1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 ** 17 ** $Id: main.c,v 1.520 2008/12/17 17:30:26 danielk1977 Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <ctype.h> 21 22 #ifdef SQLITE_ENABLE_FTS3 23 # include "fts3.h" 24 #endif 25 #ifdef SQLITE_ENABLE_RTREE 26 # include "rtree.h" 27 #endif 28 #ifdef SQLITE_ENABLE_ICU 29 # include "sqliteicu.h" 30 #endif 31 32 /* 33 ** The version of the library 34 */ 35 #ifndef SQLITE_AMALGAMATION 36 const char sqlite3_version[] = SQLITE_VERSION; 37 #endif 38 const char *sqlite3_libversion(void){ return sqlite3_version; } 39 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 40 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 41 42 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 43 /* 44 ** If the following function pointer is not NULL and if 45 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 46 ** I/O active are written using this function. These messages 47 ** are intended for debugging activity only. 48 */ 49 void (*sqlite3IoTrace)(const char*, ...) = 0; 50 #endif 51 52 /* 53 ** If the following global variable points to a string which is the 54 ** name of a directory, then that directory will be used to store 55 ** temporary files. 56 ** 57 ** See also the "PRAGMA temp_store_directory" SQL command. 58 */ 59 char *sqlite3_temp_directory = 0; 60 61 /* 62 ** Initialize SQLite. 63 ** 64 ** This routine must be called to initialize the memory allocation, 65 ** VFS, and mutex subsystems prior to doing any serious work with 66 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 67 ** this routine will be called automatically by key routines such as 68 ** sqlite3_open(). 69 ** 70 ** This routine is a no-op except on its very first call for the process, 71 ** or for the first call after a call to sqlite3_shutdown. 72 ** 73 ** The first thread to call this routine runs the initialization to 74 ** completion. If subsequent threads call this routine before the first 75 ** thread has finished the initialization process, then the subsequent 76 ** threads must block until the first thread finishes with the initialization. 77 ** 78 ** The first thread might call this routine recursively. Recursive 79 ** calls to this routine should not block, of course. Otherwise the 80 ** initialization process would never complete. 81 ** 82 ** Let X be the first thread to enter this routine. Let Y be some other 83 ** thread. Then while the initial invocation of this routine by X is 84 ** incomplete, it is required that: 85 ** 86 ** * Calls to this routine from Y must block until the outer-most 87 ** call by X completes. 88 ** 89 ** * Recursive calls to this routine from thread X return immediately 90 ** without blocking. 91 */ 92 int sqlite3_initialize(void){ 93 sqlite3_mutex *pMaster; /* The main static mutex */ 94 int rc; /* Result code */ 95 96 #ifdef SQLITE_OMIT_WSD 97 rc = sqlite3_wsd_init(4096, 24); 98 if( rc!=SQLITE_OK ){ 99 return rc; 100 } 101 #endif 102 103 /* If SQLite is already completely initialized, then this call 104 ** to sqlite3_initialize() should be a no-op. But the initialization 105 ** must be complete. So isInit must not be set until the very end 106 ** of this routine. 107 */ 108 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 109 110 /* Make sure the mutex subsystem is initialized. If unable to 111 ** initialize the mutex subsystem, return early with the error. 112 ** If the system is so sick that we are unable to allocate a mutex, 113 ** there is not much SQLite is going to be able to do. 114 ** 115 ** The mutex subsystem must take care of serializing its own 116 ** initialization. 117 */ 118 rc = sqlite3MutexInit(); 119 if( rc ) return rc; 120 121 /* Initialize the malloc() system and the recursive pInitMutex mutex. 122 ** This operation is protected by the STATIC_MASTER mutex. Note that 123 ** MutexAlloc() is called for a static mutex prior to initializing the 124 ** malloc subsystem - this implies that the allocation of a static 125 ** mutex must not require support from the malloc subsystem. 126 */ 127 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 128 sqlite3_mutex_enter(pMaster); 129 if( !sqlite3GlobalConfig.isMallocInit ){ 130 rc = sqlite3MallocInit(); 131 } 132 if( rc==SQLITE_OK ){ 133 sqlite3GlobalConfig.isMallocInit = 1; 134 if( !sqlite3GlobalConfig.pInitMutex ){ 135 sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 136 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 137 rc = SQLITE_NOMEM; 138 } 139 } 140 } 141 if( rc==SQLITE_OK ){ 142 sqlite3GlobalConfig.nRefInitMutex++; 143 } 144 sqlite3_mutex_leave(pMaster); 145 146 /* If unable to initialize the malloc subsystem, then return early. 147 ** There is little hope of getting SQLite to run if the malloc 148 ** subsystem cannot be initialized. 149 */ 150 if( rc!=SQLITE_OK ){ 151 return rc; 152 } 153 154 /* Do the rest of the initialization under the recursive mutex so 155 ** that we will be able to handle recursive calls into 156 ** sqlite3_initialize(). The recursive calls normally come through 157 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 158 ** recursive calls might also be possible. 159 */ 160 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 161 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 162 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 163 sqlite3GlobalConfig.inProgress = 1; 164 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 165 sqlite3RegisterGlobalFunctions(); 166 rc = sqlite3_os_init(); 167 if( rc==SQLITE_OK ){ 168 rc = sqlite3PcacheInitialize(); 169 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 170 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 171 } 172 sqlite3GlobalConfig.inProgress = 0; 173 sqlite3GlobalConfig.isInit = (rc==SQLITE_OK ? 1 : 0); 174 } 175 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 176 177 /* Go back under the static mutex and clean up the recursive 178 ** mutex to prevent a resource leak. 179 */ 180 sqlite3_mutex_enter(pMaster); 181 sqlite3GlobalConfig.nRefInitMutex--; 182 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 183 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 184 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 185 sqlite3GlobalConfig.pInitMutex = 0; 186 } 187 sqlite3_mutex_leave(pMaster); 188 189 /* The following is just a sanity check to make sure SQLite has 190 ** been compiled correctly. It is important to run this code, but 191 ** we don't want to run it too often and soak up CPU cycles for no 192 ** reason. So we run it once during initialization. 193 */ 194 #ifndef NDEBUG 195 /* This section of code's only "output" is via assert() statements. */ 196 if ( rc==SQLITE_OK ){ 197 u64 x = (((u64)1)<<63)-1; 198 double y; 199 assert(sizeof(x)==8); 200 assert(sizeof(x)==sizeof(y)); 201 memcpy(&y, &x, 8); 202 assert( sqlite3IsNaN(y) ); 203 } 204 #endif 205 206 return rc; 207 } 208 209 /* 210 ** Undo the effects of sqlite3_initialize(). Must not be called while 211 ** there are outstanding database connections or memory allocations or 212 ** while any part of SQLite is otherwise in use in any thread. This 213 ** routine is not threadsafe. Not by a long shot. 214 */ 215 int sqlite3_shutdown(void){ 216 sqlite3GlobalConfig.isMallocInit = 0; 217 sqlite3PcacheShutdown(); 218 if( sqlite3GlobalConfig.isInit ){ 219 sqlite3_os_end(); 220 } 221 sqlite3MallocEnd(); 222 sqlite3MutexEnd(); 223 sqlite3GlobalConfig.isInit = 0; 224 return SQLITE_OK; 225 } 226 227 /* 228 ** This API allows applications to modify the global configuration of 229 ** the SQLite library at run-time. 230 ** 231 ** This routine should only be called when there are no outstanding 232 ** database connections or memory allocations. This routine is not 233 ** threadsafe. Failure to heed these warnings can lead to unpredictable 234 ** behavior. 235 */ 236 int sqlite3_config(int op, ...){ 237 va_list ap; 238 int rc = SQLITE_OK; 239 240 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 241 ** the SQLite library is in use. */ 242 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE; 243 244 va_start(ap, op); 245 switch( op ){ 246 247 /* Mutex configuration options are only available in a threadsafe 248 ** compile. 249 */ 250 #if SQLITE_THREADSAFE 251 case SQLITE_CONFIG_SINGLETHREAD: { 252 /* Disable all mutexing */ 253 sqlite3GlobalConfig.bCoreMutex = 0; 254 sqlite3GlobalConfig.bFullMutex = 0; 255 break; 256 } 257 case SQLITE_CONFIG_MULTITHREAD: { 258 /* Disable mutexing of database connections */ 259 /* Enable mutexing of core data structures */ 260 sqlite3GlobalConfig.bCoreMutex = 1; 261 sqlite3GlobalConfig.bFullMutex = 0; 262 break; 263 } 264 case SQLITE_CONFIG_SERIALIZED: { 265 /* Enable all mutexing */ 266 sqlite3GlobalConfig.bCoreMutex = 1; 267 sqlite3GlobalConfig.bFullMutex = 1; 268 break; 269 } 270 case SQLITE_CONFIG_MUTEX: { 271 /* Specify an alternative mutex implementation */ 272 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 273 break; 274 } 275 case SQLITE_CONFIG_GETMUTEX: { 276 /* Retrieve the current mutex implementation */ 277 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 278 break; 279 } 280 #endif 281 282 283 case SQLITE_CONFIG_MALLOC: { 284 /* Specify an alternative malloc implementation */ 285 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 286 break; 287 } 288 case SQLITE_CONFIG_GETMALLOC: { 289 /* Retrieve the current malloc() implementation */ 290 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 291 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 292 break; 293 } 294 case SQLITE_CONFIG_MEMSTATUS: { 295 /* Enable or disable the malloc status collection */ 296 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 297 break; 298 } 299 case SQLITE_CONFIG_SCRATCH: { 300 /* Designate a buffer for scratch memory space */ 301 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 302 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 303 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 304 break; 305 } 306 case SQLITE_CONFIG_PAGECACHE: { 307 /* Designate a buffer for scratch memory space */ 308 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 309 sqlite3GlobalConfig.szPage = va_arg(ap, int); 310 sqlite3GlobalConfig.nPage = va_arg(ap, int); 311 break; 312 } 313 314 case SQLITE_CONFIG_PCACHE: { 315 /* Specify an alternative malloc implementation */ 316 sqlite3GlobalConfig.pcache = *va_arg(ap, sqlite3_pcache_methods*); 317 break; 318 } 319 320 case SQLITE_CONFIG_GETPCACHE: { 321 if( sqlite3GlobalConfig.pcache.xInit==0 ){ 322 sqlite3PCacheSetDefault(); 323 } 324 *va_arg(ap, sqlite3_pcache_methods*) = sqlite3GlobalConfig.pcache; 325 break; 326 } 327 328 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 329 case SQLITE_CONFIG_HEAP: { 330 /* Designate a buffer for heap memory space */ 331 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 332 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 333 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 334 335 if( sqlite3GlobalConfig.pHeap==0 ){ 336 /* If the heap pointer is NULL, then restore the malloc implementation 337 ** back to NULL pointers too. This will cause the malloc to go 338 ** back to its default implementation when sqlite3_initialize() is 339 ** run. 340 */ 341 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 342 }else{ 343 /* The heap pointer is not NULL, then install one of the 344 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 345 ** ENABLE_MEMSYS5 is defined, return an error. 346 ** the default case and return an error. 347 */ 348 #ifdef SQLITE_ENABLE_MEMSYS3 349 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 350 #endif 351 #ifdef SQLITE_ENABLE_MEMSYS5 352 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 353 #endif 354 } 355 break; 356 } 357 #endif 358 359 case SQLITE_CONFIG_LOOKASIDE: { 360 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 361 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 362 break; 363 } 364 365 default: { 366 rc = SQLITE_ERROR; 367 break; 368 } 369 } 370 va_end(ap); 371 return rc; 372 } 373 374 /* 375 ** Set up the lookaside buffers for a database connection. 376 ** Return SQLITE_OK on success. 377 ** If lookaside is already active, return SQLITE_BUSY. 378 ** 379 ** The sz parameter is the number of bytes in each lookaside slot. 380 ** The cnt parameter is the number of slots. If pStart is NULL the 381 ** space for the lookaside memory is obtained from sqlite3_malloc(). 382 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 383 ** the lookaside memory. 384 */ 385 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 386 void *pStart; 387 if( db->lookaside.nOut ){ 388 return SQLITE_BUSY; 389 } 390 if( sz<0 ) sz = 0; 391 if( cnt<0 ) cnt = 0; 392 if( pBuf==0 ){ 393 sz = (sz + 7)&~7; 394 sqlite3BeginBenignMalloc(); 395 pStart = sqlite3Malloc( sz*cnt ); 396 sqlite3EndBenignMalloc(); 397 }else{ 398 sz = sz&~7; 399 pStart = pBuf; 400 } 401 if( db->lookaside.bMalloced ){ 402 sqlite3_free(db->lookaside.pStart); 403 } 404 db->lookaside.pStart = pStart; 405 db->lookaside.pFree = 0; 406 db->lookaside.sz = (u16)sz; 407 db->lookaside.bMalloced = pBuf==0 ?1:0; 408 if( pStart ){ 409 int i; 410 LookasideSlot *p; 411 p = (LookasideSlot*)pStart; 412 for(i=cnt-1; i>=0; i--){ 413 p->pNext = db->lookaside.pFree; 414 db->lookaside.pFree = p; 415 p = (LookasideSlot*)&((u8*)p)[sz]; 416 } 417 db->lookaside.pEnd = p; 418 db->lookaside.bEnabled = 1; 419 }else{ 420 db->lookaside.pEnd = 0; 421 db->lookaside.bEnabled = 0; 422 } 423 return SQLITE_OK; 424 } 425 426 /* 427 ** Return the mutex associated with a database connection. 428 */ 429 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 430 return db->mutex; 431 } 432 433 /* 434 ** Configuration settings for an individual database connection 435 */ 436 int sqlite3_db_config(sqlite3 *db, int op, ...){ 437 va_list ap; 438 int rc; 439 va_start(ap, op); 440 switch( op ){ 441 case SQLITE_DBCONFIG_LOOKASIDE: { 442 void *pBuf = va_arg(ap, void*); 443 int sz = va_arg(ap, int); 444 int cnt = va_arg(ap, int); 445 rc = setupLookaside(db, pBuf, sz, cnt); 446 break; 447 } 448 default: { 449 rc = SQLITE_ERROR; 450 break; 451 } 452 } 453 va_end(ap); 454 return rc; 455 } 456 457 /* 458 ** Routine needed to support the testcase() macro. 459 */ 460 #ifdef SQLITE_COVERAGE_TEST 461 void sqlite3Coverage(int x){ 462 static int dummy = 0; 463 dummy += x; 464 } 465 #endif 466 467 468 /* 469 ** Return true if the buffer z[0..n-1] contains all spaces. 470 */ 471 static int allSpaces(const char *z, int n){ 472 while( n>0 && z[n-1]==' ' ){ n--; } 473 return n==0; 474 } 475 476 /* 477 ** This is the default collating function named "BINARY" which is always 478 ** available. 479 ** 480 ** If the padFlag argument is not NULL then space padding at the end 481 ** of strings is ignored. This implements the RTRIM collation. 482 */ 483 static int binCollFunc( 484 void *padFlag, 485 int nKey1, const void *pKey1, 486 int nKey2, const void *pKey2 487 ){ 488 int rc, n; 489 n = nKey1<nKey2 ? nKey1 : nKey2; 490 rc = memcmp(pKey1, pKey2, n); 491 if( rc==0 ){ 492 if( padFlag 493 && allSpaces(((char*)pKey1)+n, nKey1-n) 494 && allSpaces(((char*)pKey2)+n, nKey2-n) 495 ){ 496 /* Leave rc unchanged at 0 */ 497 }else{ 498 rc = nKey1 - nKey2; 499 } 500 } 501 return rc; 502 } 503 504 /* 505 ** Another built-in collating sequence: NOCASE. 506 ** 507 ** This collating sequence is intended to be used for "case independant 508 ** comparison". SQLite's knowledge of upper and lower case equivalents 509 ** extends only to the 26 characters used in the English language. 510 ** 511 ** At the moment there is only a UTF-8 implementation. 512 */ 513 static int nocaseCollatingFunc( 514 void *NotUsed, 515 int nKey1, const void *pKey1, 516 int nKey2, const void *pKey2 517 ){ 518 int r = sqlite3StrNICmp( 519 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 520 UNUSED_PARAMETER(NotUsed); 521 if( 0==r ){ 522 r = nKey1-nKey2; 523 } 524 return r; 525 } 526 527 /* 528 ** Return the ROWID of the most recent insert 529 */ 530 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 531 return db->lastRowid; 532 } 533 534 /* 535 ** Return the number of changes in the most recent call to sqlite3_exec(). 536 */ 537 int sqlite3_changes(sqlite3 *db){ 538 return db->nChange; 539 } 540 541 /* 542 ** Return the number of changes since the database handle was opened. 543 */ 544 int sqlite3_total_changes(sqlite3 *db){ 545 return db->nTotalChange; 546 } 547 548 /* 549 ** Close all open savepoints. This function only manipulates fields of the 550 ** database handle object, it does not close any savepoints that may be open 551 ** at the b-tree/pager level. 552 */ 553 void sqlite3CloseSavepoints(sqlite3 *db){ 554 while( db->pSavepoint ){ 555 Savepoint *pTmp = db->pSavepoint; 556 db->pSavepoint = pTmp->pNext; 557 sqlite3DbFree(db, pTmp); 558 } 559 db->nSavepoint = 0; 560 db->isTransactionSavepoint = 0; 561 } 562 563 /* 564 ** Close an existing SQLite database 565 */ 566 int sqlite3_close(sqlite3 *db){ 567 HashElem *i; 568 int j; 569 570 if( !db ){ 571 return SQLITE_OK; 572 } 573 if( !sqlite3SafetyCheckSickOrOk(db) ){ 574 return SQLITE_MISUSE; 575 } 576 sqlite3_mutex_enter(db->mutex); 577 578 #ifdef SQLITE_SSE 579 { 580 extern void sqlite3SseCleanup(sqlite3*); 581 sqlite3SseCleanup(db); 582 } 583 #endif 584 585 sqlite3ResetInternalSchema(db, 0); 586 587 /* If a transaction is open, the ResetInternalSchema() call above 588 ** will not have called the xDisconnect() method on any virtual 589 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 590 ** call will do so. We need to do this before the check for active 591 ** SQL statements below, as the v-table implementation may be storing 592 ** some prepared statements internally. 593 */ 594 sqlite3VtabRollback(db); 595 596 /* If there are any outstanding VMs, return SQLITE_BUSY. */ 597 if( db->pVdbe ){ 598 sqlite3Error(db, SQLITE_BUSY, 599 "Unable to close due to unfinalised statements"); 600 sqlite3_mutex_leave(db->mutex); 601 return SQLITE_BUSY; 602 } 603 assert( sqlite3SafetyCheckSickOrOk(db) ); 604 605 /* Free any outstanding Savepoint structures. */ 606 sqlite3CloseSavepoints(db); 607 608 for(j=0; j<db->nDb; j++){ 609 struct Db *pDb = &db->aDb[j]; 610 if( pDb->pBt ){ 611 sqlite3BtreeClose(pDb->pBt); 612 pDb->pBt = 0; 613 if( j!=1 ){ 614 pDb->pSchema = 0; 615 } 616 } 617 } 618 sqlite3ResetInternalSchema(db, 0); 619 assert( db->nDb<=2 ); 620 assert( db->aDb==db->aDbStatic ); 621 for(j=0; j<ArraySize(db->aFunc.a); j++){ 622 FuncDef *pNext, *pHash, *p; 623 for(p=db->aFunc.a[j]; p; p=pHash){ 624 pHash = p->pHash; 625 while( p ){ 626 pNext = p->pNext; 627 sqlite3DbFree(db, p); 628 p = pNext; 629 } 630 } 631 } 632 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 633 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 634 /* Invoke any destructors registered for collation sequence user data. */ 635 for(j=0; j<3; j++){ 636 if( pColl[j].xDel ){ 637 pColl[j].xDel(pColl[j].pUser); 638 } 639 } 640 sqlite3DbFree(db, pColl); 641 } 642 sqlite3HashClear(&db->aCollSeq); 643 #ifndef SQLITE_OMIT_VIRTUALTABLE 644 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 645 Module *pMod = (Module *)sqliteHashData(i); 646 if( pMod->xDestroy ){ 647 pMod->xDestroy(pMod->pAux); 648 } 649 sqlite3DbFree(db, pMod); 650 } 651 sqlite3HashClear(&db->aModule); 652 #endif 653 654 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 655 if( db->pErr ){ 656 sqlite3ValueFree(db->pErr); 657 } 658 sqlite3CloseExtensions(db); 659 660 db->magic = SQLITE_MAGIC_ERROR; 661 662 /* The temp-database schema is allocated differently from the other schema 663 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 664 ** So it needs to be freed here. Todo: Why not roll the temp schema into 665 ** the same sqliteMalloc() as the one that allocates the database 666 ** structure? 667 */ 668 sqlite3DbFree(db, db->aDb[1].pSchema); 669 sqlite3_mutex_leave(db->mutex); 670 db->magic = SQLITE_MAGIC_CLOSED; 671 sqlite3_mutex_free(db->mutex); 672 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 673 if( db->lookaside.bMalloced ){ 674 sqlite3_free(db->lookaside.pStart); 675 } 676 sqlite3_free(db); 677 return SQLITE_OK; 678 } 679 680 /* 681 ** Rollback all database files. 682 */ 683 void sqlite3RollbackAll(sqlite3 *db){ 684 int i; 685 int inTrans = 0; 686 assert( sqlite3_mutex_held(db->mutex) ); 687 sqlite3BeginBenignMalloc(); 688 for(i=0; i<db->nDb; i++){ 689 if( db->aDb[i].pBt ){ 690 if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ 691 inTrans = 1; 692 } 693 sqlite3BtreeRollback(db->aDb[i].pBt); 694 db->aDb[i].inTrans = 0; 695 } 696 } 697 sqlite3VtabRollback(db); 698 sqlite3EndBenignMalloc(); 699 700 if( db->flags&SQLITE_InternChanges ){ 701 sqlite3ExpirePreparedStatements(db); 702 sqlite3ResetInternalSchema(db, 0); 703 } 704 705 /* If one has been configured, invoke the rollback-hook callback */ 706 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 707 db->xRollbackCallback(db->pRollbackArg); 708 } 709 } 710 711 /* 712 ** Return a static string that describes the kind of error specified in the 713 ** argument. 714 */ 715 const char *sqlite3ErrStr(int rc){ 716 const char *z; 717 switch( rc & 0xff ){ 718 case SQLITE_ROW: 719 case SQLITE_DONE: 720 case SQLITE_OK: z = "not an error"; break; 721 case SQLITE_ERROR: z = "SQL logic error or missing database"; break; 722 case SQLITE_PERM: z = "access permission denied"; break; 723 case SQLITE_ABORT: z = "callback requested query abort"; break; 724 case SQLITE_BUSY: z = "database is locked"; break; 725 case SQLITE_LOCKED: z = "database table is locked"; break; 726 case SQLITE_NOMEM: z = "out of memory"; break; 727 case SQLITE_READONLY: z = "attempt to write a readonly database"; break; 728 case SQLITE_INTERRUPT: z = "interrupted"; break; 729 case SQLITE_IOERR: z = "disk I/O error"; break; 730 case SQLITE_CORRUPT: z = "database disk image is malformed"; break; 731 case SQLITE_FULL: z = "database or disk is full"; break; 732 case SQLITE_CANTOPEN: z = "unable to open database file"; break; 733 case SQLITE_EMPTY: z = "table contains no data"; break; 734 case SQLITE_SCHEMA: z = "database schema has changed"; break; 735 case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break; 736 case SQLITE_CONSTRAINT: z = "constraint failed"; break; 737 case SQLITE_MISMATCH: z = "datatype mismatch"; break; 738 case SQLITE_MISUSE: z = "library routine called out of sequence";break; 739 case SQLITE_NOLFS: z = "large file support is disabled"; break; 740 case SQLITE_AUTH: z = "authorization denied"; break; 741 case SQLITE_FORMAT: z = "auxiliary database format error"; break; 742 case SQLITE_RANGE: z = "bind or column index out of range"; break; 743 case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; 744 default: z = "unknown error"; break; 745 } 746 return z; 747 } 748 749 /* 750 ** This routine implements a busy callback that sleeps and tries 751 ** again until a timeout value is reached. The timeout value is 752 ** an integer number of milliseconds passed in as the first 753 ** argument. 754 */ 755 static int sqliteDefaultBusyCallback( 756 void *ptr, /* Database connection */ 757 int count /* Number of times table has been busy */ 758 ){ 759 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 760 static const u8 delays[] = 761 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 762 static const u8 totals[] = 763 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 764 # define NDELAY (sizeof(delays)/sizeof(delays[0])) 765 sqlite3 *db = (sqlite3 *)ptr; 766 int timeout = db->busyTimeout; 767 int delay, prior; 768 769 assert( count>=0 ); 770 if( count < NDELAY ){ 771 delay = delays[count]; 772 prior = totals[count]; 773 }else{ 774 delay = delays[NDELAY-1]; 775 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 776 } 777 if( prior + delay > timeout ){ 778 delay = timeout - prior; 779 if( delay<=0 ) return 0; 780 } 781 sqlite3OsSleep(db->pVfs, delay*1000); 782 return 1; 783 #else 784 sqlite3 *db = (sqlite3 *)ptr; 785 int timeout = ((sqlite3 *)ptr)->busyTimeout; 786 if( (count+1)*1000 > timeout ){ 787 return 0; 788 } 789 sqlite3OsSleep(db->pVfs, 1000000); 790 return 1; 791 #endif 792 } 793 794 /* 795 ** Invoke the given busy handler. 796 ** 797 ** This routine is called when an operation failed with a lock. 798 ** If this routine returns non-zero, the lock is retried. If it 799 ** returns 0, the operation aborts with an SQLITE_BUSY error. 800 */ 801 int sqlite3InvokeBusyHandler(BusyHandler *p){ 802 int rc; 803 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 804 rc = p->xFunc(p->pArg, p->nBusy); 805 if( rc==0 ){ 806 p->nBusy = -1; 807 }else{ 808 p->nBusy++; 809 } 810 return rc; 811 } 812 813 /* 814 ** This routine sets the busy callback for an Sqlite database to the 815 ** given callback function with the given argument. 816 */ 817 int sqlite3_busy_handler( 818 sqlite3 *db, 819 int (*xBusy)(void*,int), 820 void *pArg 821 ){ 822 sqlite3_mutex_enter(db->mutex); 823 db->busyHandler.xFunc = xBusy; 824 db->busyHandler.pArg = pArg; 825 db->busyHandler.nBusy = 0; 826 sqlite3_mutex_leave(db->mutex); 827 return SQLITE_OK; 828 } 829 830 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 831 /* 832 ** This routine sets the progress callback for an Sqlite database to the 833 ** given callback function with the given argument. The progress callback will 834 ** be invoked every nOps opcodes. 835 */ 836 void sqlite3_progress_handler( 837 sqlite3 *db, 838 int nOps, 839 int (*xProgress)(void*), 840 void *pArg 841 ){ 842 sqlite3_mutex_enter(db->mutex); 843 if( nOps>0 ){ 844 db->xProgress = xProgress; 845 db->nProgressOps = nOps; 846 db->pProgressArg = pArg; 847 }else{ 848 db->xProgress = 0; 849 db->nProgressOps = 0; 850 db->pProgressArg = 0; 851 } 852 sqlite3_mutex_leave(db->mutex); 853 } 854 #endif 855 856 857 /* 858 ** This routine installs a default busy handler that waits for the 859 ** specified number of milliseconds before returning 0. 860 */ 861 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 862 if( ms>0 ){ 863 db->busyTimeout = ms; 864 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 865 }else{ 866 sqlite3_busy_handler(db, 0, 0); 867 } 868 return SQLITE_OK; 869 } 870 871 /* 872 ** Cause any pending operation to stop at its earliest opportunity. 873 */ 874 void sqlite3_interrupt(sqlite3 *db){ 875 db->u1.isInterrupted = 1; 876 } 877 878 879 /* 880 ** This function is exactly the same as sqlite3_create_function(), except 881 ** that it is designed to be called by internal code. The difference is 882 ** that if a malloc() fails in sqlite3_create_function(), an error code 883 ** is returned and the mallocFailed flag cleared. 884 */ 885 int sqlite3CreateFunc( 886 sqlite3 *db, 887 const char *zFunctionName, 888 int nArg, 889 int enc, 890 void *pUserData, 891 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 892 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 893 void (*xFinal)(sqlite3_context*) 894 ){ 895 FuncDef *p; 896 int nName; 897 898 assert( sqlite3_mutex_held(db->mutex) ); 899 if( zFunctionName==0 || 900 (xFunc && (xFinal || xStep)) || 901 (!xFunc && (xFinal && !xStep)) || 902 (!xFunc && (!xFinal && xStep)) || 903 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 904 (255<(nName = sqlite3Strlen(db, zFunctionName))) ){ 905 sqlite3Error(db, SQLITE_ERROR, "bad parameters"); 906 return SQLITE_ERROR; 907 } 908 909 #ifndef SQLITE_OMIT_UTF16 910 /* If SQLITE_UTF16 is specified as the encoding type, transform this 911 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 912 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 913 ** 914 ** If SQLITE_ANY is specified, add three versions of the function 915 ** to the hash table. 916 */ 917 if( enc==SQLITE_UTF16 ){ 918 enc = SQLITE_UTF16NATIVE; 919 }else if( enc==SQLITE_ANY ){ 920 int rc; 921 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 922 pUserData, xFunc, xStep, xFinal); 923 if( rc==SQLITE_OK ){ 924 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 925 pUserData, xFunc, xStep, xFinal); 926 } 927 if( rc!=SQLITE_OK ){ 928 return rc; 929 } 930 enc = SQLITE_UTF16BE; 931 } 932 #else 933 enc = SQLITE_UTF8; 934 #endif 935 936 /* Check if an existing function is being overridden or deleted. If so, 937 ** and there are active VMs, then return SQLITE_BUSY. If a function 938 ** is being overridden/deleted but there are no active VMs, allow the 939 ** operation to continue but invalidate all precompiled statements. 940 */ 941 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 942 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 943 if( db->activeVdbeCnt ){ 944 sqlite3Error(db, SQLITE_BUSY, 945 "Unable to delete/modify user-function due to active statements"); 946 assert( !db->mallocFailed ); 947 return SQLITE_BUSY; 948 }else{ 949 sqlite3ExpirePreparedStatements(db); 950 } 951 } 952 953 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 954 assert(p || db->mallocFailed); 955 if( !p ){ 956 return SQLITE_NOMEM; 957 } 958 p->flags = 0; 959 p->xFunc = xFunc; 960 p->xStep = xStep; 961 p->xFinalize = xFinal; 962 p->pUserData = pUserData; 963 p->nArg = (u16)nArg; 964 return SQLITE_OK; 965 } 966 967 /* 968 ** Create new user functions. 969 */ 970 int sqlite3_create_function( 971 sqlite3 *db, 972 const char *zFunctionName, 973 int nArg, 974 int enc, 975 void *p, 976 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 977 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 978 void (*xFinal)(sqlite3_context*) 979 ){ 980 int rc; 981 sqlite3_mutex_enter(db->mutex); 982 rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal); 983 rc = sqlite3ApiExit(db, rc); 984 sqlite3_mutex_leave(db->mutex); 985 return rc; 986 } 987 988 #ifndef SQLITE_OMIT_UTF16 989 int sqlite3_create_function16( 990 sqlite3 *db, 991 const void *zFunctionName, 992 int nArg, 993 int eTextRep, 994 void *p, 995 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 996 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 997 void (*xFinal)(sqlite3_context*) 998 ){ 999 int rc; 1000 char *zFunc8; 1001 sqlite3_mutex_enter(db->mutex); 1002 assert( !db->mallocFailed ); 1003 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1); 1004 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal); 1005 sqlite3DbFree(db, zFunc8); 1006 rc = sqlite3ApiExit(db, rc); 1007 sqlite3_mutex_leave(db->mutex); 1008 return rc; 1009 } 1010 #endif 1011 1012 1013 /* 1014 ** Declare that a function has been overloaded by a virtual table. 1015 ** 1016 ** If the function already exists as a regular global function, then 1017 ** this routine is a no-op. If the function does not exist, then create 1018 ** a new one that always throws a run-time error. 1019 ** 1020 ** When virtual tables intend to provide an overloaded function, they 1021 ** should call this routine to make sure the global function exists. 1022 ** A global function must exist in order for name resolution to work 1023 ** properly. 1024 */ 1025 int sqlite3_overload_function( 1026 sqlite3 *db, 1027 const char *zName, 1028 int nArg 1029 ){ 1030 int nName = sqlite3Strlen(db, zName); 1031 int rc; 1032 sqlite3_mutex_enter(db->mutex); 1033 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1034 sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1035 0, sqlite3InvalidFunction, 0, 0); 1036 } 1037 rc = sqlite3ApiExit(db, SQLITE_OK); 1038 sqlite3_mutex_leave(db->mutex); 1039 return rc; 1040 } 1041 1042 #ifndef SQLITE_OMIT_TRACE 1043 /* 1044 ** Register a trace function. The pArg from the previously registered trace 1045 ** is returned. 1046 ** 1047 ** A NULL trace function means that no tracing is executes. A non-NULL 1048 ** trace is a pointer to a function that is invoked at the start of each 1049 ** SQL statement. 1050 */ 1051 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1052 void *pOld; 1053 sqlite3_mutex_enter(db->mutex); 1054 pOld = db->pTraceArg; 1055 db->xTrace = xTrace; 1056 db->pTraceArg = pArg; 1057 sqlite3_mutex_leave(db->mutex); 1058 return pOld; 1059 } 1060 /* 1061 ** Register a profile function. The pArg from the previously registered 1062 ** profile function is returned. 1063 ** 1064 ** A NULL profile function means that no profiling is executes. A non-NULL 1065 ** profile is a pointer to a function that is invoked at the conclusion of 1066 ** each SQL statement that is run. 1067 */ 1068 void *sqlite3_profile( 1069 sqlite3 *db, 1070 void (*xProfile)(void*,const char*,sqlite_uint64), 1071 void *pArg 1072 ){ 1073 void *pOld; 1074 sqlite3_mutex_enter(db->mutex); 1075 pOld = db->pProfileArg; 1076 db->xProfile = xProfile; 1077 db->pProfileArg = pArg; 1078 sqlite3_mutex_leave(db->mutex); 1079 return pOld; 1080 } 1081 #endif /* SQLITE_OMIT_TRACE */ 1082 1083 /*** EXPERIMENTAL *** 1084 ** 1085 ** Register a function to be invoked when a transaction comments. 1086 ** If the invoked function returns non-zero, then the commit becomes a 1087 ** rollback. 1088 */ 1089 void *sqlite3_commit_hook( 1090 sqlite3 *db, /* Attach the hook to this database */ 1091 int (*xCallback)(void*), /* Function to invoke on each commit */ 1092 void *pArg /* Argument to the function */ 1093 ){ 1094 void *pOld; 1095 sqlite3_mutex_enter(db->mutex); 1096 pOld = db->pCommitArg; 1097 db->xCommitCallback = xCallback; 1098 db->pCommitArg = pArg; 1099 sqlite3_mutex_leave(db->mutex); 1100 return pOld; 1101 } 1102 1103 /* 1104 ** Register a callback to be invoked each time a row is updated, 1105 ** inserted or deleted using this database connection. 1106 */ 1107 void *sqlite3_update_hook( 1108 sqlite3 *db, /* Attach the hook to this database */ 1109 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1110 void *pArg /* Argument to the function */ 1111 ){ 1112 void *pRet; 1113 sqlite3_mutex_enter(db->mutex); 1114 pRet = db->pUpdateArg; 1115 db->xUpdateCallback = xCallback; 1116 db->pUpdateArg = pArg; 1117 sqlite3_mutex_leave(db->mutex); 1118 return pRet; 1119 } 1120 1121 /* 1122 ** Register a callback to be invoked each time a transaction is rolled 1123 ** back by this database connection. 1124 */ 1125 void *sqlite3_rollback_hook( 1126 sqlite3 *db, /* Attach the hook to this database */ 1127 void (*xCallback)(void*), /* Callback function */ 1128 void *pArg /* Argument to the function */ 1129 ){ 1130 void *pRet; 1131 sqlite3_mutex_enter(db->mutex); 1132 pRet = db->pRollbackArg; 1133 db->xRollbackCallback = xCallback; 1134 db->pRollbackArg = pArg; 1135 sqlite3_mutex_leave(db->mutex); 1136 return pRet; 1137 } 1138 1139 /* 1140 ** This routine is called to create a connection to a database BTree 1141 ** driver. If zFilename is the name of a file, then that file is 1142 ** opened and used. If zFilename is the magic name ":memory:" then 1143 ** the database is stored in memory (and is thus forgotten as soon as 1144 ** the connection is closed.) If zFilename is NULL then the database 1145 ** is a "virtual" database for transient use only and is deleted as 1146 ** soon as the connection is closed. 1147 ** 1148 ** A virtual database can be either a disk file (that is automatically 1149 ** deleted when the file is closed) or it an be held entirely in memory, 1150 ** depending on the values of the SQLITE_TEMP_STORE compile-time macro and the 1151 ** db->temp_store variable, according to the following chart: 1152 ** 1153 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1154 ** ----------------- -------------- ------------------------------ 1155 ** 0 any file 1156 ** 1 1 file 1157 ** 1 2 memory 1158 ** 1 0 file 1159 ** 2 1 file 1160 ** 2 2 memory 1161 ** 2 0 memory 1162 ** 3 any memory 1163 */ 1164 int sqlite3BtreeFactory( 1165 const sqlite3 *db, /* Main database when opening aux otherwise 0 */ 1166 const char *zFilename, /* Name of the file containing the BTree database */ 1167 int omitJournal, /* if TRUE then do not journal this file */ 1168 int nCache, /* How many pages in the page cache */ 1169 int vfsFlags, /* Flags passed through to vfsOpen */ 1170 Btree **ppBtree /* Pointer to new Btree object written here */ 1171 ){ 1172 int btFlags = 0; 1173 int rc; 1174 1175 assert( sqlite3_mutex_held(db->mutex) ); 1176 assert( ppBtree != 0); 1177 if( omitJournal ){ 1178 btFlags |= BTREE_OMIT_JOURNAL; 1179 } 1180 if( db->flags & SQLITE_NoReadlock ){ 1181 btFlags |= BTREE_NO_READLOCK; 1182 } 1183 if( zFilename==0 ){ 1184 #if SQLITE_TEMP_STORE==0 1185 /* Do nothing */ 1186 #endif 1187 #ifndef SQLITE_OMIT_MEMORYDB 1188 #if SQLITE_TEMP_STORE==1 1189 if( db->temp_store==2 ) zFilename = ":memory:"; 1190 #endif 1191 #if SQLITE_TEMP_STORE==2 1192 if( db->temp_store!=1 ) zFilename = ":memory:"; 1193 #endif 1194 #if SQLITE_TEMP_STORE==3 1195 zFilename = ":memory:"; 1196 #endif 1197 #endif /* SQLITE_OMIT_MEMORYDB */ 1198 } 1199 1200 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){ 1201 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 1202 } 1203 rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags); 1204 1205 /* If the B-Tree was successfully opened, set the pager-cache size to the 1206 ** default value. Except, if the call to BtreeOpen() returned a handle 1207 ** open on an existing shared pager-cache, do not change the pager-cache 1208 ** size. 1209 */ 1210 if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){ 1211 sqlite3BtreeSetCacheSize(*ppBtree, nCache); 1212 } 1213 return rc; 1214 } 1215 1216 /* 1217 ** Return UTF-8 encoded English language explanation of the most recent 1218 ** error. 1219 */ 1220 const char *sqlite3_errmsg(sqlite3 *db){ 1221 const char *z; 1222 if( !db ){ 1223 return sqlite3ErrStr(SQLITE_NOMEM); 1224 } 1225 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1226 return sqlite3ErrStr(SQLITE_MISUSE); 1227 } 1228 if( db->mallocFailed ){ 1229 return sqlite3ErrStr(SQLITE_NOMEM); 1230 } 1231 sqlite3_mutex_enter(db->mutex); 1232 assert( !db->mallocFailed ); 1233 z = (char*)sqlite3_value_text(db->pErr); 1234 assert( !db->mallocFailed ); 1235 if( z==0 ){ 1236 z = sqlite3ErrStr(db->errCode); 1237 } 1238 sqlite3_mutex_leave(db->mutex); 1239 return z; 1240 } 1241 1242 #ifndef SQLITE_OMIT_UTF16 1243 /* 1244 ** Return UTF-16 encoded English language explanation of the most recent 1245 ** error. 1246 */ 1247 const void *sqlite3_errmsg16(sqlite3 *db){ 1248 /* Because all the characters in the string are in the unicode 1249 ** range 0x00-0xFF, if we pad the big-endian string with a 1250 ** zero byte, we can obtain the little-endian string with 1251 ** &big_endian[1]. 1252 */ 1253 static const char outOfMemBe[] = { 1254 0, 'o', 0, 'u', 0, 't', 0, ' ', 1255 0, 'o', 0, 'f', 0, ' ', 1256 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 1257 }; 1258 static const char misuseBe [] = { 1259 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', 1260 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', 1261 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', 1262 0, 'o', 0, 'u', 0, 't', 0, ' ', 1263 0, 'o', 0, 'f', 0, ' ', 1264 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 1265 }; 1266 1267 const void *z; 1268 if( !db ){ 1269 return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); 1270 } 1271 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1272 return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); 1273 } 1274 sqlite3_mutex_enter(db->mutex); 1275 assert( !db->mallocFailed ); 1276 z = sqlite3_value_text16(db->pErr); 1277 if( z==0 ){ 1278 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1279 SQLITE_UTF8, SQLITE_STATIC); 1280 z = sqlite3_value_text16(db->pErr); 1281 } 1282 /* A malloc() may have failed within the call to sqlite3_value_text16() 1283 ** above. If this is the case, then the db->mallocFailed flag needs to 1284 ** be cleared before returning. Do this directly, instead of via 1285 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1286 */ 1287 db->mallocFailed = 0; 1288 sqlite3_mutex_leave(db->mutex); 1289 return z; 1290 } 1291 #endif /* SQLITE_OMIT_UTF16 */ 1292 1293 /* 1294 ** Return the most recent error code generated by an SQLite routine. If NULL is 1295 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1296 */ 1297 int sqlite3_errcode(sqlite3 *db){ 1298 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1299 return SQLITE_MISUSE; 1300 } 1301 if( !db || db->mallocFailed ){ 1302 return SQLITE_NOMEM; 1303 } 1304 return db->errCode & db->errMask; 1305 } 1306 int sqlite3_extended_errcode(sqlite3 *db){ 1307 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1308 return SQLITE_MISUSE; 1309 } 1310 if( !db || db->mallocFailed ){ 1311 return SQLITE_NOMEM; 1312 } 1313 return db->errCode; 1314 } 1315 1316 /* 1317 ** Create a new collating function for database "db". The name is zName 1318 ** and the encoding is enc. 1319 */ 1320 static int createCollation( 1321 sqlite3* db, 1322 const char *zName, 1323 int enc, 1324 void* pCtx, 1325 int(*xCompare)(void*,int,const void*,int,const void*), 1326 void(*xDel)(void*) 1327 ){ 1328 CollSeq *pColl; 1329 int enc2; 1330 int nName; 1331 1332 assert( sqlite3_mutex_held(db->mutex) ); 1333 1334 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1335 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1336 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1337 */ 1338 enc2 = enc & ~SQLITE_UTF16_ALIGNED; 1339 if( enc2==SQLITE_UTF16 ){ 1340 enc2 = SQLITE_UTF16NATIVE; 1341 } 1342 if( (enc2&~3)!=0 ){ 1343 return SQLITE_MISUSE; 1344 } 1345 1346 /* Check if this call is removing or replacing an existing collation 1347 ** sequence. If so, and there are active VMs, return busy. If there 1348 ** are no active VMs, invalidate any pre-compiled statements. 1349 */ 1350 nName = sqlite3Strlen(db, zName); 1351 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 0); 1352 if( pColl && pColl->xCmp ){ 1353 if( db->activeVdbeCnt ){ 1354 sqlite3Error(db, SQLITE_BUSY, 1355 "Unable to delete/modify collation sequence due to active statements"); 1356 return SQLITE_BUSY; 1357 } 1358 sqlite3ExpirePreparedStatements(db); 1359 1360 /* If collation sequence pColl was created directly by a call to 1361 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1362 ** then any copies made by synthCollSeq() need to be invalidated. 1363 ** Also, collation destructor - CollSeq.xDel() - function may need 1364 ** to be called. 1365 */ 1366 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1367 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1368 int j; 1369 for(j=0; j<3; j++){ 1370 CollSeq *p = &aColl[j]; 1371 if( p->enc==pColl->enc ){ 1372 if( p->xDel ){ 1373 p->xDel(p->pUser); 1374 } 1375 p->xCmp = 0; 1376 } 1377 } 1378 } 1379 } 1380 1381 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 1); 1382 if( pColl ){ 1383 pColl->xCmp = xCompare; 1384 pColl->pUser = pCtx; 1385 pColl->xDel = xDel; 1386 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 1387 } 1388 sqlite3Error(db, SQLITE_OK, 0); 1389 return SQLITE_OK; 1390 } 1391 1392 1393 /* 1394 ** This array defines hard upper bounds on limit values. The 1395 ** initializer must be kept in sync with the SQLITE_LIMIT_* 1396 ** #defines in sqlite3.h. 1397 */ 1398 static const int aHardLimit[] = { 1399 SQLITE_MAX_LENGTH, 1400 SQLITE_MAX_SQL_LENGTH, 1401 SQLITE_MAX_COLUMN, 1402 SQLITE_MAX_EXPR_DEPTH, 1403 SQLITE_MAX_COMPOUND_SELECT, 1404 SQLITE_MAX_VDBE_OP, 1405 SQLITE_MAX_FUNCTION_ARG, 1406 SQLITE_MAX_ATTACHED, 1407 SQLITE_MAX_LIKE_PATTERN_LENGTH, 1408 SQLITE_MAX_VARIABLE_NUMBER, 1409 }; 1410 1411 /* 1412 ** Make sure the hard limits are set to reasonable values 1413 */ 1414 #if SQLITE_MAX_LENGTH<100 1415 # error SQLITE_MAX_LENGTH must be at least 100 1416 #endif 1417 #if SQLITE_MAX_SQL_LENGTH<100 1418 # error SQLITE_MAX_SQL_LENGTH must be at least 100 1419 #endif 1420 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 1421 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 1422 #endif 1423 #if SQLITE_MAX_COMPOUND_SELECT<2 1424 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 1425 #endif 1426 #if SQLITE_MAX_VDBE_OP<40 1427 # error SQLITE_MAX_VDBE_OP must be at least 40 1428 #endif 1429 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 1430 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 1431 #endif 1432 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30 1433 # error SQLITE_MAX_ATTACHED must be between 0 and 30 1434 #endif 1435 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 1436 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 1437 #endif 1438 #if SQLITE_MAX_VARIABLE_NUMBER<1 1439 # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 1440 #endif 1441 #if SQLITE_MAX_COLUMN>32767 1442 # error SQLITE_MAX_COLUMN must not exceed 32767 1443 #endif 1444 1445 1446 /* 1447 ** Change the value of a limit. Report the old value. 1448 ** If an invalid limit index is supplied, report -1. 1449 ** Make no changes but still report the old value if the 1450 ** new limit is negative. 1451 ** 1452 ** A new lower limit does not shrink existing constructs. 1453 ** It merely prevents new constructs that exceed the limit 1454 ** from forming. 1455 */ 1456 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 1457 int oldLimit; 1458 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 1459 return -1; 1460 } 1461 oldLimit = db->aLimit[limitId]; 1462 if( newLimit>=0 ){ 1463 if( newLimit>aHardLimit[limitId] ){ 1464 newLimit = aHardLimit[limitId]; 1465 } 1466 db->aLimit[limitId] = newLimit; 1467 } 1468 return oldLimit; 1469 } 1470 1471 /* 1472 ** This routine does the work of opening a database on behalf of 1473 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 1474 ** is UTF-8 encoded. 1475 */ 1476 static int openDatabase( 1477 const char *zFilename, /* Database filename UTF-8 encoded */ 1478 sqlite3 **ppDb, /* OUT: Returned database handle */ 1479 unsigned flags, /* Operational flags */ 1480 const char *zVfs /* Name of the VFS to use */ 1481 ){ 1482 sqlite3 *db; 1483 int rc; 1484 CollSeq *pColl; 1485 int isThreadsafe; 1486 1487 #ifndef SQLITE_OMIT_AUTOINIT 1488 rc = sqlite3_initialize(); 1489 if( rc ) return rc; 1490 #endif 1491 1492 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 1493 isThreadsafe = 0; 1494 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 1495 isThreadsafe = 0; 1496 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 1497 isThreadsafe = 1; 1498 }else{ 1499 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 1500 } 1501 1502 /* Remove harmful bits from the flags parameter */ 1503 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 1504 SQLITE_OPEN_MAIN_DB | 1505 SQLITE_OPEN_TEMP_DB | 1506 SQLITE_OPEN_TRANSIENT_DB | 1507 SQLITE_OPEN_MAIN_JOURNAL | 1508 SQLITE_OPEN_TEMP_JOURNAL | 1509 SQLITE_OPEN_SUBJOURNAL | 1510 SQLITE_OPEN_MASTER_JOURNAL | 1511 SQLITE_OPEN_NOMUTEX | 1512 SQLITE_OPEN_FULLMUTEX 1513 ); 1514 1515 /* Allocate the sqlite data structure */ 1516 db = sqlite3MallocZero( sizeof(sqlite3) ); 1517 if( db==0 ) goto opendb_out; 1518 if( isThreadsafe ){ 1519 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 1520 if( db->mutex==0 ){ 1521 sqlite3_free(db); 1522 db = 0; 1523 goto opendb_out; 1524 } 1525 } 1526 sqlite3_mutex_enter(db->mutex); 1527 db->errMask = 0xff; 1528 db->priorNewRowid = 0; 1529 db->nDb = 2; 1530 db->magic = SQLITE_MAGIC_BUSY; 1531 db->aDb = db->aDbStatic; 1532 1533 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 1534 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 1535 db->autoCommit = 1; 1536 db->nextAutovac = -1; 1537 db->nextPagesize = 0; 1538 db->flags |= SQLITE_ShortColNames 1539 #if SQLITE_DEFAULT_FILE_FORMAT<4 1540 | SQLITE_LegacyFileFmt 1541 #endif 1542 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 1543 | SQLITE_LoadExtension 1544 #endif 1545 ; 1546 sqlite3HashInit(&db->aCollSeq, 0); 1547 #ifndef SQLITE_OMIT_VIRTUALTABLE 1548 sqlite3HashInit(&db->aModule, 0); 1549 #endif 1550 1551 db->pVfs = sqlite3_vfs_find(zVfs); 1552 if( !db->pVfs ){ 1553 rc = SQLITE_ERROR; 1554 sqlite3Error(db, rc, "no such vfs: %s", zVfs); 1555 goto opendb_out; 1556 } 1557 1558 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 1559 ** and UTF-16, so add a version for each to avoid any unnecessary 1560 ** conversions. The only error that can occur here is a malloc() failure. 1561 */ 1562 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 1563 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 1564 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 1565 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 1566 if( db->mallocFailed ){ 1567 goto opendb_out; 1568 } 1569 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); 1570 assert( db->pDfltColl!=0 ); 1571 1572 /* Also add a UTF-8 case-insensitive collation sequence. */ 1573 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 1574 1575 /* Set flags on the built-in collating sequences */ 1576 db->pDfltColl->type = SQLITE_COLL_BINARY; 1577 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); 1578 if( pColl ){ 1579 pColl->type = SQLITE_COLL_NOCASE; 1580 } 1581 1582 /* Open the backend database driver */ 1583 db->openFlags = flags; 1584 rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 1585 flags | SQLITE_OPEN_MAIN_DB, 1586 &db->aDb[0].pBt); 1587 if( rc!=SQLITE_OK ){ 1588 if( rc==SQLITE_IOERR_NOMEM ){ 1589 rc = SQLITE_NOMEM; 1590 } 1591 sqlite3Error(db, rc, 0); 1592 goto opendb_out; 1593 } 1594 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 1595 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 1596 1597 1598 /* The default safety_level for the main database is 'full'; for the temp 1599 ** database it is 'NONE'. This matches the pager layer defaults. 1600 */ 1601 db->aDb[0].zName = "main"; 1602 db->aDb[0].safety_level = 3; 1603 #ifndef SQLITE_OMIT_TEMPDB 1604 db->aDb[1].zName = "temp"; 1605 db->aDb[1].safety_level = 1; 1606 #endif 1607 1608 db->magic = SQLITE_MAGIC_OPEN; 1609 if( db->mallocFailed ){ 1610 goto opendb_out; 1611 } 1612 1613 /* Register all built-in functions, but do not attempt to read the 1614 ** database schema yet. This is delayed until the first time the database 1615 ** is accessed. 1616 */ 1617 sqlite3Error(db, SQLITE_OK, 0); 1618 sqlite3RegisterBuiltinFunctions(db); 1619 1620 /* Load automatic extensions - extensions that have been registered 1621 ** using the sqlite3_automatic_extension() API. 1622 */ 1623 (void)sqlite3AutoLoadExtensions(db); 1624 if( sqlite3_errcode(db)!=SQLITE_OK ){ 1625 goto opendb_out; 1626 } 1627 1628 #ifdef SQLITE_ENABLE_FTS1 1629 if( !db->mallocFailed ){ 1630 extern int sqlite3Fts1Init(sqlite3*); 1631 rc = sqlite3Fts1Init(db); 1632 } 1633 #endif 1634 1635 #ifdef SQLITE_ENABLE_FTS2 1636 if( !db->mallocFailed && rc==SQLITE_OK ){ 1637 extern int sqlite3Fts2Init(sqlite3*); 1638 rc = sqlite3Fts2Init(db); 1639 } 1640 #endif 1641 1642 #ifdef SQLITE_ENABLE_FTS3 1643 if( !db->mallocFailed && rc==SQLITE_OK ){ 1644 rc = sqlite3Fts3Init(db); 1645 } 1646 #endif 1647 1648 #ifdef SQLITE_ENABLE_ICU 1649 if( !db->mallocFailed && rc==SQLITE_OK ){ 1650 rc = sqlite3IcuInit(db); 1651 } 1652 #endif 1653 1654 #ifdef SQLITE_ENABLE_RTREE 1655 if( !db->mallocFailed && rc==SQLITE_OK){ 1656 rc = sqlite3RtreeInit(db); 1657 } 1658 #endif 1659 1660 sqlite3Error(db, rc, 0); 1661 1662 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 1663 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 1664 ** mode. Doing nothing at all also makes NORMAL the default. 1665 */ 1666 #ifdef SQLITE_DEFAULT_LOCKING_MODE 1667 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 1668 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 1669 SQLITE_DEFAULT_LOCKING_MODE); 1670 #endif 1671 1672 /* Enable the lookaside-malloc subsystem */ 1673 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 1674 sqlite3GlobalConfig.nLookaside); 1675 1676 opendb_out: 1677 if( db ){ 1678 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 1679 sqlite3_mutex_leave(db->mutex); 1680 } 1681 rc = sqlite3_errcode(db); 1682 if( rc==SQLITE_NOMEM ){ 1683 sqlite3_close(db); 1684 db = 0; 1685 }else if( rc!=SQLITE_OK ){ 1686 db->magic = SQLITE_MAGIC_SICK; 1687 } 1688 *ppDb = db; 1689 return sqlite3ApiExit(0, rc); 1690 } 1691 1692 /* 1693 ** Open a new database handle. 1694 */ 1695 int sqlite3_open( 1696 const char *zFilename, 1697 sqlite3 **ppDb 1698 ){ 1699 return openDatabase(zFilename, ppDb, 1700 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 1701 } 1702 int sqlite3_open_v2( 1703 const char *filename, /* Database filename (UTF-8) */ 1704 sqlite3 **ppDb, /* OUT: SQLite db handle */ 1705 int flags, /* Flags */ 1706 const char *zVfs /* Name of VFS module to use */ 1707 ){ 1708 return openDatabase(filename, ppDb, flags, zVfs); 1709 } 1710 1711 #ifndef SQLITE_OMIT_UTF16 1712 /* 1713 ** Open a new database handle. 1714 */ 1715 int sqlite3_open16( 1716 const void *zFilename, 1717 sqlite3 **ppDb 1718 ){ 1719 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 1720 sqlite3_value *pVal; 1721 int rc; 1722 1723 assert( zFilename ); 1724 assert( ppDb ); 1725 *ppDb = 0; 1726 #ifndef SQLITE_OMIT_AUTOINIT 1727 rc = sqlite3_initialize(); 1728 if( rc ) return rc; 1729 #endif 1730 pVal = sqlite3ValueNew(0); 1731 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 1732 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 1733 if( zFilename8 ){ 1734 rc = openDatabase(zFilename8, ppDb, 1735 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 1736 assert( *ppDb || rc==SQLITE_NOMEM ); 1737 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 1738 ENC(*ppDb) = SQLITE_UTF16NATIVE; 1739 } 1740 }else{ 1741 rc = SQLITE_NOMEM; 1742 } 1743 sqlite3ValueFree(pVal); 1744 1745 return sqlite3ApiExit(0, rc); 1746 } 1747 #endif /* SQLITE_OMIT_UTF16 */ 1748 1749 /* 1750 ** Register a new collation sequence with the database handle db. 1751 */ 1752 int sqlite3_create_collation( 1753 sqlite3* db, 1754 const char *zName, 1755 int enc, 1756 void* pCtx, 1757 int(*xCompare)(void*,int,const void*,int,const void*) 1758 ){ 1759 int rc; 1760 sqlite3_mutex_enter(db->mutex); 1761 assert( !db->mallocFailed ); 1762 rc = createCollation(db, zName, enc, pCtx, xCompare, 0); 1763 rc = sqlite3ApiExit(db, rc); 1764 sqlite3_mutex_leave(db->mutex); 1765 return rc; 1766 } 1767 1768 /* 1769 ** Register a new collation sequence with the database handle db. 1770 */ 1771 int sqlite3_create_collation_v2( 1772 sqlite3* db, 1773 const char *zName, 1774 int enc, 1775 void* pCtx, 1776 int(*xCompare)(void*,int,const void*,int,const void*), 1777 void(*xDel)(void*) 1778 ){ 1779 int rc; 1780 sqlite3_mutex_enter(db->mutex); 1781 assert( !db->mallocFailed ); 1782 rc = createCollation(db, zName, enc, pCtx, xCompare, xDel); 1783 rc = sqlite3ApiExit(db, rc); 1784 sqlite3_mutex_leave(db->mutex); 1785 return rc; 1786 } 1787 1788 #ifndef SQLITE_OMIT_UTF16 1789 /* 1790 ** Register a new collation sequence with the database handle db. 1791 */ 1792 int sqlite3_create_collation16( 1793 sqlite3* db, 1794 const void *zName, 1795 int enc, 1796 void* pCtx, 1797 int(*xCompare)(void*,int,const void*,int,const void*) 1798 ){ 1799 int rc = SQLITE_OK; 1800 char *zName8; 1801 sqlite3_mutex_enter(db->mutex); 1802 assert( !db->mallocFailed ); 1803 zName8 = sqlite3Utf16to8(db, zName, -1); 1804 if( zName8 ){ 1805 rc = createCollation(db, zName8, enc, pCtx, xCompare, 0); 1806 sqlite3DbFree(db, zName8); 1807 } 1808 rc = sqlite3ApiExit(db, rc); 1809 sqlite3_mutex_leave(db->mutex); 1810 return rc; 1811 } 1812 #endif /* SQLITE_OMIT_UTF16 */ 1813 1814 /* 1815 ** Register a collation sequence factory callback with the database handle 1816 ** db. Replace any previously installed collation sequence factory. 1817 */ 1818 int sqlite3_collation_needed( 1819 sqlite3 *db, 1820 void *pCollNeededArg, 1821 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 1822 ){ 1823 sqlite3_mutex_enter(db->mutex); 1824 db->xCollNeeded = xCollNeeded; 1825 db->xCollNeeded16 = 0; 1826 db->pCollNeededArg = pCollNeededArg; 1827 sqlite3_mutex_leave(db->mutex); 1828 return SQLITE_OK; 1829 } 1830 1831 #ifndef SQLITE_OMIT_UTF16 1832 /* 1833 ** Register a collation sequence factory callback with the database handle 1834 ** db. Replace any previously installed collation sequence factory. 1835 */ 1836 int sqlite3_collation_needed16( 1837 sqlite3 *db, 1838 void *pCollNeededArg, 1839 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 1840 ){ 1841 sqlite3_mutex_enter(db->mutex); 1842 db->xCollNeeded = 0; 1843 db->xCollNeeded16 = xCollNeeded16; 1844 db->pCollNeededArg = pCollNeededArg; 1845 sqlite3_mutex_leave(db->mutex); 1846 return SQLITE_OK; 1847 } 1848 #endif /* SQLITE_OMIT_UTF16 */ 1849 1850 #ifndef SQLITE_OMIT_GLOBALRECOVER 1851 #ifndef SQLITE_OMIT_DEPRECATED 1852 /* 1853 ** This function is now an anachronism. It used to be used to recover from a 1854 ** malloc() failure, but SQLite now does this automatically. 1855 */ 1856 int sqlite3_global_recover(void){ 1857 return SQLITE_OK; 1858 } 1859 #endif 1860 #endif 1861 1862 /* 1863 ** Test to see whether or not the database connection is in autocommit 1864 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 1865 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 1866 ** by the next COMMIT or ROLLBACK. 1867 ** 1868 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 1869 */ 1870 int sqlite3_get_autocommit(sqlite3 *db){ 1871 return db->autoCommit; 1872 } 1873 1874 #ifdef SQLITE_DEBUG 1875 /* 1876 ** The following routine is subtituted for constant SQLITE_CORRUPT in 1877 ** debugging builds. This provides a way to set a breakpoint for when 1878 ** corruption is first detected. 1879 */ 1880 int sqlite3Corrupt(void){ 1881 return SQLITE_CORRUPT; 1882 } 1883 #endif 1884 1885 #ifndef SQLITE_OMIT_DEPRECATED 1886 /* 1887 ** This is a convenience routine that makes sure that all thread-specific 1888 ** data for this thread has been deallocated. 1889 ** 1890 ** SQLite no longer uses thread-specific data so this routine is now a 1891 ** no-op. It is retained for historical compatibility. 1892 */ 1893 void sqlite3_thread_cleanup(void){ 1894 } 1895 #endif 1896 1897 /* 1898 ** Return meta information about a specific column of a database table. 1899 ** See comment in sqlite3.h (sqlite.h.in) for details. 1900 */ 1901 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1902 int sqlite3_table_column_metadata( 1903 sqlite3 *db, /* Connection handle */ 1904 const char *zDbName, /* Database name or NULL */ 1905 const char *zTableName, /* Table name */ 1906 const char *zColumnName, /* Column name */ 1907 char const **pzDataType, /* OUTPUT: Declared data type */ 1908 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 1909 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 1910 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 1911 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 1912 ){ 1913 int rc; 1914 char *zErrMsg = 0; 1915 Table *pTab = 0; 1916 Column *pCol = 0; 1917 int iCol; 1918 1919 char const *zDataType = 0; 1920 char const *zCollSeq = 0; 1921 int notnull = 0; 1922 int primarykey = 0; 1923 int autoinc = 0; 1924 1925 /* Ensure the database schema has been loaded */ 1926 sqlite3_mutex_enter(db->mutex); 1927 (void)sqlite3SafetyOn(db); 1928 sqlite3BtreeEnterAll(db); 1929 rc = sqlite3Init(db, &zErrMsg); 1930 sqlite3BtreeLeaveAll(db); 1931 if( SQLITE_OK!=rc ){ 1932 goto error_out; 1933 } 1934 1935 /* Locate the table in question */ 1936 pTab = sqlite3FindTable(db, zTableName, zDbName); 1937 if( !pTab || pTab->pSelect ){ 1938 pTab = 0; 1939 goto error_out; 1940 } 1941 1942 /* Find the column for which info is requested */ 1943 if( sqlite3IsRowid(zColumnName) ){ 1944 iCol = pTab->iPKey; 1945 if( iCol>=0 ){ 1946 pCol = &pTab->aCol[iCol]; 1947 } 1948 }else{ 1949 for(iCol=0; iCol<pTab->nCol; iCol++){ 1950 pCol = &pTab->aCol[iCol]; 1951 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 1952 break; 1953 } 1954 } 1955 if( iCol==pTab->nCol ){ 1956 pTab = 0; 1957 goto error_out; 1958 } 1959 } 1960 1961 /* The following block stores the meta information that will be returned 1962 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 1963 ** and autoinc. At this point there are two possibilities: 1964 ** 1965 ** 1. The specified column name was rowid", "oid" or "_rowid_" 1966 ** and there is no explicitly declared IPK column. 1967 ** 1968 ** 2. The table is not a view and the column name identified an 1969 ** explicitly declared column. Copy meta information from *pCol. 1970 */ 1971 if( pCol ){ 1972 zDataType = pCol->zType; 1973 zCollSeq = pCol->zColl; 1974 notnull = pCol->notNull!=0; 1975 primarykey = pCol->isPrimKey!=0; 1976 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 1977 }else{ 1978 zDataType = "INTEGER"; 1979 primarykey = 1; 1980 } 1981 if( !zCollSeq ){ 1982 zCollSeq = "BINARY"; 1983 } 1984 1985 error_out: 1986 (void)sqlite3SafetyOff(db); 1987 1988 /* Whether the function call succeeded or failed, set the output parameters 1989 ** to whatever their local counterparts contain. If an error did occur, 1990 ** this has the effect of zeroing all output parameters. 1991 */ 1992 if( pzDataType ) *pzDataType = zDataType; 1993 if( pzCollSeq ) *pzCollSeq = zCollSeq; 1994 if( pNotNull ) *pNotNull = notnull; 1995 if( pPrimaryKey ) *pPrimaryKey = primarykey; 1996 if( pAutoinc ) *pAutoinc = autoinc; 1997 1998 if( SQLITE_OK==rc && !pTab ){ 1999 sqlite3DbFree(db, zErrMsg); 2000 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2001 zColumnName); 2002 rc = SQLITE_ERROR; 2003 } 2004 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2005 sqlite3DbFree(db, zErrMsg); 2006 rc = sqlite3ApiExit(db, rc); 2007 sqlite3_mutex_leave(db->mutex); 2008 return rc; 2009 } 2010 #endif 2011 2012 /* 2013 ** Sleep for a little while. Return the amount of time slept. 2014 */ 2015 int sqlite3_sleep(int ms){ 2016 sqlite3_vfs *pVfs; 2017 int rc; 2018 pVfs = sqlite3_vfs_find(0); 2019 if( pVfs==0 ) return 0; 2020 2021 /* This function works in milliseconds, but the underlying OsSleep() 2022 ** API uses microseconds. Hence the 1000's. 2023 */ 2024 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2025 return rc; 2026 } 2027 2028 /* 2029 ** Enable or disable the extended result codes. 2030 */ 2031 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2032 sqlite3_mutex_enter(db->mutex); 2033 db->errMask = onoff ? 0xffffffff : 0xff; 2034 sqlite3_mutex_leave(db->mutex); 2035 return SQLITE_OK; 2036 } 2037 2038 /* 2039 ** Invoke the xFileControl method on a particular database. 2040 */ 2041 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2042 int rc = SQLITE_ERROR; 2043 int iDb; 2044 sqlite3_mutex_enter(db->mutex); 2045 if( zDbName==0 ){ 2046 iDb = 0; 2047 }else{ 2048 for(iDb=0; iDb<db->nDb; iDb++){ 2049 if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; 2050 } 2051 } 2052 if( iDb<db->nDb ){ 2053 Btree *pBtree = db->aDb[iDb].pBt; 2054 if( pBtree ){ 2055 Pager *pPager; 2056 sqlite3_file *fd; 2057 sqlite3BtreeEnter(pBtree); 2058 pPager = sqlite3BtreePager(pBtree); 2059 assert( pPager!=0 ); 2060 fd = sqlite3PagerFile(pPager); 2061 assert( fd!=0 ); 2062 if( fd->pMethods ){ 2063 rc = sqlite3OsFileControl(fd, op, pArg); 2064 } 2065 sqlite3BtreeLeave(pBtree); 2066 } 2067 } 2068 sqlite3_mutex_leave(db->mutex); 2069 return rc; 2070 } 2071 2072 /* 2073 ** Interface to the testing logic. 2074 */ 2075 int sqlite3_test_control(int op, ...){ 2076 int rc = 0; 2077 #ifndef SQLITE_OMIT_BUILTIN_TEST 2078 va_list ap; 2079 va_start(ap, op); 2080 switch( op ){ 2081 2082 /* 2083 ** Save the current state of the PRNG. 2084 */ 2085 case SQLITE_TESTCTRL_PRNG_SAVE: { 2086 sqlite3PrngSaveState(); 2087 break; 2088 } 2089 2090 /* 2091 ** Restore the state of the PRNG to the last state saved using 2092 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 2093 ** this verb acts like PRNG_RESET. 2094 */ 2095 case SQLITE_TESTCTRL_PRNG_RESTORE: { 2096 sqlite3PrngRestoreState(); 2097 break; 2098 } 2099 2100 /* 2101 ** Reset the PRNG back to its uninitialized state. The next call 2102 ** to sqlite3_randomness() will reseed the PRNG using a single call 2103 ** to the xRandomness method of the default VFS. 2104 */ 2105 case SQLITE_TESTCTRL_PRNG_RESET: { 2106 sqlite3PrngResetState(); 2107 break; 2108 } 2109 2110 /* 2111 ** sqlite3_test_control(BITVEC_TEST, size, program) 2112 ** 2113 ** Run a test against a Bitvec object of size. The program argument 2114 ** is an array of integers that defines the test. Return -1 on a 2115 ** memory allocation error, 0 on success, or non-zero for an error. 2116 ** See the sqlite3BitvecBuiltinTest() for additional information. 2117 */ 2118 case SQLITE_TESTCTRL_BITVEC_TEST: { 2119 int sz = va_arg(ap, int); 2120 int *aProg = va_arg(ap, int*); 2121 rc = sqlite3BitvecBuiltinTest(sz, aProg); 2122 break; 2123 } 2124 2125 /* 2126 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 2127 ** 2128 ** Register hooks to call to indicate which malloc() failures 2129 ** are benign. 2130 */ 2131 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 2132 typedef void (*void_function)(void); 2133 void_function xBenignBegin; 2134 void_function xBenignEnd; 2135 xBenignBegin = va_arg(ap, void_function); 2136 xBenignEnd = va_arg(ap, void_function); 2137 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 2138 break; 2139 } 2140 } 2141 va_end(ap); 2142 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 2143 return rc; 2144 } 2145