1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** If the following global variable points to a string which is the 79 ** name of a directory, then that directory will be used to store 80 ** all database files specified with a relative pathname. 81 ** 82 ** See also the "PRAGMA data_store_directory" SQL command. 83 */ 84 char *sqlite3_data_directory = 0; 85 86 /* 87 ** Initialize SQLite. 88 ** 89 ** This routine must be called to initialize the memory allocation, 90 ** VFS, and mutex subsystems prior to doing any serious work with 91 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 92 ** this routine will be called automatically by key routines such as 93 ** sqlite3_open(). 94 ** 95 ** This routine is a no-op except on its very first call for the process, 96 ** or for the first call after a call to sqlite3_shutdown. 97 ** 98 ** The first thread to call this routine runs the initialization to 99 ** completion. If subsequent threads call this routine before the first 100 ** thread has finished the initialization process, then the subsequent 101 ** threads must block until the first thread finishes with the initialization. 102 ** 103 ** The first thread might call this routine recursively. Recursive 104 ** calls to this routine should not block, of course. Otherwise the 105 ** initialization process would never complete. 106 ** 107 ** Let X be the first thread to enter this routine. Let Y be some other 108 ** thread. Then while the initial invocation of this routine by X is 109 ** incomplete, it is required that: 110 ** 111 ** * Calls to this routine from Y must block until the outer-most 112 ** call by X completes. 113 ** 114 ** * Recursive calls to this routine from thread X return immediately 115 ** without blocking. 116 */ 117 int sqlite3_initialize(void){ 118 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 119 int rc; /* Result code */ 120 121 #ifdef SQLITE_OMIT_WSD 122 rc = sqlite3_wsd_init(4096, 24); 123 if( rc!=SQLITE_OK ){ 124 return rc; 125 } 126 #endif 127 128 /* If SQLite is already completely initialized, then this call 129 ** to sqlite3_initialize() should be a no-op. But the initialization 130 ** must be complete. So isInit must not be set until the very end 131 ** of this routine. 132 */ 133 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 134 135 #ifdef SQLITE_ENABLE_SQLLOG 136 { 137 extern void sqlite3_init_sqllog(void); 138 sqlite3_init_sqllog(); 139 } 140 #endif 141 142 /* Make sure the mutex subsystem is initialized. If unable to 143 ** initialize the mutex subsystem, return early with the error. 144 ** If the system is so sick that we are unable to allocate a mutex, 145 ** there is not much SQLite is going to be able to do. 146 ** 147 ** The mutex subsystem must take care of serializing its own 148 ** initialization. 149 */ 150 rc = sqlite3MutexInit(); 151 if( rc ) return rc; 152 153 /* Initialize the malloc() system and the recursive pInitMutex mutex. 154 ** This operation is protected by the STATIC_MASTER mutex. Note that 155 ** MutexAlloc() is called for a static mutex prior to initializing the 156 ** malloc subsystem - this implies that the allocation of a static 157 ** mutex must not require support from the malloc subsystem. 158 */ 159 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 160 sqlite3_mutex_enter(pMaster); 161 sqlite3GlobalConfig.isMutexInit = 1; 162 if( !sqlite3GlobalConfig.isMallocInit ){ 163 rc = sqlite3MallocInit(); 164 } 165 if( rc==SQLITE_OK ){ 166 sqlite3GlobalConfig.isMallocInit = 1; 167 if( !sqlite3GlobalConfig.pInitMutex ){ 168 sqlite3GlobalConfig.pInitMutex = 169 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 170 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 171 rc = SQLITE_NOMEM; 172 } 173 } 174 } 175 if( rc==SQLITE_OK ){ 176 sqlite3GlobalConfig.nRefInitMutex++; 177 } 178 sqlite3_mutex_leave(pMaster); 179 180 /* If rc is not SQLITE_OK at this point, then either the malloc 181 ** subsystem could not be initialized or the system failed to allocate 182 ** the pInitMutex mutex. Return an error in either case. */ 183 if( rc!=SQLITE_OK ){ 184 return rc; 185 } 186 187 /* Do the rest of the initialization under the recursive mutex so 188 ** that we will be able to handle recursive calls into 189 ** sqlite3_initialize(). The recursive calls normally come through 190 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 191 ** recursive calls might also be possible. 192 ** 193 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 194 ** to the xInit method, so the xInit method need not be threadsafe. 195 ** 196 ** The following mutex is what serializes access to the appdef pcache xInit 197 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 198 ** call to sqlite3PcacheInitialize(). 199 */ 200 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 201 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 202 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 203 sqlite3GlobalConfig.inProgress = 1; 204 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 205 sqlite3RegisterGlobalFunctions(); 206 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 207 rc = sqlite3PcacheInitialize(); 208 } 209 if( rc==SQLITE_OK ){ 210 sqlite3GlobalConfig.isPCacheInit = 1; 211 rc = sqlite3OsInit(); 212 } 213 if( rc==SQLITE_OK ){ 214 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 215 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 216 sqlite3GlobalConfig.isInit = 1; 217 } 218 sqlite3GlobalConfig.inProgress = 0; 219 } 220 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 221 222 /* Go back under the static mutex and clean up the recursive 223 ** mutex to prevent a resource leak. 224 */ 225 sqlite3_mutex_enter(pMaster); 226 sqlite3GlobalConfig.nRefInitMutex--; 227 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 228 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 229 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 230 sqlite3GlobalConfig.pInitMutex = 0; 231 } 232 sqlite3_mutex_leave(pMaster); 233 234 /* The following is just a sanity check to make sure SQLite has 235 ** been compiled correctly. It is important to run this code, but 236 ** we don't want to run it too often and soak up CPU cycles for no 237 ** reason. So we run it once during initialization. 238 */ 239 #ifndef NDEBUG 240 #ifndef SQLITE_OMIT_FLOATING_POINT 241 /* This section of code's only "output" is via assert() statements. */ 242 if ( rc==SQLITE_OK ){ 243 u64 x = (((u64)1)<<63)-1; 244 double y; 245 assert(sizeof(x)==8); 246 assert(sizeof(x)==sizeof(y)); 247 memcpy(&y, &x, 8); 248 assert( sqlite3IsNaN(y) ); 249 } 250 #endif 251 #endif 252 253 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 254 ** compile-time option. 255 */ 256 #ifdef SQLITE_EXTRA_INIT 257 if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ 258 int SQLITE_EXTRA_INIT(const char*); 259 rc = SQLITE_EXTRA_INIT(0); 260 } 261 #endif 262 263 return rc; 264 } 265 266 /* 267 ** Undo the effects of sqlite3_initialize(). Must not be called while 268 ** there are outstanding database connections or memory allocations or 269 ** while any part of SQLite is otherwise in use in any thread. This 270 ** routine is not threadsafe. But it is safe to invoke this routine 271 ** on when SQLite is already shut down. If SQLite is already shut down 272 ** when this routine is invoked, then this routine is a harmless no-op. 273 */ 274 int sqlite3_shutdown(void){ 275 if( sqlite3GlobalConfig.isInit ){ 276 #ifdef SQLITE_EXTRA_SHUTDOWN 277 void SQLITE_EXTRA_SHUTDOWN(void); 278 SQLITE_EXTRA_SHUTDOWN(); 279 #endif 280 sqlite3_os_end(); 281 sqlite3_reset_auto_extension(); 282 sqlite3GlobalConfig.isInit = 0; 283 } 284 if( sqlite3GlobalConfig.isPCacheInit ){ 285 sqlite3PcacheShutdown(); 286 sqlite3GlobalConfig.isPCacheInit = 0; 287 } 288 if( sqlite3GlobalConfig.isMallocInit ){ 289 sqlite3MallocEnd(); 290 sqlite3GlobalConfig.isMallocInit = 0; 291 292 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 293 /* The heap subsystem has now been shutdown and these values are supposed 294 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 295 ** which would rely on that heap subsystem; therefore, make sure these 296 ** values cannot refer to heap memory that was just invalidated when the 297 ** heap subsystem was shutdown. This is only done if the current call to 298 ** this function resulted in the heap subsystem actually being shutdown. 299 */ 300 sqlite3_data_directory = 0; 301 sqlite3_temp_directory = 0; 302 #endif 303 } 304 if( sqlite3GlobalConfig.isMutexInit ){ 305 sqlite3MutexEnd(); 306 sqlite3GlobalConfig.isMutexInit = 0; 307 } 308 309 return SQLITE_OK; 310 } 311 312 /* 313 ** This API allows applications to modify the global configuration of 314 ** the SQLite library at run-time. 315 ** 316 ** This routine should only be called when there are no outstanding 317 ** database connections or memory allocations. This routine is not 318 ** threadsafe. Failure to heed these warnings can lead to unpredictable 319 ** behavior. 320 */ 321 int sqlite3_config(int op, ...){ 322 va_list ap; 323 int rc = SQLITE_OK; 324 325 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 326 ** the SQLite library is in use. */ 327 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 328 329 va_start(ap, op); 330 switch( op ){ 331 332 /* Mutex configuration options are only available in a threadsafe 333 ** compile. 334 */ 335 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 336 case SQLITE_CONFIG_SINGLETHREAD: { 337 /* Disable all mutexing */ 338 sqlite3GlobalConfig.bCoreMutex = 0; 339 sqlite3GlobalConfig.bFullMutex = 0; 340 break; 341 } 342 case SQLITE_CONFIG_MULTITHREAD: { 343 /* Disable mutexing of database connections */ 344 /* Enable mutexing of core data structures */ 345 sqlite3GlobalConfig.bCoreMutex = 1; 346 sqlite3GlobalConfig.bFullMutex = 0; 347 break; 348 } 349 case SQLITE_CONFIG_SERIALIZED: { 350 /* Enable all mutexing */ 351 sqlite3GlobalConfig.bCoreMutex = 1; 352 sqlite3GlobalConfig.bFullMutex = 1; 353 break; 354 } 355 case SQLITE_CONFIG_MUTEX: { 356 /* Specify an alternative mutex implementation */ 357 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 358 break; 359 } 360 case SQLITE_CONFIG_GETMUTEX: { 361 /* Retrieve the current mutex implementation */ 362 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 363 break; 364 } 365 #endif 366 367 368 case SQLITE_CONFIG_MALLOC: { 369 /* Specify an alternative malloc implementation */ 370 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 371 break; 372 } 373 case SQLITE_CONFIG_GETMALLOC: { 374 /* Retrieve the current malloc() implementation */ 375 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 376 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 377 break; 378 } 379 case SQLITE_CONFIG_MEMSTATUS: { 380 /* Enable or disable the malloc status collection */ 381 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 382 break; 383 } 384 case SQLITE_CONFIG_SCRATCH: { 385 /* Designate a buffer for scratch memory space */ 386 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 387 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 388 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 389 break; 390 } 391 case SQLITE_CONFIG_PAGECACHE: { 392 /* Designate a buffer for page cache memory space */ 393 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 394 sqlite3GlobalConfig.szPage = va_arg(ap, int); 395 sqlite3GlobalConfig.nPage = va_arg(ap, int); 396 break; 397 } 398 399 case SQLITE_CONFIG_PCACHE: { 400 /* no-op */ 401 break; 402 } 403 case SQLITE_CONFIG_GETPCACHE: { 404 /* now an error */ 405 rc = SQLITE_ERROR; 406 break; 407 } 408 409 case SQLITE_CONFIG_PCACHE2: { 410 /* Specify an alternative page cache implementation */ 411 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 412 break; 413 } 414 case SQLITE_CONFIG_GETPCACHE2: { 415 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 416 sqlite3PCacheSetDefault(); 417 } 418 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 419 break; 420 } 421 422 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 423 case SQLITE_CONFIG_HEAP: { 424 /* Designate a buffer for heap memory space */ 425 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 426 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 427 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 428 429 if( sqlite3GlobalConfig.mnReq<1 ){ 430 sqlite3GlobalConfig.mnReq = 1; 431 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 432 /* cap min request size at 2^12 */ 433 sqlite3GlobalConfig.mnReq = (1<<12); 434 } 435 436 if( sqlite3GlobalConfig.pHeap==0 ){ 437 /* If the heap pointer is NULL, then restore the malloc implementation 438 ** back to NULL pointers too. This will cause the malloc to go 439 ** back to its default implementation when sqlite3_initialize() is 440 ** run. 441 */ 442 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 443 }else{ 444 /* The heap pointer is not NULL, then install one of the 445 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 446 ** ENABLE_MEMSYS5 is defined, return an error. 447 */ 448 #ifdef SQLITE_ENABLE_MEMSYS3 449 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 450 #endif 451 #ifdef SQLITE_ENABLE_MEMSYS5 452 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 453 #endif 454 } 455 break; 456 } 457 #endif 458 459 case SQLITE_CONFIG_LOOKASIDE: { 460 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 461 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 462 break; 463 } 464 465 /* Record a pointer to the logger funcction and its first argument. 466 ** The default is NULL. Logging is disabled if the function pointer is 467 ** NULL. 468 */ 469 case SQLITE_CONFIG_LOG: { 470 /* MSVC is picky about pulling func ptrs from va lists. 471 ** http://support.microsoft.com/kb/47961 472 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 473 */ 474 typedef void(*LOGFUNC_t)(void*,int,const char*); 475 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 476 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 477 break; 478 } 479 480 case SQLITE_CONFIG_URI: { 481 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 482 break; 483 } 484 485 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 486 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 487 break; 488 } 489 490 #ifdef SQLITE_ENABLE_SQLLOG 491 case SQLITE_CONFIG_SQLLOG: { 492 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 493 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 494 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 495 break; 496 } 497 #endif 498 499 default: { 500 rc = SQLITE_ERROR; 501 break; 502 } 503 } 504 va_end(ap); 505 return rc; 506 } 507 508 /* 509 ** Set up the lookaside buffers for a database connection. 510 ** Return SQLITE_OK on success. 511 ** If lookaside is already active, return SQLITE_BUSY. 512 ** 513 ** The sz parameter is the number of bytes in each lookaside slot. 514 ** The cnt parameter is the number of slots. If pStart is NULL the 515 ** space for the lookaside memory is obtained from sqlite3_malloc(). 516 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 517 ** the lookaside memory. 518 */ 519 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 520 void *pStart; 521 if( db->lookaside.nOut ){ 522 return SQLITE_BUSY; 523 } 524 /* Free any existing lookaside buffer for this handle before 525 ** allocating a new one so we don't have to have space for 526 ** both at the same time. 527 */ 528 if( db->lookaside.bMalloced ){ 529 sqlite3_free(db->lookaside.pStart); 530 } 531 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 532 ** than a pointer to be useful. 533 */ 534 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 535 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 536 if( cnt<0 ) cnt = 0; 537 if( sz==0 || cnt==0 ){ 538 sz = 0; 539 pStart = 0; 540 }else if( pBuf==0 ){ 541 sqlite3BeginBenignMalloc(); 542 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 543 sqlite3EndBenignMalloc(); 544 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 545 }else{ 546 pStart = pBuf; 547 } 548 db->lookaside.pStart = pStart; 549 db->lookaside.pFree = 0; 550 db->lookaside.sz = (u16)sz; 551 if( pStart ){ 552 int i; 553 LookasideSlot *p; 554 assert( sz > (int)sizeof(LookasideSlot*) ); 555 p = (LookasideSlot*)pStart; 556 for(i=cnt-1; i>=0; i--){ 557 p->pNext = db->lookaside.pFree; 558 db->lookaside.pFree = p; 559 p = (LookasideSlot*)&((u8*)p)[sz]; 560 } 561 db->lookaside.pEnd = p; 562 db->lookaside.bEnabled = 1; 563 db->lookaside.bMalloced = pBuf==0 ?1:0; 564 }else{ 565 db->lookaside.pEnd = 0; 566 db->lookaside.bEnabled = 0; 567 db->lookaside.bMalloced = 0; 568 } 569 return SQLITE_OK; 570 } 571 572 /* 573 ** Return the mutex associated with a database connection. 574 */ 575 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 576 return db->mutex; 577 } 578 579 /* 580 ** Free up as much memory as we can from the given database 581 ** connection. 582 */ 583 int sqlite3_db_release_memory(sqlite3 *db){ 584 int i; 585 sqlite3_mutex_enter(db->mutex); 586 sqlite3BtreeEnterAll(db); 587 for(i=0; i<db->nDb; i++){ 588 Btree *pBt = db->aDb[i].pBt; 589 if( pBt ){ 590 Pager *pPager = sqlite3BtreePager(pBt); 591 sqlite3PagerShrink(pPager); 592 } 593 } 594 sqlite3BtreeLeaveAll(db); 595 sqlite3_mutex_leave(db->mutex); 596 return SQLITE_OK; 597 } 598 599 /* 600 ** Configuration settings for an individual database connection 601 */ 602 int sqlite3_db_config(sqlite3 *db, int op, ...){ 603 va_list ap; 604 int rc; 605 va_start(ap, op); 606 switch( op ){ 607 case SQLITE_DBCONFIG_LOOKASIDE: { 608 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 609 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 610 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 611 rc = setupLookaside(db, pBuf, sz, cnt); 612 break; 613 } 614 default: { 615 static const struct { 616 int op; /* The opcode */ 617 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 618 } aFlagOp[] = { 619 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 620 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 621 }; 622 unsigned int i; 623 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 624 for(i=0; i<ArraySize(aFlagOp); i++){ 625 if( aFlagOp[i].op==op ){ 626 int onoff = va_arg(ap, int); 627 int *pRes = va_arg(ap, int*); 628 int oldFlags = db->flags; 629 if( onoff>0 ){ 630 db->flags |= aFlagOp[i].mask; 631 }else if( onoff==0 ){ 632 db->flags &= ~aFlagOp[i].mask; 633 } 634 if( oldFlags!=db->flags ){ 635 sqlite3ExpirePreparedStatements(db); 636 } 637 if( pRes ){ 638 *pRes = (db->flags & aFlagOp[i].mask)!=0; 639 } 640 rc = SQLITE_OK; 641 break; 642 } 643 } 644 break; 645 } 646 } 647 va_end(ap); 648 return rc; 649 } 650 651 652 /* 653 ** Return true if the buffer z[0..n-1] contains all spaces. 654 */ 655 static int allSpaces(const char *z, int n){ 656 while( n>0 && z[n-1]==' ' ){ n--; } 657 return n==0; 658 } 659 660 /* 661 ** This is the default collating function named "BINARY" which is always 662 ** available. 663 ** 664 ** If the padFlag argument is not NULL then space padding at the end 665 ** of strings is ignored. This implements the RTRIM collation. 666 */ 667 static int binCollFunc( 668 void *padFlag, 669 int nKey1, const void *pKey1, 670 int nKey2, const void *pKey2 671 ){ 672 int rc, n; 673 n = nKey1<nKey2 ? nKey1 : nKey2; 674 rc = memcmp(pKey1, pKey2, n); 675 if( rc==0 ){ 676 if( padFlag 677 && allSpaces(((char*)pKey1)+n, nKey1-n) 678 && allSpaces(((char*)pKey2)+n, nKey2-n) 679 ){ 680 /* Leave rc unchanged at 0 */ 681 }else{ 682 rc = nKey1 - nKey2; 683 } 684 } 685 return rc; 686 } 687 688 /* 689 ** Another built-in collating sequence: NOCASE. 690 ** 691 ** This collating sequence is intended to be used for "case independant 692 ** comparison". SQLite's knowledge of upper and lower case equivalents 693 ** extends only to the 26 characters used in the English language. 694 ** 695 ** At the moment there is only a UTF-8 implementation. 696 */ 697 static int nocaseCollatingFunc( 698 void *NotUsed, 699 int nKey1, const void *pKey1, 700 int nKey2, const void *pKey2 701 ){ 702 int r = sqlite3StrNICmp( 703 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 704 UNUSED_PARAMETER(NotUsed); 705 if( 0==r ){ 706 r = nKey1-nKey2; 707 } 708 return r; 709 } 710 711 /* 712 ** Return the ROWID of the most recent insert 713 */ 714 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 715 return db->lastRowid; 716 } 717 718 /* 719 ** Return the number of changes in the most recent call to sqlite3_exec(). 720 */ 721 int sqlite3_changes(sqlite3 *db){ 722 return db->nChange; 723 } 724 725 /* 726 ** Return the number of changes since the database handle was opened. 727 */ 728 int sqlite3_total_changes(sqlite3 *db){ 729 return db->nTotalChange; 730 } 731 732 /* 733 ** Close all open savepoints. This function only manipulates fields of the 734 ** database handle object, it does not close any savepoints that may be open 735 ** at the b-tree/pager level. 736 */ 737 void sqlite3CloseSavepoints(sqlite3 *db){ 738 while( db->pSavepoint ){ 739 Savepoint *pTmp = db->pSavepoint; 740 db->pSavepoint = pTmp->pNext; 741 sqlite3DbFree(db, pTmp); 742 } 743 db->nSavepoint = 0; 744 db->nStatement = 0; 745 db->isTransactionSavepoint = 0; 746 } 747 748 /* 749 ** Invoke the destructor function associated with FuncDef p, if any. Except, 750 ** if this is not the last copy of the function, do not invoke it. Multiple 751 ** copies of a single function are created when create_function() is called 752 ** with SQLITE_ANY as the encoding. 753 */ 754 static void functionDestroy(sqlite3 *db, FuncDef *p){ 755 FuncDestructor *pDestructor = p->pDestructor; 756 if( pDestructor ){ 757 pDestructor->nRef--; 758 if( pDestructor->nRef==0 ){ 759 pDestructor->xDestroy(pDestructor->pUserData); 760 sqlite3DbFree(db, pDestructor); 761 } 762 } 763 } 764 765 /* 766 ** Disconnect all sqlite3_vtab objects that belong to database connection 767 ** db. This is called when db is being closed. 768 */ 769 static void disconnectAllVtab(sqlite3 *db){ 770 #ifndef SQLITE_OMIT_VIRTUALTABLE 771 int i; 772 sqlite3BtreeEnterAll(db); 773 for(i=0; i<db->nDb; i++){ 774 Schema *pSchema = db->aDb[i].pSchema; 775 if( db->aDb[i].pSchema ){ 776 HashElem *p; 777 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 778 Table *pTab = (Table *)sqliteHashData(p); 779 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 780 } 781 } 782 } 783 sqlite3BtreeLeaveAll(db); 784 #else 785 UNUSED_PARAMETER(db); 786 #endif 787 } 788 789 /* 790 ** Return TRUE if database connection db has unfinalized prepared 791 ** statements or unfinished sqlite3_backup objects. 792 */ 793 static int connectionIsBusy(sqlite3 *db){ 794 int j; 795 assert( sqlite3_mutex_held(db->mutex) ); 796 if( db->pVdbe ) return 1; 797 for(j=0; j<db->nDb; j++){ 798 Btree *pBt = db->aDb[j].pBt; 799 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 800 } 801 return 0; 802 } 803 804 /* 805 ** Close an existing SQLite database 806 */ 807 static int sqlite3Close(sqlite3 *db, int forceZombie){ 808 if( !db ){ 809 return SQLITE_OK; 810 } 811 if( !sqlite3SafetyCheckSickOrOk(db) ){ 812 return SQLITE_MISUSE_BKPT; 813 } 814 sqlite3_mutex_enter(db->mutex); 815 816 /* Force xDisconnect calls on all virtual tables */ 817 disconnectAllVtab(db); 818 819 /* If a transaction is open, the disconnectAllVtab() call above 820 ** will not have called the xDisconnect() method on any virtual 821 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 822 ** call will do so. We need to do this before the check for active 823 ** SQL statements below, as the v-table implementation may be storing 824 ** some prepared statements internally. 825 */ 826 sqlite3VtabRollback(db); 827 828 /* Legacy behavior (sqlite3_close() behavior) is to return 829 ** SQLITE_BUSY if the connection can not be closed immediately. 830 */ 831 if( !forceZombie && connectionIsBusy(db) ){ 832 sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " 833 "statements or unfinished backups"); 834 sqlite3_mutex_leave(db->mutex); 835 return SQLITE_BUSY; 836 } 837 838 #ifdef SQLITE_ENABLE_SQLLOG 839 if( sqlite3GlobalConfig.xSqllog ){ 840 /* Closing the handle. Fourth parameter is passed the value 2. */ 841 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 842 } 843 #endif 844 845 /* Convert the connection into a zombie and then close it. 846 */ 847 db->magic = SQLITE_MAGIC_ZOMBIE; 848 sqlite3LeaveMutexAndCloseZombie(db); 849 return SQLITE_OK; 850 } 851 852 /* 853 ** Two variations on the public interface for closing a database 854 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 855 ** leaves the connection option if there are unfinalized prepared 856 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 857 ** version forces the connection to become a zombie if there are 858 ** unclosed resources, and arranges for deallocation when the last 859 ** prepare statement or sqlite3_backup closes. 860 */ 861 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 862 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 863 864 865 /* 866 ** Close the mutex on database connection db. 867 ** 868 ** Furthermore, if database connection db is a zombie (meaning that there 869 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 870 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 871 ** finished, then free all resources. 872 */ 873 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 874 HashElem *i; /* Hash table iterator */ 875 int j; 876 877 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 878 ** or if the connection has not yet been closed by sqlite3_close_v2(), 879 ** then just leave the mutex and return. 880 */ 881 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 882 sqlite3_mutex_leave(db->mutex); 883 return; 884 } 885 886 /* If we reach this point, it means that the database connection has 887 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 888 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 889 ** go ahead and free all resources. 890 */ 891 892 /* Free any outstanding Savepoint structures. */ 893 sqlite3CloseSavepoints(db); 894 895 /* Close all database connections */ 896 for(j=0; j<db->nDb; j++){ 897 struct Db *pDb = &db->aDb[j]; 898 if( pDb->pBt ){ 899 sqlite3BtreeClose(pDb->pBt); 900 pDb->pBt = 0; 901 if( j!=1 ){ 902 pDb->pSchema = 0; 903 } 904 } 905 } 906 /* Clear the TEMP schema separately and last */ 907 if( db->aDb[1].pSchema ){ 908 sqlite3SchemaClear(db->aDb[1].pSchema); 909 } 910 sqlite3VtabUnlockList(db); 911 912 /* Free up the array of auxiliary databases */ 913 sqlite3CollapseDatabaseArray(db); 914 assert( db->nDb<=2 ); 915 assert( db->aDb==db->aDbStatic ); 916 917 /* Tell the code in notify.c that the connection no longer holds any 918 ** locks and does not require any further unlock-notify callbacks. 919 */ 920 sqlite3ConnectionClosed(db); 921 922 for(j=0; j<ArraySize(db->aFunc.a); j++){ 923 FuncDef *pNext, *pHash, *p; 924 for(p=db->aFunc.a[j]; p; p=pHash){ 925 pHash = p->pHash; 926 while( p ){ 927 functionDestroy(db, p); 928 pNext = p->pNext; 929 sqlite3DbFree(db, p); 930 p = pNext; 931 } 932 } 933 } 934 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 935 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 936 /* Invoke any destructors registered for collation sequence user data. */ 937 for(j=0; j<3; j++){ 938 if( pColl[j].xDel ){ 939 pColl[j].xDel(pColl[j].pUser); 940 } 941 } 942 sqlite3DbFree(db, pColl); 943 } 944 sqlite3HashClear(&db->aCollSeq); 945 #ifndef SQLITE_OMIT_VIRTUALTABLE 946 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 947 Module *pMod = (Module *)sqliteHashData(i); 948 if( pMod->xDestroy ){ 949 pMod->xDestroy(pMod->pAux); 950 } 951 sqlite3DbFree(db, pMod); 952 } 953 sqlite3HashClear(&db->aModule); 954 #endif 955 956 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 957 if( db->pErr ){ 958 sqlite3ValueFree(db->pErr); 959 } 960 sqlite3CloseExtensions(db); 961 962 db->magic = SQLITE_MAGIC_ERROR; 963 964 /* The temp-database schema is allocated differently from the other schema 965 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 966 ** So it needs to be freed here. Todo: Why not roll the temp schema into 967 ** the same sqliteMalloc() as the one that allocates the database 968 ** structure? 969 */ 970 sqlite3DbFree(db, db->aDb[1].pSchema); 971 sqlite3_mutex_leave(db->mutex); 972 db->magic = SQLITE_MAGIC_CLOSED; 973 sqlite3_mutex_free(db->mutex); 974 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 975 if( db->lookaside.bMalloced ){ 976 sqlite3_free(db->lookaside.pStart); 977 } 978 sqlite3_free(db); 979 } 980 981 /* 982 ** Rollback all database files. If tripCode is not SQLITE_OK, then 983 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit 984 ** breaker") and made to return tripCode if there are any further 985 ** attempts to use that cursor. 986 */ 987 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 988 int i; 989 int inTrans = 0; 990 assert( sqlite3_mutex_held(db->mutex) ); 991 sqlite3BeginBenignMalloc(); 992 for(i=0; i<db->nDb; i++){ 993 Btree *p = db->aDb[i].pBt; 994 if( p ){ 995 if( sqlite3BtreeIsInTrans(p) ){ 996 inTrans = 1; 997 } 998 sqlite3BtreeRollback(p, tripCode); 999 db->aDb[i].inTrans = 0; 1000 } 1001 } 1002 sqlite3VtabRollback(db); 1003 sqlite3EndBenignMalloc(); 1004 1005 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1006 sqlite3ExpirePreparedStatements(db); 1007 sqlite3ResetAllSchemasOfConnection(db); 1008 } 1009 1010 /* Any deferred constraint violations have now been resolved. */ 1011 db->nDeferredCons = 0; 1012 1013 /* If one has been configured, invoke the rollback-hook callback */ 1014 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1015 db->xRollbackCallback(db->pRollbackArg); 1016 } 1017 } 1018 1019 /* 1020 ** Return a static string that describes the kind of error specified in the 1021 ** argument. 1022 */ 1023 const char *sqlite3ErrStr(int rc){ 1024 static const char* const aMsg[] = { 1025 /* SQLITE_OK */ "not an error", 1026 /* SQLITE_ERROR */ "SQL logic error or missing database", 1027 /* SQLITE_INTERNAL */ 0, 1028 /* SQLITE_PERM */ "access permission denied", 1029 /* SQLITE_ABORT */ "callback requested query abort", 1030 /* SQLITE_BUSY */ "database is locked", 1031 /* SQLITE_LOCKED */ "database table is locked", 1032 /* SQLITE_NOMEM */ "out of memory", 1033 /* SQLITE_READONLY */ "attempt to write a readonly database", 1034 /* SQLITE_INTERRUPT */ "interrupted", 1035 /* SQLITE_IOERR */ "disk I/O error", 1036 /* SQLITE_CORRUPT */ "database disk image is malformed", 1037 /* SQLITE_NOTFOUND */ "unknown operation", 1038 /* SQLITE_FULL */ "database or disk is full", 1039 /* SQLITE_CANTOPEN */ "unable to open database file", 1040 /* SQLITE_PROTOCOL */ "locking protocol", 1041 /* SQLITE_EMPTY */ "table contains no data", 1042 /* SQLITE_SCHEMA */ "database schema has changed", 1043 /* SQLITE_TOOBIG */ "string or blob too big", 1044 /* SQLITE_CONSTRAINT */ "constraint failed", 1045 /* SQLITE_MISMATCH */ "datatype mismatch", 1046 /* SQLITE_MISUSE */ "library routine called out of sequence", 1047 /* SQLITE_NOLFS */ "large file support is disabled", 1048 /* SQLITE_AUTH */ "authorization denied", 1049 /* SQLITE_FORMAT */ "auxiliary database format error", 1050 /* SQLITE_RANGE */ "bind or column index out of range", 1051 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1052 }; 1053 const char *zErr = "unknown error"; 1054 switch( rc ){ 1055 case SQLITE_ABORT_ROLLBACK: { 1056 zErr = "abort due to ROLLBACK"; 1057 break; 1058 } 1059 default: { 1060 rc &= 0xff; 1061 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1062 zErr = aMsg[rc]; 1063 } 1064 break; 1065 } 1066 } 1067 return zErr; 1068 } 1069 1070 /* 1071 ** This routine implements a busy callback that sleeps and tries 1072 ** again until a timeout value is reached. The timeout value is 1073 ** an integer number of milliseconds passed in as the first 1074 ** argument. 1075 */ 1076 static int sqliteDefaultBusyCallback( 1077 void *ptr, /* Database connection */ 1078 int count /* Number of times table has been busy */ 1079 ){ 1080 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 1081 static const u8 delays[] = 1082 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1083 static const u8 totals[] = 1084 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1085 # define NDELAY ArraySize(delays) 1086 sqlite3 *db = (sqlite3 *)ptr; 1087 int timeout = db->busyTimeout; 1088 int delay, prior; 1089 1090 assert( count>=0 ); 1091 if( count < NDELAY ){ 1092 delay = delays[count]; 1093 prior = totals[count]; 1094 }else{ 1095 delay = delays[NDELAY-1]; 1096 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1097 } 1098 if( prior + delay > timeout ){ 1099 delay = timeout - prior; 1100 if( delay<=0 ) return 0; 1101 } 1102 sqlite3OsSleep(db->pVfs, delay*1000); 1103 return 1; 1104 #else 1105 sqlite3 *db = (sqlite3 *)ptr; 1106 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1107 if( (count+1)*1000 > timeout ){ 1108 return 0; 1109 } 1110 sqlite3OsSleep(db->pVfs, 1000000); 1111 return 1; 1112 #endif 1113 } 1114 1115 /* 1116 ** Invoke the given busy handler. 1117 ** 1118 ** This routine is called when an operation failed with a lock. 1119 ** If this routine returns non-zero, the lock is retried. If it 1120 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1121 */ 1122 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1123 int rc; 1124 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1125 rc = p->xFunc(p->pArg, p->nBusy); 1126 if( rc==0 ){ 1127 p->nBusy = -1; 1128 }else{ 1129 p->nBusy++; 1130 } 1131 return rc; 1132 } 1133 1134 /* 1135 ** This routine sets the busy callback for an Sqlite database to the 1136 ** given callback function with the given argument. 1137 */ 1138 int sqlite3_busy_handler( 1139 sqlite3 *db, 1140 int (*xBusy)(void*,int), 1141 void *pArg 1142 ){ 1143 sqlite3_mutex_enter(db->mutex); 1144 db->busyHandler.xFunc = xBusy; 1145 db->busyHandler.pArg = pArg; 1146 db->busyHandler.nBusy = 0; 1147 db->busyTimeout = 0; 1148 sqlite3_mutex_leave(db->mutex); 1149 return SQLITE_OK; 1150 } 1151 1152 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1153 /* 1154 ** This routine sets the progress callback for an Sqlite database to the 1155 ** given callback function with the given argument. The progress callback will 1156 ** be invoked every nOps opcodes. 1157 */ 1158 void sqlite3_progress_handler( 1159 sqlite3 *db, 1160 int nOps, 1161 int (*xProgress)(void*), 1162 void *pArg 1163 ){ 1164 sqlite3_mutex_enter(db->mutex); 1165 if( nOps>0 ){ 1166 db->xProgress = xProgress; 1167 db->nProgressOps = nOps; 1168 db->pProgressArg = pArg; 1169 }else{ 1170 db->xProgress = 0; 1171 db->nProgressOps = 0; 1172 db->pProgressArg = 0; 1173 } 1174 sqlite3_mutex_leave(db->mutex); 1175 } 1176 #endif 1177 1178 1179 /* 1180 ** This routine installs a default busy handler that waits for the 1181 ** specified number of milliseconds before returning 0. 1182 */ 1183 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1184 if( ms>0 ){ 1185 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1186 db->busyTimeout = ms; 1187 }else{ 1188 sqlite3_busy_handler(db, 0, 0); 1189 } 1190 return SQLITE_OK; 1191 } 1192 1193 /* 1194 ** Cause any pending operation to stop at its earliest opportunity. 1195 */ 1196 void sqlite3_interrupt(sqlite3 *db){ 1197 db->u1.isInterrupted = 1; 1198 } 1199 1200 1201 /* 1202 ** This function is exactly the same as sqlite3_create_function(), except 1203 ** that it is designed to be called by internal code. The difference is 1204 ** that if a malloc() fails in sqlite3_create_function(), an error code 1205 ** is returned and the mallocFailed flag cleared. 1206 */ 1207 int sqlite3CreateFunc( 1208 sqlite3 *db, 1209 const char *zFunctionName, 1210 int nArg, 1211 int enc, 1212 void *pUserData, 1213 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1214 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1215 void (*xFinal)(sqlite3_context*), 1216 FuncDestructor *pDestructor 1217 ){ 1218 FuncDef *p; 1219 int nName; 1220 1221 assert( sqlite3_mutex_held(db->mutex) ); 1222 if( zFunctionName==0 || 1223 (xFunc && (xFinal || xStep)) || 1224 (!xFunc && (xFinal && !xStep)) || 1225 (!xFunc && (!xFinal && xStep)) || 1226 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1227 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1228 return SQLITE_MISUSE_BKPT; 1229 } 1230 1231 #ifndef SQLITE_OMIT_UTF16 1232 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1233 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1234 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1235 ** 1236 ** If SQLITE_ANY is specified, add three versions of the function 1237 ** to the hash table. 1238 */ 1239 if( enc==SQLITE_UTF16 ){ 1240 enc = SQLITE_UTF16NATIVE; 1241 }else if( enc==SQLITE_ANY ){ 1242 int rc; 1243 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 1244 pUserData, xFunc, xStep, xFinal, pDestructor); 1245 if( rc==SQLITE_OK ){ 1246 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 1247 pUserData, xFunc, xStep, xFinal, pDestructor); 1248 } 1249 if( rc!=SQLITE_OK ){ 1250 return rc; 1251 } 1252 enc = SQLITE_UTF16BE; 1253 } 1254 #else 1255 enc = SQLITE_UTF8; 1256 #endif 1257 1258 /* Check if an existing function is being overridden or deleted. If so, 1259 ** and there are active VMs, then return SQLITE_BUSY. If a function 1260 ** is being overridden/deleted but there are no active VMs, allow the 1261 ** operation to continue but invalidate all precompiled statements. 1262 */ 1263 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1264 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 1265 if( db->activeVdbeCnt ){ 1266 sqlite3Error(db, SQLITE_BUSY, 1267 "unable to delete/modify user-function due to active statements"); 1268 assert( !db->mallocFailed ); 1269 return SQLITE_BUSY; 1270 }else{ 1271 sqlite3ExpirePreparedStatements(db); 1272 } 1273 } 1274 1275 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1276 assert(p || db->mallocFailed); 1277 if( !p ){ 1278 return SQLITE_NOMEM; 1279 } 1280 1281 /* If an older version of the function with a configured destructor is 1282 ** being replaced invoke the destructor function here. */ 1283 functionDestroy(db, p); 1284 1285 if( pDestructor ){ 1286 pDestructor->nRef++; 1287 } 1288 p->pDestructor = pDestructor; 1289 p->flags = 0; 1290 p->xFunc = xFunc; 1291 p->xStep = xStep; 1292 p->xFinalize = xFinal; 1293 p->pUserData = pUserData; 1294 p->nArg = (u16)nArg; 1295 return SQLITE_OK; 1296 } 1297 1298 /* 1299 ** Create new user functions. 1300 */ 1301 int sqlite3_create_function( 1302 sqlite3 *db, 1303 const char *zFunc, 1304 int nArg, 1305 int enc, 1306 void *p, 1307 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1308 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1309 void (*xFinal)(sqlite3_context*) 1310 ){ 1311 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1312 xFinal, 0); 1313 } 1314 1315 int sqlite3_create_function_v2( 1316 sqlite3 *db, 1317 const char *zFunc, 1318 int nArg, 1319 int enc, 1320 void *p, 1321 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1322 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1323 void (*xFinal)(sqlite3_context*), 1324 void (*xDestroy)(void *) 1325 ){ 1326 int rc = SQLITE_ERROR; 1327 FuncDestructor *pArg = 0; 1328 sqlite3_mutex_enter(db->mutex); 1329 if( xDestroy ){ 1330 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1331 if( !pArg ){ 1332 xDestroy(p); 1333 goto out; 1334 } 1335 pArg->xDestroy = xDestroy; 1336 pArg->pUserData = p; 1337 } 1338 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1339 if( pArg && pArg->nRef==0 ){ 1340 assert( rc!=SQLITE_OK ); 1341 xDestroy(p); 1342 sqlite3DbFree(db, pArg); 1343 } 1344 1345 out: 1346 rc = sqlite3ApiExit(db, rc); 1347 sqlite3_mutex_leave(db->mutex); 1348 return rc; 1349 } 1350 1351 #ifndef SQLITE_OMIT_UTF16 1352 int sqlite3_create_function16( 1353 sqlite3 *db, 1354 const void *zFunctionName, 1355 int nArg, 1356 int eTextRep, 1357 void *p, 1358 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1359 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1360 void (*xFinal)(sqlite3_context*) 1361 ){ 1362 int rc; 1363 char *zFunc8; 1364 sqlite3_mutex_enter(db->mutex); 1365 assert( !db->mallocFailed ); 1366 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1367 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1368 sqlite3DbFree(db, zFunc8); 1369 rc = sqlite3ApiExit(db, rc); 1370 sqlite3_mutex_leave(db->mutex); 1371 return rc; 1372 } 1373 #endif 1374 1375 1376 /* 1377 ** Declare that a function has been overloaded by a virtual table. 1378 ** 1379 ** If the function already exists as a regular global function, then 1380 ** this routine is a no-op. If the function does not exist, then create 1381 ** a new one that always throws a run-time error. 1382 ** 1383 ** When virtual tables intend to provide an overloaded function, they 1384 ** should call this routine to make sure the global function exists. 1385 ** A global function must exist in order for name resolution to work 1386 ** properly. 1387 */ 1388 int sqlite3_overload_function( 1389 sqlite3 *db, 1390 const char *zName, 1391 int nArg 1392 ){ 1393 int nName = sqlite3Strlen30(zName); 1394 int rc = SQLITE_OK; 1395 sqlite3_mutex_enter(db->mutex); 1396 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1397 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1398 0, sqlite3InvalidFunction, 0, 0, 0); 1399 } 1400 rc = sqlite3ApiExit(db, rc); 1401 sqlite3_mutex_leave(db->mutex); 1402 return rc; 1403 } 1404 1405 #ifndef SQLITE_OMIT_TRACE 1406 /* 1407 ** Register a trace function. The pArg from the previously registered trace 1408 ** is returned. 1409 ** 1410 ** A NULL trace function means that no tracing is executes. A non-NULL 1411 ** trace is a pointer to a function that is invoked at the start of each 1412 ** SQL statement. 1413 */ 1414 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1415 void *pOld; 1416 sqlite3_mutex_enter(db->mutex); 1417 pOld = db->pTraceArg; 1418 db->xTrace = xTrace; 1419 db->pTraceArg = pArg; 1420 sqlite3_mutex_leave(db->mutex); 1421 return pOld; 1422 } 1423 /* 1424 ** Register a profile function. The pArg from the previously registered 1425 ** profile function is returned. 1426 ** 1427 ** A NULL profile function means that no profiling is executes. A non-NULL 1428 ** profile is a pointer to a function that is invoked at the conclusion of 1429 ** each SQL statement that is run. 1430 */ 1431 void *sqlite3_profile( 1432 sqlite3 *db, 1433 void (*xProfile)(void*,const char*,sqlite_uint64), 1434 void *pArg 1435 ){ 1436 void *pOld; 1437 sqlite3_mutex_enter(db->mutex); 1438 pOld = db->pProfileArg; 1439 db->xProfile = xProfile; 1440 db->pProfileArg = pArg; 1441 sqlite3_mutex_leave(db->mutex); 1442 return pOld; 1443 } 1444 #endif /* SQLITE_OMIT_TRACE */ 1445 1446 /* 1447 ** Register a function to be invoked when a transaction commits. 1448 ** If the invoked function returns non-zero, then the commit becomes a 1449 ** rollback. 1450 */ 1451 void *sqlite3_commit_hook( 1452 sqlite3 *db, /* Attach the hook to this database */ 1453 int (*xCallback)(void*), /* Function to invoke on each commit */ 1454 void *pArg /* Argument to the function */ 1455 ){ 1456 void *pOld; 1457 sqlite3_mutex_enter(db->mutex); 1458 pOld = db->pCommitArg; 1459 db->xCommitCallback = xCallback; 1460 db->pCommitArg = pArg; 1461 sqlite3_mutex_leave(db->mutex); 1462 return pOld; 1463 } 1464 1465 /* 1466 ** Register a callback to be invoked each time a row is updated, 1467 ** inserted or deleted using this database connection. 1468 */ 1469 void *sqlite3_update_hook( 1470 sqlite3 *db, /* Attach the hook to this database */ 1471 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1472 void *pArg /* Argument to the function */ 1473 ){ 1474 void *pRet; 1475 sqlite3_mutex_enter(db->mutex); 1476 pRet = db->pUpdateArg; 1477 db->xUpdateCallback = xCallback; 1478 db->pUpdateArg = pArg; 1479 sqlite3_mutex_leave(db->mutex); 1480 return pRet; 1481 } 1482 1483 /* 1484 ** Register a callback to be invoked each time a transaction is rolled 1485 ** back by this database connection. 1486 */ 1487 void *sqlite3_rollback_hook( 1488 sqlite3 *db, /* Attach the hook to this database */ 1489 void (*xCallback)(void*), /* Callback function */ 1490 void *pArg /* Argument to the function */ 1491 ){ 1492 void *pRet; 1493 sqlite3_mutex_enter(db->mutex); 1494 pRet = db->pRollbackArg; 1495 db->xRollbackCallback = xCallback; 1496 db->pRollbackArg = pArg; 1497 sqlite3_mutex_leave(db->mutex); 1498 return pRet; 1499 } 1500 1501 #ifndef SQLITE_OMIT_WAL 1502 /* 1503 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1504 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1505 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1506 ** wal_autocheckpoint()). 1507 */ 1508 int sqlite3WalDefaultHook( 1509 void *pClientData, /* Argument */ 1510 sqlite3 *db, /* Connection */ 1511 const char *zDb, /* Database */ 1512 int nFrame /* Size of WAL */ 1513 ){ 1514 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1515 sqlite3BeginBenignMalloc(); 1516 sqlite3_wal_checkpoint(db, zDb); 1517 sqlite3EndBenignMalloc(); 1518 } 1519 return SQLITE_OK; 1520 } 1521 #endif /* SQLITE_OMIT_WAL */ 1522 1523 /* 1524 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1525 ** a database after committing a transaction if there are nFrame or 1526 ** more frames in the log file. Passing zero or a negative value as the 1527 ** nFrame parameter disables automatic checkpoints entirely. 1528 ** 1529 ** The callback registered by this function replaces any existing callback 1530 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1531 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1532 ** configured by this function. 1533 */ 1534 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1535 #ifdef SQLITE_OMIT_WAL 1536 UNUSED_PARAMETER(db); 1537 UNUSED_PARAMETER(nFrame); 1538 #else 1539 if( nFrame>0 ){ 1540 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1541 }else{ 1542 sqlite3_wal_hook(db, 0, 0); 1543 } 1544 #endif 1545 return SQLITE_OK; 1546 } 1547 1548 /* 1549 ** Register a callback to be invoked each time a transaction is written 1550 ** into the write-ahead-log by this database connection. 1551 */ 1552 void *sqlite3_wal_hook( 1553 sqlite3 *db, /* Attach the hook to this db handle */ 1554 int(*xCallback)(void *, sqlite3*, const char*, int), 1555 void *pArg /* First argument passed to xCallback() */ 1556 ){ 1557 #ifndef SQLITE_OMIT_WAL 1558 void *pRet; 1559 sqlite3_mutex_enter(db->mutex); 1560 pRet = db->pWalArg; 1561 db->xWalCallback = xCallback; 1562 db->pWalArg = pArg; 1563 sqlite3_mutex_leave(db->mutex); 1564 return pRet; 1565 #else 1566 return 0; 1567 #endif 1568 } 1569 1570 /* 1571 ** Checkpoint database zDb. 1572 */ 1573 int sqlite3_wal_checkpoint_v2( 1574 sqlite3 *db, /* Database handle */ 1575 const char *zDb, /* Name of attached database (or NULL) */ 1576 int eMode, /* SQLITE_CHECKPOINT_* value */ 1577 int *pnLog, /* OUT: Size of WAL log in frames */ 1578 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1579 ){ 1580 #ifdef SQLITE_OMIT_WAL 1581 return SQLITE_OK; 1582 #else 1583 int rc; /* Return code */ 1584 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1585 1586 /* Initialize the output variables to -1 in case an error occurs. */ 1587 if( pnLog ) *pnLog = -1; 1588 if( pnCkpt ) *pnCkpt = -1; 1589 1590 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); 1591 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); 1592 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); 1593 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ 1594 return SQLITE_MISUSE; 1595 } 1596 1597 sqlite3_mutex_enter(db->mutex); 1598 if( zDb && zDb[0] ){ 1599 iDb = sqlite3FindDbName(db, zDb); 1600 } 1601 if( iDb<0 ){ 1602 rc = SQLITE_ERROR; 1603 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); 1604 }else{ 1605 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1606 sqlite3Error(db, rc, 0); 1607 } 1608 rc = sqlite3ApiExit(db, rc); 1609 sqlite3_mutex_leave(db->mutex); 1610 return rc; 1611 #endif 1612 } 1613 1614 1615 /* 1616 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1617 ** to contains a zero-length string, all attached databases are 1618 ** checkpointed. 1619 */ 1620 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1621 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); 1622 } 1623 1624 #ifndef SQLITE_OMIT_WAL 1625 /* 1626 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1627 ** not currently open in WAL mode. 1628 ** 1629 ** If a transaction is open on the database being checkpointed, this 1630 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 1631 ** an error occurs while running the checkpoint, an SQLite error code is 1632 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 1633 ** 1634 ** The mutex on database handle db should be held by the caller. The mutex 1635 ** associated with the specific b-tree being checkpointed is taken by 1636 ** this function while the checkpoint is running. 1637 ** 1638 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 1639 ** checkpointed. If an error is encountered it is returned immediately - 1640 ** no attempt is made to checkpoint any remaining databases. 1641 ** 1642 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 1643 */ 1644 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 1645 int rc = SQLITE_OK; /* Return code */ 1646 int i; /* Used to iterate through attached dbs */ 1647 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 1648 1649 assert( sqlite3_mutex_held(db->mutex) ); 1650 assert( !pnLog || *pnLog==-1 ); 1651 assert( !pnCkpt || *pnCkpt==-1 ); 1652 1653 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 1654 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 1655 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 1656 pnLog = 0; 1657 pnCkpt = 0; 1658 if( rc==SQLITE_BUSY ){ 1659 bBusy = 1; 1660 rc = SQLITE_OK; 1661 } 1662 } 1663 } 1664 1665 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 1666 } 1667 #endif /* SQLITE_OMIT_WAL */ 1668 1669 /* 1670 ** This function returns true if main-memory should be used instead of 1671 ** a temporary file for transient pager files and statement journals. 1672 ** The value returned depends on the value of db->temp_store (runtime 1673 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 1674 ** following table describes the relationship between these two values 1675 ** and this functions return value. 1676 ** 1677 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1678 ** ----------------- -------------- ------------------------------ 1679 ** 0 any file (return 0) 1680 ** 1 1 file (return 0) 1681 ** 1 2 memory (return 1) 1682 ** 1 0 file (return 0) 1683 ** 2 1 file (return 0) 1684 ** 2 2 memory (return 1) 1685 ** 2 0 memory (return 1) 1686 ** 3 any memory (return 1) 1687 */ 1688 int sqlite3TempInMemory(const sqlite3 *db){ 1689 #if SQLITE_TEMP_STORE==1 1690 return ( db->temp_store==2 ); 1691 #endif 1692 #if SQLITE_TEMP_STORE==2 1693 return ( db->temp_store!=1 ); 1694 #endif 1695 #if SQLITE_TEMP_STORE==3 1696 return 1; 1697 #endif 1698 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 1699 return 0; 1700 #endif 1701 } 1702 1703 /* 1704 ** Return UTF-8 encoded English language explanation of the most recent 1705 ** error. 1706 */ 1707 const char *sqlite3_errmsg(sqlite3 *db){ 1708 const char *z; 1709 if( !db ){ 1710 return sqlite3ErrStr(SQLITE_NOMEM); 1711 } 1712 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1713 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 1714 } 1715 sqlite3_mutex_enter(db->mutex); 1716 if( db->mallocFailed ){ 1717 z = sqlite3ErrStr(SQLITE_NOMEM); 1718 }else{ 1719 z = (char*)sqlite3_value_text(db->pErr); 1720 assert( !db->mallocFailed ); 1721 if( z==0 ){ 1722 z = sqlite3ErrStr(db->errCode); 1723 } 1724 } 1725 sqlite3_mutex_leave(db->mutex); 1726 return z; 1727 } 1728 1729 #ifndef SQLITE_OMIT_UTF16 1730 /* 1731 ** Return UTF-16 encoded English language explanation of the most recent 1732 ** error. 1733 */ 1734 const void *sqlite3_errmsg16(sqlite3 *db){ 1735 static const u16 outOfMem[] = { 1736 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 1737 }; 1738 static const u16 misuse[] = { 1739 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 1740 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 1741 'c', 'a', 'l', 'l', 'e', 'd', ' ', 1742 'o', 'u', 't', ' ', 1743 'o', 'f', ' ', 1744 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 1745 }; 1746 1747 const void *z; 1748 if( !db ){ 1749 return (void *)outOfMem; 1750 } 1751 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1752 return (void *)misuse; 1753 } 1754 sqlite3_mutex_enter(db->mutex); 1755 if( db->mallocFailed ){ 1756 z = (void *)outOfMem; 1757 }else{ 1758 z = sqlite3_value_text16(db->pErr); 1759 if( z==0 ){ 1760 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1761 SQLITE_UTF8, SQLITE_STATIC); 1762 z = sqlite3_value_text16(db->pErr); 1763 } 1764 /* A malloc() may have failed within the call to sqlite3_value_text16() 1765 ** above. If this is the case, then the db->mallocFailed flag needs to 1766 ** be cleared before returning. Do this directly, instead of via 1767 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1768 */ 1769 db->mallocFailed = 0; 1770 } 1771 sqlite3_mutex_leave(db->mutex); 1772 return z; 1773 } 1774 #endif /* SQLITE_OMIT_UTF16 */ 1775 1776 /* 1777 ** Return the most recent error code generated by an SQLite routine. If NULL is 1778 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1779 */ 1780 int sqlite3_errcode(sqlite3 *db){ 1781 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1782 return SQLITE_MISUSE_BKPT; 1783 } 1784 if( !db || db->mallocFailed ){ 1785 return SQLITE_NOMEM; 1786 } 1787 return db->errCode & db->errMask; 1788 } 1789 int sqlite3_extended_errcode(sqlite3 *db){ 1790 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1791 return SQLITE_MISUSE_BKPT; 1792 } 1793 if( !db || db->mallocFailed ){ 1794 return SQLITE_NOMEM; 1795 } 1796 return db->errCode; 1797 } 1798 1799 /* 1800 ** Return a string that describes the kind of error specified in the 1801 ** argument. For now, this simply calls the internal sqlite3ErrStr() 1802 ** function. 1803 */ 1804 const char *sqlite3_errstr(int rc){ 1805 return sqlite3ErrStr(rc); 1806 } 1807 1808 /* 1809 ** Create a new collating function for database "db". The name is zName 1810 ** and the encoding is enc. 1811 */ 1812 static int createCollation( 1813 sqlite3* db, 1814 const char *zName, 1815 u8 enc, 1816 void* pCtx, 1817 int(*xCompare)(void*,int,const void*,int,const void*), 1818 void(*xDel)(void*) 1819 ){ 1820 CollSeq *pColl; 1821 int enc2; 1822 int nName = sqlite3Strlen30(zName); 1823 1824 assert( sqlite3_mutex_held(db->mutex) ); 1825 1826 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1827 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1828 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1829 */ 1830 enc2 = enc; 1831 testcase( enc2==SQLITE_UTF16 ); 1832 testcase( enc2==SQLITE_UTF16_ALIGNED ); 1833 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 1834 enc2 = SQLITE_UTF16NATIVE; 1835 } 1836 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 1837 return SQLITE_MISUSE_BKPT; 1838 } 1839 1840 /* Check if this call is removing or replacing an existing collation 1841 ** sequence. If so, and there are active VMs, return busy. If there 1842 ** are no active VMs, invalidate any pre-compiled statements. 1843 */ 1844 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 1845 if( pColl && pColl->xCmp ){ 1846 if( db->activeVdbeCnt ){ 1847 sqlite3Error(db, SQLITE_BUSY, 1848 "unable to delete/modify collation sequence due to active statements"); 1849 return SQLITE_BUSY; 1850 } 1851 sqlite3ExpirePreparedStatements(db); 1852 1853 /* If collation sequence pColl was created directly by a call to 1854 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1855 ** then any copies made by synthCollSeq() need to be invalidated. 1856 ** Also, collation destructor - CollSeq.xDel() - function may need 1857 ** to be called. 1858 */ 1859 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1860 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1861 int j; 1862 for(j=0; j<3; j++){ 1863 CollSeq *p = &aColl[j]; 1864 if( p->enc==pColl->enc ){ 1865 if( p->xDel ){ 1866 p->xDel(p->pUser); 1867 } 1868 p->xCmp = 0; 1869 } 1870 } 1871 } 1872 } 1873 1874 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 1875 if( pColl==0 ) return SQLITE_NOMEM; 1876 pColl->xCmp = xCompare; 1877 pColl->pUser = pCtx; 1878 pColl->xDel = xDel; 1879 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 1880 sqlite3Error(db, SQLITE_OK, 0); 1881 return SQLITE_OK; 1882 } 1883 1884 1885 /* 1886 ** This array defines hard upper bounds on limit values. The 1887 ** initializer must be kept in sync with the SQLITE_LIMIT_* 1888 ** #defines in sqlite3.h. 1889 */ 1890 static const int aHardLimit[] = { 1891 SQLITE_MAX_LENGTH, 1892 SQLITE_MAX_SQL_LENGTH, 1893 SQLITE_MAX_COLUMN, 1894 SQLITE_MAX_EXPR_DEPTH, 1895 SQLITE_MAX_COMPOUND_SELECT, 1896 SQLITE_MAX_VDBE_OP, 1897 SQLITE_MAX_FUNCTION_ARG, 1898 SQLITE_MAX_ATTACHED, 1899 SQLITE_MAX_LIKE_PATTERN_LENGTH, 1900 SQLITE_MAX_VARIABLE_NUMBER, 1901 SQLITE_MAX_TRIGGER_DEPTH, 1902 }; 1903 1904 /* 1905 ** Make sure the hard limits are set to reasonable values 1906 */ 1907 #if SQLITE_MAX_LENGTH<100 1908 # error SQLITE_MAX_LENGTH must be at least 100 1909 #endif 1910 #if SQLITE_MAX_SQL_LENGTH<100 1911 # error SQLITE_MAX_SQL_LENGTH must be at least 100 1912 #endif 1913 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 1914 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 1915 #endif 1916 #if SQLITE_MAX_COMPOUND_SELECT<2 1917 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 1918 #endif 1919 #if SQLITE_MAX_VDBE_OP<40 1920 # error SQLITE_MAX_VDBE_OP must be at least 40 1921 #endif 1922 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 1923 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 1924 #endif 1925 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 1926 # error SQLITE_MAX_ATTACHED must be between 0 and 62 1927 #endif 1928 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 1929 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 1930 #endif 1931 #if SQLITE_MAX_COLUMN>32767 1932 # error SQLITE_MAX_COLUMN must not exceed 32767 1933 #endif 1934 #if SQLITE_MAX_TRIGGER_DEPTH<1 1935 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 1936 #endif 1937 1938 1939 /* 1940 ** Change the value of a limit. Report the old value. 1941 ** If an invalid limit index is supplied, report -1. 1942 ** Make no changes but still report the old value if the 1943 ** new limit is negative. 1944 ** 1945 ** A new lower limit does not shrink existing constructs. 1946 ** It merely prevents new constructs that exceed the limit 1947 ** from forming. 1948 */ 1949 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 1950 int oldLimit; 1951 1952 1953 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 1954 ** there is a hard upper bound set at compile-time by a C preprocessor 1955 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 1956 ** "_MAX_".) 1957 */ 1958 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 1959 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 1960 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 1961 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 1962 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 1963 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 1964 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 1965 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 1966 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 1967 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 1968 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 1969 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 1970 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); 1971 1972 1973 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 1974 return -1; 1975 } 1976 oldLimit = db->aLimit[limitId]; 1977 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 1978 if( newLimit>aHardLimit[limitId] ){ 1979 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 1980 } 1981 db->aLimit[limitId] = newLimit; 1982 } 1983 return oldLimit; /* IMP: R-53341-35419 */ 1984 } 1985 1986 /* 1987 ** This function is used to parse both URIs and non-URI filenames passed by the 1988 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 1989 ** URIs specified as part of ATTACH statements. 1990 ** 1991 ** The first argument to this function is the name of the VFS to use (or 1992 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 1993 ** query parameter. The second argument contains the URI (or non-URI filename) 1994 ** itself. When this function is called the *pFlags variable should contain 1995 ** the default flags to open the database handle with. The value stored in 1996 ** *pFlags may be updated before returning if the URI filename contains 1997 ** "cache=xxx" or "mode=xxx" query parameters. 1998 ** 1999 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2000 ** the VFS that should be used to open the database file. *pzFile is set to 2001 ** point to a buffer containing the name of the file to open. It is the 2002 ** responsibility of the caller to eventually call sqlite3_free() to release 2003 ** this buffer. 2004 ** 2005 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2006 ** may be set to point to a buffer containing an English language error 2007 ** message. It is the responsibility of the caller to eventually release 2008 ** this buffer by calling sqlite3_free(). 2009 */ 2010 int sqlite3ParseUri( 2011 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2012 const char *zUri, /* Nul-terminated URI to parse */ 2013 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2014 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2015 char **pzFile, /* OUT: Filename component of URI */ 2016 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2017 ){ 2018 int rc = SQLITE_OK; 2019 unsigned int flags = *pFlags; 2020 const char *zVfs = zDefaultVfs; 2021 char *zFile; 2022 char c; 2023 int nUri = sqlite3Strlen30(zUri); 2024 2025 assert( *pzErrMsg==0 ); 2026 2027 if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 2028 && nUri>=5 && memcmp(zUri, "file:", 5)==0 2029 ){ 2030 char *zOpt; 2031 int eState; /* Parser state when parsing URI */ 2032 int iIn; /* Input character index */ 2033 int iOut = 0; /* Output character index */ 2034 int nByte = nUri+2; /* Bytes of space to allocate */ 2035 2036 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2037 ** method that there may be extra parameters following the file-name. */ 2038 flags |= SQLITE_OPEN_URI; 2039 2040 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2041 zFile = sqlite3_malloc(nByte); 2042 if( !zFile ) return SQLITE_NOMEM; 2043 2044 /* Discard the scheme and authority segments of the URI. */ 2045 if( zUri[5]=='/' && zUri[6]=='/' ){ 2046 iIn = 7; 2047 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2048 2049 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2050 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2051 iIn-7, &zUri[7]); 2052 rc = SQLITE_ERROR; 2053 goto parse_uri_out; 2054 } 2055 }else{ 2056 iIn = 5; 2057 } 2058 2059 /* Copy the filename and any query parameters into the zFile buffer. 2060 ** Decode %HH escape codes along the way. 2061 ** 2062 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2063 ** on the parsing context. As follows: 2064 ** 2065 ** 0: Parsing file-name. 2066 ** 1: Parsing name section of a name=value query parameter. 2067 ** 2: Parsing value section of a name=value query parameter. 2068 */ 2069 eState = 0; 2070 while( (c = zUri[iIn])!=0 && c!='#' ){ 2071 iIn++; 2072 if( c=='%' 2073 && sqlite3Isxdigit(zUri[iIn]) 2074 && sqlite3Isxdigit(zUri[iIn+1]) 2075 ){ 2076 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2077 octet += sqlite3HexToInt(zUri[iIn++]); 2078 2079 assert( octet>=0 && octet<256 ); 2080 if( octet==0 ){ 2081 /* This branch is taken when "%00" appears within the URI. In this 2082 ** case we ignore all text in the remainder of the path, name or 2083 ** value currently being parsed. So ignore the current character 2084 ** and skip to the next "?", "=" or "&", as appropriate. */ 2085 while( (c = zUri[iIn])!=0 && c!='#' 2086 && (eState!=0 || c!='?') 2087 && (eState!=1 || (c!='=' && c!='&')) 2088 && (eState!=2 || c!='&') 2089 ){ 2090 iIn++; 2091 } 2092 continue; 2093 } 2094 c = octet; 2095 }else if( eState==1 && (c=='&' || c=='=') ){ 2096 if( zFile[iOut-1]==0 ){ 2097 /* An empty option name. Ignore this option altogether. */ 2098 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2099 continue; 2100 } 2101 if( c=='&' ){ 2102 zFile[iOut++] = '\0'; 2103 }else{ 2104 eState = 2; 2105 } 2106 c = 0; 2107 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2108 c = 0; 2109 eState = 1; 2110 } 2111 zFile[iOut++] = c; 2112 } 2113 if( eState==1 ) zFile[iOut++] = '\0'; 2114 zFile[iOut++] = '\0'; 2115 zFile[iOut++] = '\0'; 2116 2117 /* Check if there were any options specified that should be interpreted 2118 ** here. Options that are interpreted here include "vfs" and those that 2119 ** correspond to flags that may be passed to the sqlite3_open_v2() 2120 ** method. */ 2121 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2122 while( zOpt[0] ){ 2123 int nOpt = sqlite3Strlen30(zOpt); 2124 char *zVal = &zOpt[nOpt+1]; 2125 int nVal = sqlite3Strlen30(zVal); 2126 2127 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2128 zVfs = zVal; 2129 }else{ 2130 struct OpenMode { 2131 const char *z; 2132 int mode; 2133 } *aMode = 0; 2134 char *zModeType = 0; 2135 int mask = 0; 2136 int limit = 0; 2137 2138 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2139 static struct OpenMode aCacheMode[] = { 2140 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2141 { "private", SQLITE_OPEN_PRIVATECACHE }, 2142 { 0, 0 } 2143 }; 2144 2145 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2146 aMode = aCacheMode; 2147 limit = mask; 2148 zModeType = "cache"; 2149 } 2150 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2151 static struct OpenMode aOpenMode[] = { 2152 { "ro", SQLITE_OPEN_READONLY }, 2153 { "rw", SQLITE_OPEN_READWRITE }, 2154 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2155 { "memory", SQLITE_OPEN_MEMORY }, 2156 { 0, 0 } 2157 }; 2158 2159 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2160 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2161 aMode = aOpenMode; 2162 limit = mask & flags; 2163 zModeType = "access"; 2164 } 2165 2166 if( aMode ){ 2167 int i; 2168 int mode = 0; 2169 for(i=0; aMode[i].z; i++){ 2170 const char *z = aMode[i].z; 2171 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2172 mode = aMode[i].mode; 2173 break; 2174 } 2175 } 2176 if( mode==0 ){ 2177 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2178 rc = SQLITE_ERROR; 2179 goto parse_uri_out; 2180 } 2181 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2182 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2183 zModeType, zVal); 2184 rc = SQLITE_PERM; 2185 goto parse_uri_out; 2186 } 2187 flags = (flags & ~mask) | mode; 2188 } 2189 } 2190 2191 zOpt = &zVal[nVal+1]; 2192 } 2193 2194 }else{ 2195 zFile = sqlite3_malloc(nUri+2); 2196 if( !zFile ) return SQLITE_NOMEM; 2197 memcpy(zFile, zUri, nUri); 2198 zFile[nUri] = '\0'; 2199 zFile[nUri+1] = '\0'; 2200 flags &= ~SQLITE_OPEN_URI; 2201 } 2202 2203 *ppVfs = sqlite3_vfs_find(zVfs); 2204 if( *ppVfs==0 ){ 2205 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2206 rc = SQLITE_ERROR; 2207 } 2208 parse_uri_out: 2209 if( rc!=SQLITE_OK ){ 2210 sqlite3_free(zFile); 2211 zFile = 0; 2212 } 2213 *pFlags = flags; 2214 *pzFile = zFile; 2215 return rc; 2216 } 2217 2218 2219 /* 2220 ** This routine does the work of opening a database on behalf of 2221 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2222 ** is UTF-8 encoded. 2223 */ 2224 static int openDatabase( 2225 const char *zFilename, /* Database filename UTF-8 encoded */ 2226 sqlite3 **ppDb, /* OUT: Returned database handle */ 2227 unsigned int flags, /* Operational flags */ 2228 const char *zVfs /* Name of the VFS to use */ 2229 ){ 2230 sqlite3 *db; /* Store allocated handle here */ 2231 int rc; /* Return code */ 2232 int isThreadsafe; /* True for threadsafe connections */ 2233 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2234 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2235 2236 *ppDb = 0; 2237 #ifndef SQLITE_OMIT_AUTOINIT 2238 rc = sqlite3_initialize(); 2239 if( rc ) return rc; 2240 #endif 2241 2242 /* Only allow sensible combinations of bits in the flags argument. 2243 ** Throw an error if any non-sense combination is used. If we 2244 ** do not block illegal combinations here, it could trigger 2245 ** assert() statements in deeper layers. Sensible combinations 2246 ** are: 2247 ** 2248 ** 1: SQLITE_OPEN_READONLY 2249 ** 2: SQLITE_OPEN_READWRITE 2250 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2251 */ 2252 assert( SQLITE_OPEN_READONLY == 0x01 ); 2253 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2254 assert( SQLITE_OPEN_CREATE == 0x04 ); 2255 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2256 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2257 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2258 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; 2259 2260 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2261 isThreadsafe = 0; 2262 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2263 isThreadsafe = 0; 2264 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2265 isThreadsafe = 1; 2266 }else{ 2267 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2268 } 2269 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2270 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2271 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2272 flags |= SQLITE_OPEN_SHAREDCACHE; 2273 } 2274 2275 /* Remove harmful bits from the flags parameter 2276 ** 2277 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2278 ** dealt with in the previous code block. Besides these, the only 2279 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2280 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2281 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2282 ** off all other flags. 2283 */ 2284 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2285 SQLITE_OPEN_EXCLUSIVE | 2286 SQLITE_OPEN_MAIN_DB | 2287 SQLITE_OPEN_TEMP_DB | 2288 SQLITE_OPEN_TRANSIENT_DB | 2289 SQLITE_OPEN_MAIN_JOURNAL | 2290 SQLITE_OPEN_TEMP_JOURNAL | 2291 SQLITE_OPEN_SUBJOURNAL | 2292 SQLITE_OPEN_MASTER_JOURNAL | 2293 SQLITE_OPEN_NOMUTEX | 2294 SQLITE_OPEN_FULLMUTEX | 2295 SQLITE_OPEN_WAL 2296 ); 2297 2298 /* Allocate the sqlite data structure */ 2299 db = sqlite3MallocZero( sizeof(sqlite3) ); 2300 if( db==0 ) goto opendb_out; 2301 if( isThreadsafe ){ 2302 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2303 if( db->mutex==0 ){ 2304 sqlite3_free(db); 2305 db = 0; 2306 goto opendb_out; 2307 } 2308 } 2309 sqlite3_mutex_enter(db->mutex); 2310 db->errMask = 0xff; 2311 db->nDb = 2; 2312 db->magic = SQLITE_MAGIC_BUSY; 2313 db->aDb = db->aDbStatic; 2314 2315 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2316 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2317 db->autoCommit = 1; 2318 db->nextAutovac = -1; 2319 db->nextPagesize = 0; 2320 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger 2321 #if SQLITE_DEFAULT_FILE_FORMAT<4 2322 | SQLITE_LegacyFileFmt 2323 #endif 2324 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2325 | SQLITE_LoadExtension 2326 #endif 2327 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2328 | SQLITE_RecTriggers 2329 #endif 2330 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2331 | SQLITE_ForeignKeys 2332 #endif 2333 ; 2334 sqlite3HashInit(&db->aCollSeq); 2335 #ifndef SQLITE_OMIT_VIRTUALTABLE 2336 sqlite3HashInit(&db->aModule); 2337 #endif 2338 2339 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2340 ** and UTF-16, so add a version for each to avoid any unnecessary 2341 ** conversions. The only error that can occur here is a malloc() failure. 2342 */ 2343 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2344 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2345 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2346 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2347 if( db->mallocFailed ){ 2348 goto opendb_out; 2349 } 2350 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2351 assert( db->pDfltColl!=0 ); 2352 2353 /* Also add a UTF-8 case-insensitive collation sequence. */ 2354 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2355 2356 /* Parse the filename/URI argument. */ 2357 db->openFlags = flags; 2358 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2359 if( rc!=SQLITE_OK ){ 2360 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2361 sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2362 sqlite3_free(zErrMsg); 2363 goto opendb_out; 2364 } 2365 2366 /* Open the backend database driver */ 2367 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2368 flags | SQLITE_OPEN_MAIN_DB); 2369 if( rc!=SQLITE_OK ){ 2370 if( rc==SQLITE_IOERR_NOMEM ){ 2371 rc = SQLITE_NOMEM; 2372 } 2373 sqlite3Error(db, rc, 0); 2374 goto opendb_out; 2375 } 2376 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2377 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2378 2379 2380 /* The default safety_level for the main database is 'full'; for the temp 2381 ** database it is 'NONE'. This matches the pager layer defaults. 2382 */ 2383 db->aDb[0].zName = "main"; 2384 db->aDb[0].safety_level = 3; 2385 db->aDb[1].zName = "temp"; 2386 db->aDb[1].safety_level = 1; 2387 2388 db->magic = SQLITE_MAGIC_OPEN; 2389 if( db->mallocFailed ){ 2390 goto opendb_out; 2391 } 2392 2393 /* Register all built-in functions, but do not attempt to read the 2394 ** database schema yet. This is delayed until the first time the database 2395 ** is accessed. 2396 */ 2397 sqlite3Error(db, SQLITE_OK, 0); 2398 sqlite3RegisterBuiltinFunctions(db); 2399 2400 /* Load automatic extensions - extensions that have been registered 2401 ** using the sqlite3_automatic_extension() API. 2402 */ 2403 rc = sqlite3_errcode(db); 2404 if( rc==SQLITE_OK ){ 2405 sqlite3AutoLoadExtensions(db); 2406 rc = sqlite3_errcode(db); 2407 if( rc!=SQLITE_OK ){ 2408 goto opendb_out; 2409 } 2410 } 2411 2412 #ifdef SQLITE_ENABLE_FTS1 2413 if( !db->mallocFailed ){ 2414 extern int sqlite3Fts1Init(sqlite3*); 2415 rc = sqlite3Fts1Init(db); 2416 } 2417 #endif 2418 2419 #ifdef SQLITE_ENABLE_FTS2 2420 if( !db->mallocFailed && rc==SQLITE_OK ){ 2421 extern int sqlite3Fts2Init(sqlite3*); 2422 rc = sqlite3Fts2Init(db); 2423 } 2424 #endif 2425 2426 #ifdef SQLITE_ENABLE_FTS3 2427 if( !db->mallocFailed && rc==SQLITE_OK ){ 2428 rc = sqlite3Fts3Init(db); 2429 } 2430 #endif 2431 2432 #ifdef SQLITE_ENABLE_ICU 2433 if( !db->mallocFailed && rc==SQLITE_OK ){ 2434 rc = sqlite3IcuInit(db); 2435 } 2436 #endif 2437 2438 #ifdef SQLITE_ENABLE_RTREE 2439 if( !db->mallocFailed && rc==SQLITE_OK){ 2440 rc = sqlite3RtreeInit(db); 2441 } 2442 #endif 2443 2444 sqlite3Error(db, rc, 0); 2445 2446 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2447 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2448 ** mode. Doing nothing at all also makes NORMAL the default. 2449 */ 2450 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2451 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2452 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2453 SQLITE_DEFAULT_LOCKING_MODE); 2454 #endif 2455 2456 /* Enable the lookaside-malloc subsystem */ 2457 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2458 sqlite3GlobalConfig.nLookaside); 2459 2460 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2461 2462 opendb_out: 2463 sqlite3_free(zOpen); 2464 if( db ){ 2465 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 2466 sqlite3_mutex_leave(db->mutex); 2467 } 2468 rc = sqlite3_errcode(db); 2469 assert( db!=0 || rc==SQLITE_NOMEM ); 2470 if( rc==SQLITE_NOMEM ){ 2471 sqlite3_close(db); 2472 db = 0; 2473 }else if( rc!=SQLITE_OK ){ 2474 db->magic = SQLITE_MAGIC_SICK; 2475 } 2476 *ppDb = db; 2477 #ifdef SQLITE_ENABLE_SQLLOG 2478 if( sqlite3GlobalConfig.xSqllog ){ 2479 /* Opening a db handle. Fourth parameter is passed 0. */ 2480 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2481 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2482 } 2483 #endif 2484 return sqlite3ApiExit(0, rc); 2485 } 2486 2487 /* 2488 ** Open a new database handle. 2489 */ 2490 int sqlite3_open( 2491 const char *zFilename, 2492 sqlite3 **ppDb 2493 ){ 2494 return openDatabase(zFilename, ppDb, 2495 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2496 } 2497 int sqlite3_open_v2( 2498 const char *filename, /* Database filename (UTF-8) */ 2499 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2500 int flags, /* Flags */ 2501 const char *zVfs /* Name of VFS module to use */ 2502 ){ 2503 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2504 } 2505 2506 #ifndef SQLITE_OMIT_UTF16 2507 /* 2508 ** Open a new database handle. 2509 */ 2510 int sqlite3_open16( 2511 const void *zFilename, 2512 sqlite3 **ppDb 2513 ){ 2514 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2515 sqlite3_value *pVal; 2516 int rc; 2517 2518 assert( zFilename ); 2519 assert( ppDb ); 2520 *ppDb = 0; 2521 #ifndef SQLITE_OMIT_AUTOINIT 2522 rc = sqlite3_initialize(); 2523 if( rc ) return rc; 2524 #endif 2525 pVal = sqlite3ValueNew(0); 2526 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2527 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2528 if( zFilename8 ){ 2529 rc = openDatabase(zFilename8, ppDb, 2530 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2531 assert( *ppDb || rc==SQLITE_NOMEM ); 2532 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2533 ENC(*ppDb) = SQLITE_UTF16NATIVE; 2534 } 2535 }else{ 2536 rc = SQLITE_NOMEM; 2537 } 2538 sqlite3ValueFree(pVal); 2539 2540 return sqlite3ApiExit(0, rc); 2541 } 2542 #endif /* SQLITE_OMIT_UTF16 */ 2543 2544 /* 2545 ** Register a new collation sequence with the database handle db. 2546 */ 2547 int sqlite3_create_collation( 2548 sqlite3* db, 2549 const char *zName, 2550 int enc, 2551 void* pCtx, 2552 int(*xCompare)(void*,int,const void*,int,const void*) 2553 ){ 2554 int rc; 2555 sqlite3_mutex_enter(db->mutex); 2556 assert( !db->mallocFailed ); 2557 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0); 2558 rc = sqlite3ApiExit(db, rc); 2559 sqlite3_mutex_leave(db->mutex); 2560 return rc; 2561 } 2562 2563 /* 2564 ** Register a new collation sequence with the database handle db. 2565 */ 2566 int sqlite3_create_collation_v2( 2567 sqlite3* db, 2568 const char *zName, 2569 int enc, 2570 void* pCtx, 2571 int(*xCompare)(void*,int,const void*,int,const void*), 2572 void(*xDel)(void*) 2573 ){ 2574 int rc; 2575 sqlite3_mutex_enter(db->mutex); 2576 assert( !db->mallocFailed ); 2577 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 2578 rc = sqlite3ApiExit(db, rc); 2579 sqlite3_mutex_leave(db->mutex); 2580 return rc; 2581 } 2582 2583 #ifndef SQLITE_OMIT_UTF16 2584 /* 2585 ** Register a new collation sequence with the database handle db. 2586 */ 2587 int sqlite3_create_collation16( 2588 sqlite3* db, 2589 const void *zName, 2590 int enc, 2591 void* pCtx, 2592 int(*xCompare)(void*,int,const void*,int,const void*) 2593 ){ 2594 int rc = SQLITE_OK; 2595 char *zName8; 2596 sqlite3_mutex_enter(db->mutex); 2597 assert( !db->mallocFailed ); 2598 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 2599 if( zName8 ){ 2600 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 2601 sqlite3DbFree(db, zName8); 2602 } 2603 rc = sqlite3ApiExit(db, rc); 2604 sqlite3_mutex_leave(db->mutex); 2605 return rc; 2606 } 2607 #endif /* SQLITE_OMIT_UTF16 */ 2608 2609 /* 2610 ** Register a collation sequence factory callback with the database handle 2611 ** db. Replace any previously installed collation sequence factory. 2612 */ 2613 int sqlite3_collation_needed( 2614 sqlite3 *db, 2615 void *pCollNeededArg, 2616 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 2617 ){ 2618 sqlite3_mutex_enter(db->mutex); 2619 db->xCollNeeded = xCollNeeded; 2620 db->xCollNeeded16 = 0; 2621 db->pCollNeededArg = pCollNeededArg; 2622 sqlite3_mutex_leave(db->mutex); 2623 return SQLITE_OK; 2624 } 2625 2626 #ifndef SQLITE_OMIT_UTF16 2627 /* 2628 ** Register a collation sequence factory callback with the database handle 2629 ** db. Replace any previously installed collation sequence factory. 2630 */ 2631 int sqlite3_collation_needed16( 2632 sqlite3 *db, 2633 void *pCollNeededArg, 2634 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 2635 ){ 2636 sqlite3_mutex_enter(db->mutex); 2637 db->xCollNeeded = 0; 2638 db->xCollNeeded16 = xCollNeeded16; 2639 db->pCollNeededArg = pCollNeededArg; 2640 sqlite3_mutex_leave(db->mutex); 2641 return SQLITE_OK; 2642 } 2643 #endif /* SQLITE_OMIT_UTF16 */ 2644 2645 #ifndef SQLITE_OMIT_DEPRECATED 2646 /* 2647 ** This function is now an anachronism. It used to be used to recover from a 2648 ** malloc() failure, but SQLite now does this automatically. 2649 */ 2650 int sqlite3_global_recover(void){ 2651 return SQLITE_OK; 2652 } 2653 #endif 2654 2655 /* 2656 ** Test to see whether or not the database connection is in autocommit 2657 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 2658 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 2659 ** by the next COMMIT or ROLLBACK. 2660 ** 2661 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 2662 */ 2663 int sqlite3_get_autocommit(sqlite3 *db){ 2664 return db->autoCommit; 2665 } 2666 2667 /* 2668 ** The following routines are subtitutes for constants SQLITE_CORRUPT, 2669 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 2670 ** constants. They server two purposes: 2671 ** 2672 ** 1. Serve as a convenient place to set a breakpoint in a debugger 2673 ** to detect when version error conditions occurs. 2674 ** 2675 ** 2. Invoke sqlite3_log() to provide the source code location where 2676 ** a low-level error is first detected. 2677 */ 2678 int sqlite3CorruptError(int lineno){ 2679 testcase( sqlite3GlobalConfig.xLog!=0 ); 2680 sqlite3_log(SQLITE_CORRUPT, 2681 "database corruption at line %d of [%.10s]", 2682 lineno, 20+sqlite3_sourceid()); 2683 return SQLITE_CORRUPT; 2684 } 2685 int sqlite3MisuseError(int lineno){ 2686 testcase( sqlite3GlobalConfig.xLog!=0 ); 2687 sqlite3_log(SQLITE_MISUSE, 2688 "misuse at line %d of [%.10s]", 2689 lineno, 20+sqlite3_sourceid()); 2690 return SQLITE_MISUSE; 2691 } 2692 int sqlite3CantopenError(int lineno){ 2693 testcase( sqlite3GlobalConfig.xLog!=0 ); 2694 sqlite3_log(SQLITE_CANTOPEN, 2695 "cannot open file at line %d of [%.10s]", 2696 lineno, 20+sqlite3_sourceid()); 2697 return SQLITE_CANTOPEN; 2698 } 2699 2700 2701 #ifndef SQLITE_OMIT_DEPRECATED 2702 /* 2703 ** This is a convenience routine that makes sure that all thread-specific 2704 ** data for this thread has been deallocated. 2705 ** 2706 ** SQLite no longer uses thread-specific data so this routine is now a 2707 ** no-op. It is retained for historical compatibility. 2708 */ 2709 void sqlite3_thread_cleanup(void){ 2710 } 2711 #endif 2712 2713 /* 2714 ** Return meta information about a specific column of a database table. 2715 ** See comment in sqlite3.h (sqlite.h.in) for details. 2716 */ 2717 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2718 int sqlite3_table_column_metadata( 2719 sqlite3 *db, /* Connection handle */ 2720 const char *zDbName, /* Database name or NULL */ 2721 const char *zTableName, /* Table name */ 2722 const char *zColumnName, /* Column name */ 2723 char const **pzDataType, /* OUTPUT: Declared data type */ 2724 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 2725 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 2726 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 2727 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 2728 ){ 2729 int rc; 2730 char *zErrMsg = 0; 2731 Table *pTab = 0; 2732 Column *pCol = 0; 2733 int iCol; 2734 2735 char const *zDataType = 0; 2736 char const *zCollSeq = 0; 2737 int notnull = 0; 2738 int primarykey = 0; 2739 int autoinc = 0; 2740 2741 /* Ensure the database schema has been loaded */ 2742 sqlite3_mutex_enter(db->mutex); 2743 sqlite3BtreeEnterAll(db); 2744 rc = sqlite3Init(db, &zErrMsg); 2745 if( SQLITE_OK!=rc ){ 2746 goto error_out; 2747 } 2748 2749 /* Locate the table in question */ 2750 pTab = sqlite3FindTable(db, zTableName, zDbName); 2751 if( !pTab || pTab->pSelect ){ 2752 pTab = 0; 2753 goto error_out; 2754 } 2755 2756 /* Find the column for which info is requested */ 2757 if( sqlite3IsRowid(zColumnName) ){ 2758 iCol = pTab->iPKey; 2759 if( iCol>=0 ){ 2760 pCol = &pTab->aCol[iCol]; 2761 } 2762 }else{ 2763 for(iCol=0; iCol<pTab->nCol; iCol++){ 2764 pCol = &pTab->aCol[iCol]; 2765 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 2766 break; 2767 } 2768 } 2769 if( iCol==pTab->nCol ){ 2770 pTab = 0; 2771 goto error_out; 2772 } 2773 } 2774 2775 /* The following block stores the meta information that will be returned 2776 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 2777 ** and autoinc. At this point there are two possibilities: 2778 ** 2779 ** 1. The specified column name was rowid", "oid" or "_rowid_" 2780 ** and there is no explicitly declared IPK column. 2781 ** 2782 ** 2. The table is not a view and the column name identified an 2783 ** explicitly declared column. Copy meta information from *pCol. 2784 */ 2785 if( pCol ){ 2786 zDataType = pCol->zType; 2787 zCollSeq = pCol->zColl; 2788 notnull = pCol->notNull!=0; 2789 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 2790 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 2791 }else{ 2792 zDataType = "INTEGER"; 2793 primarykey = 1; 2794 } 2795 if( !zCollSeq ){ 2796 zCollSeq = "BINARY"; 2797 } 2798 2799 error_out: 2800 sqlite3BtreeLeaveAll(db); 2801 2802 /* Whether the function call succeeded or failed, set the output parameters 2803 ** to whatever their local counterparts contain. If an error did occur, 2804 ** this has the effect of zeroing all output parameters. 2805 */ 2806 if( pzDataType ) *pzDataType = zDataType; 2807 if( pzCollSeq ) *pzCollSeq = zCollSeq; 2808 if( pNotNull ) *pNotNull = notnull; 2809 if( pPrimaryKey ) *pPrimaryKey = primarykey; 2810 if( pAutoinc ) *pAutoinc = autoinc; 2811 2812 if( SQLITE_OK==rc && !pTab ){ 2813 sqlite3DbFree(db, zErrMsg); 2814 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2815 zColumnName); 2816 rc = SQLITE_ERROR; 2817 } 2818 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2819 sqlite3DbFree(db, zErrMsg); 2820 rc = sqlite3ApiExit(db, rc); 2821 sqlite3_mutex_leave(db->mutex); 2822 return rc; 2823 } 2824 #endif 2825 2826 /* 2827 ** Sleep for a little while. Return the amount of time slept. 2828 */ 2829 int sqlite3_sleep(int ms){ 2830 sqlite3_vfs *pVfs; 2831 int rc; 2832 pVfs = sqlite3_vfs_find(0); 2833 if( pVfs==0 ) return 0; 2834 2835 /* This function works in milliseconds, but the underlying OsSleep() 2836 ** API uses microseconds. Hence the 1000's. 2837 */ 2838 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2839 return rc; 2840 } 2841 2842 /* 2843 ** Enable or disable the extended result codes. 2844 */ 2845 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2846 sqlite3_mutex_enter(db->mutex); 2847 db->errMask = onoff ? 0xffffffff : 0xff; 2848 sqlite3_mutex_leave(db->mutex); 2849 return SQLITE_OK; 2850 } 2851 2852 /* 2853 ** Invoke the xFileControl method on a particular database. 2854 */ 2855 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2856 int rc = SQLITE_ERROR; 2857 Btree *pBtree; 2858 2859 sqlite3_mutex_enter(db->mutex); 2860 pBtree = sqlite3DbNameToBtree(db, zDbName); 2861 if( pBtree ){ 2862 Pager *pPager; 2863 sqlite3_file *fd; 2864 sqlite3BtreeEnter(pBtree); 2865 pPager = sqlite3BtreePager(pBtree); 2866 assert( pPager!=0 ); 2867 fd = sqlite3PagerFile(pPager); 2868 assert( fd!=0 ); 2869 if( op==SQLITE_FCNTL_FILE_POINTER ){ 2870 *(sqlite3_file**)pArg = fd; 2871 rc = SQLITE_OK; 2872 }else if( fd->pMethods ){ 2873 rc = sqlite3OsFileControl(fd, op, pArg); 2874 }else{ 2875 rc = SQLITE_NOTFOUND; 2876 } 2877 sqlite3BtreeLeave(pBtree); 2878 } 2879 sqlite3_mutex_leave(db->mutex); 2880 return rc; 2881 } 2882 2883 /* 2884 ** Interface to the testing logic. 2885 */ 2886 int sqlite3_test_control(int op, ...){ 2887 int rc = 0; 2888 #ifndef SQLITE_OMIT_BUILTIN_TEST 2889 va_list ap; 2890 va_start(ap, op); 2891 switch( op ){ 2892 2893 /* 2894 ** Save the current state of the PRNG. 2895 */ 2896 case SQLITE_TESTCTRL_PRNG_SAVE: { 2897 sqlite3PrngSaveState(); 2898 break; 2899 } 2900 2901 /* 2902 ** Restore the state of the PRNG to the last state saved using 2903 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 2904 ** this verb acts like PRNG_RESET. 2905 */ 2906 case SQLITE_TESTCTRL_PRNG_RESTORE: { 2907 sqlite3PrngRestoreState(); 2908 break; 2909 } 2910 2911 /* 2912 ** Reset the PRNG back to its uninitialized state. The next call 2913 ** to sqlite3_randomness() will reseed the PRNG using a single call 2914 ** to the xRandomness method of the default VFS. 2915 */ 2916 case SQLITE_TESTCTRL_PRNG_RESET: { 2917 sqlite3PrngResetState(); 2918 break; 2919 } 2920 2921 /* 2922 ** sqlite3_test_control(BITVEC_TEST, size, program) 2923 ** 2924 ** Run a test against a Bitvec object of size. The program argument 2925 ** is an array of integers that defines the test. Return -1 on a 2926 ** memory allocation error, 0 on success, or non-zero for an error. 2927 ** See the sqlite3BitvecBuiltinTest() for additional information. 2928 */ 2929 case SQLITE_TESTCTRL_BITVEC_TEST: { 2930 int sz = va_arg(ap, int); 2931 int *aProg = va_arg(ap, int*); 2932 rc = sqlite3BitvecBuiltinTest(sz, aProg); 2933 break; 2934 } 2935 2936 /* 2937 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 2938 ** 2939 ** Register hooks to call to indicate which malloc() failures 2940 ** are benign. 2941 */ 2942 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 2943 typedef void (*void_function)(void); 2944 void_function xBenignBegin; 2945 void_function xBenignEnd; 2946 xBenignBegin = va_arg(ap, void_function); 2947 xBenignEnd = va_arg(ap, void_function); 2948 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 2949 break; 2950 } 2951 2952 /* 2953 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 2954 ** 2955 ** Set the PENDING byte to the value in the argument, if X>0. 2956 ** Make no changes if X==0. Return the value of the pending byte 2957 ** as it existing before this routine was called. 2958 ** 2959 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 2960 ** an incompatible database file format. Changing the PENDING byte 2961 ** while any database connection is open results in undefined and 2962 ** dileterious behavior. 2963 */ 2964 case SQLITE_TESTCTRL_PENDING_BYTE: { 2965 rc = PENDING_BYTE; 2966 #ifndef SQLITE_OMIT_WSD 2967 { 2968 unsigned int newVal = va_arg(ap, unsigned int); 2969 if( newVal ) sqlite3PendingByte = newVal; 2970 } 2971 #endif 2972 break; 2973 } 2974 2975 /* 2976 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 2977 ** 2978 ** This action provides a run-time test to see whether or not 2979 ** assert() was enabled at compile-time. If X is true and assert() 2980 ** is enabled, then the return value is true. If X is true and 2981 ** assert() is disabled, then the return value is zero. If X is 2982 ** false and assert() is enabled, then the assertion fires and the 2983 ** process aborts. If X is false and assert() is disabled, then the 2984 ** return value is zero. 2985 */ 2986 case SQLITE_TESTCTRL_ASSERT: { 2987 volatile int x = 0; 2988 assert( (x = va_arg(ap,int))!=0 ); 2989 rc = x; 2990 break; 2991 } 2992 2993 2994 /* 2995 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 2996 ** 2997 ** This action provides a run-time test to see how the ALWAYS and 2998 ** NEVER macros were defined at compile-time. 2999 ** 3000 ** The return value is ALWAYS(X). 3001 ** 3002 ** The recommended test is X==2. If the return value is 2, that means 3003 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3004 ** default setting. If the return value is 1, then ALWAYS() is either 3005 ** hard-coded to true or else it asserts if its argument is false. 3006 ** The first behavior (hard-coded to true) is the case if 3007 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3008 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3009 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3010 ** 3011 ** The run-time test procedure might look something like this: 3012 ** 3013 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3014 ** // ALWAYS() and NEVER() are no-op pass-through macros 3015 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3016 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3017 ** }else{ 3018 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3019 ** } 3020 */ 3021 case SQLITE_TESTCTRL_ALWAYS: { 3022 int x = va_arg(ap,int); 3023 rc = ALWAYS(x); 3024 break; 3025 } 3026 3027 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3028 ** 3029 ** Set the nReserve size to N for the main database on the database 3030 ** connection db. 3031 */ 3032 case SQLITE_TESTCTRL_RESERVE: { 3033 sqlite3 *db = va_arg(ap, sqlite3*); 3034 int x = va_arg(ap,int); 3035 sqlite3_mutex_enter(db->mutex); 3036 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3037 sqlite3_mutex_leave(db->mutex); 3038 break; 3039 } 3040 3041 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3042 ** 3043 ** Enable or disable various optimizations for testing purposes. The 3044 ** argument N is a bitmask of optimizations to be disabled. For normal 3045 ** operation N should be 0. The idea is that a test program (like the 3046 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3047 ** with various optimizations disabled to verify that the same answer 3048 ** is obtained in every case. 3049 */ 3050 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3051 sqlite3 *db = va_arg(ap, sqlite3*); 3052 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3053 break; 3054 } 3055 3056 #ifdef SQLITE_N_KEYWORD 3057 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3058 ** 3059 ** If zWord is a keyword recognized by the parser, then return the 3060 ** number of keywords. Or if zWord is not a keyword, return 0. 3061 ** 3062 ** This test feature is only available in the amalgamation since 3063 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3064 ** is built using separate source files. 3065 */ 3066 case SQLITE_TESTCTRL_ISKEYWORD: { 3067 const char *zWord = va_arg(ap, const char*); 3068 int n = sqlite3Strlen30(zWord); 3069 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3070 break; 3071 } 3072 #endif 3073 3074 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3075 ** 3076 ** Pass pFree into sqlite3ScratchFree(). 3077 ** If sz>0 then allocate a scratch buffer into pNew. 3078 */ 3079 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3080 void *pFree, **ppNew; 3081 int sz; 3082 sz = va_arg(ap, int); 3083 ppNew = va_arg(ap, void**); 3084 pFree = va_arg(ap, void*); 3085 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3086 sqlite3ScratchFree(pFree); 3087 break; 3088 } 3089 3090 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3091 ** 3092 ** If parameter onoff is non-zero, configure the wrappers so that all 3093 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3094 ** undo this setting. 3095 */ 3096 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3097 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3098 break; 3099 } 3100 3101 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3102 /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, 3103 ** sqlite3_stmt*,const char**); 3104 ** 3105 ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds 3106 ** a string that describes the optimized parse tree. This test-control 3107 ** returns a pointer to that string. 3108 */ 3109 case SQLITE_TESTCTRL_EXPLAIN_STMT: { 3110 sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); 3111 const char **pzRet = va_arg(ap, const char**); 3112 *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); 3113 break; 3114 } 3115 #endif 3116 3117 } 3118 va_end(ap); 3119 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3120 return rc; 3121 } 3122 3123 /* 3124 ** This is a utility routine, useful to VFS implementations, that checks 3125 ** to see if a database file was a URI that contained a specific query 3126 ** parameter, and if so obtains the value of the query parameter. 3127 ** 3128 ** The zFilename argument is the filename pointer passed into the xOpen() 3129 ** method of a VFS implementation. The zParam argument is the name of the 3130 ** query parameter we seek. This routine returns the value of the zParam 3131 ** parameter if it exists. If the parameter does not exist, this routine 3132 ** returns a NULL pointer. 3133 */ 3134 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3135 if( zFilename==0 ) return 0; 3136 zFilename += sqlite3Strlen30(zFilename) + 1; 3137 while( zFilename[0] ){ 3138 int x = strcmp(zFilename, zParam); 3139 zFilename += sqlite3Strlen30(zFilename) + 1; 3140 if( x==0 ) return zFilename; 3141 zFilename += sqlite3Strlen30(zFilename) + 1; 3142 } 3143 return 0; 3144 } 3145 3146 /* 3147 ** Return a boolean value for a query parameter. 3148 */ 3149 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3150 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3151 bDflt = bDflt!=0; 3152 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3153 } 3154 3155 /* 3156 ** Return a 64-bit integer value for a query parameter. 3157 */ 3158 sqlite3_int64 sqlite3_uri_int64( 3159 const char *zFilename, /* Filename as passed to xOpen */ 3160 const char *zParam, /* URI parameter sought */ 3161 sqlite3_int64 bDflt /* return if parameter is missing */ 3162 ){ 3163 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3164 sqlite3_int64 v; 3165 if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ 3166 bDflt = v; 3167 } 3168 return bDflt; 3169 } 3170 3171 /* 3172 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3173 */ 3174 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3175 int i; 3176 for(i=0; i<db->nDb; i++){ 3177 if( db->aDb[i].pBt 3178 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3179 ){ 3180 return db->aDb[i].pBt; 3181 } 3182 } 3183 return 0; 3184 } 3185 3186 /* 3187 ** Return the filename of the database associated with a database 3188 ** connection. 3189 */ 3190 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3191 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3192 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3193 } 3194 3195 /* 3196 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3197 ** no such database exists. 3198 */ 3199 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3200 Btree *pBt = sqlite3DbNameToBtree(db, zDbName); 3201 return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1; 3202 } 3203