1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** Initialize SQLite. 79 ** 80 ** This routine must be called to initialize the memory allocation, 81 ** VFS, and mutex subsystems prior to doing any serious work with 82 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 83 ** this routine will be called automatically by key routines such as 84 ** sqlite3_open(). 85 ** 86 ** This routine is a no-op except on its very first call for the process, 87 ** or for the first call after a call to sqlite3_shutdown. 88 ** 89 ** The first thread to call this routine runs the initialization to 90 ** completion. If subsequent threads call this routine before the first 91 ** thread has finished the initialization process, then the subsequent 92 ** threads must block until the first thread finishes with the initialization. 93 ** 94 ** The first thread might call this routine recursively. Recursive 95 ** calls to this routine should not block, of course. Otherwise the 96 ** initialization process would never complete. 97 ** 98 ** Let X be the first thread to enter this routine. Let Y be some other 99 ** thread. Then while the initial invocation of this routine by X is 100 ** incomplete, it is required that: 101 ** 102 ** * Calls to this routine from Y must block until the outer-most 103 ** call by X completes. 104 ** 105 ** * Recursive calls to this routine from thread X return immediately 106 ** without blocking. 107 */ 108 int sqlite3_initialize(void){ 109 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 110 int rc; /* Result code */ 111 112 #ifdef SQLITE_OMIT_WSD 113 rc = sqlite3_wsd_init(4096, 24); 114 if( rc!=SQLITE_OK ){ 115 return rc; 116 } 117 #endif 118 119 /* If SQLite is already completely initialized, then this call 120 ** to sqlite3_initialize() should be a no-op. But the initialization 121 ** must be complete. So isInit must not be set until the very end 122 ** of this routine. 123 */ 124 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 125 126 /* Make sure the mutex subsystem is initialized. If unable to 127 ** initialize the mutex subsystem, return early with the error. 128 ** If the system is so sick that we are unable to allocate a mutex, 129 ** there is not much SQLite is going to be able to do. 130 ** 131 ** The mutex subsystem must take care of serializing its own 132 ** initialization. 133 */ 134 rc = sqlite3MutexInit(); 135 if( rc ) return rc; 136 137 /* Initialize the malloc() system and the recursive pInitMutex mutex. 138 ** This operation is protected by the STATIC_MASTER mutex. Note that 139 ** MutexAlloc() is called for a static mutex prior to initializing the 140 ** malloc subsystem - this implies that the allocation of a static 141 ** mutex must not require support from the malloc subsystem. 142 */ 143 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 144 sqlite3_mutex_enter(pMaster); 145 sqlite3GlobalConfig.isMutexInit = 1; 146 if( !sqlite3GlobalConfig.isMallocInit ){ 147 rc = sqlite3MallocInit(); 148 } 149 if( rc==SQLITE_OK ){ 150 sqlite3GlobalConfig.isMallocInit = 1; 151 if( !sqlite3GlobalConfig.pInitMutex ){ 152 sqlite3GlobalConfig.pInitMutex = 153 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 154 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 155 rc = SQLITE_NOMEM; 156 } 157 } 158 } 159 if( rc==SQLITE_OK ){ 160 sqlite3GlobalConfig.nRefInitMutex++; 161 } 162 sqlite3_mutex_leave(pMaster); 163 164 /* If rc is not SQLITE_OK at this point, then either the malloc 165 ** subsystem could not be initialized or the system failed to allocate 166 ** the pInitMutex mutex. Return an error in either case. */ 167 if( rc!=SQLITE_OK ){ 168 return rc; 169 } 170 171 /* Do the rest of the initialization under the recursive mutex so 172 ** that we will be able to handle recursive calls into 173 ** sqlite3_initialize(). The recursive calls normally come through 174 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 175 ** recursive calls might also be possible. 176 ** 177 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 178 ** to the xInit method, so the xInit method need not be threadsafe. 179 ** 180 ** The following mutex is what serializes access to the appdef pcache xInit 181 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 182 ** call to sqlite3PcacheInitialize(). 183 */ 184 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 185 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 186 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 187 sqlite3GlobalConfig.inProgress = 1; 188 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 189 sqlite3RegisterGlobalFunctions(); 190 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 191 rc = sqlite3PcacheInitialize(); 192 } 193 if( rc==SQLITE_OK ){ 194 sqlite3GlobalConfig.isPCacheInit = 1; 195 rc = sqlite3OsInit(); 196 } 197 if( rc==SQLITE_OK ){ 198 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 199 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 200 sqlite3GlobalConfig.isInit = 1; 201 } 202 sqlite3GlobalConfig.inProgress = 0; 203 } 204 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 205 206 /* Go back under the static mutex and clean up the recursive 207 ** mutex to prevent a resource leak. 208 */ 209 sqlite3_mutex_enter(pMaster); 210 sqlite3GlobalConfig.nRefInitMutex--; 211 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 212 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 213 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 214 sqlite3GlobalConfig.pInitMutex = 0; 215 } 216 sqlite3_mutex_leave(pMaster); 217 218 /* The following is just a sanity check to make sure SQLite has 219 ** been compiled correctly. It is important to run this code, but 220 ** we don't want to run it too often and soak up CPU cycles for no 221 ** reason. So we run it once during initialization. 222 */ 223 #ifndef NDEBUG 224 #ifndef SQLITE_OMIT_FLOATING_POINT 225 /* This section of code's only "output" is via assert() statements. */ 226 if ( rc==SQLITE_OK ){ 227 u64 x = (((u64)1)<<63)-1; 228 double y; 229 assert(sizeof(x)==8); 230 assert(sizeof(x)==sizeof(y)); 231 memcpy(&y, &x, 8); 232 assert( sqlite3IsNaN(y) ); 233 } 234 #endif 235 #endif 236 237 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 238 ** compile-time option. 239 */ 240 #ifdef SQLITE_EXTRA_INIT 241 if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ 242 int SQLITE_EXTRA_INIT(const char*); 243 rc = SQLITE_EXTRA_INIT(0); 244 } 245 #endif 246 247 return rc; 248 } 249 250 /* 251 ** Undo the effects of sqlite3_initialize(). Must not be called while 252 ** there are outstanding database connections or memory allocations or 253 ** while any part of SQLite is otherwise in use in any thread. This 254 ** routine is not threadsafe. But it is safe to invoke this routine 255 ** on when SQLite is already shut down. If SQLite is already shut down 256 ** when this routine is invoked, then this routine is a harmless no-op. 257 */ 258 int sqlite3_shutdown(void){ 259 if( sqlite3GlobalConfig.isInit ){ 260 #ifdef SQLITE_EXTRA_SHUTDOWN 261 void SQLITE_EXTRA_SHUTDOWN(void); 262 SQLITE_EXTRA_SHUTDOWN(); 263 #endif 264 sqlite3_os_end(); 265 sqlite3_reset_auto_extension(); 266 sqlite3GlobalConfig.isInit = 0; 267 } 268 if( sqlite3GlobalConfig.isPCacheInit ){ 269 sqlite3PcacheShutdown(); 270 sqlite3GlobalConfig.isPCacheInit = 0; 271 } 272 if( sqlite3GlobalConfig.isMallocInit ){ 273 sqlite3MallocEnd(); 274 sqlite3GlobalConfig.isMallocInit = 0; 275 } 276 if( sqlite3GlobalConfig.isMutexInit ){ 277 sqlite3MutexEnd(); 278 sqlite3GlobalConfig.isMutexInit = 0; 279 } 280 281 return SQLITE_OK; 282 } 283 284 /* 285 ** This API allows applications to modify the global configuration of 286 ** the SQLite library at run-time. 287 ** 288 ** This routine should only be called when there are no outstanding 289 ** database connections or memory allocations. This routine is not 290 ** threadsafe. Failure to heed these warnings can lead to unpredictable 291 ** behavior. 292 */ 293 int sqlite3_config(int op, ...){ 294 va_list ap; 295 int rc = SQLITE_OK; 296 297 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 298 ** the SQLite library is in use. */ 299 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 300 301 va_start(ap, op); 302 switch( op ){ 303 304 /* Mutex configuration options are only available in a threadsafe 305 ** compile. 306 */ 307 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 308 case SQLITE_CONFIG_SINGLETHREAD: { 309 /* Disable all mutexing */ 310 sqlite3GlobalConfig.bCoreMutex = 0; 311 sqlite3GlobalConfig.bFullMutex = 0; 312 break; 313 } 314 case SQLITE_CONFIG_MULTITHREAD: { 315 /* Disable mutexing of database connections */ 316 /* Enable mutexing of core data structures */ 317 sqlite3GlobalConfig.bCoreMutex = 1; 318 sqlite3GlobalConfig.bFullMutex = 0; 319 break; 320 } 321 case SQLITE_CONFIG_SERIALIZED: { 322 /* Enable all mutexing */ 323 sqlite3GlobalConfig.bCoreMutex = 1; 324 sqlite3GlobalConfig.bFullMutex = 1; 325 break; 326 } 327 case SQLITE_CONFIG_MUTEX: { 328 /* Specify an alternative mutex implementation */ 329 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 330 break; 331 } 332 case SQLITE_CONFIG_GETMUTEX: { 333 /* Retrieve the current mutex implementation */ 334 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 335 break; 336 } 337 #endif 338 339 340 case SQLITE_CONFIG_MALLOC: { 341 /* Specify an alternative malloc implementation */ 342 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 343 break; 344 } 345 case SQLITE_CONFIG_GETMALLOC: { 346 /* Retrieve the current malloc() implementation */ 347 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 348 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 349 break; 350 } 351 case SQLITE_CONFIG_MEMSTATUS: { 352 /* Enable or disable the malloc status collection */ 353 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 354 break; 355 } 356 case SQLITE_CONFIG_SCRATCH: { 357 /* Designate a buffer for scratch memory space */ 358 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 359 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 360 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 361 break; 362 } 363 case SQLITE_CONFIG_PAGECACHE: { 364 /* Designate a buffer for page cache memory space */ 365 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 366 sqlite3GlobalConfig.szPage = va_arg(ap, int); 367 sqlite3GlobalConfig.nPage = va_arg(ap, int); 368 break; 369 } 370 371 case SQLITE_CONFIG_PCACHE: { 372 /* no-op */ 373 break; 374 } 375 case SQLITE_CONFIG_GETPCACHE: { 376 /* now an error */ 377 rc = SQLITE_ERROR; 378 break; 379 } 380 381 case SQLITE_CONFIG_PCACHE2: { 382 /* Specify an alternative page cache implementation */ 383 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 384 break; 385 } 386 case SQLITE_CONFIG_GETPCACHE2: { 387 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 388 sqlite3PCacheSetDefault(); 389 } 390 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 391 break; 392 } 393 394 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 395 case SQLITE_CONFIG_HEAP: { 396 /* Designate a buffer for heap memory space */ 397 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 398 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 399 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 400 401 if( sqlite3GlobalConfig.mnReq<1 ){ 402 sqlite3GlobalConfig.mnReq = 1; 403 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 404 /* cap min request size at 2^12 */ 405 sqlite3GlobalConfig.mnReq = (1<<12); 406 } 407 408 if( sqlite3GlobalConfig.pHeap==0 ){ 409 /* If the heap pointer is NULL, then restore the malloc implementation 410 ** back to NULL pointers too. This will cause the malloc to go 411 ** back to its default implementation when sqlite3_initialize() is 412 ** run. 413 */ 414 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 415 }else{ 416 /* The heap pointer is not NULL, then install one of the 417 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 418 ** ENABLE_MEMSYS5 is defined, return an error. 419 */ 420 #ifdef SQLITE_ENABLE_MEMSYS3 421 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 422 #endif 423 #ifdef SQLITE_ENABLE_MEMSYS5 424 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 425 #endif 426 } 427 break; 428 } 429 #endif 430 431 case SQLITE_CONFIG_LOOKASIDE: { 432 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 433 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 434 break; 435 } 436 437 /* Record a pointer to the logger funcction and its first argument. 438 ** The default is NULL. Logging is disabled if the function pointer is 439 ** NULL. 440 */ 441 case SQLITE_CONFIG_LOG: { 442 /* MSVC is picky about pulling func ptrs from va lists. 443 ** http://support.microsoft.com/kb/47961 444 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 445 */ 446 typedef void(*LOGFUNC_t)(void*,int,const char*); 447 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 448 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 449 break; 450 } 451 452 case SQLITE_CONFIG_URI: { 453 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 454 break; 455 } 456 457 default: { 458 rc = SQLITE_ERROR; 459 break; 460 } 461 } 462 va_end(ap); 463 return rc; 464 } 465 466 /* 467 ** Set up the lookaside buffers for a database connection. 468 ** Return SQLITE_OK on success. 469 ** If lookaside is already active, return SQLITE_BUSY. 470 ** 471 ** The sz parameter is the number of bytes in each lookaside slot. 472 ** The cnt parameter is the number of slots. If pStart is NULL the 473 ** space for the lookaside memory is obtained from sqlite3_malloc(). 474 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 475 ** the lookaside memory. 476 */ 477 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 478 void *pStart; 479 if( db->lookaside.nOut ){ 480 return SQLITE_BUSY; 481 } 482 /* Free any existing lookaside buffer for this handle before 483 ** allocating a new one so we don't have to have space for 484 ** both at the same time. 485 */ 486 if( db->lookaside.bMalloced ){ 487 sqlite3_free(db->lookaside.pStart); 488 } 489 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 490 ** than a pointer to be useful. 491 */ 492 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 493 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 494 if( cnt<0 ) cnt = 0; 495 if( sz==0 || cnt==0 ){ 496 sz = 0; 497 pStart = 0; 498 }else if( pBuf==0 ){ 499 sqlite3BeginBenignMalloc(); 500 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 501 sqlite3EndBenignMalloc(); 502 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 503 }else{ 504 pStart = pBuf; 505 } 506 db->lookaside.pStart = pStart; 507 db->lookaside.pFree = 0; 508 db->lookaside.sz = (u16)sz; 509 if( pStart ){ 510 int i; 511 LookasideSlot *p; 512 assert( sz > (int)sizeof(LookasideSlot*) ); 513 p = (LookasideSlot*)pStart; 514 for(i=cnt-1; i>=0; i--){ 515 p->pNext = db->lookaside.pFree; 516 db->lookaside.pFree = p; 517 p = (LookasideSlot*)&((u8*)p)[sz]; 518 } 519 db->lookaside.pEnd = p; 520 db->lookaside.bEnabled = 1; 521 db->lookaside.bMalloced = pBuf==0 ?1:0; 522 }else{ 523 db->lookaside.pEnd = 0; 524 db->lookaside.bEnabled = 0; 525 db->lookaside.bMalloced = 0; 526 } 527 return SQLITE_OK; 528 } 529 530 /* 531 ** Return the mutex associated with a database connection. 532 */ 533 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 534 return db->mutex; 535 } 536 537 /* 538 ** Free up as much memory as we can from the given database 539 ** connection. 540 */ 541 int sqlite3_db_release_memory(sqlite3 *db){ 542 int i; 543 sqlite3_mutex_enter(db->mutex); 544 sqlite3BtreeEnterAll(db); 545 for(i=0; i<db->nDb; i++){ 546 Btree *pBt = db->aDb[i].pBt; 547 if( pBt ){ 548 Pager *pPager = sqlite3BtreePager(pBt); 549 sqlite3PagerShrink(pPager); 550 } 551 } 552 sqlite3BtreeLeaveAll(db); 553 sqlite3_mutex_leave(db->mutex); 554 return SQLITE_OK; 555 } 556 557 /* 558 ** Configuration settings for an individual database connection 559 */ 560 int sqlite3_db_config(sqlite3 *db, int op, ...){ 561 va_list ap; 562 int rc; 563 va_start(ap, op); 564 switch( op ){ 565 case SQLITE_DBCONFIG_LOOKASIDE: { 566 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 567 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 568 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 569 rc = setupLookaside(db, pBuf, sz, cnt); 570 break; 571 } 572 default: { 573 static const struct { 574 int op; /* The opcode */ 575 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 576 } aFlagOp[] = { 577 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 578 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 579 }; 580 unsigned int i; 581 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 582 for(i=0; i<ArraySize(aFlagOp); i++){ 583 if( aFlagOp[i].op==op ){ 584 int onoff = va_arg(ap, int); 585 int *pRes = va_arg(ap, int*); 586 int oldFlags = db->flags; 587 if( onoff>0 ){ 588 db->flags |= aFlagOp[i].mask; 589 }else if( onoff==0 ){ 590 db->flags &= ~aFlagOp[i].mask; 591 } 592 if( oldFlags!=db->flags ){ 593 sqlite3ExpirePreparedStatements(db); 594 } 595 if( pRes ){ 596 *pRes = (db->flags & aFlagOp[i].mask)!=0; 597 } 598 rc = SQLITE_OK; 599 break; 600 } 601 } 602 break; 603 } 604 } 605 va_end(ap); 606 return rc; 607 } 608 609 610 /* 611 ** Return true if the buffer z[0..n-1] contains all spaces. 612 */ 613 static int allSpaces(const char *z, int n){ 614 while( n>0 && z[n-1]==' ' ){ n--; } 615 return n==0; 616 } 617 618 /* 619 ** This is the default collating function named "BINARY" which is always 620 ** available. 621 ** 622 ** If the padFlag argument is not NULL then space padding at the end 623 ** of strings is ignored. This implements the RTRIM collation. 624 */ 625 static int binCollFunc( 626 void *padFlag, 627 int nKey1, const void *pKey1, 628 int nKey2, const void *pKey2 629 ){ 630 int rc, n; 631 n = nKey1<nKey2 ? nKey1 : nKey2; 632 rc = memcmp(pKey1, pKey2, n); 633 if( rc==0 ){ 634 if( padFlag 635 && allSpaces(((char*)pKey1)+n, nKey1-n) 636 && allSpaces(((char*)pKey2)+n, nKey2-n) 637 ){ 638 /* Leave rc unchanged at 0 */ 639 }else{ 640 rc = nKey1 - nKey2; 641 } 642 } 643 return rc; 644 } 645 646 /* 647 ** Another built-in collating sequence: NOCASE. 648 ** 649 ** This collating sequence is intended to be used for "case independant 650 ** comparison". SQLite's knowledge of upper and lower case equivalents 651 ** extends only to the 26 characters used in the English language. 652 ** 653 ** At the moment there is only a UTF-8 implementation. 654 */ 655 static int nocaseCollatingFunc( 656 void *NotUsed, 657 int nKey1, const void *pKey1, 658 int nKey2, const void *pKey2 659 ){ 660 int r = sqlite3StrNICmp( 661 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 662 UNUSED_PARAMETER(NotUsed); 663 if( 0==r ){ 664 r = nKey1-nKey2; 665 } 666 return r; 667 } 668 669 /* 670 ** Return the ROWID of the most recent insert 671 */ 672 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 673 return db->lastRowid; 674 } 675 676 /* 677 ** Return the number of changes in the most recent call to sqlite3_exec(). 678 */ 679 int sqlite3_changes(sqlite3 *db){ 680 return db->nChange; 681 } 682 683 /* 684 ** Return the number of changes since the database handle was opened. 685 */ 686 int sqlite3_total_changes(sqlite3 *db){ 687 return db->nTotalChange; 688 } 689 690 /* 691 ** Close all open savepoints. This function only manipulates fields of the 692 ** database handle object, it does not close any savepoints that may be open 693 ** at the b-tree/pager level. 694 */ 695 void sqlite3CloseSavepoints(sqlite3 *db){ 696 while( db->pSavepoint ){ 697 Savepoint *pTmp = db->pSavepoint; 698 db->pSavepoint = pTmp->pNext; 699 sqlite3DbFree(db, pTmp); 700 } 701 db->nSavepoint = 0; 702 db->nStatement = 0; 703 db->isTransactionSavepoint = 0; 704 } 705 706 /* 707 ** Invoke the destructor function associated with FuncDef p, if any. Except, 708 ** if this is not the last copy of the function, do not invoke it. Multiple 709 ** copies of a single function are created when create_function() is called 710 ** with SQLITE_ANY as the encoding. 711 */ 712 static void functionDestroy(sqlite3 *db, FuncDef *p){ 713 FuncDestructor *pDestructor = p->pDestructor; 714 if( pDestructor ){ 715 pDestructor->nRef--; 716 if( pDestructor->nRef==0 ){ 717 pDestructor->xDestroy(pDestructor->pUserData); 718 sqlite3DbFree(db, pDestructor); 719 } 720 } 721 } 722 723 /* 724 ** Close an existing SQLite database 725 */ 726 int sqlite3_close(sqlite3 *db){ 727 HashElem *i; /* Hash table iterator */ 728 int j; 729 730 if( !db ){ 731 return SQLITE_OK; 732 } 733 if( !sqlite3SafetyCheckSickOrOk(db) ){ 734 return SQLITE_MISUSE_BKPT; 735 } 736 sqlite3_mutex_enter(db->mutex); 737 738 /* Force xDestroy calls on all virtual tables */ 739 sqlite3ResetInternalSchema(db, -1); 740 741 /* If a transaction is open, the ResetInternalSchema() call above 742 ** will not have called the xDisconnect() method on any virtual 743 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 744 ** call will do so. We need to do this before the check for active 745 ** SQL statements below, as the v-table implementation may be storing 746 ** some prepared statements internally. 747 */ 748 sqlite3VtabRollback(db); 749 750 /* If there are any outstanding VMs, return SQLITE_BUSY. */ 751 if( db->pVdbe ){ 752 sqlite3Error(db, SQLITE_BUSY, 753 "unable to close due to unfinalised statements"); 754 sqlite3_mutex_leave(db->mutex); 755 return SQLITE_BUSY; 756 } 757 assert( sqlite3SafetyCheckSickOrOk(db) ); 758 759 for(j=0; j<db->nDb; j++){ 760 Btree *pBt = db->aDb[j].pBt; 761 if( pBt && sqlite3BtreeIsInBackup(pBt) ){ 762 sqlite3Error(db, SQLITE_BUSY, 763 "unable to close due to unfinished backup operation"); 764 sqlite3_mutex_leave(db->mutex); 765 return SQLITE_BUSY; 766 } 767 } 768 769 /* Free any outstanding Savepoint structures. */ 770 sqlite3CloseSavepoints(db); 771 772 for(j=0; j<db->nDb; j++){ 773 struct Db *pDb = &db->aDb[j]; 774 if( pDb->pBt ){ 775 sqlite3BtreeClose(pDb->pBt); 776 pDb->pBt = 0; 777 if( j!=1 ){ 778 pDb->pSchema = 0; 779 } 780 } 781 } 782 sqlite3ResetInternalSchema(db, -1); 783 784 /* Tell the code in notify.c that the connection no longer holds any 785 ** locks and does not require any further unlock-notify callbacks. 786 */ 787 sqlite3ConnectionClosed(db); 788 789 assert( db->nDb<=2 ); 790 assert( db->aDb==db->aDbStatic ); 791 for(j=0; j<ArraySize(db->aFunc.a); j++){ 792 FuncDef *pNext, *pHash, *p; 793 for(p=db->aFunc.a[j]; p; p=pHash){ 794 pHash = p->pHash; 795 while( p ){ 796 functionDestroy(db, p); 797 pNext = p->pNext; 798 sqlite3DbFree(db, p); 799 p = pNext; 800 } 801 } 802 } 803 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 804 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 805 /* Invoke any destructors registered for collation sequence user data. */ 806 for(j=0; j<3; j++){ 807 if( pColl[j].xDel ){ 808 pColl[j].xDel(pColl[j].pUser); 809 } 810 } 811 sqlite3DbFree(db, pColl); 812 } 813 sqlite3HashClear(&db->aCollSeq); 814 #ifndef SQLITE_OMIT_VIRTUALTABLE 815 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 816 Module *pMod = (Module *)sqliteHashData(i); 817 if( pMod->xDestroy ){ 818 pMod->xDestroy(pMod->pAux); 819 } 820 sqlite3DbFree(db, pMod); 821 } 822 sqlite3HashClear(&db->aModule); 823 #endif 824 825 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 826 if( db->pErr ){ 827 sqlite3ValueFree(db->pErr); 828 } 829 sqlite3CloseExtensions(db); 830 831 db->magic = SQLITE_MAGIC_ERROR; 832 833 /* The temp-database schema is allocated differently from the other schema 834 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 835 ** So it needs to be freed here. Todo: Why not roll the temp schema into 836 ** the same sqliteMalloc() as the one that allocates the database 837 ** structure? 838 */ 839 sqlite3DbFree(db, db->aDb[1].pSchema); 840 sqlite3_mutex_leave(db->mutex); 841 db->magic = SQLITE_MAGIC_CLOSED; 842 sqlite3_mutex_free(db->mutex); 843 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 844 if( db->lookaside.bMalloced ){ 845 sqlite3_free(db->lookaside.pStart); 846 } 847 sqlite3_free(db); 848 return SQLITE_OK; 849 } 850 851 /* 852 ** Rollback all database files. 853 */ 854 void sqlite3RollbackAll(sqlite3 *db){ 855 int i; 856 int inTrans = 0; 857 assert( sqlite3_mutex_held(db->mutex) ); 858 sqlite3BeginBenignMalloc(); 859 for(i=0; i<db->nDb; i++){ 860 if( db->aDb[i].pBt ){ 861 if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ 862 inTrans = 1; 863 } 864 sqlite3BtreeRollback(db->aDb[i].pBt); 865 db->aDb[i].inTrans = 0; 866 } 867 } 868 sqlite3VtabRollback(db); 869 sqlite3EndBenignMalloc(); 870 871 if( db->flags&SQLITE_InternChanges ){ 872 sqlite3ExpirePreparedStatements(db); 873 sqlite3ResetInternalSchema(db, -1); 874 } 875 876 /* Any deferred constraint violations have now been resolved. */ 877 db->nDeferredCons = 0; 878 879 /* If one has been configured, invoke the rollback-hook callback */ 880 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 881 db->xRollbackCallback(db->pRollbackArg); 882 } 883 } 884 885 /* 886 ** Return a static string that describes the kind of error specified in the 887 ** argument. 888 */ 889 const char *sqlite3ErrStr(int rc){ 890 static const char* const aMsg[] = { 891 /* SQLITE_OK */ "not an error", 892 /* SQLITE_ERROR */ "SQL logic error or missing database", 893 /* SQLITE_INTERNAL */ 0, 894 /* SQLITE_PERM */ "access permission denied", 895 /* SQLITE_ABORT */ "callback requested query abort", 896 /* SQLITE_BUSY */ "database is locked", 897 /* SQLITE_LOCKED */ "database table is locked", 898 /* SQLITE_NOMEM */ "out of memory", 899 /* SQLITE_READONLY */ "attempt to write a readonly database", 900 /* SQLITE_INTERRUPT */ "interrupted", 901 /* SQLITE_IOERR */ "disk I/O error", 902 /* SQLITE_CORRUPT */ "database disk image is malformed", 903 /* SQLITE_NOTFOUND */ "unknown operation", 904 /* SQLITE_FULL */ "database or disk is full", 905 /* SQLITE_CANTOPEN */ "unable to open database file", 906 /* SQLITE_PROTOCOL */ "locking protocol", 907 /* SQLITE_EMPTY */ "table contains no data", 908 /* SQLITE_SCHEMA */ "database schema has changed", 909 /* SQLITE_TOOBIG */ "string or blob too big", 910 /* SQLITE_CONSTRAINT */ "constraint failed", 911 /* SQLITE_MISMATCH */ "datatype mismatch", 912 /* SQLITE_MISUSE */ "library routine called out of sequence", 913 /* SQLITE_NOLFS */ "large file support is disabled", 914 /* SQLITE_AUTH */ "authorization denied", 915 /* SQLITE_FORMAT */ "auxiliary database format error", 916 /* SQLITE_RANGE */ "bind or column index out of range", 917 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 918 }; 919 rc &= 0xff; 920 if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){ 921 return aMsg[rc]; 922 }else{ 923 return "unknown error"; 924 } 925 } 926 927 /* 928 ** This routine implements a busy callback that sleeps and tries 929 ** again until a timeout value is reached. The timeout value is 930 ** an integer number of milliseconds passed in as the first 931 ** argument. 932 */ 933 static int sqliteDefaultBusyCallback( 934 void *ptr, /* Database connection */ 935 int count /* Number of times table has been busy */ 936 ){ 937 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 938 static const u8 delays[] = 939 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 940 static const u8 totals[] = 941 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 942 # define NDELAY ArraySize(delays) 943 sqlite3 *db = (sqlite3 *)ptr; 944 int timeout = db->busyTimeout; 945 int delay, prior; 946 947 assert( count>=0 ); 948 if( count < NDELAY ){ 949 delay = delays[count]; 950 prior = totals[count]; 951 }else{ 952 delay = delays[NDELAY-1]; 953 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 954 } 955 if( prior + delay > timeout ){ 956 delay = timeout - prior; 957 if( delay<=0 ) return 0; 958 } 959 sqlite3OsSleep(db->pVfs, delay*1000); 960 return 1; 961 #else 962 sqlite3 *db = (sqlite3 *)ptr; 963 int timeout = ((sqlite3 *)ptr)->busyTimeout; 964 if( (count+1)*1000 > timeout ){ 965 return 0; 966 } 967 sqlite3OsSleep(db->pVfs, 1000000); 968 return 1; 969 #endif 970 } 971 972 /* 973 ** Invoke the given busy handler. 974 ** 975 ** This routine is called when an operation failed with a lock. 976 ** If this routine returns non-zero, the lock is retried. If it 977 ** returns 0, the operation aborts with an SQLITE_BUSY error. 978 */ 979 int sqlite3InvokeBusyHandler(BusyHandler *p){ 980 int rc; 981 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 982 rc = p->xFunc(p->pArg, p->nBusy); 983 if( rc==0 ){ 984 p->nBusy = -1; 985 }else{ 986 p->nBusy++; 987 } 988 return rc; 989 } 990 991 /* 992 ** This routine sets the busy callback for an Sqlite database to the 993 ** given callback function with the given argument. 994 */ 995 int sqlite3_busy_handler( 996 sqlite3 *db, 997 int (*xBusy)(void*,int), 998 void *pArg 999 ){ 1000 sqlite3_mutex_enter(db->mutex); 1001 db->busyHandler.xFunc = xBusy; 1002 db->busyHandler.pArg = pArg; 1003 db->busyHandler.nBusy = 0; 1004 sqlite3_mutex_leave(db->mutex); 1005 return SQLITE_OK; 1006 } 1007 1008 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1009 /* 1010 ** This routine sets the progress callback for an Sqlite database to the 1011 ** given callback function with the given argument. The progress callback will 1012 ** be invoked every nOps opcodes. 1013 */ 1014 void sqlite3_progress_handler( 1015 sqlite3 *db, 1016 int nOps, 1017 int (*xProgress)(void*), 1018 void *pArg 1019 ){ 1020 sqlite3_mutex_enter(db->mutex); 1021 if( nOps>0 ){ 1022 db->xProgress = xProgress; 1023 db->nProgressOps = nOps; 1024 db->pProgressArg = pArg; 1025 }else{ 1026 db->xProgress = 0; 1027 db->nProgressOps = 0; 1028 db->pProgressArg = 0; 1029 } 1030 sqlite3_mutex_leave(db->mutex); 1031 } 1032 #endif 1033 1034 1035 /* 1036 ** This routine installs a default busy handler that waits for the 1037 ** specified number of milliseconds before returning 0. 1038 */ 1039 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1040 if( ms>0 ){ 1041 db->busyTimeout = ms; 1042 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1043 }else{ 1044 sqlite3_busy_handler(db, 0, 0); 1045 } 1046 return SQLITE_OK; 1047 } 1048 1049 /* 1050 ** Cause any pending operation to stop at its earliest opportunity. 1051 */ 1052 void sqlite3_interrupt(sqlite3 *db){ 1053 db->u1.isInterrupted = 1; 1054 } 1055 1056 1057 /* 1058 ** This function is exactly the same as sqlite3_create_function(), except 1059 ** that it is designed to be called by internal code. The difference is 1060 ** that if a malloc() fails in sqlite3_create_function(), an error code 1061 ** is returned and the mallocFailed flag cleared. 1062 */ 1063 int sqlite3CreateFunc( 1064 sqlite3 *db, 1065 const char *zFunctionName, 1066 int nArg, 1067 int enc, 1068 void *pUserData, 1069 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1070 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1071 void (*xFinal)(sqlite3_context*), 1072 FuncDestructor *pDestructor 1073 ){ 1074 FuncDef *p; 1075 int nName; 1076 1077 assert( sqlite3_mutex_held(db->mutex) ); 1078 if( zFunctionName==0 || 1079 (xFunc && (xFinal || xStep)) || 1080 (!xFunc && (xFinal && !xStep)) || 1081 (!xFunc && (!xFinal && xStep)) || 1082 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1083 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1084 return SQLITE_MISUSE_BKPT; 1085 } 1086 1087 #ifndef SQLITE_OMIT_UTF16 1088 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1089 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1090 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1091 ** 1092 ** If SQLITE_ANY is specified, add three versions of the function 1093 ** to the hash table. 1094 */ 1095 if( enc==SQLITE_UTF16 ){ 1096 enc = SQLITE_UTF16NATIVE; 1097 }else if( enc==SQLITE_ANY ){ 1098 int rc; 1099 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 1100 pUserData, xFunc, xStep, xFinal, pDestructor); 1101 if( rc==SQLITE_OK ){ 1102 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 1103 pUserData, xFunc, xStep, xFinal, pDestructor); 1104 } 1105 if( rc!=SQLITE_OK ){ 1106 return rc; 1107 } 1108 enc = SQLITE_UTF16BE; 1109 } 1110 #else 1111 enc = SQLITE_UTF8; 1112 #endif 1113 1114 /* Check if an existing function is being overridden or deleted. If so, 1115 ** and there are active VMs, then return SQLITE_BUSY. If a function 1116 ** is being overridden/deleted but there are no active VMs, allow the 1117 ** operation to continue but invalidate all precompiled statements. 1118 */ 1119 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1120 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 1121 if( db->activeVdbeCnt ){ 1122 sqlite3Error(db, SQLITE_BUSY, 1123 "unable to delete/modify user-function due to active statements"); 1124 assert( !db->mallocFailed ); 1125 return SQLITE_BUSY; 1126 }else{ 1127 sqlite3ExpirePreparedStatements(db); 1128 } 1129 } 1130 1131 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1132 assert(p || db->mallocFailed); 1133 if( !p ){ 1134 return SQLITE_NOMEM; 1135 } 1136 1137 /* If an older version of the function with a configured destructor is 1138 ** being replaced invoke the destructor function here. */ 1139 functionDestroy(db, p); 1140 1141 if( pDestructor ){ 1142 pDestructor->nRef++; 1143 } 1144 p->pDestructor = pDestructor; 1145 p->flags = 0; 1146 p->xFunc = xFunc; 1147 p->xStep = xStep; 1148 p->xFinalize = xFinal; 1149 p->pUserData = pUserData; 1150 p->nArg = (u16)nArg; 1151 return SQLITE_OK; 1152 } 1153 1154 /* 1155 ** Create new user functions. 1156 */ 1157 int sqlite3_create_function( 1158 sqlite3 *db, 1159 const char *zFunc, 1160 int nArg, 1161 int enc, 1162 void *p, 1163 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1164 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1165 void (*xFinal)(sqlite3_context*) 1166 ){ 1167 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1168 xFinal, 0); 1169 } 1170 1171 int sqlite3_create_function_v2( 1172 sqlite3 *db, 1173 const char *zFunc, 1174 int nArg, 1175 int enc, 1176 void *p, 1177 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1178 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1179 void (*xFinal)(sqlite3_context*), 1180 void (*xDestroy)(void *) 1181 ){ 1182 int rc = SQLITE_ERROR; 1183 FuncDestructor *pArg = 0; 1184 sqlite3_mutex_enter(db->mutex); 1185 if( xDestroy ){ 1186 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1187 if( !pArg ){ 1188 xDestroy(p); 1189 goto out; 1190 } 1191 pArg->xDestroy = xDestroy; 1192 pArg->pUserData = p; 1193 } 1194 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1195 if( pArg && pArg->nRef==0 ){ 1196 assert( rc!=SQLITE_OK ); 1197 xDestroy(p); 1198 sqlite3DbFree(db, pArg); 1199 } 1200 1201 out: 1202 rc = sqlite3ApiExit(db, rc); 1203 sqlite3_mutex_leave(db->mutex); 1204 return rc; 1205 } 1206 1207 #ifndef SQLITE_OMIT_UTF16 1208 int sqlite3_create_function16( 1209 sqlite3 *db, 1210 const void *zFunctionName, 1211 int nArg, 1212 int eTextRep, 1213 void *p, 1214 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1215 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1216 void (*xFinal)(sqlite3_context*) 1217 ){ 1218 int rc; 1219 char *zFunc8; 1220 sqlite3_mutex_enter(db->mutex); 1221 assert( !db->mallocFailed ); 1222 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1223 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1224 sqlite3DbFree(db, zFunc8); 1225 rc = sqlite3ApiExit(db, rc); 1226 sqlite3_mutex_leave(db->mutex); 1227 return rc; 1228 } 1229 #endif 1230 1231 1232 /* 1233 ** Declare that a function has been overloaded by a virtual table. 1234 ** 1235 ** If the function already exists as a regular global function, then 1236 ** this routine is a no-op. If the function does not exist, then create 1237 ** a new one that always throws a run-time error. 1238 ** 1239 ** When virtual tables intend to provide an overloaded function, they 1240 ** should call this routine to make sure the global function exists. 1241 ** A global function must exist in order for name resolution to work 1242 ** properly. 1243 */ 1244 int sqlite3_overload_function( 1245 sqlite3 *db, 1246 const char *zName, 1247 int nArg 1248 ){ 1249 int nName = sqlite3Strlen30(zName); 1250 int rc = SQLITE_OK; 1251 sqlite3_mutex_enter(db->mutex); 1252 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1253 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1254 0, sqlite3InvalidFunction, 0, 0, 0); 1255 } 1256 rc = sqlite3ApiExit(db, rc); 1257 sqlite3_mutex_leave(db->mutex); 1258 return rc; 1259 } 1260 1261 #ifndef SQLITE_OMIT_TRACE 1262 /* 1263 ** Register a trace function. The pArg from the previously registered trace 1264 ** is returned. 1265 ** 1266 ** A NULL trace function means that no tracing is executes. A non-NULL 1267 ** trace is a pointer to a function that is invoked at the start of each 1268 ** SQL statement. 1269 */ 1270 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1271 void *pOld; 1272 sqlite3_mutex_enter(db->mutex); 1273 pOld = db->pTraceArg; 1274 db->xTrace = xTrace; 1275 db->pTraceArg = pArg; 1276 sqlite3_mutex_leave(db->mutex); 1277 return pOld; 1278 } 1279 /* 1280 ** Register a profile function. The pArg from the previously registered 1281 ** profile function is returned. 1282 ** 1283 ** A NULL profile function means that no profiling is executes. A non-NULL 1284 ** profile is a pointer to a function that is invoked at the conclusion of 1285 ** each SQL statement that is run. 1286 */ 1287 void *sqlite3_profile( 1288 sqlite3 *db, 1289 void (*xProfile)(void*,const char*,sqlite_uint64), 1290 void *pArg 1291 ){ 1292 void *pOld; 1293 sqlite3_mutex_enter(db->mutex); 1294 pOld = db->pProfileArg; 1295 db->xProfile = xProfile; 1296 db->pProfileArg = pArg; 1297 sqlite3_mutex_leave(db->mutex); 1298 return pOld; 1299 } 1300 #endif /* SQLITE_OMIT_TRACE */ 1301 1302 /*** EXPERIMENTAL *** 1303 ** 1304 ** Register a function to be invoked when a transaction comments. 1305 ** If the invoked function returns non-zero, then the commit becomes a 1306 ** rollback. 1307 */ 1308 void *sqlite3_commit_hook( 1309 sqlite3 *db, /* Attach the hook to this database */ 1310 int (*xCallback)(void*), /* Function to invoke on each commit */ 1311 void *pArg /* Argument to the function */ 1312 ){ 1313 void *pOld; 1314 sqlite3_mutex_enter(db->mutex); 1315 pOld = db->pCommitArg; 1316 db->xCommitCallback = xCallback; 1317 db->pCommitArg = pArg; 1318 sqlite3_mutex_leave(db->mutex); 1319 return pOld; 1320 } 1321 1322 /* 1323 ** Register a callback to be invoked each time a row is updated, 1324 ** inserted or deleted using this database connection. 1325 */ 1326 void *sqlite3_update_hook( 1327 sqlite3 *db, /* Attach the hook to this database */ 1328 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1329 void *pArg /* Argument to the function */ 1330 ){ 1331 void *pRet; 1332 sqlite3_mutex_enter(db->mutex); 1333 pRet = db->pUpdateArg; 1334 db->xUpdateCallback = xCallback; 1335 db->pUpdateArg = pArg; 1336 sqlite3_mutex_leave(db->mutex); 1337 return pRet; 1338 } 1339 1340 /* 1341 ** Register a callback to be invoked each time a transaction is rolled 1342 ** back by this database connection. 1343 */ 1344 void *sqlite3_rollback_hook( 1345 sqlite3 *db, /* Attach the hook to this database */ 1346 void (*xCallback)(void*), /* Callback function */ 1347 void *pArg /* Argument to the function */ 1348 ){ 1349 void *pRet; 1350 sqlite3_mutex_enter(db->mutex); 1351 pRet = db->pRollbackArg; 1352 db->xRollbackCallback = xCallback; 1353 db->pRollbackArg = pArg; 1354 sqlite3_mutex_leave(db->mutex); 1355 return pRet; 1356 } 1357 1358 #ifndef SQLITE_OMIT_WAL 1359 /* 1360 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1361 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1362 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1363 ** wal_autocheckpoint()). 1364 */ 1365 int sqlite3WalDefaultHook( 1366 void *pClientData, /* Argument */ 1367 sqlite3 *db, /* Connection */ 1368 const char *zDb, /* Database */ 1369 int nFrame /* Size of WAL */ 1370 ){ 1371 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1372 sqlite3BeginBenignMalloc(); 1373 sqlite3_wal_checkpoint(db, zDb); 1374 sqlite3EndBenignMalloc(); 1375 } 1376 return SQLITE_OK; 1377 } 1378 #endif /* SQLITE_OMIT_WAL */ 1379 1380 /* 1381 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1382 ** a database after committing a transaction if there are nFrame or 1383 ** more frames in the log file. Passing zero or a negative value as the 1384 ** nFrame parameter disables automatic checkpoints entirely. 1385 ** 1386 ** The callback registered by this function replaces any existing callback 1387 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1388 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1389 ** configured by this function. 1390 */ 1391 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1392 #ifdef SQLITE_OMIT_WAL 1393 UNUSED_PARAMETER(db); 1394 UNUSED_PARAMETER(nFrame); 1395 #else 1396 if( nFrame>0 ){ 1397 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1398 }else{ 1399 sqlite3_wal_hook(db, 0, 0); 1400 } 1401 #endif 1402 return SQLITE_OK; 1403 } 1404 1405 /* 1406 ** Register a callback to be invoked each time a transaction is written 1407 ** into the write-ahead-log by this database connection. 1408 */ 1409 void *sqlite3_wal_hook( 1410 sqlite3 *db, /* Attach the hook to this db handle */ 1411 int(*xCallback)(void *, sqlite3*, const char*, int), 1412 void *pArg /* First argument passed to xCallback() */ 1413 ){ 1414 #ifndef SQLITE_OMIT_WAL 1415 void *pRet; 1416 sqlite3_mutex_enter(db->mutex); 1417 pRet = db->pWalArg; 1418 db->xWalCallback = xCallback; 1419 db->pWalArg = pArg; 1420 sqlite3_mutex_leave(db->mutex); 1421 return pRet; 1422 #else 1423 return 0; 1424 #endif 1425 } 1426 1427 /* 1428 ** Checkpoint database zDb. 1429 */ 1430 int sqlite3_wal_checkpoint_v2( 1431 sqlite3 *db, /* Database handle */ 1432 const char *zDb, /* Name of attached database (or NULL) */ 1433 int eMode, /* SQLITE_CHECKPOINT_* value */ 1434 int *pnLog, /* OUT: Size of WAL log in frames */ 1435 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1436 ){ 1437 #ifdef SQLITE_OMIT_WAL 1438 return SQLITE_OK; 1439 #else 1440 int rc; /* Return code */ 1441 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1442 1443 /* Initialize the output variables to -1 in case an error occurs. */ 1444 if( pnLog ) *pnLog = -1; 1445 if( pnCkpt ) *pnCkpt = -1; 1446 1447 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); 1448 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); 1449 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); 1450 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ 1451 return SQLITE_MISUSE; 1452 } 1453 1454 sqlite3_mutex_enter(db->mutex); 1455 if( zDb && zDb[0] ){ 1456 iDb = sqlite3FindDbName(db, zDb); 1457 } 1458 if( iDb<0 ){ 1459 rc = SQLITE_ERROR; 1460 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); 1461 }else{ 1462 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1463 sqlite3Error(db, rc, 0); 1464 } 1465 rc = sqlite3ApiExit(db, rc); 1466 sqlite3_mutex_leave(db->mutex); 1467 return rc; 1468 #endif 1469 } 1470 1471 1472 /* 1473 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1474 ** to contains a zero-length string, all attached databases are 1475 ** checkpointed. 1476 */ 1477 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1478 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); 1479 } 1480 1481 #ifndef SQLITE_OMIT_WAL 1482 /* 1483 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1484 ** not currently open in WAL mode. 1485 ** 1486 ** If a transaction is open on the database being checkpointed, this 1487 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 1488 ** an error occurs while running the checkpoint, an SQLite error code is 1489 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 1490 ** 1491 ** The mutex on database handle db should be held by the caller. The mutex 1492 ** associated with the specific b-tree being checkpointed is taken by 1493 ** this function while the checkpoint is running. 1494 ** 1495 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 1496 ** checkpointed. If an error is encountered it is returned immediately - 1497 ** no attempt is made to checkpoint any remaining databases. 1498 ** 1499 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 1500 */ 1501 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 1502 int rc = SQLITE_OK; /* Return code */ 1503 int i; /* Used to iterate through attached dbs */ 1504 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 1505 1506 assert( sqlite3_mutex_held(db->mutex) ); 1507 assert( !pnLog || *pnLog==-1 ); 1508 assert( !pnCkpt || *pnCkpt==-1 ); 1509 1510 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 1511 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 1512 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 1513 pnLog = 0; 1514 pnCkpt = 0; 1515 if( rc==SQLITE_BUSY ){ 1516 bBusy = 1; 1517 rc = SQLITE_OK; 1518 } 1519 } 1520 } 1521 1522 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 1523 } 1524 #endif /* SQLITE_OMIT_WAL */ 1525 1526 /* 1527 ** This function returns true if main-memory should be used instead of 1528 ** a temporary file for transient pager files and statement journals. 1529 ** The value returned depends on the value of db->temp_store (runtime 1530 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 1531 ** following table describes the relationship between these two values 1532 ** and this functions return value. 1533 ** 1534 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1535 ** ----------------- -------------- ------------------------------ 1536 ** 0 any file (return 0) 1537 ** 1 1 file (return 0) 1538 ** 1 2 memory (return 1) 1539 ** 1 0 file (return 0) 1540 ** 2 1 file (return 0) 1541 ** 2 2 memory (return 1) 1542 ** 2 0 memory (return 1) 1543 ** 3 any memory (return 1) 1544 */ 1545 int sqlite3TempInMemory(const sqlite3 *db){ 1546 #if SQLITE_TEMP_STORE==1 1547 return ( db->temp_store==2 ); 1548 #endif 1549 #if SQLITE_TEMP_STORE==2 1550 return ( db->temp_store!=1 ); 1551 #endif 1552 #if SQLITE_TEMP_STORE==3 1553 return 1; 1554 #endif 1555 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 1556 return 0; 1557 #endif 1558 } 1559 1560 /* 1561 ** Return UTF-8 encoded English language explanation of the most recent 1562 ** error. 1563 */ 1564 const char *sqlite3_errmsg(sqlite3 *db){ 1565 const char *z; 1566 if( !db ){ 1567 return sqlite3ErrStr(SQLITE_NOMEM); 1568 } 1569 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1570 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 1571 } 1572 sqlite3_mutex_enter(db->mutex); 1573 if( db->mallocFailed ){ 1574 z = sqlite3ErrStr(SQLITE_NOMEM); 1575 }else{ 1576 z = (char*)sqlite3_value_text(db->pErr); 1577 assert( !db->mallocFailed ); 1578 if( z==0 ){ 1579 z = sqlite3ErrStr(db->errCode); 1580 } 1581 } 1582 sqlite3_mutex_leave(db->mutex); 1583 return z; 1584 } 1585 1586 #ifndef SQLITE_OMIT_UTF16 1587 /* 1588 ** Return UTF-16 encoded English language explanation of the most recent 1589 ** error. 1590 */ 1591 const void *sqlite3_errmsg16(sqlite3 *db){ 1592 static const u16 outOfMem[] = { 1593 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 1594 }; 1595 static const u16 misuse[] = { 1596 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 1597 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 1598 'c', 'a', 'l', 'l', 'e', 'd', ' ', 1599 'o', 'u', 't', ' ', 1600 'o', 'f', ' ', 1601 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 1602 }; 1603 1604 const void *z; 1605 if( !db ){ 1606 return (void *)outOfMem; 1607 } 1608 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1609 return (void *)misuse; 1610 } 1611 sqlite3_mutex_enter(db->mutex); 1612 if( db->mallocFailed ){ 1613 z = (void *)outOfMem; 1614 }else{ 1615 z = sqlite3_value_text16(db->pErr); 1616 if( z==0 ){ 1617 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1618 SQLITE_UTF8, SQLITE_STATIC); 1619 z = sqlite3_value_text16(db->pErr); 1620 } 1621 /* A malloc() may have failed within the call to sqlite3_value_text16() 1622 ** above. If this is the case, then the db->mallocFailed flag needs to 1623 ** be cleared before returning. Do this directly, instead of via 1624 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1625 */ 1626 db->mallocFailed = 0; 1627 } 1628 sqlite3_mutex_leave(db->mutex); 1629 return z; 1630 } 1631 #endif /* SQLITE_OMIT_UTF16 */ 1632 1633 /* 1634 ** Return the most recent error code generated by an SQLite routine. If NULL is 1635 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1636 */ 1637 int sqlite3_errcode(sqlite3 *db){ 1638 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1639 return SQLITE_MISUSE_BKPT; 1640 } 1641 if( !db || db->mallocFailed ){ 1642 return SQLITE_NOMEM; 1643 } 1644 return db->errCode & db->errMask; 1645 } 1646 int sqlite3_extended_errcode(sqlite3 *db){ 1647 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1648 return SQLITE_MISUSE_BKPT; 1649 } 1650 if( !db || db->mallocFailed ){ 1651 return SQLITE_NOMEM; 1652 } 1653 return db->errCode; 1654 } 1655 1656 /* 1657 ** Create a new collating function for database "db". The name is zName 1658 ** and the encoding is enc. 1659 */ 1660 static int createCollation( 1661 sqlite3* db, 1662 const char *zName, 1663 u8 enc, 1664 void* pCtx, 1665 int(*xCompare)(void*,int,const void*,int,const void*), 1666 void(*xDel)(void*) 1667 ){ 1668 CollSeq *pColl; 1669 int enc2; 1670 int nName = sqlite3Strlen30(zName); 1671 1672 assert( sqlite3_mutex_held(db->mutex) ); 1673 1674 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1675 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1676 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1677 */ 1678 enc2 = enc; 1679 testcase( enc2==SQLITE_UTF16 ); 1680 testcase( enc2==SQLITE_UTF16_ALIGNED ); 1681 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 1682 enc2 = SQLITE_UTF16NATIVE; 1683 } 1684 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 1685 return SQLITE_MISUSE_BKPT; 1686 } 1687 1688 /* Check if this call is removing or replacing an existing collation 1689 ** sequence. If so, and there are active VMs, return busy. If there 1690 ** are no active VMs, invalidate any pre-compiled statements. 1691 */ 1692 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 1693 if( pColl && pColl->xCmp ){ 1694 if( db->activeVdbeCnt ){ 1695 sqlite3Error(db, SQLITE_BUSY, 1696 "unable to delete/modify collation sequence due to active statements"); 1697 return SQLITE_BUSY; 1698 } 1699 sqlite3ExpirePreparedStatements(db); 1700 1701 /* If collation sequence pColl was created directly by a call to 1702 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1703 ** then any copies made by synthCollSeq() need to be invalidated. 1704 ** Also, collation destructor - CollSeq.xDel() - function may need 1705 ** to be called. 1706 */ 1707 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1708 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1709 int j; 1710 for(j=0; j<3; j++){ 1711 CollSeq *p = &aColl[j]; 1712 if( p->enc==pColl->enc ){ 1713 if( p->xDel ){ 1714 p->xDel(p->pUser); 1715 } 1716 p->xCmp = 0; 1717 } 1718 } 1719 } 1720 } 1721 1722 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 1723 if( pColl==0 ) return SQLITE_NOMEM; 1724 pColl->xCmp = xCompare; 1725 pColl->pUser = pCtx; 1726 pColl->xDel = xDel; 1727 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 1728 sqlite3Error(db, SQLITE_OK, 0); 1729 return SQLITE_OK; 1730 } 1731 1732 1733 /* 1734 ** This array defines hard upper bounds on limit values. The 1735 ** initializer must be kept in sync with the SQLITE_LIMIT_* 1736 ** #defines in sqlite3.h. 1737 */ 1738 static const int aHardLimit[] = { 1739 SQLITE_MAX_LENGTH, 1740 SQLITE_MAX_SQL_LENGTH, 1741 SQLITE_MAX_COLUMN, 1742 SQLITE_MAX_EXPR_DEPTH, 1743 SQLITE_MAX_COMPOUND_SELECT, 1744 SQLITE_MAX_VDBE_OP, 1745 SQLITE_MAX_FUNCTION_ARG, 1746 SQLITE_MAX_ATTACHED, 1747 SQLITE_MAX_LIKE_PATTERN_LENGTH, 1748 SQLITE_MAX_VARIABLE_NUMBER, 1749 SQLITE_MAX_TRIGGER_DEPTH, 1750 }; 1751 1752 /* 1753 ** Make sure the hard limits are set to reasonable values 1754 */ 1755 #if SQLITE_MAX_LENGTH<100 1756 # error SQLITE_MAX_LENGTH must be at least 100 1757 #endif 1758 #if SQLITE_MAX_SQL_LENGTH<100 1759 # error SQLITE_MAX_SQL_LENGTH must be at least 100 1760 #endif 1761 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 1762 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 1763 #endif 1764 #if SQLITE_MAX_COMPOUND_SELECT<2 1765 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 1766 #endif 1767 #if SQLITE_MAX_VDBE_OP<40 1768 # error SQLITE_MAX_VDBE_OP must be at least 40 1769 #endif 1770 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 1771 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 1772 #endif 1773 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 1774 # error SQLITE_MAX_ATTACHED must be between 0 and 62 1775 #endif 1776 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 1777 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 1778 #endif 1779 #if SQLITE_MAX_COLUMN>32767 1780 # error SQLITE_MAX_COLUMN must not exceed 32767 1781 #endif 1782 #if SQLITE_MAX_TRIGGER_DEPTH<1 1783 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 1784 #endif 1785 1786 1787 /* 1788 ** Change the value of a limit. Report the old value. 1789 ** If an invalid limit index is supplied, report -1. 1790 ** Make no changes but still report the old value if the 1791 ** new limit is negative. 1792 ** 1793 ** A new lower limit does not shrink existing constructs. 1794 ** It merely prevents new constructs that exceed the limit 1795 ** from forming. 1796 */ 1797 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 1798 int oldLimit; 1799 1800 1801 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 1802 ** there is a hard upper bound set at compile-time by a C preprocessor 1803 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 1804 ** "_MAX_".) 1805 */ 1806 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 1807 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 1808 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 1809 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 1810 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 1811 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 1812 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 1813 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 1814 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 1815 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 1816 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 1817 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 1818 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); 1819 1820 1821 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 1822 return -1; 1823 } 1824 oldLimit = db->aLimit[limitId]; 1825 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 1826 if( newLimit>aHardLimit[limitId] ){ 1827 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 1828 } 1829 db->aLimit[limitId] = newLimit; 1830 } 1831 return oldLimit; /* IMP: R-53341-35419 */ 1832 } 1833 1834 /* 1835 ** This function is used to parse both URIs and non-URI filenames passed by the 1836 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 1837 ** URIs specified as part of ATTACH statements. 1838 ** 1839 ** The first argument to this function is the name of the VFS to use (or 1840 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 1841 ** query parameter. The second argument contains the URI (or non-URI filename) 1842 ** itself. When this function is called the *pFlags variable should contain 1843 ** the default flags to open the database handle with. The value stored in 1844 ** *pFlags may be updated before returning if the URI filename contains 1845 ** "cache=xxx" or "mode=xxx" query parameters. 1846 ** 1847 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 1848 ** the VFS that should be used to open the database file. *pzFile is set to 1849 ** point to a buffer containing the name of the file to open. It is the 1850 ** responsibility of the caller to eventually call sqlite3_free() to release 1851 ** this buffer. 1852 ** 1853 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 1854 ** may be set to point to a buffer containing an English language error 1855 ** message. It is the responsibility of the caller to eventually release 1856 ** this buffer by calling sqlite3_free(). 1857 */ 1858 int sqlite3ParseUri( 1859 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 1860 const char *zUri, /* Nul-terminated URI to parse */ 1861 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 1862 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 1863 char **pzFile, /* OUT: Filename component of URI */ 1864 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 1865 ){ 1866 int rc = SQLITE_OK; 1867 unsigned int flags = *pFlags; 1868 const char *zVfs = zDefaultVfs; 1869 char *zFile; 1870 char c; 1871 int nUri = sqlite3Strlen30(zUri); 1872 1873 assert( *pzErrMsg==0 ); 1874 1875 if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 1876 && nUri>=5 && memcmp(zUri, "file:", 5)==0 1877 ){ 1878 char *zOpt; 1879 int eState; /* Parser state when parsing URI */ 1880 int iIn; /* Input character index */ 1881 int iOut = 0; /* Output character index */ 1882 int nByte = nUri+2; /* Bytes of space to allocate */ 1883 1884 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 1885 ** method that there may be extra parameters following the file-name. */ 1886 flags |= SQLITE_OPEN_URI; 1887 1888 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 1889 zFile = sqlite3_malloc(nByte); 1890 if( !zFile ) return SQLITE_NOMEM; 1891 1892 /* Discard the scheme and authority segments of the URI. */ 1893 if( zUri[5]=='/' && zUri[6]=='/' ){ 1894 iIn = 7; 1895 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 1896 1897 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 1898 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 1899 iIn-7, &zUri[7]); 1900 rc = SQLITE_ERROR; 1901 goto parse_uri_out; 1902 } 1903 }else{ 1904 iIn = 5; 1905 } 1906 1907 /* Copy the filename and any query parameters into the zFile buffer. 1908 ** Decode %HH escape codes along the way. 1909 ** 1910 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 1911 ** on the parsing context. As follows: 1912 ** 1913 ** 0: Parsing file-name. 1914 ** 1: Parsing name section of a name=value query parameter. 1915 ** 2: Parsing value section of a name=value query parameter. 1916 */ 1917 eState = 0; 1918 while( (c = zUri[iIn])!=0 && c!='#' ){ 1919 iIn++; 1920 if( c=='%' 1921 && sqlite3Isxdigit(zUri[iIn]) 1922 && sqlite3Isxdigit(zUri[iIn+1]) 1923 ){ 1924 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 1925 octet += sqlite3HexToInt(zUri[iIn++]); 1926 1927 assert( octet>=0 && octet<256 ); 1928 if( octet==0 ){ 1929 /* This branch is taken when "%00" appears within the URI. In this 1930 ** case we ignore all text in the remainder of the path, name or 1931 ** value currently being parsed. So ignore the current character 1932 ** and skip to the next "?", "=" or "&", as appropriate. */ 1933 while( (c = zUri[iIn])!=0 && c!='#' 1934 && (eState!=0 || c!='?') 1935 && (eState!=1 || (c!='=' && c!='&')) 1936 && (eState!=2 || c!='&') 1937 ){ 1938 iIn++; 1939 } 1940 continue; 1941 } 1942 c = octet; 1943 }else if( eState==1 && (c=='&' || c=='=') ){ 1944 if( zFile[iOut-1]==0 ){ 1945 /* An empty option name. Ignore this option altogether. */ 1946 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 1947 continue; 1948 } 1949 if( c=='&' ){ 1950 zFile[iOut++] = '\0'; 1951 }else{ 1952 eState = 2; 1953 } 1954 c = 0; 1955 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 1956 c = 0; 1957 eState = 1; 1958 } 1959 zFile[iOut++] = c; 1960 } 1961 if( eState==1 ) zFile[iOut++] = '\0'; 1962 zFile[iOut++] = '\0'; 1963 zFile[iOut++] = '\0'; 1964 1965 /* Check if there were any options specified that should be interpreted 1966 ** here. Options that are interpreted here include "vfs" and those that 1967 ** correspond to flags that may be passed to the sqlite3_open_v2() 1968 ** method. */ 1969 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 1970 while( zOpt[0] ){ 1971 int nOpt = sqlite3Strlen30(zOpt); 1972 char *zVal = &zOpt[nOpt+1]; 1973 int nVal = sqlite3Strlen30(zVal); 1974 1975 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 1976 zVfs = zVal; 1977 }else{ 1978 struct OpenMode { 1979 const char *z; 1980 int mode; 1981 } *aMode = 0; 1982 char *zModeType = 0; 1983 int mask = 0; 1984 int limit = 0; 1985 1986 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 1987 static struct OpenMode aCacheMode[] = { 1988 { "shared", SQLITE_OPEN_SHAREDCACHE }, 1989 { "private", SQLITE_OPEN_PRIVATECACHE }, 1990 { 0, 0 } 1991 }; 1992 1993 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 1994 aMode = aCacheMode; 1995 limit = mask; 1996 zModeType = "cache"; 1997 } 1998 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 1999 static struct OpenMode aOpenMode[] = { 2000 { "ro", SQLITE_OPEN_READONLY }, 2001 { "rw", SQLITE_OPEN_READWRITE }, 2002 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2003 { 0, 0 } 2004 }; 2005 2006 mask = SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 2007 aMode = aOpenMode; 2008 limit = mask & flags; 2009 zModeType = "access"; 2010 } 2011 2012 if( aMode ){ 2013 int i; 2014 int mode = 0; 2015 for(i=0; aMode[i].z; i++){ 2016 const char *z = aMode[i].z; 2017 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2018 mode = aMode[i].mode; 2019 break; 2020 } 2021 } 2022 if( mode==0 ){ 2023 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2024 rc = SQLITE_ERROR; 2025 goto parse_uri_out; 2026 } 2027 if( mode>limit ){ 2028 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2029 zModeType, zVal); 2030 rc = SQLITE_PERM; 2031 goto parse_uri_out; 2032 } 2033 flags = (flags & ~mask) | mode; 2034 } 2035 } 2036 2037 zOpt = &zVal[nVal+1]; 2038 } 2039 2040 }else{ 2041 zFile = sqlite3_malloc(nUri+2); 2042 if( !zFile ) return SQLITE_NOMEM; 2043 memcpy(zFile, zUri, nUri); 2044 zFile[nUri] = '\0'; 2045 zFile[nUri+1] = '\0'; 2046 } 2047 2048 *ppVfs = sqlite3_vfs_find(zVfs); 2049 if( *ppVfs==0 ){ 2050 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2051 rc = SQLITE_ERROR; 2052 } 2053 parse_uri_out: 2054 if( rc!=SQLITE_OK ){ 2055 sqlite3_free(zFile); 2056 zFile = 0; 2057 } 2058 *pFlags = flags; 2059 *pzFile = zFile; 2060 return rc; 2061 } 2062 2063 2064 /* 2065 ** This routine does the work of opening a database on behalf of 2066 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2067 ** is UTF-8 encoded. 2068 */ 2069 static int openDatabase( 2070 const char *zFilename, /* Database filename UTF-8 encoded */ 2071 sqlite3 **ppDb, /* OUT: Returned database handle */ 2072 unsigned int flags, /* Operational flags */ 2073 const char *zVfs /* Name of the VFS to use */ 2074 ){ 2075 sqlite3 *db; /* Store allocated handle here */ 2076 int rc; /* Return code */ 2077 int isThreadsafe; /* True for threadsafe connections */ 2078 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2079 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2080 2081 *ppDb = 0; 2082 #ifndef SQLITE_OMIT_AUTOINIT 2083 rc = sqlite3_initialize(); 2084 if( rc ) return rc; 2085 #endif 2086 2087 /* Only allow sensible combinations of bits in the flags argument. 2088 ** Throw an error if any non-sense combination is used. If we 2089 ** do not block illegal combinations here, it could trigger 2090 ** assert() statements in deeper layers. Sensible combinations 2091 ** are: 2092 ** 2093 ** 1: SQLITE_OPEN_READONLY 2094 ** 2: SQLITE_OPEN_READWRITE 2095 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2096 */ 2097 assert( SQLITE_OPEN_READONLY == 0x01 ); 2098 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2099 assert( SQLITE_OPEN_CREATE == 0x04 ); 2100 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2101 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2102 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2103 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; 2104 2105 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2106 isThreadsafe = 0; 2107 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2108 isThreadsafe = 0; 2109 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2110 isThreadsafe = 1; 2111 }else{ 2112 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2113 } 2114 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2115 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2116 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2117 flags |= SQLITE_OPEN_SHAREDCACHE; 2118 } 2119 2120 /* Remove harmful bits from the flags parameter 2121 ** 2122 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2123 ** dealt with in the previous code block. Besides these, the only 2124 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2125 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2126 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2127 ** off all other flags. 2128 */ 2129 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2130 SQLITE_OPEN_EXCLUSIVE | 2131 SQLITE_OPEN_MAIN_DB | 2132 SQLITE_OPEN_TEMP_DB | 2133 SQLITE_OPEN_TRANSIENT_DB | 2134 SQLITE_OPEN_MAIN_JOURNAL | 2135 SQLITE_OPEN_TEMP_JOURNAL | 2136 SQLITE_OPEN_SUBJOURNAL | 2137 SQLITE_OPEN_MASTER_JOURNAL | 2138 SQLITE_OPEN_NOMUTEX | 2139 SQLITE_OPEN_FULLMUTEX | 2140 SQLITE_OPEN_WAL 2141 ); 2142 2143 /* Allocate the sqlite data structure */ 2144 db = sqlite3MallocZero( sizeof(sqlite3) ); 2145 if( db==0 ) goto opendb_out; 2146 if( isThreadsafe ){ 2147 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2148 if( db->mutex==0 ){ 2149 sqlite3_free(db); 2150 db = 0; 2151 goto opendb_out; 2152 } 2153 } 2154 sqlite3_mutex_enter(db->mutex); 2155 db->errMask = 0xff; 2156 db->nDb = 2; 2157 db->magic = SQLITE_MAGIC_BUSY; 2158 db->aDb = db->aDbStatic; 2159 2160 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2161 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2162 db->autoCommit = 1; 2163 db->nextAutovac = -1; 2164 db->nextPagesize = 0; 2165 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger 2166 #if SQLITE_DEFAULT_FILE_FORMAT<4 2167 | SQLITE_LegacyFileFmt 2168 #endif 2169 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2170 | SQLITE_LoadExtension 2171 #endif 2172 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2173 | SQLITE_RecTriggers 2174 #endif 2175 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2176 | SQLITE_ForeignKeys 2177 #endif 2178 ; 2179 sqlite3HashInit(&db->aCollSeq); 2180 #ifndef SQLITE_OMIT_VIRTUALTABLE 2181 sqlite3HashInit(&db->aModule); 2182 #endif 2183 2184 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2185 ** and UTF-16, so add a version for each to avoid any unnecessary 2186 ** conversions. The only error that can occur here is a malloc() failure. 2187 */ 2188 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2189 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2190 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2191 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2192 if( db->mallocFailed ){ 2193 goto opendb_out; 2194 } 2195 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2196 assert( db->pDfltColl!=0 ); 2197 2198 /* Also add a UTF-8 case-insensitive collation sequence. */ 2199 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2200 2201 /* Parse the filename/URI argument. */ 2202 db->openFlags = flags; 2203 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2204 if( rc!=SQLITE_OK ){ 2205 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2206 sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2207 sqlite3_free(zErrMsg); 2208 goto opendb_out; 2209 } 2210 2211 /* Open the backend database driver */ 2212 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2213 flags | SQLITE_OPEN_MAIN_DB); 2214 if( rc!=SQLITE_OK ){ 2215 if( rc==SQLITE_IOERR_NOMEM ){ 2216 rc = SQLITE_NOMEM; 2217 } 2218 sqlite3Error(db, rc, 0); 2219 goto opendb_out; 2220 } 2221 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2222 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2223 2224 2225 /* The default safety_level for the main database is 'full'; for the temp 2226 ** database it is 'NONE'. This matches the pager layer defaults. 2227 */ 2228 db->aDb[0].zName = "main"; 2229 db->aDb[0].safety_level = 3; 2230 db->aDb[1].zName = "temp"; 2231 db->aDb[1].safety_level = 1; 2232 2233 db->magic = SQLITE_MAGIC_OPEN; 2234 if( db->mallocFailed ){ 2235 goto opendb_out; 2236 } 2237 2238 /* Register all built-in functions, but do not attempt to read the 2239 ** database schema yet. This is delayed until the first time the database 2240 ** is accessed. 2241 */ 2242 sqlite3Error(db, SQLITE_OK, 0); 2243 sqlite3RegisterBuiltinFunctions(db); 2244 2245 /* Load automatic extensions - extensions that have been registered 2246 ** using the sqlite3_automatic_extension() API. 2247 */ 2248 rc = sqlite3_errcode(db); 2249 if( rc==SQLITE_OK ){ 2250 sqlite3AutoLoadExtensions(db); 2251 rc = sqlite3_errcode(db); 2252 if( rc!=SQLITE_OK ){ 2253 goto opendb_out; 2254 } 2255 } 2256 2257 #ifdef SQLITE_ENABLE_FTS1 2258 if( !db->mallocFailed ){ 2259 extern int sqlite3Fts1Init(sqlite3*); 2260 rc = sqlite3Fts1Init(db); 2261 } 2262 #endif 2263 2264 #ifdef SQLITE_ENABLE_FTS2 2265 if( !db->mallocFailed && rc==SQLITE_OK ){ 2266 extern int sqlite3Fts2Init(sqlite3*); 2267 rc = sqlite3Fts2Init(db); 2268 } 2269 #endif 2270 2271 #ifdef SQLITE_ENABLE_FTS3 2272 if( !db->mallocFailed && rc==SQLITE_OK ){ 2273 rc = sqlite3Fts3Init(db); 2274 } 2275 #endif 2276 2277 #ifdef SQLITE_ENABLE_ICU 2278 if( !db->mallocFailed && rc==SQLITE_OK ){ 2279 rc = sqlite3IcuInit(db); 2280 } 2281 #endif 2282 2283 #ifdef SQLITE_ENABLE_RTREE 2284 if( !db->mallocFailed && rc==SQLITE_OK){ 2285 rc = sqlite3RtreeInit(db); 2286 } 2287 #endif 2288 2289 sqlite3Error(db, rc, 0); 2290 2291 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2292 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2293 ** mode. Doing nothing at all also makes NORMAL the default. 2294 */ 2295 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2296 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2297 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2298 SQLITE_DEFAULT_LOCKING_MODE); 2299 #endif 2300 2301 /* Enable the lookaside-malloc subsystem */ 2302 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2303 sqlite3GlobalConfig.nLookaside); 2304 2305 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2306 2307 opendb_out: 2308 sqlite3_free(zOpen); 2309 if( db ){ 2310 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 2311 sqlite3_mutex_leave(db->mutex); 2312 } 2313 rc = sqlite3_errcode(db); 2314 assert( db!=0 || rc==SQLITE_NOMEM ); 2315 if( rc==SQLITE_NOMEM ){ 2316 sqlite3_close(db); 2317 db = 0; 2318 }else if( rc!=SQLITE_OK ){ 2319 db->magic = SQLITE_MAGIC_SICK; 2320 } 2321 *ppDb = db; 2322 return sqlite3ApiExit(0, rc); 2323 } 2324 2325 /* 2326 ** Open a new database handle. 2327 */ 2328 int sqlite3_open( 2329 const char *zFilename, 2330 sqlite3 **ppDb 2331 ){ 2332 return openDatabase(zFilename, ppDb, 2333 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2334 } 2335 int sqlite3_open_v2( 2336 const char *filename, /* Database filename (UTF-8) */ 2337 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2338 int flags, /* Flags */ 2339 const char *zVfs /* Name of VFS module to use */ 2340 ){ 2341 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2342 } 2343 2344 #ifndef SQLITE_OMIT_UTF16 2345 /* 2346 ** Open a new database handle. 2347 */ 2348 int sqlite3_open16( 2349 const void *zFilename, 2350 sqlite3 **ppDb 2351 ){ 2352 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2353 sqlite3_value *pVal; 2354 int rc; 2355 2356 assert( zFilename ); 2357 assert( ppDb ); 2358 *ppDb = 0; 2359 #ifndef SQLITE_OMIT_AUTOINIT 2360 rc = sqlite3_initialize(); 2361 if( rc ) return rc; 2362 #endif 2363 pVal = sqlite3ValueNew(0); 2364 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2365 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2366 if( zFilename8 ){ 2367 rc = openDatabase(zFilename8, ppDb, 2368 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2369 assert( *ppDb || rc==SQLITE_NOMEM ); 2370 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2371 ENC(*ppDb) = SQLITE_UTF16NATIVE; 2372 } 2373 }else{ 2374 rc = SQLITE_NOMEM; 2375 } 2376 sqlite3ValueFree(pVal); 2377 2378 return sqlite3ApiExit(0, rc); 2379 } 2380 #endif /* SQLITE_OMIT_UTF16 */ 2381 2382 /* 2383 ** Register a new collation sequence with the database handle db. 2384 */ 2385 int sqlite3_create_collation( 2386 sqlite3* db, 2387 const char *zName, 2388 int enc, 2389 void* pCtx, 2390 int(*xCompare)(void*,int,const void*,int,const void*) 2391 ){ 2392 int rc; 2393 sqlite3_mutex_enter(db->mutex); 2394 assert( !db->mallocFailed ); 2395 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0); 2396 rc = sqlite3ApiExit(db, rc); 2397 sqlite3_mutex_leave(db->mutex); 2398 return rc; 2399 } 2400 2401 /* 2402 ** Register a new collation sequence with the database handle db. 2403 */ 2404 int sqlite3_create_collation_v2( 2405 sqlite3* db, 2406 const char *zName, 2407 int enc, 2408 void* pCtx, 2409 int(*xCompare)(void*,int,const void*,int,const void*), 2410 void(*xDel)(void*) 2411 ){ 2412 int rc; 2413 sqlite3_mutex_enter(db->mutex); 2414 assert( !db->mallocFailed ); 2415 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 2416 rc = sqlite3ApiExit(db, rc); 2417 sqlite3_mutex_leave(db->mutex); 2418 return rc; 2419 } 2420 2421 #ifndef SQLITE_OMIT_UTF16 2422 /* 2423 ** Register a new collation sequence with the database handle db. 2424 */ 2425 int sqlite3_create_collation16( 2426 sqlite3* db, 2427 const void *zName, 2428 int enc, 2429 void* pCtx, 2430 int(*xCompare)(void*,int,const void*,int,const void*) 2431 ){ 2432 int rc = SQLITE_OK; 2433 char *zName8; 2434 sqlite3_mutex_enter(db->mutex); 2435 assert( !db->mallocFailed ); 2436 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 2437 if( zName8 ){ 2438 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 2439 sqlite3DbFree(db, zName8); 2440 } 2441 rc = sqlite3ApiExit(db, rc); 2442 sqlite3_mutex_leave(db->mutex); 2443 return rc; 2444 } 2445 #endif /* SQLITE_OMIT_UTF16 */ 2446 2447 /* 2448 ** Register a collation sequence factory callback with the database handle 2449 ** db. Replace any previously installed collation sequence factory. 2450 */ 2451 int sqlite3_collation_needed( 2452 sqlite3 *db, 2453 void *pCollNeededArg, 2454 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 2455 ){ 2456 sqlite3_mutex_enter(db->mutex); 2457 db->xCollNeeded = xCollNeeded; 2458 db->xCollNeeded16 = 0; 2459 db->pCollNeededArg = pCollNeededArg; 2460 sqlite3_mutex_leave(db->mutex); 2461 return SQLITE_OK; 2462 } 2463 2464 #ifndef SQLITE_OMIT_UTF16 2465 /* 2466 ** Register a collation sequence factory callback with the database handle 2467 ** db. Replace any previously installed collation sequence factory. 2468 */ 2469 int sqlite3_collation_needed16( 2470 sqlite3 *db, 2471 void *pCollNeededArg, 2472 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 2473 ){ 2474 sqlite3_mutex_enter(db->mutex); 2475 db->xCollNeeded = 0; 2476 db->xCollNeeded16 = xCollNeeded16; 2477 db->pCollNeededArg = pCollNeededArg; 2478 sqlite3_mutex_leave(db->mutex); 2479 return SQLITE_OK; 2480 } 2481 #endif /* SQLITE_OMIT_UTF16 */ 2482 2483 #ifndef SQLITE_OMIT_DEPRECATED 2484 /* 2485 ** This function is now an anachronism. It used to be used to recover from a 2486 ** malloc() failure, but SQLite now does this automatically. 2487 */ 2488 int sqlite3_global_recover(void){ 2489 return SQLITE_OK; 2490 } 2491 #endif 2492 2493 /* 2494 ** Test to see whether or not the database connection is in autocommit 2495 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 2496 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 2497 ** by the next COMMIT or ROLLBACK. 2498 ** 2499 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 2500 */ 2501 int sqlite3_get_autocommit(sqlite3 *db){ 2502 return db->autoCommit; 2503 } 2504 2505 /* 2506 ** The following routines are subtitutes for constants SQLITE_CORRUPT, 2507 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 2508 ** constants. They server two purposes: 2509 ** 2510 ** 1. Serve as a convenient place to set a breakpoint in a debugger 2511 ** to detect when version error conditions occurs. 2512 ** 2513 ** 2. Invoke sqlite3_log() to provide the source code location where 2514 ** a low-level error is first detected. 2515 */ 2516 int sqlite3CorruptError(int lineno){ 2517 testcase( sqlite3GlobalConfig.xLog!=0 ); 2518 sqlite3_log(SQLITE_CORRUPT, 2519 "database corruption at line %d of [%.10s]", 2520 lineno, 20+sqlite3_sourceid()); 2521 return SQLITE_CORRUPT; 2522 } 2523 int sqlite3MisuseError(int lineno){ 2524 testcase( sqlite3GlobalConfig.xLog!=0 ); 2525 sqlite3_log(SQLITE_MISUSE, 2526 "misuse at line %d of [%.10s]", 2527 lineno, 20+sqlite3_sourceid()); 2528 return SQLITE_MISUSE; 2529 } 2530 int sqlite3CantopenError(int lineno){ 2531 testcase( sqlite3GlobalConfig.xLog!=0 ); 2532 sqlite3_log(SQLITE_CANTOPEN, 2533 "cannot open file at line %d of [%.10s]", 2534 lineno, 20+sqlite3_sourceid()); 2535 return SQLITE_CANTOPEN; 2536 } 2537 2538 2539 #ifndef SQLITE_OMIT_DEPRECATED 2540 /* 2541 ** This is a convenience routine that makes sure that all thread-specific 2542 ** data for this thread has been deallocated. 2543 ** 2544 ** SQLite no longer uses thread-specific data so this routine is now a 2545 ** no-op. It is retained for historical compatibility. 2546 */ 2547 void sqlite3_thread_cleanup(void){ 2548 } 2549 #endif 2550 2551 /* 2552 ** Return meta information about a specific column of a database table. 2553 ** See comment in sqlite3.h (sqlite.h.in) for details. 2554 */ 2555 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2556 int sqlite3_table_column_metadata( 2557 sqlite3 *db, /* Connection handle */ 2558 const char *zDbName, /* Database name or NULL */ 2559 const char *zTableName, /* Table name */ 2560 const char *zColumnName, /* Column name */ 2561 char const **pzDataType, /* OUTPUT: Declared data type */ 2562 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 2563 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 2564 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 2565 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 2566 ){ 2567 int rc; 2568 char *zErrMsg = 0; 2569 Table *pTab = 0; 2570 Column *pCol = 0; 2571 int iCol; 2572 2573 char const *zDataType = 0; 2574 char const *zCollSeq = 0; 2575 int notnull = 0; 2576 int primarykey = 0; 2577 int autoinc = 0; 2578 2579 /* Ensure the database schema has been loaded */ 2580 sqlite3_mutex_enter(db->mutex); 2581 sqlite3BtreeEnterAll(db); 2582 rc = sqlite3Init(db, &zErrMsg); 2583 if( SQLITE_OK!=rc ){ 2584 goto error_out; 2585 } 2586 2587 /* Locate the table in question */ 2588 pTab = sqlite3FindTable(db, zTableName, zDbName); 2589 if( !pTab || pTab->pSelect ){ 2590 pTab = 0; 2591 goto error_out; 2592 } 2593 2594 /* Find the column for which info is requested */ 2595 if( sqlite3IsRowid(zColumnName) ){ 2596 iCol = pTab->iPKey; 2597 if( iCol>=0 ){ 2598 pCol = &pTab->aCol[iCol]; 2599 } 2600 }else{ 2601 for(iCol=0; iCol<pTab->nCol; iCol++){ 2602 pCol = &pTab->aCol[iCol]; 2603 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 2604 break; 2605 } 2606 } 2607 if( iCol==pTab->nCol ){ 2608 pTab = 0; 2609 goto error_out; 2610 } 2611 } 2612 2613 /* The following block stores the meta information that will be returned 2614 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 2615 ** and autoinc. At this point there are two possibilities: 2616 ** 2617 ** 1. The specified column name was rowid", "oid" or "_rowid_" 2618 ** and there is no explicitly declared IPK column. 2619 ** 2620 ** 2. The table is not a view and the column name identified an 2621 ** explicitly declared column. Copy meta information from *pCol. 2622 */ 2623 if( pCol ){ 2624 zDataType = pCol->zType; 2625 zCollSeq = pCol->zColl; 2626 notnull = pCol->notNull!=0; 2627 primarykey = pCol->isPrimKey!=0; 2628 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 2629 }else{ 2630 zDataType = "INTEGER"; 2631 primarykey = 1; 2632 } 2633 if( !zCollSeq ){ 2634 zCollSeq = "BINARY"; 2635 } 2636 2637 error_out: 2638 sqlite3BtreeLeaveAll(db); 2639 2640 /* Whether the function call succeeded or failed, set the output parameters 2641 ** to whatever their local counterparts contain. If an error did occur, 2642 ** this has the effect of zeroing all output parameters. 2643 */ 2644 if( pzDataType ) *pzDataType = zDataType; 2645 if( pzCollSeq ) *pzCollSeq = zCollSeq; 2646 if( pNotNull ) *pNotNull = notnull; 2647 if( pPrimaryKey ) *pPrimaryKey = primarykey; 2648 if( pAutoinc ) *pAutoinc = autoinc; 2649 2650 if( SQLITE_OK==rc && !pTab ){ 2651 sqlite3DbFree(db, zErrMsg); 2652 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2653 zColumnName); 2654 rc = SQLITE_ERROR; 2655 } 2656 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2657 sqlite3DbFree(db, zErrMsg); 2658 rc = sqlite3ApiExit(db, rc); 2659 sqlite3_mutex_leave(db->mutex); 2660 return rc; 2661 } 2662 #endif 2663 2664 /* 2665 ** Sleep for a little while. Return the amount of time slept. 2666 */ 2667 int sqlite3_sleep(int ms){ 2668 sqlite3_vfs *pVfs; 2669 int rc; 2670 pVfs = sqlite3_vfs_find(0); 2671 if( pVfs==0 ) return 0; 2672 2673 /* This function works in milliseconds, but the underlying OsSleep() 2674 ** API uses microseconds. Hence the 1000's. 2675 */ 2676 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2677 return rc; 2678 } 2679 2680 /* 2681 ** Enable or disable the extended result codes. 2682 */ 2683 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2684 sqlite3_mutex_enter(db->mutex); 2685 db->errMask = onoff ? 0xffffffff : 0xff; 2686 sqlite3_mutex_leave(db->mutex); 2687 return SQLITE_OK; 2688 } 2689 2690 /* 2691 ** Invoke the xFileControl method on a particular database. 2692 */ 2693 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2694 int rc = SQLITE_ERROR; 2695 int iDb; 2696 sqlite3_mutex_enter(db->mutex); 2697 if( zDbName==0 ){ 2698 iDb = 0; 2699 }else{ 2700 for(iDb=0; iDb<db->nDb; iDb++){ 2701 if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; 2702 } 2703 } 2704 if( iDb<db->nDb ){ 2705 Btree *pBtree = db->aDb[iDb].pBt; 2706 if( pBtree ){ 2707 Pager *pPager; 2708 sqlite3_file *fd; 2709 sqlite3BtreeEnter(pBtree); 2710 pPager = sqlite3BtreePager(pBtree); 2711 assert( pPager!=0 ); 2712 fd = sqlite3PagerFile(pPager); 2713 assert( fd!=0 ); 2714 if( op==SQLITE_FCNTL_FILE_POINTER ){ 2715 *(sqlite3_file**)pArg = fd; 2716 rc = SQLITE_OK; 2717 }else if( fd->pMethods ){ 2718 rc = sqlite3OsFileControl(fd, op, pArg); 2719 }else{ 2720 rc = SQLITE_NOTFOUND; 2721 } 2722 sqlite3BtreeLeave(pBtree); 2723 } 2724 } 2725 sqlite3_mutex_leave(db->mutex); 2726 return rc; 2727 } 2728 2729 /* 2730 ** Interface to the testing logic. 2731 */ 2732 int sqlite3_test_control(int op, ...){ 2733 int rc = 0; 2734 #ifndef SQLITE_OMIT_BUILTIN_TEST 2735 va_list ap; 2736 va_start(ap, op); 2737 switch( op ){ 2738 2739 /* 2740 ** Save the current state of the PRNG. 2741 */ 2742 case SQLITE_TESTCTRL_PRNG_SAVE: { 2743 sqlite3PrngSaveState(); 2744 break; 2745 } 2746 2747 /* 2748 ** Restore the state of the PRNG to the last state saved using 2749 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 2750 ** this verb acts like PRNG_RESET. 2751 */ 2752 case SQLITE_TESTCTRL_PRNG_RESTORE: { 2753 sqlite3PrngRestoreState(); 2754 break; 2755 } 2756 2757 /* 2758 ** Reset the PRNG back to its uninitialized state. The next call 2759 ** to sqlite3_randomness() will reseed the PRNG using a single call 2760 ** to the xRandomness method of the default VFS. 2761 */ 2762 case SQLITE_TESTCTRL_PRNG_RESET: { 2763 sqlite3PrngResetState(); 2764 break; 2765 } 2766 2767 /* 2768 ** sqlite3_test_control(BITVEC_TEST, size, program) 2769 ** 2770 ** Run a test against a Bitvec object of size. The program argument 2771 ** is an array of integers that defines the test. Return -1 on a 2772 ** memory allocation error, 0 on success, or non-zero for an error. 2773 ** See the sqlite3BitvecBuiltinTest() for additional information. 2774 */ 2775 case SQLITE_TESTCTRL_BITVEC_TEST: { 2776 int sz = va_arg(ap, int); 2777 int *aProg = va_arg(ap, int*); 2778 rc = sqlite3BitvecBuiltinTest(sz, aProg); 2779 break; 2780 } 2781 2782 /* 2783 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 2784 ** 2785 ** Register hooks to call to indicate which malloc() failures 2786 ** are benign. 2787 */ 2788 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 2789 typedef void (*void_function)(void); 2790 void_function xBenignBegin; 2791 void_function xBenignEnd; 2792 xBenignBegin = va_arg(ap, void_function); 2793 xBenignEnd = va_arg(ap, void_function); 2794 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 2795 break; 2796 } 2797 2798 /* 2799 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 2800 ** 2801 ** Set the PENDING byte to the value in the argument, if X>0. 2802 ** Make no changes if X==0. Return the value of the pending byte 2803 ** as it existing before this routine was called. 2804 ** 2805 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 2806 ** an incompatible database file format. Changing the PENDING byte 2807 ** while any database connection is open results in undefined and 2808 ** dileterious behavior. 2809 */ 2810 case SQLITE_TESTCTRL_PENDING_BYTE: { 2811 rc = PENDING_BYTE; 2812 #ifndef SQLITE_OMIT_WSD 2813 { 2814 unsigned int newVal = va_arg(ap, unsigned int); 2815 if( newVal ) sqlite3PendingByte = newVal; 2816 } 2817 #endif 2818 break; 2819 } 2820 2821 /* 2822 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 2823 ** 2824 ** This action provides a run-time test to see whether or not 2825 ** assert() was enabled at compile-time. If X is true and assert() 2826 ** is enabled, then the return value is true. If X is true and 2827 ** assert() is disabled, then the return value is zero. If X is 2828 ** false and assert() is enabled, then the assertion fires and the 2829 ** process aborts. If X is false and assert() is disabled, then the 2830 ** return value is zero. 2831 */ 2832 case SQLITE_TESTCTRL_ASSERT: { 2833 volatile int x = 0; 2834 assert( (x = va_arg(ap,int))!=0 ); 2835 rc = x; 2836 break; 2837 } 2838 2839 2840 /* 2841 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 2842 ** 2843 ** This action provides a run-time test to see how the ALWAYS and 2844 ** NEVER macros were defined at compile-time. 2845 ** 2846 ** The return value is ALWAYS(X). 2847 ** 2848 ** The recommended test is X==2. If the return value is 2, that means 2849 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 2850 ** default setting. If the return value is 1, then ALWAYS() is either 2851 ** hard-coded to true or else it asserts if its argument is false. 2852 ** The first behavior (hard-coded to true) is the case if 2853 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 2854 ** behavior (assert if the argument to ALWAYS() is false) is the case if 2855 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 2856 ** 2857 ** The run-time test procedure might look something like this: 2858 ** 2859 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 2860 ** // ALWAYS() and NEVER() are no-op pass-through macros 2861 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 2862 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 2863 ** }else{ 2864 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 2865 ** } 2866 */ 2867 case SQLITE_TESTCTRL_ALWAYS: { 2868 int x = va_arg(ap,int); 2869 rc = ALWAYS(x); 2870 break; 2871 } 2872 2873 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 2874 ** 2875 ** Set the nReserve size to N for the main database on the database 2876 ** connection db. 2877 */ 2878 case SQLITE_TESTCTRL_RESERVE: { 2879 sqlite3 *db = va_arg(ap, sqlite3*); 2880 int x = va_arg(ap,int); 2881 sqlite3_mutex_enter(db->mutex); 2882 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 2883 sqlite3_mutex_leave(db->mutex); 2884 break; 2885 } 2886 2887 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 2888 ** 2889 ** Enable or disable various optimizations for testing purposes. The 2890 ** argument N is a bitmask of optimizations to be disabled. For normal 2891 ** operation N should be 0. The idea is that a test program (like the 2892 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 2893 ** with various optimizations disabled to verify that the same answer 2894 ** is obtained in every case. 2895 */ 2896 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 2897 sqlite3 *db = va_arg(ap, sqlite3*); 2898 int x = va_arg(ap,int); 2899 db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask); 2900 break; 2901 } 2902 2903 #ifdef SQLITE_N_KEYWORD 2904 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 2905 ** 2906 ** If zWord is a keyword recognized by the parser, then return the 2907 ** number of keywords. Or if zWord is not a keyword, return 0. 2908 ** 2909 ** This test feature is only available in the amalgamation since 2910 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 2911 ** is built using separate source files. 2912 */ 2913 case SQLITE_TESTCTRL_ISKEYWORD: { 2914 const char *zWord = va_arg(ap, const char*); 2915 int n = sqlite3Strlen30(zWord); 2916 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 2917 break; 2918 } 2919 #endif 2920 2921 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 2922 ** 2923 ** Pass pFree into sqlite3ScratchFree(). 2924 ** If sz>0 then allocate a scratch buffer into pNew. 2925 */ 2926 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 2927 void *pFree, **ppNew; 2928 int sz; 2929 sz = va_arg(ap, int); 2930 ppNew = va_arg(ap, void**); 2931 pFree = va_arg(ap, void*); 2932 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 2933 sqlite3ScratchFree(pFree); 2934 break; 2935 } 2936 2937 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 2938 ** 2939 ** If parameter onoff is non-zero, configure the wrappers so that all 2940 ** subsequent calls to localtime() and variants fail. If onoff is zero, 2941 ** undo this setting. 2942 */ 2943 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 2944 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 2945 break; 2946 } 2947 2948 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2949 /* sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, 2950 ** sqlite3_stmt*,const char**); 2951 ** 2952 ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds 2953 ** a string that describes the optimized parse tree. This test-control 2954 ** returns a pointer to that string. 2955 */ 2956 case SQLITE_TESTCTRL_EXPLAIN_STMT: { 2957 sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*); 2958 const char **pzRet = va_arg(ap, const char**); 2959 *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt); 2960 break; 2961 } 2962 #endif 2963 2964 } 2965 va_end(ap); 2966 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 2967 return rc; 2968 } 2969 2970 /* 2971 ** This is a utility routine, useful to VFS implementations, that checks 2972 ** to see if a database file was a URI that contained a specific query 2973 ** parameter, and if so obtains the value of the query parameter. 2974 ** 2975 ** The zFilename argument is the filename pointer passed into the xOpen() 2976 ** method of a VFS implementation. The zParam argument is the name of the 2977 ** query parameter we seek. This routine returns the value of the zParam 2978 ** parameter if it exists. If the parameter does not exist, this routine 2979 ** returns a NULL pointer. 2980 */ 2981 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 2982 if( zFilename==0 ) return 0; 2983 zFilename += sqlite3Strlen30(zFilename) + 1; 2984 while( zFilename[0] ){ 2985 int x = strcmp(zFilename, zParam); 2986 zFilename += sqlite3Strlen30(zFilename) + 1; 2987 if( x==0 ) return zFilename; 2988 zFilename += sqlite3Strlen30(zFilename) + 1; 2989 } 2990 return 0; 2991 } 2992 2993 /* 2994 ** Return a boolean value for a query parameter. 2995 */ 2996 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 2997 const char *z = sqlite3_uri_parameter(zFilename, zParam); 2998 return z ? sqlite3GetBoolean(z) : (bDflt!=0); 2999 } 3000 3001 /* 3002 ** Return a 64-bit integer value for a query parameter. 3003 */ 3004 sqlite3_int64 sqlite3_uri_int64( 3005 const char *zFilename, /* Filename as passed to xOpen */ 3006 const char *zParam, /* URI parameter sought */ 3007 sqlite3_int64 bDflt /* return if parameter is missing */ 3008 ){ 3009 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3010 sqlite3_int64 v; 3011 if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){ 3012 bDflt = v; 3013 } 3014 return bDflt; 3015 } 3016 3017 /* 3018 ** Return the filename of the database associated with a database 3019 ** connection. 3020 */ 3021 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3022 int i; 3023 for(i=0; i<db->nDb; i++){ 3024 if( db->aDb[i].pBt && sqlite3StrICmp(zDbName, db->aDb[i].zName)==0 ){ 3025 return sqlite3BtreeGetFilename(db->aDb[i].pBt); 3026 } 3027 } 3028 return 0; 3029 } 3030