1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.270 2009/07/24 17:58:53 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Generate code that will open a table for reading. 21 */ 22 void sqlite3OpenTable( 23 Parse *p, /* Generate code into this VDBE */ 24 int iCur, /* The cursor number of the table */ 25 int iDb, /* The database index in sqlite3.aDb[] */ 26 Table *pTab, /* The table to be opened */ 27 int opcode /* OP_OpenRead or OP_OpenWrite */ 28 ){ 29 Vdbe *v; 30 if( IsVirtual(pTab) ) return; 31 v = sqlite3GetVdbe(p); 32 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 33 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); 34 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); 35 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); 36 VdbeComment((v, "%s", pTab->zName)); 37 } 38 39 /* 40 ** Return a pointer to the column affinity string associated with index 41 ** pIdx. A column affinity string has one character for each column in 42 ** the table, according to the affinity of the column: 43 ** 44 ** Character Column affinity 45 ** ------------------------------ 46 ** 'a' TEXT 47 ** 'b' NONE 48 ** 'c' NUMERIC 49 ** 'd' INTEGER 50 ** 'e' REAL 51 ** 52 ** An extra 'b' is appended to the end of the string to cover the 53 ** rowid that appears as the last column in every index. 54 ** 55 ** Memory for the buffer containing the column index affinity string 56 ** is managed along with the rest of the Index structure. It will be 57 ** released when sqlite3DeleteIndex() is called. 58 */ 59 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 60 if( !pIdx->zColAff ){ 61 /* The first time a column affinity string for a particular index is 62 ** required, it is allocated and populated here. It is then stored as 63 ** a member of the Index structure for subsequent use. 64 ** 65 ** The column affinity string will eventually be deleted by 66 ** sqliteDeleteIndex() when the Index structure itself is cleaned 67 ** up. 68 */ 69 int n; 70 Table *pTab = pIdx->pTable; 71 sqlite3 *db = sqlite3VdbeDb(v); 72 pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); 73 if( !pIdx->zColAff ){ 74 db->mallocFailed = 1; 75 return 0; 76 } 77 for(n=0; n<pIdx->nColumn; n++){ 78 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 79 } 80 pIdx->zColAff[n++] = SQLITE_AFF_NONE; 81 pIdx->zColAff[n] = 0; 82 } 83 84 return pIdx->zColAff; 85 } 86 87 /* 88 ** Set P4 of the most recently inserted opcode to a column affinity 89 ** string for table pTab. A column affinity string has one character 90 ** for each column indexed by the index, according to the affinity of the 91 ** column: 92 ** 93 ** Character Column affinity 94 ** ------------------------------ 95 ** 'a' TEXT 96 ** 'b' NONE 97 ** 'c' NUMERIC 98 ** 'd' INTEGER 99 ** 'e' REAL 100 */ 101 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 102 /* The first time a column affinity string for a particular table 103 ** is required, it is allocated and populated here. It is then 104 ** stored as a member of the Table structure for subsequent use. 105 ** 106 ** The column affinity string will eventually be deleted by 107 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 108 */ 109 if( !pTab->zColAff ){ 110 char *zColAff; 111 int i; 112 sqlite3 *db = sqlite3VdbeDb(v); 113 114 zColAff = (char *)sqlite3Malloc(pTab->nCol+1); 115 if( !zColAff ){ 116 db->mallocFailed = 1; 117 return; 118 } 119 120 for(i=0; i<pTab->nCol; i++){ 121 zColAff[i] = pTab->aCol[i].affinity; 122 } 123 zColAff[pTab->nCol] = '\0'; 124 125 pTab->zColAff = zColAff; 126 } 127 128 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); 129 } 130 131 /* 132 ** Return non-zero if the table pTab in database iDb or any of its indices 133 ** have been opened at any point in the VDBE program beginning at location 134 ** iStartAddr throught the end of the program. This is used to see if 135 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 136 ** run without using temporary table for the results of the SELECT. 137 */ 138 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 139 Vdbe *v = sqlite3GetVdbe(p); 140 int i; 141 int iEnd = sqlite3VdbeCurrentAddr(v); 142 #ifndef SQLITE_OMIT_VIRTUALTABLE 143 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 144 #endif 145 146 for(i=iStartAddr; i<iEnd; i++){ 147 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 148 assert( pOp!=0 ); 149 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 150 Index *pIndex; 151 int tnum = pOp->p2; 152 if( tnum==pTab->tnum ){ 153 return 1; 154 } 155 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 156 if( tnum==pIndex->tnum ){ 157 return 1; 158 } 159 } 160 } 161 #ifndef SQLITE_OMIT_VIRTUALTABLE 162 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 163 assert( pOp->p4.pVtab!=0 ); 164 assert( pOp->p4type==P4_VTAB ); 165 return 1; 166 } 167 #endif 168 } 169 return 0; 170 } 171 172 #ifndef SQLITE_OMIT_AUTOINCREMENT 173 /* 174 ** Locate or create an AutoincInfo structure associated with table pTab 175 ** which is in database iDb. Return the register number for the register 176 ** that holds the maximum rowid. 177 ** 178 ** There is at most one AutoincInfo structure per table even if the 179 ** same table is autoincremented multiple times due to inserts within 180 ** triggers. A new AutoincInfo structure is created if this is the 181 ** first use of table pTab. On 2nd and subsequent uses, the original 182 ** AutoincInfo structure is used. 183 ** 184 ** Three memory locations are allocated: 185 ** 186 ** (1) Register to hold the name of the pTab table. 187 ** (2) Register to hold the maximum ROWID of pTab. 188 ** (3) Register to hold the rowid in sqlite_sequence of pTab 189 ** 190 ** The 2nd register is the one that is returned. That is all the 191 ** insert routine needs to know about. 192 */ 193 static int autoIncBegin( 194 Parse *pParse, /* Parsing context */ 195 int iDb, /* Index of the database holding pTab */ 196 Table *pTab /* The table we are writing to */ 197 ){ 198 int memId = 0; /* Register holding maximum rowid */ 199 if( pTab->tabFlags & TF_Autoincrement ){ 200 Parse *pToplevel = sqlite3ParseToplevel(pParse); 201 AutoincInfo *pInfo; 202 203 pInfo = pToplevel->pAinc; 204 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 205 if( pInfo==0 ){ 206 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 207 if( pInfo==0 ) return 0; 208 pInfo->pNext = pToplevel->pAinc; 209 pToplevel->pAinc = pInfo; 210 pInfo->pTab = pTab; 211 pInfo->iDb = iDb; 212 pToplevel->nMem++; /* Register to hold name of table */ 213 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 214 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 215 } 216 memId = pInfo->regCtr; 217 } 218 return memId; 219 } 220 221 /* 222 ** This routine generates code that will initialize all of the 223 ** register used by the autoincrement tracker. 224 */ 225 void sqlite3AutoincrementBegin(Parse *pParse){ 226 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 227 sqlite3 *db = pParse->db; /* The database connection */ 228 Db *pDb; /* Database only autoinc table */ 229 int memId; /* Register holding max rowid */ 230 int addr; /* A VDBE address */ 231 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 232 233 /* This routine is never called during trigger-generation. It is 234 ** only called from the top-level */ 235 assert( pParse->pTriggerTab==0 ); 236 assert( pParse==sqlite3ParseToplevel(pParse) ); 237 238 assert( v ); /* We failed long ago if this is not so */ 239 for(p = pParse->pAinc; p; p = p->pNext){ 240 pDb = &db->aDb[p->iDb]; 241 memId = p->regCtr; 242 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 243 addr = sqlite3VdbeCurrentAddr(v); 244 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 245 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 246 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 247 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 248 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 249 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 250 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 251 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 252 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 253 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 254 sqlite3VdbeAddOp0(v, OP_Close); 255 } 256 } 257 258 /* 259 ** Update the maximum rowid for an autoincrement calculation. 260 ** 261 ** This routine should be called when the top of the stack holds a 262 ** new rowid that is about to be inserted. If that new rowid is 263 ** larger than the maximum rowid in the memId memory cell, then the 264 ** memory cell is updated. The stack is unchanged. 265 */ 266 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 267 if( memId>0 ){ 268 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 269 } 270 } 271 272 /* 273 ** This routine generates the code needed to write autoincrement 274 ** maximum rowid values back into the sqlite_sequence register. 275 ** Every statement that might do an INSERT into an autoincrement 276 ** table (either directly or through triggers) needs to call this 277 ** routine just before the "exit" code. 278 */ 279 void sqlite3AutoincrementEnd(Parse *pParse){ 280 AutoincInfo *p; 281 Vdbe *v = pParse->pVdbe; 282 sqlite3 *db = pParse->db; 283 284 assert( v ); 285 for(p = pParse->pAinc; p; p = p->pNext){ 286 Db *pDb = &db->aDb[p->iDb]; 287 int j1, j2, j3, j4, j5; 288 int iRec; 289 int memId = p->regCtr; 290 291 iRec = sqlite3GetTempReg(pParse); 292 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 293 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 294 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 295 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 296 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 297 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 298 sqlite3VdbeJumpHere(v, j2); 299 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 300 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 301 sqlite3VdbeJumpHere(v, j4); 302 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 303 sqlite3VdbeJumpHere(v, j1); 304 sqlite3VdbeJumpHere(v, j5); 305 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 306 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 307 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 308 sqlite3VdbeAddOp0(v, OP_Close); 309 sqlite3ReleaseTempReg(pParse, iRec); 310 } 311 } 312 #else 313 /* 314 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 315 ** above are all no-ops 316 */ 317 # define autoIncBegin(A,B,C) (0) 318 # define autoIncStep(A,B,C) 319 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 320 321 322 /* Forward declaration */ 323 static int xferOptimization( 324 Parse *pParse, /* Parser context */ 325 Table *pDest, /* The table we are inserting into */ 326 Select *pSelect, /* A SELECT statement to use as the data source */ 327 int onError, /* How to handle constraint errors */ 328 int iDbDest /* The database of pDest */ 329 ); 330 331 /* 332 ** This routine is call to handle SQL of the following forms: 333 ** 334 ** insert into TABLE (IDLIST) values(EXPRLIST) 335 ** insert into TABLE (IDLIST) select 336 ** 337 ** The IDLIST following the table name is always optional. If omitted, 338 ** then a list of all columns for the table is substituted. The IDLIST 339 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 340 ** 341 ** The pList parameter holds EXPRLIST in the first form of the INSERT 342 ** statement above, and pSelect is NULL. For the second form, pList is 343 ** NULL and pSelect is a pointer to the select statement used to generate 344 ** data for the insert. 345 ** 346 ** The code generated follows one of four templates. For a simple 347 ** select with data coming from a VALUES clause, the code executes 348 ** once straight down through. Pseudo-code follows (we call this 349 ** the "1st template"): 350 ** 351 ** open write cursor to <table> and its indices 352 ** puts VALUES clause expressions onto the stack 353 ** write the resulting record into <table> 354 ** cleanup 355 ** 356 ** The three remaining templates assume the statement is of the form 357 ** 358 ** INSERT INTO <table> SELECT ... 359 ** 360 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 361 ** in other words if the SELECT pulls all columns from a single table 362 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 363 ** if <table2> and <table1> are distinct tables but have identical 364 ** schemas, including all the same indices, then a special optimization 365 ** is invoked that copies raw records from <table2> over to <table1>. 366 ** See the xferOptimization() function for the implementation of this 367 ** template. This is the 2nd template. 368 ** 369 ** open a write cursor to <table> 370 ** open read cursor on <table2> 371 ** transfer all records in <table2> over to <table> 372 ** close cursors 373 ** foreach index on <table> 374 ** open a write cursor on the <table> index 375 ** open a read cursor on the corresponding <table2> index 376 ** transfer all records from the read to the write cursors 377 ** close cursors 378 ** end foreach 379 ** 380 ** The 3rd template is for when the second template does not apply 381 ** and the SELECT clause does not read from <table> at any time. 382 ** The generated code follows this template: 383 ** 384 ** EOF <- 0 385 ** X <- A 386 ** goto B 387 ** A: setup for the SELECT 388 ** loop over the rows in the SELECT 389 ** load values into registers R..R+n 390 ** yield X 391 ** end loop 392 ** cleanup after the SELECT 393 ** EOF <- 1 394 ** yield X 395 ** goto A 396 ** B: open write cursor to <table> and its indices 397 ** C: yield X 398 ** if EOF goto D 399 ** insert the select result into <table> from R..R+n 400 ** goto C 401 ** D: cleanup 402 ** 403 ** The 4th template is used if the insert statement takes its 404 ** values from a SELECT but the data is being inserted into a table 405 ** that is also read as part of the SELECT. In the third form, 406 ** we have to use a intermediate table to store the results of 407 ** the select. The template is like this: 408 ** 409 ** EOF <- 0 410 ** X <- A 411 ** goto B 412 ** A: setup for the SELECT 413 ** loop over the tables in the SELECT 414 ** load value into register R..R+n 415 ** yield X 416 ** end loop 417 ** cleanup after the SELECT 418 ** EOF <- 1 419 ** yield X 420 ** halt-error 421 ** B: open temp table 422 ** L: yield X 423 ** if EOF goto M 424 ** insert row from R..R+n into temp table 425 ** goto L 426 ** M: open write cursor to <table> and its indices 427 ** rewind temp table 428 ** C: loop over rows of intermediate table 429 ** transfer values form intermediate table into <table> 430 ** end loop 431 ** D: cleanup 432 */ 433 void sqlite3Insert( 434 Parse *pParse, /* Parser context */ 435 SrcList *pTabList, /* Name of table into which we are inserting */ 436 ExprList *pList, /* List of values to be inserted */ 437 Select *pSelect, /* A SELECT statement to use as the data source */ 438 IdList *pColumn, /* Column names corresponding to IDLIST. */ 439 int onError /* How to handle constraint errors */ 440 ){ 441 sqlite3 *db; /* The main database structure */ 442 Table *pTab; /* The table to insert into. aka TABLE */ 443 char *zTab; /* Name of the table into which we are inserting */ 444 const char *zDb; /* Name of the database holding this table */ 445 int i, j, idx; /* Loop counters */ 446 Vdbe *v; /* Generate code into this virtual machine */ 447 Index *pIdx; /* For looping over indices of the table */ 448 int nColumn; /* Number of columns in the data */ 449 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 450 int baseCur = 0; /* VDBE Cursor number for pTab */ 451 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 452 int endOfLoop; /* Label for the end of the insertion loop */ 453 int useTempTable = 0; /* Store SELECT results in intermediate table */ 454 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 455 int addrInsTop = 0; /* Jump to label "D" */ 456 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 457 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 458 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 459 int iDb; /* Index of database holding TABLE */ 460 Db *pDb; /* The database containing table being inserted into */ 461 int appendFlag = 0; /* True if the insert is likely to be an append */ 462 463 /* Register allocations */ 464 int regFromSelect = 0;/* Base register for data coming from SELECT */ 465 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 466 int regRowCount = 0; /* Memory cell used for the row counter */ 467 int regIns; /* Block of regs holding rowid+data being inserted */ 468 int regRowid; /* registers holding insert rowid */ 469 int regData; /* register holding first column to insert */ 470 int regRecord; /* Holds the assemblied row record */ 471 int regEof = 0; /* Register recording end of SELECT data */ 472 int *aRegIdx = 0; /* One register allocated to each index */ 473 474 #ifndef SQLITE_OMIT_TRIGGER 475 int isView; /* True if attempting to insert into a view */ 476 Trigger *pTrigger; /* List of triggers on pTab, if required */ 477 int tmask; /* Mask of trigger times */ 478 #endif 479 480 db = pParse->db; 481 memset(&dest, 0, sizeof(dest)); 482 if( pParse->nErr || db->mallocFailed ){ 483 goto insert_cleanup; 484 } 485 486 /* Locate the table into which we will be inserting new information. 487 */ 488 assert( pTabList->nSrc==1 ); 489 zTab = pTabList->a[0].zName; 490 if( NEVER(zTab==0) ) goto insert_cleanup; 491 pTab = sqlite3SrcListLookup(pParse, pTabList); 492 if( pTab==0 ){ 493 goto insert_cleanup; 494 } 495 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 496 assert( iDb<db->nDb ); 497 pDb = &db->aDb[iDb]; 498 zDb = pDb->zName; 499 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 500 goto insert_cleanup; 501 } 502 503 /* Figure out if we have any triggers and if the table being 504 ** inserted into is a view 505 */ 506 #ifndef SQLITE_OMIT_TRIGGER 507 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 508 isView = pTab->pSelect!=0; 509 #else 510 # define pTrigger 0 511 # define tmask 0 512 # define isView 0 513 #endif 514 #ifdef SQLITE_OMIT_VIEW 515 # undef isView 516 # define isView 0 517 #endif 518 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 519 520 /* If pTab is really a view, make sure it has been initialized. 521 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 522 ** module table). 523 */ 524 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 525 goto insert_cleanup; 526 } 527 528 /* Ensure that: 529 * (a) the table is not read-only, 530 * (b) that if it is a view then ON INSERT triggers exist 531 */ 532 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 533 goto insert_cleanup; 534 } 535 536 /* Allocate a VDBE 537 */ 538 v = sqlite3GetVdbe(pParse); 539 if( v==0 ) goto insert_cleanup; 540 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 541 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 542 543 #ifndef SQLITE_OMIT_XFER_OPT 544 /* If the statement is of the form 545 ** 546 ** INSERT INTO <table1> SELECT * FROM <table2>; 547 ** 548 ** Then special optimizations can be applied that make the transfer 549 ** very fast and which reduce fragmentation of indices. 550 ** 551 ** This is the 2nd template. 552 */ 553 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 554 assert( !pTrigger ); 555 assert( pList==0 ); 556 goto insert_end; 557 } 558 #endif /* SQLITE_OMIT_XFER_OPT */ 559 560 /* If this is an AUTOINCREMENT table, look up the sequence number in the 561 ** sqlite_sequence table and store it in memory cell regAutoinc. 562 */ 563 regAutoinc = autoIncBegin(pParse, iDb, pTab); 564 565 /* Figure out how many columns of data are supplied. If the data 566 ** is coming from a SELECT statement, then generate a co-routine that 567 ** produces a single row of the SELECT on each invocation. The 568 ** co-routine is the common header to the 3rd and 4th templates. 569 */ 570 if( pSelect ){ 571 /* Data is coming from a SELECT. Generate code to implement that SELECT 572 ** as a co-routine. The code is common to both the 3rd and 4th 573 ** templates: 574 ** 575 ** EOF <- 0 576 ** X <- A 577 ** goto B 578 ** A: setup for the SELECT 579 ** loop over the tables in the SELECT 580 ** load value into register R..R+n 581 ** yield X 582 ** end loop 583 ** cleanup after the SELECT 584 ** EOF <- 1 585 ** yield X 586 ** halt-error 587 ** 588 ** On each invocation of the co-routine, it puts a single row of the 589 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. 590 ** (These output registers are allocated by sqlite3Select().) When 591 ** the SELECT completes, it sets the EOF flag stored in regEof. 592 */ 593 int rc, j1; 594 595 regEof = ++pParse->nMem; 596 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 597 VdbeComment((v, "SELECT eof flag")); 598 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); 599 addrSelect = sqlite3VdbeCurrentAddr(v)+2; 600 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); 601 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 602 VdbeComment((v, "Jump over SELECT coroutine")); 603 604 /* Resolve the expressions in the SELECT statement and execute it. */ 605 rc = sqlite3Select(pParse, pSelect, &dest); 606 assert( pParse->nErr==0 || rc ); 607 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ 608 goto insert_cleanup; 609 } 610 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ 611 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ 612 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); 613 VdbeComment((v, "End of SELECT coroutine")); 614 sqlite3VdbeJumpHere(v, j1); /* label B: */ 615 616 regFromSelect = dest.iMem; 617 assert( pSelect->pEList ); 618 nColumn = pSelect->pEList->nExpr; 619 assert( dest.nMem==nColumn ); 620 621 /* Set useTempTable to TRUE if the result of the SELECT statement 622 ** should be written into a temporary table (template 4). Set to 623 ** FALSE if each* row of the SELECT can be written directly into 624 ** the destination table (template 3). 625 ** 626 ** A temp table must be used if the table being updated is also one 627 ** of the tables being read by the SELECT statement. Also use a 628 ** temp table in the case of row triggers. 629 */ 630 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 631 useTempTable = 1; 632 } 633 634 if( useTempTable ){ 635 /* Invoke the coroutine to extract information from the SELECT 636 ** and add it to a transient table srcTab. The code generated 637 ** here is from the 4th template: 638 ** 639 ** B: open temp table 640 ** L: yield X 641 ** if EOF goto M 642 ** insert row from R..R+n into temp table 643 ** goto L 644 ** M: ... 645 */ 646 int regRec; /* Register to hold packed record */ 647 int regTempRowid; /* Register to hold temp table ROWID */ 648 int addrTop; /* Label "L" */ 649 int addrIf; /* Address of jump to M */ 650 651 srcTab = pParse->nTab++; 652 regRec = sqlite3GetTempReg(pParse); 653 regTempRowid = sqlite3GetTempReg(pParse); 654 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 655 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 656 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 658 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 659 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 660 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 661 sqlite3VdbeJumpHere(v, addrIf); 662 sqlite3ReleaseTempReg(pParse, regRec); 663 sqlite3ReleaseTempReg(pParse, regTempRowid); 664 } 665 }else{ 666 /* This is the case if the data for the INSERT is coming from a VALUES 667 ** clause 668 */ 669 NameContext sNC; 670 memset(&sNC, 0, sizeof(sNC)); 671 sNC.pParse = pParse; 672 srcTab = -1; 673 assert( useTempTable==0 ); 674 nColumn = pList ? pList->nExpr : 0; 675 for(i=0; i<nColumn; i++){ 676 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 677 goto insert_cleanup; 678 } 679 } 680 } 681 682 /* Make sure the number of columns in the source data matches the number 683 ** of columns to be inserted into the table. 684 */ 685 if( IsVirtual(pTab) ){ 686 for(i=0; i<pTab->nCol; i++){ 687 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 688 } 689 } 690 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 691 sqlite3ErrorMsg(pParse, 692 "table %S has %d columns but %d values were supplied", 693 pTabList, 0, pTab->nCol-nHidden, nColumn); 694 goto insert_cleanup; 695 } 696 if( pColumn!=0 && nColumn!=pColumn->nId ){ 697 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 698 goto insert_cleanup; 699 } 700 701 /* If the INSERT statement included an IDLIST term, then make sure 702 ** all elements of the IDLIST really are columns of the table and 703 ** remember the column indices. 704 ** 705 ** If the table has an INTEGER PRIMARY KEY column and that column 706 ** is named in the IDLIST, then record in the keyColumn variable 707 ** the index into IDLIST of the primary key column. keyColumn is 708 ** the index of the primary key as it appears in IDLIST, not as 709 ** is appears in the original table. (The index of the primary 710 ** key in the original table is pTab->iPKey.) 711 */ 712 if( pColumn ){ 713 for(i=0; i<pColumn->nId; i++){ 714 pColumn->a[i].idx = -1; 715 } 716 for(i=0; i<pColumn->nId; i++){ 717 for(j=0; j<pTab->nCol; j++){ 718 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 719 pColumn->a[i].idx = j; 720 if( j==pTab->iPKey ){ 721 keyColumn = i; 722 } 723 break; 724 } 725 } 726 if( j>=pTab->nCol ){ 727 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 728 keyColumn = i; 729 }else{ 730 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 731 pTabList, 0, pColumn->a[i].zName); 732 pParse->nErr++; 733 goto insert_cleanup; 734 } 735 } 736 } 737 } 738 739 /* If there is no IDLIST term but the table has an integer primary 740 ** key, the set the keyColumn variable to the primary key column index 741 ** in the original table definition. 742 */ 743 if( pColumn==0 && nColumn>0 ){ 744 keyColumn = pTab->iPKey; 745 } 746 747 /* Initialize the count of rows to be inserted 748 */ 749 if( db->flags & SQLITE_CountRows ){ 750 regRowCount = ++pParse->nMem; 751 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 752 } 753 754 /* If this is not a view, open the table and and all indices */ 755 if( !isView ){ 756 int nIdx; 757 758 baseCur = pParse->nTab; 759 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); 760 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 761 if( aRegIdx==0 ){ 762 goto insert_cleanup; 763 } 764 for(i=0; i<nIdx; i++){ 765 aRegIdx[i] = ++pParse->nMem; 766 } 767 } 768 769 /* This is the top of the main insertion loop */ 770 if( useTempTable ){ 771 /* This block codes the top of loop only. The complete loop is the 772 ** following pseudocode (template 4): 773 ** 774 ** rewind temp table 775 ** C: loop over rows of intermediate table 776 ** transfer values form intermediate table into <table> 777 ** end loop 778 ** D: ... 779 */ 780 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 781 addrCont = sqlite3VdbeCurrentAddr(v); 782 }else if( pSelect ){ 783 /* This block codes the top of loop only. The complete loop is the 784 ** following pseudocode (template 3): 785 ** 786 ** C: yield X 787 ** if EOF goto D 788 ** insert the select result into <table> from R..R+n 789 ** goto C 790 ** D: ... 791 */ 792 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 793 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 794 } 795 796 /* Allocate registers for holding the rowid of the new row, 797 ** the content of the new row, and the assemblied row record. 798 */ 799 regRecord = ++pParse->nMem; 800 regRowid = regIns = pParse->nMem+1; 801 pParse->nMem += pTab->nCol + 1; 802 if( IsVirtual(pTab) ){ 803 regRowid++; 804 pParse->nMem++; 805 } 806 regData = regRowid+1; 807 808 /* Run the BEFORE and INSTEAD OF triggers, if there are any 809 */ 810 endOfLoop = sqlite3VdbeMakeLabel(v); 811 if( tmask & TRIGGER_BEFORE ){ 812 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 813 814 /* build the NEW.* reference row. Note that if there is an INTEGER 815 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 816 ** translated into a unique ID for the row. But on a BEFORE trigger, 817 ** we do not know what the unique ID will be (because the insert has 818 ** not happened yet) so we substitute a rowid of -1 819 */ 820 if( keyColumn<0 ){ 821 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 822 }else{ 823 int j1; 824 if( useTempTable ){ 825 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); 826 }else{ 827 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 828 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); 829 } 830 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); 831 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 832 sqlite3VdbeJumpHere(v, j1); 833 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); 834 } 835 836 /* Cannot have triggers on a virtual table. If it were possible, 837 ** this block would have to account for hidden column. 838 */ 839 assert( !IsVirtual(pTab) ); 840 841 /* Create the new column data 842 */ 843 for(i=0; i<pTab->nCol; i++){ 844 if( pColumn==0 ){ 845 j = i; 846 }else{ 847 for(j=0; j<pColumn->nId; j++){ 848 if( pColumn->a[j].idx==i ) break; 849 } 850 } 851 if( pColumn && j>=pColumn->nId ){ 852 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 853 }else if( useTempTable ){ 854 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 855 }else{ 856 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 857 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 858 } 859 } 860 861 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 862 ** do not attempt any conversions before assembling the record. 863 ** If this is a real table, attempt conversions as required by the 864 ** table column affinities. 865 */ 866 if( !isView ){ 867 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); 868 sqlite3TableAffinityStr(v, pTab); 869 } 870 871 /* Fire BEFORE or INSTEAD OF triggers */ 872 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 873 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 874 875 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 876 } 877 878 /* Push the record number for the new entry onto the stack. The 879 ** record number is a randomly generate integer created by NewRowid 880 ** except when the table has an INTEGER PRIMARY KEY column, in which 881 ** case the record number is the same as that column. 882 */ 883 if( !isView ){ 884 if( IsVirtual(pTab) ){ 885 /* The row that the VUpdate opcode will delete: none */ 886 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 887 } 888 if( keyColumn>=0 ){ 889 if( useTempTable ){ 890 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); 891 }else if( pSelect ){ 892 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); 893 }else{ 894 VdbeOp *pOp; 895 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); 896 pOp = sqlite3VdbeGetOp(v, -1); 897 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 898 appendFlag = 1; 899 pOp->opcode = OP_NewRowid; 900 pOp->p1 = baseCur; 901 pOp->p2 = regRowid; 902 pOp->p3 = regAutoinc; 903 } 904 } 905 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 906 ** to generate a unique primary key value. 907 */ 908 if( !appendFlag ){ 909 int j1; 910 if( !IsVirtual(pTab) ){ 911 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 912 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 913 sqlite3VdbeJumpHere(v, j1); 914 }else{ 915 j1 = sqlite3VdbeCurrentAddr(v); 916 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 917 } 918 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 919 } 920 }else if( IsVirtual(pTab) ){ 921 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 922 }else{ 923 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 924 appendFlag = 1; 925 } 926 autoIncStep(pParse, regAutoinc, regRowid); 927 928 /* Push onto the stack, data for all columns of the new entry, beginning 929 ** with the first column. 930 */ 931 nHidden = 0; 932 for(i=0; i<pTab->nCol; i++){ 933 int iRegStore = regRowid+1+i; 934 if( i==pTab->iPKey ){ 935 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 936 ** Whenever this column is read, the record number will be substituted 937 ** in its place. So will fill this column with a NULL to avoid 938 ** taking up data space with information that will never be used. */ 939 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 940 continue; 941 } 942 if( pColumn==0 ){ 943 if( IsHiddenColumn(&pTab->aCol[i]) ){ 944 assert( IsVirtual(pTab) ); 945 j = -1; 946 nHidden++; 947 }else{ 948 j = i - nHidden; 949 } 950 }else{ 951 for(j=0; j<pColumn->nId; j++){ 952 if( pColumn->a[j].idx==i ) break; 953 } 954 } 955 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 956 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 957 }else if( useTempTable ){ 958 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 959 }else if( pSelect ){ 960 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 961 }else{ 962 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 963 } 964 } 965 966 /* Generate code to check constraints and generate index keys and 967 ** do the insertion. 968 */ 969 #ifndef SQLITE_OMIT_VIRTUALTABLE 970 if( IsVirtual(pTab) ){ 971 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 972 sqlite3VtabMakeWritable(pParse, pTab); 973 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 974 sqlite3MayAbort(pParse); 975 }else 976 #endif 977 { 978 int isReplace; /* Set to true if constraints may cause a replace */ 979 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, 980 keyColumn>=0, 0, onError, endOfLoop, &isReplace 981 ); 982 sqlite3FkCheck(pParse, pTab, 0, regIns); 983 sqlite3CompleteInsertion( 984 pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 985 ); 986 } 987 } 988 989 /* Update the count of rows that are inserted 990 */ 991 if( (db->flags & SQLITE_CountRows)!=0 ){ 992 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 993 } 994 995 if( pTrigger ){ 996 /* Code AFTER triggers */ 997 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 998 pTab, regData-2-pTab->nCol, onError, endOfLoop); 999 } 1000 1001 /* The bottom of the main insertion loop, if the data source 1002 ** is a SELECT statement. 1003 */ 1004 sqlite3VdbeResolveLabel(v, endOfLoop); 1005 if( useTempTable ){ 1006 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1007 sqlite3VdbeJumpHere(v, addrInsTop); 1008 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1009 }else if( pSelect ){ 1010 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1011 sqlite3VdbeJumpHere(v, addrInsTop); 1012 } 1013 1014 if( !IsVirtual(pTab) && !isView ){ 1015 /* Close all tables opened */ 1016 sqlite3VdbeAddOp1(v, OP_Close, baseCur); 1017 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1018 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); 1019 } 1020 } 1021 1022 insert_end: 1023 /* Update the sqlite_sequence table by storing the content of the 1024 ** maximum rowid counter values recorded while inserting into 1025 ** autoincrement tables. 1026 */ 1027 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1028 sqlite3AutoincrementEnd(pParse); 1029 } 1030 1031 /* 1032 ** Return the number of rows inserted. If this routine is 1033 ** generating code because of a call to sqlite3NestedParse(), do not 1034 ** invoke the callback function. 1035 */ 1036 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1037 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1038 sqlite3VdbeSetNumCols(v, 1); 1039 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1040 } 1041 1042 insert_cleanup: 1043 sqlite3SrcListDelete(db, pTabList); 1044 sqlite3ExprListDelete(db, pList); 1045 sqlite3SelectDelete(db, pSelect); 1046 sqlite3IdListDelete(db, pColumn); 1047 sqlite3DbFree(db, aRegIdx); 1048 } 1049 1050 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1051 ** thely may interfere with compilation of other functions in this file 1052 ** (or in another file, if this file becomes part of the amalgamation). */ 1053 #ifdef isView 1054 #undef isView 1055 #endif 1056 #ifdef pTrigger 1057 #undef pTrigger 1058 #endif 1059 #ifdef tmask 1060 #undef tmask 1061 #endif 1062 1063 1064 /* 1065 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. 1066 ** 1067 ** The input is a range of consecutive registers as follows: 1068 ** 1069 ** 1. The rowid of the row after the update. 1070 ** 1071 ** 2. The data in the first column of the entry after the update. 1072 ** 1073 ** i. Data from middle columns... 1074 ** 1075 ** N. The data in the last column of the entry after the update. 1076 ** 1077 ** The regRowid parameter is the index of the register containing (1). 1078 ** 1079 ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains 1080 ** the address of a register containing the rowid before the update takes 1081 ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate 1082 ** is false, indicating an INSERT statement, then a non-zero rowidChng 1083 ** indicates that the rowid was explicitly specified as part of the 1084 ** INSERT statement. If rowidChng is false, it means that the rowid is 1085 ** computed automatically in an insert or that the rowid value is not 1086 ** modified by an update. 1087 ** 1088 ** The code generated by this routine store new index entries into 1089 ** registers identified by aRegIdx[]. No index entry is created for 1090 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1091 ** the same as the order of indices on the linked list of indices 1092 ** attached to the table. 1093 ** 1094 ** This routine also generates code to check constraints. NOT NULL, 1095 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1096 ** then the appropriate action is performed. There are five possible 1097 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1098 ** 1099 ** Constraint type Action What Happens 1100 ** --------------- ---------- ---------------------------------------- 1101 ** any ROLLBACK The current transaction is rolled back and 1102 ** sqlite3_exec() returns immediately with a 1103 ** return code of SQLITE_CONSTRAINT. 1104 ** 1105 ** any ABORT Back out changes from the current command 1106 ** only (do not do a complete rollback) then 1107 ** cause sqlite3_exec() to return immediately 1108 ** with SQLITE_CONSTRAINT. 1109 ** 1110 ** any FAIL Sqlite_exec() returns immediately with a 1111 ** return code of SQLITE_CONSTRAINT. The 1112 ** transaction is not rolled back and any 1113 ** prior changes are retained. 1114 ** 1115 ** any IGNORE The record number and data is popped from 1116 ** the stack and there is an immediate jump 1117 ** to label ignoreDest. 1118 ** 1119 ** NOT NULL REPLACE The NULL value is replace by the default 1120 ** value for that column. If the default value 1121 ** is NULL, the action is the same as ABORT. 1122 ** 1123 ** UNIQUE REPLACE The other row that conflicts with the row 1124 ** being inserted is removed. 1125 ** 1126 ** CHECK REPLACE Illegal. The results in an exception. 1127 ** 1128 ** Which action to take is determined by the overrideError parameter. 1129 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1130 ** is used. Or if pParse->onError==OE_Default then the onError value 1131 ** for the constraint is used. 1132 ** 1133 ** The calling routine must open a read/write cursor for pTab with 1134 ** cursor number "baseCur". All indices of pTab must also have open 1135 ** read/write cursors with cursor number baseCur+i for the i-th cursor. 1136 ** Except, if there is no possibility of a REPLACE action then 1137 ** cursors do not need to be open for indices where aRegIdx[i]==0. 1138 */ 1139 void sqlite3GenerateConstraintChecks( 1140 Parse *pParse, /* The parser context */ 1141 Table *pTab, /* the table into which we are inserting */ 1142 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1143 int regRowid, /* Index of the range of input registers */ 1144 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1145 int rowidChng, /* True if the rowid might collide with existing entry */ 1146 int isUpdate, /* True for UPDATE, False for INSERT */ 1147 int overrideError, /* Override onError to this if not OE_Default */ 1148 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1149 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1150 ){ 1151 int i; /* loop counter */ 1152 Vdbe *v; /* VDBE under constrution */ 1153 int nCol; /* Number of columns */ 1154 int onError; /* Conflict resolution strategy */ 1155 int j1; /* Addresss of jump instruction */ 1156 int j2 = 0, j3; /* Addresses of jump instructions */ 1157 int regData; /* Register containing first data column */ 1158 int iCur; /* Table cursor number */ 1159 Index *pIdx; /* Pointer to one of the indices */ 1160 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1161 int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; 1162 1163 v = sqlite3GetVdbe(pParse); 1164 assert( v!=0 ); 1165 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1166 nCol = pTab->nCol; 1167 regData = regRowid + 1; 1168 1169 /* Test all NOT NULL constraints. 1170 */ 1171 for(i=0; i<nCol; i++){ 1172 if( i==pTab->iPKey ){ 1173 continue; 1174 } 1175 onError = pTab->aCol[i].notNull; 1176 if( onError==OE_None ) continue; 1177 if( overrideError!=OE_Default ){ 1178 onError = overrideError; 1179 }else if( onError==OE_Default ){ 1180 onError = OE_Abort; 1181 } 1182 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1183 onError = OE_Abort; 1184 } 1185 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1186 || onError==OE_Ignore || onError==OE_Replace ); 1187 switch( onError ){ 1188 case OE_Abort: 1189 sqlite3MayAbort(pParse); 1190 case OE_Rollback: 1191 case OE_Fail: { 1192 char *zMsg; 1193 j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull, 1194 SQLITE_CONSTRAINT, onError, regData+i); 1195 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", 1196 pTab->zName, pTab->aCol[i].zName); 1197 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); 1198 break; 1199 } 1200 case OE_Ignore: { 1201 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); 1202 break; 1203 } 1204 default: { 1205 assert( onError==OE_Replace ); 1206 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); 1207 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); 1208 sqlite3VdbeJumpHere(v, j1); 1209 break; 1210 } 1211 } 1212 } 1213 1214 /* Test all CHECK constraints 1215 */ 1216 #ifndef SQLITE_OMIT_CHECK 1217 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1218 int allOk = sqlite3VdbeMakeLabel(v); 1219 pParse->ckBase = regData; 1220 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); 1221 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1222 if( onError==OE_Ignore ){ 1223 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1224 }else{ 1225 sqlite3HaltConstraint(pParse, onError, 0, 0); 1226 } 1227 sqlite3VdbeResolveLabel(v, allOk); 1228 } 1229 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1230 1231 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1232 ** of the new record does not previously exist. Except, if this 1233 ** is an UPDATE and the primary key is not changing, that is OK. 1234 */ 1235 if( rowidChng ){ 1236 onError = pTab->keyConf; 1237 if( overrideError!=OE_Default ){ 1238 onError = overrideError; 1239 }else if( onError==OE_Default ){ 1240 onError = OE_Abort; 1241 } 1242 1243 if( isUpdate ){ 1244 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); 1245 } 1246 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); 1247 switch( onError ){ 1248 default: { 1249 onError = OE_Abort; 1250 /* Fall thru into the next case */ 1251 } 1252 case OE_Rollback: 1253 case OE_Abort: 1254 case OE_Fail: { 1255 sqlite3HaltConstraint( 1256 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); 1257 break; 1258 } 1259 case OE_Replace: { 1260 /* If there are DELETE triggers on this table and the 1261 ** recursive-triggers flag is set, call GenerateRowDelete() to 1262 ** remove the conflicting row from the the table. This will fire 1263 ** the triggers and remove both the table and index b-tree entries. 1264 ** 1265 ** Otherwise, if there are no triggers or the recursive-triggers 1266 ** flag is not set, call GenerateRowIndexDelete(). This removes 1267 ** the index b-tree entries only. The table b-tree entry will be 1268 ** replaced by the new entry when it is inserted. */ 1269 Trigger *pTrigger = 0; 1270 if( pParse->db->flags&SQLITE_RecTriggers ){ 1271 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1272 } 1273 sqlite3MultiWrite(pParse); 1274 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1275 sqlite3GenerateRowDelete( 1276 pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace 1277 ); 1278 }else{ 1279 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); 1280 } 1281 seenReplace = 1; 1282 break; 1283 } 1284 case OE_Ignore: { 1285 assert( seenReplace==0 ); 1286 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1287 break; 1288 } 1289 } 1290 sqlite3VdbeJumpHere(v, j3); 1291 if( isUpdate ){ 1292 sqlite3VdbeJumpHere(v, j2); 1293 } 1294 } 1295 1296 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1297 ** index and making sure that duplicate entries do not already exist. 1298 ** Add the new records to the indices as we go. 1299 */ 1300 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1301 int regIdx; 1302 int regR; 1303 1304 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ 1305 1306 /* Create a key for accessing the index entry */ 1307 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); 1308 for(i=0; i<pIdx->nColumn; i++){ 1309 int idx = pIdx->aiColumn[i]; 1310 if( idx==pTab->iPKey ){ 1311 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1312 }else{ 1313 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); 1314 } 1315 } 1316 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1317 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); 1318 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); 1319 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); 1320 1321 /* Find out what action to take in case there is an indexing conflict */ 1322 onError = pIdx->onError; 1323 if( onError==OE_None ){ 1324 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1325 continue; /* pIdx is not a UNIQUE index */ 1326 } 1327 if( overrideError!=OE_Default ){ 1328 onError = overrideError; 1329 }else if( onError==OE_Default ){ 1330 onError = OE_Abort; 1331 } 1332 if( seenReplace ){ 1333 if( onError==OE_Ignore ) onError = OE_Replace; 1334 else if( onError==OE_Fail ) onError = OE_Abort; 1335 } 1336 1337 /* Check to see if the new index entry will be unique */ 1338 regR = sqlite3GetTempReg(pParse); 1339 sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); 1340 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 1341 regR, SQLITE_INT_TO_PTR(regIdx), 1342 P4_INT32); 1343 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1344 1345 /* Generate code that executes if the new index entry is not unique */ 1346 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1347 || onError==OE_Ignore || onError==OE_Replace ); 1348 switch( onError ){ 1349 case OE_Rollback: 1350 case OE_Abort: 1351 case OE_Fail: { 1352 int j; 1353 StrAccum errMsg; 1354 const char *zSep; 1355 char *zErr; 1356 1357 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 1358 errMsg.db = pParse->db; 1359 zSep = pIdx->nColumn>1 ? "columns " : "column "; 1360 for(j=0; j<pIdx->nColumn; j++){ 1361 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1362 sqlite3StrAccumAppend(&errMsg, zSep, -1); 1363 zSep = ", "; 1364 sqlite3StrAccumAppend(&errMsg, zCol, -1); 1365 } 1366 sqlite3StrAccumAppend(&errMsg, 1367 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); 1368 zErr = sqlite3StrAccumFinish(&errMsg); 1369 sqlite3HaltConstraint(pParse, onError, zErr, 0); 1370 sqlite3DbFree(errMsg.db, zErr); 1371 break; 1372 } 1373 case OE_Ignore: { 1374 assert( seenReplace==0 ); 1375 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1376 break; 1377 } 1378 default: { 1379 Trigger *pTrigger = 0; 1380 assert( onError==OE_Replace ); 1381 sqlite3MultiWrite(pParse); 1382 if( pParse->db->flags&SQLITE_RecTriggers ){ 1383 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1384 } 1385 sqlite3GenerateRowDelete( 1386 pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace 1387 ); 1388 seenReplace = 1; 1389 break; 1390 } 1391 } 1392 sqlite3VdbeJumpHere(v, j3); 1393 sqlite3ReleaseTempReg(pParse, regR); 1394 } 1395 1396 if( pbMayReplace ){ 1397 *pbMayReplace = seenReplace; 1398 } 1399 } 1400 1401 /* 1402 ** This routine generates code to finish the INSERT or UPDATE operation 1403 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1404 ** A consecutive range of registers starting at regRowid contains the 1405 ** rowid and the content to be inserted. 1406 ** 1407 ** The arguments to this routine should be the same as the first six 1408 ** arguments to sqlite3GenerateConstraintChecks. 1409 */ 1410 void sqlite3CompleteInsertion( 1411 Parse *pParse, /* The parser context */ 1412 Table *pTab, /* the table into which we are inserting */ 1413 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1414 int regRowid, /* Range of content */ 1415 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1416 int isUpdate, /* True for UPDATE, False for INSERT */ 1417 int appendBias, /* True if this is likely to be an append */ 1418 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1419 ){ 1420 int i; 1421 Vdbe *v; 1422 int nIdx; 1423 Index *pIdx; 1424 u8 pik_flags; 1425 int regData; 1426 int regRec; 1427 1428 v = sqlite3GetVdbe(pParse); 1429 assert( v!=0 ); 1430 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1431 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1432 for(i=nIdx-1; i>=0; i--){ 1433 if( aRegIdx[i]==0 ) continue; 1434 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); 1435 if( useSeekResult ){ 1436 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1437 } 1438 } 1439 regData = regRowid + 1; 1440 regRec = sqlite3GetTempReg(pParse); 1441 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1442 sqlite3TableAffinityStr(v, pTab); 1443 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1444 if( pParse->nested ){ 1445 pik_flags = 0; 1446 }else{ 1447 pik_flags = OPFLAG_NCHANGE; 1448 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1449 } 1450 if( appendBias ){ 1451 pik_flags |= OPFLAG_APPEND; 1452 } 1453 if( useSeekResult ){ 1454 pik_flags |= OPFLAG_USESEEKRESULT; 1455 } 1456 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); 1457 if( !pParse->nested ){ 1458 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); 1459 } 1460 sqlite3VdbeChangeP5(v, pik_flags); 1461 } 1462 1463 /* 1464 ** Generate code that will open cursors for a table and for all 1465 ** indices of that table. The "baseCur" parameter is the cursor number used 1466 ** for the table. Indices are opened on subsequent cursors. 1467 ** 1468 ** Return the number of indices on the table. 1469 */ 1470 int sqlite3OpenTableAndIndices( 1471 Parse *pParse, /* Parsing context */ 1472 Table *pTab, /* Table to be opened */ 1473 int baseCur, /* Cursor number assigned to the table */ 1474 int op /* OP_OpenRead or OP_OpenWrite */ 1475 ){ 1476 int i; 1477 int iDb; 1478 Index *pIdx; 1479 Vdbe *v; 1480 1481 if( IsVirtual(pTab) ) return 0; 1482 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1483 v = sqlite3GetVdbe(pParse); 1484 assert( v!=0 ); 1485 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); 1486 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1487 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1488 assert( pIdx->pSchema==pTab->pSchema ); 1489 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, 1490 (char*)pKey, P4_KEYINFO_HANDOFF); 1491 VdbeComment((v, "%s", pIdx->zName)); 1492 } 1493 if( pParse->nTab<baseCur+i ){ 1494 pParse->nTab = baseCur+i; 1495 } 1496 return i-1; 1497 } 1498 1499 1500 #ifdef SQLITE_TEST 1501 /* 1502 ** The following global variable is incremented whenever the 1503 ** transfer optimization is used. This is used for testing 1504 ** purposes only - to make sure the transfer optimization really 1505 ** is happening when it is suppose to. 1506 */ 1507 int sqlite3_xferopt_count; 1508 #endif /* SQLITE_TEST */ 1509 1510 1511 #ifndef SQLITE_OMIT_XFER_OPT 1512 /* 1513 ** Check to collation names to see if they are compatible. 1514 */ 1515 static int xferCompatibleCollation(const char *z1, const char *z2){ 1516 if( z1==0 ){ 1517 return z2==0; 1518 } 1519 if( z2==0 ){ 1520 return 0; 1521 } 1522 return sqlite3StrICmp(z1, z2)==0; 1523 } 1524 1525 1526 /* 1527 ** Check to see if index pSrc is compatible as a source of data 1528 ** for index pDest in an insert transfer optimization. The rules 1529 ** for a compatible index: 1530 ** 1531 ** * The index is over the same set of columns 1532 ** * The same DESC and ASC markings occurs on all columns 1533 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1534 ** * The same collating sequence on each column 1535 */ 1536 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1537 int i; 1538 assert( pDest && pSrc ); 1539 assert( pDest->pTable!=pSrc->pTable ); 1540 if( pDest->nColumn!=pSrc->nColumn ){ 1541 return 0; /* Different number of columns */ 1542 } 1543 if( pDest->onError!=pSrc->onError ){ 1544 return 0; /* Different conflict resolution strategies */ 1545 } 1546 for(i=0; i<pSrc->nColumn; i++){ 1547 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1548 return 0; /* Different columns indexed */ 1549 } 1550 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1551 return 0; /* Different sort orders */ 1552 } 1553 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1554 return 0; /* Different collating sequences */ 1555 } 1556 } 1557 1558 /* If no test above fails then the indices must be compatible */ 1559 return 1; 1560 } 1561 1562 /* 1563 ** Attempt the transfer optimization on INSERTs of the form 1564 ** 1565 ** INSERT INTO tab1 SELECT * FROM tab2; 1566 ** 1567 ** This optimization is only attempted if 1568 ** 1569 ** (1) tab1 and tab2 have identical schemas including all the 1570 ** same indices and constraints 1571 ** 1572 ** (2) tab1 and tab2 are different tables 1573 ** 1574 ** (3) There must be no triggers on tab1 1575 ** 1576 ** (4) The result set of the SELECT statement is "*" 1577 ** 1578 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1579 ** or LIMIT clause. 1580 ** 1581 ** (6) The SELECT statement is a simple (not a compound) select that 1582 ** contains only tab2 in its FROM clause 1583 ** 1584 ** This method for implementing the INSERT transfers raw records from 1585 ** tab2 over to tab1. The columns are not decoded. Raw records from 1586 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1587 ** the resulting tab1 has much less fragmentation. 1588 ** 1589 ** This routine returns TRUE if the optimization is attempted. If any 1590 ** of the conditions above fail so that the optimization should not 1591 ** be attempted, then this routine returns FALSE. 1592 */ 1593 static int xferOptimization( 1594 Parse *pParse, /* Parser context */ 1595 Table *pDest, /* The table we are inserting into */ 1596 Select *pSelect, /* A SELECT statement to use as the data source */ 1597 int onError, /* How to handle constraint errors */ 1598 int iDbDest /* The database of pDest */ 1599 ){ 1600 ExprList *pEList; /* The result set of the SELECT */ 1601 Table *pSrc; /* The table in the FROM clause of SELECT */ 1602 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1603 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1604 int i; /* Loop counter */ 1605 int iDbSrc; /* The database of pSrc */ 1606 int iSrc, iDest; /* Cursors from source and destination */ 1607 int addr1, addr2; /* Loop addresses */ 1608 int emptyDestTest; /* Address of test for empty pDest */ 1609 int emptySrcTest; /* Address of test for empty pSrc */ 1610 Vdbe *v; /* The VDBE we are building */ 1611 KeyInfo *pKey; /* Key information for an index */ 1612 int regAutoinc; /* Memory register used by AUTOINC */ 1613 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1614 int regData, regRowid; /* Registers holding data and rowid */ 1615 1616 if( pSelect==0 ){ 1617 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1618 } 1619 if( sqlite3TriggerList(pParse, pDest) ){ 1620 return 0; /* tab1 must not have triggers */ 1621 } 1622 #ifndef SQLITE_OMIT_VIRTUALTABLE 1623 if( pDest->tabFlags & TF_Virtual ){ 1624 return 0; /* tab1 must not be a virtual table */ 1625 } 1626 #endif 1627 if( onError==OE_Default ){ 1628 onError = OE_Abort; 1629 } 1630 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1631 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1632 } 1633 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1634 if( pSelect->pSrc->nSrc!=1 ){ 1635 return 0; /* FROM clause must have exactly one term */ 1636 } 1637 if( pSelect->pSrc->a[0].pSelect ){ 1638 return 0; /* FROM clause cannot contain a subquery */ 1639 } 1640 if( pSelect->pWhere ){ 1641 return 0; /* SELECT may not have a WHERE clause */ 1642 } 1643 if( pSelect->pOrderBy ){ 1644 return 0; /* SELECT may not have an ORDER BY clause */ 1645 } 1646 /* Do not need to test for a HAVING clause. If HAVING is present but 1647 ** there is no ORDER BY, we will get an error. */ 1648 if( pSelect->pGroupBy ){ 1649 return 0; /* SELECT may not have a GROUP BY clause */ 1650 } 1651 if( pSelect->pLimit ){ 1652 return 0; /* SELECT may not have a LIMIT clause */ 1653 } 1654 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1655 if( pSelect->pPrior ){ 1656 return 0; /* SELECT may not be a compound query */ 1657 } 1658 if( pSelect->selFlags & SF_Distinct ){ 1659 return 0; /* SELECT may not be DISTINCT */ 1660 } 1661 pEList = pSelect->pEList; 1662 assert( pEList!=0 ); 1663 if( pEList->nExpr!=1 ){ 1664 return 0; /* The result set must have exactly one column */ 1665 } 1666 assert( pEList->a[0].pExpr ); 1667 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1668 return 0; /* The result set must be the special operator "*" */ 1669 } 1670 1671 /* At this point we have established that the statement is of the 1672 ** correct syntactic form to participate in this optimization. Now 1673 ** we have to check the semantics. 1674 */ 1675 pItem = pSelect->pSrc->a; 1676 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); 1677 if( pSrc==0 ){ 1678 return 0; /* FROM clause does not contain a real table */ 1679 } 1680 if( pSrc==pDest ){ 1681 return 0; /* tab1 and tab2 may not be the same table */ 1682 } 1683 #ifndef SQLITE_OMIT_VIRTUALTABLE 1684 if( pSrc->tabFlags & TF_Virtual ){ 1685 return 0; /* tab2 must not be a virtual table */ 1686 } 1687 #endif 1688 if( pSrc->pSelect ){ 1689 return 0; /* tab2 may not be a view */ 1690 } 1691 if( pDest->nCol!=pSrc->nCol ){ 1692 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1693 } 1694 if( pDest->iPKey!=pSrc->iPKey ){ 1695 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1696 } 1697 for(i=0; i<pDest->nCol; i++){ 1698 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1699 return 0; /* Affinity must be the same on all columns */ 1700 } 1701 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1702 return 0; /* Collating sequence must be the same on all columns */ 1703 } 1704 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1705 return 0; /* tab2 must be NOT NULL if tab1 is */ 1706 } 1707 } 1708 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1709 if( pDestIdx->onError!=OE_None ){ 1710 destHasUniqueIdx = 1; 1711 } 1712 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1713 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1714 } 1715 if( pSrcIdx==0 ){ 1716 return 0; /* pDestIdx has no corresponding index in pSrc */ 1717 } 1718 } 1719 #ifndef SQLITE_OMIT_CHECK 1720 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1721 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1722 } 1723 #endif 1724 1725 /* If we get this far, it means either: 1726 ** 1727 ** * We can always do the transfer if the table contains an 1728 ** an integer primary key 1729 ** 1730 ** * We can conditionally do the transfer if the destination 1731 ** table is empty. 1732 */ 1733 #ifdef SQLITE_TEST 1734 sqlite3_xferopt_count++; 1735 #endif 1736 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1737 v = sqlite3GetVdbe(pParse); 1738 sqlite3CodeVerifySchema(pParse, iDbSrc); 1739 iSrc = pParse->nTab++; 1740 iDest = pParse->nTab++; 1741 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1742 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1743 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1744 /* If tables do not have an INTEGER PRIMARY KEY and there 1745 ** are indices to be copied and the destination is not empty, 1746 ** we have to disallow the transfer optimization because the 1747 ** the rowids might change which will mess up indexing. 1748 ** 1749 ** Or if the destination has a UNIQUE index and is not empty, 1750 ** we also disallow the transfer optimization because we cannot 1751 ** insure that all entries in the union of DEST and SRC will be 1752 ** unique. 1753 */ 1754 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1755 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1756 sqlite3VdbeJumpHere(v, addr1); 1757 }else{ 1758 emptyDestTest = 0; 1759 } 1760 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1761 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1762 regData = sqlite3GetTempReg(pParse); 1763 regRowid = sqlite3GetTempReg(pParse); 1764 if( pDest->iPKey>=0 ){ 1765 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1766 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 1767 sqlite3HaltConstraint( 1768 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); 1769 sqlite3VdbeJumpHere(v, addr2); 1770 autoIncStep(pParse, regAutoinc, regRowid); 1771 }else if( pDest->pIndex==0 ){ 1772 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 1773 }else{ 1774 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1775 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 1776 } 1777 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 1778 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 1779 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 1780 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 1781 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 1782 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1783 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 1784 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1785 } 1786 assert( pSrcIdx ); 1787 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1788 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1789 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1790 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, 1791 (char*)pKey, P4_KEYINFO_HANDOFF); 1792 VdbeComment((v, "%s", pSrcIdx->zName)); 1793 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1794 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, 1795 (char*)pKey, P4_KEYINFO_HANDOFF); 1796 VdbeComment((v, "%s", pDestIdx->zName)); 1797 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1798 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 1799 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 1800 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 1801 sqlite3VdbeJumpHere(v, addr1); 1802 } 1803 sqlite3VdbeJumpHere(v, emptySrcTest); 1804 sqlite3ReleaseTempReg(pParse, regRowid); 1805 sqlite3ReleaseTempReg(pParse, regData); 1806 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1807 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1808 if( emptyDestTest ){ 1809 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 1810 sqlite3VdbeJumpHere(v, emptyDestTest); 1811 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1812 return 0; 1813 }else{ 1814 return 1; 1815 } 1816 } 1817 #endif /* SQLITE_OMIT_XFER_OPT */ 1818