1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 #ifdef SQLITE_ENABLE_JSON1 29 int sqlite3Json1Init(sqlite3*); 30 #endif 31 #ifdef SQLITE_ENABLE_STMTVTAB 32 int sqlite3StmtVtabInit(sqlite3*); 33 #endif 34 #ifdef SQLITE_ENABLE_FTS5 35 int sqlite3Fts5Init(sqlite3*); 36 #endif 37 38 #ifndef SQLITE_AMALGAMATION 39 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 40 ** contains the text of SQLITE_VERSION macro. 41 */ 42 const char sqlite3_version[] = SQLITE_VERSION; 43 #endif 44 45 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 46 ** a pointer to the to the sqlite3_version[] string constant. 47 */ 48 const char *sqlite3_libversion(void){ return sqlite3_version; } 49 50 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 51 ** pointer to a string constant whose value is the same as the 52 ** SQLITE_SOURCE_ID C preprocessor macro. 53 */ 54 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 55 56 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 57 ** returns an integer equal to SQLITE_VERSION_NUMBER. 58 */ 59 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 60 61 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 62 ** zero if and only if SQLite was compiled with mutexing code omitted due to 63 ** the SQLITE_THREADSAFE compile-time option being set to 0. 64 */ 65 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 66 67 /* 68 ** When compiling the test fixture or with debugging enabled (on Win32), 69 ** this variable being set to non-zero will cause OSTRACE macros to emit 70 ** extra diagnostic information. 71 */ 72 #ifdef SQLITE_HAVE_OS_TRACE 73 # ifndef SQLITE_DEBUG_OS_TRACE 74 # define SQLITE_DEBUG_OS_TRACE 0 75 # endif 76 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 77 #endif 78 79 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 80 /* 81 ** If the following function pointer is not NULL and if 82 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 83 ** I/O active are written using this function. These messages 84 ** are intended for debugging activity only. 85 */ 86 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 87 #endif 88 89 /* 90 ** If the following global variable points to a string which is the 91 ** name of a directory, then that directory will be used to store 92 ** temporary files. 93 ** 94 ** See also the "PRAGMA temp_store_directory" SQL command. 95 */ 96 char *sqlite3_temp_directory = 0; 97 98 /* 99 ** If the following global variable points to a string which is the 100 ** name of a directory, then that directory will be used to store 101 ** all database files specified with a relative pathname. 102 ** 103 ** See also the "PRAGMA data_store_directory" SQL command. 104 */ 105 char *sqlite3_data_directory = 0; 106 107 /* 108 ** Initialize SQLite. 109 ** 110 ** This routine must be called to initialize the memory allocation, 111 ** VFS, and mutex subsystems prior to doing any serious work with 112 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 113 ** this routine will be called automatically by key routines such as 114 ** sqlite3_open(). 115 ** 116 ** This routine is a no-op except on its very first call for the process, 117 ** or for the first call after a call to sqlite3_shutdown. 118 ** 119 ** The first thread to call this routine runs the initialization to 120 ** completion. If subsequent threads call this routine before the first 121 ** thread has finished the initialization process, then the subsequent 122 ** threads must block until the first thread finishes with the initialization. 123 ** 124 ** The first thread might call this routine recursively. Recursive 125 ** calls to this routine should not block, of course. Otherwise the 126 ** initialization process would never complete. 127 ** 128 ** Let X be the first thread to enter this routine. Let Y be some other 129 ** thread. Then while the initial invocation of this routine by X is 130 ** incomplete, it is required that: 131 ** 132 ** * Calls to this routine from Y must block until the outer-most 133 ** call by X completes. 134 ** 135 ** * Recursive calls to this routine from thread X return immediately 136 ** without blocking. 137 */ 138 int sqlite3_initialize(void){ 139 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 140 int rc; /* Result code */ 141 #ifdef SQLITE_EXTRA_INIT 142 int bRunExtraInit = 0; /* Extra initialization needed */ 143 #endif 144 145 #ifdef SQLITE_OMIT_WSD 146 rc = sqlite3_wsd_init(4096, 24); 147 if( rc!=SQLITE_OK ){ 148 return rc; 149 } 150 #endif 151 152 /* If the following assert() fails on some obscure processor/compiler 153 ** combination, the work-around is to set the correct pointer 154 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 155 assert( SQLITE_PTRSIZE==sizeof(char*) ); 156 157 /* If SQLite is already completely initialized, then this call 158 ** to sqlite3_initialize() should be a no-op. But the initialization 159 ** must be complete. So isInit must not be set until the very end 160 ** of this routine. 161 */ 162 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 163 164 /* Make sure the mutex subsystem is initialized. If unable to 165 ** initialize the mutex subsystem, return early with the error. 166 ** If the system is so sick that we are unable to allocate a mutex, 167 ** there is not much SQLite is going to be able to do. 168 ** 169 ** The mutex subsystem must take care of serializing its own 170 ** initialization. 171 */ 172 rc = sqlite3MutexInit(); 173 if( rc ) return rc; 174 175 /* Initialize the malloc() system and the recursive pInitMutex mutex. 176 ** This operation is protected by the STATIC_MASTER mutex. Note that 177 ** MutexAlloc() is called for a static mutex prior to initializing the 178 ** malloc subsystem - this implies that the allocation of a static 179 ** mutex must not require support from the malloc subsystem. 180 */ 181 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 182 sqlite3_mutex_enter(pMaster); 183 sqlite3GlobalConfig.isMutexInit = 1; 184 if( !sqlite3GlobalConfig.isMallocInit ){ 185 rc = sqlite3MallocInit(); 186 } 187 if( rc==SQLITE_OK ){ 188 sqlite3GlobalConfig.isMallocInit = 1; 189 if( !sqlite3GlobalConfig.pInitMutex ){ 190 sqlite3GlobalConfig.pInitMutex = 191 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 192 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 193 rc = SQLITE_NOMEM_BKPT; 194 } 195 } 196 } 197 if( rc==SQLITE_OK ){ 198 sqlite3GlobalConfig.nRefInitMutex++; 199 } 200 sqlite3_mutex_leave(pMaster); 201 202 /* If rc is not SQLITE_OK at this point, then either the malloc 203 ** subsystem could not be initialized or the system failed to allocate 204 ** the pInitMutex mutex. Return an error in either case. */ 205 if( rc!=SQLITE_OK ){ 206 return rc; 207 } 208 209 /* Do the rest of the initialization under the recursive mutex so 210 ** that we will be able to handle recursive calls into 211 ** sqlite3_initialize(). The recursive calls normally come through 212 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 213 ** recursive calls might also be possible. 214 ** 215 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 216 ** to the xInit method, so the xInit method need not be threadsafe. 217 ** 218 ** The following mutex is what serializes access to the appdef pcache xInit 219 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 220 ** call to sqlite3PcacheInitialize(). 221 */ 222 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 223 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 224 sqlite3GlobalConfig.inProgress = 1; 225 #ifdef SQLITE_ENABLE_SQLLOG 226 { 227 extern void sqlite3_init_sqllog(void); 228 sqlite3_init_sqllog(); 229 } 230 #endif 231 memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); 232 sqlite3RegisterBuiltinFunctions(); 233 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 234 rc = sqlite3PcacheInitialize(); 235 } 236 if( rc==SQLITE_OK ){ 237 sqlite3GlobalConfig.isPCacheInit = 1; 238 rc = sqlite3OsInit(); 239 } 240 if( rc==SQLITE_OK ){ 241 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 242 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 243 sqlite3GlobalConfig.isInit = 1; 244 #ifdef SQLITE_EXTRA_INIT 245 bRunExtraInit = 1; 246 #endif 247 } 248 sqlite3GlobalConfig.inProgress = 0; 249 } 250 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 251 252 /* Go back under the static mutex and clean up the recursive 253 ** mutex to prevent a resource leak. 254 */ 255 sqlite3_mutex_enter(pMaster); 256 sqlite3GlobalConfig.nRefInitMutex--; 257 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 258 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 259 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 260 sqlite3GlobalConfig.pInitMutex = 0; 261 } 262 sqlite3_mutex_leave(pMaster); 263 264 /* The following is just a sanity check to make sure SQLite has 265 ** been compiled correctly. It is important to run this code, but 266 ** we don't want to run it too often and soak up CPU cycles for no 267 ** reason. So we run it once during initialization. 268 */ 269 #ifndef NDEBUG 270 #ifndef SQLITE_OMIT_FLOATING_POINT 271 /* This section of code's only "output" is via assert() statements. */ 272 if ( rc==SQLITE_OK ){ 273 u64 x = (((u64)1)<<63)-1; 274 double y; 275 assert(sizeof(x)==8); 276 assert(sizeof(x)==sizeof(y)); 277 memcpy(&y, &x, 8); 278 assert( sqlite3IsNaN(y) ); 279 } 280 #endif 281 #endif 282 283 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 284 ** compile-time option. 285 */ 286 #ifdef SQLITE_EXTRA_INIT 287 if( bRunExtraInit ){ 288 int SQLITE_EXTRA_INIT(const char*); 289 rc = SQLITE_EXTRA_INIT(0); 290 } 291 #endif 292 293 return rc; 294 } 295 296 /* 297 ** Undo the effects of sqlite3_initialize(). Must not be called while 298 ** there are outstanding database connections or memory allocations or 299 ** while any part of SQLite is otherwise in use in any thread. This 300 ** routine is not threadsafe. But it is safe to invoke this routine 301 ** on when SQLite is already shut down. If SQLite is already shut down 302 ** when this routine is invoked, then this routine is a harmless no-op. 303 */ 304 int sqlite3_shutdown(void){ 305 #ifdef SQLITE_OMIT_WSD 306 int rc = sqlite3_wsd_init(4096, 24); 307 if( rc!=SQLITE_OK ){ 308 return rc; 309 } 310 #endif 311 312 if( sqlite3GlobalConfig.isInit ){ 313 #ifdef SQLITE_EXTRA_SHUTDOWN 314 void SQLITE_EXTRA_SHUTDOWN(void); 315 SQLITE_EXTRA_SHUTDOWN(); 316 #endif 317 sqlite3_os_end(); 318 sqlite3_reset_auto_extension(); 319 sqlite3GlobalConfig.isInit = 0; 320 } 321 if( sqlite3GlobalConfig.isPCacheInit ){ 322 sqlite3PcacheShutdown(); 323 sqlite3GlobalConfig.isPCacheInit = 0; 324 } 325 if( sqlite3GlobalConfig.isMallocInit ){ 326 sqlite3MallocEnd(); 327 sqlite3GlobalConfig.isMallocInit = 0; 328 329 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 330 /* The heap subsystem has now been shutdown and these values are supposed 331 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 332 ** which would rely on that heap subsystem; therefore, make sure these 333 ** values cannot refer to heap memory that was just invalidated when the 334 ** heap subsystem was shutdown. This is only done if the current call to 335 ** this function resulted in the heap subsystem actually being shutdown. 336 */ 337 sqlite3_data_directory = 0; 338 sqlite3_temp_directory = 0; 339 #endif 340 } 341 if( sqlite3GlobalConfig.isMutexInit ){ 342 sqlite3MutexEnd(); 343 sqlite3GlobalConfig.isMutexInit = 0; 344 } 345 346 return SQLITE_OK; 347 } 348 349 /* 350 ** This API allows applications to modify the global configuration of 351 ** the SQLite library at run-time. 352 ** 353 ** This routine should only be called when there are no outstanding 354 ** database connections or memory allocations. This routine is not 355 ** threadsafe. Failure to heed these warnings can lead to unpredictable 356 ** behavior. 357 */ 358 int sqlite3_config(int op, ...){ 359 va_list ap; 360 int rc = SQLITE_OK; 361 362 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 363 ** the SQLite library is in use. */ 364 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 365 366 va_start(ap, op); 367 switch( op ){ 368 369 /* Mutex configuration options are only available in a threadsafe 370 ** compile. 371 */ 372 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 373 case SQLITE_CONFIG_SINGLETHREAD: { 374 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 375 ** Single-thread. */ 376 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 377 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 378 break; 379 } 380 #endif 381 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 382 case SQLITE_CONFIG_MULTITHREAD: { 383 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 384 ** Multi-thread. */ 385 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 386 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 387 break; 388 } 389 #endif 390 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 391 case SQLITE_CONFIG_SERIALIZED: { 392 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 393 ** Serialized. */ 394 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 395 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 396 break; 397 } 398 #endif 399 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 400 case SQLITE_CONFIG_MUTEX: { 401 /* Specify an alternative mutex implementation */ 402 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 403 break; 404 } 405 #endif 406 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 407 case SQLITE_CONFIG_GETMUTEX: { 408 /* Retrieve the current mutex implementation */ 409 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 410 break; 411 } 412 #endif 413 414 case SQLITE_CONFIG_MALLOC: { 415 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 416 ** single argument which is a pointer to an instance of the 417 ** sqlite3_mem_methods structure. The argument specifies alternative 418 ** low-level memory allocation routines to be used in place of the memory 419 ** allocation routines built into SQLite. */ 420 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 421 break; 422 } 423 case SQLITE_CONFIG_GETMALLOC: { 424 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 425 ** single argument which is a pointer to an instance of the 426 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 427 ** filled with the currently defined memory allocation routines. */ 428 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 429 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 430 break; 431 } 432 case SQLITE_CONFIG_MEMSTATUS: { 433 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 434 ** single argument of type int, interpreted as a boolean, which enables 435 ** or disables the collection of memory allocation statistics. */ 436 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 437 break; 438 } 439 case SQLITE_CONFIG_SCRATCH: { 440 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 441 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 442 ** which the scratch allocations will be drawn, the size of each scratch 443 ** allocation (sz), and the maximum number of scratch allocations (N). */ 444 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 445 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 446 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 447 break; 448 } 449 case SQLITE_CONFIG_PAGECACHE: { 450 /* EVIDENCE-OF: R-18761-36601 There are three arguments to 451 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), 452 ** the size of each page cache line (sz), and the number of cache lines 453 ** (N). */ 454 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 455 sqlite3GlobalConfig.szPage = va_arg(ap, int); 456 sqlite3GlobalConfig.nPage = va_arg(ap, int); 457 break; 458 } 459 case SQLITE_CONFIG_PCACHE_HDRSZ: { 460 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 461 ** a single parameter which is a pointer to an integer and writes into 462 ** that integer the number of extra bytes per page required for each page 463 ** in SQLITE_CONFIG_PAGECACHE. */ 464 *va_arg(ap, int*) = 465 sqlite3HeaderSizeBtree() + 466 sqlite3HeaderSizePcache() + 467 sqlite3HeaderSizePcache1(); 468 break; 469 } 470 471 case SQLITE_CONFIG_PCACHE: { 472 /* no-op */ 473 break; 474 } 475 case SQLITE_CONFIG_GETPCACHE: { 476 /* now an error */ 477 rc = SQLITE_ERROR; 478 break; 479 } 480 481 case SQLITE_CONFIG_PCACHE2: { 482 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 483 ** single argument which is a pointer to an sqlite3_pcache_methods2 484 ** object. This object specifies the interface to a custom page cache 485 ** implementation. */ 486 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 487 break; 488 } 489 case SQLITE_CONFIG_GETPCACHE2: { 490 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 491 ** single argument which is a pointer to an sqlite3_pcache_methods2 492 ** object. SQLite copies of the current page cache implementation into 493 ** that object. */ 494 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 495 sqlite3PCacheSetDefault(); 496 } 497 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 498 break; 499 } 500 501 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 502 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 503 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 504 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 505 case SQLITE_CONFIG_HEAP: { 506 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 507 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 508 ** number of bytes in the memory buffer, and the minimum allocation size. 509 */ 510 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 511 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 512 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 513 514 if( sqlite3GlobalConfig.mnReq<1 ){ 515 sqlite3GlobalConfig.mnReq = 1; 516 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 517 /* cap min request size at 2^12 */ 518 sqlite3GlobalConfig.mnReq = (1<<12); 519 } 520 521 if( sqlite3GlobalConfig.pHeap==0 ){ 522 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 523 ** is NULL, then SQLite reverts to using its default memory allocator 524 ** (the system malloc() implementation), undoing any prior invocation of 525 ** SQLITE_CONFIG_MALLOC. 526 ** 527 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 528 ** revert to its default implementation when sqlite3_initialize() is run 529 */ 530 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 531 }else{ 532 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 533 ** alternative memory allocator is engaged to handle all of SQLites 534 ** memory allocation needs. */ 535 #ifdef SQLITE_ENABLE_MEMSYS3 536 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 537 #endif 538 #ifdef SQLITE_ENABLE_MEMSYS5 539 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 540 #endif 541 } 542 break; 543 } 544 #endif 545 546 case SQLITE_CONFIG_LOOKASIDE: { 547 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 548 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 549 break; 550 } 551 552 /* Record a pointer to the logger function and its first argument. 553 ** The default is NULL. Logging is disabled if the function pointer is 554 ** NULL. 555 */ 556 case SQLITE_CONFIG_LOG: { 557 /* MSVC is picky about pulling func ptrs from va lists. 558 ** http://support.microsoft.com/kb/47961 559 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 560 */ 561 typedef void(*LOGFUNC_t)(void*,int,const char*); 562 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 563 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 564 break; 565 } 566 567 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 568 ** can be changed at start-time using the 569 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 570 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 571 */ 572 case SQLITE_CONFIG_URI: { 573 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 574 ** argument of type int. If non-zero, then URI handling is globally 575 ** enabled. If the parameter is zero, then URI handling is globally 576 ** disabled. */ 577 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 578 break; 579 } 580 581 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 582 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 583 ** option takes a single integer argument which is interpreted as a 584 ** boolean in order to enable or disable the use of covering indices for 585 ** full table scans in the query optimizer. */ 586 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 587 break; 588 } 589 590 #ifdef SQLITE_ENABLE_SQLLOG 591 case SQLITE_CONFIG_SQLLOG: { 592 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 593 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 594 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 595 break; 596 } 597 #endif 598 599 case SQLITE_CONFIG_MMAP_SIZE: { 600 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 601 ** integer (sqlite3_int64) values that are the default mmap size limit 602 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 603 ** mmap size limit. */ 604 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 605 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 606 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 607 ** negative, then that argument is changed to its compile-time default. 608 ** 609 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 610 ** silently truncated if necessary so that it does not exceed the 611 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 612 ** compile-time option. 613 */ 614 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 615 mxMmap = SQLITE_MAX_MMAP_SIZE; 616 } 617 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 618 if( szMmap>mxMmap) szMmap = mxMmap; 619 sqlite3GlobalConfig.mxMmap = mxMmap; 620 sqlite3GlobalConfig.szMmap = szMmap; 621 break; 622 } 623 624 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 625 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 626 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 627 ** unsigned integer value that specifies the maximum size of the created 628 ** heap. */ 629 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 630 break; 631 } 632 #endif 633 634 case SQLITE_CONFIG_PMASZ: { 635 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 636 break; 637 } 638 639 case SQLITE_CONFIG_STMTJRNL_SPILL: { 640 sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); 641 break; 642 } 643 644 default: { 645 rc = SQLITE_ERROR; 646 break; 647 } 648 } 649 va_end(ap); 650 return rc; 651 } 652 653 /* 654 ** Set up the lookaside buffers for a database connection. 655 ** Return SQLITE_OK on success. 656 ** If lookaside is already active, return SQLITE_BUSY. 657 ** 658 ** The sz parameter is the number of bytes in each lookaside slot. 659 ** The cnt parameter is the number of slots. If pStart is NULL the 660 ** space for the lookaside memory is obtained from sqlite3_malloc(). 661 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 662 ** the lookaside memory. 663 */ 664 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 665 #ifndef SQLITE_OMIT_LOOKASIDE 666 void *pStart; 667 if( db->lookaside.nOut ){ 668 return SQLITE_BUSY; 669 } 670 /* Free any existing lookaside buffer for this handle before 671 ** allocating a new one so we don't have to have space for 672 ** both at the same time. 673 */ 674 if( db->lookaside.bMalloced ){ 675 sqlite3_free(db->lookaside.pStart); 676 } 677 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 678 ** than a pointer to be useful. 679 */ 680 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 681 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 682 if( cnt<0 ) cnt = 0; 683 if( sz==0 || cnt==0 ){ 684 sz = 0; 685 pStart = 0; 686 }else if( pBuf==0 ){ 687 sqlite3BeginBenignMalloc(); 688 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 689 sqlite3EndBenignMalloc(); 690 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 691 }else{ 692 pStart = pBuf; 693 } 694 db->lookaside.pStart = pStart; 695 db->lookaside.pFree = 0; 696 db->lookaside.sz = (u16)sz; 697 if( pStart ){ 698 int i; 699 LookasideSlot *p; 700 assert( sz > (int)sizeof(LookasideSlot*) ); 701 p = (LookasideSlot*)pStart; 702 for(i=cnt-1; i>=0; i--){ 703 p->pNext = db->lookaside.pFree; 704 db->lookaside.pFree = p; 705 p = (LookasideSlot*)&((u8*)p)[sz]; 706 } 707 db->lookaside.pEnd = p; 708 db->lookaside.bDisable = 0; 709 db->lookaside.bMalloced = pBuf==0 ?1:0; 710 }else{ 711 db->lookaside.pStart = db; 712 db->lookaside.pEnd = db; 713 db->lookaside.bDisable = 1; 714 db->lookaside.bMalloced = 0; 715 } 716 #endif /* SQLITE_OMIT_LOOKASIDE */ 717 return SQLITE_OK; 718 } 719 720 /* 721 ** Return the mutex associated with a database connection. 722 */ 723 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 724 #ifdef SQLITE_ENABLE_API_ARMOR 725 if( !sqlite3SafetyCheckOk(db) ){ 726 (void)SQLITE_MISUSE_BKPT; 727 return 0; 728 } 729 #endif 730 return db->mutex; 731 } 732 733 /* 734 ** Free up as much memory as we can from the given database 735 ** connection. 736 */ 737 int sqlite3_db_release_memory(sqlite3 *db){ 738 int i; 739 740 #ifdef SQLITE_ENABLE_API_ARMOR 741 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 742 #endif 743 sqlite3_mutex_enter(db->mutex); 744 sqlite3BtreeEnterAll(db); 745 for(i=0; i<db->nDb; i++){ 746 Btree *pBt = db->aDb[i].pBt; 747 if( pBt ){ 748 Pager *pPager = sqlite3BtreePager(pBt); 749 sqlite3PagerShrink(pPager); 750 } 751 } 752 sqlite3BtreeLeaveAll(db); 753 sqlite3_mutex_leave(db->mutex); 754 return SQLITE_OK; 755 } 756 757 /* 758 ** Flush any dirty pages in the pager-cache for any attached database 759 ** to disk. 760 */ 761 int sqlite3_db_cacheflush(sqlite3 *db){ 762 int i; 763 int rc = SQLITE_OK; 764 int bSeenBusy = 0; 765 766 #ifdef SQLITE_ENABLE_API_ARMOR 767 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 768 #endif 769 sqlite3_mutex_enter(db->mutex); 770 sqlite3BtreeEnterAll(db); 771 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 772 Btree *pBt = db->aDb[i].pBt; 773 if( pBt && sqlite3BtreeIsInTrans(pBt) ){ 774 Pager *pPager = sqlite3BtreePager(pBt); 775 rc = sqlite3PagerFlush(pPager); 776 if( rc==SQLITE_BUSY ){ 777 bSeenBusy = 1; 778 rc = SQLITE_OK; 779 } 780 } 781 } 782 sqlite3BtreeLeaveAll(db); 783 sqlite3_mutex_leave(db->mutex); 784 return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); 785 } 786 787 /* 788 ** Configuration settings for an individual database connection 789 */ 790 int sqlite3_db_config(sqlite3 *db, int op, ...){ 791 va_list ap; 792 int rc; 793 va_start(ap, op); 794 switch( op ){ 795 case SQLITE_DBCONFIG_MAINDBNAME: { 796 db->aDb[0].zDbSName = va_arg(ap,char*); 797 rc = SQLITE_OK; 798 break; 799 } 800 case SQLITE_DBCONFIG_LOOKASIDE: { 801 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 802 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 803 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 804 rc = setupLookaside(db, pBuf, sz, cnt); 805 break; 806 } 807 default: { 808 static const struct { 809 int op; /* The opcode */ 810 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 811 } aFlagOp[] = { 812 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 813 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 814 { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, 815 { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, 816 { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, 817 { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, 818 }; 819 unsigned int i; 820 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 821 for(i=0; i<ArraySize(aFlagOp); i++){ 822 if( aFlagOp[i].op==op ){ 823 int onoff = va_arg(ap, int); 824 int *pRes = va_arg(ap, int*); 825 int oldFlags = db->flags; 826 if( onoff>0 ){ 827 db->flags |= aFlagOp[i].mask; 828 }else if( onoff==0 ){ 829 db->flags &= ~aFlagOp[i].mask; 830 } 831 if( oldFlags!=db->flags ){ 832 sqlite3ExpirePreparedStatements(db); 833 } 834 if( pRes ){ 835 *pRes = (db->flags & aFlagOp[i].mask)!=0; 836 } 837 rc = SQLITE_OK; 838 break; 839 } 840 } 841 break; 842 } 843 } 844 va_end(ap); 845 return rc; 846 } 847 848 849 /* 850 ** Return true if the buffer z[0..n-1] contains all spaces. 851 */ 852 static int allSpaces(const char *z, int n){ 853 while( n>0 && z[n-1]==' ' ){ n--; } 854 return n==0; 855 } 856 857 /* 858 ** This is the default collating function named "BINARY" which is always 859 ** available. 860 ** 861 ** If the padFlag argument is not NULL then space padding at the end 862 ** of strings is ignored. This implements the RTRIM collation. 863 */ 864 static int binCollFunc( 865 void *padFlag, 866 int nKey1, const void *pKey1, 867 int nKey2, const void *pKey2 868 ){ 869 int rc, n; 870 n = nKey1<nKey2 ? nKey1 : nKey2; 871 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 872 ** strings byte by byte using the memcmp() function from the standard C 873 ** library. */ 874 assert( pKey1 && pKey2 ); 875 rc = memcmp(pKey1, pKey2, n); 876 if( rc==0 ){ 877 if( padFlag 878 && allSpaces(((char*)pKey1)+n, nKey1-n) 879 && allSpaces(((char*)pKey2)+n, nKey2-n) 880 ){ 881 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 882 ** spaces at the end of either string do not change the result. In other 883 ** words, strings will compare equal to one another as long as they 884 ** differ only in the number of spaces at the end. 885 */ 886 }else{ 887 rc = nKey1 - nKey2; 888 } 889 } 890 return rc; 891 } 892 893 /* 894 ** Another built-in collating sequence: NOCASE. 895 ** 896 ** This collating sequence is intended to be used for "case independent 897 ** comparison". SQLite's knowledge of upper and lower case equivalents 898 ** extends only to the 26 characters used in the English language. 899 ** 900 ** At the moment there is only a UTF-8 implementation. 901 */ 902 static int nocaseCollatingFunc( 903 void *NotUsed, 904 int nKey1, const void *pKey1, 905 int nKey2, const void *pKey2 906 ){ 907 int r = sqlite3StrNICmp( 908 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 909 UNUSED_PARAMETER(NotUsed); 910 if( 0==r ){ 911 r = nKey1-nKey2; 912 } 913 return r; 914 } 915 916 /* 917 ** Return the ROWID of the most recent insert 918 */ 919 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 920 #ifdef SQLITE_ENABLE_API_ARMOR 921 if( !sqlite3SafetyCheckOk(db) ){ 922 (void)SQLITE_MISUSE_BKPT; 923 return 0; 924 } 925 #endif 926 return db->lastRowid; 927 } 928 929 /* 930 ** Set the value returned by the sqlite3_last_insert_rowid() API function. 931 */ 932 void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ 933 #ifdef SQLITE_ENABLE_API_ARMOR 934 if( !sqlite3SafetyCheckOk(db) ){ 935 (void)SQLITE_MISUSE_BKPT; 936 return; 937 } 938 #endif 939 sqlite3_mutex_enter(db->mutex); 940 db->lastRowid = iRowid; 941 sqlite3_mutex_leave(db->mutex); 942 } 943 944 /* 945 ** Return the number of changes in the most recent call to sqlite3_exec(). 946 */ 947 int sqlite3_changes(sqlite3 *db){ 948 #ifdef SQLITE_ENABLE_API_ARMOR 949 if( !sqlite3SafetyCheckOk(db) ){ 950 (void)SQLITE_MISUSE_BKPT; 951 return 0; 952 } 953 #endif 954 return db->nChange; 955 } 956 957 /* 958 ** Return the number of changes since the database handle was opened. 959 */ 960 int sqlite3_total_changes(sqlite3 *db){ 961 #ifdef SQLITE_ENABLE_API_ARMOR 962 if( !sqlite3SafetyCheckOk(db) ){ 963 (void)SQLITE_MISUSE_BKPT; 964 return 0; 965 } 966 #endif 967 return db->nTotalChange; 968 } 969 970 /* 971 ** Close all open savepoints. This function only manipulates fields of the 972 ** database handle object, it does not close any savepoints that may be open 973 ** at the b-tree/pager level. 974 */ 975 void sqlite3CloseSavepoints(sqlite3 *db){ 976 while( db->pSavepoint ){ 977 Savepoint *pTmp = db->pSavepoint; 978 db->pSavepoint = pTmp->pNext; 979 sqlite3DbFree(db, pTmp); 980 } 981 db->nSavepoint = 0; 982 db->nStatement = 0; 983 db->isTransactionSavepoint = 0; 984 } 985 986 /* 987 ** Invoke the destructor function associated with FuncDef p, if any. Except, 988 ** if this is not the last copy of the function, do not invoke it. Multiple 989 ** copies of a single function are created when create_function() is called 990 ** with SQLITE_ANY as the encoding. 991 */ 992 static void functionDestroy(sqlite3 *db, FuncDef *p){ 993 FuncDestructor *pDestructor = p->u.pDestructor; 994 if( pDestructor ){ 995 pDestructor->nRef--; 996 if( pDestructor->nRef==0 ){ 997 pDestructor->xDestroy(pDestructor->pUserData); 998 sqlite3DbFree(db, pDestructor); 999 } 1000 } 1001 } 1002 1003 /* 1004 ** Disconnect all sqlite3_vtab objects that belong to database connection 1005 ** db. This is called when db is being closed. 1006 */ 1007 static void disconnectAllVtab(sqlite3 *db){ 1008 #ifndef SQLITE_OMIT_VIRTUALTABLE 1009 int i; 1010 HashElem *p; 1011 sqlite3BtreeEnterAll(db); 1012 for(i=0; i<db->nDb; i++){ 1013 Schema *pSchema = db->aDb[i].pSchema; 1014 if( db->aDb[i].pSchema ){ 1015 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 1016 Table *pTab = (Table *)sqliteHashData(p); 1017 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 1018 } 1019 } 1020 } 1021 for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ 1022 Module *pMod = (Module *)sqliteHashData(p); 1023 if( pMod->pEpoTab ){ 1024 sqlite3VtabDisconnect(db, pMod->pEpoTab); 1025 } 1026 } 1027 sqlite3VtabUnlockList(db); 1028 sqlite3BtreeLeaveAll(db); 1029 #else 1030 UNUSED_PARAMETER(db); 1031 #endif 1032 } 1033 1034 /* 1035 ** Return TRUE if database connection db has unfinalized prepared 1036 ** statements or unfinished sqlite3_backup objects. 1037 */ 1038 static int connectionIsBusy(sqlite3 *db){ 1039 int j; 1040 assert( sqlite3_mutex_held(db->mutex) ); 1041 if( db->pVdbe ) return 1; 1042 for(j=0; j<db->nDb; j++){ 1043 Btree *pBt = db->aDb[j].pBt; 1044 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 1045 } 1046 return 0; 1047 } 1048 1049 /* 1050 ** Close an existing SQLite database 1051 */ 1052 static int sqlite3Close(sqlite3 *db, int forceZombie){ 1053 if( !db ){ 1054 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 1055 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 1056 return SQLITE_OK; 1057 } 1058 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1059 return SQLITE_MISUSE_BKPT; 1060 } 1061 sqlite3_mutex_enter(db->mutex); 1062 if( db->mTrace & SQLITE_TRACE_CLOSE ){ 1063 db->xTrace(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); 1064 } 1065 1066 /* Force xDisconnect calls on all virtual tables */ 1067 disconnectAllVtab(db); 1068 1069 /* If a transaction is open, the disconnectAllVtab() call above 1070 ** will not have called the xDisconnect() method on any virtual 1071 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 1072 ** call will do so. We need to do this before the check for active 1073 ** SQL statements below, as the v-table implementation may be storing 1074 ** some prepared statements internally. 1075 */ 1076 sqlite3VtabRollback(db); 1077 1078 /* Legacy behavior (sqlite3_close() behavior) is to return 1079 ** SQLITE_BUSY if the connection can not be closed immediately. 1080 */ 1081 if( !forceZombie && connectionIsBusy(db) ){ 1082 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 1083 "statements or unfinished backups"); 1084 sqlite3_mutex_leave(db->mutex); 1085 return SQLITE_BUSY; 1086 } 1087 1088 #ifdef SQLITE_ENABLE_SQLLOG 1089 if( sqlite3GlobalConfig.xSqllog ){ 1090 /* Closing the handle. Fourth parameter is passed the value 2. */ 1091 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 1092 } 1093 #endif 1094 1095 /* Convert the connection into a zombie and then close it. 1096 */ 1097 db->magic = SQLITE_MAGIC_ZOMBIE; 1098 sqlite3LeaveMutexAndCloseZombie(db); 1099 return SQLITE_OK; 1100 } 1101 1102 /* 1103 ** Two variations on the public interface for closing a database 1104 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1105 ** leaves the connection option if there are unfinalized prepared 1106 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1107 ** version forces the connection to become a zombie if there are 1108 ** unclosed resources, and arranges for deallocation when the last 1109 ** prepare statement or sqlite3_backup closes. 1110 */ 1111 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1112 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1113 1114 1115 /* 1116 ** Close the mutex on database connection db. 1117 ** 1118 ** Furthermore, if database connection db is a zombie (meaning that there 1119 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1120 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1121 ** finished, then free all resources. 1122 */ 1123 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1124 HashElem *i; /* Hash table iterator */ 1125 int j; 1126 1127 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1128 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1129 ** then just leave the mutex and return. 1130 */ 1131 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 1132 sqlite3_mutex_leave(db->mutex); 1133 return; 1134 } 1135 1136 /* If we reach this point, it means that the database connection has 1137 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1138 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1139 ** go ahead and free all resources. 1140 */ 1141 1142 /* If a transaction is open, roll it back. This also ensures that if 1143 ** any database schemas have been modified by an uncommitted transaction 1144 ** they are reset. And that the required b-tree mutex is held to make 1145 ** the pager rollback and schema reset an atomic operation. */ 1146 sqlite3RollbackAll(db, SQLITE_OK); 1147 1148 /* Free any outstanding Savepoint structures. */ 1149 sqlite3CloseSavepoints(db); 1150 1151 /* Close all database connections */ 1152 for(j=0; j<db->nDb; j++){ 1153 struct Db *pDb = &db->aDb[j]; 1154 if( pDb->pBt ){ 1155 sqlite3BtreeClose(pDb->pBt); 1156 pDb->pBt = 0; 1157 if( j!=1 ){ 1158 pDb->pSchema = 0; 1159 } 1160 } 1161 } 1162 /* Clear the TEMP schema separately and last */ 1163 if( db->aDb[1].pSchema ){ 1164 sqlite3SchemaClear(db->aDb[1].pSchema); 1165 } 1166 sqlite3VtabUnlockList(db); 1167 1168 /* Free up the array of auxiliary databases */ 1169 sqlite3CollapseDatabaseArray(db); 1170 assert( db->nDb<=2 ); 1171 assert( db->aDb==db->aDbStatic ); 1172 1173 /* Tell the code in notify.c that the connection no longer holds any 1174 ** locks and does not require any further unlock-notify callbacks. 1175 */ 1176 sqlite3ConnectionClosed(db); 1177 1178 for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ 1179 FuncDef *pNext, *p; 1180 p = sqliteHashData(i); 1181 do{ 1182 functionDestroy(db, p); 1183 pNext = p->pNext; 1184 sqlite3DbFree(db, p); 1185 p = pNext; 1186 }while( p ); 1187 } 1188 sqlite3HashClear(&db->aFunc); 1189 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1190 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1191 /* Invoke any destructors registered for collation sequence user data. */ 1192 for(j=0; j<3; j++){ 1193 if( pColl[j].xDel ){ 1194 pColl[j].xDel(pColl[j].pUser); 1195 } 1196 } 1197 sqlite3DbFree(db, pColl); 1198 } 1199 sqlite3HashClear(&db->aCollSeq); 1200 #ifndef SQLITE_OMIT_VIRTUALTABLE 1201 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1202 Module *pMod = (Module *)sqliteHashData(i); 1203 if( pMod->xDestroy ){ 1204 pMod->xDestroy(pMod->pAux); 1205 } 1206 sqlite3VtabEponymousTableClear(db, pMod); 1207 sqlite3DbFree(db, pMod); 1208 } 1209 sqlite3HashClear(&db->aModule); 1210 #endif 1211 1212 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1213 sqlite3ValueFree(db->pErr); 1214 sqlite3CloseExtensions(db); 1215 #if SQLITE_USER_AUTHENTICATION 1216 sqlite3_free(db->auth.zAuthUser); 1217 sqlite3_free(db->auth.zAuthPW); 1218 #endif 1219 1220 db->magic = SQLITE_MAGIC_ERROR; 1221 1222 /* The temp-database schema is allocated differently from the other schema 1223 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1224 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1225 ** the same sqliteMalloc() as the one that allocates the database 1226 ** structure? 1227 */ 1228 sqlite3DbFree(db, db->aDb[1].pSchema); 1229 sqlite3_mutex_leave(db->mutex); 1230 db->magic = SQLITE_MAGIC_CLOSED; 1231 sqlite3_mutex_free(db->mutex); 1232 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 1233 if( db->lookaside.bMalloced ){ 1234 sqlite3_free(db->lookaside.pStart); 1235 } 1236 sqlite3_free(db); 1237 } 1238 1239 /* 1240 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1241 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1242 ** breaker") and made to return tripCode if there are any further 1243 ** attempts to use that cursor. Read cursors remain open and valid 1244 ** but are "saved" in case the table pages are moved around. 1245 */ 1246 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1247 int i; 1248 int inTrans = 0; 1249 int schemaChange; 1250 assert( sqlite3_mutex_held(db->mutex) ); 1251 sqlite3BeginBenignMalloc(); 1252 1253 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1254 ** This is important in case the transaction being rolled back has 1255 ** modified the database schema. If the b-tree mutexes are not taken 1256 ** here, then another shared-cache connection might sneak in between 1257 ** the database rollback and schema reset, which can cause false 1258 ** corruption reports in some cases. */ 1259 sqlite3BtreeEnterAll(db); 1260 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 1261 1262 for(i=0; i<db->nDb; i++){ 1263 Btree *p = db->aDb[i].pBt; 1264 if( p ){ 1265 if( sqlite3BtreeIsInTrans(p) ){ 1266 inTrans = 1; 1267 } 1268 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1269 } 1270 } 1271 sqlite3VtabRollback(db); 1272 sqlite3EndBenignMalloc(); 1273 1274 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1275 sqlite3ExpirePreparedStatements(db); 1276 sqlite3ResetAllSchemasOfConnection(db); 1277 } 1278 sqlite3BtreeLeaveAll(db); 1279 1280 /* Any deferred constraint violations have now been resolved. */ 1281 db->nDeferredCons = 0; 1282 db->nDeferredImmCons = 0; 1283 db->flags &= ~SQLITE_DeferFKs; 1284 1285 /* If one has been configured, invoke the rollback-hook callback */ 1286 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1287 db->xRollbackCallback(db->pRollbackArg); 1288 } 1289 } 1290 1291 /* 1292 ** Return a static string containing the name corresponding to the error code 1293 ** specified in the argument. 1294 */ 1295 #if defined(SQLITE_NEED_ERR_NAME) 1296 const char *sqlite3ErrName(int rc){ 1297 const char *zName = 0; 1298 int i, origRc = rc; 1299 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1300 switch( rc ){ 1301 case SQLITE_OK: zName = "SQLITE_OK"; break; 1302 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1303 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1304 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1305 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1306 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1307 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1308 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1309 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1310 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1311 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1312 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1313 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1314 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1315 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1316 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1317 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1318 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1319 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1320 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1321 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1322 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1323 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1324 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1325 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1326 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1327 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1328 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1329 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1330 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1331 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1332 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1333 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1334 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1335 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1336 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1337 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1338 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1339 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1340 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1341 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1342 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1343 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1344 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1345 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1346 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1347 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1348 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1349 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1350 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1351 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1352 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1353 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1354 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1355 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1356 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1357 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1358 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1359 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1360 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1361 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1362 case SQLITE_CONSTRAINT_FOREIGNKEY: 1363 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1364 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1365 case SQLITE_CONSTRAINT_PRIMARYKEY: 1366 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1367 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1368 case SQLITE_CONSTRAINT_COMMITHOOK: 1369 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1370 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1371 case SQLITE_CONSTRAINT_FUNCTION: 1372 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1373 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1374 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1375 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1376 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1377 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1378 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1379 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1380 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1381 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1382 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1383 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1384 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1385 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1386 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1387 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1388 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1389 } 1390 } 1391 if( zName==0 ){ 1392 static char zBuf[50]; 1393 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1394 zName = zBuf; 1395 } 1396 return zName; 1397 } 1398 #endif 1399 1400 /* 1401 ** Return a static string that describes the kind of error specified in the 1402 ** argument. 1403 */ 1404 const char *sqlite3ErrStr(int rc){ 1405 static const char* const aMsg[] = { 1406 /* SQLITE_OK */ "not an error", 1407 /* SQLITE_ERROR */ "SQL logic error", 1408 /* SQLITE_INTERNAL */ 0, 1409 /* SQLITE_PERM */ "access permission denied", 1410 /* SQLITE_ABORT */ "query aborted", 1411 /* SQLITE_BUSY */ "database is locked", 1412 /* SQLITE_LOCKED */ "database table is locked", 1413 /* SQLITE_NOMEM */ "out of memory", 1414 /* SQLITE_READONLY */ "attempt to write a readonly database", 1415 /* SQLITE_INTERRUPT */ "interrupted", 1416 /* SQLITE_IOERR */ "disk I/O error", 1417 /* SQLITE_CORRUPT */ "database disk image is malformed", 1418 /* SQLITE_NOTFOUND */ "unknown operation", 1419 /* SQLITE_FULL */ "database or disk is full", 1420 /* SQLITE_CANTOPEN */ "unable to open database file", 1421 /* SQLITE_PROTOCOL */ "locking protocol", 1422 /* SQLITE_EMPTY */ 0, 1423 /* SQLITE_SCHEMA */ "database schema has changed", 1424 /* SQLITE_TOOBIG */ "string or blob too big", 1425 /* SQLITE_CONSTRAINT */ "constraint failed", 1426 /* SQLITE_MISMATCH */ "datatype mismatch", 1427 /* SQLITE_MISUSE */ "bad parameter or other API misuse", 1428 #ifdef SQLITE_DISABLE_LFS 1429 /* SQLITE_NOLFS */ "large file support is disabled", 1430 #else 1431 /* SQLITE_NOLFS */ 0, 1432 #endif 1433 /* SQLITE_AUTH */ "authorization denied", 1434 /* SQLITE_FORMAT */ 0, 1435 /* SQLITE_RANGE */ "column index out of range", 1436 /* SQLITE_NOTADB */ "file is not a database", 1437 }; 1438 const char *zErr = "unknown error"; 1439 switch( rc ){ 1440 case SQLITE_ABORT_ROLLBACK: { 1441 zErr = "abort due to ROLLBACK"; 1442 break; 1443 } 1444 default: { 1445 rc &= 0xff; 1446 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1447 zErr = aMsg[rc]; 1448 } 1449 break; 1450 } 1451 } 1452 return zErr; 1453 } 1454 1455 /* 1456 ** This routine implements a busy callback that sleeps and tries 1457 ** again until a timeout value is reached. The timeout value is 1458 ** an integer number of milliseconds passed in as the first 1459 ** argument. 1460 */ 1461 static int sqliteDefaultBusyCallback( 1462 void *ptr, /* Database connection */ 1463 int count /* Number of times table has been busy */ 1464 ){ 1465 #if SQLITE_OS_WIN || HAVE_USLEEP 1466 static const u8 delays[] = 1467 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1468 static const u8 totals[] = 1469 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1470 # define NDELAY ArraySize(delays) 1471 sqlite3 *db = (sqlite3 *)ptr; 1472 int timeout = db->busyTimeout; 1473 int delay, prior; 1474 1475 assert( count>=0 ); 1476 if( count < NDELAY ){ 1477 delay = delays[count]; 1478 prior = totals[count]; 1479 }else{ 1480 delay = delays[NDELAY-1]; 1481 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1482 } 1483 if( prior + delay > timeout ){ 1484 delay = timeout - prior; 1485 if( delay<=0 ) return 0; 1486 } 1487 sqlite3OsSleep(db->pVfs, delay*1000); 1488 return 1; 1489 #else 1490 sqlite3 *db = (sqlite3 *)ptr; 1491 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1492 if( (count+1)*1000 > timeout ){ 1493 return 0; 1494 } 1495 sqlite3OsSleep(db->pVfs, 1000000); 1496 return 1; 1497 #endif 1498 } 1499 1500 /* 1501 ** Invoke the given busy handler. 1502 ** 1503 ** This routine is called when an operation failed with a lock. 1504 ** If this routine returns non-zero, the lock is retried. If it 1505 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1506 */ 1507 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1508 int rc; 1509 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1510 rc = p->xFunc(p->pArg, p->nBusy); 1511 if( rc==0 ){ 1512 p->nBusy = -1; 1513 }else{ 1514 p->nBusy++; 1515 } 1516 return rc; 1517 } 1518 1519 /* 1520 ** This routine sets the busy callback for an Sqlite database to the 1521 ** given callback function with the given argument. 1522 */ 1523 int sqlite3_busy_handler( 1524 sqlite3 *db, 1525 int (*xBusy)(void*,int), 1526 void *pArg 1527 ){ 1528 #ifdef SQLITE_ENABLE_API_ARMOR 1529 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1530 #endif 1531 sqlite3_mutex_enter(db->mutex); 1532 db->busyHandler.xFunc = xBusy; 1533 db->busyHandler.pArg = pArg; 1534 db->busyHandler.nBusy = 0; 1535 db->busyTimeout = 0; 1536 sqlite3_mutex_leave(db->mutex); 1537 return SQLITE_OK; 1538 } 1539 1540 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1541 /* 1542 ** This routine sets the progress callback for an Sqlite database to the 1543 ** given callback function with the given argument. The progress callback will 1544 ** be invoked every nOps opcodes. 1545 */ 1546 void sqlite3_progress_handler( 1547 sqlite3 *db, 1548 int nOps, 1549 int (*xProgress)(void*), 1550 void *pArg 1551 ){ 1552 #ifdef SQLITE_ENABLE_API_ARMOR 1553 if( !sqlite3SafetyCheckOk(db) ){ 1554 (void)SQLITE_MISUSE_BKPT; 1555 return; 1556 } 1557 #endif 1558 sqlite3_mutex_enter(db->mutex); 1559 if( nOps>0 ){ 1560 db->xProgress = xProgress; 1561 db->nProgressOps = (unsigned)nOps; 1562 db->pProgressArg = pArg; 1563 }else{ 1564 db->xProgress = 0; 1565 db->nProgressOps = 0; 1566 db->pProgressArg = 0; 1567 } 1568 sqlite3_mutex_leave(db->mutex); 1569 } 1570 #endif 1571 1572 1573 /* 1574 ** This routine installs a default busy handler that waits for the 1575 ** specified number of milliseconds before returning 0. 1576 */ 1577 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1578 #ifdef SQLITE_ENABLE_API_ARMOR 1579 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1580 #endif 1581 if( ms>0 ){ 1582 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1583 db->busyTimeout = ms; 1584 }else{ 1585 sqlite3_busy_handler(db, 0, 0); 1586 } 1587 return SQLITE_OK; 1588 } 1589 1590 /* 1591 ** Cause any pending operation to stop at its earliest opportunity. 1592 */ 1593 void sqlite3_interrupt(sqlite3 *db){ 1594 #ifdef SQLITE_ENABLE_API_ARMOR 1595 if( !sqlite3SafetyCheckOk(db) && (db==0 || db->magic!=SQLITE_MAGIC_ZOMBIE) ){ 1596 (void)SQLITE_MISUSE_BKPT; 1597 return; 1598 } 1599 #endif 1600 db->u1.isInterrupted = 1; 1601 } 1602 1603 1604 /* 1605 ** This function is exactly the same as sqlite3_create_function(), except 1606 ** that it is designed to be called by internal code. The difference is 1607 ** that if a malloc() fails in sqlite3_create_function(), an error code 1608 ** is returned and the mallocFailed flag cleared. 1609 */ 1610 int sqlite3CreateFunc( 1611 sqlite3 *db, 1612 const char *zFunctionName, 1613 int nArg, 1614 int enc, 1615 void *pUserData, 1616 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 1617 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1618 void (*xFinal)(sqlite3_context*), 1619 FuncDestructor *pDestructor 1620 ){ 1621 FuncDef *p; 1622 int nName; 1623 int extraFlags; 1624 1625 assert( sqlite3_mutex_held(db->mutex) ); 1626 if( zFunctionName==0 || 1627 (xSFunc && (xFinal || xStep)) || 1628 (!xSFunc && (xFinal && !xStep)) || 1629 (!xSFunc && (!xFinal && xStep)) || 1630 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1631 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1632 return SQLITE_MISUSE_BKPT; 1633 } 1634 1635 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1636 extraFlags = enc & SQLITE_DETERMINISTIC; 1637 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1638 1639 #ifndef SQLITE_OMIT_UTF16 1640 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1641 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1642 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1643 ** 1644 ** If SQLITE_ANY is specified, add three versions of the function 1645 ** to the hash table. 1646 */ 1647 if( enc==SQLITE_UTF16 ){ 1648 enc = SQLITE_UTF16NATIVE; 1649 }else if( enc==SQLITE_ANY ){ 1650 int rc; 1651 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 1652 pUserData, xSFunc, xStep, xFinal, pDestructor); 1653 if( rc==SQLITE_OK ){ 1654 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 1655 pUserData, xSFunc, xStep, xFinal, pDestructor); 1656 } 1657 if( rc!=SQLITE_OK ){ 1658 return rc; 1659 } 1660 enc = SQLITE_UTF16BE; 1661 } 1662 #else 1663 enc = SQLITE_UTF8; 1664 #endif 1665 1666 /* Check if an existing function is being overridden or deleted. If so, 1667 ** and there are active VMs, then return SQLITE_BUSY. If a function 1668 ** is being overridden/deleted but there are no active VMs, allow the 1669 ** operation to continue but invalidate all precompiled statements. 1670 */ 1671 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0); 1672 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 1673 if( db->nVdbeActive ){ 1674 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1675 "unable to delete/modify user-function due to active statements"); 1676 assert( !db->mallocFailed ); 1677 return SQLITE_BUSY; 1678 }else{ 1679 sqlite3ExpirePreparedStatements(db); 1680 } 1681 } 1682 1683 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); 1684 assert(p || db->mallocFailed); 1685 if( !p ){ 1686 return SQLITE_NOMEM_BKPT; 1687 } 1688 1689 /* If an older version of the function with a configured destructor is 1690 ** being replaced invoke the destructor function here. */ 1691 functionDestroy(db, p); 1692 1693 if( pDestructor ){ 1694 pDestructor->nRef++; 1695 } 1696 p->u.pDestructor = pDestructor; 1697 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1698 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1699 p->xSFunc = xSFunc ? xSFunc : xStep; 1700 p->xFinalize = xFinal; 1701 p->pUserData = pUserData; 1702 p->nArg = (u16)nArg; 1703 return SQLITE_OK; 1704 } 1705 1706 /* 1707 ** Create new user functions. 1708 */ 1709 int sqlite3_create_function( 1710 sqlite3 *db, 1711 const char *zFunc, 1712 int nArg, 1713 int enc, 1714 void *p, 1715 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 1716 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1717 void (*xFinal)(sqlite3_context*) 1718 ){ 1719 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xSFunc, xStep, 1720 xFinal, 0); 1721 } 1722 1723 int sqlite3_create_function_v2( 1724 sqlite3 *db, 1725 const char *zFunc, 1726 int nArg, 1727 int enc, 1728 void *p, 1729 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 1730 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1731 void (*xFinal)(sqlite3_context*), 1732 void (*xDestroy)(void *) 1733 ){ 1734 int rc = SQLITE_ERROR; 1735 FuncDestructor *pArg = 0; 1736 1737 #ifdef SQLITE_ENABLE_API_ARMOR 1738 if( !sqlite3SafetyCheckOk(db) ){ 1739 return SQLITE_MISUSE_BKPT; 1740 } 1741 #endif 1742 sqlite3_mutex_enter(db->mutex); 1743 if( xDestroy ){ 1744 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1745 if( !pArg ){ 1746 xDestroy(p); 1747 goto out; 1748 } 1749 pArg->xDestroy = xDestroy; 1750 pArg->pUserData = p; 1751 } 1752 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg); 1753 if( pArg && pArg->nRef==0 ){ 1754 assert( rc!=SQLITE_OK ); 1755 xDestroy(p); 1756 sqlite3DbFree(db, pArg); 1757 } 1758 1759 out: 1760 rc = sqlite3ApiExit(db, rc); 1761 sqlite3_mutex_leave(db->mutex); 1762 return rc; 1763 } 1764 1765 #ifndef SQLITE_OMIT_UTF16 1766 int sqlite3_create_function16( 1767 sqlite3 *db, 1768 const void *zFunctionName, 1769 int nArg, 1770 int eTextRep, 1771 void *p, 1772 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 1773 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1774 void (*xFinal)(sqlite3_context*) 1775 ){ 1776 int rc; 1777 char *zFunc8; 1778 1779 #ifdef SQLITE_ENABLE_API_ARMOR 1780 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 1781 #endif 1782 sqlite3_mutex_enter(db->mutex); 1783 assert( !db->mallocFailed ); 1784 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1785 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0); 1786 sqlite3DbFree(db, zFunc8); 1787 rc = sqlite3ApiExit(db, rc); 1788 sqlite3_mutex_leave(db->mutex); 1789 return rc; 1790 } 1791 #endif 1792 1793 1794 /* 1795 ** Declare that a function has been overloaded by a virtual table. 1796 ** 1797 ** If the function already exists as a regular global function, then 1798 ** this routine is a no-op. If the function does not exist, then create 1799 ** a new one that always throws a run-time error. 1800 ** 1801 ** When virtual tables intend to provide an overloaded function, they 1802 ** should call this routine to make sure the global function exists. 1803 ** A global function must exist in order for name resolution to work 1804 ** properly. 1805 */ 1806 int sqlite3_overload_function( 1807 sqlite3 *db, 1808 const char *zName, 1809 int nArg 1810 ){ 1811 int rc = SQLITE_OK; 1812 1813 #ifdef SQLITE_ENABLE_API_ARMOR 1814 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 1815 return SQLITE_MISUSE_BKPT; 1816 } 1817 #endif 1818 sqlite3_mutex_enter(db->mutex); 1819 if( sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)==0 ){ 1820 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1821 0, sqlite3InvalidFunction, 0, 0, 0); 1822 } 1823 rc = sqlite3ApiExit(db, rc); 1824 sqlite3_mutex_leave(db->mutex); 1825 return rc; 1826 } 1827 1828 #ifndef SQLITE_OMIT_TRACE 1829 /* 1830 ** Register a trace function. The pArg from the previously registered trace 1831 ** is returned. 1832 ** 1833 ** A NULL trace function means that no tracing is executes. A non-NULL 1834 ** trace is a pointer to a function that is invoked at the start of each 1835 ** SQL statement. 1836 */ 1837 #ifndef SQLITE_OMIT_DEPRECATED 1838 void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ 1839 void *pOld; 1840 1841 #ifdef SQLITE_ENABLE_API_ARMOR 1842 if( !sqlite3SafetyCheckOk(db) ){ 1843 (void)SQLITE_MISUSE_BKPT; 1844 return 0; 1845 } 1846 #endif 1847 sqlite3_mutex_enter(db->mutex); 1848 pOld = db->pTraceArg; 1849 db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; 1850 db->xTrace = (int(*)(u32,void*,void*,void*))xTrace; 1851 db->pTraceArg = pArg; 1852 sqlite3_mutex_leave(db->mutex); 1853 return pOld; 1854 } 1855 #endif /* SQLITE_OMIT_DEPRECATED */ 1856 1857 /* Register a trace callback using the version-2 interface. 1858 */ 1859 int sqlite3_trace_v2( 1860 sqlite3 *db, /* Trace this connection */ 1861 unsigned mTrace, /* Mask of events to be traced */ 1862 int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ 1863 void *pArg /* Context */ 1864 ){ 1865 #ifdef SQLITE_ENABLE_API_ARMOR 1866 if( !sqlite3SafetyCheckOk(db) ){ 1867 return SQLITE_MISUSE_BKPT; 1868 } 1869 #endif 1870 sqlite3_mutex_enter(db->mutex); 1871 if( mTrace==0 ) xTrace = 0; 1872 if( xTrace==0 ) mTrace = 0; 1873 db->mTrace = mTrace; 1874 db->xTrace = xTrace; 1875 db->pTraceArg = pArg; 1876 sqlite3_mutex_leave(db->mutex); 1877 return SQLITE_OK; 1878 } 1879 1880 #ifndef SQLITE_OMIT_DEPRECATED 1881 /* 1882 ** Register a profile function. The pArg from the previously registered 1883 ** profile function is returned. 1884 ** 1885 ** A NULL profile function means that no profiling is executes. A non-NULL 1886 ** profile is a pointer to a function that is invoked at the conclusion of 1887 ** each SQL statement that is run. 1888 */ 1889 void *sqlite3_profile( 1890 sqlite3 *db, 1891 void (*xProfile)(void*,const char*,sqlite_uint64), 1892 void *pArg 1893 ){ 1894 void *pOld; 1895 1896 #ifdef SQLITE_ENABLE_API_ARMOR 1897 if( !sqlite3SafetyCheckOk(db) ){ 1898 (void)SQLITE_MISUSE_BKPT; 1899 return 0; 1900 } 1901 #endif 1902 sqlite3_mutex_enter(db->mutex); 1903 pOld = db->pProfileArg; 1904 db->xProfile = xProfile; 1905 db->pProfileArg = pArg; 1906 sqlite3_mutex_leave(db->mutex); 1907 return pOld; 1908 } 1909 #endif /* SQLITE_OMIT_DEPRECATED */ 1910 #endif /* SQLITE_OMIT_TRACE */ 1911 1912 /* 1913 ** Register a function to be invoked when a transaction commits. 1914 ** If the invoked function returns non-zero, then the commit becomes a 1915 ** rollback. 1916 */ 1917 void *sqlite3_commit_hook( 1918 sqlite3 *db, /* Attach the hook to this database */ 1919 int (*xCallback)(void*), /* Function to invoke on each commit */ 1920 void *pArg /* Argument to the function */ 1921 ){ 1922 void *pOld; 1923 1924 #ifdef SQLITE_ENABLE_API_ARMOR 1925 if( !sqlite3SafetyCheckOk(db) ){ 1926 (void)SQLITE_MISUSE_BKPT; 1927 return 0; 1928 } 1929 #endif 1930 sqlite3_mutex_enter(db->mutex); 1931 pOld = db->pCommitArg; 1932 db->xCommitCallback = xCallback; 1933 db->pCommitArg = pArg; 1934 sqlite3_mutex_leave(db->mutex); 1935 return pOld; 1936 } 1937 1938 /* 1939 ** Register a callback to be invoked each time a row is updated, 1940 ** inserted or deleted using this database connection. 1941 */ 1942 void *sqlite3_update_hook( 1943 sqlite3 *db, /* Attach the hook to this database */ 1944 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1945 void *pArg /* Argument to the function */ 1946 ){ 1947 void *pRet; 1948 1949 #ifdef SQLITE_ENABLE_API_ARMOR 1950 if( !sqlite3SafetyCheckOk(db) ){ 1951 (void)SQLITE_MISUSE_BKPT; 1952 return 0; 1953 } 1954 #endif 1955 sqlite3_mutex_enter(db->mutex); 1956 pRet = db->pUpdateArg; 1957 db->xUpdateCallback = xCallback; 1958 db->pUpdateArg = pArg; 1959 sqlite3_mutex_leave(db->mutex); 1960 return pRet; 1961 } 1962 1963 /* 1964 ** Register a callback to be invoked each time a transaction is rolled 1965 ** back by this database connection. 1966 */ 1967 void *sqlite3_rollback_hook( 1968 sqlite3 *db, /* Attach the hook to this database */ 1969 void (*xCallback)(void*), /* Callback function */ 1970 void *pArg /* Argument to the function */ 1971 ){ 1972 void *pRet; 1973 1974 #ifdef SQLITE_ENABLE_API_ARMOR 1975 if( !sqlite3SafetyCheckOk(db) ){ 1976 (void)SQLITE_MISUSE_BKPT; 1977 return 0; 1978 } 1979 #endif 1980 sqlite3_mutex_enter(db->mutex); 1981 pRet = db->pRollbackArg; 1982 db->xRollbackCallback = xCallback; 1983 db->pRollbackArg = pArg; 1984 sqlite3_mutex_leave(db->mutex); 1985 return pRet; 1986 } 1987 1988 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1989 /* 1990 ** Register a callback to be invoked each time a row is updated, 1991 ** inserted or deleted using this database connection. 1992 */ 1993 void *sqlite3_preupdate_hook( 1994 sqlite3 *db, /* Attach the hook to this database */ 1995 void(*xCallback)( /* Callback function */ 1996 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), 1997 void *pArg /* First callback argument */ 1998 ){ 1999 void *pRet; 2000 sqlite3_mutex_enter(db->mutex); 2001 pRet = db->pPreUpdateArg; 2002 db->xPreUpdateCallback = xCallback; 2003 db->pPreUpdateArg = pArg; 2004 sqlite3_mutex_leave(db->mutex); 2005 return pRet; 2006 } 2007 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2008 2009 #ifndef SQLITE_OMIT_WAL 2010 /* 2011 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 2012 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 2013 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 2014 ** wal_autocheckpoint()). 2015 */ 2016 int sqlite3WalDefaultHook( 2017 void *pClientData, /* Argument */ 2018 sqlite3 *db, /* Connection */ 2019 const char *zDb, /* Database */ 2020 int nFrame /* Size of WAL */ 2021 ){ 2022 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 2023 sqlite3BeginBenignMalloc(); 2024 sqlite3_wal_checkpoint(db, zDb); 2025 sqlite3EndBenignMalloc(); 2026 } 2027 return SQLITE_OK; 2028 } 2029 #endif /* SQLITE_OMIT_WAL */ 2030 2031 /* 2032 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 2033 ** a database after committing a transaction if there are nFrame or 2034 ** more frames in the log file. Passing zero or a negative value as the 2035 ** nFrame parameter disables automatic checkpoints entirely. 2036 ** 2037 ** The callback registered by this function replaces any existing callback 2038 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 2039 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 2040 ** configured by this function. 2041 */ 2042 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 2043 #ifdef SQLITE_OMIT_WAL 2044 UNUSED_PARAMETER(db); 2045 UNUSED_PARAMETER(nFrame); 2046 #else 2047 #ifdef SQLITE_ENABLE_API_ARMOR 2048 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 2049 #endif 2050 if( nFrame>0 ){ 2051 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 2052 }else{ 2053 sqlite3_wal_hook(db, 0, 0); 2054 } 2055 #endif 2056 return SQLITE_OK; 2057 } 2058 2059 /* 2060 ** Register a callback to be invoked each time a transaction is written 2061 ** into the write-ahead-log by this database connection. 2062 */ 2063 void *sqlite3_wal_hook( 2064 sqlite3 *db, /* Attach the hook to this db handle */ 2065 int(*xCallback)(void *, sqlite3*, const char*, int), 2066 void *pArg /* First argument passed to xCallback() */ 2067 ){ 2068 #ifndef SQLITE_OMIT_WAL 2069 void *pRet; 2070 #ifdef SQLITE_ENABLE_API_ARMOR 2071 if( !sqlite3SafetyCheckOk(db) ){ 2072 (void)SQLITE_MISUSE_BKPT; 2073 return 0; 2074 } 2075 #endif 2076 sqlite3_mutex_enter(db->mutex); 2077 pRet = db->pWalArg; 2078 db->xWalCallback = xCallback; 2079 db->pWalArg = pArg; 2080 sqlite3_mutex_leave(db->mutex); 2081 return pRet; 2082 #else 2083 return 0; 2084 #endif 2085 } 2086 2087 /* 2088 ** Checkpoint database zDb. 2089 */ 2090 int sqlite3_wal_checkpoint_v2( 2091 sqlite3 *db, /* Database handle */ 2092 const char *zDb, /* Name of attached database (or NULL) */ 2093 int eMode, /* SQLITE_CHECKPOINT_* value */ 2094 int *pnLog, /* OUT: Size of WAL log in frames */ 2095 int *pnCkpt /* OUT: Total number of frames checkpointed */ 2096 ){ 2097 #ifdef SQLITE_OMIT_WAL 2098 return SQLITE_OK; 2099 #else 2100 int rc; /* Return code */ 2101 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 2102 2103 #ifdef SQLITE_ENABLE_API_ARMOR 2104 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 2105 #endif 2106 2107 /* Initialize the output variables to -1 in case an error occurs. */ 2108 if( pnLog ) *pnLog = -1; 2109 if( pnCkpt ) *pnCkpt = -1; 2110 2111 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 2112 assert( SQLITE_CHECKPOINT_FULL==1 ); 2113 assert( SQLITE_CHECKPOINT_RESTART==2 ); 2114 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 2115 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 2116 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 2117 ** mode: */ 2118 return SQLITE_MISUSE; 2119 } 2120 2121 sqlite3_mutex_enter(db->mutex); 2122 if( zDb && zDb[0] ){ 2123 iDb = sqlite3FindDbName(db, zDb); 2124 } 2125 if( iDb<0 ){ 2126 rc = SQLITE_ERROR; 2127 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 2128 }else{ 2129 db->busyHandler.nBusy = 0; 2130 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 2131 sqlite3Error(db, rc); 2132 } 2133 rc = sqlite3ApiExit(db, rc); 2134 2135 /* If there are no active statements, clear the interrupt flag at this 2136 ** point. */ 2137 if( db->nVdbeActive==0 ){ 2138 db->u1.isInterrupted = 0; 2139 } 2140 2141 sqlite3_mutex_leave(db->mutex); 2142 return rc; 2143 #endif 2144 } 2145 2146 2147 /* 2148 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 2149 ** to contains a zero-length string, all attached databases are 2150 ** checkpointed. 2151 */ 2152 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 2153 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 2154 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 2155 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 2156 } 2157 2158 #ifndef SQLITE_OMIT_WAL 2159 /* 2160 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 2161 ** not currently open in WAL mode. 2162 ** 2163 ** If a transaction is open on the database being checkpointed, this 2164 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2165 ** an error occurs while running the checkpoint, an SQLite error code is 2166 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2167 ** 2168 ** The mutex on database handle db should be held by the caller. The mutex 2169 ** associated with the specific b-tree being checkpointed is taken by 2170 ** this function while the checkpoint is running. 2171 ** 2172 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 2173 ** checkpointed. If an error is encountered it is returned immediately - 2174 ** no attempt is made to checkpoint any remaining databases. 2175 ** 2176 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 2177 */ 2178 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2179 int rc = SQLITE_OK; /* Return code */ 2180 int i; /* Used to iterate through attached dbs */ 2181 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2182 2183 assert( sqlite3_mutex_held(db->mutex) ); 2184 assert( !pnLog || *pnLog==-1 ); 2185 assert( !pnCkpt || *pnCkpt==-1 ); 2186 2187 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2188 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 2189 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2190 pnLog = 0; 2191 pnCkpt = 0; 2192 if( rc==SQLITE_BUSY ){ 2193 bBusy = 1; 2194 rc = SQLITE_OK; 2195 } 2196 } 2197 } 2198 2199 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2200 } 2201 #endif /* SQLITE_OMIT_WAL */ 2202 2203 /* 2204 ** This function returns true if main-memory should be used instead of 2205 ** a temporary file for transient pager files and statement journals. 2206 ** The value returned depends on the value of db->temp_store (runtime 2207 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2208 ** following table describes the relationship between these two values 2209 ** and this functions return value. 2210 ** 2211 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2212 ** ----------------- -------------- ------------------------------ 2213 ** 0 any file (return 0) 2214 ** 1 1 file (return 0) 2215 ** 1 2 memory (return 1) 2216 ** 1 0 file (return 0) 2217 ** 2 1 file (return 0) 2218 ** 2 2 memory (return 1) 2219 ** 2 0 memory (return 1) 2220 ** 3 any memory (return 1) 2221 */ 2222 int sqlite3TempInMemory(const sqlite3 *db){ 2223 #if SQLITE_TEMP_STORE==1 2224 return ( db->temp_store==2 ); 2225 #endif 2226 #if SQLITE_TEMP_STORE==2 2227 return ( db->temp_store!=1 ); 2228 #endif 2229 #if SQLITE_TEMP_STORE==3 2230 UNUSED_PARAMETER(db); 2231 return 1; 2232 #endif 2233 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2234 UNUSED_PARAMETER(db); 2235 return 0; 2236 #endif 2237 } 2238 2239 /* 2240 ** Return UTF-8 encoded English language explanation of the most recent 2241 ** error. 2242 */ 2243 const char *sqlite3_errmsg(sqlite3 *db){ 2244 const char *z; 2245 if( !db ){ 2246 return sqlite3ErrStr(SQLITE_NOMEM_BKPT); 2247 } 2248 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2249 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2250 } 2251 sqlite3_mutex_enter(db->mutex); 2252 if( db->mallocFailed ){ 2253 z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); 2254 }else{ 2255 testcase( db->pErr==0 ); 2256 z = (char*)sqlite3_value_text(db->pErr); 2257 assert( !db->mallocFailed ); 2258 if( z==0 ){ 2259 z = sqlite3ErrStr(db->errCode); 2260 } 2261 } 2262 sqlite3_mutex_leave(db->mutex); 2263 return z; 2264 } 2265 2266 #ifndef SQLITE_OMIT_UTF16 2267 /* 2268 ** Return UTF-16 encoded English language explanation of the most recent 2269 ** error. 2270 */ 2271 const void *sqlite3_errmsg16(sqlite3 *db){ 2272 static const u16 outOfMem[] = { 2273 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2274 }; 2275 static const u16 misuse[] = { 2276 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 2277 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 2278 'm', 'i', 's', 'u', 's', 'e', 0 2279 }; 2280 2281 const void *z; 2282 if( !db ){ 2283 return (void *)outOfMem; 2284 } 2285 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2286 return (void *)misuse; 2287 } 2288 sqlite3_mutex_enter(db->mutex); 2289 if( db->mallocFailed ){ 2290 z = (void *)outOfMem; 2291 }else{ 2292 z = sqlite3_value_text16(db->pErr); 2293 if( z==0 ){ 2294 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2295 z = sqlite3_value_text16(db->pErr); 2296 } 2297 /* A malloc() may have failed within the call to sqlite3_value_text16() 2298 ** above. If this is the case, then the db->mallocFailed flag needs to 2299 ** be cleared before returning. Do this directly, instead of via 2300 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2301 */ 2302 sqlite3OomClear(db); 2303 } 2304 sqlite3_mutex_leave(db->mutex); 2305 return z; 2306 } 2307 #endif /* SQLITE_OMIT_UTF16 */ 2308 2309 /* 2310 ** Return the most recent error code generated by an SQLite routine. If NULL is 2311 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2312 */ 2313 int sqlite3_errcode(sqlite3 *db){ 2314 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2315 return SQLITE_MISUSE_BKPT; 2316 } 2317 if( !db || db->mallocFailed ){ 2318 return SQLITE_NOMEM_BKPT; 2319 } 2320 return db->errCode & db->errMask; 2321 } 2322 int sqlite3_extended_errcode(sqlite3 *db){ 2323 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2324 return SQLITE_MISUSE_BKPT; 2325 } 2326 if( !db || db->mallocFailed ){ 2327 return SQLITE_NOMEM_BKPT; 2328 } 2329 return db->errCode; 2330 } 2331 int sqlite3_system_errno(sqlite3 *db){ 2332 return db ? db->iSysErrno : 0; 2333 } 2334 2335 /* 2336 ** Return a string that describes the kind of error specified in the 2337 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2338 ** function. 2339 */ 2340 const char *sqlite3_errstr(int rc){ 2341 return sqlite3ErrStr(rc); 2342 } 2343 2344 /* 2345 ** Create a new collating function for database "db". The name is zName 2346 ** and the encoding is enc. 2347 */ 2348 static int createCollation( 2349 sqlite3* db, 2350 const char *zName, 2351 u8 enc, 2352 void* pCtx, 2353 int(*xCompare)(void*,int,const void*,int,const void*), 2354 void(*xDel)(void*) 2355 ){ 2356 CollSeq *pColl; 2357 int enc2; 2358 2359 assert( sqlite3_mutex_held(db->mutex) ); 2360 2361 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2362 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2363 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2364 */ 2365 enc2 = enc; 2366 testcase( enc2==SQLITE_UTF16 ); 2367 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2368 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2369 enc2 = SQLITE_UTF16NATIVE; 2370 } 2371 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2372 return SQLITE_MISUSE_BKPT; 2373 } 2374 2375 /* Check if this call is removing or replacing an existing collation 2376 ** sequence. If so, and there are active VMs, return busy. If there 2377 ** are no active VMs, invalidate any pre-compiled statements. 2378 */ 2379 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2380 if( pColl && pColl->xCmp ){ 2381 if( db->nVdbeActive ){ 2382 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2383 "unable to delete/modify collation sequence due to active statements"); 2384 return SQLITE_BUSY; 2385 } 2386 sqlite3ExpirePreparedStatements(db); 2387 2388 /* If collation sequence pColl was created directly by a call to 2389 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2390 ** then any copies made by synthCollSeq() need to be invalidated. 2391 ** Also, collation destructor - CollSeq.xDel() - function may need 2392 ** to be called. 2393 */ 2394 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2395 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2396 int j; 2397 for(j=0; j<3; j++){ 2398 CollSeq *p = &aColl[j]; 2399 if( p->enc==pColl->enc ){ 2400 if( p->xDel ){ 2401 p->xDel(p->pUser); 2402 } 2403 p->xCmp = 0; 2404 } 2405 } 2406 } 2407 } 2408 2409 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2410 if( pColl==0 ) return SQLITE_NOMEM_BKPT; 2411 pColl->xCmp = xCompare; 2412 pColl->pUser = pCtx; 2413 pColl->xDel = xDel; 2414 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2415 sqlite3Error(db, SQLITE_OK); 2416 return SQLITE_OK; 2417 } 2418 2419 2420 /* 2421 ** This array defines hard upper bounds on limit values. The 2422 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2423 ** #defines in sqlite3.h. 2424 */ 2425 static const int aHardLimit[] = { 2426 SQLITE_MAX_LENGTH, 2427 SQLITE_MAX_SQL_LENGTH, 2428 SQLITE_MAX_COLUMN, 2429 SQLITE_MAX_EXPR_DEPTH, 2430 SQLITE_MAX_COMPOUND_SELECT, 2431 SQLITE_MAX_VDBE_OP, 2432 SQLITE_MAX_FUNCTION_ARG, 2433 SQLITE_MAX_ATTACHED, 2434 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2435 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2436 SQLITE_MAX_TRIGGER_DEPTH, 2437 SQLITE_MAX_WORKER_THREADS, 2438 }; 2439 2440 /* 2441 ** Make sure the hard limits are set to reasonable values 2442 */ 2443 #if SQLITE_MAX_LENGTH<100 2444 # error SQLITE_MAX_LENGTH must be at least 100 2445 #endif 2446 #if SQLITE_MAX_SQL_LENGTH<100 2447 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2448 #endif 2449 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2450 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2451 #endif 2452 #if SQLITE_MAX_COMPOUND_SELECT<2 2453 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2454 #endif 2455 #if SQLITE_MAX_VDBE_OP<40 2456 # error SQLITE_MAX_VDBE_OP must be at least 40 2457 #endif 2458 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 2459 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 2460 #endif 2461 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2462 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2463 #endif 2464 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2465 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2466 #endif 2467 #if SQLITE_MAX_COLUMN>32767 2468 # error SQLITE_MAX_COLUMN must not exceed 32767 2469 #endif 2470 #if SQLITE_MAX_TRIGGER_DEPTH<1 2471 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2472 #endif 2473 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2474 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2475 #endif 2476 2477 2478 /* 2479 ** Change the value of a limit. Report the old value. 2480 ** If an invalid limit index is supplied, report -1. 2481 ** Make no changes but still report the old value if the 2482 ** new limit is negative. 2483 ** 2484 ** A new lower limit does not shrink existing constructs. 2485 ** It merely prevents new constructs that exceed the limit 2486 ** from forming. 2487 */ 2488 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2489 int oldLimit; 2490 2491 #ifdef SQLITE_ENABLE_API_ARMOR 2492 if( !sqlite3SafetyCheckOk(db) ){ 2493 (void)SQLITE_MISUSE_BKPT; 2494 return -1; 2495 } 2496 #endif 2497 2498 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2499 ** there is a hard upper bound set at compile-time by a C preprocessor 2500 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2501 ** "_MAX_".) 2502 */ 2503 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2504 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2505 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2506 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2507 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2508 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2509 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2510 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2511 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2512 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2513 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2514 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2515 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2516 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2517 2518 2519 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2520 return -1; 2521 } 2522 oldLimit = db->aLimit[limitId]; 2523 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2524 if( newLimit>aHardLimit[limitId] ){ 2525 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2526 } 2527 db->aLimit[limitId] = newLimit; 2528 } 2529 return oldLimit; /* IMP: R-53341-35419 */ 2530 } 2531 2532 /* 2533 ** This function is used to parse both URIs and non-URI filenames passed by the 2534 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2535 ** URIs specified as part of ATTACH statements. 2536 ** 2537 ** The first argument to this function is the name of the VFS to use (or 2538 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2539 ** query parameter. The second argument contains the URI (or non-URI filename) 2540 ** itself. When this function is called the *pFlags variable should contain 2541 ** the default flags to open the database handle with. The value stored in 2542 ** *pFlags may be updated before returning if the URI filename contains 2543 ** "cache=xxx" or "mode=xxx" query parameters. 2544 ** 2545 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2546 ** the VFS that should be used to open the database file. *pzFile is set to 2547 ** point to a buffer containing the name of the file to open. It is the 2548 ** responsibility of the caller to eventually call sqlite3_free() to release 2549 ** this buffer. 2550 ** 2551 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2552 ** may be set to point to a buffer containing an English language error 2553 ** message. It is the responsibility of the caller to eventually release 2554 ** this buffer by calling sqlite3_free(). 2555 */ 2556 int sqlite3ParseUri( 2557 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2558 const char *zUri, /* Nul-terminated URI to parse */ 2559 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2560 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2561 char **pzFile, /* OUT: Filename component of URI */ 2562 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2563 ){ 2564 int rc = SQLITE_OK; 2565 unsigned int flags = *pFlags; 2566 const char *zVfs = zDefaultVfs; 2567 char *zFile; 2568 char c; 2569 int nUri = sqlite3Strlen30(zUri); 2570 2571 assert( *pzErrMsg==0 ); 2572 2573 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2574 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2575 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2576 ){ 2577 char *zOpt; 2578 int eState; /* Parser state when parsing URI */ 2579 int iIn; /* Input character index */ 2580 int iOut = 0; /* Output character index */ 2581 u64 nByte = nUri+2; /* Bytes of space to allocate */ 2582 2583 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2584 ** method that there may be extra parameters following the file-name. */ 2585 flags |= SQLITE_OPEN_URI; 2586 2587 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2588 zFile = sqlite3_malloc64(nByte); 2589 if( !zFile ) return SQLITE_NOMEM_BKPT; 2590 2591 iIn = 5; 2592 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2593 if( strncmp(zUri+5, "///", 3)==0 ){ 2594 iIn = 7; 2595 /* The following condition causes URIs with five leading / characters 2596 ** like file://///host/path to be converted into UNCs like //host/path. 2597 ** The correct URI for that UNC has only two or four leading / characters 2598 ** file://host/path or file:////host/path. But 5 leading slashes is a 2599 ** common error, we are told, so we handle it as a special case. */ 2600 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2601 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2602 iIn = 16; 2603 } 2604 #else 2605 /* Discard the scheme and authority segments of the URI. */ 2606 if( zUri[5]=='/' && zUri[6]=='/' ){ 2607 iIn = 7; 2608 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2609 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2610 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2611 iIn-7, &zUri[7]); 2612 rc = SQLITE_ERROR; 2613 goto parse_uri_out; 2614 } 2615 } 2616 #endif 2617 2618 /* Copy the filename and any query parameters into the zFile buffer. 2619 ** Decode %HH escape codes along the way. 2620 ** 2621 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2622 ** on the parsing context. As follows: 2623 ** 2624 ** 0: Parsing file-name. 2625 ** 1: Parsing name section of a name=value query parameter. 2626 ** 2: Parsing value section of a name=value query parameter. 2627 */ 2628 eState = 0; 2629 while( (c = zUri[iIn])!=0 && c!='#' ){ 2630 iIn++; 2631 if( c=='%' 2632 && sqlite3Isxdigit(zUri[iIn]) 2633 && sqlite3Isxdigit(zUri[iIn+1]) 2634 ){ 2635 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2636 octet += sqlite3HexToInt(zUri[iIn++]); 2637 2638 assert( octet>=0 && octet<256 ); 2639 if( octet==0 ){ 2640 #ifndef SQLITE_ENABLE_URI_00_ERROR 2641 /* This branch is taken when "%00" appears within the URI. In this 2642 ** case we ignore all text in the remainder of the path, name or 2643 ** value currently being parsed. So ignore the current character 2644 ** and skip to the next "?", "=" or "&", as appropriate. */ 2645 while( (c = zUri[iIn])!=0 && c!='#' 2646 && (eState!=0 || c!='?') 2647 && (eState!=1 || (c!='=' && c!='&')) 2648 && (eState!=2 || c!='&') 2649 ){ 2650 iIn++; 2651 } 2652 continue; 2653 #else 2654 /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ 2655 *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); 2656 rc = SQLITE_ERROR; 2657 goto parse_uri_out; 2658 #endif 2659 } 2660 c = octet; 2661 }else if( eState==1 && (c=='&' || c=='=') ){ 2662 if( zFile[iOut-1]==0 ){ 2663 /* An empty option name. Ignore this option altogether. */ 2664 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2665 continue; 2666 } 2667 if( c=='&' ){ 2668 zFile[iOut++] = '\0'; 2669 }else{ 2670 eState = 2; 2671 } 2672 c = 0; 2673 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2674 c = 0; 2675 eState = 1; 2676 } 2677 zFile[iOut++] = c; 2678 } 2679 if( eState==1 ) zFile[iOut++] = '\0'; 2680 zFile[iOut++] = '\0'; 2681 zFile[iOut++] = '\0'; 2682 2683 /* Check if there were any options specified that should be interpreted 2684 ** here. Options that are interpreted here include "vfs" and those that 2685 ** correspond to flags that may be passed to the sqlite3_open_v2() 2686 ** method. */ 2687 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2688 while( zOpt[0] ){ 2689 int nOpt = sqlite3Strlen30(zOpt); 2690 char *zVal = &zOpt[nOpt+1]; 2691 int nVal = sqlite3Strlen30(zVal); 2692 2693 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2694 zVfs = zVal; 2695 }else{ 2696 struct OpenMode { 2697 const char *z; 2698 int mode; 2699 } *aMode = 0; 2700 char *zModeType = 0; 2701 int mask = 0; 2702 int limit = 0; 2703 2704 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2705 static struct OpenMode aCacheMode[] = { 2706 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2707 { "private", SQLITE_OPEN_PRIVATECACHE }, 2708 { 0, 0 } 2709 }; 2710 2711 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2712 aMode = aCacheMode; 2713 limit = mask; 2714 zModeType = "cache"; 2715 } 2716 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2717 static struct OpenMode aOpenMode[] = { 2718 { "ro", SQLITE_OPEN_READONLY }, 2719 { "rw", SQLITE_OPEN_READWRITE }, 2720 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2721 { "memory", SQLITE_OPEN_MEMORY }, 2722 { 0, 0 } 2723 }; 2724 2725 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2726 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2727 aMode = aOpenMode; 2728 limit = mask & flags; 2729 zModeType = "access"; 2730 } 2731 2732 if( aMode ){ 2733 int i; 2734 int mode = 0; 2735 for(i=0; aMode[i].z; i++){ 2736 const char *z = aMode[i].z; 2737 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2738 mode = aMode[i].mode; 2739 break; 2740 } 2741 } 2742 if( mode==0 ){ 2743 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2744 rc = SQLITE_ERROR; 2745 goto parse_uri_out; 2746 } 2747 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2748 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2749 zModeType, zVal); 2750 rc = SQLITE_PERM; 2751 goto parse_uri_out; 2752 } 2753 flags = (flags & ~mask) | mode; 2754 } 2755 } 2756 2757 zOpt = &zVal[nVal+1]; 2758 } 2759 2760 }else{ 2761 zFile = sqlite3_malloc64(nUri+2); 2762 if( !zFile ) return SQLITE_NOMEM_BKPT; 2763 if( nUri ){ 2764 memcpy(zFile, zUri, nUri); 2765 } 2766 zFile[nUri] = '\0'; 2767 zFile[nUri+1] = '\0'; 2768 flags &= ~SQLITE_OPEN_URI; 2769 } 2770 2771 *ppVfs = sqlite3_vfs_find(zVfs); 2772 if( *ppVfs==0 ){ 2773 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2774 rc = SQLITE_ERROR; 2775 } 2776 parse_uri_out: 2777 if( rc!=SQLITE_OK ){ 2778 sqlite3_free(zFile); 2779 zFile = 0; 2780 } 2781 *pFlags = flags; 2782 *pzFile = zFile; 2783 return rc; 2784 } 2785 2786 2787 /* 2788 ** This routine does the work of opening a database on behalf of 2789 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2790 ** is UTF-8 encoded. 2791 */ 2792 static int openDatabase( 2793 const char *zFilename, /* Database filename UTF-8 encoded */ 2794 sqlite3 **ppDb, /* OUT: Returned database handle */ 2795 unsigned int flags, /* Operational flags */ 2796 const char *zVfs /* Name of the VFS to use */ 2797 ){ 2798 sqlite3 *db; /* Store allocated handle here */ 2799 int rc; /* Return code */ 2800 int isThreadsafe; /* True for threadsafe connections */ 2801 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2802 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2803 2804 #ifdef SQLITE_ENABLE_API_ARMOR 2805 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2806 #endif 2807 *ppDb = 0; 2808 #ifndef SQLITE_OMIT_AUTOINIT 2809 rc = sqlite3_initialize(); 2810 if( rc ) return rc; 2811 #endif 2812 2813 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2814 isThreadsafe = 0; 2815 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2816 isThreadsafe = 0; 2817 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2818 isThreadsafe = 1; 2819 }else{ 2820 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2821 } 2822 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2823 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2824 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2825 flags |= SQLITE_OPEN_SHAREDCACHE; 2826 } 2827 2828 /* Remove harmful bits from the flags parameter 2829 ** 2830 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2831 ** dealt with in the previous code block. Besides these, the only 2832 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2833 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2834 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2835 ** off all other flags. 2836 */ 2837 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2838 SQLITE_OPEN_EXCLUSIVE | 2839 SQLITE_OPEN_MAIN_DB | 2840 SQLITE_OPEN_TEMP_DB | 2841 SQLITE_OPEN_TRANSIENT_DB | 2842 SQLITE_OPEN_MAIN_JOURNAL | 2843 SQLITE_OPEN_TEMP_JOURNAL | 2844 SQLITE_OPEN_SUBJOURNAL | 2845 SQLITE_OPEN_MASTER_JOURNAL | 2846 SQLITE_OPEN_NOMUTEX | 2847 SQLITE_OPEN_FULLMUTEX | 2848 SQLITE_OPEN_WAL 2849 ); 2850 2851 /* Allocate the sqlite data structure */ 2852 db = sqlite3MallocZero( sizeof(sqlite3) ); 2853 if( db==0 ) goto opendb_out; 2854 if( isThreadsafe ){ 2855 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2856 if( db->mutex==0 ){ 2857 sqlite3_free(db); 2858 db = 0; 2859 goto opendb_out; 2860 } 2861 } 2862 sqlite3_mutex_enter(db->mutex); 2863 db->errMask = 0xff; 2864 db->nDb = 2; 2865 db->magic = SQLITE_MAGIC_BUSY; 2866 db->aDb = db->aDbStatic; 2867 2868 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2869 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2870 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 2871 db->autoCommit = 1; 2872 db->nextAutovac = -1; 2873 db->szMmap = sqlite3GlobalConfig.szMmap; 2874 db->nextPagesize = 0; 2875 db->nMaxSorterMmap = 0x7FFFFFFF; 2876 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 2877 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 2878 | SQLITE_AutoIndex 2879 #endif 2880 #if SQLITE_DEFAULT_CKPTFULLFSYNC 2881 | SQLITE_CkptFullFSync 2882 #endif 2883 #if SQLITE_DEFAULT_FILE_FORMAT<4 2884 | SQLITE_LegacyFileFmt 2885 #endif 2886 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2887 | SQLITE_LoadExtension 2888 #endif 2889 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2890 | SQLITE_RecTriggers 2891 #endif 2892 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2893 | SQLITE_ForeignKeys 2894 #endif 2895 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 2896 | SQLITE_ReverseOrder 2897 #endif 2898 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 2899 | SQLITE_CellSizeCk 2900 #endif 2901 #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) 2902 | SQLITE_Fts3Tokenizer 2903 #endif 2904 #if defined(SQLITE_ENABLE_QPSG) 2905 | SQLITE_EnableQPSG 2906 #endif 2907 ; 2908 sqlite3HashInit(&db->aCollSeq); 2909 #ifndef SQLITE_OMIT_VIRTUALTABLE 2910 sqlite3HashInit(&db->aModule); 2911 #endif 2912 2913 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2914 ** and UTF-16, so add a version for each to avoid any unnecessary 2915 ** conversions. The only error that can occur here is a malloc() failure. 2916 ** 2917 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 2918 ** functions: 2919 */ 2920 createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); 2921 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); 2922 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); 2923 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2924 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2925 if( db->mallocFailed ){ 2926 goto opendb_out; 2927 } 2928 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 2929 ** strings is BINARY. 2930 */ 2931 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, sqlite3StrBINARY, 0); 2932 assert( db->pDfltColl!=0 ); 2933 2934 /* Parse the filename/URI argument 2935 ** 2936 ** Only allow sensible combinations of bits in the flags argument. 2937 ** Throw an error if any non-sense combination is used. If we 2938 ** do not block illegal combinations here, it could trigger 2939 ** assert() statements in deeper layers. Sensible combinations 2940 ** are: 2941 ** 2942 ** 1: SQLITE_OPEN_READONLY 2943 ** 2: SQLITE_OPEN_READWRITE 2944 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2945 */ 2946 db->openFlags = flags; 2947 assert( SQLITE_OPEN_READONLY == 0x01 ); 2948 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2949 assert( SQLITE_OPEN_CREATE == 0x04 ); 2950 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2951 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2952 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2953 if( ((1<<(flags&7)) & 0x46)==0 ){ 2954 rc = SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 2955 }else{ 2956 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2957 } 2958 if( rc!=SQLITE_OK ){ 2959 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 2960 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2961 sqlite3_free(zErrMsg); 2962 goto opendb_out; 2963 } 2964 2965 /* Open the backend database driver */ 2966 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2967 flags | SQLITE_OPEN_MAIN_DB); 2968 if( rc!=SQLITE_OK ){ 2969 if( rc==SQLITE_IOERR_NOMEM ){ 2970 rc = SQLITE_NOMEM_BKPT; 2971 } 2972 sqlite3Error(db, rc); 2973 goto opendb_out; 2974 } 2975 sqlite3BtreeEnter(db->aDb[0].pBt); 2976 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2977 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 2978 sqlite3BtreeLeave(db->aDb[0].pBt); 2979 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2980 2981 /* The default safety_level for the main database is FULL; for the temp 2982 ** database it is OFF. This matches the pager layer defaults. 2983 */ 2984 db->aDb[0].zDbSName = "main"; 2985 db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; 2986 db->aDb[1].zDbSName = "temp"; 2987 db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; 2988 2989 db->magic = SQLITE_MAGIC_OPEN; 2990 if( db->mallocFailed ){ 2991 goto opendb_out; 2992 } 2993 2994 /* Register all built-in functions, but do not attempt to read the 2995 ** database schema yet. This is delayed until the first time the database 2996 ** is accessed. 2997 */ 2998 sqlite3Error(db, SQLITE_OK); 2999 sqlite3RegisterPerConnectionBuiltinFunctions(db); 3000 rc = sqlite3_errcode(db); 3001 3002 #ifdef SQLITE_ENABLE_FTS5 3003 /* Register any built-in FTS5 module before loading the automatic 3004 ** extensions. This allows automatic extensions to register FTS5 3005 ** tokenizers and auxiliary functions. */ 3006 if( !db->mallocFailed && rc==SQLITE_OK ){ 3007 rc = sqlite3Fts5Init(db); 3008 } 3009 #endif 3010 3011 /* Load automatic extensions - extensions that have been registered 3012 ** using the sqlite3_automatic_extension() API. 3013 */ 3014 if( rc==SQLITE_OK ){ 3015 sqlite3AutoLoadExtensions(db); 3016 rc = sqlite3_errcode(db); 3017 if( rc!=SQLITE_OK ){ 3018 goto opendb_out; 3019 } 3020 } 3021 3022 #ifdef SQLITE_ENABLE_FTS1 3023 if( !db->mallocFailed ){ 3024 extern int sqlite3Fts1Init(sqlite3*); 3025 rc = sqlite3Fts1Init(db); 3026 } 3027 #endif 3028 3029 #ifdef SQLITE_ENABLE_FTS2 3030 if( !db->mallocFailed && rc==SQLITE_OK ){ 3031 extern int sqlite3Fts2Init(sqlite3*); 3032 rc = sqlite3Fts2Init(db); 3033 } 3034 #endif 3035 3036 #ifdef SQLITE_ENABLE_FTS3 /* automatically defined by SQLITE_ENABLE_FTS4 */ 3037 if( !db->mallocFailed && rc==SQLITE_OK ){ 3038 rc = sqlite3Fts3Init(db); 3039 } 3040 #endif 3041 3042 #ifdef SQLITE_ENABLE_ICU 3043 if( !db->mallocFailed && rc==SQLITE_OK ){ 3044 rc = sqlite3IcuInit(db); 3045 } 3046 #endif 3047 3048 #ifdef SQLITE_ENABLE_RTREE 3049 if( !db->mallocFailed && rc==SQLITE_OK){ 3050 rc = sqlite3RtreeInit(db); 3051 } 3052 #endif 3053 3054 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 3055 if( !db->mallocFailed && rc==SQLITE_OK){ 3056 rc = sqlite3DbstatRegister(db); 3057 } 3058 #endif 3059 3060 #ifdef SQLITE_ENABLE_JSON1 3061 if( !db->mallocFailed && rc==SQLITE_OK){ 3062 rc = sqlite3Json1Init(db); 3063 } 3064 #endif 3065 3066 #ifdef SQLITE_ENABLE_STMTVTAB 3067 if( !db->mallocFailed && rc==SQLITE_OK){ 3068 rc = sqlite3StmtVtabInit(db); 3069 } 3070 #endif 3071 3072 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 3073 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 3074 ** mode. Doing nothing at all also makes NORMAL the default. 3075 */ 3076 #ifdef SQLITE_DEFAULT_LOCKING_MODE 3077 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 3078 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 3079 SQLITE_DEFAULT_LOCKING_MODE); 3080 #endif 3081 3082 if( rc ) sqlite3Error(db, rc); 3083 3084 /* Enable the lookaside-malloc subsystem */ 3085 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 3086 sqlite3GlobalConfig.nLookaside); 3087 3088 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 3089 3090 opendb_out: 3091 if( db ){ 3092 assert( db->mutex!=0 || isThreadsafe==0 3093 || sqlite3GlobalConfig.bFullMutex==0 ); 3094 sqlite3_mutex_leave(db->mutex); 3095 } 3096 rc = sqlite3_errcode(db); 3097 assert( db!=0 || rc==SQLITE_NOMEM ); 3098 if( rc==SQLITE_NOMEM ){ 3099 sqlite3_close(db); 3100 db = 0; 3101 }else if( rc!=SQLITE_OK ){ 3102 db->magic = SQLITE_MAGIC_SICK; 3103 } 3104 *ppDb = db; 3105 #ifdef SQLITE_ENABLE_SQLLOG 3106 if( sqlite3GlobalConfig.xSqllog ){ 3107 /* Opening a db handle. Fourth parameter is passed 0. */ 3108 void *pArg = sqlite3GlobalConfig.pSqllogArg; 3109 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 3110 } 3111 #endif 3112 #if defined(SQLITE_HAS_CODEC) 3113 if( rc==SQLITE_OK ){ 3114 const char *zKey; 3115 if( (zKey = sqlite3_uri_parameter(zOpen, "hexkey"))!=0 && zKey[0] ){ 3116 u8 iByte; 3117 int i; 3118 char zDecoded[40]; 3119 for(i=0, iByte=0; i<sizeof(zDecoded)*2 && sqlite3Isxdigit(zKey[i]); i++){ 3120 iByte = (iByte<<4) + sqlite3HexToInt(zKey[i]); 3121 if( (i&1)!=0 ) zDecoded[i/2] = iByte; 3122 } 3123 sqlite3_key_v2(db, 0, zDecoded, i/2); 3124 }else if( (zKey = sqlite3_uri_parameter(zOpen, "key"))!=0 ){ 3125 sqlite3_key_v2(db, 0, zKey, sqlite3Strlen30(zKey)); 3126 } 3127 } 3128 #endif 3129 sqlite3_free(zOpen); 3130 return rc & 0xff; 3131 } 3132 3133 /* 3134 ** Open a new database handle. 3135 */ 3136 int sqlite3_open( 3137 const char *zFilename, 3138 sqlite3 **ppDb 3139 ){ 3140 return openDatabase(zFilename, ppDb, 3141 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 3142 } 3143 int sqlite3_open_v2( 3144 const char *filename, /* Database filename (UTF-8) */ 3145 sqlite3 **ppDb, /* OUT: SQLite db handle */ 3146 int flags, /* Flags */ 3147 const char *zVfs /* Name of VFS module to use */ 3148 ){ 3149 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 3150 } 3151 3152 #ifndef SQLITE_OMIT_UTF16 3153 /* 3154 ** Open a new database handle. 3155 */ 3156 int sqlite3_open16( 3157 const void *zFilename, 3158 sqlite3 **ppDb 3159 ){ 3160 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 3161 sqlite3_value *pVal; 3162 int rc; 3163 3164 #ifdef SQLITE_ENABLE_API_ARMOR 3165 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 3166 #endif 3167 *ppDb = 0; 3168 #ifndef SQLITE_OMIT_AUTOINIT 3169 rc = sqlite3_initialize(); 3170 if( rc ) return rc; 3171 #endif 3172 if( zFilename==0 ) zFilename = "\000\000"; 3173 pVal = sqlite3ValueNew(0); 3174 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 3175 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 3176 if( zFilename8 ){ 3177 rc = openDatabase(zFilename8, ppDb, 3178 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 3179 assert( *ppDb || rc==SQLITE_NOMEM ); 3180 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 3181 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 3182 } 3183 }else{ 3184 rc = SQLITE_NOMEM_BKPT; 3185 } 3186 sqlite3ValueFree(pVal); 3187 3188 return rc & 0xff; 3189 } 3190 #endif /* SQLITE_OMIT_UTF16 */ 3191 3192 /* 3193 ** Register a new collation sequence with the database handle db. 3194 */ 3195 int sqlite3_create_collation( 3196 sqlite3* db, 3197 const char *zName, 3198 int enc, 3199 void* pCtx, 3200 int(*xCompare)(void*,int,const void*,int,const void*) 3201 ){ 3202 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 3203 } 3204 3205 /* 3206 ** Register a new collation sequence with the database handle db. 3207 */ 3208 int sqlite3_create_collation_v2( 3209 sqlite3* db, 3210 const char *zName, 3211 int enc, 3212 void* pCtx, 3213 int(*xCompare)(void*,int,const void*,int,const void*), 3214 void(*xDel)(void*) 3215 ){ 3216 int rc; 3217 3218 #ifdef SQLITE_ENABLE_API_ARMOR 3219 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3220 #endif 3221 sqlite3_mutex_enter(db->mutex); 3222 assert( !db->mallocFailed ); 3223 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 3224 rc = sqlite3ApiExit(db, rc); 3225 sqlite3_mutex_leave(db->mutex); 3226 return rc; 3227 } 3228 3229 #ifndef SQLITE_OMIT_UTF16 3230 /* 3231 ** Register a new collation sequence with the database handle db. 3232 */ 3233 int sqlite3_create_collation16( 3234 sqlite3* db, 3235 const void *zName, 3236 int enc, 3237 void* pCtx, 3238 int(*xCompare)(void*,int,const void*,int,const void*) 3239 ){ 3240 int rc = SQLITE_OK; 3241 char *zName8; 3242 3243 #ifdef SQLITE_ENABLE_API_ARMOR 3244 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3245 #endif 3246 sqlite3_mutex_enter(db->mutex); 3247 assert( !db->mallocFailed ); 3248 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3249 if( zName8 ){ 3250 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3251 sqlite3DbFree(db, zName8); 3252 } 3253 rc = sqlite3ApiExit(db, rc); 3254 sqlite3_mutex_leave(db->mutex); 3255 return rc; 3256 } 3257 #endif /* SQLITE_OMIT_UTF16 */ 3258 3259 /* 3260 ** Register a collation sequence factory callback with the database handle 3261 ** db. Replace any previously installed collation sequence factory. 3262 */ 3263 int sqlite3_collation_needed( 3264 sqlite3 *db, 3265 void *pCollNeededArg, 3266 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3267 ){ 3268 #ifdef SQLITE_ENABLE_API_ARMOR 3269 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3270 #endif 3271 sqlite3_mutex_enter(db->mutex); 3272 db->xCollNeeded = xCollNeeded; 3273 db->xCollNeeded16 = 0; 3274 db->pCollNeededArg = pCollNeededArg; 3275 sqlite3_mutex_leave(db->mutex); 3276 return SQLITE_OK; 3277 } 3278 3279 #ifndef SQLITE_OMIT_UTF16 3280 /* 3281 ** Register a collation sequence factory callback with the database handle 3282 ** db. Replace any previously installed collation sequence factory. 3283 */ 3284 int sqlite3_collation_needed16( 3285 sqlite3 *db, 3286 void *pCollNeededArg, 3287 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3288 ){ 3289 #ifdef SQLITE_ENABLE_API_ARMOR 3290 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3291 #endif 3292 sqlite3_mutex_enter(db->mutex); 3293 db->xCollNeeded = 0; 3294 db->xCollNeeded16 = xCollNeeded16; 3295 db->pCollNeededArg = pCollNeededArg; 3296 sqlite3_mutex_leave(db->mutex); 3297 return SQLITE_OK; 3298 } 3299 #endif /* SQLITE_OMIT_UTF16 */ 3300 3301 #ifndef SQLITE_OMIT_DEPRECATED 3302 /* 3303 ** This function is now an anachronism. It used to be used to recover from a 3304 ** malloc() failure, but SQLite now does this automatically. 3305 */ 3306 int sqlite3_global_recover(void){ 3307 return SQLITE_OK; 3308 } 3309 #endif 3310 3311 /* 3312 ** Test to see whether or not the database connection is in autocommit 3313 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3314 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3315 ** by the next COMMIT or ROLLBACK. 3316 */ 3317 int sqlite3_get_autocommit(sqlite3 *db){ 3318 #ifdef SQLITE_ENABLE_API_ARMOR 3319 if( !sqlite3SafetyCheckOk(db) ){ 3320 (void)SQLITE_MISUSE_BKPT; 3321 return 0; 3322 } 3323 #endif 3324 return db->autoCommit; 3325 } 3326 3327 /* 3328 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3329 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error 3330 ** constants. They serve two purposes: 3331 ** 3332 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3333 ** to detect when version error conditions occurs. 3334 ** 3335 ** 2. Invoke sqlite3_log() to provide the source code location where 3336 ** a low-level error is first detected. 3337 */ 3338 static int reportError(int iErr, int lineno, const char *zType){ 3339 sqlite3_log(iErr, "%s at line %d of [%.10s]", 3340 zType, lineno, 20+sqlite3_sourceid()); 3341 return iErr; 3342 } 3343 int sqlite3CorruptError(int lineno){ 3344 testcase( sqlite3GlobalConfig.xLog!=0 ); 3345 return reportError(SQLITE_CORRUPT, lineno, "database corruption"); 3346 } 3347 int sqlite3MisuseError(int lineno){ 3348 testcase( sqlite3GlobalConfig.xLog!=0 ); 3349 return reportError(SQLITE_MISUSE, lineno, "misuse"); 3350 } 3351 int sqlite3CantopenError(int lineno){ 3352 testcase( sqlite3GlobalConfig.xLog!=0 ); 3353 return reportError(SQLITE_CANTOPEN, lineno, "cannot open file"); 3354 } 3355 #ifdef SQLITE_DEBUG 3356 int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ 3357 char zMsg[100]; 3358 sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); 3359 testcase( sqlite3GlobalConfig.xLog!=0 ); 3360 return reportError(SQLITE_CORRUPT, lineno, zMsg); 3361 } 3362 int sqlite3NomemError(int lineno){ 3363 testcase( sqlite3GlobalConfig.xLog!=0 ); 3364 return reportError(SQLITE_NOMEM, lineno, "OOM"); 3365 } 3366 int sqlite3IoerrnomemError(int lineno){ 3367 testcase( sqlite3GlobalConfig.xLog!=0 ); 3368 return reportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); 3369 } 3370 #endif 3371 3372 #ifndef SQLITE_OMIT_DEPRECATED 3373 /* 3374 ** This is a convenience routine that makes sure that all thread-specific 3375 ** data for this thread has been deallocated. 3376 ** 3377 ** SQLite no longer uses thread-specific data so this routine is now a 3378 ** no-op. It is retained for historical compatibility. 3379 */ 3380 void sqlite3_thread_cleanup(void){ 3381 } 3382 #endif 3383 3384 /* 3385 ** Return meta information about a specific column of a database table. 3386 ** See comment in sqlite3.h (sqlite.h.in) for details. 3387 */ 3388 int sqlite3_table_column_metadata( 3389 sqlite3 *db, /* Connection handle */ 3390 const char *zDbName, /* Database name or NULL */ 3391 const char *zTableName, /* Table name */ 3392 const char *zColumnName, /* Column name */ 3393 char const **pzDataType, /* OUTPUT: Declared data type */ 3394 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3395 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3396 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3397 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3398 ){ 3399 int rc; 3400 char *zErrMsg = 0; 3401 Table *pTab = 0; 3402 Column *pCol = 0; 3403 int iCol = 0; 3404 char const *zDataType = 0; 3405 char const *zCollSeq = 0; 3406 int notnull = 0; 3407 int primarykey = 0; 3408 int autoinc = 0; 3409 3410 3411 #ifdef SQLITE_ENABLE_API_ARMOR 3412 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3413 return SQLITE_MISUSE_BKPT; 3414 } 3415 #endif 3416 3417 /* Ensure the database schema has been loaded */ 3418 sqlite3_mutex_enter(db->mutex); 3419 sqlite3BtreeEnterAll(db); 3420 rc = sqlite3Init(db, &zErrMsg); 3421 if( SQLITE_OK!=rc ){ 3422 goto error_out; 3423 } 3424 3425 /* Locate the table in question */ 3426 pTab = sqlite3FindTable(db, zTableName, zDbName); 3427 if( !pTab || pTab->pSelect ){ 3428 pTab = 0; 3429 goto error_out; 3430 } 3431 3432 /* Find the column for which info is requested */ 3433 if( zColumnName==0 ){ 3434 /* Query for existance of table only */ 3435 }else{ 3436 for(iCol=0; iCol<pTab->nCol; iCol++){ 3437 pCol = &pTab->aCol[iCol]; 3438 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 3439 break; 3440 } 3441 } 3442 if( iCol==pTab->nCol ){ 3443 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3444 iCol = pTab->iPKey; 3445 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3446 }else{ 3447 pTab = 0; 3448 goto error_out; 3449 } 3450 } 3451 } 3452 3453 /* The following block stores the meta information that will be returned 3454 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3455 ** and autoinc. At this point there are two possibilities: 3456 ** 3457 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3458 ** and there is no explicitly declared IPK column. 3459 ** 3460 ** 2. The table is not a view and the column name identified an 3461 ** explicitly declared column. Copy meta information from *pCol. 3462 */ 3463 if( pCol ){ 3464 zDataType = sqlite3ColumnType(pCol,0); 3465 zCollSeq = pCol->zColl; 3466 notnull = pCol->notNull!=0; 3467 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3468 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3469 }else{ 3470 zDataType = "INTEGER"; 3471 primarykey = 1; 3472 } 3473 if( !zCollSeq ){ 3474 zCollSeq = sqlite3StrBINARY; 3475 } 3476 3477 error_out: 3478 sqlite3BtreeLeaveAll(db); 3479 3480 /* Whether the function call succeeded or failed, set the output parameters 3481 ** to whatever their local counterparts contain. If an error did occur, 3482 ** this has the effect of zeroing all output parameters. 3483 */ 3484 if( pzDataType ) *pzDataType = zDataType; 3485 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3486 if( pNotNull ) *pNotNull = notnull; 3487 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3488 if( pAutoinc ) *pAutoinc = autoinc; 3489 3490 if( SQLITE_OK==rc && !pTab ){ 3491 sqlite3DbFree(db, zErrMsg); 3492 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3493 zColumnName); 3494 rc = SQLITE_ERROR; 3495 } 3496 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3497 sqlite3DbFree(db, zErrMsg); 3498 rc = sqlite3ApiExit(db, rc); 3499 sqlite3_mutex_leave(db->mutex); 3500 return rc; 3501 } 3502 3503 /* 3504 ** Sleep for a little while. Return the amount of time slept. 3505 */ 3506 int sqlite3_sleep(int ms){ 3507 sqlite3_vfs *pVfs; 3508 int rc; 3509 pVfs = sqlite3_vfs_find(0); 3510 if( pVfs==0 ) return 0; 3511 3512 /* This function works in milliseconds, but the underlying OsSleep() 3513 ** API uses microseconds. Hence the 1000's. 3514 */ 3515 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3516 return rc; 3517 } 3518 3519 /* 3520 ** Enable or disable the extended result codes. 3521 */ 3522 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3523 #ifdef SQLITE_ENABLE_API_ARMOR 3524 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3525 #endif 3526 sqlite3_mutex_enter(db->mutex); 3527 db->errMask = onoff ? 0xffffffff : 0xff; 3528 sqlite3_mutex_leave(db->mutex); 3529 return SQLITE_OK; 3530 } 3531 3532 /* 3533 ** Invoke the xFileControl method on a particular database. 3534 */ 3535 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3536 int rc = SQLITE_ERROR; 3537 Btree *pBtree; 3538 3539 #ifdef SQLITE_ENABLE_API_ARMOR 3540 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3541 #endif 3542 sqlite3_mutex_enter(db->mutex); 3543 pBtree = sqlite3DbNameToBtree(db, zDbName); 3544 if( pBtree ){ 3545 Pager *pPager; 3546 sqlite3_file *fd; 3547 sqlite3BtreeEnter(pBtree); 3548 pPager = sqlite3BtreePager(pBtree); 3549 assert( pPager!=0 ); 3550 fd = sqlite3PagerFile(pPager); 3551 assert( fd!=0 ); 3552 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3553 *(sqlite3_file**)pArg = fd; 3554 rc = SQLITE_OK; 3555 }else if( op==SQLITE_FCNTL_VFS_POINTER ){ 3556 *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); 3557 rc = SQLITE_OK; 3558 }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ 3559 *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); 3560 rc = SQLITE_OK; 3561 }else if( fd->pMethods ){ 3562 rc = sqlite3OsFileControl(fd, op, pArg); 3563 }else{ 3564 rc = SQLITE_NOTFOUND; 3565 } 3566 sqlite3BtreeLeave(pBtree); 3567 } 3568 sqlite3_mutex_leave(db->mutex); 3569 return rc; 3570 } 3571 3572 /* 3573 ** Interface to the testing logic. 3574 */ 3575 int sqlite3_test_control(int op, ...){ 3576 int rc = 0; 3577 #ifdef SQLITE_UNTESTABLE 3578 UNUSED_PARAMETER(op); 3579 #else 3580 va_list ap; 3581 va_start(ap, op); 3582 switch( op ){ 3583 3584 /* 3585 ** Save the current state of the PRNG. 3586 */ 3587 case SQLITE_TESTCTRL_PRNG_SAVE: { 3588 sqlite3PrngSaveState(); 3589 break; 3590 } 3591 3592 /* 3593 ** Restore the state of the PRNG to the last state saved using 3594 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3595 ** this verb acts like PRNG_RESET. 3596 */ 3597 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3598 sqlite3PrngRestoreState(); 3599 break; 3600 } 3601 3602 /* 3603 ** Reset the PRNG back to its uninitialized state. The next call 3604 ** to sqlite3_randomness() will reseed the PRNG using a single call 3605 ** to the xRandomness method of the default VFS. 3606 */ 3607 case SQLITE_TESTCTRL_PRNG_RESET: { 3608 sqlite3_randomness(0,0); 3609 break; 3610 } 3611 3612 /* 3613 ** sqlite3_test_control(BITVEC_TEST, size, program) 3614 ** 3615 ** Run a test against a Bitvec object of size. The program argument 3616 ** is an array of integers that defines the test. Return -1 on a 3617 ** memory allocation error, 0 on success, or non-zero for an error. 3618 ** See the sqlite3BitvecBuiltinTest() for additional information. 3619 */ 3620 case SQLITE_TESTCTRL_BITVEC_TEST: { 3621 int sz = va_arg(ap, int); 3622 int *aProg = va_arg(ap, int*); 3623 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3624 break; 3625 } 3626 3627 /* 3628 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 3629 ** 3630 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 3631 ** if xCallback is not NULL. 3632 ** 3633 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 3634 ** is called immediately after installing the new callback and the return 3635 ** value from sqlite3FaultSim(0) becomes the return from 3636 ** sqlite3_test_control(). 3637 */ 3638 case SQLITE_TESTCTRL_FAULT_INSTALL: { 3639 /* MSVC is picky about pulling func ptrs from va lists. 3640 ** http://support.microsoft.com/kb/47961 3641 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 3642 */ 3643 typedef int(*TESTCALLBACKFUNC_t)(int); 3644 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 3645 rc = sqlite3FaultSim(0); 3646 break; 3647 } 3648 3649 /* 3650 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3651 ** 3652 ** Register hooks to call to indicate which malloc() failures 3653 ** are benign. 3654 */ 3655 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3656 typedef void (*void_function)(void); 3657 void_function xBenignBegin; 3658 void_function xBenignEnd; 3659 xBenignBegin = va_arg(ap, void_function); 3660 xBenignEnd = va_arg(ap, void_function); 3661 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3662 break; 3663 } 3664 3665 /* 3666 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3667 ** 3668 ** Set the PENDING byte to the value in the argument, if X>0. 3669 ** Make no changes if X==0. Return the value of the pending byte 3670 ** as it existing before this routine was called. 3671 ** 3672 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3673 ** an incompatible database file format. Changing the PENDING byte 3674 ** while any database connection is open results in undefined and 3675 ** deleterious behavior. 3676 */ 3677 case SQLITE_TESTCTRL_PENDING_BYTE: { 3678 rc = PENDING_BYTE; 3679 #ifndef SQLITE_OMIT_WSD 3680 { 3681 unsigned int newVal = va_arg(ap, unsigned int); 3682 if( newVal ) sqlite3PendingByte = newVal; 3683 } 3684 #endif 3685 break; 3686 } 3687 3688 /* 3689 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3690 ** 3691 ** This action provides a run-time test to see whether or not 3692 ** assert() was enabled at compile-time. If X is true and assert() 3693 ** is enabled, then the return value is true. If X is true and 3694 ** assert() is disabled, then the return value is zero. If X is 3695 ** false and assert() is enabled, then the assertion fires and the 3696 ** process aborts. If X is false and assert() is disabled, then the 3697 ** return value is zero. 3698 */ 3699 case SQLITE_TESTCTRL_ASSERT: { 3700 volatile int x = 0; 3701 assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); 3702 rc = x; 3703 break; 3704 } 3705 3706 3707 /* 3708 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3709 ** 3710 ** This action provides a run-time test to see how the ALWAYS and 3711 ** NEVER macros were defined at compile-time. 3712 ** 3713 ** The return value is ALWAYS(X). 3714 ** 3715 ** The recommended test is X==2. If the return value is 2, that means 3716 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3717 ** default setting. If the return value is 1, then ALWAYS() is either 3718 ** hard-coded to true or else it asserts if its argument is false. 3719 ** The first behavior (hard-coded to true) is the case if 3720 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3721 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3722 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3723 ** 3724 ** The run-time test procedure might look something like this: 3725 ** 3726 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3727 ** // ALWAYS() and NEVER() are no-op pass-through macros 3728 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3729 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3730 ** }else{ 3731 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3732 ** } 3733 */ 3734 case SQLITE_TESTCTRL_ALWAYS: { 3735 int x = va_arg(ap,int); 3736 rc = ALWAYS(x); 3737 break; 3738 } 3739 3740 /* 3741 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 3742 ** 3743 ** The integer returned reveals the byte-order of the computer on which 3744 ** SQLite is running: 3745 ** 3746 ** 1 big-endian, determined at run-time 3747 ** 10 little-endian, determined at run-time 3748 ** 432101 big-endian, determined at compile-time 3749 ** 123410 little-endian, determined at compile-time 3750 */ 3751 case SQLITE_TESTCTRL_BYTEORDER: { 3752 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 3753 break; 3754 } 3755 3756 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3757 ** 3758 ** Set the nReserve size to N for the main database on the database 3759 ** connection db. 3760 */ 3761 case SQLITE_TESTCTRL_RESERVE: { 3762 sqlite3 *db = va_arg(ap, sqlite3*); 3763 int x = va_arg(ap,int); 3764 sqlite3_mutex_enter(db->mutex); 3765 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3766 sqlite3_mutex_leave(db->mutex); 3767 break; 3768 } 3769 3770 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3771 ** 3772 ** Enable or disable various optimizations for testing purposes. The 3773 ** argument N is a bitmask of optimizations to be disabled. For normal 3774 ** operation N should be 0. The idea is that a test program (like the 3775 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3776 ** with various optimizations disabled to verify that the same answer 3777 ** is obtained in every case. 3778 */ 3779 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3780 sqlite3 *db = va_arg(ap, sqlite3*); 3781 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3782 break; 3783 } 3784 3785 #ifdef SQLITE_N_KEYWORD 3786 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3787 ** 3788 ** If zWord is a keyword recognized by the parser, then return the 3789 ** number of keywords. Or if zWord is not a keyword, return 0. 3790 ** 3791 ** This test feature is only available in the amalgamation since 3792 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3793 ** is built using separate source files. 3794 */ 3795 case SQLITE_TESTCTRL_ISKEYWORD: { 3796 const char *zWord = va_arg(ap, const char*); 3797 int n = sqlite3Strlen30(zWord); 3798 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3799 break; 3800 } 3801 #endif 3802 3803 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3804 ** 3805 ** Pass pFree into sqlite3ScratchFree(). 3806 ** If sz>0 then allocate a scratch buffer into pNew. 3807 */ 3808 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3809 void *pFree, **ppNew; 3810 int sz; 3811 sz = va_arg(ap, int); 3812 ppNew = va_arg(ap, void**); 3813 pFree = va_arg(ap, void*); 3814 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3815 sqlite3ScratchFree(pFree); 3816 break; 3817 } 3818 3819 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3820 ** 3821 ** If parameter onoff is non-zero, configure the wrappers so that all 3822 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3823 ** undo this setting. 3824 */ 3825 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3826 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3827 break; 3828 } 3829 3830 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 3831 ** 3832 ** Set or clear a flag that indicates that the database file is always well- 3833 ** formed and never corrupt. This flag is clear by default, indicating that 3834 ** database files might have arbitrary corruption. Setting the flag during 3835 ** testing causes certain assert() statements in the code to be activated 3836 ** that demonstrat invariants on well-formed database files. 3837 */ 3838 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 3839 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 3840 break; 3841 } 3842 3843 /* Set the threshold at which OP_Once counters reset back to zero. 3844 ** By default this is 0x7ffffffe (over 2 billion), but that value is 3845 ** too big to test in a reasonable amount of time, so this control is 3846 ** provided to set a small and easily reachable reset value. 3847 */ 3848 case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { 3849 sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); 3850 break; 3851 } 3852 3853 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 3854 ** 3855 ** Set the VDBE coverage callback function to xCallback with context 3856 ** pointer ptr. 3857 */ 3858 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 3859 #ifdef SQLITE_VDBE_COVERAGE 3860 typedef void (*branch_callback)(void*,int,u8,u8); 3861 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 3862 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 3863 #endif 3864 break; 3865 } 3866 3867 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 3868 case SQLITE_TESTCTRL_SORTER_MMAP: { 3869 sqlite3 *db = va_arg(ap, sqlite3*); 3870 db->nMaxSorterMmap = va_arg(ap, int); 3871 break; 3872 } 3873 3874 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 3875 ** 3876 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 3877 ** not. 3878 */ 3879 case SQLITE_TESTCTRL_ISINIT: { 3880 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 3881 break; 3882 } 3883 3884 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 3885 ** 3886 ** This test control is used to create imposter tables. "db" is a pointer 3887 ** to the database connection. dbName is the database name (ex: "main" or 3888 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 3889 ** or off. "tnum" is the root page of the b-tree to which the imposter 3890 ** table should connect. 3891 ** 3892 ** Enable imposter mode only when the schema has already been parsed. Then 3893 ** run a single CREATE TABLE statement to construct the imposter table in 3894 ** the parsed schema. Then turn imposter mode back off again. 3895 ** 3896 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 3897 ** the schema to be reparsed the next time it is needed. This has the 3898 ** effect of erasing all imposter tables. 3899 */ 3900 case SQLITE_TESTCTRL_IMPOSTER: { 3901 sqlite3 *db = va_arg(ap, sqlite3*); 3902 sqlite3_mutex_enter(db->mutex); 3903 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 3904 db->init.busy = db->init.imposterTable = va_arg(ap,int); 3905 db->init.newTnum = va_arg(ap,int); 3906 if( db->init.busy==0 && db->init.newTnum>0 ){ 3907 sqlite3ResetAllSchemasOfConnection(db); 3908 } 3909 sqlite3_mutex_leave(db->mutex); 3910 break; 3911 } 3912 } 3913 va_end(ap); 3914 #endif /* SQLITE_UNTESTABLE */ 3915 return rc; 3916 } 3917 3918 /* 3919 ** This is a utility routine, useful to VFS implementations, that checks 3920 ** to see if a database file was a URI that contained a specific query 3921 ** parameter, and if so obtains the value of the query parameter. 3922 ** 3923 ** The zFilename argument is the filename pointer passed into the xOpen() 3924 ** method of a VFS implementation. The zParam argument is the name of the 3925 ** query parameter we seek. This routine returns the value of the zParam 3926 ** parameter if it exists. If the parameter does not exist, this routine 3927 ** returns a NULL pointer. 3928 */ 3929 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3930 if( zFilename==0 || zParam==0 ) return 0; 3931 zFilename += sqlite3Strlen30(zFilename) + 1; 3932 while( zFilename[0] ){ 3933 int x = strcmp(zFilename, zParam); 3934 zFilename += sqlite3Strlen30(zFilename) + 1; 3935 if( x==0 ) return zFilename; 3936 zFilename += sqlite3Strlen30(zFilename) + 1; 3937 } 3938 return 0; 3939 } 3940 3941 /* 3942 ** Return a boolean value for a query parameter. 3943 */ 3944 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3945 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3946 bDflt = bDflt!=0; 3947 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3948 } 3949 3950 /* 3951 ** Return a 64-bit integer value for a query parameter. 3952 */ 3953 sqlite3_int64 sqlite3_uri_int64( 3954 const char *zFilename, /* Filename as passed to xOpen */ 3955 const char *zParam, /* URI parameter sought */ 3956 sqlite3_int64 bDflt /* return if parameter is missing */ 3957 ){ 3958 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3959 sqlite3_int64 v; 3960 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 3961 bDflt = v; 3962 } 3963 return bDflt; 3964 } 3965 3966 /* 3967 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3968 */ 3969 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3970 int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; 3971 return iDb<0 ? 0 : db->aDb[iDb].pBt; 3972 } 3973 3974 /* 3975 ** Return the filename of the database associated with a database 3976 ** connection. 3977 */ 3978 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3979 Btree *pBt; 3980 #ifdef SQLITE_ENABLE_API_ARMOR 3981 if( !sqlite3SafetyCheckOk(db) ){ 3982 (void)SQLITE_MISUSE_BKPT; 3983 return 0; 3984 } 3985 #endif 3986 pBt = sqlite3DbNameToBtree(db, zDbName); 3987 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3988 } 3989 3990 /* 3991 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3992 ** no such database exists. 3993 */ 3994 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3995 Btree *pBt; 3996 #ifdef SQLITE_ENABLE_API_ARMOR 3997 if( !sqlite3SafetyCheckOk(db) ){ 3998 (void)SQLITE_MISUSE_BKPT; 3999 return -1; 4000 } 4001 #endif 4002 pBt = sqlite3DbNameToBtree(db, zDbName); 4003 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 4004 } 4005 4006 #ifdef SQLITE_ENABLE_SNAPSHOT 4007 /* 4008 ** Obtain a snapshot handle for the snapshot of database zDb currently 4009 ** being read by handle db. 4010 */ 4011 int sqlite3_snapshot_get( 4012 sqlite3 *db, 4013 const char *zDb, 4014 sqlite3_snapshot **ppSnapshot 4015 ){ 4016 int rc = SQLITE_ERROR; 4017 #ifndef SQLITE_OMIT_WAL 4018 4019 #ifdef SQLITE_ENABLE_API_ARMOR 4020 if( !sqlite3SafetyCheckOk(db) ){ 4021 return SQLITE_MISUSE_BKPT; 4022 } 4023 #endif 4024 sqlite3_mutex_enter(db->mutex); 4025 4026 if( db->autoCommit==0 ){ 4027 int iDb = sqlite3FindDbName(db, zDb); 4028 if( iDb==0 || iDb>1 ){ 4029 Btree *pBt = db->aDb[iDb].pBt; 4030 if( 0==sqlite3BtreeIsInTrans(pBt) ){ 4031 rc = sqlite3BtreeBeginTrans(pBt, 0); 4032 if( rc==SQLITE_OK ){ 4033 rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); 4034 } 4035 } 4036 } 4037 } 4038 4039 sqlite3_mutex_leave(db->mutex); 4040 #endif /* SQLITE_OMIT_WAL */ 4041 return rc; 4042 } 4043 4044 /* 4045 ** Open a read-transaction on the snapshot idendified by pSnapshot. 4046 */ 4047 int sqlite3_snapshot_open( 4048 sqlite3 *db, 4049 const char *zDb, 4050 sqlite3_snapshot *pSnapshot 4051 ){ 4052 int rc = SQLITE_ERROR; 4053 #ifndef SQLITE_OMIT_WAL 4054 4055 #ifdef SQLITE_ENABLE_API_ARMOR 4056 if( !sqlite3SafetyCheckOk(db) ){ 4057 return SQLITE_MISUSE_BKPT; 4058 } 4059 #endif 4060 sqlite3_mutex_enter(db->mutex); 4061 if( db->autoCommit==0 ){ 4062 int iDb; 4063 iDb = sqlite3FindDbName(db, zDb); 4064 if( iDb==0 || iDb>1 ){ 4065 Btree *pBt = db->aDb[iDb].pBt; 4066 if( 0==sqlite3BtreeIsInReadTrans(pBt) ){ 4067 rc = sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), pSnapshot); 4068 if( rc==SQLITE_OK ){ 4069 rc = sqlite3BtreeBeginTrans(pBt, 0); 4070 sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), 0); 4071 } 4072 } 4073 } 4074 } 4075 4076 sqlite3_mutex_leave(db->mutex); 4077 #endif /* SQLITE_OMIT_WAL */ 4078 return rc; 4079 } 4080 4081 /* 4082 ** Recover as many snapshots as possible from the wal file associated with 4083 ** schema zDb of database db. 4084 */ 4085 int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ 4086 int rc = SQLITE_ERROR; 4087 int iDb; 4088 #ifndef SQLITE_OMIT_WAL 4089 4090 #ifdef SQLITE_ENABLE_API_ARMOR 4091 if( !sqlite3SafetyCheckOk(db) ){ 4092 return SQLITE_MISUSE_BKPT; 4093 } 4094 #endif 4095 4096 sqlite3_mutex_enter(db->mutex); 4097 iDb = sqlite3FindDbName(db, zDb); 4098 if( iDb==0 || iDb>1 ){ 4099 Btree *pBt = db->aDb[iDb].pBt; 4100 if( 0==sqlite3BtreeIsInReadTrans(pBt) ){ 4101 rc = sqlite3BtreeBeginTrans(pBt, 0); 4102 if( rc==SQLITE_OK ){ 4103 rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); 4104 sqlite3BtreeCommit(pBt); 4105 } 4106 } 4107 } 4108 sqlite3_mutex_leave(db->mutex); 4109 #endif /* SQLITE_OMIT_WAL */ 4110 return rc; 4111 } 4112 4113 /* 4114 ** Free a snapshot handle obtained from sqlite3_snapshot_get(). 4115 */ 4116 void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ 4117 sqlite3_free(pSnapshot); 4118 } 4119 #endif /* SQLITE_ENABLE_SNAPSHOT */ 4120 4121 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 4122 /* 4123 ** Given the name of a compile-time option, return true if that option 4124 ** was used and false if not. 4125 ** 4126 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix 4127 ** is not required for a match. 4128 */ 4129 int sqlite3_compileoption_used(const char *zOptName){ 4130 int i, n; 4131 int nOpt; 4132 const char **azCompileOpt; 4133 4134 #if SQLITE_ENABLE_API_ARMOR 4135 if( zOptName==0 ){ 4136 (void)SQLITE_MISUSE_BKPT; 4137 return 0; 4138 } 4139 #endif 4140 4141 azCompileOpt = sqlite3CompileOptions(&nOpt); 4142 4143 if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; 4144 n = sqlite3Strlen30(zOptName); 4145 4146 /* Since nOpt is normally in single digits, a linear search is 4147 ** adequate. No need for a binary search. */ 4148 for(i=0; i<nOpt; i++){ 4149 if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 4150 && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0 4151 ){ 4152 return 1; 4153 } 4154 } 4155 return 0; 4156 } 4157 4158 /* 4159 ** Return the N-th compile-time option string. If N is out of range, 4160 ** return a NULL pointer. 4161 */ 4162 const char *sqlite3_compileoption_get(int N){ 4163 int nOpt; 4164 const char **azCompileOpt; 4165 azCompileOpt = sqlite3CompileOptions(&nOpt); 4166 if( N>=0 && N<nOpt ){ 4167 return azCompileOpt[N]; 4168 } 4169 return 0; 4170 } 4171 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 4172