1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Compute the affinity string for table pTab, if it has not already been 114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 115 ** 116 ** If the affinity exists (if it is not entirely SQLITE_AFF_BLOB values) and 117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 118 ** for register iReg and following. Or if affinities exists and iReg==0, 119 ** then just set the P4 operand of the previous opcode (which should be 120 ** an OP_MakeRecord) to the affinity string. 121 ** 122 ** A column affinity string has one character per column: 123 ** 124 ** Character Column affinity 125 ** ------------------------------ 126 ** 'A' BLOB 127 ** 'B' TEXT 128 ** 'C' NUMERIC 129 ** 'D' INTEGER 130 ** 'E' REAL 131 */ 132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 133 int i, j; 134 char *zColAff = pTab->zColAff; 135 if( zColAff==0 ){ 136 sqlite3 *db = sqlite3VdbeDb(v); 137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 138 if( !zColAff ){ 139 sqlite3OomFault(db); 140 return; 141 } 142 143 for(i=j=0; i<pTab->nCol; i++){ 144 assert( pTab->aCol[i].affinity!=0 ); 145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 146 zColAff[j++] = pTab->aCol[i].affinity; 147 } 148 } 149 do{ 150 zColAff[j--] = 0; 151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 152 pTab->zColAff = zColAff; 153 } 154 assert( zColAff!=0 ); 155 i = sqlite3Strlen30NN(zColAff); 156 if( i ){ 157 if( iReg ){ 158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 159 }else{ 160 sqlite3VdbeChangeP4(v, -1, zColAff, i); 161 } 162 } 163 } 164 165 /* 166 ** Return non-zero if the table pTab in database iDb or any of its indices 167 ** have been opened at any point in the VDBE program. This is used to see if 168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 169 ** run without using a temporary table for the results of the SELECT. 170 */ 171 static int readsTable(Parse *p, int iDb, Table *pTab){ 172 Vdbe *v = sqlite3GetVdbe(p); 173 int i; 174 int iEnd = sqlite3VdbeCurrentAddr(v); 175 #ifndef SQLITE_OMIT_VIRTUALTABLE 176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 177 #endif 178 179 for(i=1; i<iEnd; i++){ 180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 181 assert( pOp!=0 ); 182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 183 Index *pIndex; 184 Pgno tnum = pOp->p2; 185 if( tnum==pTab->tnum ){ 186 return 1; 187 } 188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 189 if( tnum==pIndex->tnum ){ 190 return 1; 191 } 192 } 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 196 assert( pOp->p4.pVtab!=0 ); 197 assert( pOp->p4type==P4_VTAB ); 198 return 1; 199 } 200 #endif 201 } 202 return 0; 203 } 204 205 /* This walker callback will compute the union of colFlags flags for all 206 ** referenced columns in a CHECK constraint or generated column expression. 207 */ 208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 210 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 212 } 213 return WRC_Continue; 214 } 215 216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 217 /* 218 ** All regular columns for table pTab have been puts into registers 219 ** starting with iRegStore. The registers that correspond to STORED 220 ** or VIRTUAL columns have not yet been initialized. This routine goes 221 ** back and computes the values for those columns based on the previously 222 ** computed normal columns. 223 */ 224 void sqlite3ComputeGeneratedColumns( 225 Parse *pParse, /* Parsing context */ 226 int iRegStore, /* Register holding the first column */ 227 Table *pTab /* The table */ 228 ){ 229 int i; 230 Walker w; 231 Column *pRedo; 232 int eProgress; 233 VdbeOp *pOp; 234 235 assert( pTab->tabFlags & TF_HasGenerated ); 236 testcase( pTab->tabFlags & TF_HasVirtual ); 237 testcase( pTab->tabFlags & TF_HasStored ); 238 239 /* Before computing generated columns, first go through and make sure 240 ** that appropriate affinity has been applied to the regular columns 241 */ 242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 243 if( (pTab->tabFlags & TF_HasStored)!=0 244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 245 ){ 246 /* Change the OP_Affinity argument to '@' (NONE) for all stored 247 ** columns. '@' is the no-op affinity and those columns have not 248 ** yet been computed. */ 249 int ii, jj; 250 char *zP4 = pOp->p4.z; 251 assert( zP4!=0 ); 252 assert( pOp->p4type==P4_DYNAMIC ); 253 for(ii=jj=0; zP4[jj]; ii++){ 254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 255 continue; 256 } 257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 258 zP4[jj] = SQLITE_AFF_NONE; 259 } 260 jj++; 261 } 262 } 263 264 /* Because there can be multiple generated columns that refer to one another, 265 ** this is a two-pass algorithm. On the first pass, mark all generated 266 ** columns as "not available". 267 */ 268 for(i=0; i<pTab->nCol; i++){ 269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 273 } 274 } 275 276 w.u.pTab = pTab; 277 w.xExprCallback = exprColumnFlagUnion; 278 w.xSelectCallback = 0; 279 w.xSelectCallback2 = 0; 280 281 /* On the second pass, compute the value of each NOT-AVAILABLE column. 282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 284 ** they are needed. 285 */ 286 pParse->iSelfTab = -iRegStore; 287 do{ 288 eProgress = 0; 289 pRedo = 0; 290 for(i=0; i<pTab->nCol; i++){ 291 Column *pCol = pTab->aCol + i; 292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 293 int x; 294 pCol->colFlags |= COLFLAG_BUSY; 295 w.eCode = 0; 296 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 297 pCol->colFlags &= ~COLFLAG_BUSY; 298 if( w.eCode & COLFLAG_NOTAVAIL ){ 299 pRedo = pCol; 300 continue; 301 } 302 eProgress = 1; 303 assert( pCol->colFlags & COLFLAG_GENERATED ); 304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 305 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 306 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 307 } 308 } 309 }while( pRedo && eProgress ); 310 if( pRedo ){ 311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 312 } 313 pParse->iSelfTab = 0; 314 } 315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 316 317 318 #ifndef SQLITE_OMIT_AUTOINCREMENT 319 /* 320 ** Locate or create an AutoincInfo structure associated with table pTab 321 ** which is in database iDb. Return the register number for the register 322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 323 ** table. (Also return zero when doing a VACUUM since we do not want to 324 ** update the AUTOINCREMENT counters during a VACUUM.) 325 ** 326 ** There is at most one AutoincInfo structure per table even if the 327 ** same table is autoincremented multiple times due to inserts within 328 ** triggers. A new AutoincInfo structure is created if this is the 329 ** first use of table pTab. On 2nd and subsequent uses, the original 330 ** AutoincInfo structure is used. 331 ** 332 ** Four consecutive registers are allocated: 333 ** 334 ** (1) The name of the pTab table. 335 ** (2) The maximum ROWID of pTab. 336 ** (3) The rowid in sqlite_sequence of pTab 337 ** (4) The original value of the max ROWID in pTab, or NULL if none 338 ** 339 ** The 2nd register is the one that is returned. That is all the 340 ** insert routine needs to know about. 341 */ 342 static int autoIncBegin( 343 Parse *pParse, /* Parsing context */ 344 int iDb, /* Index of the database holding pTab */ 345 Table *pTab /* The table we are writing to */ 346 ){ 347 int memId = 0; /* Register holding maximum rowid */ 348 assert( pParse->db->aDb[iDb].pSchema!=0 ); 349 if( (pTab->tabFlags & TF_Autoincrement)!=0 350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 351 ){ 352 Parse *pToplevel = sqlite3ParseToplevel(pParse); 353 AutoincInfo *pInfo; 354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 355 356 /* Verify that the sqlite_sequence table exists and is an ordinary 357 ** rowid table with exactly two columns. 358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 359 if( pSeqTab==0 360 || !HasRowid(pSeqTab) 361 || NEVER(IsVirtual(pSeqTab)) 362 || pSeqTab->nCol!=2 363 ){ 364 pParse->nErr++; 365 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 366 return 0; 367 } 368 369 pInfo = pToplevel->pAinc; 370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 371 if( pInfo==0 ){ 372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 373 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 374 testcase( pParse->earlyCleanup ); 375 if( pParse->db->mallocFailed ) return 0; 376 pInfo->pNext = pToplevel->pAinc; 377 pToplevel->pAinc = pInfo; 378 pInfo->pTab = pTab; 379 pInfo->iDb = iDb; 380 pToplevel->nMem++; /* Register to hold name of table */ 381 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 382 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 383 } 384 memId = pInfo->regCtr; 385 } 386 return memId; 387 } 388 389 /* 390 ** This routine generates code that will initialize all of the 391 ** register used by the autoincrement tracker. 392 */ 393 void sqlite3AutoincrementBegin(Parse *pParse){ 394 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 395 sqlite3 *db = pParse->db; /* The database connection */ 396 Db *pDb; /* Database only autoinc table */ 397 int memId; /* Register holding max rowid */ 398 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 399 400 /* This routine is never called during trigger-generation. It is 401 ** only called from the top-level */ 402 assert( pParse->pTriggerTab==0 ); 403 assert( sqlite3IsToplevel(pParse) ); 404 405 assert( v ); /* We failed long ago if this is not so */ 406 for(p = pParse->pAinc; p; p = p->pNext){ 407 static const int iLn = VDBE_OFFSET_LINENO(2); 408 static const VdbeOpList autoInc[] = { 409 /* 0 */ {OP_Null, 0, 0, 0}, 410 /* 1 */ {OP_Rewind, 0, 10, 0}, 411 /* 2 */ {OP_Column, 0, 0, 0}, 412 /* 3 */ {OP_Ne, 0, 9, 0}, 413 /* 4 */ {OP_Rowid, 0, 0, 0}, 414 /* 5 */ {OP_Column, 0, 1, 0}, 415 /* 6 */ {OP_AddImm, 0, 0, 0}, 416 /* 7 */ {OP_Copy, 0, 0, 0}, 417 /* 8 */ {OP_Goto, 0, 11, 0}, 418 /* 9 */ {OP_Next, 0, 2, 0}, 419 /* 10 */ {OP_Integer, 0, 0, 0}, 420 /* 11 */ {OP_Close, 0, 0, 0} 421 }; 422 VdbeOp *aOp; 423 pDb = &db->aDb[p->iDb]; 424 memId = p->regCtr; 425 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 426 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 427 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 428 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 429 if( aOp==0 ) break; 430 aOp[0].p2 = memId; 431 aOp[0].p3 = memId+2; 432 aOp[2].p3 = memId; 433 aOp[3].p1 = memId-1; 434 aOp[3].p3 = memId; 435 aOp[3].p5 = SQLITE_JUMPIFNULL; 436 aOp[4].p2 = memId+1; 437 aOp[5].p3 = memId; 438 aOp[6].p1 = memId; 439 aOp[7].p2 = memId+2; 440 aOp[7].p1 = memId; 441 aOp[10].p2 = memId; 442 if( pParse->nTab==0 ) pParse->nTab = 1; 443 } 444 } 445 446 /* 447 ** Update the maximum rowid for an autoincrement calculation. 448 ** 449 ** This routine should be called when the regRowid register holds a 450 ** new rowid that is about to be inserted. If that new rowid is 451 ** larger than the maximum rowid in the memId memory cell, then the 452 ** memory cell is updated. 453 */ 454 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 455 if( memId>0 ){ 456 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 457 } 458 } 459 460 /* 461 ** This routine generates the code needed to write autoincrement 462 ** maximum rowid values back into the sqlite_sequence register. 463 ** Every statement that might do an INSERT into an autoincrement 464 ** table (either directly or through triggers) needs to call this 465 ** routine just before the "exit" code. 466 */ 467 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 468 AutoincInfo *p; 469 Vdbe *v = pParse->pVdbe; 470 sqlite3 *db = pParse->db; 471 472 assert( v ); 473 for(p = pParse->pAinc; p; p = p->pNext){ 474 static const int iLn = VDBE_OFFSET_LINENO(2); 475 static const VdbeOpList autoIncEnd[] = { 476 /* 0 */ {OP_NotNull, 0, 2, 0}, 477 /* 1 */ {OP_NewRowid, 0, 0, 0}, 478 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 479 /* 3 */ {OP_Insert, 0, 0, 0}, 480 /* 4 */ {OP_Close, 0, 0, 0} 481 }; 482 VdbeOp *aOp; 483 Db *pDb = &db->aDb[p->iDb]; 484 int iRec; 485 int memId = p->regCtr; 486 487 iRec = sqlite3GetTempReg(pParse); 488 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 489 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 490 VdbeCoverage(v); 491 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 493 if( aOp==0 ) break; 494 aOp[0].p1 = memId+1; 495 aOp[1].p2 = memId+1; 496 aOp[2].p1 = memId-1; 497 aOp[2].p3 = iRec; 498 aOp[3].p2 = iRec; 499 aOp[3].p3 = memId+1; 500 aOp[3].p5 = OPFLAG_APPEND; 501 sqlite3ReleaseTempReg(pParse, iRec); 502 } 503 } 504 void sqlite3AutoincrementEnd(Parse *pParse){ 505 if( pParse->pAinc ) autoIncrementEnd(pParse); 506 } 507 #else 508 /* 509 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 510 ** above are all no-ops 511 */ 512 # define autoIncBegin(A,B,C) (0) 513 # define autoIncStep(A,B,C) 514 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 515 516 517 /* Forward declaration */ 518 static int xferOptimization( 519 Parse *pParse, /* Parser context */ 520 Table *pDest, /* The table we are inserting into */ 521 Select *pSelect, /* A SELECT statement to use as the data source */ 522 int onError, /* How to handle constraint errors */ 523 int iDbDest /* The database of pDest */ 524 ); 525 526 /* 527 ** This routine is called to handle SQL of the following forms: 528 ** 529 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 530 ** insert into TABLE (IDLIST) select 531 ** insert into TABLE (IDLIST) default values 532 ** 533 ** The IDLIST following the table name is always optional. If omitted, 534 ** then a list of all (non-hidden) columns for the table is substituted. 535 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 536 ** is omitted. 537 ** 538 ** For the pSelect parameter holds the values to be inserted for the 539 ** first two forms shown above. A VALUES clause is really just short-hand 540 ** for a SELECT statement that omits the FROM clause and everything else 541 ** that follows. If the pSelect parameter is NULL, that means that the 542 ** DEFAULT VALUES form of the INSERT statement is intended. 543 ** 544 ** The code generated follows one of four templates. For a simple 545 ** insert with data coming from a single-row VALUES clause, the code executes 546 ** once straight down through. Pseudo-code follows (we call this 547 ** the "1st template"): 548 ** 549 ** open write cursor to <table> and its indices 550 ** put VALUES clause expressions into registers 551 ** write the resulting record into <table> 552 ** cleanup 553 ** 554 ** The three remaining templates assume the statement is of the form 555 ** 556 ** INSERT INTO <table> SELECT ... 557 ** 558 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 559 ** in other words if the SELECT pulls all columns from a single table 560 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 561 ** if <table2> and <table1> are distinct tables but have identical 562 ** schemas, including all the same indices, then a special optimization 563 ** is invoked that copies raw records from <table2> over to <table1>. 564 ** See the xferOptimization() function for the implementation of this 565 ** template. This is the 2nd template. 566 ** 567 ** open a write cursor to <table> 568 ** open read cursor on <table2> 569 ** transfer all records in <table2> over to <table> 570 ** close cursors 571 ** foreach index on <table> 572 ** open a write cursor on the <table> index 573 ** open a read cursor on the corresponding <table2> index 574 ** transfer all records from the read to the write cursors 575 ** close cursors 576 ** end foreach 577 ** 578 ** The 3rd template is for when the second template does not apply 579 ** and the SELECT clause does not read from <table> at any time. 580 ** The generated code follows this template: 581 ** 582 ** X <- A 583 ** goto B 584 ** A: setup for the SELECT 585 ** loop over the rows in the SELECT 586 ** load values into registers R..R+n 587 ** yield X 588 ** end loop 589 ** cleanup after the SELECT 590 ** end-coroutine X 591 ** B: open write cursor to <table> and its indices 592 ** C: yield X, at EOF goto D 593 ** insert the select result into <table> from R..R+n 594 ** goto C 595 ** D: cleanup 596 ** 597 ** The 4th template is used if the insert statement takes its 598 ** values from a SELECT but the data is being inserted into a table 599 ** that is also read as part of the SELECT. In the third form, 600 ** we have to use an intermediate table to store the results of 601 ** the select. The template is like this: 602 ** 603 ** X <- A 604 ** goto B 605 ** A: setup for the SELECT 606 ** loop over the tables in the SELECT 607 ** load value into register R..R+n 608 ** yield X 609 ** end loop 610 ** cleanup after the SELECT 611 ** end co-routine R 612 ** B: open temp table 613 ** L: yield X, at EOF goto M 614 ** insert row from R..R+n into temp table 615 ** goto L 616 ** M: open write cursor to <table> and its indices 617 ** rewind temp table 618 ** C: loop over rows of intermediate table 619 ** transfer values form intermediate table into <table> 620 ** end loop 621 ** D: cleanup 622 */ 623 void sqlite3Insert( 624 Parse *pParse, /* Parser context */ 625 SrcList *pTabList, /* Name of table into which we are inserting */ 626 Select *pSelect, /* A SELECT statement to use as the data source */ 627 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 628 int onError, /* How to handle constraint errors */ 629 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 630 ){ 631 sqlite3 *db; /* The main database structure */ 632 Table *pTab; /* The table to insert into. aka TABLE */ 633 int i, j; /* Loop counters */ 634 Vdbe *v; /* Generate code into this virtual machine */ 635 Index *pIdx; /* For looping over indices of the table */ 636 int nColumn; /* Number of columns in the data */ 637 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 638 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 639 int iIdxCur = 0; /* First index cursor */ 640 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 641 int endOfLoop; /* Label for the end of the insertion loop */ 642 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 643 int addrInsTop = 0; /* Jump to label "D" */ 644 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 645 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 646 int iDb; /* Index of database holding TABLE */ 647 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 648 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 649 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 650 u8 bIdListInOrder; /* True if IDLIST is in table order */ 651 ExprList *pList = 0; /* List of VALUES() to be inserted */ 652 int iRegStore; /* Register in which to store next column */ 653 654 /* Register allocations */ 655 int regFromSelect = 0;/* Base register for data coming from SELECT */ 656 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 657 int regRowCount = 0; /* Memory cell used for the row counter */ 658 int regIns; /* Block of regs holding rowid+data being inserted */ 659 int regRowid; /* registers holding insert rowid */ 660 int regData; /* register holding first column to insert */ 661 int *aRegIdx = 0; /* One register allocated to each index */ 662 663 #ifndef SQLITE_OMIT_TRIGGER 664 int isView; /* True if attempting to insert into a view */ 665 Trigger *pTrigger; /* List of triggers on pTab, if required */ 666 int tmask; /* Mask of trigger times */ 667 #endif 668 669 db = pParse->db; 670 if( pParse->nErr || db->mallocFailed ){ 671 goto insert_cleanup; 672 } 673 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 674 675 /* If the Select object is really just a simple VALUES() list with a 676 ** single row (the common case) then keep that one row of values 677 ** and discard the other (unused) parts of the pSelect object 678 */ 679 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 680 pList = pSelect->pEList; 681 pSelect->pEList = 0; 682 sqlite3SelectDelete(db, pSelect); 683 pSelect = 0; 684 } 685 686 /* Locate the table into which we will be inserting new information. 687 */ 688 assert( pTabList->nSrc==1 ); 689 pTab = sqlite3SrcListLookup(pParse, pTabList); 690 if( pTab==0 ){ 691 goto insert_cleanup; 692 } 693 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 694 assert( iDb<db->nDb ); 695 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 696 db->aDb[iDb].zDbSName) ){ 697 goto insert_cleanup; 698 } 699 withoutRowid = !HasRowid(pTab); 700 701 /* Figure out if we have any triggers and if the table being 702 ** inserted into is a view 703 */ 704 #ifndef SQLITE_OMIT_TRIGGER 705 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 706 isView = IsView(pTab); 707 #else 708 # define pTrigger 0 709 # define tmask 0 710 # define isView 0 711 #endif 712 #ifdef SQLITE_OMIT_VIEW 713 # undef isView 714 # define isView 0 715 #endif 716 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 717 718 /* If pTab is really a view, make sure it has been initialized. 719 ** ViewGetColumnNames() is a no-op if pTab is not a view. 720 */ 721 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 722 goto insert_cleanup; 723 } 724 725 /* Cannot insert into a read-only table. 726 */ 727 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 728 goto insert_cleanup; 729 } 730 731 /* Allocate a VDBE 732 */ 733 v = sqlite3GetVdbe(pParse); 734 if( v==0 ) goto insert_cleanup; 735 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 736 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 737 738 #ifndef SQLITE_OMIT_XFER_OPT 739 /* If the statement is of the form 740 ** 741 ** INSERT INTO <table1> SELECT * FROM <table2>; 742 ** 743 ** Then special optimizations can be applied that make the transfer 744 ** very fast and which reduce fragmentation of indices. 745 ** 746 ** This is the 2nd template. 747 */ 748 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 749 assert( !pTrigger ); 750 assert( pList==0 ); 751 goto insert_end; 752 } 753 #endif /* SQLITE_OMIT_XFER_OPT */ 754 755 /* If this is an AUTOINCREMENT table, look up the sequence number in the 756 ** sqlite_sequence table and store it in memory cell regAutoinc. 757 */ 758 regAutoinc = autoIncBegin(pParse, iDb, pTab); 759 760 /* Allocate a block registers to hold the rowid and the values 761 ** for all columns of the new row. 762 */ 763 regRowid = regIns = pParse->nMem+1; 764 pParse->nMem += pTab->nCol + 1; 765 if( IsVirtual(pTab) ){ 766 regRowid++; 767 pParse->nMem++; 768 } 769 regData = regRowid+1; 770 771 /* If the INSERT statement included an IDLIST term, then make sure 772 ** all elements of the IDLIST really are columns of the table and 773 ** remember the column indices. 774 ** 775 ** If the table has an INTEGER PRIMARY KEY column and that column 776 ** is named in the IDLIST, then record in the ipkColumn variable 777 ** the index into IDLIST of the primary key column. ipkColumn is 778 ** the index of the primary key as it appears in IDLIST, not as 779 ** is appears in the original table. (The index of the INTEGER 780 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 781 ** loop, if ipkColumn==(-1), that means that integer primary key 782 ** is unspecified, and hence the table is either WITHOUT ROWID or 783 ** it will automatically generated an integer primary key. 784 ** 785 ** bIdListInOrder is true if the columns in IDLIST are in storage 786 ** order. This enables an optimization that avoids shuffling the 787 ** columns into storage order. False negatives are harmless, 788 ** but false positives will cause database corruption. 789 */ 790 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 791 if( pColumn ){ 792 for(i=0; i<pColumn->nId; i++){ 793 pColumn->a[i].idx = -1; 794 } 795 for(i=0; i<pColumn->nId; i++){ 796 for(j=0; j<pTab->nCol; j++){ 797 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 798 pColumn->a[i].idx = j; 799 if( i!=j ) bIdListInOrder = 0; 800 if( j==pTab->iPKey ){ 801 ipkColumn = i; assert( !withoutRowid ); 802 } 803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 804 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 805 sqlite3ErrorMsg(pParse, 806 "cannot INSERT into generated column \"%s\"", 807 pTab->aCol[j].zCnName); 808 goto insert_cleanup; 809 } 810 #endif 811 break; 812 } 813 } 814 if( j>=pTab->nCol ){ 815 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 816 ipkColumn = i; 817 bIdListInOrder = 0; 818 }else{ 819 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 820 pTabList->a, pColumn->a[i].zName); 821 pParse->checkSchema = 1; 822 goto insert_cleanup; 823 } 824 } 825 } 826 } 827 828 /* Figure out how many columns of data are supplied. If the data 829 ** is coming from a SELECT statement, then generate a co-routine that 830 ** produces a single row of the SELECT on each invocation. The 831 ** co-routine is the common header to the 3rd and 4th templates. 832 */ 833 if( pSelect ){ 834 /* Data is coming from a SELECT or from a multi-row VALUES clause. 835 ** Generate a co-routine to run the SELECT. */ 836 int regYield; /* Register holding co-routine entry-point */ 837 int addrTop; /* Top of the co-routine */ 838 int rc; /* Result code */ 839 840 regYield = ++pParse->nMem; 841 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 842 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 843 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 844 dest.iSdst = bIdListInOrder ? regData : 0; 845 dest.nSdst = pTab->nCol; 846 rc = sqlite3Select(pParse, pSelect, &dest); 847 regFromSelect = dest.iSdst; 848 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 849 sqlite3VdbeEndCoroutine(v, regYield); 850 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 851 assert( pSelect->pEList ); 852 nColumn = pSelect->pEList->nExpr; 853 854 /* Set useTempTable to TRUE if the result of the SELECT statement 855 ** should be written into a temporary table (template 4). Set to 856 ** FALSE if each output row of the SELECT can be written directly into 857 ** the destination table (template 3). 858 ** 859 ** A temp table must be used if the table being updated is also one 860 ** of the tables being read by the SELECT statement. Also use a 861 ** temp table in the case of row triggers. 862 */ 863 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 864 useTempTable = 1; 865 } 866 867 if( useTempTable ){ 868 /* Invoke the coroutine to extract information from the SELECT 869 ** and add it to a transient table srcTab. The code generated 870 ** here is from the 4th template: 871 ** 872 ** B: open temp table 873 ** L: yield X, goto M at EOF 874 ** insert row from R..R+n into temp table 875 ** goto L 876 ** M: ... 877 */ 878 int regRec; /* Register to hold packed record */ 879 int regTempRowid; /* Register to hold temp table ROWID */ 880 int addrL; /* Label "L" */ 881 882 srcTab = pParse->nTab++; 883 regRec = sqlite3GetTempReg(pParse); 884 regTempRowid = sqlite3GetTempReg(pParse); 885 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 886 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 887 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 888 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 889 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 890 sqlite3VdbeGoto(v, addrL); 891 sqlite3VdbeJumpHere(v, addrL); 892 sqlite3ReleaseTempReg(pParse, regRec); 893 sqlite3ReleaseTempReg(pParse, regTempRowid); 894 } 895 }else{ 896 /* This is the case if the data for the INSERT is coming from a 897 ** single-row VALUES clause 898 */ 899 NameContext sNC; 900 memset(&sNC, 0, sizeof(sNC)); 901 sNC.pParse = pParse; 902 srcTab = -1; 903 assert( useTempTable==0 ); 904 if( pList ){ 905 nColumn = pList->nExpr; 906 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 907 goto insert_cleanup; 908 } 909 }else{ 910 nColumn = 0; 911 } 912 } 913 914 /* If there is no IDLIST term but the table has an integer primary 915 ** key, the set the ipkColumn variable to the integer primary key 916 ** column index in the original table definition. 917 */ 918 if( pColumn==0 && nColumn>0 ){ 919 ipkColumn = pTab->iPKey; 920 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 921 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 922 testcase( pTab->tabFlags & TF_HasVirtual ); 923 testcase( pTab->tabFlags & TF_HasStored ); 924 for(i=ipkColumn-1; i>=0; i--){ 925 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 926 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 927 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 928 ipkColumn--; 929 } 930 } 931 } 932 #endif 933 934 /* Make sure the number of columns in the source data matches the number 935 ** of columns to be inserted into the table. 936 */ 937 assert( TF_HasHidden==COLFLAG_HIDDEN ); 938 assert( TF_HasGenerated==COLFLAG_GENERATED ); 939 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 940 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 941 for(i=0; i<pTab->nCol; i++){ 942 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 943 } 944 } 945 if( nColumn!=(pTab->nCol-nHidden) ){ 946 sqlite3ErrorMsg(pParse, 947 "table %S has %d columns but %d values were supplied", 948 pTabList->a, pTab->nCol-nHidden, nColumn); 949 goto insert_cleanup; 950 } 951 } 952 if( pColumn!=0 && nColumn!=pColumn->nId ){ 953 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 954 goto insert_cleanup; 955 } 956 957 /* Initialize the count of rows to be inserted 958 */ 959 if( (db->flags & SQLITE_CountRows)!=0 960 && !pParse->nested 961 && !pParse->pTriggerTab 962 && !pParse->bReturning 963 ){ 964 regRowCount = ++pParse->nMem; 965 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 966 } 967 968 /* If this is not a view, open the table and and all indices */ 969 if( !isView ){ 970 int nIdx; 971 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 972 &iDataCur, &iIdxCur); 973 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 974 if( aRegIdx==0 ){ 975 goto insert_cleanup; 976 } 977 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 978 assert( pIdx ); 979 aRegIdx[i] = ++pParse->nMem; 980 pParse->nMem += pIdx->nColumn; 981 } 982 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 983 } 984 #ifndef SQLITE_OMIT_UPSERT 985 if( pUpsert ){ 986 Upsert *pNx; 987 if( IsVirtual(pTab) ){ 988 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 989 pTab->zName); 990 goto insert_cleanup; 991 } 992 if( IsView(pTab) ){ 993 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 994 goto insert_cleanup; 995 } 996 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 997 goto insert_cleanup; 998 } 999 pTabList->a[0].iCursor = iDataCur; 1000 pNx = pUpsert; 1001 do{ 1002 pNx->pUpsertSrc = pTabList; 1003 pNx->regData = regData; 1004 pNx->iDataCur = iDataCur; 1005 pNx->iIdxCur = iIdxCur; 1006 if( pNx->pUpsertTarget ){ 1007 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1008 goto insert_cleanup; 1009 } 1010 } 1011 pNx = pNx->pNextUpsert; 1012 }while( pNx!=0 ); 1013 } 1014 #endif 1015 1016 1017 /* This is the top of the main insertion loop */ 1018 if( useTempTable ){ 1019 /* This block codes the top of loop only. The complete loop is the 1020 ** following pseudocode (template 4): 1021 ** 1022 ** rewind temp table, if empty goto D 1023 ** C: loop over rows of intermediate table 1024 ** transfer values form intermediate table into <table> 1025 ** end loop 1026 ** D: ... 1027 */ 1028 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1029 addrCont = sqlite3VdbeCurrentAddr(v); 1030 }else if( pSelect ){ 1031 /* This block codes the top of loop only. The complete loop is the 1032 ** following pseudocode (template 3): 1033 ** 1034 ** C: yield X, at EOF goto D 1035 ** insert the select result into <table> from R..R+n 1036 ** goto C 1037 ** D: ... 1038 */ 1039 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1040 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1041 VdbeCoverage(v); 1042 if( ipkColumn>=0 ){ 1043 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1044 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1045 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1046 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1047 } 1048 } 1049 1050 /* Compute data for ordinary columns of the new entry. Values 1051 ** are written in storage order into registers starting with regData. 1052 ** Only ordinary columns are computed in this loop. The rowid 1053 ** (if there is one) is computed later and generated columns are 1054 ** computed after the rowid since they might depend on the value 1055 ** of the rowid. 1056 */ 1057 nHidden = 0; 1058 iRegStore = regData; assert( regData==regRowid+1 ); 1059 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1060 int k; 1061 u32 colFlags; 1062 assert( i>=nHidden ); 1063 if( i==pTab->iPKey ){ 1064 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1065 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1066 ** using excess space. The file format definition requires this extra 1067 ** NULL - we cannot optimize further by skipping the column completely */ 1068 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1069 continue; 1070 } 1071 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1072 nHidden++; 1073 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1074 /* Virtual columns do not participate in OP_MakeRecord. So back up 1075 ** iRegStore by one slot to compensate for the iRegStore++ in the 1076 ** outer for() loop */ 1077 iRegStore--; 1078 continue; 1079 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1080 /* Stored columns are computed later. But if there are BEFORE 1081 ** triggers, the slots used for stored columns will be OP_Copy-ed 1082 ** to a second block of registers, so the register needs to be 1083 ** initialized to NULL to avoid an uninitialized register read */ 1084 if( tmask & TRIGGER_BEFORE ){ 1085 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1086 } 1087 continue; 1088 }else if( pColumn==0 ){ 1089 /* Hidden columns that are not explicitly named in the INSERT 1090 ** get there default value */ 1091 sqlite3ExprCodeFactorable(pParse, 1092 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1093 iRegStore); 1094 continue; 1095 } 1096 } 1097 if( pColumn ){ 1098 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1099 if( j>=pColumn->nId ){ 1100 /* A column not named in the insert column list gets its 1101 ** default value */ 1102 sqlite3ExprCodeFactorable(pParse, 1103 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1104 iRegStore); 1105 continue; 1106 } 1107 k = j; 1108 }else if( nColumn==0 ){ 1109 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1110 sqlite3ExprCodeFactorable(pParse, 1111 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1112 iRegStore); 1113 continue; 1114 }else{ 1115 k = i - nHidden; 1116 } 1117 1118 if( useTempTable ){ 1119 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1120 }else if( pSelect ){ 1121 if( regFromSelect!=regData ){ 1122 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1123 } 1124 }else{ 1125 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1126 } 1127 } 1128 1129 1130 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1131 */ 1132 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1133 if( tmask & TRIGGER_BEFORE ){ 1134 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1135 1136 /* build the NEW.* reference row. Note that if there is an INTEGER 1137 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1138 ** translated into a unique ID for the row. But on a BEFORE trigger, 1139 ** we do not know what the unique ID will be (because the insert has 1140 ** not happened yet) so we substitute a rowid of -1 1141 */ 1142 if( ipkColumn<0 ){ 1143 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1144 }else{ 1145 int addr1; 1146 assert( !withoutRowid ); 1147 if( useTempTable ){ 1148 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1149 }else{ 1150 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1151 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1152 } 1153 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1154 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1155 sqlite3VdbeJumpHere(v, addr1); 1156 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1157 } 1158 1159 /* Copy the new data already generated. */ 1160 assert( pTab->nNVCol>0 ); 1161 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1162 1163 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1164 /* Compute the new value for generated columns after all other 1165 ** columns have already been computed. This must be done after 1166 ** computing the ROWID in case one of the generated columns 1167 ** refers to the ROWID. */ 1168 if( pTab->tabFlags & TF_HasGenerated ){ 1169 testcase( pTab->tabFlags & TF_HasVirtual ); 1170 testcase( pTab->tabFlags & TF_HasStored ); 1171 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1172 } 1173 #endif 1174 1175 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1176 ** do not attempt any conversions before assembling the record. 1177 ** If this is a real table, attempt conversions as required by the 1178 ** table column affinities. 1179 */ 1180 if( !isView ){ 1181 sqlite3TableAffinity(v, pTab, regCols+1); 1182 } 1183 1184 /* Fire BEFORE or INSTEAD OF triggers */ 1185 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1186 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1187 1188 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1189 } 1190 1191 if( !isView ){ 1192 if( IsVirtual(pTab) ){ 1193 /* The row that the VUpdate opcode will delete: none */ 1194 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1195 } 1196 if( ipkColumn>=0 ){ 1197 /* Compute the new rowid */ 1198 if( useTempTable ){ 1199 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1200 }else if( pSelect ){ 1201 /* Rowid already initialized at tag-20191021-001 */ 1202 }else{ 1203 Expr *pIpk = pList->a[ipkColumn].pExpr; 1204 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1205 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1206 appendFlag = 1; 1207 }else{ 1208 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1209 } 1210 } 1211 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1212 ** to generate a unique primary key value. 1213 */ 1214 if( !appendFlag ){ 1215 int addr1; 1216 if( !IsVirtual(pTab) ){ 1217 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1218 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1219 sqlite3VdbeJumpHere(v, addr1); 1220 }else{ 1221 addr1 = sqlite3VdbeCurrentAddr(v); 1222 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1223 } 1224 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1225 } 1226 }else if( IsVirtual(pTab) || withoutRowid ){ 1227 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1228 }else{ 1229 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1230 appendFlag = 1; 1231 } 1232 autoIncStep(pParse, regAutoinc, regRowid); 1233 1234 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1235 /* Compute the new value for generated columns after all other 1236 ** columns have already been computed. This must be done after 1237 ** computing the ROWID in case one of the generated columns 1238 ** is derived from the INTEGER PRIMARY KEY. */ 1239 if( pTab->tabFlags & TF_HasGenerated ){ 1240 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1241 } 1242 #endif 1243 1244 /* Generate code to check constraints and generate index keys and 1245 ** do the insertion. 1246 */ 1247 #ifndef SQLITE_OMIT_VIRTUALTABLE 1248 if( IsVirtual(pTab) ){ 1249 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1250 sqlite3VtabMakeWritable(pParse, pTab); 1251 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1252 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1253 sqlite3MayAbort(pParse); 1254 }else 1255 #endif 1256 { 1257 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1258 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1259 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1260 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1261 ); 1262 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1263 1264 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1265 ** constraints or (b) there are no triggers and this table is not a 1266 ** parent table in a foreign key constraint. It is safe to set the 1267 ** flag in the second case as if any REPLACE constraint is hit, an 1268 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1269 ** cursor that is disturbed. And these instructions both clear the 1270 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1271 ** functionality. */ 1272 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1273 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1274 regIns, aRegIdx, 0, appendFlag, bUseSeek 1275 ); 1276 } 1277 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1278 }else if( pParse->bReturning ){ 1279 /* If there is a RETURNING clause, populate the rowid register with 1280 ** constant value -1, in case one or more of the returned expressions 1281 ** refer to the "rowid" of the view. */ 1282 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1283 #endif 1284 } 1285 1286 /* Update the count of rows that are inserted 1287 */ 1288 if( regRowCount ){ 1289 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1290 } 1291 1292 if( pTrigger ){ 1293 /* Code AFTER triggers */ 1294 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1295 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1296 } 1297 1298 /* The bottom of the main insertion loop, if the data source 1299 ** is a SELECT statement. 1300 */ 1301 sqlite3VdbeResolveLabel(v, endOfLoop); 1302 if( useTempTable ){ 1303 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1304 sqlite3VdbeJumpHere(v, addrInsTop); 1305 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1306 }else if( pSelect ){ 1307 sqlite3VdbeGoto(v, addrCont); 1308 #ifdef SQLITE_DEBUG 1309 /* If we are jumping back to an OP_Yield that is preceded by an 1310 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1311 ** OP_ReleaseReg will be included in the loop. */ 1312 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1313 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1314 sqlite3VdbeChangeP5(v, 1); 1315 } 1316 #endif 1317 sqlite3VdbeJumpHere(v, addrInsTop); 1318 } 1319 1320 #ifndef SQLITE_OMIT_XFER_OPT 1321 insert_end: 1322 #endif /* SQLITE_OMIT_XFER_OPT */ 1323 /* Update the sqlite_sequence table by storing the content of the 1324 ** maximum rowid counter values recorded while inserting into 1325 ** autoincrement tables. 1326 */ 1327 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1328 sqlite3AutoincrementEnd(pParse); 1329 } 1330 1331 /* 1332 ** Return the number of rows inserted. If this routine is 1333 ** generating code because of a call to sqlite3NestedParse(), do not 1334 ** invoke the callback function. 1335 */ 1336 if( regRowCount ){ 1337 sqlite3VdbeAddOp2(v, OP_ChngCntRow, regRowCount, 1); 1338 sqlite3VdbeSetNumCols(v, 1); 1339 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1340 } 1341 1342 insert_cleanup: 1343 sqlite3SrcListDelete(db, pTabList); 1344 sqlite3ExprListDelete(db, pList); 1345 sqlite3UpsertDelete(db, pUpsert); 1346 sqlite3SelectDelete(db, pSelect); 1347 sqlite3IdListDelete(db, pColumn); 1348 sqlite3DbFree(db, aRegIdx); 1349 } 1350 1351 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1352 ** they may interfere with compilation of other functions in this file 1353 ** (or in another file, if this file becomes part of the amalgamation). */ 1354 #ifdef isView 1355 #undef isView 1356 #endif 1357 #ifdef pTrigger 1358 #undef pTrigger 1359 #endif 1360 #ifdef tmask 1361 #undef tmask 1362 #endif 1363 1364 /* 1365 ** Meanings of bits in of pWalker->eCode for 1366 ** sqlite3ExprReferencesUpdatedColumn() 1367 */ 1368 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1369 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1370 1371 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1372 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1373 ** expression node references any of the 1374 ** columns that are being modifed by an UPDATE statement. 1375 */ 1376 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1377 if( pExpr->op==TK_COLUMN ){ 1378 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1379 if( pExpr->iColumn>=0 ){ 1380 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1381 pWalker->eCode |= CKCNSTRNT_COLUMN; 1382 } 1383 }else{ 1384 pWalker->eCode |= CKCNSTRNT_ROWID; 1385 } 1386 } 1387 return WRC_Continue; 1388 } 1389 1390 /* 1391 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1392 ** only columns that are modified by the UPDATE are those for which 1393 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1394 ** 1395 ** Return true if CHECK constraint pExpr uses any of the 1396 ** changing columns (or the rowid if it is changing). In other words, 1397 ** return true if this CHECK constraint must be validated for 1398 ** the new row in the UPDATE statement. 1399 ** 1400 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1401 ** The operation of this routine is the same - return true if an only if 1402 ** the expression uses one or more of columns identified by the second and 1403 ** third arguments. 1404 */ 1405 int sqlite3ExprReferencesUpdatedColumn( 1406 Expr *pExpr, /* The expression to be checked */ 1407 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1408 int chngRowid /* True if UPDATE changes the rowid */ 1409 ){ 1410 Walker w; 1411 memset(&w, 0, sizeof(w)); 1412 w.eCode = 0; 1413 w.xExprCallback = checkConstraintExprNode; 1414 w.u.aiCol = aiChng; 1415 sqlite3WalkExpr(&w, pExpr); 1416 if( !chngRowid ){ 1417 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1418 w.eCode &= ~CKCNSTRNT_ROWID; 1419 } 1420 testcase( w.eCode==0 ); 1421 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1422 testcase( w.eCode==CKCNSTRNT_ROWID ); 1423 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1424 return w.eCode!=0; 1425 } 1426 1427 /* 1428 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1429 ** the indexes of a table in the order provided in the Table->pIndex list. 1430 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1431 ** the indexes in a different order. The following data structures accomplish 1432 ** this. 1433 ** 1434 ** The IndexIterator object is used to walk through all of the indexes 1435 ** of a table in either Index.pNext order, or in some other order established 1436 ** by an array of IndexListTerm objects. 1437 */ 1438 typedef struct IndexListTerm IndexListTerm; 1439 typedef struct IndexIterator IndexIterator; 1440 struct IndexIterator { 1441 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1442 int i; /* Index of the current item from the list */ 1443 union { 1444 struct { /* Use this object for eType==0: A Index.pNext list */ 1445 Index *pIdx; /* The current Index */ 1446 } lx; 1447 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1448 int nIdx; /* Size of the array */ 1449 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1450 } ax; 1451 } u; 1452 }; 1453 1454 /* When IndexIterator.eType==1, then each index is an array of instances 1455 ** of the following object 1456 */ 1457 struct IndexListTerm { 1458 Index *p; /* The index */ 1459 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1460 }; 1461 1462 /* Return the first index on the list */ 1463 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1464 assert( pIter->i==0 ); 1465 if( pIter->eType ){ 1466 *pIx = pIter->u.ax.aIdx[0].ix; 1467 return pIter->u.ax.aIdx[0].p; 1468 }else{ 1469 *pIx = 0; 1470 return pIter->u.lx.pIdx; 1471 } 1472 } 1473 1474 /* Return the next index from the list. Return NULL when out of indexes */ 1475 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1476 if( pIter->eType ){ 1477 int i = ++pIter->i; 1478 if( i>=pIter->u.ax.nIdx ){ 1479 *pIx = i; 1480 return 0; 1481 } 1482 *pIx = pIter->u.ax.aIdx[i].ix; 1483 return pIter->u.ax.aIdx[i].p; 1484 }else{ 1485 ++(*pIx); 1486 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1487 return pIter->u.lx.pIdx; 1488 } 1489 } 1490 1491 /* 1492 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1493 ** on table pTab. 1494 ** 1495 ** The regNewData parameter is the first register in a range that contains 1496 ** the data to be inserted or the data after the update. There will be 1497 ** pTab->nCol+1 registers in this range. The first register (the one 1498 ** that regNewData points to) will contain the new rowid, or NULL in the 1499 ** case of a WITHOUT ROWID table. The second register in the range will 1500 ** contain the content of the first table column. The third register will 1501 ** contain the content of the second table column. And so forth. 1502 ** 1503 ** The regOldData parameter is similar to regNewData except that it contains 1504 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1505 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1506 ** checking regOldData for zero. 1507 ** 1508 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1509 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1510 ** might be modified by the UPDATE. If pkChng is false, then the key of 1511 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1512 ** 1513 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1514 ** was explicitly specified as part of the INSERT statement. If pkChng 1515 ** is zero, it means that the either rowid is computed automatically or 1516 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1517 ** pkChng will only be true if the INSERT statement provides an integer 1518 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1519 ** 1520 ** The code generated by this routine will store new index entries into 1521 ** registers identified by aRegIdx[]. No index entry is created for 1522 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1523 ** the same as the order of indices on the linked list of indices 1524 ** at pTab->pIndex. 1525 ** 1526 ** (2019-05-07) The generated code also creates a new record for the 1527 ** main table, if pTab is a rowid table, and stores that record in the 1528 ** register identified by aRegIdx[nIdx] - in other words in the first 1529 ** entry of aRegIdx[] past the last index. It is important that the 1530 ** record be generated during constraint checks to avoid affinity changes 1531 ** to the register content that occur after constraint checks but before 1532 ** the new record is inserted. 1533 ** 1534 ** The caller must have already opened writeable cursors on the main 1535 ** table and all applicable indices (that is to say, all indices for which 1536 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1537 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1538 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1539 ** for the first index in the pTab->pIndex list. Cursors for other indices 1540 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1541 ** 1542 ** This routine also generates code to check constraints. NOT NULL, 1543 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1544 ** then the appropriate action is performed. There are five possible 1545 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1546 ** 1547 ** Constraint type Action What Happens 1548 ** --------------- ---------- ---------------------------------------- 1549 ** any ROLLBACK The current transaction is rolled back and 1550 ** sqlite3_step() returns immediately with a 1551 ** return code of SQLITE_CONSTRAINT. 1552 ** 1553 ** any ABORT Back out changes from the current command 1554 ** only (do not do a complete rollback) then 1555 ** cause sqlite3_step() to return immediately 1556 ** with SQLITE_CONSTRAINT. 1557 ** 1558 ** any FAIL Sqlite3_step() returns immediately with a 1559 ** return code of SQLITE_CONSTRAINT. The 1560 ** transaction is not rolled back and any 1561 ** changes to prior rows are retained. 1562 ** 1563 ** any IGNORE The attempt in insert or update the current 1564 ** row is skipped, without throwing an error. 1565 ** Processing continues with the next row. 1566 ** (There is an immediate jump to ignoreDest.) 1567 ** 1568 ** NOT NULL REPLACE The NULL value is replace by the default 1569 ** value for that column. If the default value 1570 ** is NULL, the action is the same as ABORT. 1571 ** 1572 ** UNIQUE REPLACE The other row that conflicts with the row 1573 ** being inserted is removed. 1574 ** 1575 ** CHECK REPLACE Illegal. The results in an exception. 1576 ** 1577 ** Which action to take is determined by the overrideError parameter. 1578 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1579 ** is used. Or if pParse->onError==OE_Default then the onError value 1580 ** for the constraint is used. 1581 */ 1582 void sqlite3GenerateConstraintChecks( 1583 Parse *pParse, /* The parser context */ 1584 Table *pTab, /* The table being inserted or updated */ 1585 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1586 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1587 int iIdxCur, /* First index cursor */ 1588 int regNewData, /* First register in a range holding values to insert */ 1589 int regOldData, /* Previous content. 0 for INSERTs */ 1590 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1591 u8 overrideError, /* Override onError to this if not OE_Default */ 1592 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1593 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1594 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1595 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1596 ){ 1597 Vdbe *v; /* VDBE under constrution */ 1598 Index *pIdx; /* Pointer to one of the indices */ 1599 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1600 sqlite3 *db; /* Database connection */ 1601 int i; /* loop counter */ 1602 int ix; /* Index loop counter */ 1603 int nCol; /* Number of columns */ 1604 int onError; /* Conflict resolution strategy */ 1605 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1606 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1607 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1608 u8 isUpdate; /* True if this is an UPDATE operation */ 1609 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1610 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1611 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1612 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1613 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1614 /* Variables associated with retesting uniqueness constraints after 1615 ** replace triggers fire have run */ 1616 int regTrigCnt; /* Register used to count replace trigger invocations */ 1617 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1618 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1619 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1620 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1621 IndexIterator sIdxIter; /* Index iterator */ 1622 1623 isUpdate = regOldData!=0; 1624 db = pParse->db; 1625 v = pParse->pVdbe; 1626 assert( v!=0 ); 1627 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1628 nCol = pTab->nCol; 1629 1630 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1631 ** normal rowid tables. nPkField is the number of key fields in the 1632 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1633 ** number of fields in the true primary key of the table. */ 1634 if( HasRowid(pTab) ){ 1635 pPk = 0; 1636 nPkField = 1; 1637 }else{ 1638 pPk = sqlite3PrimaryKeyIndex(pTab); 1639 nPkField = pPk->nKeyCol; 1640 } 1641 1642 /* Record that this module has started */ 1643 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1644 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1645 1646 /* Test all NOT NULL constraints. 1647 */ 1648 if( pTab->tabFlags & TF_HasNotNull ){ 1649 int b2ndPass = 0; /* True if currently running 2nd pass */ 1650 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1651 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1652 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1653 for(i=0; i<nCol; i++){ 1654 int iReg; /* Register holding column value */ 1655 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1656 int isGenerated; /* non-zero if column is generated */ 1657 onError = pCol->notNull; 1658 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1659 if( i==pTab->iPKey ){ 1660 continue; /* ROWID is never NULL */ 1661 } 1662 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1663 if( isGenerated && !b2ndPass ){ 1664 nGenerated++; 1665 continue; /* Generated columns processed on 2nd pass */ 1666 } 1667 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1668 /* Do not check NOT NULL on columns that do not change */ 1669 continue; 1670 } 1671 if( overrideError!=OE_Default ){ 1672 onError = overrideError; 1673 }else if( onError==OE_Default ){ 1674 onError = OE_Abort; 1675 } 1676 if( onError==OE_Replace ){ 1677 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1678 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1679 ){ 1680 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1681 testcase( pCol->colFlags & COLFLAG_STORED ); 1682 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1683 onError = OE_Abort; 1684 }else{ 1685 assert( !isGenerated ); 1686 } 1687 }else if( b2ndPass && !isGenerated ){ 1688 continue; 1689 } 1690 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1691 || onError==OE_Ignore || onError==OE_Replace ); 1692 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1693 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1694 switch( onError ){ 1695 case OE_Replace: { 1696 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1697 VdbeCoverage(v); 1698 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1699 nSeenReplace++; 1700 sqlite3ExprCodeCopy(pParse, 1701 sqlite3ColumnExpr(pTab, pCol), iReg); 1702 sqlite3VdbeJumpHere(v, addr1); 1703 break; 1704 } 1705 case OE_Abort: 1706 sqlite3MayAbort(pParse); 1707 /* no break */ deliberate_fall_through 1708 case OE_Rollback: 1709 case OE_Fail: { 1710 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1711 pCol->zCnName); 1712 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1713 onError, iReg); 1714 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1715 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1716 VdbeCoverage(v); 1717 break; 1718 } 1719 default: { 1720 assert( onError==OE_Ignore ); 1721 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1722 VdbeCoverage(v); 1723 break; 1724 } 1725 } /* end switch(onError) */ 1726 } /* end loop i over columns */ 1727 if( nGenerated==0 && nSeenReplace==0 ){ 1728 /* If there are no generated columns with NOT NULL constraints 1729 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1730 ** pass is sufficient */ 1731 break; 1732 } 1733 if( b2ndPass ) break; /* Never need more than 2 passes */ 1734 b2ndPass = 1; 1735 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1736 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1737 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1738 ** first pass, recomputed values for all generated columns, as 1739 ** those values might depend on columns affected by the REPLACE. 1740 */ 1741 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1742 } 1743 #endif 1744 } /* end of 2-pass loop */ 1745 } /* end if( has-not-null-constraints ) */ 1746 1747 /* Test all CHECK constraints 1748 */ 1749 #ifndef SQLITE_OMIT_CHECK 1750 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1751 ExprList *pCheck = pTab->pCheck; 1752 pParse->iSelfTab = -(regNewData+1); 1753 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1754 for(i=0; i<pCheck->nExpr; i++){ 1755 int allOk; 1756 Expr *pCopy; 1757 Expr *pExpr = pCheck->a[i].pExpr; 1758 if( aiChng 1759 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1760 ){ 1761 /* The check constraints do not reference any of the columns being 1762 ** updated so there is no point it verifying the check constraint */ 1763 continue; 1764 } 1765 if( bAffinityDone==0 ){ 1766 sqlite3TableAffinity(v, pTab, regNewData+1); 1767 bAffinityDone = 1; 1768 } 1769 allOk = sqlite3VdbeMakeLabel(pParse); 1770 sqlite3VdbeVerifyAbortable(v, onError); 1771 pCopy = sqlite3ExprDup(db, pExpr, 0); 1772 if( !db->mallocFailed ){ 1773 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1774 } 1775 sqlite3ExprDelete(db, pCopy); 1776 if( onError==OE_Ignore ){ 1777 sqlite3VdbeGoto(v, ignoreDest); 1778 }else{ 1779 char *zName = pCheck->a[i].zEName; 1780 assert( zName!=0 || pParse->db->mallocFailed ); 1781 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1782 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1783 onError, zName, P4_TRANSIENT, 1784 P5_ConstraintCheck); 1785 } 1786 sqlite3VdbeResolveLabel(v, allOk); 1787 } 1788 pParse->iSelfTab = 0; 1789 } 1790 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1791 1792 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1793 ** order: 1794 ** 1795 ** (1) OE_Update 1796 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1797 ** (3) OE_Replace 1798 ** 1799 ** OE_Fail and OE_Ignore must happen before any changes are made. 1800 ** OE_Update guarantees that only a single row will change, so it 1801 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1802 ** could happen in any order, but they are grouped up front for 1803 ** convenience. 1804 ** 1805 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1806 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1807 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1808 ** constraint before any others, so it had to be moved. 1809 ** 1810 ** Constraint checking code is generated in this order: 1811 ** (A) The rowid constraint 1812 ** (B) Unique index constraints that do not have OE_Replace as their 1813 ** default conflict resolution strategy 1814 ** (C) Unique index that do use OE_Replace by default. 1815 ** 1816 ** The ordering of (2) and (3) is accomplished by making sure the linked 1817 ** list of indexes attached to a table puts all OE_Replace indexes last 1818 ** in the list. See sqlite3CreateIndex() for where that happens. 1819 */ 1820 sIdxIter.eType = 0; 1821 sIdxIter.i = 0; 1822 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1823 sIdxIter.u.lx.pIdx = pTab->pIndex; 1824 if( pUpsert ){ 1825 if( pUpsert->pUpsertTarget==0 ){ 1826 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1827 assert( pUpsert->pNextUpsert==0 ); 1828 if( pUpsert->isDoUpdate==0 ){ 1829 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1830 ** Make all unique constraint resolution be OE_Ignore */ 1831 overrideError = OE_Ignore; 1832 pUpsert = 0; 1833 }else{ 1834 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1835 overrideError = OE_Update; 1836 } 1837 }else if( pTab->pIndex!=0 ){ 1838 /* Otherwise, we'll need to run the IndexListTerm array version of the 1839 ** iterator to ensure that all of the ON CONFLICT conditions are 1840 ** checked first and in order. */ 1841 int nIdx, jj; 1842 u64 nByte; 1843 Upsert *pTerm; 1844 u8 *bUsed; 1845 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1846 assert( aRegIdx[nIdx]>0 ); 1847 } 1848 sIdxIter.eType = 1; 1849 sIdxIter.u.ax.nIdx = nIdx; 1850 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1851 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1852 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1853 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1854 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1855 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1856 if( pTerm->pUpsertTarget==0 ) break; 1857 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1858 jj = 0; 1859 pIdx = pTab->pIndex; 1860 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1861 pIdx = pIdx->pNext; 1862 jj++; 1863 } 1864 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1865 bUsed[jj] = 1; 1866 sIdxIter.u.ax.aIdx[i].p = pIdx; 1867 sIdxIter.u.ax.aIdx[i].ix = jj; 1868 i++; 1869 } 1870 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1871 if( bUsed[jj] ) continue; 1872 sIdxIter.u.ax.aIdx[i].p = pIdx; 1873 sIdxIter.u.ax.aIdx[i].ix = jj; 1874 i++; 1875 } 1876 assert( i==nIdx ); 1877 } 1878 } 1879 1880 /* Determine if it is possible that triggers (either explicitly coded 1881 ** triggers or FK resolution actions) might run as a result of deletes 1882 ** that happen when OE_Replace conflict resolution occurs. (Call these 1883 ** "replace triggers".) If any replace triggers run, we will need to 1884 ** recheck all of the uniqueness constraints after they have all run. 1885 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1886 ** 1887 ** If replace triggers are a possibility, then 1888 ** 1889 ** (1) Allocate register regTrigCnt and initialize it to zero. 1890 ** That register will count the number of replace triggers that 1891 ** fire. Constraint recheck only occurs if the number is positive. 1892 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1893 ** (3) Initialize addrRecheck and lblRecheckOk 1894 ** 1895 ** The uniqueness rechecking code will create a series of tests to run 1896 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1897 ** used to link together these tests which are separated from each other 1898 ** in the generate bytecode. 1899 */ 1900 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1901 /* There are not DELETE triggers nor FK constraints. No constraint 1902 ** rechecks are needed. */ 1903 pTrigger = 0; 1904 regTrigCnt = 0; 1905 }else{ 1906 if( db->flags&SQLITE_RecTriggers ){ 1907 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1908 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1909 }else{ 1910 pTrigger = 0; 1911 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1912 } 1913 if( regTrigCnt ){ 1914 /* Replace triggers might exist. Allocate the counter and 1915 ** initialize it to zero. */ 1916 regTrigCnt = ++pParse->nMem; 1917 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1918 VdbeComment((v, "trigger count")); 1919 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1920 addrRecheck = lblRecheckOk; 1921 } 1922 } 1923 1924 /* If rowid is changing, make sure the new rowid does not previously 1925 ** exist in the table. 1926 */ 1927 if( pkChng && pPk==0 ){ 1928 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1929 1930 /* Figure out what action to take in case of a rowid collision */ 1931 onError = pTab->keyConf; 1932 if( overrideError!=OE_Default ){ 1933 onError = overrideError; 1934 }else if( onError==OE_Default ){ 1935 onError = OE_Abort; 1936 } 1937 1938 /* figure out whether or not upsert applies in this case */ 1939 if( pUpsert ){ 1940 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1941 if( pUpsertClause!=0 ){ 1942 if( pUpsertClause->isDoUpdate==0 ){ 1943 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1944 }else{ 1945 onError = OE_Update; /* DO UPDATE */ 1946 } 1947 } 1948 if( pUpsertClause!=pUpsert ){ 1949 /* The first ON CONFLICT clause has a conflict target other than 1950 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1951 ** and then come back here and deal with the IPK afterwards */ 1952 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1953 } 1954 } 1955 1956 /* If the response to a rowid conflict is REPLACE but the response 1957 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1958 ** to defer the running of the rowid conflict checking until after 1959 ** the UNIQUE constraints have run. 1960 */ 1961 if( onError==OE_Replace /* IPK rule is REPLACE */ 1962 && onError!=overrideError /* Rules for other constraints are different */ 1963 && pTab->pIndex /* There exist other constraints */ 1964 ){ 1965 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1966 VdbeComment((v, "defer IPK REPLACE until last")); 1967 } 1968 1969 if( isUpdate ){ 1970 /* pkChng!=0 does not mean that the rowid has changed, only that 1971 ** it might have changed. Skip the conflict logic below if the rowid 1972 ** is unchanged. */ 1973 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1974 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1975 VdbeCoverage(v); 1976 } 1977 1978 /* Check to see if the new rowid already exists in the table. Skip 1979 ** the following conflict logic if it does not. */ 1980 VdbeNoopComment((v, "uniqueness check for ROWID")); 1981 sqlite3VdbeVerifyAbortable(v, onError); 1982 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1983 VdbeCoverage(v); 1984 1985 switch( onError ){ 1986 default: { 1987 onError = OE_Abort; 1988 /* no break */ deliberate_fall_through 1989 } 1990 case OE_Rollback: 1991 case OE_Abort: 1992 case OE_Fail: { 1993 testcase( onError==OE_Rollback ); 1994 testcase( onError==OE_Abort ); 1995 testcase( onError==OE_Fail ); 1996 sqlite3RowidConstraint(pParse, onError, pTab); 1997 break; 1998 } 1999 case OE_Replace: { 2000 /* If there are DELETE triggers on this table and the 2001 ** recursive-triggers flag is set, call GenerateRowDelete() to 2002 ** remove the conflicting row from the table. This will fire 2003 ** the triggers and remove both the table and index b-tree entries. 2004 ** 2005 ** Otherwise, if there are no triggers or the recursive-triggers 2006 ** flag is not set, but the table has one or more indexes, call 2007 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2008 ** only. The table b-tree entry will be replaced by the new entry 2009 ** when it is inserted. 2010 ** 2011 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2012 ** also invoke MultiWrite() to indicate that this VDBE may require 2013 ** statement rollback (if the statement is aborted after the delete 2014 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2015 ** but being more selective here allows statements like: 2016 ** 2017 ** REPLACE INTO t(rowid) VALUES($newrowid) 2018 ** 2019 ** to run without a statement journal if there are no indexes on the 2020 ** table. 2021 */ 2022 if( regTrigCnt ){ 2023 sqlite3MultiWrite(pParse); 2024 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2025 regNewData, 1, 0, OE_Replace, 1, -1); 2026 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2027 nReplaceTrig++; 2028 }else{ 2029 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2030 assert( HasRowid(pTab) ); 2031 /* This OP_Delete opcode fires the pre-update-hook only. It does 2032 ** not modify the b-tree. It is more efficient to let the coming 2033 ** OP_Insert replace the existing entry than it is to delete the 2034 ** existing entry and then insert a new one. */ 2035 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2036 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2037 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2038 if( pTab->pIndex ){ 2039 sqlite3MultiWrite(pParse); 2040 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2041 } 2042 } 2043 seenReplace = 1; 2044 break; 2045 } 2046 #ifndef SQLITE_OMIT_UPSERT 2047 case OE_Update: { 2048 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2049 /* no break */ deliberate_fall_through 2050 } 2051 #endif 2052 case OE_Ignore: { 2053 testcase( onError==OE_Ignore ); 2054 sqlite3VdbeGoto(v, ignoreDest); 2055 break; 2056 } 2057 } 2058 sqlite3VdbeResolveLabel(v, addrRowidOk); 2059 if( pUpsert && pUpsertClause!=pUpsert ){ 2060 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2061 }else if( ipkTop ){ 2062 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2063 sqlite3VdbeJumpHere(v, ipkTop-1); 2064 } 2065 } 2066 2067 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2068 ** index and making sure that duplicate entries do not already exist. 2069 ** Compute the revised record entries for indices as we go. 2070 ** 2071 ** This loop also handles the case of the PRIMARY KEY index for a 2072 ** WITHOUT ROWID table. 2073 */ 2074 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2075 pIdx; 2076 pIdx = indexIteratorNext(&sIdxIter, &ix) 2077 ){ 2078 int regIdx; /* Range of registers hold conent for pIdx */ 2079 int regR; /* Range of registers holding conflicting PK */ 2080 int iThisCur; /* Cursor for this UNIQUE index */ 2081 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2082 int addrConflictCk; /* First opcode in the conflict check logic */ 2083 2084 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2085 if( pUpsert ){ 2086 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2087 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2088 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2089 } 2090 } 2091 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2092 if( bAffinityDone==0 ){ 2093 sqlite3TableAffinity(v, pTab, regNewData+1); 2094 bAffinityDone = 1; 2095 } 2096 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2097 iThisCur = iIdxCur+ix; 2098 2099 2100 /* Skip partial indices for which the WHERE clause is not true */ 2101 if( pIdx->pPartIdxWhere ){ 2102 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2103 pParse->iSelfTab = -(regNewData+1); 2104 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2105 SQLITE_JUMPIFNULL); 2106 pParse->iSelfTab = 0; 2107 } 2108 2109 /* Create a record for this index entry as it should appear after 2110 ** the insert or update. Store that record in the aRegIdx[ix] register 2111 */ 2112 regIdx = aRegIdx[ix]+1; 2113 for(i=0; i<pIdx->nColumn; i++){ 2114 int iField = pIdx->aiColumn[i]; 2115 int x; 2116 if( iField==XN_EXPR ){ 2117 pParse->iSelfTab = -(regNewData+1); 2118 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2119 pParse->iSelfTab = 0; 2120 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2121 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2122 x = regNewData; 2123 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2124 VdbeComment((v, "rowid")); 2125 }else{ 2126 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2127 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2128 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2129 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2130 } 2131 } 2132 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2133 VdbeComment((v, "for %s", pIdx->zName)); 2134 #ifdef SQLITE_ENABLE_NULL_TRIM 2135 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2136 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2137 } 2138 #endif 2139 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2140 2141 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2142 ** of a WITHOUT ROWID table and there has been no change the 2143 ** primary key, then no collision is possible. The collision detection 2144 ** logic below can all be skipped. */ 2145 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2146 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2147 continue; 2148 } 2149 2150 /* Find out what action to take in case there is a uniqueness conflict */ 2151 onError = pIdx->onError; 2152 if( onError==OE_None ){ 2153 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2154 continue; /* pIdx is not a UNIQUE index */ 2155 } 2156 if( overrideError!=OE_Default ){ 2157 onError = overrideError; 2158 }else if( onError==OE_Default ){ 2159 onError = OE_Abort; 2160 } 2161 2162 /* Figure out if the upsert clause applies to this index */ 2163 if( pUpsertClause ){ 2164 if( pUpsertClause->isDoUpdate==0 ){ 2165 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2166 }else{ 2167 onError = OE_Update; /* DO UPDATE */ 2168 } 2169 } 2170 2171 /* Collision detection may be omitted if all of the following are true: 2172 ** (1) The conflict resolution algorithm is REPLACE 2173 ** (2) The table is a WITHOUT ROWID table 2174 ** (3) There are no secondary indexes on the table 2175 ** (4) No delete triggers need to be fired if there is a conflict 2176 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2177 ** 2178 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2179 ** must be explicitly deleted in order to ensure any pre-update hook 2180 ** is invoked. */ 2181 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2182 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2183 && pPk==pIdx /* Condition 2 */ 2184 && onError==OE_Replace /* Condition 1 */ 2185 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2186 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2187 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2188 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2189 ){ 2190 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2191 continue; 2192 } 2193 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2194 2195 /* Check to see if the new index entry will be unique */ 2196 sqlite3VdbeVerifyAbortable(v, onError); 2197 addrConflictCk = 2198 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2199 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2200 2201 /* Generate code to handle collisions */ 2202 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2203 if( isUpdate || onError==OE_Replace ){ 2204 if( HasRowid(pTab) ){ 2205 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2206 /* Conflict only if the rowid of the existing index entry 2207 ** is different from old-rowid */ 2208 if( isUpdate ){ 2209 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2210 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2211 VdbeCoverage(v); 2212 } 2213 }else{ 2214 int x; 2215 /* Extract the PRIMARY KEY from the end of the index entry and 2216 ** store it in registers regR..regR+nPk-1 */ 2217 if( pIdx!=pPk ){ 2218 for(i=0; i<pPk->nKeyCol; i++){ 2219 assert( pPk->aiColumn[i]>=0 ); 2220 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2221 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2222 VdbeComment((v, "%s.%s", pTab->zName, 2223 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2224 } 2225 } 2226 if( isUpdate ){ 2227 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2228 ** table, only conflict if the new PRIMARY KEY values are actually 2229 ** different from the old. 2230 ** 2231 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2232 ** of the matched index row are different from the original PRIMARY 2233 ** KEY values of this row before the update. */ 2234 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2235 int op = OP_Ne; 2236 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2237 2238 for(i=0; i<pPk->nKeyCol; i++){ 2239 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2240 x = pPk->aiColumn[i]; 2241 assert( x>=0 ); 2242 if( i==(pPk->nKeyCol-1) ){ 2243 addrJump = addrUniqueOk; 2244 op = OP_Eq; 2245 } 2246 x = sqlite3TableColumnToStorage(pTab, x); 2247 sqlite3VdbeAddOp4(v, op, 2248 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2249 ); 2250 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2251 VdbeCoverageIf(v, op==OP_Eq); 2252 VdbeCoverageIf(v, op==OP_Ne); 2253 } 2254 } 2255 } 2256 } 2257 2258 /* Generate code that executes if the new index entry is not unique */ 2259 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2260 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2261 switch( onError ){ 2262 case OE_Rollback: 2263 case OE_Abort: 2264 case OE_Fail: { 2265 testcase( onError==OE_Rollback ); 2266 testcase( onError==OE_Abort ); 2267 testcase( onError==OE_Fail ); 2268 sqlite3UniqueConstraint(pParse, onError, pIdx); 2269 break; 2270 } 2271 #ifndef SQLITE_OMIT_UPSERT 2272 case OE_Update: { 2273 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2274 /* no break */ deliberate_fall_through 2275 } 2276 #endif 2277 case OE_Ignore: { 2278 testcase( onError==OE_Ignore ); 2279 sqlite3VdbeGoto(v, ignoreDest); 2280 break; 2281 } 2282 default: { 2283 int nConflictCk; /* Number of opcodes in conflict check logic */ 2284 2285 assert( onError==OE_Replace ); 2286 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2287 assert( nConflictCk>0 ); 2288 testcase( nConflictCk>1 ); 2289 if( regTrigCnt ){ 2290 sqlite3MultiWrite(pParse); 2291 nReplaceTrig++; 2292 } 2293 if( pTrigger && isUpdate ){ 2294 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2295 } 2296 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2297 regR, nPkField, 0, OE_Replace, 2298 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2299 if( pTrigger && isUpdate ){ 2300 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2301 } 2302 if( regTrigCnt ){ 2303 int addrBypass; /* Jump destination to bypass recheck logic */ 2304 2305 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2306 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2307 VdbeComment((v, "bypass recheck")); 2308 2309 /* Here we insert code that will be invoked after all constraint 2310 ** checks have run, if and only if one or more replace triggers 2311 ** fired. */ 2312 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2313 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2314 if( pIdx->pPartIdxWhere ){ 2315 /* Bypass the recheck if this partial index is not defined 2316 ** for the current row */ 2317 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2318 VdbeCoverage(v); 2319 } 2320 /* Copy the constraint check code from above, except change 2321 ** the constraint-ok jump destination to be the address of 2322 ** the next retest block */ 2323 while( nConflictCk>0 ){ 2324 VdbeOp x; /* Conflict check opcode to copy */ 2325 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2326 ** Hence, make a complete copy of the opcode, rather than using 2327 ** a pointer to the opcode. */ 2328 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2329 if( x.opcode!=OP_IdxRowid ){ 2330 int p2; /* New P2 value for copied conflict check opcode */ 2331 const char *zP4; 2332 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2333 p2 = lblRecheckOk; 2334 }else{ 2335 p2 = x.p2; 2336 } 2337 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2338 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2339 sqlite3VdbeChangeP5(v, x.p5); 2340 VdbeCoverageIf(v, p2!=x.p2); 2341 } 2342 nConflictCk--; 2343 addrConflictCk++; 2344 } 2345 /* If the retest fails, issue an abort */ 2346 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2347 2348 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2349 } 2350 seenReplace = 1; 2351 break; 2352 } 2353 } 2354 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2355 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2356 if( pUpsertClause 2357 && upsertIpkReturn 2358 && sqlite3UpsertNextIsIPK(pUpsertClause) 2359 ){ 2360 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2361 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2362 upsertIpkReturn = 0; 2363 } 2364 } 2365 2366 /* If the IPK constraint is a REPLACE, run it last */ 2367 if( ipkTop ){ 2368 sqlite3VdbeGoto(v, ipkTop); 2369 VdbeComment((v, "Do IPK REPLACE")); 2370 sqlite3VdbeJumpHere(v, ipkBottom); 2371 } 2372 2373 /* Recheck all uniqueness constraints after replace triggers have run */ 2374 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2375 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2376 if( nReplaceTrig ){ 2377 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2378 if( !pPk ){ 2379 if( isUpdate ){ 2380 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2381 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2382 VdbeCoverage(v); 2383 } 2384 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2385 VdbeCoverage(v); 2386 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2387 }else{ 2388 sqlite3VdbeGoto(v, addrRecheck); 2389 } 2390 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2391 } 2392 2393 /* Generate the table record */ 2394 if( HasRowid(pTab) ){ 2395 int regRec = aRegIdx[ix]; 2396 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2397 sqlite3SetMakeRecordP5(v, pTab); 2398 if( !bAffinityDone ){ 2399 sqlite3TableAffinity(v, pTab, 0); 2400 } 2401 } 2402 2403 *pbMayReplace = seenReplace; 2404 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2405 } 2406 2407 #ifdef SQLITE_ENABLE_NULL_TRIM 2408 /* 2409 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2410 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2411 ** 2412 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2413 */ 2414 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2415 u16 i; 2416 2417 /* Records with omitted columns are only allowed for schema format 2418 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2419 if( pTab->pSchema->file_format<2 ) return; 2420 2421 for(i=pTab->nCol-1; i>0; i--){ 2422 if( pTab->aCol[i].iDflt!=0 ) break; 2423 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2424 } 2425 sqlite3VdbeChangeP5(v, i+1); 2426 } 2427 #endif 2428 2429 /* 2430 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2431 ** number is iCur, and register regData contains the new record for the 2432 ** PK index. This function adds code to invoke the pre-update hook, 2433 ** if one is registered. 2434 */ 2435 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2436 static void codeWithoutRowidPreupdate( 2437 Parse *pParse, /* Parse context */ 2438 Table *pTab, /* Table being updated */ 2439 int iCur, /* Cursor number for table */ 2440 int regData /* Data containing new record */ 2441 ){ 2442 Vdbe *v = pParse->pVdbe; 2443 int r = sqlite3GetTempReg(pParse); 2444 assert( !HasRowid(pTab) ); 2445 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2446 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2447 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2448 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2449 sqlite3ReleaseTempReg(pParse, r); 2450 } 2451 #else 2452 # define codeWithoutRowidPreupdate(a,b,c,d) 2453 #endif 2454 2455 /* 2456 ** This routine generates code to finish the INSERT or UPDATE operation 2457 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2458 ** A consecutive range of registers starting at regNewData contains the 2459 ** rowid and the content to be inserted. 2460 ** 2461 ** The arguments to this routine should be the same as the first six 2462 ** arguments to sqlite3GenerateConstraintChecks. 2463 */ 2464 void sqlite3CompleteInsertion( 2465 Parse *pParse, /* The parser context */ 2466 Table *pTab, /* the table into which we are inserting */ 2467 int iDataCur, /* Cursor of the canonical data source */ 2468 int iIdxCur, /* First index cursor */ 2469 int regNewData, /* Range of content */ 2470 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2471 int update_flags, /* True for UPDATE, False for INSERT */ 2472 int appendBias, /* True if this is likely to be an append */ 2473 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2474 ){ 2475 Vdbe *v; /* Prepared statements under construction */ 2476 Index *pIdx; /* An index being inserted or updated */ 2477 u8 pik_flags; /* flag values passed to the btree insert */ 2478 int i; /* Loop counter */ 2479 2480 assert( update_flags==0 2481 || update_flags==OPFLAG_ISUPDATE 2482 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2483 ); 2484 2485 v = pParse->pVdbe; 2486 assert( v!=0 ); 2487 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2488 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2489 /* All REPLACE indexes are at the end of the list */ 2490 assert( pIdx->onError!=OE_Replace 2491 || pIdx->pNext==0 2492 || pIdx->pNext->onError==OE_Replace ); 2493 if( aRegIdx[i]==0 ) continue; 2494 if( pIdx->pPartIdxWhere ){ 2495 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2496 VdbeCoverage(v); 2497 } 2498 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2499 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2500 assert( pParse->nested==0 ); 2501 pik_flags |= OPFLAG_NCHANGE; 2502 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2503 if( update_flags==0 ){ 2504 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2505 } 2506 } 2507 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2508 aRegIdx[i]+1, 2509 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2510 sqlite3VdbeChangeP5(v, pik_flags); 2511 } 2512 if( !HasRowid(pTab) ) return; 2513 if( pParse->nested ){ 2514 pik_flags = 0; 2515 }else{ 2516 pik_flags = OPFLAG_NCHANGE; 2517 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2518 } 2519 if( appendBias ){ 2520 pik_flags |= OPFLAG_APPEND; 2521 } 2522 if( useSeekResult ){ 2523 pik_flags |= OPFLAG_USESEEKRESULT; 2524 } 2525 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2526 if( !pParse->nested ){ 2527 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2528 } 2529 sqlite3VdbeChangeP5(v, pik_flags); 2530 } 2531 2532 /* 2533 ** Allocate cursors for the pTab table and all its indices and generate 2534 ** code to open and initialized those cursors. 2535 ** 2536 ** The cursor for the object that contains the complete data (normally 2537 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2538 ** ROWID table) is returned in *piDataCur. The first index cursor is 2539 ** returned in *piIdxCur. The number of indices is returned. 2540 ** 2541 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2542 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2543 ** If iBase is negative, then allocate the next available cursor. 2544 ** 2545 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2546 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2547 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2548 ** pTab->pIndex list. 2549 ** 2550 ** If pTab is a virtual table, then this routine is a no-op and the 2551 ** *piDataCur and *piIdxCur values are left uninitialized. 2552 */ 2553 int sqlite3OpenTableAndIndices( 2554 Parse *pParse, /* Parsing context */ 2555 Table *pTab, /* Table to be opened */ 2556 int op, /* OP_OpenRead or OP_OpenWrite */ 2557 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2558 int iBase, /* Use this for the table cursor, if there is one */ 2559 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2560 int *piDataCur, /* Write the database source cursor number here */ 2561 int *piIdxCur /* Write the first index cursor number here */ 2562 ){ 2563 int i; 2564 int iDb; 2565 int iDataCur; 2566 Index *pIdx; 2567 Vdbe *v; 2568 2569 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2570 assert( op==OP_OpenWrite || p5==0 ); 2571 if( IsVirtual(pTab) ){ 2572 /* This routine is a no-op for virtual tables. Leave the output 2573 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2574 ** can detect if they are used by mistake in the caller. */ 2575 return 0; 2576 } 2577 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2578 v = pParse->pVdbe; 2579 assert( v!=0 ); 2580 if( iBase<0 ) iBase = pParse->nTab; 2581 iDataCur = iBase++; 2582 if( piDataCur ) *piDataCur = iDataCur; 2583 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2584 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2585 }else{ 2586 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2587 } 2588 if( piIdxCur ) *piIdxCur = iBase; 2589 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2590 int iIdxCur = iBase++; 2591 assert( pIdx->pSchema==pTab->pSchema ); 2592 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2593 if( piDataCur ) *piDataCur = iIdxCur; 2594 p5 = 0; 2595 } 2596 if( aToOpen==0 || aToOpen[i+1] ){ 2597 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2598 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2599 sqlite3VdbeChangeP5(v, p5); 2600 VdbeComment((v, "%s", pIdx->zName)); 2601 } 2602 } 2603 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2604 return i; 2605 } 2606 2607 2608 #ifdef SQLITE_TEST 2609 /* 2610 ** The following global variable is incremented whenever the 2611 ** transfer optimization is used. This is used for testing 2612 ** purposes only - to make sure the transfer optimization really 2613 ** is happening when it is supposed to. 2614 */ 2615 int sqlite3_xferopt_count; 2616 #endif /* SQLITE_TEST */ 2617 2618 2619 #ifndef SQLITE_OMIT_XFER_OPT 2620 /* 2621 ** Check to see if index pSrc is compatible as a source of data 2622 ** for index pDest in an insert transfer optimization. The rules 2623 ** for a compatible index: 2624 ** 2625 ** * The index is over the same set of columns 2626 ** * The same DESC and ASC markings occurs on all columns 2627 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2628 ** * The same collating sequence on each column 2629 ** * The index has the exact same WHERE clause 2630 */ 2631 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2632 int i; 2633 assert( pDest && pSrc ); 2634 assert( pDest->pTable!=pSrc->pTable ); 2635 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2636 return 0; /* Different number of columns */ 2637 } 2638 if( pDest->onError!=pSrc->onError ){ 2639 return 0; /* Different conflict resolution strategies */ 2640 } 2641 for(i=0; i<pSrc->nKeyCol; i++){ 2642 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2643 return 0; /* Different columns indexed */ 2644 } 2645 if( pSrc->aiColumn[i]==XN_EXPR ){ 2646 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2647 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2648 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2649 return 0; /* Different expressions in the index */ 2650 } 2651 } 2652 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2653 return 0; /* Different sort orders */ 2654 } 2655 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2656 return 0; /* Different collating sequences */ 2657 } 2658 } 2659 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2660 return 0; /* Different WHERE clauses */ 2661 } 2662 2663 /* If no test above fails then the indices must be compatible */ 2664 return 1; 2665 } 2666 2667 /* 2668 ** Attempt the transfer optimization on INSERTs of the form 2669 ** 2670 ** INSERT INTO tab1 SELECT * FROM tab2; 2671 ** 2672 ** The xfer optimization transfers raw records from tab2 over to tab1. 2673 ** Columns are not decoded and reassembled, which greatly improves 2674 ** performance. Raw index records are transferred in the same way. 2675 ** 2676 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2677 ** There are lots of rules for determining compatibility - see comments 2678 ** embedded in the code for details. 2679 ** 2680 ** This routine returns TRUE if the optimization is guaranteed to be used. 2681 ** Sometimes the xfer optimization will only work if the destination table 2682 ** is empty - a factor that can only be determined at run-time. In that 2683 ** case, this routine generates code for the xfer optimization but also 2684 ** does a test to see if the destination table is empty and jumps over the 2685 ** xfer optimization code if the test fails. In that case, this routine 2686 ** returns FALSE so that the caller will know to go ahead and generate 2687 ** an unoptimized transfer. This routine also returns FALSE if there 2688 ** is no chance that the xfer optimization can be applied. 2689 ** 2690 ** This optimization is particularly useful at making VACUUM run faster. 2691 */ 2692 static int xferOptimization( 2693 Parse *pParse, /* Parser context */ 2694 Table *pDest, /* The table we are inserting into */ 2695 Select *pSelect, /* A SELECT statement to use as the data source */ 2696 int onError, /* How to handle constraint errors */ 2697 int iDbDest /* The database of pDest */ 2698 ){ 2699 sqlite3 *db = pParse->db; 2700 ExprList *pEList; /* The result set of the SELECT */ 2701 Table *pSrc; /* The table in the FROM clause of SELECT */ 2702 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2703 SrcItem *pItem; /* An element of pSelect->pSrc */ 2704 int i; /* Loop counter */ 2705 int iDbSrc; /* The database of pSrc */ 2706 int iSrc, iDest; /* Cursors from source and destination */ 2707 int addr1, addr2; /* Loop addresses */ 2708 int emptyDestTest = 0; /* Address of test for empty pDest */ 2709 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2710 Vdbe *v; /* The VDBE we are building */ 2711 int regAutoinc; /* Memory register used by AUTOINC */ 2712 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2713 int regData, regRowid; /* Registers holding data and rowid */ 2714 2715 if( pSelect==0 ){ 2716 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2717 } 2718 if( pParse->pWith || pSelect->pWith ){ 2719 /* Do not attempt to process this query if there are an WITH clauses 2720 ** attached to it. Proceeding may generate a false "no such table: xxx" 2721 ** error if pSelect reads from a CTE named "xxx". */ 2722 return 0; 2723 } 2724 if( sqlite3TriggerList(pParse, pDest) ){ 2725 return 0; /* tab1 must not have triggers */ 2726 } 2727 #ifndef SQLITE_OMIT_VIRTUALTABLE 2728 if( IsVirtual(pDest) ){ 2729 return 0; /* tab1 must not be a virtual table */ 2730 } 2731 #endif 2732 if( onError==OE_Default ){ 2733 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2734 if( onError==OE_Default ) onError = OE_Abort; 2735 } 2736 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2737 if( pSelect->pSrc->nSrc!=1 ){ 2738 return 0; /* FROM clause must have exactly one term */ 2739 } 2740 if( pSelect->pSrc->a[0].pSelect ){ 2741 return 0; /* FROM clause cannot contain a subquery */ 2742 } 2743 if( pSelect->pWhere ){ 2744 return 0; /* SELECT may not have a WHERE clause */ 2745 } 2746 if( pSelect->pOrderBy ){ 2747 return 0; /* SELECT may not have an ORDER BY clause */ 2748 } 2749 /* Do not need to test for a HAVING clause. If HAVING is present but 2750 ** there is no ORDER BY, we will get an error. */ 2751 if( pSelect->pGroupBy ){ 2752 return 0; /* SELECT may not have a GROUP BY clause */ 2753 } 2754 if( pSelect->pLimit ){ 2755 return 0; /* SELECT may not have a LIMIT clause */ 2756 } 2757 if( pSelect->pPrior ){ 2758 return 0; /* SELECT may not be a compound query */ 2759 } 2760 if( pSelect->selFlags & SF_Distinct ){ 2761 return 0; /* SELECT may not be DISTINCT */ 2762 } 2763 pEList = pSelect->pEList; 2764 assert( pEList!=0 ); 2765 if( pEList->nExpr!=1 ){ 2766 return 0; /* The result set must have exactly one column */ 2767 } 2768 assert( pEList->a[0].pExpr ); 2769 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2770 return 0; /* The result set must be the special operator "*" */ 2771 } 2772 2773 /* At this point we have established that the statement is of the 2774 ** correct syntactic form to participate in this optimization. Now 2775 ** we have to check the semantics. 2776 */ 2777 pItem = pSelect->pSrc->a; 2778 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2779 if( pSrc==0 ){ 2780 return 0; /* FROM clause does not contain a real table */ 2781 } 2782 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2783 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2784 return 0; /* tab1 and tab2 may not be the same table */ 2785 } 2786 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2787 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2788 } 2789 if( !IsOrdinaryTable(pSrc) ){ 2790 return 0; /* tab2 may not be a view or virtual table */ 2791 } 2792 if( pDest->nCol!=pSrc->nCol ){ 2793 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2794 } 2795 if( pDest->iPKey!=pSrc->iPKey ){ 2796 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2797 } 2798 for(i=0; i<pDest->nCol; i++){ 2799 Column *pDestCol = &pDest->aCol[i]; 2800 Column *pSrcCol = &pSrc->aCol[i]; 2801 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2802 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2803 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2804 ){ 2805 return 0; /* Neither table may have __hidden__ columns */ 2806 } 2807 #endif 2808 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2809 /* Even if tables t1 and t2 have identical schemas, if they contain 2810 ** generated columns, then this statement is semantically incorrect: 2811 ** 2812 ** INSERT INTO t2 SELECT * FROM t1; 2813 ** 2814 ** The reason is that generated column values are returned by the 2815 ** the SELECT statement on the right but the INSERT statement on the 2816 ** left wants them to be omitted. 2817 ** 2818 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2819 ** to do a bulk transfer all of the content from t1 over to t2. 2820 ** 2821 ** We could, in theory, disable this (except for internal use by the 2822 ** VACUUM command where it is actually needed). But why do that? It 2823 ** seems harmless enough, and provides a useful service. 2824 */ 2825 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2826 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2827 return 0; /* Both columns have the same generated-column type */ 2828 } 2829 /* But the transfer is only allowed if both the source and destination 2830 ** tables have the exact same expressions for generated columns. 2831 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2832 */ 2833 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2834 if( sqlite3ExprCompare(0, 2835 sqlite3ColumnExpr(pSrc, pSrcCol), 2836 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2837 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2838 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2839 return 0; /* Different generator expressions */ 2840 } 2841 } 2842 #endif 2843 if( pDestCol->affinity!=pSrcCol->affinity ){ 2844 return 0; /* Affinity must be the same on all columns */ 2845 } 2846 if( sqlite3_stricmp(pDestCol->zCnColl, pSrcCol->zCnColl)!=0 ){ 2847 return 0; /* Collating sequence must be the same on all columns */ 2848 } 2849 if( pDestCol->notNull && !pSrcCol->notNull ){ 2850 return 0; /* tab2 must be NOT NULL if tab1 is */ 2851 } 2852 /* Default values for second and subsequent columns need to match. */ 2853 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2854 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2855 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2856 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2857 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2858 if( (pDestExpr==0)!=(pSrcExpr==0) 2859 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2860 pSrcExpr->u.zToken)!=0) 2861 ){ 2862 return 0; /* Default values must be the same for all columns */ 2863 } 2864 } 2865 } 2866 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2867 if( IsUniqueIndex(pDestIdx) ){ 2868 destHasUniqueIdx = 1; 2869 } 2870 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2871 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2872 } 2873 if( pSrcIdx==0 ){ 2874 return 0; /* pDestIdx has no corresponding index in pSrc */ 2875 } 2876 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2877 && sqlite3FaultSim(411)==SQLITE_OK ){ 2878 /* The sqlite3FaultSim() call allows this corruption test to be 2879 ** bypassed during testing, in order to exercise other corruption tests 2880 ** further downstream. */ 2881 return 0; /* Corrupt schema - two indexes on the same btree */ 2882 } 2883 } 2884 #ifndef SQLITE_OMIT_CHECK 2885 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2886 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2887 } 2888 #endif 2889 #ifndef SQLITE_OMIT_FOREIGN_KEY 2890 /* Disallow the transfer optimization if the destination table constains 2891 ** any foreign key constraints. This is more restrictive than necessary. 2892 ** But the main beneficiary of the transfer optimization is the VACUUM 2893 ** command, and the VACUUM command disables foreign key constraints. So 2894 ** the extra complication to make this rule less restrictive is probably 2895 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2896 */ 2897 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2898 return 0; 2899 } 2900 #endif 2901 if( (db->flags & SQLITE_CountRows)!=0 ){ 2902 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2903 } 2904 2905 /* If we get this far, it means that the xfer optimization is at 2906 ** least a possibility, though it might only work if the destination 2907 ** table (tab1) is initially empty. 2908 */ 2909 #ifdef SQLITE_TEST 2910 sqlite3_xferopt_count++; 2911 #endif 2912 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2913 v = sqlite3GetVdbe(pParse); 2914 sqlite3CodeVerifySchema(pParse, iDbSrc); 2915 iSrc = pParse->nTab++; 2916 iDest = pParse->nTab++; 2917 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2918 regData = sqlite3GetTempReg(pParse); 2919 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2920 regRowid = sqlite3GetTempReg(pParse); 2921 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2922 assert( HasRowid(pDest) || destHasUniqueIdx ); 2923 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2924 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2925 || destHasUniqueIdx /* (2) */ 2926 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2927 )){ 2928 /* In some circumstances, we are able to run the xfer optimization 2929 ** only if the destination table is initially empty. Unless the 2930 ** DBFLAG_Vacuum flag is set, this block generates code to make 2931 ** that determination. If DBFLAG_Vacuum is set, then the destination 2932 ** table is always empty. 2933 ** 2934 ** Conditions under which the destination must be empty: 2935 ** 2936 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2937 ** (If the destination is not initially empty, the rowid fields 2938 ** of index entries might need to change.) 2939 ** 2940 ** (2) The destination has a unique index. (The xfer optimization 2941 ** is unable to test uniqueness.) 2942 ** 2943 ** (3) onError is something other than OE_Abort and OE_Rollback. 2944 */ 2945 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2946 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2947 sqlite3VdbeJumpHere(v, addr1); 2948 } 2949 if( HasRowid(pSrc) ){ 2950 u8 insFlags; 2951 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2952 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2953 if( pDest->iPKey>=0 ){ 2954 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2955 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2956 sqlite3VdbeVerifyAbortable(v, onError); 2957 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2958 VdbeCoverage(v); 2959 sqlite3RowidConstraint(pParse, onError, pDest); 2960 sqlite3VdbeJumpHere(v, addr2); 2961 } 2962 autoIncStep(pParse, regAutoinc, regRowid); 2963 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2964 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2965 }else{ 2966 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2967 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2968 } 2969 2970 if( db->mDbFlags & DBFLAG_Vacuum ){ 2971 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2972 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2973 }else{ 2974 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 2975 } 2976 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2977 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2978 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2979 insFlags &= ~OPFLAG_PREFORMAT; 2980 }else 2981 #endif 2982 { 2983 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 2984 } 2985 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 2986 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2987 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 2988 } 2989 sqlite3VdbeChangeP5(v, insFlags); 2990 2991 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2992 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2993 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2994 }else{ 2995 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2996 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2997 } 2998 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2999 u8 idxInsFlags = 0; 3000 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3001 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3002 } 3003 assert( pSrcIdx ); 3004 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3005 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3006 VdbeComment((v, "%s", pSrcIdx->zName)); 3007 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3008 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3009 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3010 VdbeComment((v, "%s", pDestIdx->zName)); 3011 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3012 if( db->mDbFlags & DBFLAG_Vacuum ){ 3013 /* This INSERT command is part of a VACUUM operation, which guarantees 3014 ** that the destination table is empty. If all indexed columns use 3015 ** collation sequence BINARY, then it can also be assumed that the 3016 ** index will be populated by inserting keys in strictly sorted 3017 ** order. In this case, instead of seeking within the b-tree as part 3018 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3019 ** OP_IdxInsert to seek to the point within the b-tree where each key 3020 ** should be inserted. This is faster. 3021 ** 3022 ** If any of the indexed columns use a collation sequence other than 3023 ** BINARY, this optimization is disabled. This is because the user 3024 ** might change the definition of a collation sequence and then run 3025 ** a VACUUM command. In that case keys may not be written in strictly 3026 ** sorted order. */ 3027 for(i=0; i<pSrcIdx->nColumn; i++){ 3028 const char *zColl = pSrcIdx->azColl[i]; 3029 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3030 } 3031 if( i==pSrcIdx->nColumn ){ 3032 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3033 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3034 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3035 } 3036 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3037 idxInsFlags |= OPFLAG_NCHANGE; 3038 } 3039 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3040 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3041 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3042 && !HasRowid(pDest) 3043 && IsPrimaryKeyIndex(pDestIdx) 3044 ){ 3045 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3046 } 3047 } 3048 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3049 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3050 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3051 sqlite3VdbeJumpHere(v, addr1); 3052 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3053 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3054 } 3055 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3056 sqlite3ReleaseTempReg(pParse, regRowid); 3057 sqlite3ReleaseTempReg(pParse, regData); 3058 if( emptyDestTest ){ 3059 sqlite3AutoincrementEnd(pParse); 3060 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3061 sqlite3VdbeJumpHere(v, emptyDestTest); 3062 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3063 return 0; 3064 }else{ 3065 return 1; 3066 } 3067 } 3068 #endif /* SQLITE_OMIT_XFER_OPT */ 3069