*xCallback)(void *, sqlite3*, const char*, int), 1911 void *pArg /* First argument passed to xCallback() */ 1912 ){ 1913 #ifndef SQLITE_OMIT_WAL 1914 void *pRet; 1915 #ifdef SQLITE_ENABLE_API_ARMOR 1916 if( !sqlite3SafetyCheckOk(db) ){ 1917 (void)SQLITE_MISUSE_BKPT; 1918 return 0; 1919 } 1920 #endif 1921 sqlite3_mutex_enter(db->mutex); 1922 pRet = db->pWalArg; 1923 db->xWalCallback = xCallback; 1924 db->pWalArg = pArg; 1925 sqlite3_mutex_leave(db->mutex); 1926 return pRet; 1927 #else 1928 return 0; 1929 #endif 1930 } 1931 1932 /* 1933 ** Checkpoint database zDb. 1934 */ 1935 int sqlite3_wal_checkpoint_v2( 1936 sqlite3 *db, /* Database handle */ 1937 const char *zDb, /* Name of attached database (or NULL) */ 1938 int eMode, /* SQLITE_CHECKPOINT_* value */ 1939 int *pnLog, /* OUT: Size of WAL log in frames */ 1940 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1941 ){ 1942 #ifdef SQLITE_OMIT_WAL 1943 return SQLITE_OK; 1944 #else 1945 int rc; /* Return code */ 1946 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1947 1948 #ifdef SQLITE_ENABLE_API_ARMOR 1949 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1950 #endif 1951 1952 /* Initialize the output variables to -1 in case an error occurs. */ 1953 if( pnLog ) *pnLog = -1; 1954 if( pnCkpt ) *pnCkpt = -1; 1955 1956 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 1957 assert( SQLITE_CHECKPOINT_FULL==1 ); 1958 assert( SQLITE_CHECKPOINT_RESTART==2 ); 1959 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 1960 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 1961 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 1962 ** mode: */ 1963 return SQLITE_MISUSE; 1964 } 1965 1966 sqlite3_mutex_enter(db->mutex); 1967 if( zDb && zDb[0] ){ 1968 iDb = sqlite3FindDbName(db, zDb); 1969 } 1970 if( iDb<0 ){ 1971 rc = SQLITE_ERROR; 1972 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 1973 }else{ 1974 db->busyHandler.nBusy = 0; 1975 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1976 sqlite3Error(db, rc); 1977 } 1978 rc = sqlite3ApiExit(db, rc); 1979 sqlite3_mutex_leave(db->mutex); 1980 return rc; 1981 #endif 1982 } 1983 1984 1985 /* 1986 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1987 ** to contains a zero-length string, all attached databases are 1988 ** checkpointed. 1989 */ 1990 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1991 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 1992 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 1993 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 1994 } 1995 1996 #ifndef SQLITE_OMIT_WAL 1997 /* 1998 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1999 ** not currently open in WAL mode. 2000 ** 2001 ** If a transaction is open on the database being checkpointed, this 2002 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2003 ** an error occurs while running the checkpoint, an SQLite error code is 2004 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2005 ** 2006 ** The mutex on database handle db should be held by the caller. The mutex 2007 ** associated with the specific b-tree being checkpointed is taken by 2008 ** this function while the checkpoint is running. 2009 ** 2010 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 2011 ** checkpointed. If an error is encountered it is returned immediately - 2012 ** no attempt is made to checkpoint any remaining databases. 2013 ** 2014 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 2015 */ 2016 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2017 int rc = SQLITE_OK; /* Return code */ 2018 int i; /* Used to iterate through attached dbs */ 2019 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2020 2021 assert( sqlite3_mutex_held(db->mutex) ); 2022 assert( !pnLog || *pnLog==-1 ); 2023 assert( !pnCkpt || *pnCkpt==-1 ); 2024 2025 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2026 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 2027 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2028 pnLog = 0; 2029 pnCkpt = 0; 2030 if( rc==SQLITE_BUSY ){ 2031 bBusy = 1; 2032 rc = SQLITE_OK; 2033 } 2034 } 2035 } 2036 2037 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2038 } 2039 #endif /* SQLITE_OMIT_WAL */ 2040 2041 /* 2042 ** This function returns true if main-memory should be used instead of 2043 ** a temporary file for transient pager files and statement journals. 2044 ** The value returned depends on the value of db->temp_store (runtime 2045 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2046 ** following table describes the relationship between these two values 2047 ** and this functions return value. 2048 ** 2049 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2050 ** ----------------- -------------- ------------------------------ 2051 ** 0 any file (return 0) 2052 ** 1 1 file (return 0) 2053 ** 1 2 memory (return 1) 2054 ** 1 0 file (return 0) 2055 ** 2 1 file (return 0) 2056 ** 2 2 memory (return 1) 2057 ** 2 0 memory (return 1) 2058 ** 3 any memory (return 1) 2059 */ 2060 int sqlite3TempInMemory(const sqlite3 *db){ 2061 #if SQLITE_TEMP_STORE==1 2062 return ( db->temp_store==2 ); 2063 #endif 2064 #if SQLITE_TEMP_STORE==2 2065 return ( db->temp_store!=1 ); 2066 #endif 2067 #if SQLITE_TEMP_STORE==3 2068 return 1; 2069 #endif 2070 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2071 return 0; 2072 #endif 2073 } 2074 2075 /* 2076 ** Return UTF-8 encoded English language explanation of the most recent 2077 ** error. 2078 */ 2079 const char *sqlite3_errmsg(sqlite3 *db){ 2080 const char *z; 2081 if( !db ){ 2082 return sqlite3ErrStr(SQLITE_NOMEM); 2083 } 2084 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2085 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2086 } 2087 sqlite3_mutex_enter(db->mutex); 2088 if( db->mallocFailed ){ 2089 z = sqlite3ErrStr(SQLITE_NOMEM); 2090 }else{ 2091 testcase( db->pErr==0 ); 2092 z = (char*)sqlite3_value_text(db->pErr); 2093 assert( !db->mallocFailed ); 2094 if( z==0 ){ 2095 z = sqlite3ErrStr(db->errCode); 2096 } 2097 } 2098 sqlite3_mutex_leave(db->mutex); 2099 return z; 2100 } 2101 2102 #ifndef SQLITE_OMIT_UTF16 2103 /* 2104 ** Return UTF-16 encoded English language explanation of the most recent 2105 ** error. 2106 */ 2107 const void *sqlite3_errmsg16(sqlite3 *db){ 2108 static const u16 outOfMem[] = { 2109 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2110 }; 2111 static const u16 misuse[] = { 2112 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 2113 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 2114 'c', 'a', 'l', 'l', 'e', 'd', ' ', 2115 'o', 'u', 't', ' ', 2116 'o', 'f', ' ', 2117 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 2118 }; 2119 2120 const void *z; 2121 if( !db ){ 2122 return (void *)outOfMem; 2123 } 2124 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2125 return (void *)misuse; 2126 } 2127 sqlite3_mutex_enter(db->mutex); 2128 if( db->mallocFailed ){ 2129 z = (void *)outOfMem; 2130 }else{ 2131 z = sqlite3_value_text16(db->pErr); 2132 if( z==0 ){ 2133 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2134 z = sqlite3_value_text16(db->pErr); 2135 } 2136 /* A malloc() may have failed within the call to sqlite3_value_text16() 2137 ** above. If this is the case, then the db->mallocFailed flag needs to 2138 ** be cleared before returning. Do this directly, instead of via 2139 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2140 */ 2141 db->mallocFailed = 0; 2142 } 2143 sqlite3_mutex_leave(db->mutex); 2144 return z; 2145 } 2146 #endif /* SQLITE_OMIT_UTF16 */ 2147 2148 /* 2149 ** Return the most recent error code generated by an SQLite routine. If NULL is 2150 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2151 */ 2152 int sqlite3_errcode(sqlite3 *db){ 2153 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2154 return SQLITE_MISUSE_BKPT; 2155 } 2156 if( !db || db->mallocFailed ){ 2157 return SQLITE_NOMEM; 2158 } 2159 return db->errCode & db->errMask; 2160 } 2161 int sqlite3_extended_errcode(sqlite3 *db){ 2162 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2163 return SQLITE_MISUSE_BKPT; 2164 } 2165 if( !db || db->mallocFailed ){ 2166 return SQLITE_NOMEM; 2167 } 2168 return db->errCode; 2169 } 2170 2171 /* 2172 ** Return a string that describes the kind of error specified in the 2173 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2174 ** function. 2175 */ 2176 const char *sqlite3_errstr(int rc){ 2177 return sqlite3ErrStr(rc); 2178 } 2179 2180 /* 2181 ** Create a new collating function for database "db". The name is zName 2182 ** and the encoding is enc. 2183 */ 2184 static int createCollation( 2185 sqlite3* db, 2186 const char *zName, 2187 u8 enc, 2188 void* pCtx, 2189 int(*xCompare)(void*,int,const void*,int,const void*), 2190 void(*xDel)(void*) 2191 ){ 2192 CollSeq *pColl; 2193 int enc2; 2194 2195 assert( sqlite3_mutex_held(db->mutex) ); 2196 2197 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2198 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2199 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2200 */ 2201 enc2 = enc; 2202 testcase( enc2==SQLITE_UTF16 ); 2203 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2204 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2205 enc2 = SQLITE_UTF16NATIVE; 2206 } 2207 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2208 return SQLITE_MISUSE_BKPT; 2209 } 2210 2211 /* Check if this call is removing or replacing an existing collation 2212 ** sequence. If so, and there are active VMs, return busy. If there 2213 ** are no active VMs, invalidate any pre-compiled statements. 2214 */ 2215 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2216 if( pColl && pColl->xCmp ){ 2217 if( db->nVdbeActive ){ 2218 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2219 "unable to delete/modify collation sequence due to active statements"); 2220 return SQLITE_BUSY; 2221 } 2222 sqlite3ExpirePreparedStatements(db); 2223 2224 /* If collation sequence pColl was created directly by a call to 2225 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2226 ** then any copies made by synthCollSeq() need to be invalidated. 2227 ** Also, collation destructor - CollSeq.xDel() - function may need 2228 ** to be called. 2229 */ 2230 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2231 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2232 int j; 2233 for(j=0; j<3; j++){ 2234 CollSeq *p = &aColl[j]; 2235 if( p->enc==pColl->enc ){ 2236 if( p->xDel ){ 2237 p->xDel(p->pUser); 2238 } 2239 p->xCmp = 0; 2240 } 2241 } 2242 } 2243 } 2244 2245 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2246 if( pColl==0 ) return SQLITE_NOMEM; 2247 pColl->xCmp = xCompare; 2248 pColl->pUser = pCtx; 2249 pColl->xDel = xDel; 2250 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2251 sqlite3Error(db, SQLITE_OK); 2252 return SQLITE_OK; 2253 } 2254 2255 2256 /* 2257 ** This array defines hard upper bounds on limit values. The 2258 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2259 ** #defines in sqlite3.h. 2260 */ 2261 static const int aHardLimit[] = { 2262 SQLITE_MAX_LENGTH, 2263 SQLITE_MAX_SQL_LENGTH, 2264 SQLITE_MAX_COLUMN, 2265 SQLITE_MAX_EXPR_DEPTH, 2266 SQLITE_MAX_COMPOUND_SELECT, 2267 SQLITE_MAX_VDBE_OP, 2268 SQLITE_MAX_FUNCTION_ARG, 2269 SQLITE_MAX_ATTACHED, 2270 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2271 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2272 SQLITE_MAX_TRIGGER_DEPTH, 2273 SQLITE_MAX_WORKER_THREADS, 2274 }; 2275 2276 /* 2277 ** Make sure the hard limits are set to reasonable values 2278 */ 2279 #if SQLITE_MAX_LENGTH<100 2280 # error SQLITE_MAX_LENGTH must be at least 100 2281 #endif 2282 #if SQLITE_MAX_SQL_LENGTH<100 2283 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2284 #endif 2285 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2286 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2287 #endif 2288 #if SQLITE_MAX_COMPOUND_SELECT<2 2289 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2290 #endif 2291 #if SQLITE_MAX_VDBE_OP<40 2292 # error SQLITE_MAX_VDBE_OP must be at least 40 2293 #endif 2294 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 2295 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 2296 #endif 2297 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2298 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2299 #endif 2300 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2301 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2302 #endif 2303 #if SQLITE_MAX_COLUMN>32767 2304 # error SQLITE_MAX_COLUMN must not exceed 32767 2305 #endif 2306 #if SQLITE_MAX_TRIGGER_DEPTH<1 2307 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2308 #endif 2309 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2310 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2311 #endif 2312 2313 2314 /* 2315 ** Change the value of a limit. Report the old value. 2316 ** If an invalid limit index is supplied, report -1. 2317 ** Make no changes but still report the old value if the 2318 ** new limit is negative. 2319 ** 2320 ** A new lower limit does not shrink existing constructs. 2321 ** It merely prevents new constructs that exceed the limit 2322 ** from forming. 2323 */ 2324 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2325 int oldLimit; 2326 2327 #ifdef SQLITE_ENABLE_API_ARMOR 2328 if( !sqlite3SafetyCheckOk(db) ){ 2329 (void)SQLITE_MISUSE_BKPT; 2330 return -1; 2331 } 2332 #endif 2333 2334 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2335 ** there is a hard upper bound set at compile-time by a C preprocessor 2336 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2337 ** "_MAX_".) 2338 */ 2339 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2340 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2341 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2342 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2343 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2344 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2345 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2346 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2347 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2348 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2349 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2350 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2351 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2352 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2353 2354 2355 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2356 return -1; 2357 } 2358 oldLimit = db->aLimit[limitId]; 2359 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2360 if( newLimit>aHardLimit[limitId] ){ 2361 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2362 } 2363 db->aLimit[limitId] = newLimit; 2364 } 2365 return oldLimit; /* IMP: R-53341-35419 */ 2366 } 2367 2368 /* 2369 ** This function is used to parse both URIs and non-URI filenames passed by the 2370 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2371 ** URIs specified as part of ATTACH statements. 2372 ** 2373 ** The first argument to this function is the name of the VFS to use (or 2374 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2375 ** query parameter. The second argument contains the URI (or non-URI filename) 2376 ** itself. When this function is called the *pFlags variable should contain 2377 ** the default flags to open the database handle with. The value stored in 2378 ** *pFlags may be updated before returning if the URI filename contains 2379 ** "cache=xxx" or "mode=xxx" query parameters. 2380 ** 2381 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2382 ** the VFS that should be used to open the database file. *pzFile is set to 2383 ** point to a buffer containing the name of the file to open. It is the 2384 ** responsibility of the caller to eventually call sqlite3_free() to release 2385 ** this buffer. 2386 ** 2387 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2388 ** may be set to point to a buffer containing an English language error 2389 ** message. It is the responsibility of the caller to eventually release 2390 ** this buffer by calling sqlite3_free(). 2391 */ 2392 int sqlite3ParseUri( 2393 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2394 const char *zUri, /* Nul-terminated URI to parse */ 2395 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2396 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2397 char **pzFile, /* OUT: Filename component of URI */ 2398 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2399 ){ 2400 int rc = SQLITE_OK; 2401 unsigned int flags = *pFlags; 2402 const char *zVfs = zDefaultVfs; 2403 char *zFile; 2404 char c; 2405 int nUri = sqlite3Strlen30(zUri); 2406 2407 assert( *pzErrMsg==0 ); 2408 2409 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2410 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2411 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2412 ){ 2413 char *zOpt; 2414 int eState; /* Parser state when parsing URI */ 2415 int iIn; /* Input character index */ 2416 int iOut = 0; /* Output character index */ 2417 int nByte = nUri+2; /* Bytes of space to allocate */ 2418 2419 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2420 ** method that there may be extra parameters following the file-name. */ 2421 flags |= SQLITE_OPEN_URI; 2422 2423 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2424 zFile = sqlite3_malloc(nByte); 2425 if( !zFile ) return SQLITE_NOMEM; 2426 2427 iIn = 5; 2428 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2429 if( strncmp(zUri+5, "///", 3)==0 ){ 2430 iIn = 7; 2431 /* The following condition causes URIs with five leading / characters 2432 ** like file://///host/path to be converted into UNCs like //host/path. 2433 ** The correct URI for that UNC has only two or four leading / characters 2434 ** file://host/path or file:////host/path. But 5 leading slashes is a 2435 ** common error, we are told, so we handle it as a special case. */ 2436 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2437 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2438 iIn = 16; 2439 } 2440 #else 2441 /* Discard the scheme and authority segments of the URI. */ 2442 if( zUri[5]=='/' && zUri[6]=='/' ){ 2443 iIn = 7; 2444 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2445 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2446 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2447 iIn-7, &zUri[7]); 2448 rc = SQLITE_ERROR; 2449 goto parse_uri_out; 2450 } 2451 } 2452 #endif 2453 2454 /* Copy the filename and any query parameters into the zFile buffer. 2455 ** Decode %HH escape codes along the way. 2456 ** 2457 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2458 ** on the parsing context. As follows: 2459 ** 2460 ** 0: Parsing file-name. 2461 ** 1: Parsing name section of a name=value query parameter. 2462 ** 2: Parsing value section of a name=value query parameter. 2463 */ 2464 eState = 0; 2465 while( (c = zUri[iIn])!=0 && c!='#' ){ 2466 iIn++; 2467 if( c=='%' 2468 && sqlite3Isxdigit(zUri[iIn]) 2469 && sqlite3Isxdigit(zUri[iIn+1]) 2470 ){ 2471 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2472 octet += sqlite3HexToInt(zUri[iIn++]); 2473 2474 assert( octet>=0 && octet<256 ); 2475 if( octet==0 ){ 2476 /* This branch is taken when "%00" appears within the URI. In this 2477 ** case we ignore all text in the remainder of the path, name or 2478 ** value currently being parsed. So ignore the current character 2479 ** and skip to the next "?", "=" or "&", as appropriate. */ 2480 while( (c = zUri[iIn])!=0 && c!='#' 2481 && (eState!=0 || c!='?') 2482 && (eState!=1 || (c!='=' && c!='&')) 2483 && (eState!=2 || c!='&') 2484 ){ 2485 iIn++; 2486 } 2487 continue; 2488 } 2489 c = octet; 2490 }else if( eState==1 && (c=='&' || c=='=') ){ 2491 if( zFile[iOut-1]==0 ){ 2492 /* An empty option name. Ignore this option altogether. */ 2493 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2494 continue; 2495 } 2496 if( c=='&' ){ 2497 zFile[iOut++] = '\0'; 2498 }else{ 2499 eState = 2; 2500 } 2501 c = 0; 2502 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2503 c = 0; 2504 eState = 1; 2505 } 2506 zFile[iOut++] = c; 2507 } 2508 if( eState==1 ) zFile[iOut++] = '\0'; 2509 zFile[iOut++] = '\0'; 2510 zFile[iOut++] = '\0'; 2511 2512 /* Check if there were any options specified that should be interpreted 2513 ** here. Options that are interpreted here include "vfs" and those that 2514 ** correspond to flags that may be passed to the sqlite3_open_v2() 2515 ** method. */ 2516 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2517 while( zOpt[0] ){ 2518 int nOpt = sqlite3Strlen30(zOpt); 2519 char *zVal = &zOpt[nOpt+1]; 2520 int nVal = sqlite3Strlen30(zVal); 2521 2522 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2523 zVfs = zVal; 2524 }else{ 2525 struct OpenMode { 2526 const char *z; 2527 int mode; 2528 } *aMode = 0; 2529 char *zModeType = 0; 2530 int mask = 0; 2531 int limit = 0; 2532 2533 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2534 static struct OpenMode aCacheMode[] = { 2535 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2536 { "private", SQLITE_OPEN_PRIVATECACHE }, 2537 { 0, 0 } 2538 }; 2539 2540 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2541 aMode = aCacheMode; 2542 limit = mask; 2543 zModeType = "cache"; 2544 } 2545 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2546 static struct OpenMode aOpenMode[] = { 2547 { "ro", SQLITE_OPEN_READONLY }, 2548 { "rw", SQLITE_OPEN_READWRITE }, 2549 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2550 { "memory", SQLITE_OPEN_MEMORY }, 2551 { 0, 0 } 2552 }; 2553 2554 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2555 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2556 aMode = aOpenMode; 2557 limit = mask & flags; 2558 zModeType = "access"; 2559 } 2560 2561 if( aMode ){ 2562 int i; 2563 int mode = 0; 2564 for(i=0; aMode[i].z; i++){ 2565 const char *z = aMode[i].z; 2566 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2567 mode = aMode[i].mode; 2568 break; 2569 } 2570 } 2571 if( mode==0 ){ 2572 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2573 rc = SQLITE_ERROR; 2574 goto parse_uri_out; 2575 } 2576 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2577 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2578 zModeType, zVal); 2579 rc = SQLITE_PERM; 2580 goto parse_uri_out; 2581 } 2582 flags = (flags & ~mask) | mode; 2583 } 2584 } 2585 2586 zOpt = &zVal[nVal+1]; 2587 } 2588 2589 }else{ 2590 zFile = sqlite3_malloc(nUri+2); 2591 if( !zFile ) return SQLITE_NOMEM; 2592 memcpy(zFile, zUri, nUri); 2593 zFile[nUri] = '\0'; 2594 zFile[nUri+1] = '\0'; 2595 flags &= ~SQLITE_OPEN_URI; 2596 } 2597 2598 *ppVfs = sqlite3_vfs_find(zVfs); 2599 if( *ppVfs==0 ){ 2600 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2601 rc = SQLITE_ERROR; 2602 } 2603 parse_uri_out: 2604 if( rc!=SQLITE_OK ){ 2605 sqlite3_free(zFile); 2606 zFile = 0; 2607 } 2608 *pFlags = flags; 2609 *pzFile = zFile; 2610 return rc; 2611 } 2612 2613 2614 /* 2615 ** This routine does the work of opening a database on behalf of 2616 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2617 ** is UTF-8 encoded. 2618 */ 2619 static int openDatabase( 2620 const char *zFilename, /* Database filename UTF-8 encoded */ 2621 sqlite3 **ppDb, /* OUT: Returned database handle */ 2622 unsigned int flags, /* Operational flags */ 2623 const char *zVfs /* Name of the VFS to use */ 2624 ){ 2625 sqlite3 *db; /* Store allocated handle here */ 2626 int rc; /* Return code */ 2627 int isThreadsafe; /* True for threadsafe connections */ 2628 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2629 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2630 2631 #ifdef SQLITE_ENABLE_API_ARMOR 2632 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2633 #endif 2634 *ppDb = 0; 2635 #ifndef SQLITE_OMIT_AUTOINIT 2636 rc = sqlite3_initialize(); 2637 if( rc ) return rc; 2638 #endif 2639 2640 /* Only allow sensible combinations of bits in the flags argument. 2641 ** Throw an error if any non-sense combination is used. If we 2642 ** do not block illegal combinations here, it could trigger 2643 ** assert() statements in deeper layers. Sensible combinations 2644 ** are: 2645 ** 2646 ** 1: SQLITE_OPEN_READONLY 2647 ** 2: SQLITE_OPEN_READWRITE 2648 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2649 */ 2650 assert( SQLITE_OPEN_READONLY == 0x01 ); 2651 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2652 assert( SQLITE_OPEN_CREATE == 0x04 ); 2653 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2654 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2655 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2656 if( ((1<<(flags&7)) & 0x46)==0 ){ 2657 return SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 2658 } 2659 2660 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2661 isThreadsafe = 0; 2662 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2663 isThreadsafe = 0; 2664 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2665 isThreadsafe = 1; 2666 }else{ 2667 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2668 } 2669 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2670 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2671 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2672 flags |= SQLITE_OPEN_SHAREDCACHE; 2673 } 2674 2675 /* Remove harmful bits from the flags parameter 2676 ** 2677 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2678 ** dealt with in the previous code block. Besides these, the only 2679 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2680 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2681 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2682 ** off all other flags. 2683 */ 2684 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2685 SQLITE_OPEN_EXCLUSIVE | 2686 SQLITE_OPEN_MAIN_DB | 2687 SQLITE_OPEN_TEMP_DB | 2688 SQLITE_OPEN_TRANSIENT_DB | 2689 SQLITE_OPEN_MAIN_JOURNAL | 2690 SQLITE_OPEN_TEMP_JOURNAL | 2691 SQLITE_OPEN_SUBJOURNAL | 2692 SQLITE_OPEN_MASTER_JOURNAL | 2693 SQLITE_OPEN_NOMUTEX | 2694 SQLITE_OPEN_FULLMUTEX | 2695 SQLITE_OPEN_WAL 2696 ); 2697 2698 /* Allocate the sqlite data structure */ 2699 db = sqlite3MallocZero( sizeof(sqlite3) ); 2700 if( db==0 ) goto opendb_out; 2701 if( isThreadsafe ){ 2702 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2703 if( db->mutex==0 ){ 2704 sqlite3_free(db); 2705 db = 0; 2706 goto opendb_out; 2707 } 2708 } 2709 sqlite3_mutex_enter(db->mutex); 2710 db->errMask = 0xff; 2711 db->nDb = 2; 2712 db->magic = SQLITE_MAGIC_BUSY; 2713 db->aDb = db->aDbStatic; 2714 2715 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2716 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2717 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 2718 db->autoCommit = 1; 2719 db->nextAutovac = -1; 2720 db->szMmap = sqlite3GlobalConfig.szMmap; 2721 db->nextPagesize = 0; 2722 db->nMaxSorterMmap = 0x7FFFFFFF; 2723 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 2724 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 2725 | SQLITE_AutoIndex 2726 #endif 2727 #if SQLITE_DEFAULT_CKPTFULLFSYNC 2728 | SQLITE_CkptFullFSync 2729 #endif 2730 #if SQLITE_DEFAULT_FILE_FORMAT<4 2731 | SQLITE_LegacyFileFmt 2732 #endif 2733 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2734 | SQLITE_LoadExtension 2735 #endif 2736 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2737 | SQLITE_RecTriggers 2738 #endif 2739 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2740 | SQLITE_ForeignKeys 2741 #endif 2742 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 2743 | SQLITE_ReverseOrder 2744 #endif 2745 ; 2746 sqlite3HashInit(&db->aCollSeq); 2747 #ifndef SQLITE_OMIT_VIRTUALTABLE 2748 sqlite3HashInit(&db->aModule); 2749 #endif 2750 2751 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2752 ** and UTF-16, so add a version for each to avoid any unnecessary 2753 ** conversions. The only error that can occur here is a malloc() failure. 2754 ** 2755 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 2756 ** functions: 2757 */ 2758 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2759 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2760 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2761 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2762 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2763 if( db->mallocFailed ){ 2764 goto opendb_out; 2765 } 2766 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 2767 ** strings is BINARY. 2768 */ 2769 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2770 assert( db->pDfltColl!=0 ); 2771 2772 /* Parse the filename/URI argument. */ 2773 db->openFlags = flags; 2774 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2775 if( rc!=SQLITE_OK ){ 2776 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2777 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2778 sqlite3_free(zErrMsg); 2779 goto opendb_out; 2780 } 2781 2782 /* Open the backend database driver */ 2783 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2784 flags | SQLITE_OPEN_MAIN_DB); 2785 if( rc!=SQLITE_OK ){ 2786 if( rc==SQLITE_IOERR_NOMEM ){ 2787 rc = SQLITE_NOMEM; 2788 } 2789 sqlite3Error(db, rc); 2790 goto opendb_out; 2791 } 2792 sqlite3BtreeEnter(db->aDb[0].pBt); 2793 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2794 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 2795 sqlite3BtreeLeave(db->aDb[0].pBt); 2796 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2797 2798 /* The default safety_level for the main database is 'full'; for the temp 2799 ** database it is 'NONE'. This matches the pager layer defaults. 2800 */ 2801 db->aDb[0].zName = "main"; 2802 db->aDb[0].safety_level = 3; 2803 db->aDb[1].zName = "temp"; 2804 db->aDb[1].safety_level = 1; 2805 2806 db->magic = SQLITE_MAGIC_OPEN; 2807 if( db->mallocFailed ){ 2808 goto opendb_out; 2809 } 2810 2811 /* Register all built-in functions, but do not attempt to read the 2812 ** database schema yet. This is delayed until the first time the database 2813 ** is accessed. 2814 */ 2815 sqlite3Error(db, SQLITE_OK); 2816 sqlite3RegisterBuiltinFunctions(db); 2817 2818 /* Load automatic extensions - extensions that have been registered 2819 ** using the sqlite3_automatic_extension() API. 2820 */ 2821 rc = sqlite3_errcode(db); 2822 if( rc==SQLITE_OK ){ 2823 sqlite3AutoLoadExtensions(db); 2824 rc = sqlite3_errcode(db); 2825 if( rc!=SQLITE_OK ){ 2826 goto opendb_out; 2827 } 2828 } 2829 2830 #ifdef SQLITE_ENABLE_FTS1 2831 if( !db->mallocFailed ){ 2832 extern int sqlite3Fts1Init(sqlite3*); 2833 rc = sqlite3Fts1Init(db); 2834 } 2835 #endif 2836 2837 #ifdef SQLITE_ENABLE_FTS2 2838 if( !db->mallocFailed && rc==SQLITE_OK ){ 2839 extern int sqlite3Fts2Init(sqlite3*); 2840 rc = sqlite3Fts2Init(db); 2841 } 2842 #endif 2843 2844 #ifdef SQLITE_ENABLE_FTS3 2845 if( !db->mallocFailed && rc==SQLITE_OK ){ 2846 rc = sqlite3Fts3Init(db); 2847 } 2848 #endif 2849 2850 #ifdef SQLITE_ENABLE_ICU 2851 if( !db->mallocFailed && rc==SQLITE_OK ){ 2852 rc = sqlite3IcuInit(db); 2853 } 2854 #endif 2855 2856 #ifdef SQLITE_ENABLE_RTREE 2857 if( !db->mallocFailed && rc==SQLITE_OK){ 2858 rc = sqlite3RtreeInit(db); 2859 } 2860 #endif 2861 2862 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2863 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2864 ** mode. Doing nothing at all also makes NORMAL the default. 2865 */ 2866 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2867 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2868 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2869 SQLITE_DEFAULT_LOCKING_MODE); 2870 #endif 2871 2872 if( rc ) sqlite3Error(db, rc); 2873 2874 /* Enable the lookaside-malloc subsystem */ 2875 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2876 sqlite3GlobalConfig.nLookaside); 2877 2878 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2879 2880 opendb_out: 2881 sqlite3_free(zOpen); 2882 if( db ){ 2883 assert( db->mutex!=0 || isThreadsafe==0 2884 || sqlite3GlobalConfig.bFullMutex==0 ); 2885 sqlite3_mutex_leave(db->mutex); 2886 } 2887 rc = sqlite3_errcode(db); 2888 assert( db!=0 || rc==SQLITE_NOMEM ); 2889 if( rc==SQLITE_NOMEM ){ 2890 sqlite3_close(db); 2891 db = 0; 2892 }else if( rc!=SQLITE_OK ){ 2893 db->magic = SQLITE_MAGIC_SICK; 2894 } 2895 *ppDb = db; 2896 #ifdef SQLITE_ENABLE_SQLLOG 2897 if( sqlite3GlobalConfig.xSqllog ){ 2898 /* Opening a db handle. Fourth parameter is passed 0. */ 2899 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2900 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2901 } 2902 #endif 2903 return sqlite3ApiExit(0, rc); 2904 } 2905 2906 /* 2907 ** Open a new database handle. 2908 */ 2909 int sqlite3_open( 2910 const char *zFilename, 2911 sqlite3 **ppDb 2912 ){ 2913 return openDatabase(zFilename, ppDb, 2914 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2915 } 2916 int sqlite3_open_v2( 2917 const char *filename, /* Database filename (UTF-8) */ 2918 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2919 int flags, /* Flags */ 2920 const char *zVfs /* Name of VFS module to use */ 2921 ){ 2922 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2923 } 2924 2925 #ifndef SQLITE_OMIT_UTF16 2926 /* 2927 ** Open a new database handle. 2928 */ 2929 int sqlite3_open16( 2930 const void *zFilename, 2931 sqlite3 **ppDb 2932 ){ 2933 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2934 sqlite3_value *pVal; 2935 int rc; 2936 2937 #ifdef SQLITE_ENABLE_API_ARMOR 2938 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2939 #endif 2940 *ppDb = 0; 2941 #ifndef SQLITE_OMIT_AUTOINIT 2942 rc = sqlite3_initialize(); 2943 if( rc ) return rc; 2944 #endif 2945 if( zFilename==0 ) zFilename = "\000\000"; 2946 pVal = sqlite3ValueNew(0); 2947 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2948 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2949 if( zFilename8 ){ 2950 rc = openDatabase(zFilename8, ppDb, 2951 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2952 assert( *ppDb || rc==SQLITE_NOMEM ); 2953 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2954 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 2955 } 2956 }else{ 2957 rc = SQLITE_NOMEM; 2958 } 2959 sqlite3ValueFree(pVal); 2960 2961 return sqlite3ApiExit(0, rc); 2962 } 2963 #endif /* SQLITE_OMIT_UTF16 */ 2964 2965 /* 2966 ** Register a new collation sequence with the database handle db. 2967 */ 2968 int sqlite3_create_collation( 2969 sqlite3* db, 2970 const char *zName, 2971 int enc, 2972 void* pCtx, 2973 int(*xCompare)(void*,int,const void*,int,const void*) 2974 ){ 2975 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 2976 } 2977 2978 /* 2979 ** Register a new collation sequence with the database handle db. 2980 */ 2981 int sqlite3_create_collation_v2( 2982 sqlite3* db, 2983 const char *zName, 2984 int enc, 2985 void* pCtx, 2986 int(*xCompare)(void*,int,const void*,int,const void*), 2987 void(*xDel)(void*) 2988 ){ 2989 int rc; 2990 2991 #ifdef SQLITE_ENABLE_API_ARMOR 2992 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 2993 #endif 2994 sqlite3_mutex_enter(db->mutex); 2995 assert( !db->mallocFailed ); 2996 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 2997 rc = sqlite3ApiExit(db, rc); 2998 sqlite3_mutex_leave(db->mutex); 2999 return rc; 3000 } 3001 3002 #ifndef SQLITE_OMIT_UTF16 3003 /* 3004 ** Register a new collation sequence with the database handle db. 3005 */ 3006 int sqlite3_create_collation16( 3007 sqlite3* db, 3008 const void *zName, 3009 int enc, 3010 void* pCtx, 3011 int(*xCompare)(void*,int,const void*,int,const void*) 3012 ){ 3013 int rc = SQLITE_OK; 3014 char *zName8; 3015 3016 #ifdef SQLITE_ENABLE_API_ARMOR 3017 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3018 #endif 3019 sqlite3_mutex_enter(db->mutex); 3020 assert( !db->mallocFailed ); 3021 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3022 if( zName8 ){ 3023 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3024 sqlite3DbFree(db, zName8); 3025 } 3026 rc = sqlite3ApiExit(db, rc); 3027 sqlite3_mutex_leave(db->mutex); 3028 return rc; 3029 } 3030 #endif /* SQLITE_OMIT_UTF16 */ 3031 3032 /* 3033 ** Register a collation sequence factory callback with the database handle 3034 ** db. Replace any previously installed collation sequence factory. 3035 */ 3036 int sqlite3_collation_needed( 3037 sqlite3 *db, 3038 void *pCollNeededArg, 3039 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3040 ){ 3041 #ifdef SQLITE_ENABLE_API_ARMOR 3042 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3043 #endif 3044 sqlite3_mutex_enter(db->mutex); 3045 db->xCollNeeded = xCollNeeded; 3046 db->xCollNeeded16 = 0; 3047 db->pCollNeededArg = pCollNeededArg; 3048 sqlite3_mutex_leave(db->mutex); 3049 return SQLITE_OK; 3050 } 3051 3052 #ifndef SQLITE_OMIT_UTF16 3053 /* 3054 ** Register a collation sequence factory callback with the database handle 3055 ** db. Replace any previously installed collation sequence factory. 3056 */ 3057 int sqlite3_collation_needed16( 3058 sqlite3 *db, 3059 void *pCollNeededArg, 3060 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3061 ){ 3062 #ifdef SQLITE_ENABLE_API_ARMOR 3063 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3064 #endif 3065 sqlite3_mutex_enter(db->mutex); 3066 db->xCollNeeded = 0; 3067 db->xCollNeeded16 = xCollNeeded16; 3068 db->pCollNeededArg = pCollNeededArg; 3069 sqlite3_mutex_leave(db->mutex); 3070 return SQLITE_OK; 3071 } 3072 #endif /* SQLITE_OMIT_UTF16 */ 3073 3074 #ifndef SQLITE_OMIT_DEPRECATED 3075 /* 3076 ** This function is now an anachronism. It used to be used to recover from a 3077 ** malloc() failure, but SQLite now does this automatically. 3078 */ 3079 int sqlite3_global_recover(void){ 3080 return SQLITE_OK; 3081 } 3082 #endif 3083 3084 /* 3085 ** Test to see whether or not the database connection is in autocommit 3086 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3087 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3088 ** by the next COMMIT or ROLLBACK. 3089 */ 3090 int sqlite3_get_autocommit(sqlite3 *db){ 3091 #ifdef SQLITE_ENABLE_API_ARMOR 3092 if( !sqlite3SafetyCheckOk(db) ){ 3093 (void)SQLITE_MISUSE_BKPT; 3094 return 0; 3095 } 3096 #endif 3097 return db->autoCommit; 3098 } 3099 3100 /* 3101 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3102 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 3103 ** constants. They serve two purposes: 3104 ** 3105 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3106 ** to detect when version error conditions occurs. 3107 ** 3108 ** 2. Invoke sqlite3_log() to provide the source code location where 3109 ** a low-level error is first detected. 3110 */ 3111 int sqlite3CorruptError(int lineno){ 3112 testcase( sqlite3GlobalConfig.xLog!=0 ); 3113 sqlite3_log(SQLITE_CORRUPT, 3114 "database corruption at line %d of [%.10s]", 3115 lineno, 20+sqlite3_sourceid()); 3116 return SQLITE_CORRUPT; 3117 } 3118 int sqlite3MisuseError(int lineno){ 3119 testcase( sqlite3GlobalConfig.xLog!=0 ); 3120 sqlite3_log(SQLITE_MISUSE, 3121 "misuse at line %d of [%.10s]", 3122 lineno, 20+sqlite3_sourceid()); 3123 return SQLITE_MISUSE; 3124 } 3125 int sqlite3CantopenError(int lineno){ 3126 testcase( sqlite3GlobalConfig.xLog!=0 ); 3127 sqlite3_log(SQLITE_CANTOPEN, 3128 "cannot open file at line %d of [%.10s]", 3129 lineno, 20+sqlite3_sourceid()); 3130 return SQLITE_CANTOPEN; 3131 } 3132 3133 3134 #ifndef SQLITE_OMIT_DEPRECATED 3135 /* 3136 ** This is a convenience routine that makes sure that all thread-specific 3137 ** data for this thread has been deallocated. 3138 ** 3139 ** SQLite no longer uses thread-specific data so this routine is now a 3140 ** no-op. It is retained for historical compatibility. 3141 */ 3142 void sqlite3_thread_cleanup(void){ 3143 } 3144 #endif 3145 3146 /* 3147 ** Return meta information about a specific column of a database table. 3148 ** See comment in sqlite3.h (sqlite.h.in) for details. 3149 */ 3150 int sqlite3_table_column_metadata( 3151 sqlite3 *db, /* Connection handle */ 3152 const char *zDbName, /* Database name or NULL */ 3153 const char *zTableName, /* Table name */ 3154 const char *zColumnName, /* Column name */ 3155 char const **pzDataType, /* OUTPUT: Declared data type */ 3156 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3157 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3158 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3159 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3160 ){ 3161 int rc; 3162 char *zErrMsg = 0; 3163 Table *pTab = 0; 3164 Column *pCol = 0; 3165 int iCol = 0; 3166 char const *zDataType = 0; 3167 char const *zCollSeq = 0; 3168 int notnull = 0; 3169 int primarykey = 0; 3170 int autoinc = 0; 3171 3172 3173 #ifdef SQLITE_ENABLE_API_ARMOR 3174 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3175 return SQLITE_MISUSE_BKPT; 3176 } 3177 #endif 3178 3179 /* Ensure the database schema has been loaded */ 3180 sqlite3_mutex_enter(db->mutex); 3181 sqlite3BtreeEnterAll(db); 3182 rc = sqlite3Init(db, &zErrMsg); 3183 if( SQLITE_OK!=rc ){ 3184 goto error_out; 3185 } 3186 3187 /* Locate the table in question */ 3188 pTab = sqlite3FindTable(db, zTableName, zDbName); 3189 if( !pTab || pTab->pSelect ){ 3190 pTab = 0; 3191 goto error_out; 3192 } 3193 3194 /* Find the column for which info is requested */ 3195 if( zColumnName==0 ){ 3196 /* Query for existance of table only */ 3197 }else{ 3198 for(iCol=0; iCol<pTab->nCol; iCol++){ 3199 pCol = &pTab->aCol[iCol]; 3200 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 3201 break; 3202 } 3203 } 3204 if( iCol==pTab->nCol ){ 3205 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3206 iCol = pTab->iPKey; 3207 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3208 }else{ 3209 pTab = 0; 3210 goto error_out; 3211 } 3212 } 3213 } 3214 3215 /* The following block stores the meta information that will be returned 3216 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3217 ** and autoinc. At this point there are two possibilities: 3218 ** 3219 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3220 ** and there is no explicitly declared IPK column. 3221 ** 3222 ** 2. The table is not a view and the column name identified an 3223 ** explicitly declared column. Copy meta information from *pCol. 3224 */ 3225 if( pCol ){ 3226 zDataType = pCol->zType; 3227 zCollSeq = pCol->zColl; 3228 notnull = pCol->notNull!=0; 3229 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3230 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3231 }else{ 3232 zDataType = "INTEGER"; 3233 primarykey = 1; 3234 } 3235 if( !zCollSeq ){ 3236 zCollSeq = "BINARY"; 3237 } 3238 3239 error_out: 3240 sqlite3BtreeLeaveAll(db); 3241 3242 /* Whether the function call succeeded or failed, set the output parameters 3243 ** to whatever their local counterparts contain. If an error did occur, 3244 ** this has the effect of zeroing all output parameters. 3245 */ 3246 if( pzDataType ) *pzDataType = zDataType; 3247 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3248 if( pNotNull ) *pNotNull = notnull; 3249 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3250 if( pAutoinc ) *pAutoinc = autoinc; 3251 3252 if( SQLITE_OK==rc && !pTab ){ 3253 sqlite3DbFree(db, zErrMsg); 3254 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3255 zColumnName); 3256 rc = SQLITE_ERROR; 3257 } 3258 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3259 sqlite3DbFree(db, zErrMsg); 3260 rc = sqlite3ApiExit(db, rc); 3261 sqlite3_mutex_leave(db->mutex); 3262 return rc; 3263 } 3264 3265 /* 3266 ** Sleep for a little while. Return the amount of time slept. 3267 */ 3268 int sqlite3_sleep(int ms){ 3269 sqlite3_vfs *pVfs; 3270 int rc; 3271 pVfs = sqlite3_vfs_find(0); 3272 if( pVfs==0 ) return 0; 3273 3274 /* This function works in milliseconds, but the underlying OsSleep() 3275 ** API uses microseconds. Hence the 1000's. 3276 */ 3277 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3278 return rc; 3279 } 3280 3281 /* 3282 ** Enable or disable the extended result codes. 3283 */ 3284 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3285 #ifdef SQLITE_ENABLE_API_ARMOR 3286 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3287 #endif 3288 sqlite3_mutex_enter(db->mutex); 3289 db->errMask = onoff ? 0xffffffff : 0xff; 3290 sqlite3_mutex_leave(db->mutex); 3291 return SQLITE_OK; 3292 } 3293 3294 /* 3295 ** Invoke the xFileControl method on a particular database. 3296 */ 3297 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3298 int rc = SQLITE_ERROR; 3299 Btree *pBtree; 3300 3301 #ifdef SQLITE_ENABLE_API_ARMOR 3302 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3303 #endif 3304 sqlite3_mutex_enter(db->mutex); 3305 pBtree = sqlite3DbNameToBtree(db, zDbName); 3306 if( pBtree ){ 3307 Pager *pPager; 3308 sqlite3_file *fd; 3309 sqlite3BtreeEnter(pBtree); 3310 pPager = sqlite3BtreePager(pBtree); 3311 assert( pPager!=0 ); 3312 fd = sqlite3PagerFile(pPager); 3313 assert( fd!=0 ); 3314 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3315 *(sqlite3_file**)pArg = fd; 3316 rc = SQLITE_OK; 3317 }else if( fd->pMethods ){ 3318 rc = sqlite3OsFileControl(fd, op, pArg); 3319 }else{ 3320 rc = SQLITE_NOTFOUND; 3321 } 3322 sqlite3BtreeLeave(pBtree); 3323 } 3324 sqlite3_mutex_leave(db->mutex); 3325 return rc; 3326 } 3327 3328 /* 3329 ** Interface to the testing logic. 3330 */ 3331 int sqlite3_test_control(int op, ...){ 3332 int rc = 0; 3333 #ifndef SQLITE_OMIT_BUILTIN_TEST 3334 va_list ap; 3335 va_start(ap, op); 3336 switch( op ){ 3337 3338 /* 3339 ** Save the current state of the PRNG. 3340 */ 3341 case SQLITE_TESTCTRL_PRNG_SAVE: { 3342 sqlite3PrngSaveState(); 3343 break; 3344 } 3345 3346 /* 3347 ** Restore the state of the PRNG to the last state saved using 3348 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3349 ** this verb acts like PRNG_RESET. 3350 */ 3351 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3352 sqlite3PrngRestoreState(); 3353 break; 3354 } 3355 3356 /* 3357 ** Reset the PRNG back to its uninitialized state. The next call 3358 ** to sqlite3_randomness() will reseed the PRNG using a single call 3359 ** to the xRandomness method of the default VFS. 3360 */ 3361 case SQLITE_TESTCTRL_PRNG_RESET: { 3362 sqlite3_randomness(0,0); 3363 break; 3364 } 3365 3366 /* 3367 ** sqlite3_test_control(BITVEC_TEST, size, program) 3368 ** 3369 ** Run a test against a Bitvec object of size. The program argument 3370 ** is an array of integers that defines the test. Return -1 on a 3371 ** memory allocation error, 0 on success, or non-zero for an error. 3372 ** See the sqlite3BitvecBuiltinTest() for additional information. 3373 */ 3374 case SQLITE_TESTCTRL_BITVEC_TEST: { 3375 int sz = va_arg(ap, int); 3376 int *aProg = va_arg(ap, int*); 3377 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3378 break; 3379 } 3380 3381 /* 3382 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 3383 ** 3384 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 3385 ** if xCallback is not NULL. 3386 ** 3387 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 3388 ** is called immediately after installing the new callback and the return 3389 ** value from sqlite3FaultSim(0) becomes the return from 3390 ** sqlite3_test_control(). 3391 */ 3392 case SQLITE_TESTCTRL_FAULT_INSTALL: { 3393 /* MSVC is picky about pulling func ptrs from va lists. 3394 ** http://support.microsoft.com/kb/47961 3395 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 3396 */ 3397 typedef int(*TESTCALLBACKFUNC_t)(int); 3398 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 3399 rc = sqlite3FaultSim(0); 3400 break; 3401 } 3402 3403 /* 3404 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3405 ** 3406 ** Register hooks to call to indicate which malloc() failures 3407 ** are benign. 3408 */ 3409 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3410 typedef void (*void_function)(void); 3411 void_function xBenignBegin; 3412 void_function xBenignEnd; 3413 xBenignBegin = va_arg(ap, void_function); 3414 xBenignEnd = va_arg(ap, void_function); 3415 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3416 break; 3417 } 3418 3419 /* 3420 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3421 ** 3422 ** Set the PENDING byte to the value in the argument, if X>0. 3423 ** Make no changes if X==0. Return the value of the pending byte 3424 ** as it existing before this routine was called. 3425 ** 3426 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3427 ** an incompatible database file format. Changing the PENDING byte 3428 ** while any database connection is open results in undefined and 3429 ** deleterious behavior. 3430 */ 3431 case SQLITE_TESTCTRL_PENDING_BYTE: { 3432 rc = PENDING_BYTE; 3433 #ifndef SQLITE_OMIT_WSD 3434 { 3435 unsigned int newVal = va_arg(ap, unsigned int); 3436 if( newVal ) sqlite3PendingByte = newVal; 3437 } 3438 #endif 3439 break; 3440 } 3441 3442 /* 3443 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3444 ** 3445 ** This action provides a run-time test to see whether or not 3446 ** assert() was enabled at compile-time. If X is true and assert() 3447 ** is enabled, then the return value is true. If X is true and 3448 ** assert() is disabled, then the return value is zero. If X is 3449 ** false and assert() is enabled, then the assertion fires and the 3450 ** process aborts. If X is false and assert() is disabled, then the 3451 ** return value is zero. 3452 */ 3453 case SQLITE_TESTCTRL_ASSERT: { 3454 volatile int x = 0; 3455 assert( (x = va_arg(ap,int))!=0 ); 3456 rc = x; 3457 break; 3458 } 3459 3460 3461 /* 3462 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3463 ** 3464 ** This action provides a run-time test to see how the ALWAYS and 3465 ** NEVER macros were defined at compile-time. 3466 ** 3467 ** The return value is ALWAYS(X). 3468 ** 3469 ** The recommended test is X==2. If the return value is 2, that means 3470 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3471 ** default setting. If the return value is 1, then ALWAYS() is either 3472 ** hard-coded to true or else it asserts if its argument is false. 3473 ** The first behavior (hard-coded to true) is the case if 3474 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3475 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3476 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3477 ** 3478 ** The run-time test procedure might look something like this: 3479 ** 3480 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3481 ** // ALWAYS() and NEVER() are no-op pass-through macros 3482 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3483 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3484 ** }else{ 3485 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3486 ** } 3487 */ 3488 case SQLITE_TESTCTRL_ALWAYS: { 3489 int x = va_arg(ap,int); 3490 rc = ALWAYS(x); 3491 break; 3492 } 3493 3494 /* 3495 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 3496 ** 3497 ** The integer returned reveals the byte-order of the computer on which 3498 ** SQLite is running: 3499 ** 3500 ** 1 big-endian, determined at run-time 3501 ** 10 little-endian, determined at run-time 3502 ** 432101 big-endian, determined at compile-time 3503 ** 123410 little-endian, determined at compile-time 3504 */ 3505 case SQLITE_TESTCTRL_BYTEORDER: { 3506 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 3507 break; 3508 } 3509 3510 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3511 ** 3512 ** Set the nReserve size to N for the main database on the database 3513 ** connection db. 3514 */ 3515 case SQLITE_TESTCTRL_RESERVE: { 3516 sqlite3 *db = va_arg(ap, sqlite3*); 3517 int x = va_arg(ap,int); 3518 sqlite3_mutex_enter(db->mutex); 3519 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3520 sqlite3_mutex_leave(db->mutex); 3521 break; 3522 } 3523 3524 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3525 ** 3526 ** Enable or disable various optimizations for testing purposes. The 3527 ** argument N is a bitmask of optimizations to be disabled. For normal 3528 ** operation N should be 0. The idea is that a test program (like the 3529 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3530 ** with various optimizations disabled to verify that the same answer 3531 ** is obtained in every case. 3532 */ 3533 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3534 sqlite3 *db = va_arg(ap, sqlite3*); 3535 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3536 break; 3537 } 3538 3539 #ifdef SQLITE_N_KEYWORD 3540 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3541 ** 3542 ** If zWord is a keyword recognized by the parser, then return the 3543 ** number of keywords. Or if zWord is not a keyword, return 0. 3544 ** 3545 ** This test feature is only available in the amalgamation since 3546 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3547 ** is built using separate source files. 3548 */ 3549 case SQLITE_TESTCTRL_ISKEYWORD: { 3550 const char *zWord = va_arg(ap, const char*); 3551 int n = sqlite3Strlen30(zWord); 3552 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3553 break; 3554 } 3555 #endif 3556 3557 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3558 ** 3559 ** Pass pFree into sqlite3ScratchFree(). 3560 ** If sz>0 then allocate a scratch buffer into pNew. 3561 */ 3562 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3563 void *pFree, **ppNew; 3564 int sz; 3565 sz = va_arg(ap, int); 3566 ppNew = va_arg(ap, void**); 3567 pFree = va_arg(ap, void*); 3568 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3569 sqlite3ScratchFree(pFree); 3570 break; 3571 } 3572 3573 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3574 ** 3575 ** If parameter onoff is non-zero, configure the wrappers so that all 3576 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3577 ** undo this setting. 3578 */ 3579 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3580 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3581 break; 3582 } 3583 3584 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 3585 ** 3586 ** Set or clear a flag that indicates that the database file is always well- 3587 ** formed and never corrupt. This flag is clear by default, indicating that 3588 ** database files might have arbitrary corruption. Setting the flag during 3589 ** testing causes certain assert() statements in the code to be activated 3590 ** that demonstrat invariants on well-formed database files. 3591 */ 3592 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 3593 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 3594 break; 3595 } 3596 3597 3598 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 3599 ** 3600 ** Set the VDBE coverage callback function to xCallback with context 3601 ** pointer ptr. 3602 */ 3603 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 3604 #ifdef SQLITE_VDBE_COVERAGE 3605 typedef void (*branch_callback)(void*,int,u8,u8); 3606 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 3607 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 3608 #endif 3609 break; 3610 } 3611 3612 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 3613 case SQLITE_TESTCTRL_SORTER_MMAP: { 3614 sqlite3 *db = va_arg(ap, sqlite3*); 3615 db->nMaxSorterMmap = va_arg(ap, int); 3616 break; 3617 } 3618 3619 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 3620 ** 3621 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 3622 ** not. 3623 */ 3624 case SQLITE_TESTCTRL_ISINIT: { 3625 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 3626 break; 3627 } 3628 3629 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 3630 ** 3631 ** This test control is used to create imposter tables. "db" is a pointer 3632 ** to the database connection. dbName is the database name (ex: "main" or 3633 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 3634 ** or off. "tnum" is the root page of the b-tree to which the imposter 3635 ** table should connect. 3636 ** 3637 ** Enable imposter mode only when the schema has already been parsed. Then 3638 ** run a single CREATE TABLE statement to construct the imposter table in 3639 ** the parsed schema. Then turn imposter mode back off again. 3640 ** 3641 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 3642 ** the schema to be reparsed the next time it is needed. This has the 3643 ** effect of erasing all imposter tables. 3644 */ 3645 case SQLITE_TESTCTRL_IMPOSTER: { 3646 sqlite3 *db = va_arg(ap, sqlite3*); 3647 sqlite3_mutex_enter(db->mutex); 3648 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 3649 db->init.busy = db->init.imposterTable = va_arg(ap,int); 3650 db->init.newTnum = va_arg(ap,int); 3651 if( db->init.busy==0 && db->init.newTnum>0 ){ 3652 sqlite3ResetAllSchemasOfConnection(db); 3653 } 3654 sqlite3_mutex_leave(db->mutex); 3655 break; 3656 } 3657 } 3658 va_end(ap); 3659 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3660 return rc; 3661 } 3662 3663 /* 3664 ** This is a utility routine, useful to VFS implementations, that checks 3665 ** to see if a database file was a URI that contained a specific query 3666 ** parameter, and if so obtains the value of the query parameter. 3667 ** 3668 ** The zFilename argument is the filename pointer passed into the xOpen() 3669 ** method of a VFS implementation. The zParam argument is the name of the 3670 ** query parameter we seek. This routine returns the value of the zParam 3671 ** parameter if it exists. If the parameter does not exist, this routine 3672 ** returns a NULL pointer. 3673 */ 3674 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3675 if( zFilename==0 || zParam==0 ) return 0; 3676 zFilename += sqlite3Strlen30(zFilename) + 1; 3677 while( zFilename[0] ){ 3678 int x = strcmp(zFilename, zParam); 3679 zFilename += sqlite3Strlen30(zFilename) + 1; 3680 if( x==0 ) return zFilename; 3681 zFilename += sqlite3Strlen30(zFilename) + 1; 3682 } 3683 return 0; 3684 } 3685 3686 /* 3687 ** Return a boolean value for a query parameter. 3688 */ 3689 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3690 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3691 bDflt = bDflt!=0; 3692 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3693 } 3694 3695 /* 3696 ** Return a 64-bit integer value for a query parameter. 3697 */ 3698 sqlite3_int64 sqlite3_uri_int64( 3699 const char *zFilename, /* Filename as passed to xOpen */ 3700 const char *zParam, /* URI parameter sought */ 3701 sqlite3_int64 bDflt /* return if parameter is missing */ 3702 ){ 3703 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3704 sqlite3_int64 v; 3705 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 3706 bDflt = v; 3707 } 3708 return bDflt; 3709 } 3710 3711 /* 3712 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3713 */ 3714 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3715 int i; 3716 for(i=0; i<db->nDb; i++){ 3717 if( db->aDb[i].pBt 3718 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3719 ){ 3720 return db->aDb[i].pBt; 3721 } 3722 } 3723 return 0; 3724 } 3725 3726 /* 3727 ** Return the filename of the database associated with a database 3728 ** connection. 3729 */ 3730 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3731 Btree *pBt; 3732 #ifdef SQLITE_ENABLE_API_ARMOR 3733 if( !sqlite3SafetyCheckOk(db) ){ 3734 (void)SQLITE_MISUSE_BKPT; 3735 return 0; 3736 } 3737 #endif 3738 pBt = sqlite3DbNameToBtree(db, zDbName); 3739 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3740 } 3741 3742 /* 3743 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3744 ** no such database exists. 3745 */ 3746 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3747 Btree *pBt; 3748 #ifdef SQLITE_ENABLE_API_ARMOR 3749 if( !sqlite3SafetyCheckOk(db) ){ 3750 (void)SQLITE_MISUSE_BKPT; 3751 return -1; 3752 } 3753 #endif 3754 pBt = sqlite3DbNameToBtree(db, zDbName); 3755 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 3756 } 3757