1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled with mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 /* 59 ** When compiling the test fixture or with debugging enabled (on Win32), 60 ** this variable being set to non-zero will cause OSTRACE macros to emit 61 ** extra diagnostic information. 62 */ 63 #ifdef SQLITE_HAVE_OS_TRACE 64 # ifndef SQLITE_DEBUG_OS_TRACE 65 # define SQLITE_DEBUG_OS_TRACE 0 66 # endif 67 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 68 #endif 69 70 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 71 /* 72 ** If the following function pointer is not NULL and if 73 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 74 ** I/O active are written using this function. These messages 75 ** are intended for debugging activity only. 76 */ 77 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 78 #endif 79 80 /* 81 ** If the following global variable points to a string which is the 82 ** name of a directory, then that directory will be used to store 83 ** temporary files. 84 ** 85 ** See also the "PRAGMA temp_store_directory" SQL command. 86 */ 87 char *sqlite3_temp_directory = 0; 88 89 /* 90 ** If the following global variable points to a string which is the 91 ** name of a directory, then that directory will be used to store 92 ** all database files specified with a relative pathname. 93 ** 94 ** See also the "PRAGMA data_store_directory" SQL command. 95 */ 96 char *sqlite3_data_directory = 0; 97 98 /* 99 ** Initialize SQLite. 100 ** 101 ** This routine must be called to initialize the memory allocation, 102 ** VFS, and mutex subsystems prior to doing any serious work with 103 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 104 ** this routine will be called automatically by key routines such as 105 ** sqlite3_open(). 106 ** 107 ** This routine is a no-op except on its very first call for the process, 108 ** or for the first call after a call to sqlite3_shutdown. 109 ** 110 ** The first thread to call this routine runs the initialization to 111 ** completion. If subsequent threads call this routine before the first 112 ** thread has finished the initialization process, then the subsequent 113 ** threads must block until the first thread finishes with the initialization. 114 ** 115 ** The first thread might call this routine recursively. Recursive 116 ** calls to this routine should not block, of course. Otherwise the 117 ** initialization process would never complete. 118 ** 119 ** Let X be the first thread to enter this routine. Let Y be some other 120 ** thread. Then while the initial invocation of this routine by X is 121 ** incomplete, it is required that: 122 ** 123 ** * Calls to this routine from Y must block until the outer-most 124 ** call by X completes. 125 ** 126 ** * Recursive calls to this routine from thread X return immediately 127 ** without blocking. 128 */ 129 int sqlite3_initialize(void){ 130 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 131 int rc; /* Result code */ 132 #ifdef SQLITE_EXTRA_INIT 133 int bRunExtraInit = 0; /* Extra initialization needed */ 134 #endif 135 136 #ifdef SQLITE_OMIT_WSD 137 rc = sqlite3_wsd_init(4096, 24); 138 if( rc!=SQLITE_OK ){ 139 return rc; 140 } 141 #endif 142 143 /* If the following assert() fails on some obscure processor/compiler 144 ** combination, the work-around is to set the correct pointer 145 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 146 assert( SQLITE_PTRSIZE==sizeof(char*) ); 147 148 /* If SQLite is already completely initialized, then this call 149 ** to sqlite3_initialize() should be a no-op. But the initialization 150 ** must be complete. So isInit must not be set until the very end 151 ** of this routine. 152 */ 153 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 154 155 /* Make sure the mutex subsystem is initialized. If unable to 156 ** initialize the mutex subsystem, return early with the error. 157 ** If the system is so sick that we are unable to allocate a mutex, 158 ** there is not much SQLite is going to be able to do. 159 ** 160 ** The mutex subsystem must take care of serializing its own 161 ** initialization. 162 */ 163 rc = sqlite3MutexInit(); 164 if( rc ) return rc; 165 166 /* Initialize the malloc() system and the recursive pInitMutex mutex. 167 ** This operation is protected by the STATIC_MASTER mutex. Note that 168 ** MutexAlloc() is called for a static mutex prior to initializing the 169 ** malloc subsystem - this implies that the allocation of a static 170 ** mutex must not require support from the malloc subsystem. 171 */ 172 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 173 sqlite3_mutex_enter(pMaster); 174 sqlite3GlobalConfig.isMutexInit = 1; 175 if( !sqlite3GlobalConfig.isMallocInit ){ 176 rc = sqlite3MallocInit(); 177 } 178 if( rc==SQLITE_OK ){ 179 sqlite3GlobalConfig.isMallocInit = 1; 180 if( !sqlite3GlobalConfig.pInitMutex ){ 181 sqlite3GlobalConfig.pInitMutex = 182 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 183 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 184 rc = SQLITE_NOMEM; 185 } 186 } 187 } 188 if( rc==SQLITE_OK ){ 189 sqlite3GlobalConfig.nRefInitMutex++; 190 } 191 sqlite3_mutex_leave(pMaster); 192 193 /* If rc is not SQLITE_OK at this point, then either the malloc 194 ** subsystem could not be initialized or the system failed to allocate 195 ** the pInitMutex mutex. Return an error in either case. */ 196 if( rc!=SQLITE_OK ){ 197 return rc; 198 } 199 200 /* Do the rest of the initialization under the recursive mutex so 201 ** that we will be able to handle recursive calls into 202 ** sqlite3_initialize(). The recursive calls normally come through 203 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 204 ** recursive calls might also be possible. 205 ** 206 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 207 ** to the xInit method, so the xInit method need not be threadsafe. 208 ** 209 ** The following mutex is what serializes access to the appdef pcache xInit 210 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 211 ** call to sqlite3PcacheInitialize(). 212 */ 213 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 214 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 215 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 216 sqlite3GlobalConfig.inProgress = 1; 217 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 218 sqlite3RegisterGlobalFunctions(); 219 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 220 rc = sqlite3PcacheInitialize(); 221 } 222 if( rc==SQLITE_OK ){ 223 sqlite3GlobalConfig.isPCacheInit = 1; 224 rc = sqlite3OsInit(); 225 } 226 if( rc==SQLITE_OK ){ 227 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 228 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 229 sqlite3GlobalConfig.isInit = 1; 230 #ifdef SQLITE_EXTRA_INIT 231 bRunExtraInit = 1; 232 #endif 233 } 234 sqlite3GlobalConfig.inProgress = 0; 235 } 236 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 237 238 /* Go back under the static mutex and clean up the recursive 239 ** mutex to prevent a resource leak. 240 */ 241 sqlite3_mutex_enter(pMaster); 242 sqlite3GlobalConfig.nRefInitMutex--; 243 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 244 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 245 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 246 sqlite3GlobalConfig.pInitMutex = 0; 247 } 248 sqlite3_mutex_leave(pMaster); 249 250 /* The following is just a sanity check to make sure SQLite has 251 ** been compiled correctly. It is important to run this code, but 252 ** we don't want to run it too often and soak up CPU cycles for no 253 ** reason. So we run it once during initialization. 254 */ 255 #ifndef NDEBUG 256 #ifndef SQLITE_OMIT_FLOATING_POINT 257 /* This section of code's only "output" is via assert() statements. */ 258 if ( rc==SQLITE_OK ){ 259 u64 x = (((u64)1)<<63)-1; 260 double y; 261 assert(sizeof(x)==8); 262 assert(sizeof(x)==sizeof(y)); 263 memcpy(&y, &x, 8); 264 assert( sqlite3IsNaN(y) ); 265 } 266 #endif 267 #endif 268 269 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 270 ** compile-time option. 271 */ 272 #ifdef SQLITE_EXTRA_INIT 273 if( bRunExtraInit ){ 274 int SQLITE_EXTRA_INIT(const char*); 275 rc = SQLITE_EXTRA_INIT(0); 276 } 277 #endif 278 279 return rc; 280 } 281 282 /* 283 ** Undo the effects of sqlite3_initialize(). Must not be called while 284 ** there are outstanding database connections or memory allocations or 285 ** while any part of SQLite is otherwise in use in any thread. This 286 ** routine is not threadsafe. But it is safe to invoke this routine 287 ** on when SQLite is already shut down. If SQLite is already shut down 288 ** when this routine is invoked, then this routine is a harmless no-op. 289 */ 290 int sqlite3_shutdown(void){ 291 #ifdef SQLITE_OMIT_WSD 292 int rc = sqlite3_wsd_init(4096, 24); 293 if( rc!=SQLITE_OK ){ 294 return rc; 295 } 296 #endif 297 298 if( sqlite3GlobalConfig.isInit ){ 299 #ifdef SQLITE_EXTRA_SHUTDOWN 300 void SQLITE_EXTRA_SHUTDOWN(void); 301 SQLITE_EXTRA_SHUTDOWN(); 302 #endif 303 sqlite3_os_end(); 304 sqlite3_reset_auto_extension(); 305 sqlite3GlobalConfig.isInit = 0; 306 } 307 if( sqlite3GlobalConfig.isPCacheInit ){ 308 sqlite3PcacheShutdown(); 309 sqlite3GlobalConfig.isPCacheInit = 0; 310 } 311 if( sqlite3GlobalConfig.isMallocInit ){ 312 sqlite3MallocEnd(); 313 sqlite3GlobalConfig.isMallocInit = 0; 314 315 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 316 /* The heap subsystem has now been shutdown and these values are supposed 317 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 318 ** which would rely on that heap subsystem; therefore, make sure these 319 ** values cannot refer to heap memory that was just invalidated when the 320 ** heap subsystem was shutdown. This is only done if the current call to 321 ** this function resulted in the heap subsystem actually being shutdown. 322 */ 323 sqlite3_data_directory = 0; 324 sqlite3_temp_directory = 0; 325 #endif 326 } 327 if( sqlite3GlobalConfig.isMutexInit ){ 328 sqlite3MutexEnd(); 329 sqlite3GlobalConfig.isMutexInit = 0; 330 } 331 332 return SQLITE_OK; 333 } 334 335 /* 336 ** This API allows applications to modify the global configuration of 337 ** the SQLite library at run-time. 338 ** 339 ** This routine should only be called when there are no outstanding 340 ** database connections or memory allocations. This routine is not 341 ** threadsafe. Failure to heed these warnings can lead to unpredictable 342 ** behavior. 343 */ 344 int sqlite3_config(int op, ...){ 345 va_list ap; 346 int rc = SQLITE_OK; 347 348 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 349 ** the SQLite library is in use. */ 350 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 351 352 va_start(ap, op); 353 switch( op ){ 354 355 /* Mutex configuration options are only available in a threadsafe 356 ** compile. 357 */ 358 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 359 case SQLITE_CONFIG_SINGLETHREAD: { 360 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 361 ** Single-thread. */ 362 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 363 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 364 break; 365 } 366 #endif 367 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 368 case SQLITE_CONFIG_MULTITHREAD: { 369 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 370 ** Multi-thread. */ 371 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 372 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 373 break; 374 } 375 #endif 376 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 377 case SQLITE_CONFIG_SERIALIZED: { 378 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 379 ** Serialized. */ 380 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 381 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 382 break; 383 } 384 #endif 385 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 386 case SQLITE_CONFIG_MUTEX: { 387 /* Specify an alternative mutex implementation */ 388 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 389 break; 390 } 391 #endif 392 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 393 case SQLITE_CONFIG_GETMUTEX: { 394 /* Retrieve the current mutex implementation */ 395 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 396 break; 397 } 398 #endif 399 400 case SQLITE_CONFIG_MALLOC: { 401 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 402 ** single argument which is a pointer to an instance of the 403 ** sqlite3_mem_methods structure. The argument specifies alternative 404 ** low-level memory allocation routines to be used in place of the memory 405 ** allocation routines built into SQLite. */ 406 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 407 break; 408 } 409 case SQLITE_CONFIG_GETMALLOC: { 410 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 411 ** single argument which is a pointer to an instance of the 412 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 413 ** filled with the currently defined memory allocation routines. */ 414 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 415 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 416 break; 417 } 418 case SQLITE_CONFIG_MEMSTATUS: { 419 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 420 ** single argument of type int, interpreted as a boolean, which enables 421 ** or disables the collection of memory allocation statistics. */ 422 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 423 break; 424 } 425 case SQLITE_CONFIG_SCRATCH: { 426 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 427 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 428 ** which the scratch allocations will be drawn, the size of each scratch 429 ** allocation (sz), and the maximum number of scratch allocations (N). */ 430 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 431 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 432 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 433 break; 434 } 435 case SQLITE_CONFIG_PAGECACHE: { 436 /* EVIDENCE-OF: R-31408-40510 There are three arguments to 437 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size 438 ** of each page buffer (sz), and the number of pages (N). */ 439 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 440 sqlite3GlobalConfig.szPage = va_arg(ap, int); 441 sqlite3GlobalConfig.nPage = va_arg(ap, int); 442 break; 443 } 444 case SQLITE_CONFIG_PCACHE_HDRSZ: { 445 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 446 ** a single parameter which is a pointer to an integer and writes into 447 ** that integer the number of extra bytes per page required for each page 448 ** in SQLITE_CONFIG_PAGECACHE. */ 449 *va_arg(ap, int*) = 450 sqlite3HeaderSizeBtree() + 451 sqlite3HeaderSizePcache() + 452 sqlite3HeaderSizePcache1(); 453 break; 454 } 455 456 case SQLITE_CONFIG_PCACHE: { 457 /* no-op */ 458 break; 459 } 460 case SQLITE_CONFIG_GETPCACHE: { 461 /* now an error */ 462 rc = SQLITE_ERROR; 463 break; 464 } 465 466 case SQLITE_CONFIG_PCACHE2: { 467 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 468 ** single argument which is a pointer to an sqlite3_pcache_methods2 469 ** object. This object specifies the interface to a custom page cache 470 ** implementation. */ 471 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 472 break; 473 } 474 case SQLITE_CONFIG_GETPCACHE2: { 475 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 476 ** single argument which is a pointer to an sqlite3_pcache_methods2 477 ** object. SQLite copies of the current page cache implementation into 478 ** that object. */ 479 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 480 sqlite3PCacheSetDefault(); 481 } 482 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 483 break; 484 } 485 486 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 487 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 488 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 489 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 490 case SQLITE_CONFIG_HEAP: { 491 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 492 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 493 ** number of bytes in the memory buffer, and the minimum allocation size. 494 */ 495 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 496 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 497 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 498 499 if( sqlite3GlobalConfig.mnReq<1 ){ 500 sqlite3GlobalConfig.mnReq = 1; 501 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 502 /* cap min request size at 2^12 */ 503 sqlite3GlobalConfig.mnReq = (1<<12); 504 } 505 506 if( sqlite3GlobalConfig.pHeap==0 ){ 507 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 508 ** is NULL, then SQLite reverts to using its default memory allocator 509 ** (the system malloc() implementation), undoing any prior invocation of 510 ** SQLITE_CONFIG_MALLOC. 511 ** 512 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 513 ** revert to its default implementation when sqlite3_initialize() is run 514 */ 515 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 516 }else{ 517 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 518 ** alternative memory allocator is engaged to handle all of SQLites 519 ** memory allocation needs. */ 520 #ifdef SQLITE_ENABLE_MEMSYS3 521 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 522 #endif 523 #ifdef SQLITE_ENABLE_MEMSYS5 524 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 525 #endif 526 } 527 break; 528 } 529 #endif 530 531 case SQLITE_CONFIG_LOOKASIDE: { 532 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 533 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 534 break; 535 } 536 537 /* Record a pointer to the logger function and its first argument. 538 ** The default is NULL. Logging is disabled if the function pointer is 539 ** NULL. 540 */ 541 case SQLITE_CONFIG_LOG: { 542 /* MSVC is picky about pulling func ptrs from va lists. 543 ** http://support.microsoft.com/kb/47961 544 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 545 */ 546 typedef void(*LOGFUNC_t)(void*,int,const char*); 547 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 548 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 549 break; 550 } 551 552 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 553 ** can be changed at start-time using the 554 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 555 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 556 */ 557 case SQLITE_CONFIG_URI: { 558 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 559 ** argument of type int. If non-zero, then URI handling is globally 560 ** enabled. If the parameter is zero, then URI handling is globally 561 ** disabled. */ 562 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 563 break; 564 } 565 566 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 567 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 568 ** option takes a single integer argument which is interpreted as a 569 ** boolean in order to enable or disable the use of covering indices for 570 ** full table scans in the query optimizer. */ 571 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 572 break; 573 } 574 575 #ifdef SQLITE_ENABLE_SQLLOG 576 case SQLITE_CONFIG_SQLLOG: { 577 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 578 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 579 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 580 break; 581 } 582 #endif 583 584 case SQLITE_CONFIG_MMAP_SIZE: { 585 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 586 ** integer (sqlite3_int64) values that are the default mmap size limit 587 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 588 ** mmap size limit. */ 589 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 590 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 591 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 592 ** negative, then that argument is changed to its compile-time default. 593 ** 594 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 595 ** silently truncated if necessary so that it does not exceed the 596 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 597 ** compile-time option. 598 */ 599 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 600 mxMmap = SQLITE_MAX_MMAP_SIZE; 601 } 602 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 603 if( szMmap>mxMmap) szMmap = mxMmap; 604 sqlite3GlobalConfig.mxMmap = mxMmap; 605 sqlite3GlobalConfig.szMmap = szMmap; 606 break; 607 } 608 609 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 610 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 611 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 612 ** unsigned integer value that specifies the maximum size of the created 613 ** heap. */ 614 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 615 break; 616 } 617 #endif 618 619 case SQLITE_CONFIG_PMASZ: { 620 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 621 break; 622 } 623 624 default: { 625 rc = SQLITE_ERROR; 626 break; 627 } 628 } 629 va_end(ap); 630 return rc; 631 } 632 633 /* 634 ** Set up the lookaside buffers for a database connection. 635 ** Return SQLITE_OK on success. 636 ** If lookaside is already active, return SQLITE_BUSY. 637 ** 638 ** The sz parameter is the number of bytes in each lookaside slot. 639 ** The cnt parameter is the number of slots. If pStart is NULL the 640 ** space for the lookaside memory is obtained from sqlite3_malloc(). 641 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 642 ** the lookaside memory. 643 */ 644 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 645 void *pStart; 646 if( db->lookaside.nOut ){ 647 return SQLITE_BUSY; 648 } 649 /* Free any existing lookaside buffer for this handle before 650 ** allocating a new one so we don't have to have space for 651 ** both at the same time. 652 */ 653 if( db->lookaside.bMalloced ){ 654 sqlite3_free(db->lookaside.pStart); 655 } 656 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 657 ** than a pointer to be useful. 658 */ 659 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 660 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 661 if( cnt<0 ) cnt = 0; 662 if( sz==0 || cnt==0 ){ 663 sz = 0; 664 pStart = 0; 665 }else if( pBuf==0 ){ 666 sqlite3BeginBenignMalloc(); 667 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 668 sqlite3EndBenignMalloc(); 669 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 670 }else{ 671 pStart = pBuf; 672 } 673 db->lookaside.pStart = pStart; 674 db->lookaside.pFree = 0; 675 db->lookaside.sz = (u16)sz; 676 if( pStart ){ 677 int i; 678 LookasideSlot *p; 679 assert( sz > (int)sizeof(LookasideSlot*) ); 680 p = (LookasideSlot*)pStart; 681 for(i=cnt-1; i>=0; i--){ 682 p->pNext = db->lookaside.pFree; 683 db->lookaside.pFree = p; 684 p = (LookasideSlot*)&((u8*)p)[sz]; 685 } 686 db->lookaside.pEnd = p; 687 db->lookaside.bEnabled = 1; 688 db->lookaside.bMalloced = pBuf==0 ?1:0; 689 }else{ 690 db->lookaside.pStart = db; 691 db->lookaside.pEnd = db; 692 db->lookaside.bEnabled = 0; 693 db->lookaside.bMalloced = 0; 694 } 695 return SQLITE_OK; 696 } 697 698 /* 699 ** Return the mutex associated with a database connection. 700 */ 701 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 702 #ifdef SQLITE_ENABLE_API_ARMOR 703 if( !sqlite3SafetyCheckOk(db) ){ 704 (void)SQLITE_MISUSE_BKPT; 705 return 0; 706 } 707 #endif 708 return db->mutex; 709 } 710 711 /* 712 ** Free up as much memory as we can from the given database 713 ** connection. 714 */ 715 int sqlite3_db_release_memory(sqlite3 *db){ 716 int i; 717 718 #ifdef SQLITE_ENABLE_API_ARMOR 719 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 720 #endif 721 sqlite3_mutex_enter(db->mutex); 722 sqlite3BtreeEnterAll(db); 723 for(i=0; i<db->nDb; i++){ 724 Btree *pBt = db->aDb[i].pBt; 725 if( pBt ){ 726 Pager *pPager = sqlite3BtreePager(pBt); 727 sqlite3PagerShrink(pPager); 728 } 729 } 730 sqlite3BtreeLeaveAll(db); 731 sqlite3_mutex_leave(db->mutex); 732 return SQLITE_OK; 733 } 734 735 /* 736 ** Configuration settings for an individual database connection 737 */ 738 int sqlite3_db_config(sqlite3 *db, int op, ...){ 739 va_list ap; 740 int rc; 741 va_start(ap, op); 742 switch( op ){ 743 case SQLITE_DBCONFIG_LOOKASIDE: { 744 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 745 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 746 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 747 rc = setupLookaside(db, pBuf, sz, cnt); 748 break; 749 } 750 default: { 751 static const struct { 752 int op; /* The opcode */ 753 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 754 } aFlagOp[] = { 755 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 756 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 757 }; 758 unsigned int i; 759 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 760 for(i=0; i<ArraySize(aFlagOp); i++){ 761 if( aFlagOp[i].op==op ){ 762 int onoff = va_arg(ap, int); 763 int *pRes = va_arg(ap, int*); 764 int oldFlags = db->flags; 765 if( onoff>0 ){ 766 db->flags |= aFlagOp[i].mask; 767 }else if( onoff==0 ){ 768 db->flags &= ~aFlagOp[i].mask; 769 } 770 if( oldFlags!=db->flags ){ 771 sqlite3ExpirePreparedStatements(db); 772 } 773 if( pRes ){ 774 *pRes = (db->flags & aFlagOp[i].mask)!=0; 775 } 776 rc = SQLITE_OK; 777 break; 778 } 779 } 780 break; 781 } 782 } 783 va_end(ap); 784 return rc; 785 } 786 787 788 /* 789 ** Return true if the buffer z[0..n-1] contains all spaces. 790 */ 791 static int allSpaces(const char *z, int n){ 792 while( n>0 && z[n-1]==' ' ){ n--; } 793 return n==0; 794 } 795 796 /* 797 ** This is the default collating function named "BINARY" which is always 798 ** available. 799 ** 800 ** If the padFlag argument is not NULL then space padding at the end 801 ** of strings is ignored. This implements the RTRIM collation. 802 */ 803 static int binCollFunc( 804 void *padFlag, 805 int nKey1, const void *pKey1, 806 int nKey2, const void *pKey2 807 ){ 808 int rc, n; 809 n = nKey1<nKey2 ? nKey1 : nKey2; 810 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 811 ** strings byte by byte using the memcmp() function from the standard C 812 ** library. */ 813 rc = memcmp(pKey1, pKey2, n); 814 if( rc==0 ){ 815 if( padFlag 816 && allSpaces(((char*)pKey1)+n, nKey1-n) 817 && allSpaces(((char*)pKey2)+n, nKey2-n) 818 ){ 819 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 820 ** spaces at the end of either string do not change the result. In other 821 ** words, strings will compare equal to one another as long as they 822 ** differ only in the number of spaces at the end. 823 */ 824 }else{ 825 rc = nKey1 - nKey2; 826 } 827 } 828 return rc; 829 } 830 831 /* 832 ** Another built-in collating sequence: NOCASE. 833 ** 834 ** This collating sequence is intended to be used for "case independent 835 ** comparison". SQLite's knowledge of upper and lower case equivalents 836 ** extends only to the 26 characters used in the English language. 837 ** 838 ** At the moment there is only a UTF-8 implementation. 839 */ 840 static int nocaseCollatingFunc( 841 void *NotUsed, 842 int nKey1, const void *pKey1, 843 int nKey2, const void *pKey2 844 ){ 845 int r = sqlite3StrNICmp( 846 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 847 UNUSED_PARAMETER(NotUsed); 848 if( 0==r ){ 849 r = nKey1-nKey2; 850 } 851 return r; 852 } 853 854 /* 855 ** Return the ROWID of the most recent insert 856 */ 857 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 858 #ifdef SQLITE_ENABLE_API_ARMOR 859 if( !sqlite3SafetyCheckOk(db) ){ 860 (void)SQLITE_MISUSE_BKPT; 861 return 0; 862 } 863 #endif 864 return db->lastRowid; 865 } 866 867 /* 868 ** Return the number of changes in the most recent call to sqlite3_exec(). 869 */ 870 int sqlite3_changes(sqlite3 *db){ 871 #ifdef SQLITE_ENABLE_API_ARMOR 872 if( !sqlite3SafetyCheckOk(db) ){ 873 (void)SQLITE_MISUSE_BKPT; 874 return 0; 875 } 876 #endif 877 return db->nChange; 878 } 879 880 /* 881 ** Return the number of changes since the database handle was opened. 882 */ 883 int sqlite3_total_changes(sqlite3 *db){ 884 #ifdef SQLITE_ENABLE_API_ARMOR 885 if( !sqlite3SafetyCheckOk(db) ){ 886 (void)SQLITE_MISUSE_BKPT; 887 return 0; 888 } 889 #endif 890 return db->nTotalChange; 891 } 892 893 /* 894 ** Close all open savepoints. This function only manipulates fields of the 895 ** database handle object, it does not close any savepoints that may be open 896 ** at the b-tree/pager level. 897 */ 898 void sqlite3CloseSavepoints(sqlite3 *db){ 899 while( db->pSavepoint ){ 900 Savepoint *pTmp = db->pSavepoint; 901 db->pSavepoint = pTmp->pNext; 902 sqlite3DbFree(db, pTmp); 903 } 904 db->nSavepoint = 0; 905 db->nStatement = 0; 906 db->isTransactionSavepoint = 0; 907 } 908 909 /* 910 ** Invoke the destructor function associated with FuncDef p, if any. Except, 911 ** if this is not the last copy of the function, do not invoke it. Multiple 912 ** copies of a single function are created when create_function() is called 913 ** with SQLITE_ANY as the encoding. 914 */ 915 static void functionDestroy(sqlite3 *db, FuncDef *p){ 916 FuncDestructor *pDestructor = p->pDestructor; 917 if( pDestructor ){ 918 pDestructor->nRef--; 919 if( pDestructor->nRef==0 ){ 920 pDestructor->xDestroy(pDestructor->pUserData); 921 sqlite3DbFree(db, pDestructor); 922 } 923 } 924 } 925 926 /* 927 ** Disconnect all sqlite3_vtab objects that belong to database connection 928 ** db. This is called when db is being closed. 929 */ 930 static void disconnectAllVtab(sqlite3 *db){ 931 #ifndef SQLITE_OMIT_VIRTUALTABLE 932 int i; 933 sqlite3BtreeEnterAll(db); 934 for(i=0; i<db->nDb; i++){ 935 Schema *pSchema = db->aDb[i].pSchema; 936 if( db->aDb[i].pSchema ){ 937 HashElem *p; 938 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 939 Table *pTab = (Table *)sqliteHashData(p); 940 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 941 } 942 } 943 } 944 sqlite3VtabUnlockList(db); 945 sqlite3BtreeLeaveAll(db); 946 #else 947 UNUSED_PARAMETER(db); 948 #endif 949 } 950 951 /* 952 ** Return TRUE if database connection db has unfinalized prepared 953 ** statements or unfinished sqlite3_backup objects. 954 */ 955 static int connectionIsBusy(sqlite3 *db){ 956 int j; 957 assert( sqlite3_mutex_held(db->mutex) ); 958 if( db->pVdbe ) return 1; 959 for(j=0; j<db->nDb; j++){ 960 Btree *pBt = db->aDb[j].pBt; 961 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 962 } 963 return 0; 964 } 965 966 /* 967 ** Close an existing SQLite database 968 */ 969 static int sqlite3Close(sqlite3 *db, int forceZombie){ 970 if( !db ){ 971 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 972 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 973 return SQLITE_OK; 974 } 975 if( !sqlite3SafetyCheckSickOrOk(db) ){ 976 return SQLITE_MISUSE_BKPT; 977 } 978 sqlite3_mutex_enter(db->mutex); 979 980 /* Force xDisconnect calls on all virtual tables */ 981 disconnectAllVtab(db); 982 983 /* If a transaction is open, the disconnectAllVtab() call above 984 ** will not have called the xDisconnect() method on any virtual 985 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 986 ** call will do so. We need to do this before the check for active 987 ** SQL statements below, as the v-table implementation may be storing 988 ** some prepared statements internally. 989 */ 990 sqlite3VtabRollback(db); 991 992 /* Legacy behavior (sqlite3_close() behavior) is to return 993 ** SQLITE_BUSY if the connection can not be closed immediately. 994 */ 995 if( !forceZombie && connectionIsBusy(db) ){ 996 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 997 "statements or unfinished backups"); 998 sqlite3_mutex_leave(db->mutex); 999 return SQLITE_BUSY; 1000 } 1001 1002 #ifdef SQLITE_ENABLE_SQLLOG 1003 if( sqlite3GlobalConfig.xSqllog ){ 1004 /* Closing the handle. Fourth parameter is passed the value 2. */ 1005 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 1006 } 1007 #endif 1008 1009 /* Convert the connection into a zombie and then close it. 1010 */ 1011 db->magic = SQLITE_MAGIC_ZOMBIE; 1012 sqlite3LeaveMutexAndCloseZombie(db); 1013 return SQLITE_OK; 1014 } 1015 1016 /* 1017 ** Two variations on the public interface for closing a database 1018 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 1019 ** leaves the connection option if there are unfinalized prepared 1020 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 1021 ** version forces the connection to become a zombie if there are 1022 ** unclosed resources, and arranges for deallocation when the last 1023 ** prepare statement or sqlite3_backup closes. 1024 */ 1025 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 1026 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 1027 1028 1029 /* 1030 ** Close the mutex on database connection db. 1031 ** 1032 ** Furthermore, if database connection db is a zombie (meaning that there 1033 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 1034 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 1035 ** finished, then free all resources. 1036 */ 1037 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 1038 HashElem *i; /* Hash table iterator */ 1039 int j; 1040 1041 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 1042 ** or if the connection has not yet been closed by sqlite3_close_v2(), 1043 ** then just leave the mutex and return. 1044 */ 1045 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 1046 sqlite3_mutex_leave(db->mutex); 1047 return; 1048 } 1049 1050 /* If we reach this point, it means that the database connection has 1051 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 1052 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 1053 ** go ahead and free all resources. 1054 */ 1055 1056 /* If a transaction is open, roll it back. This also ensures that if 1057 ** any database schemas have been modified by an uncommitted transaction 1058 ** they are reset. And that the required b-tree mutex is held to make 1059 ** the pager rollback and schema reset an atomic operation. */ 1060 sqlite3RollbackAll(db, SQLITE_OK); 1061 1062 /* Free any outstanding Savepoint structures. */ 1063 sqlite3CloseSavepoints(db); 1064 1065 /* Close all database connections */ 1066 for(j=0; j<db->nDb; j++){ 1067 struct Db *pDb = &db->aDb[j]; 1068 if( pDb->pBt ){ 1069 sqlite3BtreeClose(pDb->pBt); 1070 pDb->pBt = 0; 1071 if( j!=1 ){ 1072 pDb->pSchema = 0; 1073 } 1074 } 1075 } 1076 /* Clear the TEMP schema separately and last */ 1077 if( db->aDb[1].pSchema ){ 1078 sqlite3SchemaClear(db->aDb[1].pSchema); 1079 } 1080 sqlite3VtabUnlockList(db); 1081 1082 /* Free up the array of auxiliary databases */ 1083 sqlite3CollapseDatabaseArray(db); 1084 assert( db->nDb<=2 ); 1085 assert( db->aDb==db->aDbStatic ); 1086 1087 /* Tell the code in notify.c that the connection no longer holds any 1088 ** locks and does not require any further unlock-notify callbacks. 1089 */ 1090 sqlite3ConnectionClosed(db); 1091 1092 for(j=0; j<ArraySize(db->aFunc.a); j++){ 1093 FuncDef *pNext, *pHash, *p; 1094 for(p=db->aFunc.a[j]; p; p=pHash){ 1095 pHash = p->pHash; 1096 while( p ){ 1097 functionDestroy(db, p); 1098 pNext = p->pNext; 1099 sqlite3DbFree(db, p); 1100 p = pNext; 1101 } 1102 } 1103 } 1104 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 1105 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 1106 /* Invoke any destructors registered for collation sequence user data. */ 1107 for(j=0; j<3; j++){ 1108 if( pColl[j].xDel ){ 1109 pColl[j].xDel(pColl[j].pUser); 1110 } 1111 } 1112 sqlite3DbFree(db, pColl); 1113 } 1114 sqlite3HashClear(&db->aCollSeq); 1115 #ifndef SQLITE_OMIT_VIRTUALTABLE 1116 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 1117 Module *pMod = (Module *)sqliteHashData(i); 1118 if( pMod->xDestroy ){ 1119 pMod->xDestroy(pMod->pAux); 1120 } 1121 sqlite3DbFree(db, pMod); 1122 } 1123 sqlite3HashClear(&db->aModule); 1124 #endif 1125 1126 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 1127 sqlite3ValueFree(db->pErr); 1128 sqlite3CloseExtensions(db); 1129 #if SQLITE_USER_AUTHENTICATION 1130 sqlite3_free(db->auth.zAuthUser); 1131 sqlite3_free(db->auth.zAuthPW); 1132 #endif 1133 1134 db->magic = SQLITE_MAGIC_ERROR; 1135 1136 /* The temp-database schema is allocated differently from the other schema 1137 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 1138 ** So it needs to be freed here. Todo: Why not roll the temp schema into 1139 ** the same sqliteMalloc() as the one that allocates the database 1140 ** structure? 1141 */ 1142 sqlite3DbFree(db, db->aDb[1].pSchema); 1143 sqlite3_mutex_leave(db->mutex); 1144 db->magic = SQLITE_MAGIC_CLOSED; 1145 sqlite3_mutex_free(db->mutex); 1146 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 1147 if( db->lookaside.bMalloced ){ 1148 sqlite3_free(db->lookaside.pStart); 1149 } 1150 sqlite3_free(db); 1151 } 1152 1153 /* 1154 ** Rollback all database files. If tripCode is not SQLITE_OK, then 1155 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 1156 ** breaker") and made to return tripCode if there are any further 1157 ** attempts to use that cursor. Read cursors remain open and valid 1158 ** but are "saved" in case the table pages are moved around. 1159 */ 1160 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 1161 int i; 1162 int inTrans = 0; 1163 int schemaChange; 1164 assert( sqlite3_mutex_held(db->mutex) ); 1165 sqlite3BeginBenignMalloc(); 1166 1167 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 1168 ** This is important in case the transaction being rolled back has 1169 ** modified the database schema. If the b-tree mutexes are not taken 1170 ** here, then another shared-cache connection might sneak in between 1171 ** the database rollback and schema reset, which can cause false 1172 ** corruption reports in some cases. */ 1173 sqlite3BtreeEnterAll(db); 1174 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 1175 1176 for(i=0; i<db->nDb; i++){ 1177 Btree *p = db->aDb[i].pBt; 1178 if( p ){ 1179 if( sqlite3BtreeIsInTrans(p) ){ 1180 inTrans = 1; 1181 } 1182 sqlite3BtreeRollback(p, tripCode, !schemaChange); 1183 } 1184 } 1185 sqlite3VtabRollback(db); 1186 sqlite3EndBenignMalloc(); 1187 1188 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 1189 sqlite3ExpirePreparedStatements(db); 1190 sqlite3ResetAllSchemasOfConnection(db); 1191 } 1192 sqlite3BtreeLeaveAll(db); 1193 1194 /* Any deferred constraint violations have now been resolved. */ 1195 db->nDeferredCons = 0; 1196 db->nDeferredImmCons = 0; 1197 db->flags &= ~SQLITE_DeferFKs; 1198 1199 /* If one has been configured, invoke the rollback-hook callback */ 1200 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 1201 db->xRollbackCallback(db->pRollbackArg); 1202 } 1203 } 1204 1205 /* 1206 ** Return a static string containing the name corresponding to the error code 1207 ** specified in the argument. 1208 */ 1209 #if defined(SQLITE_NEED_ERR_NAME) 1210 const char *sqlite3ErrName(int rc){ 1211 const char *zName = 0; 1212 int i, origRc = rc; 1213 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 1214 switch( rc ){ 1215 case SQLITE_OK: zName = "SQLITE_OK"; break; 1216 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 1217 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 1218 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 1219 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 1220 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 1221 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 1222 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 1223 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 1224 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 1225 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 1226 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 1227 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 1228 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 1229 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 1230 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 1231 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 1232 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 1233 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 1234 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 1235 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 1236 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 1237 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 1238 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 1239 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 1240 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 1241 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 1242 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 1243 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 1244 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 1245 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 1246 case SQLITE_IOERR_CHECKRESERVEDLOCK: 1247 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 1248 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 1249 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 1250 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 1251 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 1252 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 1253 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 1254 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 1255 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 1256 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 1257 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 1258 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 1259 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 1260 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 1261 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 1262 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 1263 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 1264 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 1265 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 1266 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 1267 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 1268 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 1269 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 1270 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 1271 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 1272 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 1273 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 1274 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 1275 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 1276 case SQLITE_CONSTRAINT_FOREIGNKEY: 1277 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 1278 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 1279 case SQLITE_CONSTRAINT_PRIMARYKEY: 1280 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 1281 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 1282 case SQLITE_CONSTRAINT_COMMITHOOK: 1283 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 1284 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 1285 case SQLITE_CONSTRAINT_FUNCTION: 1286 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 1287 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 1288 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 1289 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 1290 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 1291 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 1292 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 1293 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 1294 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 1295 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 1296 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 1297 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 1298 case SQLITE_NOTICE_RECOVER_ROLLBACK: 1299 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 1300 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 1301 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 1302 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 1303 } 1304 } 1305 if( zName==0 ){ 1306 static char zBuf[50]; 1307 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 1308 zName = zBuf; 1309 } 1310 return zName; 1311 } 1312 #endif 1313 1314 /* 1315 ** Return a static string that describes the kind of error specified in the 1316 ** argument. 1317 */ 1318 const char *sqlite3ErrStr(int rc){ 1319 static const char* const aMsg[] = { 1320 /* SQLITE_OK */ "not an error", 1321 /* SQLITE_ERROR */ "SQL logic error or missing database", 1322 /* SQLITE_INTERNAL */ 0, 1323 /* SQLITE_PERM */ "access permission denied", 1324 /* SQLITE_ABORT */ "callback requested query abort", 1325 /* SQLITE_BUSY */ "database is locked", 1326 /* SQLITE_LOCKED */ "database table is locked", 1327 /* SQLITE_NOMEM */ "out of memory", 1328 /* SQLITE_READONLY */ "attempt to write a readonly database", 1329 /* SQLITE_INTERRUPT */ "interrupted", 1330 /* SQLITE_IOERR */ "disk I/O error", 1331 /* SQLITE_CORRUPT */ "database disk image is malformed", 1332 /* SQLITE_NOTFOUND */ "unknown operation", 1333 /* SQLITE_FULL */ "database or disk is full", 1334 /* SQLITE_CANTOPEN */ "unable to open database file", 1335 /* SQLITE_PROTOCOL */ "locking protocol", 1336 /* SQLITE_EMPTY */ "table contains no data", 1337 /* SQLITE_SCHEMA */ "database schema has changed", 1338 /* SQLITE_TOOBIG */ "string or blob too big", 1339 /* SQLITE_CONSTRAINT */ "constraint failed", 1340 /* SQLITE_MISMATCH */ "datatype mismatch", 1341 /* SQLITE_MISUSE */ "library routine called out of sequence", 1342 /* SQLITE_NOLFS */ "large file support is disabled", 1343 /* SQLITE_AUTH */ "authorization denied", 1344 /* SQLITE_FORMAT */ "auxiliary database format error", 1345 /* SQLITE_RANGE */ "bind or column index out of range", 1346 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 1347 }; 1348 const char *zErr = "unknown error"; 1349 switch( rc ){ 1350 case SQLITE_ABORT_ROLLBACK: { 1351 zErr = "abort due to ROLLBACK"; 1352 break; 1353 } 1354 default: { 1355 rc &= 0xff; 1356 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 1357 zErr = aMsg[rc]; 1358 } 1359 break; 1360 } 1361 } 1362 return zErr; 1363 } 1364 1365 /* 1366 ** This routine implements a busy callback that sleeps and tries 1367 ** again until a timeout value is reached. The timeout value is 1368 ** an integer number of milliseconds passed in as the first 1369 ** argument. 1370 */ 1371 static int sqliteDefaultBusyCallback( 1372 void *ptr, /* Database connection */ 1373 int count /* Number of times table has been busy */ 1374 ){ 1375 #if SQLITE_OS_WIN || HAVE_USLEEP 1376 static const u8 delays[] = 1377 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 1378 static const u8 totals[] = 1379 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 1380 # define NDELAY ArraySize(delays) 1381 sqlite3 *db = (sqlite3 *)ptr; 1382 int timeout = db->busyTimeout; 1383 int delay, prior; 1384 1385 assert( count>=0 ); 1386 if( count < NDELAY ){ 1387 delay = delays[count]; 1388 prior = totals[count]; 1389 }else{ 1390 delay = delays[NDELAY-1]; 1391 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 1392 } 1393 if( prior + delay > timeout ){ 1394 delay = timeout - prior; 1395 if( delay<=0 ) return 0; 1396 } 1397 sqlite3OsSleep(db->pVfs, delay*1000); 1398 return 1; 1399 #else 1400 sqlite3 *db = (sqlite3 *)ptr; 1401 int timeout = ((sqlite3 *)ptr)->busyTimeout; 1402 if( (count+1)*1000 > timeout ){ 1403 return 0; 1404 } 1405 sqlite3OsSleep(db->pVfs, 1000000); 1406 return 1; 1407 #endif 1408 } 1409 1410 /* 1411 ** Invoke the given busy handler. 1412 ** 1413 ** This routine is called when an operation failed with a lock. 1414 ** If this routine returns non-zero, the lock is retried. If it 1415 ** returns 0, the operation aborts with an SQLITE_BUSY error. 1416 */ 1417 int sqlite3InvokeBusyHandler(BusyHandler *p){ 1418 int rc; 1419 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 1420 rc = p->xFunc(p->pArg, p->nBusy); 1421 if( rc==0 ){ 1422 p->nBusy = -1; 1423 }else{ 1424 p->nBusy++; 1425 } 1426 return rc; 1427 } 1428 1429 /* 1430 ** This routine sets the busy callback for an Sqlite database to the 1431 ** given callback function with the given argument. 1432 */ 1433 int sqlite3_busy_handler( 1434 sqlite3 *db, 1435 int (*xBusy)(void*,int), 1436 void *pArg 1437 ){ 1438 #ifdef SQLITE_ENABLE_API_ARMOR 1439 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1440 #endif 1441 sqlite3_mutex_enter(db->mutex); 1442 db->busyHandler.xFunc = xBusy; 1443 db->busyHandler.pArg = pArg; 1444 db->busyHandler.nBusy = 0; 1445 db->busyTimeout = 0; 1446 sqlite3_mutex_leave(db->mutex); 1447 return SQLITE_OK; 1448 } 1449 1450 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1451 /* 1452 ** This routine sets the progress callback for an Sqlite database to the 1453 ** given callback function with the given argument. The progress callback will 1454 ** be invoked every nOps opcodes. 1455 */ 1456 void sqlite3_progress_handler( 1457 sqlite3 *db, 1458 int nOps, 1459 int (*xProgress)(void*), 1460 void *pArg 1461 ){ 1462 #ifdef SQLITE_ENABLE_API_ARMOR 1463 if( !sqlite3SafetyCheckOk(db) ){ 1464 (void)SQLITE_MISUSE_BKPT; 1465 return; 1466 } 1467 #endif 1468 sqlite3_mutex_enter(db->mutex); 1469 if( nOps>0 ){ 1470 db->xProgress = xProgress; 1471 db->nProgressOps = (unsigned)nOps; 1472 db->pProgressArg = pArg; 1473 }else{ 1474 db->xProgress = 0; 1475 db->nProgressOps = 0; 1476 db->pProgressArg = 0; 1477 } 1478 sqlite3_mutex_leave(db->mutex); 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** This routine installs a default busy handler that waits for the 1485 ** specified number of milliseconds before returning 0. 1486 */ 1487 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 1488 #ifdef SQLITE_ENABLE_API_ARMOR 1489 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1490 #endif 1491 if( ms>0 ){ 1492 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 1493 db->busyTimeout = ms; 1494 }else{ 1495 sqlite3_busy_handler(db, 0, 0); 1496 } 1497 return SQLITE_OK; 1498 } 1499 1500 /* 1501 ** Cause any pending operation to stop at its earliest opportunity. 1502 */ 1503 void sqlite3_interrupt(sqlite3 *db){ 1504 #ifdef SQLITE_ENABLE_API_ARMOR 1505 if( !sqlite3SafetyCheckOk(db) ){ 1506 (void)SQLITE_MISUSE_BKPT; 1507 return; 1508 } 1509 #endif 1510 db->u1.isInterrupted = 1; 1511 } 1512 1513 1514 /* 1515 ** This function is exactly the same as sqlite3_create_function(), except 1516 ** that it is designed to be called by internal code. The difference is 1517 ** that if a malloc() fails in sqlite3_create_function(), an error code 1518 ** is returned and the mallocFailed flag cleared. 1519 */ 1520 int sqlite3CreateFunc( 1521 sqlite3 *db, 1522 const char *zFunctionName, 1523 int nArg, 1524 int enc, 1525 void *pUserData, 1526 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1527 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1528 void (*xFinal)(sqlite3_context*), 1529 FuncDestructor *pDestructor 1530 ){ 1531 FuncDef *p; 1532 int nName; 1533 int extraFlags; 1534 1535 assert( sqlite3_mutex_held(db->mutex) ); 1536 if( zFunctionName==0 || 1537 (xFunc && (xFinal || xStep)) || 1538 (!xFunc && (xFinal && !xStep)) || 1539 (!xFunc && (!xFinal && xStep)) || 1540 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1541 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1542 return SQLITE_MISUSE_BKPT; 1543 } 1544 1545 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 1546 extraFlags = enc & SQLITE_DETERMINISTIC; 1547 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 1548 1549 #ifndef SQLITE_OMIT_UTF16 1550 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1551 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1552 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1553 ** 1554 ** If SQLITE_ANY is specified, add three versions of the function 1555 ** to the hash table. 1556 */ 1557 if( enc==SQLITE_UTF16 ){ 1558 enc = SQLITE_UTF16NATIVE; 1559 }else if( enc==SQLITE_ANY ){ 1560 int rc; 1561 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 1562 pUserData, xFunc, xStep, xFinal, pDestructor); 1563 if( rc==SQLITE_OK ){ 1564 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 1565 pUserData, xFunc, xStep, xFinal, pDestructor); 1566 } 1567 if( rc!=SQLITE_OK ){ 1568 return rc; 1569 } 1570 enc = SQLITE_UTF16BE; 1571 } 1572 #else 1573 enc = SQLITE_UTF8; 1574 #endif 1575 1576 /* Check if an existing function is being overridden or deleted. If so, 1577 ** and there are active VMs, then return SQLITE_BUSY. If a function 1578 ** is being overridden/deleted but there are no active VMs, allow the 1579 ** operation to continue but invalidate all precompiled statements. 1580 */ 1581 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1582 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 1583 if( db->nVdbeActive ){ 1584 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 1585 "unable to delete/modify user-function due to active statements"); 1586 assert( !db->mallocFailed ); 1587 return SQLITE_BUSY; 1588 }else{ 1589 sqlite3ExpirePreparedStatements(db); 1590 } 1591 } 1592 1593 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1594 assert(p || db->mallocFailed); 1595 if( !p ){ 1596 return SQLITE_NOMEM; 1597 } 1598 1599 /* If an older version of the function with a configured destructor is 1600 ** being replaced invoke the destructor function here. */ 1601 functionDestroy(db, p); 1602 1603 if( pDestructor ){ 1604 pDestructor->nRef++; 1605 } 1606 p->pDestructor = pDestructor; 1607 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 1608 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 1609 p->xFunc = xFunc; 1610 p->xStep = xStep; 1611 p->xFinalize = xFinal; 1612 p->pUserData = pUserData; 1613 p->nArg = (u16)nArg; 1614 return SQLITE_OK; 1615 } 1616 1617 /* 1618 ** Create new user functions. 1619 */ 1620 int sqlite3_create_function( 1621 sqlite3 *db, 1622 const char *zFunc, 1623 int nArg, 1624 int enc, 1625 void *p, 1626 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1627 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1628 void (*xFinal)(sqlite3_context*) 1629 ){ 1630 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1631 xFinal, 0); 1632 } 1633 1634 int sqlite3_create_function_v2( 1635 sqlite3 *db, 1636 const char *zFunc, 1637 int nArg, 1638 int enc, 1639 void *p, 1640 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1641 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1642 void (*xFinal)(sqlite3_context*), 1643 void (*xDestroy)(void *) 1644 ){ 1645 int rc = SQLITE_ERROR; 1646 FuncDestructor *pArg = 0; 1647 1648 #ifdef SQLITE_ENABLE_API_ARMOR 1649 if( !sqlite3SafetyCheckOk(db) ){ 1650 return SQLITE_MISUSE_BKPT; 1651 } 1652 #endif 1653 sqlite3_mutex_enter(db->mutex); 1654 if( xDestroy ){ 1655 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1656 if( !pArg ){ 1657 xDestroy(p); 1658 goto out; 1659 } 1660 pArg->xDestroy = xDestroy; 1661 pArg->pUserData = p; 1662 } 1663 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1664 if( pArg && pArg->nRef==0 ){ 1665 assert( rc!=SQLITE_OK ); 1666 xDestroy(p); 1667 sqlite3DbFree(db, pArg); 1668 } 1669 1670 out: 1671 rc = sqlite3ApiExit(db, rc); 1672 sqlite3_mutex_leave(db->mutex); 1673 return rc; 1674 } 1675 1676 #ifndef SQLITE_OMIT_UTF16 1677 int sqlite3_create_function16( 1678 sqlite3 *db, 1679 const void *zFunctionName, 1680 int nArg, 1681 int eTextRep, 1682 void *p, 1683 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1684 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1685 void (*xFinal)(sqlite3_context*) 1686 ){ 1687 int rc; 1688 char *zFunc8; 1689 1690 #ifdef SQLITE_ENABLE_API_ARMOR 1691 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 1692 #endif 1693 sqlite3_mutex_enter(db->mutex); 1694 assert( !db->mallocFailed ); 1695 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1696 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1697 sqlite3DbFree(db, zFunc8); 1698 rc = sqlite3ApiExit(db, rc); 1699 sqlite3_mutex_leave(db->mutex); 1700 return rc; 1701 } 1702 #endif 1703 1704 1705 /* 1706 ** Declare that a function has been overloaded by a virtual table. 1707 ** 1708 ** If the function already exists as a regular global function, then 1709 ** this routine is a no-op. If the function does not exist, then create 1710 ** a new one that always throws a run-time error. 1711 ** 1712 ** When virtual tables intend to provide an overloaded function, they 1713 ** should call this routine to make sure the global function exists. 1714 ** A global function must exist in order for name resolution to work 1715 ** properly. 1716 */ 1717 int sqlite3_overload_function( 1718 sqlite3 *db, 1719 const char *zName, 1720 int nArg 1721 ){ 1722 int nName = sqlite3Strlen30(zName); 1723 int rc = SQLITE_OK; 1724 1725 #ifdef SQLITE_ENABLE_API_ARMOR 1726 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 1727 return SQLITE_MISUSE_BKPT; 1728 } 1729 #endif 1730 sqlite3_mutex_enter(db->mutex); 1731 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1732 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1733 0, sqlite3InvalidFunction, 0, 0, 0); 1734 } 1735 rc = sqlite3ApiExit(db, rc); 1736 sqlite3_mutex_leave(db->mutex); 1737 return rc; 1738 } 1739 1740 #ifndef SQLITE_OMIT_TRACE 1741 /* 1742 ** Register a trace function. The pArg from the previously registered trace 1743 ** is returned. 1744 ** 1745 ** A NULL trace function means that no tracing is executes. A non-NULL 1746 ** trace is a pointer to a function that is invoked at the start of each 1747 ** SQL statement. 1748 */ 1749 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1750 void *pOld; 1751 1752 #ifdef SQLITE_ENABLE_API_ARMOR 1753 if( !sqlite3SafetyCheckOk(db) ){ 1754 (void)SQLITE_MISUSE_BKPT; 1755 return 0; 1756 } 1757 #endif 1758 sqlite3_mutex_enter(db->mutex); 1759 pOld = db->pTraceArg; 1760 db->xTrace = xTrace; 1761 db->pTraceArg = pArg; 1762 sqlite3_mutex_leave(db->mutex); 1763 return pOld; 1764 } 1765 /* 1766 ** Register a profile function. The pArg from the previously registered 1767 ** profile function is returned. 1768 ** 1769 ** A NULL profile function means that no profiling is executes. A non-NULL 1770 ** profile is a pointer to a function that is invoked at the conclusion of 1771 ** each SQL statement that is run. 1772 */ 1773 void *sqlite3_profile( 1774 sqlite3 *db, 1775 void (*xProfile)(void*,const char*,sqlite_uint64), 1776 void *pArg 1777 ){ 1778 void *pOld; 1779 1780 #ifdef SQLITE_ENABLE_API_ARMOR 1781 if( !sqlite3SafetyCheckOk(db) ){ 1782 (void)SQLITE_MISUSE_BKPT; 1783 return 0; 1784 } 1785 #endif 1786 sqlite3_mutex_enter(db->mutex); 1787 pOld = db->pProfileArg; 1788 db->xProfile = xProfile; 1789 db->pProfileArg = pArg; 1790 sqlite3_mutex_leave(db->mutex); 1791 return pOld; 1792 } 1793 #endif /* SQLITE_OMIT_TRACE */ 1794 1795 /* 1796 ** Register a function to be invoked when a transaction commits. 1797 ** If the invoked function returns non-zero, then the commit becomes a 1798 ** rollback. 1799 */ 1800 void *sqlite3_commit_hook( 1801 sqlite3 *db, /* Attach the hook to this database */ 1802 int (*xCallback)(void*), /* Function to invoke on each commit */ 1803 void *pArg /* Argument to the function */ 1804 ){ 1805 void *pOld; 1806 1807 #ifdef SQLITE_ENABLE_API_ARMOR 1808 if( !sqlite3SafetyCheckOk(db) ){ 1809 (void)SQLITE_MISUSE_BKPT; 1810 return 0; 1811 } 1812 #endif 1813 sqlite3_mutex_enter(db->mutex); 1814 pOld = db->pCommitArg; 1815 db->xCommitCallback = xCallback; 1816 db->pCommitArg = pArg; 1817 sqlite3_mutex_leave(db->mutex); 1818 return pOld; 1819 } 1820 1821 /* 1822 ** Register a callback to be invoked each time a row is updated, 1823 ** inserted or deleted using this database connection. 1824 */ 1825 void *sqlite3_update_hook( 1826 sqlite3 *db, /* Attach the hook to this database */ 1827 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1828 void *pArg /* Argument to the function */ 1829 ){ 1830 void *pRet; 1831 1832 #ifdef SQLITE_ENABLE_API_ARMOR 1833 if( !sqlite3SafetyCheckOk(db) ){ 1834 (void)SQLITE_MISUSE_BKPT; 1835 return 0; 1836 } 1837 #endif 1838 sqlite3_mutex_enter(db->mutex); 1839 pRet = db->pUpdateArg; 1840 db->xUpdateCallback = xCallback; 1841 db->pUpdateArg = pArg; 1842 sqlite3_mutex_leave(db->mutex); 1843 return pRet; 1844 } 1845 1846 /* 1847 ** Register a callback to be invoked each time a transaction is rolled 1848 ** back by this database connection. 1849 */ 1850 void *sqlite3_rollback_hook( 1851 sqlite3 *db, /* Attach the hook to this database */ 1852 void (*xCallback)(void*), /* Callback function */ 1853 void *pArg /* Argument to the function */ 1854 ){ 1855 void *pRet; 1856 1857 #ifdef SQLITE_ENABLE_API_ARMOR 1858 if( !sqlite3SafetyCheckOk(db) ){ 1859 (void)SQLITE_MISUSE_BKPT; 1860 return 0; 1861 } 1862 #endif 1863 sqlite3_mutex_enter(db->mutex); 1864 pRet = db->pRollbackArg; 1865 db->xRollbackCallback = xCallback; 1866 db->pRollbackArg = pArg; 1867 sqlite3_mutex_leave(db->mutex); 1868 return pRet; 1869 } 1870 1871 #ifndef SQLITE_OMIT_WAL 1872 /* 1873 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1874 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1875 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1876 ** wal_autocheckpoint()). 1877 */ 1878 int sqlite3WalDefaultHook( 1879 void *pClientData, /* Argument */ 1880 sqlite3 *db, /* Connection */ 1881 const char *zDb, /* Database */ 1882 int nFrame /* Size of WAL */ 1883 ){ 1884 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1885 sqlite3BeginBenignMalloc(); 1886 sqlite3_wal_checkpoint(db, zDb); 1887 sqlite3EndBenignMalloc(); 1888 } 1889 return SQLITE_OK; 1890 } 1891 #endif /* SQLITE_OMIT_WAL */ 1892 1893 /* 1894 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1895 ** a database after committing a transaction if there are nFrame or 1896 ** more frames in the log file. Passing zero or a negative value as the 1897 ** nFrame parameter disables automatic checkpoints entirely. 1898 ** 1899 ** The callback registered by this function replaces any existing callback 1900 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1901 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1902 ** configured by this function. 1903 */ 1904 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1905 #ifdef SQLITE_OMIT_WAL 1906 UNUSED_PARAMETER(db); 1907 UNUSED_PARAMETER(nFrame); 1908 #else 1909 #ifdef SQLITE_ENABLE_API_ARMOR 1910 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1911 #endif 1912 if( nFrame>0 ){ 1913 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1914 }else{ 1915 sqlite3_wal_hook(db, 0, 0); 1916 } 1917 #endif 1918 return SQLITE_OK; 1919 } 1920 1921 /* 1922 ** Register a callback to be invoked each time a transaction is written 1923 ** into the write-ahead-log by this database connection. 1924 */ 1925 void *sqlite3_wal_hook( 1926 sqlite3 *db, /* Attach the hook to this db handle */ 1927 int(*xCallback)(void *, sqlite3*, const char*, int), 1928 void *pArg /* First argument passed to xCallback() */ 1929 ){ 1930 #ifndef SQLITE_OMIT_WAL 1931 void *pRet; 1932 #ifdef SQLITE_ENABLE_API_ARMOR 1933 if( !sqlite3SafetyCheckOk(db) ){ 1934 (void)SQLITE_MISUSE_BKPT; 1935 return 0; 1936 } 1937 #endif 1938 sqlite3_mutex_enter(db->mutex); 1939 pRet = db->pWalArg; 1940 db->xWalCallback = xCallback; 1941 db->pWalArg = pArg; 1942 sqlite3_mutex_leave(db->mutex); 1943 return pRet; 1944 #else 1945 return 0; 1946 #endif 1947 } 1948 1949 /* 1950 ** Checkpoint database zDb. 1951 */ 1952 int sqlite3_wal_checkpoint_v2( 1953 sqlite3 *db, /* Database handle */ 1954 const char *zDb, /* Name of attached database (or NULL) */ 1955 int eMode, /* SQLITE_CHECKPOINT_* value */ 1956 int *pnLog, /* OUT: Size of WAL log in frames */ 1957 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1958 ){ 1959 #ifdef SQLITE_OMIT_WAL 1960 return SQLITE_OK; 1961 #else 1962 int rc; /* Return code */ 1963 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1964 1965 #ifdef SQLITE_ENABLE_API_ARMOR 1966 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 1967 #endif 1968 1969 /* Initialize the output variables to -1 in case an error occurs. */ 1970 if( pnLog ) *pnLog = -1; 1971 if( pnCkpt ) *pnCkpt = -1; 1972 1973 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 1974 assert( SQLITE_CHECKPOINT_FULL==1 ); 1975 assert( SQLITE_CHECKPOINT_RESTART==2 ); 1976 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 1977 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 1978 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 1979 ** mode: */ 1980 return SQLITE_MISUSE; 1981 } 1982 1983 sqlite3_mutex_enter(db->mutex); 1984 if( zDb && zDb[0] ){ 1985 iDb = sqlite3FindDbName(db, zDb); 1986 } 1987 if( iDb<0 ){ 1988 rc = SQLITE_ERROR; 1989 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 1990 }else{ 1991 db->busyHandler.nBusy = 0; 1992 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1993 sqlite3Error(db, rc); 1994 } 1995 rc = sqlite3ApiExit(db, rc); 1996 sqlite3_mutex_leave(db->mutex); 1997 return rc; 1998 #endif 1999 } 2000 2001 2002 /* 2003 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 2004 ** to contains a zero-length string, all attached databases are 2005 ** checkpointed. 2006 */ 2007 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 2008 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 2009 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 2010 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 2011 } 2012 2013 #ifndef SQLITE_OMIT_WAL 2014 /* 2015 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 2016 ** not currently open in WAL mode. 2017 ** 2018 ** If a transaction is open on the database being checkpointed, this 2019 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 2020 ** an error occurs while running the checkpoint, an SQLite error code is 2021 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 2022 ** 2023 ** The mutex on database handle db should be held by the caller. The mutex 2024 ** associated with the specific b-tree being checkpointed is taken by 2025 ** this function while the checkpoint is running. 2026 ** 2027 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 2028 ** checkpointed. If an error is encountered it is returned immediately - 2029 ** no attempt is made to checkpoint any remaining databases. 2030 ** 2031 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 2032 */ 2033 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 2034 int rc = SQLITE_OK; /* Return code */ 2035 int i; /* Used to iterate through attached dbs */ 2036 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 2037 2038 assert( sqlite3_mutex_held(db->mutex) ); 2039 assert( !pnLog || *pnLog==-1 ); 2040 assert( !pnCkpt || *pnCkpt==-1 ); 2041 2042 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 2043 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 2044 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 2045 pnLog = 0; 2046 pnCkpt = 0; 2047 if( rc==SQLITE_BUSY ){ 2048 bBusy = 1; 2049 rc = SQLITE_OK; 2050 } 2051 } 2052 } 2053 2054 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 2055 } 2056 #endif /* SQLITE_OMIT_WAL */ 2057 2058 /* 2059 ** This function returns true if main-memory should be used instead of 2060 ** a temporary file for transient pager files and statement journals. 2061 ** The value returned depends on the value of db->temp_store (runtime 2062 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 2063 ** following table describes the relationship between these two values 2064 ** and this functions return value. 2065 ** 2066 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 2067 ** ----------------- -------------- ------------------------------ 2068 ** 0 any file (return 0) 2069 ** 1 1 file (return 0) 2070 ** 1 2 memory (return 1) 2071 ** 1 0 file (return 0) 2072 ** 2 1 file (return 0) 2073 ** 2 2 memory (return 1) 2074 ** 2 0 memory (return 1) 2075 ** 3 any memory (return 1) 2076 */ 2077 int sqlite3TempInMemory(const sqlite3 *db){ 2078 #if SQLITE_TEMP_STORE==1 2079 return ( db->temp_store==2 ); 2080 #endif 2081 #if SQLITE_TEMP_STORE==2 2082 return ( db->temp_store!=1 ); 2083 #endif 2084 #if SQLITE_TEMP_STORE==3 2085 UNUSED_PARAMETER(db); 2086 return 1; 2087 #endif 2088 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 2089 UNUSED_PARAMETER(db); 2090 return 0; 2091 #endif 2092 } 2093 2094 /* 2095 ** Return UTF-8 encoded English language explanation of the most recent 2096 ** error. 2097 */ 2098 const char *sqlite3_errmsg(sqlite3 *db){ 2099 const char *z; 2100 if( !db ){ 2101 return sqlite3ErrStr(SQLITE_NOMEM); 2102 } 2103 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2104 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 2105 } 2106 sqlite3_mutex_enter(db->mutex); 2107 if( db->mallocFailed ){ 2108 z = sqlite3ErrStr(SQLITE_NOMEM); 2109 }else{ 2110 testcase( db->pErr==0 ); 2111 z = (char*)sqlite3_value_text(db->pErr); 2112 assert( !db->mallocFailed ); 2113 if( z==0 ){ 2114 z = sqlite3ErrStr(db->errCode); 2115 } 2116 } 2117 sqlite3_mutex_leave(db->mutex); 2118 return z; 2119 } 2120 2121 #ifndef SQLITE_OMIT_UTF16 2122 /* 2123 ** Return UTF-16 encoded English language explanation of the most recent 2124 ** error. 2125 */ 2126 const void *sqlite3_errmsg16(sqlite3 *db){ 2127 static const u16 outOfMem[] = { 2128 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 2129 }; 2130 static const u16 misuse[] = { 2131 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 2132 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 2133 'c', 'a', 'l', 'l', 'e', 'd', ' ', 2134 'o', 'u', 't', ' ', 2135 'o', 'f', ' ', 2136 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 2137 }; 2138 2139 const void *z; 2140 if( !db ){ 2141 return (void *)outOfMem; 2142 } 2143 if( !sqlite3SafetyCheckSickOrOk(db) ){ 2144 return (void *)misuse; 2145 } 2146 sqlite3_mutex_enter(db->mutex); 2147 if( db->mallocFailed ){ 2148 z = (void *)outOfMem; 2149 }else{ 2150 z = sqlite3_value_text16(db->pErr); 2151 if( z==0 ){ 2152 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 2153 z = sqlite3_value_text16(db->pErr); 2154 } 2155 /* A malloc() may have failed within the call to sqlite3_value_text16() 2156 ** above. If this is the case, then the db->mallocFailed flag needs to 2157 ** be cleared before returning. Do this directly, instead of via 2158 ** sqlite3ApiExit(), to avoid setting the database handle error message. 2159 */ 2160 db->mallocFailed = 0; 2161 } 2162 sqlite3_mutex_leave(db->mutex); 2163 return z; 2164 } 2165 #endif /* SQLITE_OMIT_UTF16 */ 2166 2167 /* 2168 ** Return the most recent error code generated by an SQLite routine. If NULL is 2169 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 2170 */ 2171 int sqlite3_errcode(sqlite3 *db){ 2172 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2173 return SQLITE_MISUSE_BKPT; 2174 } 2175 if( !db || db->mallocFailed ){ 2176 return SQLITE_NOMEM; 2177 } 2178 return db->errCode & db->errMask; 2179 } 2180 int sqlite3_extended_errcode(sqlite3 *db){ 2181 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 2182 return SQLITE_MISUSE_BKPT; 2183 } 2184 if( !db || db->mallocFailed ){ 2185 return SQLITE_NOMEM; 2186 } 2187 return db->errCode; 2188 } 2189 2190 /* 2191 ** Return a string that describes the kind of error specified in the 2192 ** argument. For now, this simply calls the internal sqlite3ErrStr() 2193 ** function. 2194 */ 2195 const char *sqlite3_errstr(int rc){ 2196 return sqlite3ErrStr(rc); 2197 } 2198 2199 /* 2200 ** Create a new collating function for database "db". The name is zName 2201 ** and the encoding is enc. 2202 */ 2203 static int createCollation( 2204 sqlite3* db, 2205 const char *zName, 2206 u8 enc, 2207 void* pCtx, 2208 int(*xCompare)(void*,int,const void*,int,const void*), 2209 void(*xDel)(void*) 2210 ){ 2211 CollSeq *pColl; 2212 int enc2; 2213 2214 assert( sqlite3_mutex_held(db->mutex) ); 2215 2216 /* If SQLITE_UTF16 is specified as the encoding type, transform this 2217 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 2218 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 2219 */ 2220 enc2 = enc; 2221 testcase( enc2==SQLITE_UTF16 ); 2222 testcase( enc2==SQLITE_UTF16_ALIGNED ); 2223 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 2224 enc2 = SQLITE_UTF16NATIVE; 2225 } 2226 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 2227 return SQLITE_MISUSE_BKPT; 2228 } 2229 2230 /* Check if this call is removing or replacing an existing collation 2231 ** sequence. If so, and there are active VMs, return busy. If there 2232 ** are no active VMs, invalidate any pre-compiled statements. 2233 */ 2234 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 2235 if( pColl && pColl->xCmp ){ 2236 if( db->nVdbeActive ){ 2237 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 2238 "unable to delete/modify collation sequence due to active statements"); 2239 return SQLITE_BUSY; 2240 } 2241 sqlite3ExpirePreparedStatements(db); 2242 2243 /* If collation sequence pColl was created directly by a call to 2244 ** sqlite3_create_collation, and not generated by synthCollSeq(), 2245 ** then any copies made by synthCollSeq() need to be invalidated. 2246 ** Also, collation destructor - CollSeq.xDel() - function may need 2247 ** to be called. 2248 */ 2249 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 2250 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 2251 int j; 2252 for(j=0; j<3; j++){ 2253 CollSeq *p = &aColl[j]; 2254 if( p->enc==pColl->enc ){ 2255 if( p->xDel ){ 2256 p->xDel(p->pUser); 2257 } 2258 p->xCmp = 0; 2259 } 2260 } 2261 } 2262 } 2263 2264 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 2265 if( pColl==0 ) return SQLITE_NOMEM; 2266 pColl->xCmp = xCompare; 2267 pColl->pUser = pCtx; 2268 pColl->xDel = xDel; 2269 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 2270 sqlite3Error(db, SQLITE_OK); 2271 return SQLITE_OK; 2272 } 2273 2274 2275 /* 2276 ** This array defines hard upper bounds on limit values. The 2277 ** initializer must be kept in sync with the SQLITE_LIMIT_* 2278 ** #defines in sqlite3.h. 2279 */ 2280 static const int aHardLimit[] = { 2281 SQLITE_MAX_LENGTH, 2282 SQLITE_MAX_SQL_LENGTH, 2283 SQLITE_MAX_COLUMN, 2284 SQLITE_MAX_EXPR_DEPTH, 2285 SQLITE_MAX_COMPOUND_SELECT, 2286 SQLITE_MAX_VDBE_OP, 2287 SQLITE_MAX_FUNCTION_ARG, 2288 SQLITE_MAX_ATTACHED, 2289 SQLITE_MAX_LIKE_PATTERN_LENGTH, 2290 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 2291 SQLITE_MAX_TRIGGER_DEPTH, 2292 SQLITE_MAX_WORKER_THREADS, 2293 }; 2294 2295 /* 2296 ** Make sure the hard limits are set to reasonable values 2297 */ 2298 #if SQLITE_MAX_LENGTH<100 2299 # error SQLITE_MAX_LENGTH must be at least 100 2300 #endif 2301 #if SQLITE_MAX_SQL_LENGTH<100 2302 # error SQLITE_MAX_SQL_LENGTH must be at least 100 2303 #endif 2304 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 2305 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 2306 #endif 2307 #if SQLITE_MAX_COMPOUND_SELECT<2 2308 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 2309 #endif 2310 #if SQLITE_MAX_VDBE_OP<40 2311 # error SQLITE_MAX_VDBE_OP must be at least 40 2312 #endif 2313 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 2314 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 2315 #endif 2316 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 2317 # error SQLITE_MAX_ATTACHED must be between 0 and 125 2318 #endif 2319 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 2320 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 2321 #endif 2322 #if SQLITE_MAX_COLUMN>32767 2323 # error SQLITE_MAX_COLUMN must not exceed 32767 2324 #endif 2325 #if SQLITE_MAX_TRIGGER_DEPTH<1 2326 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 2327 #endif 2328 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 2329 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 2330 #endif 2331 2332 2333 /* 2334 ** Change the value of a limit. Report the old value. 2335 ** If an invalid limit index is supplied, report -1. 2336 ** Make no changes but still report the old value if the 2337 ** new limit is negative. 2338 ** 2339 ** A new lower limit does not shrink existing constructs. 2340 ** It merely prevents new constructs that exceed the limit 2341 ** from forming. 2342 */ 2343 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 2344 int oldLimit; 2345 2346 #ifdef SQLITE_ENABLE_API_ARMOR 2347 if( !sqlite3SafetyCheckOk(db) ){ 2348 (void)SQLITE_MISUSE_BKPT; 2349 return -1; 2350 } 2351 #endif 2352 2353 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 2354 ** there is a hard upper bound set at compile-time by a C preprocessor 2355 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 2356 ** "_MAX_".) 2357 */ 2358 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 2359 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 2360 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 2361 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 2362 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 2363 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 2364 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 2365 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 2366 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 2367 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 2368 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 2369 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 2370 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 2371 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 2372 2373 2374 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 2375 return -1; 2376 } 2377 oldLimit = db->aLimit[limitId]; 2378 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 2379 if( newLimit>aHardLimit[limitId] ){ 2380 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 2381 } 2382 db->aLimit[limitId] = newLimit; 2383 } 2384 return oldLimit; /* IMP: R-53341-35419 */ 2385 } 2386 2387 /* 2388 ** This function is used to parse both URIs and non-URI filenames passed by the 2389 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 2390 ** URIs specified as part of ATTACH statements. 2391 ** 2392 ** The first argument to this function is the name of the VFS to use (or 2393 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 2394 ** query parameter. The second argument contains the URI (or non-URI filename) 2395 ** itself. When this function is called the *pFlags variable should contain 2396 ** the default flags to open the database handle with. The value stored in 2397 ** *pFlags may be updated before returning if the URI filename contains 2398 ** "cache=xxx" or "mode=xxx" query parameters. 2399 ** 2400 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 2401 ** the VFS that should be used to open the database file. *pzFile is set to 2402 ** point to a buffer containing the name of the file to open. It is the 2403 ** responsibility of the caller to eventually call sqlite3_free() to release 2404 ** this buffer. 2405 ** 2406 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 2407 ** may be set to point to a buffer containing an English language error 2408 ** message. It is the responsibility of the caller to eventually release 2409 ** this buffer by calling sqlite3_free(). 2410 */ 2411 int sqlite3ParseUri( 2412 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 2413 const char *zUri, /* Nul-terminated URI to parse */ 2414 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 2415 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 2416 char **pzFile, /* OUT: Filename component of URI */ 2417 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 2418 ){ 2419 int rc = SQLITE_OK; 2420 unsigned int flags = *pFlags; 2421 const char *zVfs = zDefaultVfs; 2422 char *zFile; 2423 char c; 2424 int nUri = sqlite3Strlen30(zUri); 2425 2426 assert( *pzErrMsg==0 ); 2427 2428 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 2429 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 2430 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 2431 ){ 2432 char *zOpt; 2433 int eState; /* Parser state when parsing URI */ 2434 int iIn; /* Input character index */ 2435 int iOut = 0; /* Output character index */ 2436 u64 nByte = nUri+2; /* Bytes of space to allocate */ 2437 2438 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 2439 ** method that there may be extra parameters following the file-name. */ 2440 flags |= SQLITE_OPEN_URI; 2441 2442 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 2443 zFile = sqlite3_malloc64(nByte); 2444 if( !zFile ) return SQLITE_NOMEM; 2445 2446 iIn = 5; 2447 #ifdef SQLITE_ALLOW_URI_AUTHORITY 2448 if( strncmp(zUri+5, "///", 3)==0 ){ 2449 iIn = 7; 2450 /* The following condition causes URIs with five leading / characters 2451 ** like file://///host/path to be converted into UNCs like //host/path. 2452 ** The correct URI for that UNC has only two or four leading / characters 2453 ** file://host/path or file:////host/path. But 5 leading slashes is a 2454 ** common error, we are told, so we handle it as a special case. */ 2455 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 2456 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 2457 iIn = 16; 2458 } 2459 #else 2460 /* Discard the scheme and authority segments of the URI. */ 2461 if( zUri[5]=='/' && zUri[6]=='/' ){ 2462 iIn = 7; 2463 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 2464 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 2465 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 2466 iIn-7, &zUri[7]); 2467 rc = SQLITE_ERROR; 2468 goto parse_uri_out; 2469 } 2470 } 2471 #endif 2472 2473 /* Copy the filename and any query parameters into the zFile buffer. 2474 ** Decode %HH escape codes along the way. 2475 ** 2476 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 2477 ** on the parsing context. As follows: 2478 ** 2479 ** 0: Parsing file-name. 2480 ** 1: Parsing name section of a name=value query parameter. 2481 ** 2: Parsing value section of a name=value query parameter. 2482 */ 2483 eState = 0; 2484 while( (c = zUri[iIn])!=0 && c!='#' ){ 2485 iIn++; 2486 if( c=='%' 2487 && sqlite3Isxdigit(zUri[iIn]) 2488 && sqlite3Isxdigit(zUri[iIn+1]) 2489 ){ 2490 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 2491 octet += sqlite3HexToInt(zUri[iIn++]); 2492 2493 assert( octet>=0 && octet<256 ); 2494 if( octet==0 ){ 2495 /* This branch is taken when "%00" appears within the URI. In this 2496 ** case we ignore all text in the remainder of the path, name or 2497 ** value currently being parsed. So ignore the current character 2498 ** and skip to the next "?", "=" or "&", as appropriate. */ 2499 while( (c = zUri[iIn])!=0 && c!='#' 2500 && (eState!=0 || c!='?') 2501 && (eState!=1 || (c!='=' && c!='&')) 2502 && (eState!=2 || c!='&') 2503 ){ 2504 iIn++; 2505 } 2506 continue; 2507 } 2508 c = octet; 2509 }else if( eState==1 && (c=='&' || c=='=') ){ 2510 if( zFile[iOut-1]==0 ){ 2511 /* An empty option name. Ignore this option altogether. */ 2512 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 2513 continue; 2514 } 2515 if( c=='&' ){ 2516 zFile[iOut++] = '\0'; 2517 }else{ 2518 eState = 2; 2519 } 2520 c = 0; 2521 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 2522 c = 0; 2523 eState = 1; 2524 } 2525 zFile[iOut++] = c; 2526 } 2527 if( eState==1 ) zFile[iOut++] = '\0'; 2528 zFile[iOut++] = '\0'; 2529 zFile[iOut++] = '\0'; 2530 2531 /* Check if there were any options specified that should be interpreted 2532 ** here. Options that are interpreted here include "vfs" and those that 2533 ** correspond to flags that may be passed to the sqlite3_open_v2() 2534 ** method. */ 2535 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 2536 while( zOpt[0] ){ 2537 int nOpt = sqlite3Strlen30(zOpt); 2538 char *zVal = &zOpt[nOpt+1]; 2539 int nVal = sqlite3Strlen30(zVal); 2540 2541 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 2542 zVfs = zVal; 2543 }else{ 2544 struct OpenMode { 2545 const char *z; 2546 int mode; 2547 } *aMode = 0; 2548 char *zModeType = 0; 2549 int mask = 0; 2550 int limit = 0; 2551 2552 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 2553 static struct OpenMode aCacheMode[] = { 2554 { "shared", SQLITE_OPEN_SHAREDCACHE }, 2555 { "private", SQLITE_OPEN_PRIVATECACHE }, 2556 { 0, 0 } 2557 }; 2558 2559 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 2560 aMode = aCacheMode; 2561 limit = mask; 2562 zModeType = "cache"; 2563 } 2564 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 2565 static struct OpenMode aOpenMode[] = { 2566 { "ro", SQLITE_OPEN_READONLY }, 2567 { "rw", SQLITE_OPEN_READWRITE }, 2568 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 2569 { "memory", SQLITE_OPEN_MEMORY }, 2570 { 0, 0 } 2571 }; 2572 2573 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 2574 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 2575 aMode = aOpenMode; 2576 limit = mask & flags; 2577 zModeType = "access"; 2578 } 2579 2580 if( aMode ){ 2581 int i; 2582 int mode = 0; 2583 for(i=0; aMode[i].z; i++){ 2584 const char *z = aMode[i].z; 2585 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 2586 mode = aMode[i].mode; 2587 break; 2588 } 2589 } 2590 if( mode==0 ){ 2591 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 2592 rc = SQLITE_ERROR; 2593 goto parse_uri_out; 2594 } 2595 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 2596 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 2597 zModeType, zVal); 2598 rc = SQLITE_PERM; 2599 goto parse_uri_out; 2600 } 2601 flags = (flags & ~mask) | mode; 2602 } 2603 } 2604 2605 zOpt = &zVal[nVal+1]; 2606 } 2607 2608 }else{ 2609 zFile = sqlite3_malloc64(nUri+2); 2610 if( !zFile ) return SQLITE_NOMEM; 2611 memcpy(zFile, zUri, nUri); 2612 zFile[nUri] = '\0'; 2613 zFile[nUri+1] = '\0'; 2614 flags &= ~SQLITE_OPEN_URI; 2615 } 2616 2617 *ppVfs = sqlite3_vfs_find(zVfs); 2618 if( *ppVfs==0 ){ 2619 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 2620 rc = SQLITE_ERROR; 2621 } 2622 parse_uri_out: 2623 if( rc!=SQLITE_OK ){ 2624 sqlite3_free(zFile); 2625 zFile = 0; 2626 } 2627 *pFlags = flags; 2628 *pzFile = zFile; 2629 return rc; 2630 } 2631 2632 2633 /* 2634 ** This routine does the work of opening a database on behalf of 2635 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 2636 ** is UTF-8 encoded. 2637 */ 2638 static int openDatabase( 2639 const char *zFilename, /* Database filename UTF-8 encoded */ 2640 sqlite3 **ppDb, /* OUT: Returned database handle */ 2641 unsigned int flags, /* Operational flags */ 2642 const char *zVfs /* Name of the VFS to use */ 2643 ){ 2644 sqlite3 *db; /* Store allocated handle here */ 2645 int rc; /* Return code */ 2646 int isThreadsafe; /* True for threadsafe connections */ 2647 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 2648 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 2649 2650 #ifdef SQLITE_ENABLE_API_ARMOR 2651 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2652 #endif 2653 *ppDb = 0; 2654 #ifndef SQLITE_OMIT_AUTOINIT 2655 rc = sqlite3_initialize(); 2656 if( rc ) return rc; 2657 #endif 2658 2659 /* Only allow sensible combinations of bits in the flags argument. 2660 ** Throw an error if any non-sense combination is used. If we 2661 ** do not block illegal combinations here, it could trigger 2662 ** assert() statements in deeper layers. Sensible combinations 2663 ** are: 2664 ** 2665 ** 1: SQLITE_OPEN_READONLY 2666 ** 2: SQLITE_OPEN_READWRITE 2667 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 2668 */ 2669 assert( SQLITE_OPEN_READONLY == 0x01 ); 2670 assert( SQLITE_OPEN_READWRITE == 0x02 ); 2671 assert( SQLITE_OPEN_CREATE == 0x04 ); 2672 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 2673 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 2674 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 2675 if( ((1<<(flags&7)) & 0x46)==0 ){ 2676 return SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 2677 } 2678 2679 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 2680 isThreadsafe = 0; 2681 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 2682 isThreadsafe = 0; 2683 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 2684 isThreadsafe = 1; 2685 }else{ 2686 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 2687 } 2688 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 2689 flags &= ~SQLITE_OPEN_SHAREDCACHE; 2690 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 2691 flags |= SQLITE_OPEN_SHAREDCACHE; 2692 } 2693 2694 /* Remove harmful bits from the flags parameter 2695 ** 2696 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 2697 ** dealt with in the previous code block. Besides these, the only 2698 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 2699 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 2700 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 2701 ** off all other flags. 2702 */ 2703 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 2704 SQLITE_OPEN_EXCLUSIVE | 2705 SQLITE_OPEN_MAIN_DB | 2706 SQLITE_OPEN_TEMP_DB | 2707 SQLITE_OPEN_TRANSIENT_DB | 2708 SQLITE_OPEN_MAIN_JOURNAL | 2709 SQLITE_OPEN_TEMP_JOURNAL | 2710 SQLITE_OPEN_SUBJOURNAL | 2711 SQLITE_OPEN_MASTER_JOURNAL | 2712 SQLITE_OPEN_NOMUTEX | 2713 SQLITE_OPEN_FULLMUTEX | 2714 SQLITE_OPEN_WAL 2715 ); 2716 2717 /* Allocate the sqlite data structure */ 2718 db = sqlite3MallocZero( sizeof(sqlite3) ); 2719 if( db==0 ) goto opendb_out; 2720 if( isThreadsafe ){ 2721 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 2722 if( db->mutex==0 ){ 2723 sqlite3_free(db); 2724 db = 0; 2725 goto opendb_out; 2726 } 2727 } 2728 sqlite3_mutex_enter(db->mutex); 2729 db->errMask = 0xff; 2730 db->nDb = 2; 2731 db->magic = SQLITE_MAGIC_BUSY; 2732 db->aDb = db->aDbStatic; 2733 2734 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 2735 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 2736 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 2737 db->autoCommit = 1; 2738 db->nextAutovac = -1; 2739 db->szMmap = sqlite3GlobalConfig.szMmap; 2740 db->nextPagesize = 0; 2741 db->nMaxSorterMmap = 0x7FFFFFFF; 2742 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 2743 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 2744 | SQLITE_AutoIndex 2745 #endif 2746 #if SQLITE_DEFAULT_CKPTFULLFSYNC 2747 | SQLITE_CkptFullFSync 2748 #endif 2749 #if SQLITE_DEFAULT_FILE_FORMAT<4 2750 | SQLITE_LegacyFileFmt 2751 #endif 2752 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 2753 | SQLITE_LoadExtension 2754 #endif 2755 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 2756 | SQLITE_RecTriggers 2757 #endif 2758 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 2759 | SQLITE_ForeignKeys 2760 #endif 2761 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 2762 | SQLITE_ReverseOrder 2763 #endif 2764 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 2765 | SQLITE_CellSizeCk 2766 #endif 2767 ; 2768 sqlite3HashInit(&db->aCollSeq); 2769 #ifndef SQLITE_OMIT_VIRTUALTABLE 2770 sqlite3HashInit(&db->aModule); 2771 #endif 2772 2773 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 2774 ** and UTF-16, so add a version for each to avoid any unnecessary 2775 ** conversions. The only error that can occur here is a malloc() failure. 2776 ** 2777 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 2778 ** functions: 2779 */ 2780 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 2781 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 2782 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 2783 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 2784 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 2785 if( db->mallocFailed ){ 2786 goto opendb_out; 2787 } 2788 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 2789 ** strings is BINARY. 2790 */ 2791 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 2792 assert( db->pDfltColl!=0 ); 2793 2794 /* Parse the filename/URI argument. */ 2795 db->openFlags = flags; 2796 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 2797 if( rc!=SQLITE_OK ){ 2798 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; 2799 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 2800 sqlite3_free(zErrMsg); 2801 goto opendb_out; 2802 } 2803 2804 /* Open the backend database driver */ 2805 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 2806 flags | SQLITE_OPEN_MAIN_DB); 2807 if( rc!=SQLITE_OK ){ 2808 if( rc==SQLITE_IOERR_NOMEM ){ 2809 rc = SQLITE_NOMEM; 2810 } 2811 sqlite3Error(db, rc); 2812 goto opendb_out; 2813 } 2814 sqlite3BtreeEnter(db->aDb[0].pBt); 2815 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 2816 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 2817 sqlite3BtreeLeave(db->aDb[0].pBt); 2818 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 2819 2820 /* The default safety_level for the main database is 'full'; for the temp 2821 ** database it is 'NONE'. This matches the pager layer defaults. 2822 */ 2823 db->aDb[0].zName = "main"; 2824 db->aDb[0].safety_level = 3; 2825 db->aDb[1].zName = "temp"; 2826 db->aDb[1].safety_level = 1; 2827 2828 db->magic = SQLITE_MAGIC_OPEN; 2829 if( db->mallocFailed ){ 2830 goto opendb_out; 2831 } 2832 2833 /* Register all built-in functions, but do not attempt to read the 2834 ** database schema yet. This is delayed until the first time the database 2835 ** is accessed. 2836 */ 2837 sqlite3Error(db, SQLITE_OK); 2838 sqlite3RegisterBuiltinFunctions(db); 2839 2840 /* Load automatic extensions - extensions that have been registered 2841 ** using the sqlite3_automatic_extension() API. 2842 */ 2843 rc = sqlite3_errcode(db); 2844 if( rc==SQLITE_OK ){ 2845 sqlite3AutoLoadExtensions(db); 2846 rc = sqlite3_errcode(db); 2847 if( rc!=SQLITE_OK ){ 2848 goto opendb_out; 2849 } 2850 } 2851 2852 #ifdef SQLITE_ENABLE_FTS1 2853 if( !db->mallocFailed ){ 2854 extern int sqlite3Fts1Init(sqlite3*); 2855 rc = sqlite3Fts1Init(db); 2856 } 2857 #endif 2858 2859 #ifdef SQLITE_ENABLE_FTS2 2860 if( !db->mallocFailed && rc==SQLITE_OK ){ 2861 extern int sqlite3Fts2Init(sqlite3*); 2862 rc = sqlite3Fts2Init(db); 2863 } 2864 #endif 2865 2866 #ifdef SQLITE_ENABLE_FTS3 2867 if( !db->mallocFailed && rc==SQLITE_OK ){ 2868 rc = sqlite3Fts3Init(db); 2869 } 2870 #endif 2871 2872 #ifdef SQLITE_ENABLE_ICU 2873 if( !db->mallocFailed && rc==SQLITE_OK ){ 2874 rc = sqlite3IcuInit(db); 2875 } 2876 #endif 2877 2878 #ifdef SQLITE_ENABLE_RTREE 2879 if( !db->mallocFailed && rc==SQLITE_OK){ 2880 rc = sqlite3RtreeInit(db); 2881 } 2882 #endif 2883 2884 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 2885 if( !db->mallocFailed && rc==SQLITE_OK){ 2886 rc = sqlite3DbstatRegister(db); 2887 } 2888 #endif 2889 2890 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2891 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2892 ** mode. Doing nothing at all also makes NORMAL the default. 2893 */ 2894 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2895 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2896 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2897 SQLITE_DEFAULT_LOCKING_MODE); 2898 #endif 2899 2900 if( rc ) sqlite3Error(db, rc); 2901 2902 /* Enable the lookaside-malloc subsystem */ 2903 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2904 sqlite3GlobalConfig.nLookaside); 2905 2906 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2907 2908 opendb_out: 2909 sqlite3_free(zOpen); 2910 if( db ){ 2911 assert( db->mutex!=0 || isThreadsafe==0 2912 || sqlite3GlobalConfig.bFullMutex==0 ); 2913 sqlite3_mutex_leave(db->mutex); 2914 } 2915 rc = sqlite3_errcode(db); 2916 assert( db!=0 || rc==SQLITE_NOMEM ); 2917 if( rc==SQLITE_NOMEM ){ 2918 sqlite3_close(db); 2919 db = 0; 2920 }else if( rc!=SQLITE_OK ){ 2921 db->magic = SQLITE_MAGIC_SICK; 2922 } 2923 *ppDb = db; 2924 #ifdef SQLITE_ENABLE_SQLLOG 2925 if( sqlite3GlobalConfig.xSqllog ){ 2926 /* Opening a db handle. Fourth parameter is passed 0. */ 2927 void *pArg = sqlite3GlobalConfig.pSqllogArg; 2928 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 2929 } 2930 #endif 2931 return rc & 0xff; 2932 } 2933 2934 /* 2935 ** Open a new database handle. 2936 */ 2937 int sqlite3_open( 2938 const char *zFilename, 2939 sqlite3 **ppDb 2940 ){ 2941 return openDatabase(zFilename, ppDb, 2942 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2943 } 2944 int sqlite3_open_v2( 2945 const char *filename, /* Database filename (UTF-8) */ 2946 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2947 int flags, /* Flags */ 2948 const char *zVfs /* Name of VFS module to use */ 2949 ){ 2950 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 2951 } 2952 2953 #ifndef SQLITE_OMIT_UTF16 2954 /* 2955 ** Open a new database handle. 2956 */ 2957 int sqlite3_open16( 2958 const void *zFilename, 2959 sqlite3 **ppDb 2960 ){ 2961 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2962 sqlite3_value *pVal; 2963 int rc; 2964 2965 #ifdef SQLITE_ENABLE_API_ARMOR 2966 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 2967 #endif 2968 *ppDb = 0; 2969 #ifndef SQLITE_OMIT_AUTOINIT 2970 rc = sqlite3_initialize(); 2971 if( rc ) return rc; 2972 #endif 2973 if( zFilename==0 ) zFilename = "\000\000"; 2974 pVal = sqlite3ValueNew(0); 2975 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2976 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2977 if( zFilename8 ){ 2978 rc = openDatabase(zFilename8, ppDb, 2979 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2980 assert( *ppDb || rc==SQLITE_NOMEM ); 2981 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2982 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 2983 } 2984 }else{ 2985 rc = SQLITE_NOMEM; 2986 } 2987 sqlite3ValueFree(pVal); 2988 2989 return rc & 0xff; 2990 } 2991 #endif /* SQLITE_OMIT_UTF16 */ 2992 2993 /* 2994 ** Register a new collation sequence with the database handle db. 2995 */ 2996 int sqlite3_create_collation( 2997 sqlite3* db, 2998 const char *zName, 2999 int enc, 3000 void* pCtx, 3001 int(*xCompare)(void*,int,const void*,int,const void*) 3002 ){ 3003 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 3004 } 3005 3006 /* 3007 ** Register a new collation sequence with the database handle db. 3008 */ 3009 int sqlite3_create_collation_v2( 3010 sqlite3* db, 3011 const char *zName, 3012 int enc, 3013 void* pCtx, 3014 int(*xCompare)(void*,int,const void*,int,const void*), 3015 void(*xDel)(void*) 3016 ){ 3017 int rc; 3018 3019 #ifdef SQLITE_ENABLE_API_ARMOR 3020 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3021 #endif 3022 sqlite3_mutex_enter(db->mutex); 3023 assert( !db->mallocFailed ); 3024 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 3025 rc = sqlite3ApiExit(db, rc); 3026 sqlite3_mutex_leave(db->mutex); 3027 return rc; 3028 } 3029 3030 #ifndef SQLITE_OMIT_UTF16 3031 /* 3032 ** Register a new collation sequence with the database handle db. 3033 */ 3034 int sqlite3_create_collation16( 3035 sqlite3* db, 3036 const void *zName, 3037 int enc, 3038 void* pCtx, 3039 int(*xCompare)(void*,int,const void*,int,const void*) 3040 ){ 3041 int rc = SQLITE_OK; 3042 char *zName8; 3043 3044 #ifdef SQLITE_ENABLE_API_ARMOR 3045 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 3046 #endif 3047 sqlite3_mutex_enter(db->mutex); 3048 assert( !db->mallocFailed ); 3049 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 3050 if( zName8 ){ 3051 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 3052 sqlite3DbFree(db, zName8); 3053 } 3054 rc = sqlite3ApiExit(db, rc); 3055 sqlite3_mutex_leave(db->mutex); 3056 return rc; 3057 } 3058 #endif /* SQLITE_OMIT_UTF16 */ 3059 3060 /* 3061 ** Register a collation sequence factory callback with the database handle 3062 ** db. Replace any previously installed collation sequence factory. 3063 */ 3064 int sqlite3_collation_needed( 3065 sqlite3 *db, 3066 void *pCollNeededArg, 3067 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 3068 ){ 3069 #ifdef SQLITE_ENABLE_API_ARMOR 3070 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3071 #endif 3072 sqlite3_mutex_enter(db->mutex); 3073 db->xCollNeeded = xCollNeeded; 3074 db->xCollNeeded16 = 0; 3075 db->pCollNeededArg = pCollNeededArg; 3076 sqlite3_mutex_leave(db->mutex); 3077 return SQLITE_OK; 3078 } 3079 3080 #ifndef SQLITE_OMIT_UTF16 3081 /* 3082 ** Register a collation sequence factory callback with the database handle 3083 ** db. Replace any previously installed collation sequence factory. 3084 */ 3085 int sqlite3_collation_needed16( 3086 sqlite3 *db, 3087 void *pCollNeededArg, 3088 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 3089 ){ 3090 #ifdef SQLITE_ENABLE_API_ARMOR 3091 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3092 #endif 3093 sqlite3_mutex_enter(db->mutex); 3094 db->xCollNeeded = 0; 3095 db->xCollNeeded16 = xCollNeeded16; 3096 db->pCollNeededArg = pCollNeededArg; 3097 sqlite3_mutex_leave(db->mutex); 3098 return SQLITE_OK; 3099 } 3100 #endif /* SQLITE_OMIT_UTF16 */ 3101 3102 #ifndef SQLITE_OMIT_DEPRECATED 3103 /* 3104 ** This function is now an anachronism. It used to be used to recover from a 3105 ** malloc() failure, but SQLite now does this automatically. 3106 */ 3107 int sqlite3_global_recover(void){ 3108 return SQLITE_OK; 3109 } 3110 #endif 3111 3112 /* 3113 ** Test to see whether or not the database connection is in autocommit 3114 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 3115 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 3116 ** by the next COMMIT or ROLLBACK. 3117 */ 3118 int sqlite3_get_autocommit(sqlite3 *db){ 3119 #ifdef SQLITE_ENABLE_API_ARMOR 3120 if( !sqlite3SafetyCheckOk(db) ){ 3121 (void)SQLITE_MISUSE_BKPT; 3122 return 0; 3123 } 3124 #endif 3125 return db->autoCommit; 3126 } 3127 3128 /* 3129 ** The following routines are substitutes for constants SQLITE_CORRUPT, 3130 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 3131 ** constants. They serve two purposes: 3132 ** 3133 ** 1. Serve as a convenient place to set a breakpoint in a debugger 3134 ** to detect when version error conditions occurs. 3135 ** 3136 ** 2. Invoke sqlite3_log() to provide the source code location where 3137 ** a low-level error is first detected. 3138 */ 3139 int sqlite3CorruptError(int lineno){ 3140 testcase( sqlite3GlobalConfig.xLog!=0 ); 3141 sqlite3_log(SQLITE_CORRUPT, 3142 "database corruption at line %d of [%.10s]", 3143 lineno, 20+sqlite3_sourceid()); 3144 return SQLITE_CORRUPT; 3145 } 3146 int sqlite3MisuseError(int lineno){ 3147 testcase( sqlite3GlobalConfig.xLog!=0 ); 3148 sqlite3_log(SQLITE_MISUSE, 3149 "misuse at line %d of [%.10s]", 3150 lineno, 20+sqlite3_sourceid()); 3151 return SQLITE_MISUSE; 3152 } 3153 int sqlite3CantopenError(int lineno){ 3154 testcase( sqlite3GlobalConfig.xLog!=0 ); 3155 sqlite3_log(SQLITE_CANTOPEN, 3156 "cannot open file at line %d of [%.10s]", 3157 lineno, 20+sqlite3_sourceid()); 3158 return SQLITE_CANTOPEN; 3159 } 3160 3161 3162 #ifndef SQLITE_OMIT_DEPRECATED 3163 /* 3164 ** This is a convenience routine that makes sure that all thread-specific 3165 ** data for this thread has been deallocated. 3166 ** 3167 ** SQLite no longer uses thread-specific data so this routine is now a 3168 ** no-op. It is retained for historical compatibility. 3169 */ 3170 void sqlite3_thread_cleanup(void){ 3171 } 3172 #endif 3173 3174 /* 3175 ** Return meta information about a specific column of a database table. 3176 ** See comment in sqlite3.h (sqlite.h.in) for details. 3177 */ 3178 int sqlite3_table_column_metadata( 3179 sqlite3 *db, /* Connection handle */ 3180 const char *zDbName, /* Database name or NULL */ 3181 const char *zTableName, /* Table name */ 3182 const char *zColumnName, /* Column name */ 3183 char const **pzDataType, /* OUTPUT: Declared data type */ 3184 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 3185 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 3186 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 3187 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 3188 ){ 3189 int rc; 3190 char *zErrMsg = 0; 3191 Table *pTab = 0; 3192 Column *pCol = 0; 3193 int iCol = 0; 3194 char const *zDataType = 0; 3195 char const *zCollSeq = 0; 3196 int notnull = 0; 3197 int primarykey = 0; 3198 int autoinc = 0; 3199 3200 3201 #ifdef SQLITE_ENABLE_API_ARMOR 3202 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 3203 return SQLITE_MISUSE_BKPT; 3204 } 3205 #endif 3206 3207 /* Ensure the database schema has been loaded */ 3208 sqlite3_mutex_enter(db->mutex); 3209 sqlite3BtreeEnterAll(db); 3210 rc = sqlite3Init(db, &zErrMsg); 3211 if( SQLITE_OK!=rc ){ 3212 goto error_out; 3213 } 3214 3215 /* Locate the table in question */ 3216 pTab = sqlite3FindTable(db, zTableName, zDbName); 3217 if( !pTab || pTab->pSelect ){ 3218 pTab = 0; 3219 goto error_out; 3220 } 3221 3222 /* Find the column for which info is requested */ 3223 if( zColumnName==0 ){ 3224 /* Query for existance of table only */ 3225 }else{ 3226 for(iCol=0; iCol<pTab->nCol; iCol++){ 3227 pCol = &pTab->aCol[iCol]; 3228 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 3229 break; 3230 } 3231 } 3232 if( iCol==pTab->nCol ){ 3233 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 3234 iCol = pTab->iPKey; 3235 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 3236 }else{ 3237 pTab = 0; 3238 goto error_out; 3239 } 3240 } 3241 } 3242 3243 /* The following block stores the meta information that will be returned 3244 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 3245 ** and autoinc. At this point there are two possibilities: 3246 ** 3247 ** 1. The specified column name was rowid", "oid" or "_rowid_" 3248 ** and there is no explicitly declared IPK column. 3249 ** 3250 ** 2. The table is not a view and the column name identified an 3251 ** explicitly declared column. Copy meta information from *pCol. 3252 */ 3253 if( pCol ){ 3254 zDataType = pCol->zType; 3255 zCollSeq = pCol->zColl; 3256 notnull = pCol->notNull!=0; 3257 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 3258 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 3259 }else{ 3260 zDataType = "INTEGER"; 3261 primarykey = 1; 3262 } 3263 if( !zCollSeq ){ 3264 zCollSeq = "BINARY"; 3265 } 3266 3267 error_out: 3268 sqlite3BtreeLeaveAll(db); 3269 3270 /* Whether the function call succeeded or failed, set the output parameters 3271 ** to whatever their local counterparts contain. If an error did occur, 3272 ** this has the effect of zeroing all output parameters. 3273 */ 3274 if( pzDataType ) *pzDataType = zDataType; 3275 if( pzCollSeq ) *pzCollSeq = zCollSeq; 3276 if( pNotNull ) *pNotNull = notnull; 3277 if( pPrimaryKey ) *pPrimaryKey = primarykey; 3278 if( pAutoinc ) *pAutoinc = autoinc; 3279 3280 if( SQLITE_OK==rc && !pTab ){ 3281 sqlite3DbFree(db, zErrMsg); 3282 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 3283 zColumnName); 3284 rc = SQLITE_ERROR; 3285 } 3286 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 3287 sqlite3DbFree(db, zErrMsg); 3288 rc = sqlite3ApiExit(db, rc); 3289 sqlite3_mutex_leave(db->mutex); 3290 return rc; 3291 } 3292 3293 /* 3294 ** Sleep for a little while. Return the amount of time slept. 3295 */ 3296 int sqlite3_sleep(int ms){ 3297 sqlite3_vfs *pVfs; 3298 int rc; 3299 pVfs = sqlite3_vfs_find(0); 3300 if( pVfs==0 ) return 0; 3301 3302 /* This function works in milliseconds, but the underlying OsSleep() 3303 ** API uses microseconds. Hence the 1000's. 3304 */ 3305 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 3306 return rc; 3307 } 3308 3309 /* 3310 ** Enable or disable the extended result codes. 3311 */ 3312 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 3313 #ifdef SQLITE_ENABLE_API_ARMOR 3314 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3315 #endif 3316 sqlite3_mutex_enter(db->mutex); 3317 db->errMask = onoff ? 0xffffffff : 0xff; 3318 sqlite3_mutex_leave(db->mutex); 3319 return SQLITE_OK; 3320 } 3321 3322 /* 3323 ** Invoke the xFileControl method on a particular database. 3324 */ 3325 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 3326 int rc = SQLITE_ERROR; 3327 Btree *pBtree; 3328 3329 #ifdef SQLITE_ENABLE_API_ARMOR 3330 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 3331 #endif 3332 sqlite3_mutex_enter(db->mutex); 3333 pBtree = sqlite3DbNameToBtree(db, zDbName); 3334 if( pBtree ){ 3335 Pager *pPager; 3336 sqlite3_file *fd; 3337 sqlite3BtreeEnter(pBtree); 3338 pPager = sqlite3BtreePager(pBtree); 3339 assert( pPager!=0 ); 3340 fd = sqlite3PagerFile(pPager); 3341 assert( fd!=0 ); 3342 if( op==SQLITE_FCNTL_FILE_POINTER ){ 3343 *(sqlite3_file**)pArg = fd; 3344 rc = SQLITE_OK; 3345 }else if( fd->pMethods ){ 3346 rc = sqlite3OsFileControl(fd, op, pArg); 3347 }else{ 3348 rc = SQLITE_NOTFOUND; 3349 } 3350 sqlite3BtreeLeave(pBtree); 3351 } 3352 sqlite3_mutex_leave(db->mutex); 3353 return rc; 3354 } 3355 3356 /* 3357 ** Interface to the testing logic. 3358 */ 3359 int sqlite3_test_control(int op, ...){ 3360 int rc = 0; 3361 #ifdef SQLITE_OMIT_BUILTIN_TEST 3362 UNUSED_PARAMETER(op); 3363 #else 3364 va_list ap; 3365 va_start(ap, op); 3366 switch( op ){ 3367 3368 /* 3369 ** Save the current state of the PRNG. 3370 */ 3371 case SQLITE_TESTCTRL_PRNG_SAVE: { 3372 sqlite3PrngSaveState(); 3373 break; 3374 } 3375 3376 /* 3377 ** Restore the state of the PRNG to the last state saved using 3378 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 3379 ** this verb acts like PRNG_RESET. 3380 */ 3381 case SQLITE_TESTCTRL_PRNG_RESTORE: { 3382 sqlite3PrngRestoreState(); 3383 break; 3384 } 3385 3386 /* 3387 ** Reset the PRNG back to its uninitialized state. The next call 3388 ** to sqlite3_randomness() will reseed the PRNG using a single call 3389 ** to the xRandomness method of the default VFS. 3390 */ 3391 case SQLITE_TESTCTRL_PRNG_RESET: { 3392 sqlite3_randomness(0,0); 3393 break; 3394 } 3395 3396 /* 3397 ** sqlite3_test_control(BITVEC_TEST, size, program) 3398 ** 3399 ** Run a test against a Bitvec object of size. The program argument 3400 ** is an array of integers that defines the test. Return -1 on a 3401 ** memory allocation error, 0 on success, or non-zero for an error. 3402 ** See the sqlite3BitvecBuiltinTest() for additional information. 3403 */ 3404 case SQLITE_TESTCTRL_BITVEC_TEST: { 3405 int sz = va_arg(ap, int); 3406 int *aProg = va_arg(ap, int*); 3407 rc = sqlite3BitvecBuiltinTest(sz, aProg); 3408 break; 3409 } 3410 3411 /* 3412 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 3413 ** 3414 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 3415 ** if xCallback is not NULL. 3416 ** 3417 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 3418 ** is called immediately after installing the new callback and the return 3419 ** value from sqlite3FaultSim(0) becomes the return from 3420 ** sqlite3_test_control(). 3421 */ 3422 case SQLITE_TESTCTRL_FAULT_INSTALL: { 3423 /* MSVC is picky about pulling func ptrs from va lists. 3424 ** http://support.microsoft.com/kb/47961 3425 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 3426 */ 3427 typedef int(*TESTCALLBACKFUNC_t)(int); 3428 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 3429 rc = sqlite3FaultSim(0); 3430 break; 3431 } 3432 3433 /* 3434 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 3435 ** 3436 ** Register hooks to call to indicate which malloc() failures 3437 ** are benign. 3438 */ 3439 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 3440 typedef void (*void_function)(void); 3441 void_function xBenignBegin; 3442 void_function xBenignEnd; 3443 xBenignBegin = va_arg(ap, void_function); 3444 xBenignEnd = va_arg(ap, void_function); 3445 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 3446 break; 3447 } 3448 3449 /* 3450 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 3451 ** 3452 ** Set the PENDING byte to the value in the argument, if X>0. 3453 ** Make no changes if X==0. Return the value of the pending byte 3454 ** as it existing before this routine was called. 3455 ** 3456 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 3457 ** an incompatible database file format. Changing the PENDING byte 3458 ** while any database connection is open results in undefined and 3459 ** deleterious behavior. 3460 */ 3461 case SQLITE_TESTCTRL_PENDING_BYTE: { 3462 rc = PENDING_BYTE; 3463 #ifndef SQLITE_OMIT_WSD 3464 { 3465 unsigned int newVal = va_arg(ap, unsigned int); 3466 if( newVal ) sqlite3PendingByte = newVal; 3467 } 3468 #endif 3469 break; 3470 } 3471 3472 /* 3473 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 3474 ** 3475 ** This action provides a run-time test to see whether or not 3476 ** assert() was enabled at compile-time. If X is true and assert() 3477 ** is enabled, then the return value is true. If X is true and 3478 ** assert() is disabled, then the return value is zero. If X is 3479 ** false and assert() is enabled, then the assertion fires and the 3480 ** process aborts. If X is false and assert() is disabled, then the 3481 ** return value is zero. 3482 */ 3483 case SQLITE_TESTCTRL_ASSERT: { 3484 volatile int x = 0; 3485 assert( (x = va_arg(ap,int))!=0 ); 3486 rc = x; 3487 break; 3488 } 3489 3490 3491 /* 3492 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 3493 ** 3494 ** This action provides a run-time test to see how the ALWAYS and 3495 ** NEVER macros were defined at compile-time. 3496 ** 3497 ** The return value is ALWAYS(X). 3498 ** 3499 ** The recommended test is X==2. If the return value is 2, that means 3500 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 3501 ** default setting. If the return value is 1, then ALWAYS() is either 3502 ** hard-coded to true or else it asserts if its argument is false. 3503 ** The first behavior (hard-coded to true) is the case if 3504 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 3505 ** behavior (assert if the argument to ALWAYS() is false) is the case if 3506 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 3507 ** 3508 ** The run-time test procedure might look something like this: 3509 ** 3510 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 3511 ** // ALWAYS() and NEVER() are no-op pass-through macros 3512 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 3513 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 3514 ** }else{ 3515 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 3516 ** } 3517 */ 3518 case SQLITE_TESTCTRL_ALWAYS: { 3519 int x = va_arg(ap,int); 3520 rc = ALWAYS(x); 3521 break; 3522 } 3523 3524 /* 3525 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 3526 ** 3527 ** The integer returned reveals the byte-order of the computer on which 3528 ** SQLite is running: 3529 ** 3530 ** 1 big-endian, determined at run-time 3531 ** 10 little-endian, determined at run-time 3532 ** 432101 big-endian, determined at compile-time 3533 ** 123410 little-endian, determined at compile-time 3534 */ 3535 case SQLITE_TESTCTRL_BYTEORDER: { 3536 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 3537 break; 3538 } 3539 3540 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 3541 ** 3542 ** Set the nReserve size to N for the main database on the database 3543 ** connection db. 3544 */ 3545 case SQLITE_TESTCTRL_RESERVE: { 3546 sqlite3 *db = va_arg(ap, sqlite3*); 3547 int x = va_arg(ap,int); 3548 sqlite3_mutex_enter(db->mutex); 3549 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 3550 sqlite3_mutex_leave(db->mutex); 3551 break; 3552 } 3553 3554 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 3555 ** 3556 ** Enable or disable various optimizations for testing purposes. The 3557 ** argument N is a bitmask of optimizations to be disabled. For normal 3558 ** operation N should be 0. The idea is that a test program (like the 3559 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 3560 ** with various optimizations disabled to verify that the same answer 3561 ** is obtained in every case. 3562 */ 3563 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 3564 sqlite3 *db = va_arg(ap, sqlite3*); 3565 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 3566 break; 3567 } 3568 3569 #ifdef SQLITE_N_KEYWORD 3570 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 3571 ** 3572 ** If zWord is a keyword recognized by the parser, then return the 3573 ** number of keywords. Or if zWord is not a keyword, return 0. 3574 ** 3575 ** This test feature is only available in the amalgamation since 3576 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 3577 ** is built using separate source files. 3578 */ 3579 case SQLITE_TESTCTRL_ISKEYWORD: { 3580 const char *zWord = va_arg(ap, const char*); 3581 int n = sqlite3Strlen30(zWord); 3582 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 3583 break; 3584 } 3585 #endif 3586 3587 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 3588 ** 3589 ** Pass pFree into sqlite3ScratchFree(). 3590 ** If sz>0 then allocate a scratch buffer into pNew. 3591 */ 3592 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 3593 void *pFree, **ppNew; 3594 int sz; 3595 sz = va_arg(ap, int); 3596 ppNew = va_arg(ap, void**); 3597 pFree = va_arg(ap, void*); 3598 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 3599 sqlite3ScratchFree(pFree); 3600 break; 3601 } 3602 3603 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 3604 ** 3605 ** If parameter onoff is non-zero, configure the wrappers so that all 3606 ** subsequent calls to localtime() and variants fail. If onoff is zero, 3607 ** undo this setting. 3608 */ 3609 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 3610 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 3611 break; 3612 } 3613 3614 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 3615 ** 3616 ** Set or clear a flag that indicates that the database file is always well- 3617 ** formed and never corrupt. This flag is clear by default, indicating that 3618 ** database files might have arbitrary corruption. Setting the flag during 3619 ** testing causes certain assert() statements in the code to be activated 3620 ** that demonstrat invariants on well-formed database files. 3621 */ 3622 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 3623 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 3624 break; 3625 } 3626 3627 3628 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 3629 ** 3630 ** Set the VDBE coverage callback function to xCallback with context 3631 ** pointer ptr. 3632 */ 3633 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 3634 #ifdef SQLITE_VDBE_COVERAGE 3635 typedef void (*branch_callback)(void*,int,u8,u8); 3636 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 3637 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 3638 #endif 3639 break; 3640 } 3641 3642 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 3643 case SQLITE_TESTCTRL_SORTER_MMAP: { 3644 sqlite3 *db = va_arg(ap, sqlite3*); 3645 db->nMaxSorterMmap = va_arg(ap, int); 3646 break; 3647 } 3648 3649 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 3650 ** 3651 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 3652 ** not. 3653 */ 3654 case SQLITE_TESTCTRL_ISINIT: { 3655 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 3656 break; 3657 } 3658 3659 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 3660 ** 3661 ** This test control is used to create imposter tables. "db" is a pointer 3662 ** to the database connection. dbName is the database name (ex: "main" or 3663 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 3664 ** or off. "tnum" is the root page of the b-tree to which the imposter 3665 ** table should connect. 3666 ** 3667 ** Enable imposter mode only when the schema has already been parsed. Then 3668 ** run a single CREATE TABLE statement to construct the imposter table in 3669 ** the parsed schema. Then turn imposter mode back off again. 3670 ** 3671 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 3672 ** the schema to be reparsed the next time it is needed. This has the 3673 ** effect of erasing all imposter tables. 3674 */ 3675 case SQLITE_TESTCTRL_IMPOSTER: { 3676 sqlite3 *db = va_arg(ap, sqlite3*); 3677 sqlite3_mutex_enter(db->mutex); 3678 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 3679 db->init.busy = db->init.imposterTable = va_arg(ap,int); 3680 db->init.newTnum = va_arg(ap,int); 3681 if( db->init.busy==0 && db->init.newTnum>0 ){ 3682 sqlite3ResetAllSchemasOfConnection(db); 3683 } 3684 sqlite3_mutex_leave(db->mutex); 3685 break; 3686 } 3687 } 3688 va_end(ap); 3689 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 3690 return rc; 3691 } 3692 3693 /* 3694 ** This is a utility routine, useful to VFS implementations, that checks 3695 ** to see if a database file was a URI that contained a specific query 3696 ** parameter, and if so obtains the value of the query parameter. 3697 ** 3698 ** The zFilename argument is the filename pointer passed into the xOpen() 3699 ** method of a VFS implementation. The zParam argument is the name of the 3700 ** query parameter we seek. This routine returns the value of the zParam 3701 ** parameter if it exists. If the parameter does not exist, this routine 3702 ** returns a NULL pointer. 3703 */ 3704 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 3705 if( zFilename==0 || zParam==0 ) return 0; 3706 zFilename += sqlite3Strlen30(zFilename) + 1; 3707 while( zFilename[0] ){ 3708 int x = strcmp(zFilename, zParam); 3709 zFilename += sqlite3Strlen30(zFilename) + 1; 3710 if( x==0 ) return zFilename; 3711 zFilename += sqlite3Strlen30(zFilename) + 1; 3712 } 3713 return 0; 3714 } 3715 3716 /* 3717 ** Return a boolean value for a query parameter. 3718 */ 3719 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 3720 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3721 bDflt = bDflt!=0; 3722 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 3723 } 3724 3725 /* 3726 ** Return a 64-bit integer value for a query parameter. 3727 */ 3728 sqlite3_int64 sqlite3_uri_int64( 3729 const char *zFilename, /* Filename as passed to xOpen */ 3730 const char *zParam, /* URI parameter sought */ 3731 sqlite3_int64 bDflt /* return if parameter is missing */ 3732 ){ 3733 const char *z = sqlite3_uri_parameter(zFilename, zParam); 3734 sqlite3_int64 v; 3735 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 3736 bDflt = v; 3737 } 3738 return bDflt; 3739 } 3740 3741 /* 3742 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 3743 */ 3744 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 3745 int i; 3746 for(i=0; i<db->nDb; i++){ 3747 if( db->aDb[i].pBt 3748 && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0) 3749 ){ 3750 return db->aDb[i].pBt; 3751 } 3752 } 3753 return 0; 3754 } 3755 3756 /* 3757 ** Return the filename of the database associated with a database 3758 ** connection. 3759 */ 3760 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 3761 Btree *pBt; 3762 #ifdef SQLITE_ENABLE_API_ARMOR 3763 if( !sqlite3SafetyCheckOk(db) ){ 3764 (void)SQLITE_MISUSE_BKPT; 3765 return 0; 3766 } 3767 #endif 3768 pBt = sqlite3DbNameToBtree(db, zDbName); 3769 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 3770 } 3771 3772 /* 3773 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 3774 ** no such database exists. 3775 */ 3776 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 3777 Btree *pBt; 3778 #ifdef SQLITE_ENABLE_API_ARMOR 3779 if( !sqlite3SafetyCheckOk(db) ){ 3780 (void)SQLITE_MISUSE_BKPT; 3781 return -1; 3782 } 3783 #endif 3784 pBt = sqlite3DbNameToBtree(db, zDbName); 3785 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 3786 } 3787