xref: /sqlite-3.40.0/src/main.c (revision a9cfaba9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Main file for the SQLite library.  The routines in this file
13 ** implement the programmer interface to the library.  Routines in
14 ** other files are for internal use by SQLite and should not be
15 ** accessed by users of the library.
16 */
17 #include "sqliteInt.h"
18 
19 #ifdef SQLITE_ENABLE_FTS3
20 # include "fts3.h"
21 #endif
22 #ifdef SQLITE_ENABLE_RTREE
23 # include "rtree.h"
24 #endif
25 #ifdef SQLITE_ENABLE_ICU
26 # include "sqliteicu.h"
27 #endif
28 
29 #ifndef SQLITE_AMALGAMATION
30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
31 ** contains the text of SQLITE_VERSION macro.
32 */
33 const char sqlite3_version[] = SQLITE_VERSION;
34 #endif
35 
36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
37 ** a pointer to the to the sqlite3_version[] string constant.
38 */
39 const char *sqlite3_libversion(void){ return sqlite3_version; }
40 
41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
42 ** pointer to a string constant whose value is the same as the
43 ** SQLITE_SOURCE_ID C preprocessor macro.
44 */
45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
46 
47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
48 ** returns an integer equal to SQLITE_VERSION_NUMBER.
49 */
50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
51 
52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
53 ** zero if and only if SQLite was compiled with mutexing code omitted due to
54 ** the SQLITE_THREADSAFE compile-time option being set to 0.
55 */
56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
57 
58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
59 /*
60 ** If the following function pointer is not NULL and if
61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
62 ** I/O active are written using this function.  These messages
63 ** are intended for debugging activity only.
64 */
65 void (*sqlite3IoTrace)(const char*, ...) = 0;
66 #endif
67 
68 /*
69 ** If the following global variable points to a string which is the
70 ** name of a directory, then that directory will be used to store
71 ** temporary files.
72 **
73 ** See also the "PRAGMA temp_store_directory" SQL command.
74 */
75 char *sqlite3_temp_directory = 0;
76 
77 /*
78 ** Initialize SQLite.
79 **
80 ** This routine must be called to initialize the memory allocation,
81 ** VFS, and mutex subsystems prior to doing any serious work with
82 ** SQLite.  But as long as you do not compile with SQLITE_OMIT_AUTOINIT
83 ** this routine will be called automatically by key routines such as
84 ** sqlite3_open().
85 **
86 ** This routine is a no-op except on its very first call for the process,
87 ** or for the first call after a call to sqlite3_shutdown.
88 **
89 ** The first thread to call this routine runs the initialization to
90 ** completion.  If subsequent threads call this routine before the first
91 ** thread has finished the initialization process, then the subsequent
92 ** threads must block until the first thread finishes with the initialization.
93 **
94 ** The first thread might call this routine recursively.  Recursive
95 ** calls to this routine should not block, of course.  Otherwise the
96 ** initialization process would never complete.
97 **
98 ** Let X be the first thread to enter this routine.  Let Y be some other
99 ** thread.  Then while the initial invocation of this routine by X is
100 ** incomplete, it is required that:
101 **
102 **    *  Calls to this routine from Y must block until the outer-most
103 **       call by X completes.
104 **
105 **    *  Recursive calls to this routine from thread X return immediately
106 **       without blocking.
107 */
108 int sqlite3_initialize(void){
109   MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
110   int rc;                                      /* Result code */
111 
112 #ifdef SQLITE_OMIT_WSD
113   rc = sqlite3_wsd_init(4096, 24);
114   if( rc!=SQLITE_OK ){
115     return rc;
116   }
117 #endif
118 
119   /* If SQLite is already completely initialized, then this call
120   ** to sqlite3_initialize() should be a no-op.  But the initialization
121   ** must be complete.  So isInit must not be set until the very end
122   ** of this routine.
123   */
124   if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
125 
126   /* Make sure the mutex subsystem is initialized.  If unable to
127   ** initialize the mutex subsystem, return early with the error.
128   ** If the system is so sick that we are unable to allocate a mutex,
129   ** there is not much SQLite is going to be able to do.
130   **
131   ** The mutex subsystem must take care of serializing its own
132   ** initialization.
133   */
134   rc = sqlite3MutexInit();
135   if( rc ) return rc;
136 
137   /* Initialize the malloc() system and the recursive pInitMutex mutex.
138   ** This operation is protected by the STATIC_MASTER mutex.  Note that
139   ** MutexAlloc() is called for a static mutex prior to initializing the
140   ** malloc subsystem - this implies that the allocation of a static
141   ** mutex must not require support from the malloc subsystem.
142   */
143   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
144   sqlite3_mutex_enter(pMaster);
145   sqlite3GlobalConfig.isMutexInit = 1;
146   if( !sqlite3GlobalConfig.isMallocInit ){
147     rc = sqlite3MallocInit();
148   }
149   if( rc==SQLITE_OK ){
150     sqlite3GlobalConfig.isMallocInit = 1;
151     if( !sqlite3GlobalConfig.pInitMutex ){
152       sqlite3GlobalConfig.pInitMutex =
153            sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
154       if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
155         rc = SQLITE_NOMEM;
156       }
157     }
158   }
159   if( rc==SQLITE_OK ){
160     sqlite3GlobalConfig.nRefInitMutex++;
161   }
162   sqlite3_mutex_leave(pMaster);
163 
164   /* If rc is not SQLITE_OK at this point, then either the malloc
165   ** subsystem could not be initialized or the system failed to allocate
166   ** the pInitMutex mutex. Return an error in either case.  */
167   if( rc!=SQLITE_OK ){
168     return rc;
169   }
170 
171   /* Do the rest of the initialization under the recursive mutex so
172   ** that we will be able to handle recursive calls into
173   ** sqlite3_initialize().  The recursive calls normally come through
174   ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
175   ** recursive calls might also be possible.
176   **
177   ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
178   ** to the xInit method, so the xInit method need not be threadsafe.
179   **
180   ** The following mutex is what serializes access to the appdef pcache xInit
181   ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
182   ** call to sqlite3PcacheInitialize().
183   */
184   sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
185   if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
186     FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
187     sqlite3GlobalConfig.inProgress = 1;
188     memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
189     sqlite3RegisterGlobalFunctions();
190     if( sqlite3GlobalConfig.isPCacheInit==0 ){
191       rc = sqlite3PcacheInitialize();
192     }
193     if( rc==SQLITE_OK ){
194       sqlite3GlobalConfig.isPCacheInit = 1;
195       rc = sqlite3OsInit();
196     }
197     if( rc==SQLITE_OK ){
198       sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
199           sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
200       sqlite3GlobalConfig.isInit = 1;
201     }
202     sqlite3GlobalConfig.inProgress = 0;
203   }
204   sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
205 
206   /* Go back under the static mutex and clean up the recursive
207   ** mutex to prevent a resource leak.
208   */
209   sqlite3_mutex_enter(pMaster);
210   sqlite3GlobalConfig.nRefInitMutex--;
211   if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
212     assert( sqlite3GlobalConfig.nRefInitMutex==0 );
213     sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
214     sqlite3GlobalConfig.pInitMutex = 0;
215   }
216   sqlite3_mutex_leave(pMaster);
217 
218   /* The following is just a sanity check to make sure SQLite has
219   ** been compiled correctly.  It is important to run this code, but
220   ** we don't want to run it too often and soak up CPU cycles for no
221   ** reason.  So we run it once during initialization.
222   */
223 #ifndef NDEBUG
224 #ifndef SQLITE_OMIT_FLOATING_POINT
225   /* This section of code's only "output" is via assert() statements. */
226   if ( rc==SQLITE_OK ){
227     u64 x = (((u64)1)<<63)-1;
228     double y;
229     assert(sizeof(x)==8);
230     assert(sizeof(x)==sizeof(y));
231     memcpy(&y, &x, 8);
232     assert( sqlite3IsNaN(y) );
233   }
234 #endif
235 #endif
236 
237   /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
238   ** compile-time option.
239   */
240 #ifdef SQLITE_EXTRA_INIT
241   if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){
242     int SQLITE_EXTRA_INIT(const char*);
243     rc = SQLITE_EXTRA_INIT(0);
244   }
245 #endif
246 
247   return rc;
248 }
249 
250 /*
251 ** Undo the effects of sqlite3_initialize().  Must not be called while
252 ** there are outstanding database connections or memory allocations or
253 ** while any part of SQLite is otherwise in use in any thread.  This
254 ** routine is not threadsafe.  But it is safe to invoke this routine
255 ** on when SQLite is already shut down.  If SQLite is already shut down
256 ** when this routine is invoked, then this routine is a harmless no-op.
257 */
258 int sqlite3_shutdown(void){
259   if( sqlite3GlobalConfig.isInit ){
260 #ifdef SQLITE_EXTRA_SHUTDOWN
261     void SQLITE_EXTRA_SHUTDOWN(void);
262     SQLITE_EXTRA_SHUTDOWN();
263 #endif
264     sqlite3_os_end();
265     sqlite3_reset_auto_extension();
266     sqlite3GlobalConfig.isInit = 0;
267   }
268   if( sqlite3GlobalConfig.isPCacheInit ){
269     sqlite3PcacheShutdown();
270     sqlite3GlobalConfig.isPCacheInit = 0;
271   }
272   if( sqlite3GlobalConfig.isMallocInit ){
273     sqlite3MallocEnd();
274     sqlite3GlobalConfig.isMallocInit = 0;
275   }
276   if( sqlite3GlobalConfig.isMutexInit ){
277     sqlite3MutexEnd();
278     sqlite3GlobalConfig.isMutexInit = 0;
279   }
280 
281   return SQLITE_OK;
282 }
283 
284 /*
285 ** This API allows applications to modify the global configuration of
286 ** the SQLite library at run-time.
287 **
288 ** This routine should only be called when there are no outstanding
289 ** database connections or memory allocations.  This routine is not
290 ** threadsafe.  Failure to heed these warnings can lead to unpredictable
291 ** behavior.
292 */
293 int sqlite3_config(int op, ...){
294   va_list ap;
295   int rc = SQLITE_OK;
296 
297   /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
298   ** the SQLite library is in use. */
299   if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
300 
301   va_start(ap, op);
302   switch( op ){
303 
304     /* Mutex configuration options are only available in a threadsafe
305     ** compile.
306     */
307 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
308     case SQLITE_CONFIG_SINGLETHREAD: {
309       /* Disable all mutexing */
310       sqlite3GlobalConfig.bCoreMutex = 0;
311       sqlite3GlobalConfig.bFullMutex = 0;
312       break;
313     }
314     case SQLITE_CONFIG_MULTITHREAD: {
315       /* Disable mutexing of database connections */
316       /* Enable mutexing of core data structures */
317       sqlite3GlobalConfig.bCoreMutex = 1;
318       sqlite3GlobalConfig.bFullMutex = 0;
319       break;
320     }
321     case SQLITE_CONFIG_SERIALIZED: {
322       /* Enable all mutexing */
323       sqlite3GlobalConfig.bCoreMutex = 1;
324       sqlite3GlobalConfig.bFullMutex = 1;
325       break;
326     }
327     case SQLITE_CONFIG_MUTEX: {
328       /* Specify an alternative mutex implementation */
329       sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
330       break;
331     }
332     case SQLITE_CONFIG_GETMUTEX: {
333       /* Retrieve the current mutex implementation */
334       *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
335       break;
336     }
337 #endif
338 
339 
340     case SQLITE_CONFIG_MALLOC: {
341       /* Specify an alternative malloc implementation */
342       sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
343       break;
344     }
345     case SQLITE_CONFIG_GETMALLOC: {
346       /* Retrieve the current malloc() implementation */
347       if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
348       *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
349       break;
350     }
351     case SQLITE_CONFIG_MEMSTATUS: {
352       /* Enable or disable the malloc status collection */
353       sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
354       break;
355     }
356     case SQLITE_CONFIG_SCRATCH: {
357       /* Designate a buffer for scratch memory space */
358       sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
359       sqlite3GlobalConfig.szScratch = va_arg(ap, int);
360       sqlite3GlobalConfig.nScratch = va_arg(ap, int);
361       break;
362     }
363     case SQLITE_CONFIG_PAGECACHE: {
364       /* Designate a buffer for page cache memory space */
365       sqlite3GlobalConfig.pPage = va_arg(ap, void*);
366       sqlite3GlobalConfig.szPage = va_arg(ap, int);
367       sqlite3GlobalConfig.nPage = va_arg(ap, int);
368       break;
369     }
370 
371     case SQLITE_CONFIG_PCACHE: {
372       /* no-op */
373       break;
374     }
375     case SQLITE_CONFIG_GETPCACHE: {
376       /* now an error */
377       rc = SQLITE_ERROR;
378       break;
379     }
380 
381     case SQLITE_CONFIG_PCACHE2: {
382       /* Specify an alternative page cache implementation */
383       sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
384       break;
385     }
386     case SQLITE_CONFIG_GETPCACHE2: {
387       if( sqlite3GlobalConfig.pcache2.xInit==0 ){
388         sqlite3PCacheSetDefault();
389       }
390       *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
391       break;
392     }
393 
394 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
395     case SQLITE_CONFIG_HEAP: {
396       /* Designate a buffer for heap memory space */
397       sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
398       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
399       sqlite3GlobalConfig.mnReq = va_arg(ap, int);
400 
401       if( sqlite3GlobalConfig.mnReq<1 ){
402         sqlite3GlobalConfig.mnReq = 1;
403       }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
404         /* cap min request size at 2^12 */
405         sqlite3GlobalConfig.mnReq = (1<<12);
406       }
407 
408       if( sqlite3GlobalConfig.pHeap==0 ){
409         /* If the heap pointer is NULL, then restore the malloc implementation
410         ** back to NULL pointers too.  This will cause the malloc to go
411         ** back to its default implementation when sqlite3_initialize() is
412         ** run.
413         */
414         memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
415       }else{
416         /* The heap pointer is not NULL, then install one of the
417         ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
418         ** ENABLE_MEMSYS5 is defined, return an error.
419         */
420 #ifdef SQLITE_ENABLE_MEMSYS3
421         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
422 #endif
423 #ifdef SQLITE_ENABLE_MEMSYS5
424         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
425 #endif
426       }
427       break;
428     }
429 #endif
430 
431     case SQLITE_CONFIG_LOOKASIDE: {
432       sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
433       sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
434       break;
435     }
436 
437     /* Record a pointer to the logger funcction and its first argument.
438     ** The default is NULL.  Logging is disabled if the function pointer is
439     ** NULL.
440     */
441     case SQLITE_CONFIG_LOG: {
442       /* MSVC is picky about pulling func ptrs from va lists.
443       ** http://support.microsoft.com/kb/47961
444       ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
445       */
446       typedef void(*LOGFUNC_t)(void*,int,const char*);
447       sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
448       sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
449       break;
450     }
451 
452     case SQLITE_CONFIG_URI: {
453       sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
454       break;
455     }
456 
457     default: {
458       rc = SQLITE_ERROR;
459       break;
460     }
461   }
462   va_end(ap);
463   return rc;
464 }
465 
466 /*
467 ** Set up the lookaside buffers for a database connection.
468 ** Return SQLITE_OK on success.
469 ** If lookaside is already active, return SQLITE_BUSY.
470 **
471 ** The sz parameter is the number of bytes in each lookaside slot.
472 ** The cnt parameter is the number of slots.  If pStart is NULL the
473 ** space for the lookaside memory is obtained from sqlite3_malloc().
474 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for
475 ** the lookaside memory.
476 */
477 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
478   void *pStart;
479   if( db->lookaside.nOut ){
480     return SQLITE_BUSY;
481   }
482   /* Free any existing lookaside buffer for this handle before
483   ** allocating a new one so we don't have to have space for
484   ** both at the same time.
485   */
486   if( db->lookaside.bMalloced ){
487     sqlite3_free(db->lookaside.pStart);
488   }
489   /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
490   ** than a pointer to be useful.
491   */
492   sz = ROUNDDOWN8(sz);  /* IMP: R-33038-09382 */
493   if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
494   if( cnt<0 ) cnt = 0;
495   if( sz==0 || cnt==0 ){
496     sz = 0;
497     pStart = 0;
498   }else if( pBuf==0 ){
499     sqlite3BeginBenignMalloc();
500     pStart = sqlite3Malloc( sz*cnt );  /* IMP: R-61949-35727 */
501     sqlite3EndBenignMalloc();
502     if( pStart ) cnt = sqlite3MallocSize(pStart)/sz;
503   }else{
504     pStart = pBuf;
505   }
506   db->lookaside.pStart = pStart;
507   db->lookaside.pFree = 0;
508   db->lookaside.sz = (u16)sz;
509   if( pStart ){
510     int i;
511     LookasideSlot *p;
512     assert( sz > (int)sizeof(LookasideSlot*) );
513     p = (LookasideSlot*)pStart;
514     for(i=cnt-1; i>=0; i--){
515       p->pNext = db->lookaside.pFree;
516       db->lookaside.pFree = p;
517       p = (LookasideSlot*)&((u8*)p)[sz];
518     }
519     db->lookaside.pEnd = p;
520     db->lookaside.bEnabled = 1;
521     db->lookaside.bMalloced = pBuf==0 ?1:0;
522   }else{
523     db->lookaside.pEnd = 0;
524     db->lookaside.bEnabled = 0;
525     db->lookaside.bMalloced = 0;
526   }
527   return SQLITE_OK;
528 }
529 
530 /*
531 ** Return the mutex associated with a database connection.
532 */
533 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
534   return db->mutex;
535 }
536 
537 /*
538 ** Free up as much memory as we can from the given database
539 ** connection.
540 */
541 int sqlite3_db_release_memory(sqlite3 *db){
542   int i;
543   sqlite3_mutex_enter(db->mutex);
544   sqlite3BtreeEnterAll(db);
545   for(i=0; i<db->nDb; i++){
546     Btree *pBt = db->aDb[i].pBt;
547     if( pBt ){
548       Pager *pPager = sqlite3BtreePager(pBt);
549       sqlite3PagerShrink(pPager);
550     }
551   }
552   sqlite3BtreeLeaveAll(db);
553   sqlite3_mutex_leave(db->mutex);
554   return SQLITE_OK;
555 }
556 
557 /*
558 ** Configuration settings for an individual database connection
559 */
560 int sqlite3_db_config(sqlite3 *db, int op, ...){
561   va_list ap;
562   int rc;
563   va_start(ap, op);
564   switch( op ){
565     case SQLITE_DBCONFIG_LOOKASIDE: {
566       void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
567       int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
568       int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
569       rc = setupLookaside(db, pBuf, sz, cnt);
570       break;
571     }
572     default: {
573       static const struct {
574         int op;      /* The opcode */
575         u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
576       } aFlagOp[] = {
577         { SQLITE_DBCONFIG_ENABLE_FKEY,    SQLITE_ForeignKeys    },
578         { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger  },
579       };
580       unsigned int i;
581       rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
582       for(i=0; i<ArraySize(aFlagOp); i++){
583         if( aFlagOp[i].op==op ){
584           int onoff = va_arg(ap, int);
585           int *pRes = va_arg(ap, int*);
586           int oldFlags = db->flags;
587           if( onoff>0 ){
588             db->flags |= aFlagOp[i].mask;
589           }else if( onoff==0 ){
590             db->flags &= ~aFlagOp[i].mask;
591           }
592           if( oldFlags!=db->flags ){
593             sqlite3ExpirePreparedStatements(db);
594           }
595           if( pRes ){
596             *pRes = (db->flags & aFlagOp[i].mask)!=0;
597           }
598           rc = SQLITE_OK;
599           break;
600         }
601       }
602       break;
603     }
604   }
605   va_end(ap);
606   return rc;
607 }
608 
609 
610 /*
611 ** Return true if the buffer z[0..n-1] contains all spaces.
612 */
613 static int allSpaces(const char *z, int n){
614   while( n>0 && z[n-1]==' ' ){ n--; }
615   return n==0;
616 }
617 
618 /*
619 ** This is the default collating function named "BINARY" which is always
620 ** available.
621 **
622 ** If the padFlag argument is not NULL then space padding at the end
623 ** of strings is ignored.  This implements the RTRIM collation.
624 */
625 static int binCollFunc(
626   void *padFlag,
627   int nKey1, const void *pKey1,
628   int nKey2, const void *pKey2
629 ){
630   int rc, n;
631   n = nKey1<nKey2 ? nKey1 : nKey2;
632   rc = memcmp(pKey1, pKey2, n);
633   if( rc==0 ){
634     if( padFlag
635      && allSpaces(((char*)pKey1)+n, nKey1-n)
636      && allSpaces(((char*)pKey2)+n, nKey2-n)
637     ){
638       /* Leave rc unchanged at 0 */
639     }else{
640       rc = nKey1 - nKey2;
641     }
642   }
643   return rc;
644 }
645 
646 /*
647 ** Another built-in collating sequence: NOCASE.
648 **
649 ** This collating sequence is intended to be used for "case independant
650 ** comparison". SQLite's knowledge of upper and lower case equivalents
651 ** extends only to the 26 characters used in the English language.
652 **
653 ** At the moment there is only a UTF-8 implementation.
654 */
655 static int nocaseCollatingFunc(
656   void *NotUsed,
657   int nKey1, const void *pKey1,
658   int nKey2, const void *pKey2
659 ){
660   int r = sqlite3StrNICmp(
661       (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
662   UNUSED_PARAMETER(NotUsed);
663   if( 0==r ){
664     r = nKey1-nKey2;
665   }
666   return r;
667 }
668 
669 /*
670 ** Return the ROWID of the most recent insert
671 */
672 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
673   return db->lastRowid;
674 }
675 
676 /*
677 ** Return the number of changes in the most recent call to sqlite3_exec().
678 */
679 int sqlite3_changes(sqlite3 *db){
680   return db->nChange;
681 }
682 
683 /*
684 ** Return the number of changes since the database handle was opened.
685 */
686 int sqlite3_total_changes(sqlite3 *db){
687   return db->nTotalChange;
688 }
689 
690 /*
691 ** Close all open savepoints. This function only manipulates fields of the
692 ** database handle object, it does not close any savepoints that may be open
693 ** at the b-tree/pager level.
694 */
695 void sqlite3CloseSavepoints(sqlite3 *db){
696   while( db->pSavepoint ){
697     Savepoint *pTmp = db->pSavepoint;
698     db->pSavepoint = pTmp->pNext;
699     sqlite3DbFree(db, pTmp);
700   }
701   db->nSavepoint = 0;
702   db->nStatement = 0;
703   db->isTransactionSavepoint = 0;
704 }
705 
706 /*
707 ** Invoke the destructor function associated with FuncDef p, if any. Except,
708 ** if this is not the last copy of the function, do not invoke it. Multiple
709 ** copies of a single function are created when create_function() is called
710 ** with SQLITE_ANY as the encoding.
711 */
712 static void functionDestroy(sqlite3 *db, FuncDef *p){
713   FuncDestructor *pDestructor = p->pDestructor;
714   if( pDestructor ){
715     pDestructor->nRef--;
716     if( pDestructor->nRef==0 ){
717       pDestructor->xDestroy(pDestructor->pUserData);
718       sqlite3DbFree(db, pDestructor);
719     }
720   }
721 }
722 
723 /*
724 ** Close an existing SQLite database
725 */
726 int sqlite3_close(sqlite3 *db){
727   HashElem *i;                    /* Hash table iterator */
728   int j;
729 
730   if( !db ){
731     return SQLITE_OK;
732   }
733   if( !sqlite3SafetyCheckSickOrOk(db) ){
734     return SQLITE_MISUSE_BKPT;
735   }
736   sqlite3_mutex_enter(db->mutex);
737 
738   /* Force xDestroy calls on all virtual tables */
739   sqlite3ResetInternalSchema(db, -1);
740 
741   /* If a transaction is open, the ResetInternalSchema() call above
742   ** will not have called the xDisconnect() method on any virtual
743   ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
744   ** call will do so. We need to do this before the check for active
745   ** SQL statements below, as the v-table implementation may be storing
746   ** some prepared statements internally.
747   */
748   sqlite3VtabRollback(db);
749 
750   /* If there are any outstanding VMs, return SQLITE_BUSY. */
751   if( db->pVdbe ){
752     sqlite3Error(db, SQLITE_BUSY,
753         "unable to close due to unfinalised statements");
754     sqlite3_mutex_leave(db->mutex);
755     return SQLITE_BUSY;
756   }
757   assert( sqlite3SafetyCheckSickOrOk(db) );
758 
759   for(j=0; j<db->nDb; j++){
760     Btree *pBt = db->aDb[j].pBt;
761     if( pBt && sqlite3BtreeIsInBackup(pBt) ){
762       sqlite3Error(db, SQLITE_BUSY,
763           "unable to close due to unfinished backup operation");
764       sqlite3_mutex_leave(db->mutex);
765       return SQLITE_BUSY;
766     }
767   }
768 
769   /* Free any outstanding Savepoint structures. */
770   sqlite3CloseSavepoints(db);
771 
772   for(j=0; j<db->nDb; j++){
773     struct Db *pDb = &db->aDb[j];
774     if( pDb->pBt ){
775       sqlite3BtreeClose(pDb->pBt);
776       pDb->pBt = 0;
777       if( j!=1 ){
778         pDb->pSchema = 0;
779       }
780     }
781   }
782   sqlite3ResetInternalSchema(db, -1);
783 
784   /* Tell the code in notify.c that the connection no longer holds any
785   ** locks and does not require any further unlock-notify callbacks.
786   */
787   sqlite3ConnectionClosed(db);
788 
789   assert( db->nDb<=2 );
790   assert( db->aDb==db->aDbStatic );
791   for(j=0; j<ArraySize(db->aFunc.a); j++){
792     FuncDef *pNext, *pHash, *p;
793     for(p=db->aFunc.a[j]; p; p=pHash){
794       pHash = p->pHash;
795       while( p ){
796         functionDestroy(db, p);
797         pNext = p->pNext;
798         sqlite3DbFree(db, p);
799         p = pNext;
800       }
801     }
802   }
803   for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
804     CollSeq *pColl = (CollSeq *)sqliteHashData(i);
805     /* Invoke any destructors registered for collation sequence user data. */
806     for(j=0; j<3; j++){
807       if( pColl[j].xDel ){
808         pColl[j].xDel(pColl[j].pUser);
809       }
810     }
811     sqlite3DbFree(db, pColl);
812   }
813   sqlite3HashClear(&db->aCollSeq);
814 #ifndef SQLITE_OMIT_VIRTUALTABLE
815   for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
816     Module *pMod = (Module *)sqliteHashData(i);
817     if( pMod->xDestroy ){
818       pMod->xDestroy(pMod->pAux);
819     }
820     sqlite3DbFree(db, pMod);
821   }
822   sqlite3HashClear(&db->aModule);
823 #endif
824 
825   sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
826   if( db->pErr ){
827     sqlite3ValueFree(db->pErr);
828   }
829   sqlite3CloseExtensions(db);
830 
831   db->magic = SQLITE_MAGIC_ERROR;
832 
833   /* The temp-database schema is allocated differently from the other schema
834   ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
835   ** So it needs to be freed here. Todo: Why not roll the temp schema into
836   ** the same sqliteMalloc() as the one that allocates the database
837   ** structure?
838   */
839   sqlite3DbFree(db, db->aDb[1].pSchema);
840   sqlite3_mutex_leave(db->mutex);
841   db->magic = SQLITE_MAGIC_CLOSED;
842   sqlite3_mutex_free(db->mutex);
843   assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
844   if( db->lookaside.bMalloced ){
845     sqlite3_free(db->lookaside.pStart);
846   }
847   sqlite3_free(db);
848   return SQLITE_OK;
849 }
850 
851 /*
852 ** Rollback all database files.  If tripCode is not SQLITE_OK, then
853 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit
854 ** breaker") and made to return tripCode if there are any further
855 ** attempts to use that cursor.
856 */
857 void sqlite3RollbackAll(sqlite3 *db, int tripCode){
858   int i;
859   int inTrans = 0;
860   assert( sqlite3_mutex_held(db->mutex) );
861   sqlite3BeginBenignMalloc();
862   for(i=0; i<db->nDb; i++){
863     Btree *p = db->aDb[i].pBt;
864     if( p ){
865       if( sqlite3BtreeIsInTrans(p) ){
866         inTrans = 1;
867       }
868       sqlite3BtreeRollback(p, tripCode);
869       db->aDb[i].inTrans = 0;
870     }
871   }
872   sqlite3VtabRollback(db);
873   sqlite3EndBenignMalloc();
874 
875   if( db->flags&SQLITE_InternChanges ){
876     sqlite3ExpirePreparedStatements(db);
877     sqlite3ResetInternalSchema(db, -1);
878   }
879 
880   /* Any deferred constraint violations have now been resolved. */
881   db->nDeferredCons = 0;
882 
883   /* If one has been configured, invoke the rollback-hook callback */
884   if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
885     db->xRollbackCallback(db->pRollbackArg);
886   }
887 }
888 
889 /*
890 ** Return a static string that describes the kind of error specified in the
891 ** argument.
892 */
893 const char *sqlite3ErrStr(int rc){
894   static const char* const aMsg[] = {
895     /* SQLITE_OK          */ "not an error",
896     /* SQLITE_ERROR       */ "SQL logic error or missing database",
897     /* SQLITE_INTERNAL    */ 0,
898     /* SQLITE_PERM        */ "access permission denied",
899     /* SQLITE_ABORT       */ "callback requested query abort",
900     /* SQLITE_BUSY        */ "database is locked",
901     /* SQLITE_LOCKED      */ "database table is locked",
902     /* SQLITE_NOMEM       */ "out of memory",
903     /* SQLITE_READONLY    */ "attempt to write a readonly database",
904     /* SQLITE_INTERRUPT   */ "interrupted",
905     /* SQLITE_IOERR       */ "disk I/O error",
906     /* SQLITE_CORRUPT     */ "database disk image is malformed",
907     /* SQLITE_NOTFOUND    */ "unknown operation",
908     /* SQLITE_FULL        */ "database or disk is full",
909     /* SQLITE_CANTOPEN    */ "unable to open database file",
910     /* SQLITE_PROTOCOL    */ "locking protocol",
911     /* SQLITE_EMPTY       */ "table contains no data",
912     /* SQLITE_SCHEMA      */ "database schema has changed",
913     /* SQLITE_TOOBIG      */ "string or blob too big",
914     /* SQLITE_CONSTRAINT  */ "constraint failed",
915     /* SQLITE_MISMATCH    */ "datatype mismatch",
916     /* SQLITE_MISUSE      */ "library routine called out of sequence",
917     /* SQLITE_NOLFS       */ "large file support is disabled",
918     /* SQLITE_AUTH        */ "authorization denied",
919     /* SQLITE_FORMAT      */ "auxiliary database format error",
920     /* SQLITE_RANGE       */ "bind or column index out of range",
921     /* SQLITE_NOTADB      */ "file is encrypted or is not a database",
922   };
923   const char *zErr = "unknown error";
924   switch( rc ){
925     case SQLITE_ABORT_ROLLBACK: {
926       zErr = "abort due to ROLLBACK";
927       break;
928     }
929     default: {
930       rc &= 0xff;
931       if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
932         zErr = aMsg[rc];
933       }
934       break;
935     }
936   }
937   return zErr;
938 }
939 
940 /*
941 ** This routine implements a busy callback that sleeps and tries
942 ** again until a timeout value is reached.  The timeout value is
943 ** an integer number of milliseconds passed in as the first
944 ** argument.
945 */
946 static int sqliteDefaultBusyCallback(
947  void *ptr,               /* Database connection */
948  int count                /* Number of times table has been busy */
949 ){
950 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
951   static const u8 delays[] =
952      { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50, 100 };
953   static const u8 totals[] =
954      { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228 };
955 # define NDELAY ArraySize(delays)
956   sqlite3 *db = (sqlite3 *)ptr;
957   int timeout = db->busyTimeout;
958   int delay, prior;
959 
960   assert( count>=0 );
961   if( count < NDELAY ){
962     delay = delays[count];
963     prior = totals[count];
964   }else{
965     delay = delays[NDELAY-1];
966     prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
967   }
968   if( prior + delay > timeout ){
969     delay = timeout - prior;
970     if( delay<=0 ) return 0;
971   }
972   sqlite3OsSleep(db->pVfs, delay*1000);
973   return 1;
974 #else
975   sqlite3 *db = (sqlite3 *)ptr;
976   int timeout = ((sqlite3 *)ptr)->busyTimeout;
977   if( (count+1)*1000 > timeout ){
978     return 0;
979   }
980   sqlite3OsSleep(db->pVfs, 1000000);
981   return 1;
982 #endif
983 }
984 
985 /*
986 ** Invoke the given busy handler.
987 **
988 ** This routine is called when an operation failed with a lock.
989 ** If this routine returns non-zero, the lock is retried.  If it
990 ** returns 0, the operation aborts with an SQLITE_BUSY error.
991 */
992 int sqlite3InvokeBusyHandler(BusyHandler *p){
993   int rc;
994   if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
995   rc = p->xFunc(p->pArg, p->nBusy);
996   if( rc==0 ){
997     p->nBusy = -1;
998   }else{
999     p->nBusy++;
1000   }
1001   return rc;
1002 }
1003 
1004 /*
1005 ** This routine sets the busy callback for an Sqlite database to the
1006 ** given callback function with the given argument.
1007 */
1008 int sqlite3_busy_handler(
1009   sqlite3 *db,
1010   int (*xBusy)(void*,int),
1011   void *pArg
1012 ){
1013   sqlite3_mutex_enter(db->mutex);
1014   db->busyHandler.xFunc = xBusy;
1015   db->busyHandler.pArg = pArg;
1016   db->busyHandler.nBusy = 0;
1017   sqlite3_mutex_leave(db->mutex);
1018   return SQLITE_OK;
1019 }
1020 
1021 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1022 /*
1023 ** This routine sets the progress callback for an Sqlite database to the
1024 ** given callback function with the given argument. The progress callback will
1025 ** be invoked every nOps opcodes.
1026 */
1027 void sqlite3_progress_handler(
1028   sqlite3 *db,
1029   int nOps,
1030   int (*xProgress)(void*),
1031   void *pArg
1032 ){
1033   sqlite3_mutex_enter(db->mutex);
1034   if( nOps>0 ){
1035     db->xProgress = xProgress;
1036     db->nProgressOps = nOps;
1037     db->pProgressArg = pArg;
1038   }else{
1039     db->xProgress = 0;
1040     db->nProgressOps = 0;
1041     db->pProgressArg = 0;
1042   }
1043   sqlite3_mutex_leave(db->mutex);
1044 }
1045 #endif
1046 
1047 
1048 /*
1049 ** This routine installs a default busy handler that waits for the
1050 ** specified number of milliseconds before returning 0.
1051 */
1052 int sqlite3_busy_timeout(sqlite3 *db, int ms){
1053   if( ms>0 ){
1054     db->busyTimeout = ms;
1055     sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
1056   }else{
1057     sqlite3_busy_handler(db, 0, 0);
1058   }
1059   return SQLITE_OK;
1060 }
1061 
1062 /*
1063 ** Cause any pending operation to stop at its earliest opportunity.
1064 */
1065 void sqlite3_interrupt(sqlite3 *db){
1066   db->u1.isInterrupted = 1;
1067 }
1068 
1069 
1070 /*
1071 ** This function is exactly the same as sqlite3_create_function(), except
1072 ** that it is designed to be called by internal code. The difference is
1073 ** that if a malloc() fails in sqlite3_create_function(), an error code
1074 ** is returned and the mallocFailed flag cleared.
1075 */
1076 int sqlite3CreateFunc(
1077   sqlite3 *db,
1078   const char *zFunctionName,
1079   int nArg,
1080   int enc,
1081   void *pUserData,
1082   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1083   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1084   void (*xFinal)(sqlite3_context*),
1085   FuncDestructor *pDestructor
1086 ){
1087   FuncDef *p;
1088   int nName;
1089 
1090   assert( sqlite3_mutex_held(db->mutex) );
1091   if( zFunctionName==0 ||
1092       (xFunc && (xFinal || xStep)) ||
1093       (!xFunc && (xFinal && !xStep)) ||
1094       (!xFunc && (!xFinal && xStep)) ||
1095       (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
1096       (255<(nName = sqlite3Strlen30( zFunctionName))) ){
1097     return SQLITE_MISUSE_BKPT;
1098   }
1099 
1100 #ifndef SQLITE_OMIT_UTF16
1101   /* If SQLITE_UTF16 is specified as the encoding type, transform this
1102   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
1103   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
1104   **
1105   ** If SQLITE_ANY is specified, add three versions of the function
1106   ** to the hash table.
1107   */
1108   if( enc==SQLITE_UTF16 ){
1109     enc = SQLITE_UTF16NATIVE;
1110   }else if( enc==SQLITE_ANY ){
1111     int rc;
1112     rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
1113          pUserData, xFunc, xStep, xFinal, pDestructor);
1114     if( rc==SQLITE_OK ){
1115       rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
1116           pUserData, xFunc, xStep, xFinal, pDestructor);
1117     }
1118     if( rc!=SQLITE_OK ){
1119       return rc;
1120     }
1121     enc = SQLITE_UTF16BE;
1122   }
1123 #else
1124   enc = SQLITE_UTF8;
1125 #endif
1126 
1127   /* Check if an existing function is being overridden or deleted. If so,
1128   ** and there are active VMs, then return SQLITE_BUSY. If a function
1129   ** is being overridden/deleted but there are no active VMs, allow the
1130   ** operation to continue but invalidate all precompiled statements.
1131   */
1132   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
1133   if( p && p->iPrefEnc==enc && p->nArg==nArg ){
1134     if( db->activeVdbeCnt ){
1135       sqlite3Error(db, SQLITE_BUSY,
1136         "unable to delete/modify user-function due to active statements");
1137       assert( !db->mallocFailed );
1138       return SQLITE_BUSY;
1139     }else{
1140       sqlite3ExpirePreparedStatements(db);
1141     }
1142   }
1143 
1144   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
1145   assert(p || db->mallocFailed);
1146   if( !p ){
1147     return SQLITE_NOMEM;
1148   }
1149 
1150   /* If an older version of the function with a configured destructor is
1151   ** being replaced invoke the destructor function here. */
1152   functionDestroy(db, p);
1153 
1154   if( pDestructor ){
1155     pDestructor->nRef++;
1156   }
1157   p->pDestructor = pDestructor;
1158   p->flags = 0;
1159   p->xFunc = xFunc;
1160   p->xStep = xStep;
1161   p->xFinalize = xFinal;
1162   p->pUserData = pUserData;
1163   p->nArg = (u16)nArg;
1164   return SQLITE_OK;
1165 }
1166 
1167 /*
1168 ** Create new user functions.
1169 */
1170 int sqlite3_create_function(
1171   sqlite3 *db,
1172   const char *zFunc,
1173   int nArg,
1174   int enc,
1175   void *p,
1176   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1177   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1178   void (*xFinal)(sqlite3_context*)
1179 ){
1180   return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
1181                                     xFinal, 0);
1182 }
1183 
1184 int sqlite3_create_function_v2(
1185   sqlite3 *db,
1186   const char *zFunc,
1187   int nArg,
1188   int enc,
1189   void *p,
1190   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
1191   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
1192   void (*xFinal)(sqlite3_context*),
1193   void (*xDestroy)(void *)
1194 ){
1195   int rc = SQLITE_ERROR;
1196   FuncDestructor *pArg = 0;
1197   sqlite3_mutex_enter(db->mutex);
1198   if( xDestroy ){
1199     pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
1200     if( !pArg ){
1201       xDestroy(p);
1202       goto out;
1203     }
1204     pArg->xDestroy = xDestroy;
1205     pArg->pUserData = p;
1206   }
1207   rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
1208   if( pArg && pArg->nRef==0 ){
1209     assert( rc!=SQLITE_OK );
1210     xDestroy(p);
1211     sqlite3DbFree(db, pArg);
1212   }
1213 
1214  out:
1215   rc = sqlite3ApiExit(db, rc);
1216   sqlite3_mutex_leave(db->mutex);
1217   return rc;
1218 }
1219 
1220 #ifndef SQLITE_OMIT_UTF16
1221 int sqlite3_create_function16(
1222   sqlite3 *db,
1223   const void *zFunctionName,
1224   int nArg,
1225   int eTextRep,
1226   void *p,
1227   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
1228   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
1229   void (*xFinal)(sqlite3_context*)
1230 ){
1231   int rc;
1232   char *zFunc8;
1233   sqlite3_mutex_enter(db->mutex);
1234   assert( !db->mallocFailed );
1235   zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
1236   rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
1237   sqlite3DbFree(db, zFunc8);
1238   rc = sqlite3ApiExit(db, rc);
1239   sqlite3_mutex_leave(db->mutex);
1240   return rc;
1241 }
1242 #endif
1243 
1244 
1245 /*
1246 ** Declare that a function has been overloaded by a virtual table.
1247 **
1248 ** If the function already exists as a regular global function, then
1249 ** this routine is a no-op.  If the function does not exist, then create
1250 ** a new one that always throws a run-time error.
1251 **
1252 ** When virtual tables intend to provide an overloaded function, they
1253 ** should call this routine to make sure the global function exists.
1254 ** A global function must exist in order for name resolution to work
1255 ** properly.
1256 */
1257 int sqlite3_overload_function(
1258   sqlite3 *db,
1259   const char *zName,
1260   int nArg
1261 ){
1262   int nName = sqlite3Strlen30(zName);
1263   int rc = SQLITE_OK;
1264   sqlite3_mutex_enter(db->mutex);
1265   if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
1266     rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
1267                            0, sqlite3InvalidFunction, 0, 0, 0);
1268   }
1269   rc = sqlite3ApiExit(db, rc);
1270   sqlite3_mutex_leave(db->mutex);
1271   return rc;
1272 }
1273 
1274 #ifndef SQLITE_OMIT_TRACE
1275 /*
1276 ** Register a trace function.  The pArg from the previously registered trace
1277 ** is returned.
1278 **
1279 ** A NULL trace function means that no tracing is executes.  A non-NULL
1280 ** trace is a pointer to a function that is invoked at the start of each
1281 ** SQL statement.
1282 */
1283 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
1284   void *pOld;
1285   sqlite3_mutex_enter(db->mutex);
1286   pOld = db->pTraceArg;
1287   db->xTrace = xTrace;
1288   db->pTraceArg = pArg;
1289   sqlite3_mutex_leave(db->mutex);
1290   return pOld;
1291 }
1292 /*
1293 ** Register a profile function.  The pArg from the previously registered
1294 ** profile function is returned.
1295 **
1296 ** A NULL profile function means that no profiling is executes.  A non-NULL
1297 ** profile is a pointer to a function that is invoked at the conclusion of
1298 ** each SQL statement that is run.
1299 */
1300 void *sqlite3_profile(
1301   sqlite3 *db,
1302   void (*xProfile)(void*,const char*,sqlite_uint64),
1303   void *pArg
1304 ){
1305   void *pOld;
1306   sqlite3_mutex_enter(db->mutex);
1307   pOld = db->pProfileArg;
1308   db->xProfile = xProfile;
1309   db->pProfileArg = pArg;
1310   sqlite3_mutex_leave(db->mutex);
1311   return pOld;
1312 }
1313 #endif /* SQLITE_OMIT_TRACE */
1314 
1315 /*
1316 ** Register a function to be invoked when a transaction commits.
1317 ** If the invoked function returns non-zero, then the commit becomes a
1318 ** rollback.
1319 */
1320 void *sqlite3_commit_hook(
1321   sqlite3 *db,              /* Attach the hook to this database */
1322   int (*xCallback)(void*),  /* Function to invoke on each commit */
1323   void *pArg                /* Argument to the function */
1324 ){
1325   void *pOld;
1326   sqlite3_mutex_enter(db->mutex);
1327   pOld = db->pCommitArg;
1328   db->xCommitCallback = xCallback;
1329   db->pCommitArg = pArg;
1330   sqlite3_mutex_leave(db->mutex);
1331   return pOld;
1332 }
1333 
1334 /*
1335 ** Register a callback to be invoked each time a row is updated,
1336 ** inserted or deleted using this database connection.
1337 */
1338 void *sqlite3_update_hook(
1339   sqlite3 *db,              /* Attach the hook to this database */
1340   void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
1341   void *pArg                /* Argument to the function */
1342 ){
1343   void *pRet;
1344   sqlite3_mutex_enter(db->mutex);
1345   pRet = db->pUpdateArg;
1346   db->xUpdateCallback = xCallback;
1347   db->pUpdateArg = pArg;
1348   sqlite3_mutex_leave(db->mutex);
1349   return pRet;
1350 }
1351 
1352 /*
1353 ** Register a callback to be invoked each time a transaction is rolled
1354 ** back by this database connection.
1355 */
1356 void *sqlite3_rollback_hook(
1357   sqlite3 *db,              /* Attach the hook to this database */
1358   void (*xCallback)(void*), /* Callback function */
1359   void *pArg                /* Argument to the function */
1360 ){
1361   void *pRet;
1362   sqlite3_mutex_enter(db->mutex);
1363   pRet = db->pRollbackArg;
1364   db->xRollbackCallback = xCallback;
1365   db->pRollbackArg = pArg;
1366   sqlite3_mutex_leave(db->mutex);
1367   return pRet;
1368 }
1369 
1370 #ifndef SQLITE_OMIT_WAL
1371 /*
1372 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
1373 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
1374 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by
1375 ** wal_autocheckpoint()).
1376 */
1377 int sqlite3WalDefaultHook(
1378   void *pClientData,     /* Argument */
1379   sqlite3 *db,           /* Connection */
1380   const char *zDb,       /* Database */
1381   int nFrame             /* Size of WAL */
1382 ){
1383   if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
1384     sqlite3BeginBenignMalloc();
1385     sqlite3_wal_checkpoint(db, zDb);
1386     sqlite3EndBenignMalloc();
1387   }
1388   return SQLITE_OK;
1389 }
1390 #endif /* SQLITE_OMIT_WAL */
1391 
1392 /*
1393 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint
1394 ** a database after committing a transaction if there are nFrame or
1395 ** more frames in the log file. Passing zero or a negative value as the
1396 ** nFrame parameter disables automatic checkpoints entirely.
1397 **
1398 ** The callback registered by this function replaces any existing callback
1399 ** registered using sqlite3_wal_hook(). Likewise, registering a callback
1400 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
1401 ** configured by this function.
1402 */
1403 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
1404 #ifdef SQLITE_OMIT_WAL
1405   UNUSED_PARAMETER(db);
1406   UNUSED_PARAMETER(nFrame);
1407 #else
1408   if( nFrame>0 ){
1409     sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
1410   }else{
1411     sqlite3_wal_hook(db, 0, 0);
1412   }
1413 #endif
1414   return SQLITE_OK;
1415 }
1416 
1417 /*
1418 ** Register a callback to be invoked each time a transaction is written
1419 ** into the write-ahead-log by this database connection.
1420 */
1421 void *sqlite3_wal_hook(
1422   sqlite3 *db,                    /* Attach the hook to this db handle */
1423   int(*xCallback)(void *, sqlite3*, const char*, int),
1424   void *pArg                      /* First argument passed to xCallback() */
1425 ){
1426 #ifndef SQLITE_OMIT_WAL
1427   void *pRet;
1428   sqlite3_mutex_enter(db->mutex);
1429   pRet = db->pWalArg;
1430   db->xWalCallback = xCallback;
1431   db->pWalArg = pArg;
1432   sqlite3_mutex_leave(db->mutex);
1433   return pRet;
1434 #else
1435   return 0;
1436 #endif
1437 }
1438 
1439 /*
1440 ** Checkpoint database zDb.
1441 */
1442 int sqlite3_wal_checkpoint_v2(
1443   sqlite3 *db,                    /* Database handle */
1444   const char *zDb,                /* Name of attached database (or NULL) */
1445   int eMode,                      /* SQLITE_CHECKPOINT_* value */
1446   int *pnLog,                     /* OUT: Size of WAL log in frames */
1447   int *pnCkpt                     /* OUT: Total number of frames checkpointed */
1448 ){
1449 #ifdef SQLITE_OMIT_WAL
1450   return SQLITE_OK;
1451 #else
1452   int rc;                         /* Return code */
1453   int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */
1454 
1455   /* Initialize the output variables to -1 in case an error occurs. */
1456   if( pnLog ) *pnLog = -1;
1457   if( pnCkpt ) *pnCkpt = -1;
1458 
1459   assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
1460   assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
1461   assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
1462   if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
1463     return SQLITE_MISUSE;
1464   }
1465 
1466   sqlite3_mutex_enter(db->mutex);
1467   if( zDb && zDb[0] ){
1468     iDb = sqlite3FindDbName(db, zDb);
1469   }
1470   if( iDb<0 ){
1471     rc = SQLITE_ERROR;
1472     sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
1473   }else{
1474     rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
1475     sqlite3Error(db, rc, 0);
1476   }
1477   rc = sqlite3ApiExit(db, rc);
1478   sqlite3_mutex_leave(db->mutex);
1479   return rc;
1480 #endif
1481 }
1482 
1483 
1484 /*
1485 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
1486 ** to contains a zero-length string, all attached databases are
1487 ** checkpointed.
1488 */
1489 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
1490   return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
1491 }
1492 
1493 #ifndef SQLITE_OMIT_WAL
1494 /*
1495 ** Run a checkpoint on database iDb. This is a no-op if database iDb is
1496 ** not currently open in WAL mode.
1497 **
1498 ** If a transaction is open on the database being checkpointed, this
1499 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
1500 ** an error occurs while running the checkpoint, an SQLite error code is
1501 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
1502 **
1503 ** The mutex on database handle db should be held by the caller. The mutex
1504 ** associated with the specific b-tree being checkpointed is taken by
1505 ** this function while the checkpoint is running.
1506 **
1507 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
1508 ** checkpointed. If an error is encountered it is returned immediately -
1509 ** no attempt is made to checkpoint any remaining databases.
1510 **
1511 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
1512 */
1513 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
1514   int rc = SQLITE_OK;             /* Return code */
1515   int i;                          /* Used to iterate through attached dbs */
1516   int bBusy = 0;                  /* True if SQLITE_BUSY has been encountered */
1517 
1518   assert( sqlite3_mutex_held(db->mutex) );
1519   assert( !pnLog || *pnLog==-1 );
1520   assert( !pnCkpt || *pnCkpt==-1 );
1521 
1522   for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
1523     if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
1524       rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
1525       pnLog = 0;
1526       pnCkpt = 0;
1527       if( rc==SQLITE_BUSY ){
1528         bBusy = 1;
1529         rc = SQLITE_OK;
1530       }
1531     }
1532   }
1533 
1534   return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
1535 }
1536 #endif /* SQLITE_OMIT_WAL */
1537 
1538 /*
1539 ** This function returns true if main-memory should be used instead of
1540 ** a temporary file for transient pager files and statement journals.
1541 ** The value returned depends on the value of db->temp_store (runtime
1542 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The
1543 ** following table describes the relationship between these two values
1544 ** and this functions return value.
1545 **
1546 **   SQLITE_TEMP_STORE     db->temp_store     Location of temporary database
1547 **   -----------------     --------------     ------------------------------
1548 **   0                     any                file      (return 0)
1549 **   1                     1                  file      (return 0)
1550 **   1                     2                  memory    (return 1)
1551 **   1                     0                  file      (return 0)
1552 **   2                     1                  file      (return 0)
1553 **   2                     2                  memory    (return 1)
1554 **   2                     0                  memory    (return 1)
1555 **   3                     any                memory    (return 1)
1556 */
1557 int sqlite3TempInMemory(const sqlite3 *db){
1558 #if SQLITE_TEMP_STORE==1
1559   return ( db->temp_store==2 );
1560 #endif
1561 #if SQLITE_TEMP_STORE==2
1562   return ( db->temp_store!=1 );
1563 #endif
1564 #if SQLITE_TEMP_STORE==3
1565   return 1;
1566 #endif
1567 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
1568   return 0;
1569 #endif
1570 }
1571 
1572 /*
1573 ** Return UTF-8 encoded English language explanation of the most recent
1574 ** error.
1575 */
1576 const char *sqlite3_errmsg(sqlite3 *db){
1577   const char *z;
1578   if( !db ){
1579     return sqlite3ErrStr(SQLITE_NOMEM);
1580   }
1581   if( !sqlite3SafetyCheckSickOrOk(db) ){
1582     return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
1583   }
1584   sqlite3_mutex_enter(db->mutex);
1585   if( db->mallocFailed ){
1586     z = sqlite3ErrStr(SQLITE_NOMEM);
1587   }else{
1588     z = (char*)sqlite3_value_text(db->pErr);
1589     assert( !db->mallocFailed );
1590     if( z==0 ){
1591       z = sqlite3ErrStr(db->errCode);
1592     }
1593   }
1594   sqlite3_mutex_leave(db->mutex);
1595   return z;
1596 }
1597 
1598 #ifndef SQLITE_OMIT_UTF16
1599 /*
1600 ** Return UTF-16 encoded English language explanation of the most recent
1601 ** error.
1602 */
1603 const void *sqlite3_errmsg16(sqlite3 *db){
1604   static const u16 outOfMem[] = {
1605     'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
1606   };
1607   static const u16 misuse[] = {
1608     'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
1609     'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
1610     'c', 'a', 'l', 'l', 'e', 'd', ' ',
1611     'o', 'u', 't', ' ',
1612     'o', 'f', ' ',
1613     's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
1614   };
1615 
1616   const void *z;
1617   if( !db ){
1618     return (void *)outOfMem;
1619   }
1620   if( !sqlite3SafetyCheckSickOrOk(db) ){
1621     return (void *)misuse;
1622   }
1623   sqlite3_mutex_enter(db->mutex);
1624   if( db->mallocFailed ){
1625     z = (void *)outOfMem;
1626   }else{
1627     z = sqlite3_value_text16(db->pErr);
1628     if( z==0 ){
1629       sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
1630            SQLITE_UTF8, SQLITE_STATIC);
1631       z = sqlite3_value_text16(db->pErr);
1632     }
1633     /* A malloc() may have failed within the call to sqlite3_value_text16()
1634     ** above. If this is the case, then the db->mallocFailed flag needs to
1635     ** be cleared before returning. Do this directly, instead of via
1636     ** sqlite3ApiExit(), to avoid setting the database handle error message.
1637     */
1638     db->mallocFailed = 0;
1639   }
1640   sqlite3_mutex_leave(db->mutex);
1641   return z;
1642 }
1643 #endif /* SQLITE_OMIT_UTF16 */
1644 
1645 /*
1646 ** Return the most recent error code generated by an SQLite routine. If NULL is
1647 ** passed to this function, we assume a malloc() failed during sqlite3_open().
1648 */
1649 int sqlite3_errcode(sqlite3 *db){
1650   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1651     return SQLITE_MISUSE_BKPT;
1652   }
1653   if( !db || db->mallocFailed ){
1654     return SQLITE_NOMEM;
1655   }
1656   return db->errCode & db->errMask;
1657 }
1658 int sqlite3_extended_errcode(sqlite3 *db){
1659   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
1660     return SQLITE_MISUSE_BKPT;
1661   }
1662   if( !db || db->mallocFailed ){
1663     return SQLITE_NOMEM;
1664   }
1665   return db->errCode;
1666 }
1667 
1668 /*
1669 ** Create a new collating function for database "db".  The name is zName
1670 ** and the encoding is enc.
1671 */
1672 static int createCollation(
1673   sqlite3* db,
1674   const char *zName,
1675   u8 enc,
1676   void* pCtx,
1677   int(*xCompare)(void*,int,const void*,int,const void*),
1678   void(*xDel)(void*)
1679 ){
1680   CollSeq *pColl;
1681   int enc2;
1682   int nName = sqlite3Strlen30(zName);
1683 
1684   assert( sqlite3_mutex_held(db->mutex) );
1685 
1686   /* If SQLITE_UTF16 is specified as the encoding type, transform this
1687   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
1688   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
1689   */
1690   enc2 = enc;
1691   testcase( enc2==SQLITE_UTF16 );
1692   testcase( enc2==SQLITE_UTF16_ALIGNED );
1693   if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
1694     enc2 = SQLITE_UTF16NATIVE;
1695   }
1696   if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
1697     return SQLITE_MISUSE_BKPT;
1698   }
1699 
1700   /* Check if this call is removing or replacing an existing collation
1701   ** sequence. If so, and there are active VMs, return busy. If there
1702   ** are no active VMs, invalidate any pre-compiled statements.
1703   */
1704   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
1705   if( pColl && pColl->xCmp ){
1706     if( db->activeVdbeCnt ){
1707       sqlite3Error(db, SQLITE_BUSY,
1708         "unable to delete/modify collation sequence due to active statements");
1709       return SQLITE_BUSY;
1710     }
1711     sqlite3ExpirePreparedStatements(db);
1712 
1713     /* If collation sequence pColl was created directly by a call to
1714     ** sqlite3_create_collation, and not generated by synthCollSeq(),
1715     ** then any copies made by synthCollSeq() need to be invalidated.
1716     ** Also, collation destructor - CollSeq.xDel() - function may need
1717     ** to be called.
1718     */
1719     if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
1720       CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
1721       int j;
1722       for(j=0; j<3; j++){
1723         CollSeq *p = &aColl[j];
1724         if( p->enc==pColl->enc ){
1725           if( p->xDel ){
1726             p->xDel(p->pUser);
1727           }
1728           p->xCmp = 0;
1729         }
1730       }
1731     }
1732   }
1733 
1734   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
1735   if( pColl==0 ) return SQLITE_NOMEM;
1736   pColl->xCmp = xCompare;
1737   pColl->pUser = pCtx;
1738   pColl->xDel = xDel;
1739   pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
1740   sqlite3Error(db, SQLITE_OK, 0);
1741   return SQLITE_OK;
1742 }
1743 
1744 
1745 /*
1746 ** This array defines hard upper bounds on limit values.  The
1747 ** initializer must be kept in sync with the SQLITE_LIMIT_*
1748 ** #defines in sqlite3.h.
1749 */
1750 static const int aHardLimit[] = {
1751   SQLITE_MAX_LENGTH,
1752   SQLITE_MAX_SQL_LENGTH,
1753   SQLITE_MAX_COLUMN,
1754   SQLITE_MAX_EXPR_DEPTH,
1755   SQLITE_MAX_COMPOUND_SELECT,
1756   SQLITE_MAX_VDBE_OP,
1757   SQLITE_MAX_FUNCTION_ARG,
1758   SQLITE_MAX_ATTACHED,
1759   SQLITE_MAX_LIKE_PATTERN_LENGTH,
1760   SQLITE_MAX_VARIABLE_NUMBER,
1761   SQLITE_MAX_TRIGGER_DEPTH,
1762 };
1763 
1764 /*
1765 ** Make sure the hard limits are set to reasonable values
1766 */
1767 #if SQLITE_MAX_LENGTH<100
1768 # error SQLITE_MAX_LENGTH must be at least 100
1769 #endif
1770 #if SQLITE_MAX_SQL_LENGTH<100
1771 # error SQLITE_MAX_SQL_LENGTH must be at least 100
1772 #endif
1773 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
1774 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
1775 #endif
1776 #if SQLITE_MAX_COMPOUND_SELECT<2
1777 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2
1778 #endif
1779 #if SQLITE_MAX_VDBE_OP<40
1780 # error SQLITE_MAX_VDBE_OP must be at least 40
1781 #endif
1782 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
1783 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
1784 #endif
1785 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62
1786 # error SQLITE_MAX_ATTACHED must be between 0 and 62
1787 #endif
1788 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
1789 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
1790 #endif
1791 #if SQLITE_MAX_COLUMN>32767
1792 # error SQLITE_MAX_COLUMN must not exceed 32767
1793 #endif
1794 #if SQLITE_MAX_TRIGGER_DEPTH<1
1795 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
1796 #endif
1797 
1798 
1799 /*
1800 ** Change the value of a limit.  Report the old value.
1801 ** If an invalid limit index is supplied, report -1.
1802 ** Make no changes but still report the old value if the
1803 ** new limit is negative.
1804 **
1805 ** A new lower limit does not shrink existing constructs.
1806 ** It merely prevents new constructs that exceed the limit
1807 ** from forming.
1808 */
1809 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
1810   int oldLimit;
1811 
1812 
1813   /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
1814   ** there is a hard upper bound set at compile-time by a C preprocessor
1815   ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
1816   ** "_MAX_".)
1817   */
1818   assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
1819   assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
1820   assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
1821   assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
1822   assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
1823   assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
1824   assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
1825   assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
1826   assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
1827                                                SQLITE_MAX_LIKE_PATTERN_LENGTH );
1828   assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
1829   assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
1830   assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
1831 
1832 
1833   if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
1834     return -1;
1835   }
1836   oldLimit = db->aLimit[limitId];
1837   if( newLimit>=0 ){                   /* IMP: R-52476-28732 */
1838     if( newLimit>aHardLimit[limitId] ){
1839       newLimit = aHardLimit[limitId];  /* IMP: R-51463-25634 */
1840     }
1841     db->aLimit[limitId] = newLimit;
1842   }
1843   return oldLimit;                     /* IMP: R-53341-35419 */
1844 }
1845 
1846 /*
1847 ** This function is used to parse both URIs and non-URI filenames passed by the
1848 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
1849 ** URIs specified as part of ATTACH statements.
1850 **
1851 ** The first argument to this function is the name of the VFS to use (or
1852 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
1853 ** query parameter. The second argument contains the URI (or non-URI filename)
1854 ** itself. When this function is called the *pFlags variable should contain
1855 ** the default flags to open the database handle with. The value stored in
1856 ** *pFlags may be updated before returning if the URI filename contains
1857 ** "cache=xxx" or "mode=xxx" query parameters.
1858 **
1859 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
1860 ** the VFS that should be used to open the database file. *pzFile is set to
1861 ** point to a buffer containing the name of the file to open. It is the
1862 ** responsibility of the caller to eventually call sqlite3_free() to release
1863 ** this buffer.
1864 **
1865 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg
1866 ** may be set to point to a buffer containing an English language error
1867 ** message. It is the responsibility of the caller to eventually release
1868 ** this buffer by calling sqlite3_free().
1869 */
1870 int sqlite3ParseUri(
1871   const char *zDefaultVfs,        /* VFS to use if no "vfs=xxx" query option */
1872   const char *zUri,               /* Nul-terminated URI to parse */
1873   unsigned int *pFlags,           /* IN/OUT: SQLITE_OPEN_XXX flags */
1874   sqlite3_vfs **ppVfs,            /* OUT: VFS to use */
1875   char **pzFile,                  /* OUT: Filename component of URI */
1876   char **pzErrMsg                 /* OUT: Error message (if rc!=SQLITE_OK) */
1877 ){
1878   int rc = SQLITE_OK;
1879   unsigned int flags = *pFlags;
1880   const char *zVfs = zDefaultVfs;
1881   char *zFile;
1882   char c;
1883   int nUri = sqlite3Strlen30(zUri);
1884 
1885   assert( *pzErrMsg==0 );
1886 
1887   if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri)
1888    && nUri>=5 && memcmp(zUri, "file:", 5)==0
1889   ){
1890     char *zOpt;
1891     int eState;                   /* Parser state when parsing URI */
1892     int iIn;                      /* Input character index */
1893     int iOut = 0;                 /* Output character index */
1894     int nByte = nUri+2;           /* Bytes of space to allocate */
1895 
1896     /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
1897     ** method that there may be extra parameters following the file-name.  */
1898     flags |= SQLITE_OPEN_URI;
1899 
1900     for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
1901     zFile = sqlite3_malloc(nByte);
1902     if( !zFile ) return SQLITE_NOMEM;
1903 
1904     /* Discard the scheme and authority segments of the URI. */
1905     if( zUri[5]=='/' && zUri[6]=='/' ){
1906       iIn = 7;
1907       while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
1908 
1909       if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
1910         *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
1911             iIn-7, &zUri[7]);
1912         rc = SQLITE_ERROR;
1913         goto parse_uri_out;
1914       }
1915     }else{
1916       iIn = 5;
1917     }
1918 
1919     /* Copy the filename and any query parameters into the zFile buffer.
1920     ** Decode %HH escape codes along the way.
1921     **
1922     ** Within this loop, variable eState may be set to 0, 1 or 2, depending
1923     ** on the parsing context. As follows:
1924     **
1925     **   0: Parsing file-name.
1926     **   1: Parsing name section of a name=value query parameter.
1927     **   2: Parsing value section of a name=value query parameter.
1928     */
1929     eState = 0;
1930     while( (c = zUri[iIn])!=0 && c!='#' ){
1931       iIn++;
1932       if( c=='%'
1933        && sqlite3Isxdigit(zUri[iIn])
1934        && sqlite3Isxdigit(zUri[iIn+1])
1935       ){
1936         int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
1937         octet += sqlite3HexToInt(zUri[iIn++]);
1938 
1939         assert( octet>=0 && octet<256 );
1940         if( octet==0 ){
1941           /* This branch is taken when "%00" appears within the URI. In this
1942           ** case we ignore all text in the remainder of the path, name or
1943           ** value currently being parsed. So ignore the current character
1944           ** and skip to the next "?", "=" or "&", as appropriate. */
1945           while( (c = zUri[iIn])!=0 && c!='#'
1946               && (eState!=0 || c!='?')
1947               && (eState!=1 || (c!='=' && c!='&'))
1948               && (eState!=2 || c!='&')
1949           ){
1950             iIn++;
1951           }
1952           continue;
1953         }
1954         c = octet;
1955       }else if( eState==1 && (c=='&' || c=='=') ){
1956         if( zFile[iOut-1]==0 ){
1957           /* An empty option name. Ignore this option altogether. */
1958           while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
1959           continue;
1960         }
1961         if( c=='&' ){
1962           zFile[iOut++] = '\0';
1963         }else{
1964           eState = 2;
1965         }
1966         c = 0;
1967       }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
1968         c = 0;
1969         eState = 1;
1970       }
1971       zFile[iOut++] = c;
1972     }
1973     if( eState==1 ) zFile[iOut++] = '\0';
1974     zFile[iOut++] = '\0';
1975     zFile[iOut++] = '\0';
1976 
1977     /* Check if there were any options specified that should be interpreted
1978     ** here. Options that are interpreted here include "vfs" and those that
1979     ** correspond to flags that may be passed to the sqlite3_open_v2()
1980     ** method. */
1981     zOpt = &zFile[sqlite3Strlen30(zFile)+1];
1982     while( zOpt[0] ){
1983       int nOpt = sqlite3Strlen30(zOpt);
1984       char *zVal = &zOpt[nOpt+1];
1985       int nVal = sqlite3Strlen30(zVal);
1986 
1987       if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
1988         zVfs = zVal;
1989       }else{
1990         struct OpenMode {
1991           const char *z;
1992           int mode;
1993         } *aMode = 0;
1994         char *zModeType = 0;
1995         int mask = 0;
1996         int limit = 0;
1997 
1998         if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
1999           static struct OpenMode aCacheMode[] = {
2000             { "shared",  SQLITE_OPEN_SHAREDCACHE },
2001             { "private", SQLITE_OPEN_PRIVATECACHE },
2002             { 0, 0 }
2003           };
2004 
2005           mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
2006           aMode = aCacheMode;
2007           limit = mask;
2008           zModeType = "cache";
2009         }
2010         if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
2011           static struct OpenMode aOpenMode[] = {
2012             { "ro",  SQLITE_OPEN_READONLY },
2013             { "rw",  SQLITE_OPEN_READWRITE },
2014             { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
2015             { 0, 0 }
2016           };
2017 
2018           mask = SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
2019           aMode = aOpenMode;
2020           limit = mask & flags;
2021           zModeType = "access";
2022         }
2023 
2024         if( aMode ){
2025           int i;
2026           int mode = 0;
2027           for(i=0; aMode[i].z; i++){
2028             const char *z = aMode[i].z;
2029             if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
2030               mode = aMode[i].mode;
2031               break;
2032             }
2033           }
2034           if( mode==0 ){
2035             *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
2036             rc = SQLITE_ERROR;
2037             goto parse_uri_out;
2038           }
2039           if( mode>limit ){
2040             *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
2041                                         zModeType, zVal);
2042             rc = SQLITE_PERM;
2043             goto parse_uri_out;
2044           }
2045           flags = (flags & ~mask) | mode;
2046         }
2047       }
2048 
2049       zOpt = &zVal[nVal+1];
2050     }
2051 
2052   }else{
2053     zFile = sqlite3_malloc(nUri+2);
2054     if( !zFile ) return SQLITE_NOMEM;
2055     memcpy(zFile, zUri, nUri);
2056     zFile[nUri] = '\0';
2057     zFile[nUri+1] = '\0';
2058     flags &= ~SQLITE_OPEN_URI;
2059   }
2060 
2061   *ppVfs = sqlite3_vfs_find(zVfs);
2062   if( *ppVfs==0 ){
2063     *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
2064     rc = SQLITE_ERROR;
2065   }
2066  parse_uri_out:
2067   if( rc!=SQLITE_OK ){
2068     sqlite3_free(zFile);
2069     zFile = 0;
2070   }
2071   *pFlags = flags;
2072   *pzFile = zFile;
2073   return rc;
2074 }
2075 
2076 
2077 /*
2078 ** This routine does the work of opening a database on behalf of
2079 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
2080 ** is UTF-8 encoded.
2081 */
2082 static int openDatabase(
2083   const char *zFilename, /* Database filename UTF-8 encoded */
2084   sqlite3 **ppDb,        /* OUT: Returned database handle */
2085   unsigned int flags,    /* Operational flags */
2086   const char *zVfs       /* Name of the VFS to use */
2087 ){
2088   sqlite3 *db;                    /* Store allocated handle here */
2089   int rc;                         /* Return code */
2090   int isThreadsafe;               /* True for threadsafe connections */
2091   char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
2092   char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */
2093 
2094   *ppDb = 0;
2095 #ifndef SQLITE_OMIT_AUTOINIT
2096   rc = sqlite3_initialize();
2097   if( rc ) return rc;
2098 #endif
2099 
2100   /* Only allow sensible combinations of bits in the flags argument.
2101   ** Throw an error if any non-sense combination is used.  If we
2102   ** do not block illegal combinations here, it could trigger
2103   ** assert() statements in deeper layers.  Sensible combinations
2104   ** are:
2105   **
2106   **  1:  SQLITE_OPEN_READONLY
2107   **  2:  SQLITE_OPEN_READWRITE
2108   **  6:  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
2109   */
2110   assert( SQLITE_OPEN_READONLY  == 0x01 );
2111   assert( SQLITE_OPEN_READWRITE == 0x02 );
2112   assert( SQLITE_OPEN_CREATE    == 0x04 );
2113   testcase( (1<<(flags&7))==0x02 ); /* READONLY */
2114   testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
2115   testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
2116   if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;
2117 
2118   if( sqlite3GlobalConfig.bCoreMutex==0 ){
2119     isThreadsafe = 0;
2120   }else if( flags & SQLITE_OPEN_NOMUTEX ){
2121     isThreadsafe = 0;
2122   }else if( flags & SQLITE_OPEN_FULLMUTEX ){
2123     isThreadsafe = 1;
2124   }else{
2125     isThreadsafe = sqlite3GlobalConfig.bFullMutex;
2126   }
2127   if( flags & SQLITE_OPEN_PRIVATECACHE ){
2128     flags &= ~SQLITE_OPEN_SHAREDCACHE;
2129   }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
2130     flags |= SQLITE_OPEN_SHAREDCACHE;
2131   }
2132 
2133   /* Remove harmful bits from the flags parameter
2134   **
2135   ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
2136   ** dealt with in the previous code block.  Besides these, the only
2137   ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
2138   ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
2139   ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits.  Silently mask
2140   ** off all other flags.
2141   */
2142   flags &=  ~( SQLITE_OPEN_DELETEONCLOSE |
2143                SQLITE_OPEN_EXCLUSIVE |
2144                SQLITE_OPEN_MAIN_DB |
2145                SQLITE_OPEN_TEMP_DB |
2146                SQLITE_OPEN_TRANSIENT_DB |
2147                SQLITE_OPEN_MAIN_JOURNAL |
2148                SQLITE_OPEN_TEMP_JOURNAL |
2149                SQLITE_OPEN_SUBJOURNAL |
2150                SQLITE_OPEN_MASTER_JOURNAL |
2151                SQLITE_OPEN_NOMUTEX |
2152                SQLITE_OPEN_FULLMUTEX |
2153                SQLITE_OPEN_WAL
2154              );
2155 
2156   /* Allocate the sqlite data structure */
2157   db = sqlite3MallocZero( sizeof(sqlite3) );
2158   if( db==0 ) goto opendb_out;
2159   if( isThreadsafe ){
2160     db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
2161     if( db->mutex==0 ){
2162       sqlite3_free(db);
2163       db = 0;
2164       goto opendb_out;
2165     }
2166   }
2167   sqlite3_mutex_enter(db->mutex);
2168   db->errMask = 0xff;
2169   db->nDb = 2;
2170   db->magic = SQLITE_MAGIC_BUSY;
2171   db->aDb = db->aDbStatic;
2172 
2173   assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
2174   memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
2175   db->autoCommit = 1;
2176   db->nextAutovac = -1;
2177   db->nextPagesize = 0;
2178   db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger
2179 #if SQLITE_DEFAULT_FILE_FORMAT<4
2180                  | SQLITE_LegacyFileFmt
2181 #endif
2182 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
2183                  | SQLITE_LoadExtension
2184 #endif
2185 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
2186                  | SQLITE_RecTriggers
2187 #endif
2188 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
2189                  | SQLITE_ForeignKeys
2190 #endif
2191       ;
2192   sqlite3HashInit(&db->aCollSeq);
2193 #ifndef SQLITE_OMIT_VIRTUALTABLE
2194   sqlite3HashInit(&db->aModule);
2195 #endif
2196 
2197   /* Add the default collation sequence BINARY. BINARY works for both UTF-8
2198   ** and UTF-16, so add a version for each to avoid any unnecessary
2199   ** conversions. The only error that can occur here is a malloc() failure.
2200   */
2201   createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
2202   createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
2203   createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
2204   createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
2205   if( db->mallocFailed ){
2206     goto opendb_out;
2207   }
2208   db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
2209   assert( db->pDfltColl!=0 );
2210 
2211   /* Also add a UTF-8 case-insensitive collation sequence. */
2212   createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
2213 
2214   /* Parse the filename/URI argument. */
2215   db->openFlags = flags;
2216   rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
2217   if( rc!=SQLITE_OK ){
2218     if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
2219     sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
2220     sqlite3_free(zErrMsg);
2221     goto opendb_out;
2222   }
2223 
2224   /* Open the backend database driver */
2225   rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
2226                         flags | SQLITE_OPEN_MAIN_DB);
2227   if( rc!=SQLITE_OK ){
2228     if( rc==SQLITE_IOERR_NOMEM ){
2229       rc = SQLITE_NOMEM;
2230     }
2231     sqlite3Error(db, rc, 0);
2232     goto opendb_out;
2233   }
2234   db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
2235   db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
2236 
2237 
2238   /* The default safety_level for the main database is 'full'; for the temp
2239   ** database it is 'NONE'. This matches the pager layer defaults.
2240   */
2241   db->aDb[0].zName = "main";
2242   db->aDb[0].safety_level = 3;
2243   db->aDb[1].zName = "temp";
2244   db->aDb[1].safety_level = 1;
2245 
2246   db->magic = SQLITE_MAGIC_OPEN;
2247   if( db->mallocFailed ){
2248     goto opendb_out;
2249   }
2250 
2251   /* Register all built-in functions, but do not attempt to read the
2252   ** database schema yet. This is delayed until the first time the database
2253   ** is accessed.
2254   */
2255   sqlite3Error(db, SQLITE_OK, 0);
2256   sqlite3RegisterBuiltinFunctions(db);
2257 
2258   /* Load automatic extensions - extensions that have been registered
2259   ** using the sqlite3_automatic_extension() API.
2260   */
2261   rc = sqlite3_errcode(db);
2262   if( rc==SQLITE_OK ){
2263     sqlite3AutoLoadExtensions(db);
2264     rc = sqlite3_errcode(db);
2265     if( rc!=SQLITE_OK ){
2266       goto opendb_out;
2267     }
2268   }
2269 
2270 #ifdef SQLITE_ENABLE_FTS1
2271   if( !db->mallocFailed ){
2272     extern int sqlite3Fts1Init(sqlite3*);
2273     rc = sqlite3Fts1Init(db);
2274   }
2275 #endif
2276 
2277 #ifdef SQLITE_ENABLE_FTS2
2278   if( !db->mallocFailed && rc==SQLITE_OK ){
2279     extern int sqlite3Fts2Init(sqlite3*);
2280     rc = sqlite3Fts2Init(db);
2281   }
2282 #endif
2283 
2284 #ifdef SQLITE_ENABLE_FTS3
2285   if( !db->mallocFailed && rc==SQLITE_OK ){
2286     rc = sqlite3Fts3Init(db);
2287   }
2288 #endif
2289 
2290 #ifdef SQLITE_ENABLE_ICU
2291   if( !db->mallocFailed && rc==SQLITE_OK ){
2292     rc = sqlite3IcuInit(db);
2293   }
2294 #endif
2295 
2296 #ifdef SQLITE_ENABLE_RTREE
2297   if( !db->mallocFailed && rc==SQLITE_OK){
2298     rc = sqlite3RtreeInit(db);
2299   }
2300 #endif
2301 
2302   sqlite3Error(db, rc, 0);
2303 
2304   /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
2305   ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
2306   ** mode.  Doing nothing at all also makes NORMAL the default.
2307   */
2308 #ifdef SQLITE_DEFAULT_LOCKING_MODE
2309   db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
2310   sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
2311                           SQLITE_DEFAULT_LOCKING_MODE);
2312 #endif
2313 
2314   /* Enable the lookaside-malloc subsystem */
2315   setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
2316                         sqlite3GlobalConfig.nLookaside);
2317 
2318   sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
2319 
2320 opendb_out:
2321   sqlite3_free(zOpen);
2322   if( db ){
2323     assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
2324     sqlite3_mutex_leave(db->mutex);
2325   }
2326   rc = sqlite3_errcode(db);
2327   assert( db!=0 || rc==SQLITE_NOMEM );
2328   if( rc==SQLITE_NOMEM ){
2329     sqlite3_close(db);
2330     db = 0;
2331   }else if( rc!=SQLITE_OK ){
2332     db->magic = SQLITE_MAGIC_SICK;
2333   }
2334   *ppDb = db;
2335   return sqlite3ApiExit(0, rc);
2336 }
2337 
2338 /*
2339 ** Open a new database handle.
2340 */
2341 int sqlite3_open(
2342   const char *zFilename,
2343   sqlite3 **ppDb
2344 ){
2345   return openDatabase(zFilename, ppDb,
2346                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2347 }
2348 int sqlite3_open_v2(
2349   const char *filename,   /* Database filename (UTF-8) */
2350   sqlite3 **ppDb,         /* OUT: SQLite db handle */
2351   int flags,              /* Flags */
2352   const char *zVfs        /* Name of VFS module to use */
2353 ){
2354   return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
2355 }
2356 
2357 #ifndef SQLITE_OMIT_UTF16
2358 /*
2359 ** Open a new database handle.
2360 */
2361 int sqlite3_open16(
2362   const void *zFilename,
2363   sqlite3 **ppDb
2364 ){
2365   char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
2366   sqlite3_value *pVal;
2367   int rc;
2368 
2369   assert( zFilename );
2370   assert( ppDb );
2371   *ppDb = 0;
2372 #ifndef SQLITE_OMIT_AUTOINIT
2373   rc = sqlite3_initialize();
2374   if( rc ) return rc;
2375 #endif
2376   pVal = sqlite3ValueNew(0);
2377   sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
2378   zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
2379   if( zFilename8 ){
2380     rc = openDatabase(zFilename8, ppDb,
2381                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
2382     assert( *ppDb || rc==SQLITE_NOMEM );
2383     if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
2384       ENC(*ppDb) = SQLITE_UTF16NATIVE;
2385     }
2386   }else{
2387     rc = SQLITE_NOMEM;
2388   }
2389   sqlite3ValueFree(pVal);
2390 
2391   return sqlite3ApiExit(0, rc);
2392 }
2393 #endif /* SQLITE_OMIT_UTF16 */
2394 
2395 /*
2396 ** Register a new collation sequence with the database handle db.
2397 */
2398 int sqlite3_create_collation(
2399   sqlite3* db,
2400   const char *zName,
2401   int enc,
2402   void* pCtx,
2403   int(*xCompare)(void*,int,const void*,int,const void*)
2404 ){
2405   int rc;
2406   sqlite3_mutex_enter(db->mutex);
2407   assert( !db->mallocFailed );
2408   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
2409   rc = sqlite3ApiExit(db, rc);
2410   sqlite3_mutex_leave(db->mutex);
2411   return rc;
2412 }
2413 
2414 /*
2415 ** Register a new collation sequence with the database handle db.
2416 */
2417 int sqlite3_create_collation_v2(
2418   sqlite3* db,
2419   const char *zName,
2420   int enc,
2421   void* pCtx,
2422   int(*xCompare)(void*,int,const void*,int,const void*),
2423   void(*xDel)(void*)
2424 ){
2425   int rc;
2426   sqlite3_mutex_enter(db->mutex);
2427   assert( !db->mallocFailed );
2428   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
2429   rc = sqlite3ApiExit(db, rc);
2430   sqlite3_mutex_leave(db->mutex);
2431   return rc;
2432 }
2433 
2434 #ifndef SQLITE_OMIT_UTF16
2435 /*
2436 ** Register a new collation sequence with the database handle db.
2437 */
2438 int sqlite3_create_collation16(
2439   sqlite3* db,
2440   const void *zName,
2441   int enc,
2442   void* pCtx,
2443   int(*xCompare)(void*,int,const void*,int,const void*)
2444 ){
2445   int rc = SQLITE_OK;
2446   char *zName8;
2447   sqlite3_mutex_enter(db->mutex);
2448   assert( !db->mallocFailed );
2449   zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
2450   if( zName8 ){
2451     rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
2452     sqlite3DbFree(db, zName8);
2453   }
2454   rc = sqlite3ApiExit(db, rc);
2455   sqlite3_mutex_leave(db->mutex);
2456   return rc;
2457 }
2458 #endif /* SQLITE_OMIT_UTF16 */
2459 
2460 /*
2461 ** Register a collation sequence factory callback with the database handle
2462 ** db. Replace any previously installed collation sequence factory.
2463 */
2464 int sqlite3_collation_needed(
2465   sqlite3 *db,
2466   void *pCollNeededArg,
2467   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
2468 ){
2469   sqlite3_mutex_enter(db->mutex);
2470   db->xCollNeeded = xCollNeeded;
2471   db->xCollNeeded16 = 0;
2472   db->pCollNeededArg = pCollNeededArg;
2473   sqlite3_mutex_leave(db->mutex);
2474   return SQLITE_OK;
2475 }
2476 
2477 #ifndef SQLITE_OMIT_UTF16
2478 /*
2479 ** Register a collation sequence factory callback with the database handle
2480 ** db. Replace any previously installed collation sequence factory.
2481 */
2482 int sqlite3_collation_needed16(
2483   sqlite3 *db,
2484   void *pCollNeededArg,
2485   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
2486 ){
2487   sqlite3_mutex_enter(db->mutex);
2488   db->xCollNeeded = 0;
2489   db->xCollNeeded16 = xCollNeeded16;
2490   db->pCollNeededArg = pCollNeededArg;
2491   sqlite3_mutex_leave(db->mutex);
2492   return SQLITE_OK;
2493 }
2494 #endif /* SQLITE_OMIT_UTF16 */
2495 
2496 #ifndef SQLITE_OMIT_DEPRECATED
2497 /*
2498 ** This function is now an anachronism. It used to be used to recover from a
2499 ** malloc() failure, but SQLite now does this automatically.
2500 */
2501 int sqlite3_global_recover(void){
2502   return SQLITE_OK;
2503 }
2504 #endif
2505 
2506 /*
2507 ** Test to see whether or not the database connection is in autocommit
2508 ** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
2509 ** by default.  Autocommit is disabled by a BEGIN statement and reenabled
2510 ** by the next COMMIT or ROLLBACK.
2511 **
2512 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
2513 */
2514 int sqlite3_get_autocommit(sqlite3 *db){
2515   return db->autoCommit;
2516 }
2517 
2518 /*
2519 ** The following routines are subtitutes for constants SQLITE_CORRUPT,
2520 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
2521 ** constants.  They server two purposes:
2522 **
2523 **   1.  Serve as a convenient place to set a breakpoint in a debugger
2524 **       to detect when version error conditions occurs.
2525 **
2526 **   2.  Invoke sqlite3_log() to provide the source code location where
2527 **       a low-level error is first detected.
2528 */
2529 int sqlite3CorruptError(int lineno){
2530   testcase( sqlite3GlobalConfig.xLog!=0 );
2531   sqlite3_log(SQLITE_CORRUPT,
2532               "database corruption at line %d of [%.10s]",
2533               lineno, 20+sqlite3_sourceid());
2534   return SQLITE_CORRUPT;
2535 }
2536 int sqlite3MisuseError(int lineno){
2537   testcase( sqlite3GlobalConfig.xLog!=0 );
2538   sqlite3_log(SQLITE_MISUSE,
2539               "misuse at line %d of [%.10s]",
2540               lineno, 20+sqlite3_sourceid());
2541   return SQLITE_MISUSE;
2542 }
2543 int sqlite3CantopenError(int lineno){
2544   testcase( sqlite3GlobalConfig.xLog!=0 );
2545   sqlite3_log(SQLITE_CANTOPEN,
2546               "cannot open file at line %d of [%.10s]",
2547               lineno, 20+sqlite3_sourceid());
2548   return SQLITE_CANTOPEN;
2549 }
2550 
2551 
2552 #ifndef SQLITE_OMIT_DEPRECATED
2553 /*
2554 ** This is a convenience routine that makes sure that all thread-specific
2555 ** data for this thread has been deallocated.
2556 **
2557 ** SQLite no longer uses thread-specific data so this routine is now a
2558 ** no-op.  It is retained for historical compatibility.
2559 */
2560 void sqlite3_thread_cleanup(void){
2561 }
2562 #endif
2563 
2564 /*
2565 ** Return meta information about a specific column of a database table.
2566 ** See comment in sqlite3.h (sqlite.h.in) for details.
2567 */
2568 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2569 int sqlite3_table_column_metadata(
2570   sqlite3 *db,                /* Connection handle */
2571   const char *zDbName,        /* Database name or NULL */
2572   const char *zTableName,     /* Table name */
2573   const char *zColumnName,    /* Column name */
2574   char const **pzDataType,    /* OUTPUT: Declared data type */
2575   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
2576   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
2577   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
2578   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
2579 ){
2580   int rc;
2581   char *zErrMsg = 0;
2582   Table *pTab = 0;
2583   Column *pCol = 0;
2584   int iCol;
2585 
2586   char const *zDataType = 0;
2587   char const *zCollSeq = 0;
2588   int notnull = 0;
2589   int primarykey = 0;
2590   int autoinc = 0;
2591 
2592   /* Ensure the database schema has been loaded */
2593   sqlite3_mutex_enter(db->mutex);
2594   sqlite3BtreeEnterAll(db);
2595   rc = sqlite3Init(db, &zErrMsg);
2596   if( SQLITE_OK!=rc ){
2597     goto error_out;
2598   }
2599 
2600   /* Locate the table in question */
2601   pTab = sqlite3FindTable(db, zTableName, zDbName);
2602   if( !pTab || pTab->pSelect ){
2603     pTab = 0;
2604     goto error_out;
2605   }
2606 
2607   /* Find the column for which info is requested */
2608   if( sqlite3IsRowid(zColumnName) ){
2609     iCol = pTab->iPKey;
2610     if( iCol>=0 ){
2611       pCol = &pTab->aCol[iCol];
2612     }
2613   }else{
2614     for(iCol=0; iCol<pTab->nCol; iCol++){
2615       pCol = &pTab->aCol[iCol];
2616       if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
2617         break;
2618       }
2619     }
2620     if( iCol==pTab->nCol ){
2621       pTab = 0;
2622       goto error_out;
2623     }
2624   }
2625 
2626   /* The following block stores the meta information that will be returned
2627   ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
2628   ** and autoinc. At this point there are two possibilities:
2629   **
2630   **     1. The specified column name was rowid", "oid" or "_rowid_"
2631   **        and there is no explicitly declared IPK column.
2632   **
2633   **     2. The table is not a view and the column name identified an
2634   **        explicitly declared column. Copy meta information from *pCol.
2635   */
2636   if( pCol ){
2637     zDataType = pCol->zType;
2638     zCollSeq = pCol->zColl;
2639     notnull = pCol->notNull!=0;
2640     primarykey  = pCol->isPrimKey!=0;
2641     autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
2642   }else{
2643     zDataType = "INTEGER";
2644     primarykey = 1;
2645   }
2646   if( !zCollSeq ){
2647     zCollSeq = "BINARY";
2648   }
2649 
2650 error_out:
2651   sqlite3BtreeLeaveAll(db);
2652 
2653   /* Whether the function call succeeded or failed, set the output parameters
2654   ** to whatever their local counterparts contain. If an error did occur,
2655   ** this has the effect of zeroing all output parameters.
2656   */
2657   if( pzDataType ) *pzDataType = zDataType;
2658   if( pzCollSeq ) *pzCollSeq = zCollSeq;
2659   if( pNotNull ) *pNotNull = notnull;
2660   if( pPrimaryKey ) *pPrimaryKey = primarykey;
2661   if( pAutoinc ) *pAutoinc = autoinc;
2662 
2663   if( SQLITE_OK==rc && !pTab ){
2664     sqlite3DbFree(db, zErrMsg);
2665     zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
2666         zColumnName);
2667     rc = SQLITE_ERROR;
2668   }
2669   sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
2670   sqlite3DbFree(db, zErrMsg);
2671   rc = sqlite3ApiExit(db, rc);
2672   sqlite3_mutex_leave(db->mutex);
2673   return rc;
2674 }
2675 #endif
2676 
2677 /*
2678 ** Sleep for a little while.  Return the amount of time slept.
2679 */
2680 int sqlite3_sleep(int ms){
2681   sqlite3_vfs *pVfs;
2682   int rc;
2683   pVfs = sqlite3_vfs_find(0);
2684   if( pVfs==0 ) return 0;
2685 
2686   /* This function works in milliseconds, but the underlying OsSleep()
2687   ** API uses microseconds. Hence the 1000's.
2688   */
2689   rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
2690   return rc;
2691 }
2692 
2693 /*
2694 ** Enable or disable the extended result codes.
2695 */
2696 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
2697   sqlite3_mutex_enter(db->mutex);
2698   db->errMask = onoff ? 0xffffffff : 0xff;
2699   sqlite3_mutex_leave(db->mutex);
2700   return SQLITE_OK;
2701 }
2702 
2703 /*
2704 ** Invoke the xFileControl method on a particular database.
2705 */
2706 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
2707   int rc = SQLITE_ERROR;
2708   Btree *pBtree;
2709 
2710   sqlite3_mutex_enter(db->mutex);
2711   pBtree = sqlite3DbNameToBtree(db, zDbName);
2712   if( pBtree ){
2713     Pager *pPager;
2714     sqlite3_file *fd;
2715     sqlite3BtreeEnter(pBtree);
2716     pPager = sqlite3BtreePager(pBtree);
2717     assert( pPager!=0 );
2718     fd = sqlite3PagerFile(pPager);
2719     assert( fd!=0 );
2720     if( op==SQLITE_FCNTL_FILE_POINTER ){
2721       *(sqlite3_file**)pArg = fd;
2722       rc = SQLITE_OK;
2723     }else if( fd->pMethods ){
2724       rc = sqlite3OsFileControl(fd, op, pArg);
2725     }else{
2726       rc = SQLITE_NOTFOUND;
2727     }
2728     sqlite3BtreeLeave(pBtree);
2729   }
2730   sqlite3_mutex_leave(db->mutex);
2731   return rc;
2732 }
2733 
2734 /*
2735 ** Interface to the testing logic.
2736 */
2737 int sqlite3_test_control(int op, ...){
2738   int rc = 0;
2739 #ifndef SQLITE_OMIT_BUILTIN_TEST
2740   va_list ap;
2741   va_start(ap, op);
2742   switch( op ){
2743 
2744     /*
2745     ** Save the current state of the PRNG.
2746     */
2747     case SQLITE_TESTCTRL_PRNG_SAVE: {
2748       sqlite3PrngSaveState();
2749       break;
2750     }
2751 
2752     /*
2753     ** Restore the state of the PRNG to the last state saved using
2754     ** PRNG_SAVE.  If PRNG_SAVE has never before been called, then
2755     ** this verb acts like PRNG_RESET.
2756     */
2757     case SQLITE_TESTCTRL_PRNG_RESTORE: {
2758       sqlite3PrngRestoreState();
2759       break;
2760     }
2761 
2762     /*
2763     ** Reset the PRNG back to its uninitialized state.  The next call
2764     ** to sqlite3_randomness() will reseed the PRNG using a single call
2765     ** to the xRandomness method of the default VFS.
2766     */
2767     case SQLITE_TESTCTRL_PRNG_RESET: {
2768       sqlite3PrngResetState();
2769       break;
2770     }
2771 
2772     /*
2773     **  sqlite3_test_control(BITVEC_TEST, size, program)
2774     **
2775     ** Run a test against a Bitvec object of size.  The program argument
2776     ** is an array of integers that defines the test.  Return -1 on a
2777     ** memory allocation error, 0 on success, or non-zero for an error.
2778     ** See the sqlite3BitvecBuiltinTest() for additional information.
2779     */
2780     case SQLITE_TESTCTRL_BITVEC_TEST: {
2781       int sz = va_arg(ap, int);
2782       int *aProg = va_arg(ap, int*);
2783       rc = sqlite3BitvecBuiltinTest(sz, aProg);
2784       break;
2785     }
2786 
2787     /*
2788     **  sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
2789     **
2790     ** Register hooks to call to indicate which malloc() failures
2791     ** are benign.
2792     */
2793     case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
2794       typedef void (*void_function)(void);
2795       void_function xBenignBegin;
2796       void_function xBenignEnd;
2797       xBenignBegin = va_arg(ap, void_function);
2798       xBenignEnd = va_arg(ap, void_function);
2799       sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
2800       break;
2801     }
2802 
2803     /*
2804     **  sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
2805     **
2806     ** Set the PENDING byte to the value in the argument, if X>0.
2807     ** Make no changes if X==0.  Return the value of the pending byte
2808     ** as it existing before this routine was called.
2809     **
2810     ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
2811     ** an incompatible database file format.  Changing the PENDING byte
2812     ** while any database connection is open results in undefined and
2813     ** dileterious behavior.
2814     */
2815     case SQLITE_TESTCTRL_PENDING_BYTE: {
2816       rc = PENDING_BYTE;
2817 #ifndef SQLITE_OMIT_WSD
2818       {
2819         unsigned int newVal = va_arg(ap, unsigned int);
2820         if( newVal ) sqlite3PendingByte = newVal;
2821       }
2822 #endif
2823       break;
2824     }
2825 
2826     /*
2827     **  sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
2828     **
2829     ** This action provides a run-time test to see whether or not
2830     ** assert() was enabled at compile-time.  If X is true and assert()
2831     ** is enabled, then the return value is true.  If X is true and
2832     ** assert() is disabled, then the return value is zero.  If X is
2833     ** false and assert() is enabled, then the assertion fires and the
2834     ** process aborts.  If X is false and assert() is disabled, then the
2835     ** return value is zero.
2836     */
2837     case SQLITE_TESTCTRL_ASSERT: {
2838       volatile int x = 0;
2839       assert( (x = va_arg(ap,int))!=0 );
2840       rc = x;
2841       break;
2842     }
2843 
2844 
2845     /*
2846     **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
2847     **
2848     ** This action provides a run-time test to see how the ALWAYS and
2849     ** NEVER macros were defined at compile-time.
2850     **
2851     ** The return value is ALWAYS(X).
2852     **
2853     ** The recommended test is X==2.  If the return value is 2, that means
2854     ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
2855     ** default setting.  If the return value is 1, then ALWAYS() is either
2856     ** hard-coded to true or else it asserts if its argument is false.
2857     ** The first behavior (hard-coded to true) is the case if
2858     ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
2859     ** behavior (assert if the argument to ALWAYS() is false) is the case if
2860     ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
2861     **
2862     ** The run-time test procedure might look something like this:
2863     **
2864     **    if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
2865     **      // ALWAYS() and NEVER() are no-op pass-through macros
2866     **    }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
2867     **      // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
2868     **    }else{
2869     **      // ALWAYS(x) is a constant 1.  NEVER(x) is a constant 0.
2870     **    }
2871     */
2872     case SQLITE_TESTCTRL_ALWAYS: {
2873       int x = va_arg(ap,int);
2874       rc = ALWAYS(x);
2875       break;
2876     }
2877 
2878     /*   sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
2879     **
2880     ** Set the nReserve size to N for the main database on the database
2881     ** connection db.
2882     */
2883     case SQLITE_TESTCTRL_RESERVE: {
2884       sqlite3 *db = va_arg(ap, sqlite3*);
2885       int x = va_arg(ap,int);
2886       sqlite3_mutex_enter(db->mutex);
2887       sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
2888       sqlite3_mutex_leave(db->mutex);
2889       break;
2890     }
2891 
2892     /*  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
2893     **
2894     ** Enable or disable various optimizations for testing purposes.  The
2895     ** argument N is a bitmask of optimizations to be disabled.  For normal
2896     ** operation N should be 0.  The idea is that a test program (like the
2897     ** SQL Logic Test or SLT test module) can run the same SQL multiple times
2898     ** with various optimizations disabled to verify that the same answer
2899     ** is obtained in every case.
2900     */
2901     case SQLITE_TESTCTRL_OPTIMIZATIONS: {
2902       sqlite3 *db = va_arg(ap, sqlite3*);
2903       int x = va_arg(ap,int);
2904       db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask);
2905       break;
2906     }
2907 
2908 #ifdef SQLITE_N_KEYWORD
2909     /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
2910     **
2911     ** If zWord is a keyword recognized by the parser, then return the
2912     ** number of keywords.  Or if zWord is not a keyword, return 0.
2913     **
2914     ** This test feature is only available in the amalgamation since
2915     ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
2916     ** is built using separate source files.
2917     */
2918     case SQLITE_TESTCTRL_ISKEYWORD: {
2919       const char *zWord = va_arg(ap, const char*);
2920       int n = sqlite3Strlen30(zWord);
2921       rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
2922       break;
2923     }
2924 #endif
2925 
2926     /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
2927     **
2928     ** Pass pFree into sqlite3ScratchFree().
2929     ** If sz>0 then allocate a scratch buffer into pNew.
2930     */
2931     case SQLITE_TESTCTRL_SCRATCHMALLOC: {
2932       void *pFree, **ppNew;
2933       int sz;
2934       sz = va_arg(ap, int);
2935       ppNew = va_arg(ap, void**);
2936       pFree = va_arg(ap, void*);
2937       if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
2938       sqlite3ScratchFree(pFree);
2939       break;
2940     }
2941 
2942     /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
2943     **
2944     ** If parameter onoff is non-zero, configure the wrappers so that all
2945     ** subsequent calls to localtime() and variants fail. If onoff is zero,
2946     ** undo this setting.
2947     */
2948     case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
2949       sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
2950       break;
2951     }
2952 
2953 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2954     /*   sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
2955     **                        sqlite3_stmt*,const char**);
2956     **
2957     ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
2958     ** a string that describes the optimized parse tree.  This test-control
2959     ** returns a pointer to that string.
2960     */
2961     case SQLITE_TESTCTRL_EXPLAIN_STMT: {
2962       sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
2963       const char **pzRet = va_arg(ap, const char**);
2964       *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
2965       break;
2966     }
2967 #endif
2968 
2969   }
2970   va_end(ap);
2971 #endif /* SQLITE_OMIT_BUILTIN_TEST */
2972   return rc;
2973 }
2974 
2975 /*
2976 ** This is a utility routine, useful to VFS implementations, that checks
2977 ** to see if a database file was a URI that contained a specific query
2978 ** parameter, and if so obtains the value of the query parameter.
2979 **
2980 ** The zFilename argument is the filename pointer passed into the xOpen()
2981 ** method of a VFS implementation.  The zParam argument is the name of the
2982 ** query parameter we seek.  This routine returns the value of the zParam
2983 ** parameter if it exists.  If the parameter does not exist, this routine
2984 ** returns a NULL pointer.
2985 */
2986 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
2987   if( zFilename==0 ) return 0;
2988   zFilename += sqlite3Strlen30(zFilename) + 1;
2989   while( zFilename[0] ){
2990     int x = strcmp(zFilename, zParam);
2991     zFilename += sqlite3Strlen30(zFilename) + 1;
2992     if( x==0 ) return zFilename;
2993     zFilename += sqlite3Strlen30(zFilename) + 1;
2994   }
2995   return 0;
2996 }
2997 
2998 /*
2999 ** Return a boolean value for a query parameter.
3000 */
3001 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
3002   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3003   bDflt = bDflt!=0;
3004   return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
3005 }
3006 
3007 /*
3008 ** Return a 64-bit integer value for a query parameter.
3009 */
3010 sqlite3_int64 sqlite3_uri_int64(
3011   const char *zFilename,    /* Filename as passed to xOpen */
3012   const char *zParam,       /* URI parameter sought */
3013   sqlite3_int64 bDflt       /* return if parameter is missing */
3014 ){
3015   const char *z = sqlite3_uri_parameter(zFilename, zParam);
3016   sqlite3_int64 v;
3017   if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
3018     bDflt = v;
3019   }
3020   return bDflt;
3021 }
3022 
3023 /*
3024 ** Return the Btree pointer identified by zDbName.  Return NULL if not found.
3025 */
3026 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
3027   int i;
3028   for(i=0; i<db->nDb; i++){
3029     if( db->aDb[i].pBt
3030      && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0)
3031     ){
3032       return db->aDb[i].pBt;
3033     }
3034   }
3035   return 0;
3036 }
3037 
3038 /*
3039 ** Return the filename of the database associated with a database
3040 ** connection.
3041 */
3042 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
3043   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3044   return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
3045 }
3046 
3047 /*
3048 ** Return 1 if database is read-only or 0 if read/write.  Return -1 if
3049 ** no such database exists.
3050 */
3051 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
3052   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
3053   return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1;
3054 }
3055