1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 assert( db->pParse==pParse ); 719 if( pParse->nErr ){ 720 goto insert_cleanup; 721 } 722 assert( db->mallocFailed==0 ); 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 /* If the Select object is really just a simple VALUES() list with a 726 ** single row (the common case) then keep that one row of values 727 ** and discard the other (unused) parts of the pSelect object 728 */ 729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 730 pList = pSelect->pEList; 731 pSelect->pEList = 0; 732 sqlite3SelectDelete(db, pSelect); 733 pSelect = 0; 734 } 735 736 /* Locate the table into which we will be inserting new information. 737 */ 738 assert( pTabList->nSrc==1 ); 739 pTab = sqlite3SrcListLookup(pParse, pTabList); 740 if( pTab==0 ){ 741 goto insert_cleanup; 742 } 743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 744 assert( iDb<db->nDb ); 745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 746 db->aDb[iDb].zDbSName) ){ 747 goto insert_cleanup; 748 } 749 withoutRowid = !HasRowid(pTab); 750 751 /* Figure out if we have any triggers and if the table being 752 ** inserted into is a view 753 */ 754 #ifndef SQLITE_OMIT_TRIGGER 755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 756 isView = IsView(pTab); 757 #else 758 # define pTrigger 0 759 # define tmask 0 760 # define isView 0 761 #endif 762 #ifdef SQLITE_OMIT_VIEW 763 # undef isView 764 # define isView 0 765 #endif 766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 767 768 /* If pTab is really a view, make sure it has been initialized. 769 ** ViewGetColumnNames() is a no-op if pTab is not a view. 770 */ 771 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 772 goto insert_cleanup; 773 } 774 775 /* Cannot insert into a read-only table. 776 */ 777 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 778 goto insert_cleanup; 779 } 780 781 /* Allocate a VDBE 782 */ 783 v = sqlite3GetVdbe(pParse); 784 if( v==0 ) goto insert_cleanup; 785 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 786 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 787 788 #ifndef SQLITE_OMIT_XFER_OPT 789 /* If the statement is of the form 790 ** 791 ** INSERT INTO <table1> SELECT * FROM <table2>; 792 ** 793 ** Then special optimizations can be applied that make the transfer 794 ** very fast and which reduce fragmentation of indices. 795 ** 796 ** This is the 2nd template. 797 */ 798 if( pColumn==0 799 && pSelect!=0 800 && pTrigger==0 801 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 802 ){ 803 assert( !pTrigger ); 804 assert( pList==0 ); 805 goto insert_end; 806 } 807 #endif /* SQLITE_OMIT_XFER_OPT */ 808 809 /* If this is an AUTOINCREMENT table, look up the sequence number in the 810 ** sqlite_sequence table and store it in memory cell regAutoinc. 811 */ 812 regAutoinc = autoIncBegin(pParse, iDb, pTab); 813 814 /* Allocate a block registers to hold the rowid and the values 815 ** for all columns of the new row. 816 */ 817 regRowid = regIns = pParse->nMem+1; 818 pParse->nMem += pTab->nCol + 1; 819 if( IsVirtual(pTab) ){ 820 regRowid++; 821 pParse->nMem++; 822 } 823 regData = regRowid+1; 824 825 /* If the INSERT statement included an IDLIST term, then make sure 826 ** all elements of the IDLIST really are columns of the table and 827 ** remember the column indices. 828 ** 829 ** If the table has an INTEGER PRIMARY KEY column and that column 830 ** is named in the IDLIST, then record in the ipkColumn variable 831 ** the index into IDLIST of the primary key column. ipkColumn is 832 ** the index of the primary key as it appears in IDLIST, not as 833 ** is appears in the original table. (The index of the INTEGER 834 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 835 ** loop, if ipkColumn==(-1), that means that integer primary key 836 ** is unspecified, and hence the table is either WITHOUT ROWID or 837 ** it will automatically generated an integer primary key. 838 ** 839 ** bIdListInOrder is true if the columns in IDLIST are in storage 840 ** order. This enables an optimization that avoids shuffling the 841 ** columns into storage order. False negatives are harmless, 842 ** but false positives will cause database corruption. 843 */ 844 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 845 if( pColumn ){ 846 for(i=0; i<pColumn->nId; i++){ 847 pColumn->a[i].idx = -1; 848 } 849 for(i=0; i<pColumn->nId; i++){ 850 for(j=0; j<pTab->nCol; j++){ 851 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 852 pColumn->a[i].idx = j; 853 if( i!=j ) bIdListInOrder = 0; 854 if( j==pTab->iPKey ){ 855 ipkColumn = i; assert( !withoutRowid ); 856 } 857 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 858 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 859 sqlite3ErrorMsg(pParse, 860 "cannot INSERT into generated column \"%s\"", 861 pTab->aCol[j].zCnName); 862 goto insert_cleanup; 863 } 864 #endif 865 break; 866 } 867 } 868 if( j>=pTab->nCol ){ 869 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 870 ipkColumn = i; 871 bIdListInOrder = 0; 872 }else{ 873 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 874 pTabList->a, pColumn->a[i].zName); 875 pParse->checkSchema = 1; 876 goto insert_cleanup; 877 } 878 } 879 } 880 } 881 882 /* Figure out how many columns of data are supplied. If the data 883 ** is coming from a SELECT statement, then generate a co-routine that 884 ** produces a single row of the SELECT on each invocation. The 885 ** co-routine is the common header to the 3rd and 4th templates. 886 */ 887 if( pSelect ){ 888 /* Data is coming from a SELECT or from a multi-row VALUES clause. 889 ** Generate a co-routine to run the SELECT. */ 890 int regYield; /* Register holding co-routine entry-point */ 891 int addrTop; /* Top of the co-routine */ 892 int rc; /* Result code */ 893 894 regYield = ++pParse->nMem; 895 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 896 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 897 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 898 dest.iSdst = bIdListInOrder ? regData : 0; 899 dest.nSdst = pTab->nCol; 900 rc = sqlite3Select(pParse, pSelect, &dest); 901 regFromSelect = dest.iSdst; 902 assert( db->pParse==pParse ); 903 if( rc || pParse->nErr ) goto insert_cleanup; 904 assert( db->mallocFailed==0 ); 905 sqlite3VdbeEndCoroutine(v, regYield); 906 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 907 assert( pSelect->pEList ); 908 nColumn = pSelect->pEList->nExpr; 909 910 /* Set useTempTable to TRUE if the result of the SELECT statement 911 ** should be written into a temporary table (template 4). Set to 912 ** FALSE if each output row of the SELECT can be written directly into 913 ** the destination table (template 3). 914 ** 915 ** A temp table must be used if the table being updated is also one 916 ** of the tables being read by the SELECT statement. Also use a 917 ** temp table in the case of row triggers. 918 */ 919 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 920 useTempTable = 1; 921 } 922 923 if( useTempTable ){ 924 /* Invoke the coroutine to extract information from the SELECT 925 ** and add it to a transient table srcTab. The code generated 926 ** here is from the 4th template: 927 ** 928 ** B: open temp table 929 ** L: yield X, goto M at EOF 930 ** insert row from R..R+n into temp table 931 ** goto L 932 ** M: ... 933 */ 934 int regRec; /* Register to hold packed record */ 935 int regTempRowid; /* Register to hold temp table ROWID */ 936 int addrL; /* Label "L" */ 937 938 srcTab = pParse->nTab++; 939 regRec = sqlite3GetTempReg(pParse); 940 regTempRowid = sqlite3GetTempReg(pParse); 941 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 942 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 943 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 944 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 945 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 946 sqlite3VdbeGoto(v, addrL); 947 sqlite3VdbeJumpHere(v, addrL); 948 sqlite3ReleaseTempReg(pParse, regRec); 949 sqlite3ReleaseTempReg(pParse, regTempRowid); 950 } 951 }else{ 952 /* This is the case if the data for the INSERT is coming from a 953 ** single-row VALUES clause 954 */ 955 NameContext sNC; 956 memset(&sNC, 0, sizeof(sNC)); 957 sNC.pParse = pParse; 958 srcTab = -1; 959 assert( useTempTable==0 ); 960 if( pList ){ 961 nColumn = pList->nExpr; 962 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 963 goto insert_cleanup; 964 } 965 }else{ 966 nColumn = 0; 967 } 968 } 969 970 /* If there is no IDLIST term but the table has an integer primary 971 ** key, the set the ipkColumn variable to the integer primary key 972 ** column index in the original table definition. 973 */ 974 if( pColumn==0 && nColumn>0 ){ 975 ipkColumn = pTab->iPKey; 976 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 977 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 978 testcase( pTab->tabFlags & TF_HasVirtual ); 979 testcase( pTab->tabFlags & TF_HasStored ); 980 for(i=ipkColumn-1; i>=0; i--){ 981 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 982 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 983 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 984 ipkColumn--; 985 } 986 } 987 } 988 #endif 989 990 /* Make sure the number of columns in the source data matches the number 991 ** of columns to be inserted into the table. 992 */ 993 assert( TF_HasHidden==COLFLAG_HIDDEN ); 994 assert( TF_HasGenerated==COLFLAG_GENERATED ); 995 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 996 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 997 for(i=0; i<pTab->nCol; i++){ 998 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 999 } 1000 } 1001 if( nColumn!=(pTab->nCol-nHidden) ){ 1002 sqlite3ErrorMsg(pParse, 1003 "table %S has %d columns but %d values were supplied", 1004 pTabList->a, pTab->nCol-nHidden, nColumn); 1005 goto insert_cleanup; 1006 } 1007 } 1008 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1009 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1010 goto insert_cleanup; 1011 } 1012 1013 /* Initialize the count of rows to be inserted 1014 */ 1015 if( (db->flags & SQLITE_CountRows)!=0 1016 && !pParse->nested 1017 && !pParse->pTriggerTab 1018 && !pParse->bReturning 1019 ){ 1020 regRowCount = ++pParse->nMem; 1021 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1022 } 1023 1024 /* If this is not a view, open the table and and all indices */ 1025 if( !isView ){ 1026 int nIdx; 1027 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1028 &iDataCur, &iIdxCur); 1029 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1030 if( aRegIdx==0 ){ 1031 goto insert_cleanup; 1032 } 1033 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1034 assert( pIdx ); 1035 aRegIdx[i] = ++pParse->nMem; 1036 pParse->nMem += pIdx->nColumn; 1037 } 1038 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1039 } 1040 #ifndef SQLITE_OMIT_UPSERT 1041 if( pUpsert ){ 1042 Upsert *pNx; 1043 if( IsVirtual(pTab) ){ 1044 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1045 pTab->zName); 1046 goto insert_cleanup; 1047 } 1048 if( IsView(pTab) ){ 1049 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1050 goto insert_cleanup; 1051 } 1052 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1053 goto insert_cleanup; 1054 } 1055 pTabList->a[0].iCursor = iDataCur; 1056 pNx = pUpsert; 1057 do{ 1058 pNx->pUpsertSrc = pTabList; 1059 pNx->regData = regData; 1060 pNx->iDataCur = iDataCur; 1061 pNx->iIdxCur = iIdxCur; 1062 if( pNx->pUpsertTarget ){ 1063 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1064 goto insert_cleanup; 1065 } 1066 } 1067 pNx = pNx->pNextUpsert; 1068 }while( pNx!=0 ); 1069 } 1070 #endif 1071 1072 1073 /* This is the top of the main insertion loop */ 1074 if( useTempTable ){ 1075 /* This block codes the top of loop only. The complete loop is the 1076 ** following pseudocode (template 4): 1077 ** 1078 ** rewind temp table, if empty goto D 1079 ** C: loop over rows of intermediate table 1080 ** transfer values form intermediate table into <table> 1081 ** end loop 1082 ** D: ... 1083 */ 1084 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1085 addrCont = sqlite3VdbeCurrentAddr(v); 1086 }else if( pSelect ){ 1087 /* This block codes the top of loop only. The complete loop is the 1088 ** following pseudocode (template 3): 1089 ** 1090 ** C: yield X, at EOF goto D 1091 ** insert the select result into <table> from R..R+n 1092 ** goto C 1093 ** D: ... 1094 */ 1095 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1096 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1097 VdbeCoverage(v); 1098 if( ipkColumn>=0 ){ 1099 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1100 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1101 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1102 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1103 } 1104 } 1105 1106 /* Compute data for ordinary columns of the new entry. Values 1107 ** are written in storage order into registers starting with regData. 1108 ** Only ordinary columns are computed in this loop. The rowid 1109 ** (if there is one) is computed later and generated columns are 1110 ** computed after the rowid since they might depend on the value 1111 ** of the rowid. 1112 */ 1113 nHidden = 0; 1114 iRegStore = regData; assert( regData==regRowid+1 ); 1115 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1116 int k; 1117 u32 colFlags; 1118 assert( i>=nHidden ); 1119 if( i==pTab->iPKey ){ 1120 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1121 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1122 ** using excess space. The file format definition requires this extra 1123 ** NULL - we cannot optimize further by skipping the column completely */ 1124 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1125 continue; 1126 } 1127 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1128 nHidden++; 1129 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1130 /* Virtual columns do not participate in OP_MakeRecord. So back up 1131 ** iRegStore by one slot to compensate for the iRegStore++ in the 1132 ** outer for() loop */ 1133 iRegStore--; 1134 continue; 1135 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1136 /* Stored columns are computed later. But if there are BEFORE 1137 ** triggers, the slots used for stored columns will be OP_Copy-ed 1138 ** to a second block of registers, so the register needs to be 1139 ** initialized to NULL to avoid an uninitialized register read */ 1140 if( tmask & TRIGGER_BEFORE ){ 1141 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1142 } 1143 continue; 1144 }else if( pColumn==0 ){ 1145 /* Hidden columns that are not explicitly named in the INSERT 1146 ** get there default value */ 1147 sqlite3ExprCodeFactorable(pParse, 1148 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1149 iRegStore); 1150 continue; 1151 } 1152 } 1153 if( pColumn ){ 1154 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1155 if( j>=pColumn->nId ){ 1156 /* A column not named in the insert column list gets its 1157 ** default value */ 1158 sqlite3ExprCodeFactorable(pParse, 1159 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1160 iRegStore); 1161 continue; 1162 } 1163 k = j; 1164 }else if( nColumn==0 ){ 1165 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1166 sqlite3ExprCodeFactorable(pParse, 1167 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1168 iRegStore); 1169 continue; 1170 }else{ 1171 k = i - nHidden; 1172 } 1173 1174 if( useTempTable ){ 1175 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1176 }else if( pSelect ){ 1177 if( regFromSelect!=regData ){ 1178 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1179 } 1180 }else{ 1181 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1182 } 1183 } 1184 1185 1186 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1187 */ 1188 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1189 if( tmask & TRIGGER_BEFORE ){ 1190 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1191 1192 /* build the NEW.* reference row. Note that if there is an INTEGER 1193 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1194 ** translated into a unique ID for the row. But on a BEFORE trigger, 1195 ** we do not know what the unique ID will be (because the insert has 1196 ** not happened yet) so we substitute a rowid of -1 1197 */ 1198 if( ipkColumn<0 ){ 1199 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1200 }else{ 1201 int addr1; 1202 assert( !withoutRowid ); 1203 if( useTempTable ){ 1204 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1205 }else{ 1206 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1207 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1208 } 1209 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1210 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1211 sqlite3VdbeJumpHere(v, addr1); 1212 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1213 } 1214 1215 /* Copy the new data already generated. */ 1216 assert( pTab->nNVCol>0 ); 1217 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1218 1219 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1220 /* Compute the new value for generated columns after all other 1221 ** columns have already been computed. This must be done after 1222 ** computing the ROWID in case one of the generated columns 1223 ** refers to the ROWID. */ 1224 if( pTab->tabFlags & TF_HasGenerated ){ 1225 testcase( pTab->tabFlags & TF_HasVirtual ); 1226 testcase( pTab->tabFlags & TF_HasStored ); 1227 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1228 } 1229 #endif 1230 1231 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1232 ** do not attempt any conversions before assembling the record. 1233 ** If this is a real table, attempt conversions as required by the 1234 ** table column affinities. 1235 */ 1236 if( !isView ){ 1237 sqlite3TableAffinity(v, pTab, regCols+1); 1238 } 1239 1240 /* Fire BEFORE or INSTEAD OF triggers */ 1241 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1242 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1243 1244 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1245 } 1246 1247 if( !isView ){ 1248 if( IsVirtual(pTab) ){ 1249 /* The row that the VUpdate opcode will delete: none */ 1250 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1251 } 1252 if( ipkColumn>=0 ){ 1253 /* Compute the new rowid */ 1254 if( useTempTable ){ 1255 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1256 }else if( pSelect ){ 1257 /* Rowid already initialized at tag-20191021-001 */ 1258 }else{ 1259 Expr *pIpk = pList->a[ipkColumn].pExpr; 1260 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1261 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1262 appendFlag = 1; 1263 }else{ 1264 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1265 } 1266 } 1267 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1268 ** to generate a unique primary key value. 1269 */ 1270 if( !appendFlag ){ 1271 int addr1; 1272 if( !IsVirtual(pTab) ){ 1273 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1274 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1275 sqlite3VdbeJumpHere(v, addr1); 1276 }else{ 1277 addr1 = sqlite3VdbeCurrentAddr(v); 1278 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1279 } 1280 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1281 } 1282 }else if( IsVirtual(pTab) || withoutRowid ){ 1283 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1284 }else{ 1285 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1286 appendFlag = 1; 1287 } 1288 autoIncStep(pParse, regAutoinc, regRowid); 1289 1290 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1291 /* Compute the new value for generated columns after all other 1292 ** columns have already been computed. This must be done after 1293 ** computing the ROWID in case one of the generated columns 1294 ** is derived from the INTEGER PRIMARY KEY. */ 1295 if( pTab->tabFlags & TF_HasGenerated ){ 1296 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1297 } 1298 #endif 1299 1300 /* Generate code to check constraints and generate index keys and 1301 ** do the insertion. 1302 */ 1303 #ifndef SQLITE_OMIT_VIRTUALTABLE 1304 if( IsVirtual(pTab) ){ 1305 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1306 sqlite3VtabMakeWritable(pParse, pTab); 1307 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1308 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1309 sqlite3MayAbort(pParse); 1310 }else 1311 #endif 1312 { 1313 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1314 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1315 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1316 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1317 ); 1318 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1319 1320 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1321 ** constraints or (b) there are no triggers and this table is not a 1322 ** parent table in a foreign key constraint. It is safe to set the 1323 ** flag in the second case as if any REPLACE constraint is hit, an 1324 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1325 ** cursor that is disturbed. And these instructions both clear the 1326 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1327 ** functionality. */ 1328 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1329 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1330 regIns, aRegIdx, 0, appendFlag, bUseSeek 1331 ); 1332 } 1333 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1334 }else if( pParse->bReturning ){ 1335 /* If there is a RETURNING clause, populate the rowid register with 1336 ** constant value -1, in case one or more of the returned expressions 1337 ** refer to the "rowid" of the view. */ 1338 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1339 #endif 1340 } 1341 1342 /* Update the count of rows that are inserted 1343 */ 1344 if( regRowCount ){ 1345 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1346 } 1347 1348 if( pTrigger ){ 1349 /* Code AFTER triggers */ 1350 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1351 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1352 } 1353 1354 /* The bottom of the main insertion loop, if the data source 1355 ** is a SELECT statement. 1356 */ 1357 sqlite3VdbeResolveLabel(v, endOfLoop); 1358 if( useTempTable ){ 1359 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1360 sqlite3VdbeJumpHere(v, addrInsTop); 1361 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1362 }else if( pSelect ){ 1363 sqlite3VdbeGoto(v, addrCont); 1364 #ifdef SQLITE_DEBUG 1365 /* If we are jumping back to an OP_Yield that is preceded by an 1366 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1367 ** OP_ReleaseReg will be included in the loop. */ 1368 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1369 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1370 sqlite3VdbeChangeP5(v, 1); 1371 } 1372 #endif 1373 sqlite3VdbeJumpHere(v, addrInsTop); 1374 } 1375 1376 #ifndef SQLITE_OMIT_XFER_OPT 1377 insert_end: 1378 #endif /* SQLITE_OMIT_XFER_OPT */ 1379 /* Update the sqlite_sequence table by storing the content of the 1380 ** maximum rowid counter values recorded while inserting into 1381 ** autoincrement tables. 1382 */ 1383 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1384 sqlite3AutoincrementEnd(pParse); 1385 } 1386 1387 /* 1388 ** Return the number of rows inserted. If this routine is 1389 ** generating code because of a call to sqlite3NestedParse(), do not 1390 ** invoke the callback function. 1391 */ 1392 if( regRowCount ){ 1393 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1394 } 1395 1396 insert_cleanup: 1397 sqlite3SrcListDelete(db, pTabList); 1398 sqlite3ExprListDelete(db, pList); 1399 sqlite3UpsertDelete(db, pUpsert); 1400 sqlite3SelectDelete(db, pSelect); 1401 sqlite3IdListDelete(db, pColumn); 1402 sqlite3DbFree(db, aRegIdx); 1403 } 1404 1405 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1406 ** they may interfere with compilation of other functions in this file 1407 ** (or in another file, if this file becomes part of the amalgamation). */ 1408 #ifdef isView 1409 #undef isView 1410 #endif 1411 #ifdef pTrigger 1412 #undef pTrigger 1413 #endif 1414 #ifdef tmask 1415 #undef tmask 1416 #endif 1417 1418 /* 1419 ** Meanings of bits in of pWalker->eCode for 1420 ** sqlite3ExprReferencesUpdatedColumn() 1421 */ 1422 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1423 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1424 1425 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1426 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1427 ** expression node references any of the 1428 ** columns that are being modifed by an UPDATE statement. 1429 */ 1430 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1431 if( pExpr->op==TK_COLUMN ){ 1432 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1433 if( pExpr->iColumn>=0 ){ 1434 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1435 pWalker->eCode |= CKCNSTRNT_COLUMN; 1436 } 1437 }else{ 1438 pWalker->eCode |= CKCNSTRNT_ROWID; 1439 } 1440 } 1441 return WRC_Continue; 1442 } 1443 1444 /* 1445 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1446 ** only columns that are modified by the UPDATE are those for which 1447 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1448 ** 1449 ** Return true if CHECK constraint pExpr uses any of the 1450 ** changing columns (or the rowid if it is changing). In other words, 1451 ** return true if this CHECK constraint must be validated for 1452 ** the new row in the UPDATE statement. 1453 ** 1454 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1455 ** The operation of this routine is the same - return true if an only if 1456 ** the expression uses one or more of columns identified by the second and 1457 ** third arguments. 1458 */ 1459 int sqlite3ExprReferencesUpdatedColumn( 1460 Expr *pExpr, /* The expression to be checked */ 1461 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1462 int chngRowid /* True if UPDATE changes the rowid */ 1463 ){ 1464 Walker w; 1465 memset(&w, 0, sizeof(w)); 1466 w.eCode = 0; 1467 w.xExprCallback = checkConstraintExprNode; 1468 w.u.aiCol = aiChng; 1469 sqlite3WalkExpr(&w, pExpr); 1470 if( !chngRowid ){ 1471 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1472 w.eCode &= ~CKCNSTRNT_ROWID; 1473 } 1474 testcase( w.eCode==0 ); 1475 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1476 testcase( w.eCode==CKCNSTRNT_ROWID ); 1477 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1478 return w.eCode!=0; 1479 } 1480 1481 /* 1482 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1483 ** the indexes of a table in the order provided in the Table->pIndex list. 1484 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1485 ** the indexes in a different order. The following data structures accomplish 1486 ** this. 1487 ** 1488 ** The IndexIterator object is used to walk through all of the indexes 1489 ** of a table in either Index.pNext order, or in some other order established 1490 ** by an array of IndexListTerm objects. 1491 */ 1492 typedef struct IndexListTerm IndexListTerm; 1493 typedef struct IndexIterator IndexIterator; 1494 struct IndexIterator { 1495 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1496 int i; /* Index of the current item from the list */ 1497 union { 1498 struct { /* Use this object for eType==0: A Index.pNext list */ 1499 Index *pIdx; /* The current Index */ 1500 } lx; 1501 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1502 int nIdx; /* Size of the array */ 1503 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1504 } ax; 1505 } u; 1506 }; 1507 1508 /* When IndexIterator.eType==1, then each index is an array of instances 1509 ** of the following object 1510 */ 1511 struct IndexListTerm { 1512 Index *p; /* The index */ 1513 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1514 }; 1515 1516 /* Return the first index on the list */ 1517 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1518 assert( pIter->i==0 ); 1519 if( pIter->eType ){ 1520 *pIx = pIter->u.ax.aIdx[0].ix; 1521 return pIter->u.ax.aIdx[0].p; 1522 }else{ 1523 *pIx = 0; 1524 return pIter->u.lx.pIdx; 1525 } 1526 } 1527 1528 /* Return the next index from the list. Return NULL when out of indexes */ 1529 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1530 if( pIter->eType ){ 1531 int i = ++pIter->i; 1532 if( i>=pIter->u.ax.nIdx ){ 1533 *pIx = i; 1534 return 0; 1535 } 1536 *pIx = pIter->u.ax.aIdx[i].ix; 1537 return pIter->u.ax.aIdx[i].p; 1538 }else{ 1539 ++(*pIx); 1540 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1541 return pIter->u.lx.pIdx; 1542 } 1543 } 1544 1545 /* 1546 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1547 ** on table pTab. 1548 ** 1549 ** The regNewData parameter is the first register in a range that contains 1550 ** the data to be inserted or the data after the update. There will be 1551 ** pTab->nCol+1 registers in this range. The first register (the one 1552 ** that regNewData points to) will contain the new rowid, or NULL in the 1553 ** case of a WITHOUT ROWID table. The second register in the range will 1554 ** contain the content of the first table column. The third register will 1555 ** contain the content of the second table column. And so forth. 1556 ** 1557 ** The regOldData parameter is similar to regNewData except that it contains 1558 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1559 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1560 ** checking regOldData for zero. 1561 ** 1562 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1563 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1564 ** might be modified by the UPDATE. If pkChng is false, then the key of 1565 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1566 ** 1567 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1568 ** was explicitly specified as part of the INSERT statement. If pkChng 1569 ** is zero, it means that the either rowid is computed automatically or 1570 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1571 ** pkChng will only be true if the INSERT statement provides an integer 1572 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1573 ** 1574 ** The code generated by this routine will store new index entries into 1575 ** registers identified by aRegIdx[]. No index entry is created for 1576 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1577 ** the same as the order of indices on the linked list of indices 1578 ** at pTab->pIndex. 1579 ** 1580 ** (2019-05-07) The generated code also creates a new record for the 1581 ** main table, if pTab is a rowid table, and stores that record in the 1582 ** register identified by aRegIdx[nIdx] - in other words in the first 1583 ** entry of aRegIdx[] past the last index. It is important that the 1584 ** record be generated during constraint checks to avoid affinity changes 1585 ** to the register content that occur after constraint checks but before 1586 ** the new record is inserted. 1587 ** 1588 ** The caller must have already opened writeable cursors on the main 1589 ** table and all applicable indices (that is to say, all indices for which 1590 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1591 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1592 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1593 ** for the first index in the pTab->pIndex list. Cursors for other indices 1594 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1595 ** 1596 ** This routine also generates code to check constraints. NOT NULL, 1597 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1598 ** then the appropriate action is performed. There are five possible 1599 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1600 ** 1601 ** Constraint type Action What Happens 1602 ** --------------- ---------- ---------------------------------------- 1603 ** any ROLLBACK The current transaction is rolled back and 1604 ** sqlite3_step() returns immediately with a 1605 ** return code of SQLITE_CONSTRAINT. 1606 ** 1607 ** any ABORT Back out changes from the current command 1608 ** only (do not do a complete rollback) then 1609 ** cause sqlite3_step() to return immediately 1610 ** with SQLITE_CONSTRAINT. 1611 ** 1612 ** any FAIL Sqlite3_step() returns immediately with a 1613 ** return code of SQLITE_CONSTRAINT. The 1614 ** transaction is not rolled back and any 1615 ** changes to prior rows are retained. 1616 ** 1617 ** any IGNORE The attempt in insert or update the current 1618 ** row is skipped, without throwing an error. 1619 ** Processing continues with the next row. 1620 ** (There is an immediate jump to ignoreDest.) 1621 ** 1622 ** NOT NULL REPLACE The NULL value is replace by the default 1623 ** value for that column. If the default value 1624 ** is NULL, the action is the same as ABORT. 1625 ** 1626 ** UNIQUE REPLACE The other row that conflicts with the row 1627 ** being inserted is removed. 1628 ** 1629 ** CHECK REPLACE Illegal. The results in an exception. 1630 ** 1631 ** Which action to take is determined by the overrideError parameter. 1632 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1633 ** is used. Or if pParse->onError==OE_Default then the onError value 1634 ** for the constraint is used. 1635 */ 1636 void sqlite3GenerateConstraintChecks( 1637 Parse *pParse, /* The parser context */ 1638 Table *pTab, /* The table being inserted or updated */ 1639 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1640 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1641 int iIdxCur, /* First index cursor */ 1642 int regNewData, /* First register in a range holding values to insert */ 1643 int regOldData, /* Previous content. 0 for INSERTs */ 1644 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1645 u8 overrideError, /* Override onError to this if not OE_Default */ 1646 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1647 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1648 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1649 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1650 ){ 1651 Vdbe *v; /* VDBE under constrution */ 1652 Index *pIdx; /* Pointer to one of the indices */ 1653 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1654 sqlite3 *db; /* Database connection */ 1655 int i; /* loop counter */ 1656 int ix; /* Index loop counter */ 1657 int nCol; /* Number of columns */ 1658 int onError; /* Conflict resolution strategy */ 1659 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1660 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1661 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1662 u8 isUpdate; /* True if this is an UPDATE operation */ 1663 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1664 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1665 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1666 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1667 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1668 /* Variables associated with retesting uniqueness constraints after 1669 ** replace triggers fire have run */ 1670 int regTrigCnt; /* Register used to count replace trigger invocations */ 1671 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1672 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1673 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1674 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1675 IndexIterator sIdxIter; /* Index iterator */ 1676 1677 isUpdate = regOldData!=0; 1678 db = pParse->db; 1679 v = pParse->pVdbe; 1680 assert( v!=0 ); 1681 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1682 nCol = pTab->nCol; 1683 1684 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1685 ** normal rowid tables. nPkField is the number of key fields in the 1686 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1687 ** number of fields in the true primary key of the table. */ 1688 if( HasRowid(pTab) ){ 1689 pPk = 0; 1690 nPkField = 1; 1691 }else{ 1692 pPk = sqlite3PrimaryKeyIndex(pTab); 1693 nPkField = pPk->nKeyCol; 1694 } 1695 1696 /* Record that this module has started */ 1697 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1698 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1699 1700 /* Test all NOT NULL constraints. 1701 */ 1702 if( pTab->tabFlags & TF_HasNotNull ){ 1703 int b2ndPass = 0; /* True if currently running 2nd pass */ 1704 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1705 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1706 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1707 for(i=0; i<nCol; i++){ 1708 int iReg; /* Register holding column value */ 1709 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1710 int isGenerated; /* non-zero if column is generated */ 1711 onError = pCol->notNull; 1712 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1713 if( i==pTab->iPKey ){ 1714 continue; /* ROWID is never NULL */ 1715 } 1716 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1717 if( isGenerated && !b2ndPass ){ 1718 nGenerated++; 1719 continue; /* Generated columns processed on 2nd pass */ 1720 } 1721 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1722 /* Do not check NOT NULL on columns that do not change */ 1723 continue; 1724 } 1725 if( overrideError!=OE_Default ){ 1726 onError = overrideError; 1727 }else if( onError==OE_Default ){ 1728 onError = OE_Abort; 1729 } 1730 if( onError==OE_Replace ){ 1731 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1732 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1733 ){ 1734 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1735 testcase( pCol->colFlags & COLFLAG_STORED ); 1736 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1737 onError = OE_Abort; 1738 }else{ 1739 assert( !isGenerated ); 1740 } 1741 }else if( b2ndPass && !isGenerated ){ 1742 continue; 1743 } 1744 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1745 || onError==OE_Ignore || onError==OE_Replace ); 1746 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1747 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1748 switch( onError ){ 1749 case OE_Replace: { 1750 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1751 VdbeCoverage(v); 1752 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1753 nSeenReplace++; 1754 sqlite3ExprCodeCopy(pParse, 1755 sqlite3ColumnExpr(pTab, pCol), iReg); 1756 sqlite3VdbeJumpHere(v, addr1); 1757 break; 1758 } 1759 case OE_Abort: 1760 sqlite3MayAbort(pParse); 1761 /* no break */ deliberate_fall_through 1762 case OE_Rollback: 1763 case OE_Fail: { 1764 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1765 pCol->zCnName); 1766 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1767 onError, iReg); 1768 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1769 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1770 VdbeCoverage(v); 1771 break; 1772 } 1773 default: { 1774 assert( onError==OE_Ignore ); 1775 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1776 VdbeCoverage(v); 1777 break; 1778 } 1779 } /* end switch(onError) */ 1780 } /* end loop i over columns */ 1781 if( nGenerated==0 && nSeenReplace==0 ){ 1782 /* If there are no generated columns with NOT NULL constraints 1783 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1784 ** pass is sufficient */ 1785 break; 1786 } 1787 if( b2ndPass ) break; /* Never need more than 2 passes */ 1788 b2ndPass = 1; 1789 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1790 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1791 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1792 ** first pass, recomputed values for all generated columns, as 1793 ** those values might depend on columns affected by the REPLACE. 1794 */ 1795 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1796 } 1797 #endif 1798 } /* end of 2-pass loop */ 1799 } /* end if( has-not-null-constraints ) */ 1800 1801 /* Test all CHECK constraints 1802 */ 1803 #ifndef SQLITE_OMIT_CHECK 1804 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1805 ExprList *pCheck = pTab->pCheck; 1806 pParse->iSelfTab = -(regNewData+1); 1807 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1808 for(i=0; i<pCheck->nExpr; i++){ 1809 int allOk; 1810 Expr *pCopy; 1811 Expr *pExpr = pCheck->a[i].pExpr; 1812 if( aiChng 1813 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1814 ){ 1815 /* The check constraints do not reference any of the columns being 1816 ** updated so there is no point it verifying the check constraint */ 1817 continue; 1818 } 1819 if( bAffinityDone==0 ){ 1820 sqlite3TableAffinity(v, pTab, regNewData+1); 1821 bAffinityDone = 1; 1822 } 1823 allOk = sqlite3VdbeMakeLabel(pParse); 1824 sqlite3VdbeVerifyAbortable(v, onError); 1825 pCopy = sqlite3ExprDup(db, pExpr, 0); 1826 if( !db->mallocFailed ){ 1827 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1828 } 1829 sqlite3ExprDelete(db, pCopy); 1830 if( onError==OE_Ignore ){ 1831 sqlite3VdbeGoto(v, ignoreDest); 1832 }else{ 1833 char *zName = pCheck->a[i].zEName; 1834 assert( zName!=0 || pParse->db->mallocFailed ); 1835 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1836 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1837 onError, zName, P4_TRANSIENT, 1838 P5_ConstraintCheck); 1839 } 1840 sqlite3VdbeResolveLabel(v, allOk); 1841 } 1842 pParse->iSelfTab = 0; 1843 } 1844 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1845 1846 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1847 ** order: 1848 ** 1849 ** (1) OE_Update 1850 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1851 ** (3) OE_Replace 1852 ** 1853 ** OE_Fail and OE_Ignore must happen before any changes are made. 1854 ** OE_Update guarantees that only a single row will change, so it 1855 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1856 ** could happen in any order, but they are grouped up front for 1857 ** convenience. 1858 ** 1859 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1860 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1861 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1862 ** constraint before any others, so it had to be moved. 1863 ** 1864 ** Constraint checking code is generated in this order: 1865 ** (A) The rowid constraint 1866 ** (B) Unique index constraints that do not have OE_Replace as their 1867 ** default conflict resolution strategy 1868 ** (C) Unique index that do use OE_Replace by default. 1869 ** 1870 ** The ordering of (2) and (3) is accomplished by making sure the linked 1871 ** list of indexes attached to a table puts all OE_Replace indexes last 1872 ** in the list. See sqlite3CreateIndex() for where that happens. 1873 */ 1874 sIdxIter.eType = 0; 1875 sIdxIter.i = 0; 1876 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1877 sIdxIter.u.lx.pIdx = pTab->pIndex; 1878 if( pUpsert ){ 1879 if( pUpsert->pUpsertTarget==0 ){ 1880 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1881 assert( pUpsert->pNextUpsert==0 ); 1882 if( pUpsert->isDoUpdate==0 ){ 1883 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1884 ** Make all unique constraint resolution be OE_Ignore */ 1885 overrideError = OE_Ignore; 1886 pUpsert = 0; 1887 }else{ 1888 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1889 overrideError = OE_Update; 1890 } 1891 }else if( pTab->pIndex!=0 ){ 1892 /* Otherwise, we'll need to run the IndexListTerm array version of the 1893 ** iterator to ensure that all of the ON CONFLICT conditions are 1894 ** checked first and in order. */ 1895 int nIdx, jj; 1896 u64 nByte; 1897 Upsert *pTerm; 1898 u8 *bUsed; 1899 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1900 assert( aRegIdx[nIdx]>0 ); 1901 } 1902 sIdxIter.eType = 1; 1903 sIdxIter.u.ax.nIdx = nIdx; 1904 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1905 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1906 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1907 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1908 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1909 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1910 if( pTerm->pUpsertTarget==0 ) break; 1911 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1912 jj = 0; 1913 pIdx = pTab->pIndex; 1914 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1915 pIdx = pIdx->pNext; 1916 jj++; 1917 } 1918 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1919 bUsed[jj] = 1; 1920 sIdxIter.u.ax.aIdx[i].p = pIdx; 1921 sIdxIter.u.ax.aIdx[i].ix = jj; 1922 i++; 1923 } 1924 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1925 if( bUsed[jj] ) continue; 1926 sIdxIter.u.ax.aIdx[i].p = pIdx; 1927 sIdxIter.u.ax.aIdx[i].ix = jj; 1928 i++; 1929 } 1930 assert( i==nIdx ); 1931 } 1932 } 1933 1934 /* Determine if it is possible that triggers (either explicitly coded 1935 ** triggers or FK resolution actions) might run as a result of deletes 1936 ** that happen when OE_Replace conflict resolution occurs. (Call these 1937 ** "replace triggers".) If any replace triggers run, we will need to 1938 ** recheck all of the uniqueness constraints after they have all run. 1939 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1940 ** 1941 ** If replace triggers are a possibility, then 1942 ** 1943 ** (1) Allocate register regTrigCnt and initialize it to zero. 1944 ** That register will count the number of replace triggers that 1945 ** fire. Constraint recheck only occurs if the number is positive. 1946 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1947 ** (3) Initialize addrRecheck and lblRecheckOk 1948 ** 1949 ** The uniqueness rechecking code will create a series of tests to run 1950 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1951 ** used to link together these tests which are separated from each other 1952 ** in the generate bytecode. 1953 */ 1954 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1955 /* There are not DELETE triggers nor FK constraints. No constraint 1956 ** rechecks are needed. */ 1957 pTrigger = 0; 1958 regTrigCnt = 0; 1959 }else{ 1960 if( db->flags&SQLITE_RecTriggers ){ 1961 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1962 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1963 }else{ 1964 pTrigger = 0; 1965 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1966 } 1967 if( regTrigCnt ){ 1968 /* Replace triggers might exist. Allocate the counter and 1969 ** initialize it to zero. */ 1970 regTrigCnt = ++pParse->nMem; 1971 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1972 VdbeComment((v, "trigger count")); 1973 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1974 addrRecheck = lblRecheckOk; 1975 } 1976 } 1977 1978 /* If rowid is changing, make sure the new rowid does not previously 1979 ** exist in the table. 1980 */ 1981 if( pkChng && pPk==0 ){ 1982 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1983 1984 /* Figure out what action to take in case of a rowid collision */ 1985 onError = pTab->keyConf; 1986 if( overrideError!=OE_Default ){ 1987 onError = overrideError; 1988 }else if( onError==OE_Default ){ 1989 onError = OE_Abort; 1990 } 1991 1992 /* figure out whether or not upsert applies in this case */ 1993 if( pUpsert ){ 1994 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1995 if( pUpsertClause!=0 ){ 1996 if( pUpsertClause->isDoUpdate==0 ){ 1997 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1998 }else{ 1999 onError = OE_Update; /* DO UPDATE */ 2000 } 2001 } 2002 if( pUpsertClause!=pUpsert ){ 2003 /* The first ON CONFLICT clause has a conflict target other than 2004 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2005 ** and then come back here and deal with the IPK afterwards */ 2006 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2007 } 2008 } 2009 2010 /* If the response to a rowid conflict is REPLACE but the response 2011 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2012 ** to defer the running of the rowid conflict checking until after 2013 ** the UNIQUE constraints have run. 2014 */ 2015 if( onError==OE_Replace /* IPK rule is REPLACE */ 2016 && onError!=overrideError /* Rules for other constraints are different */ 2017 && pTab->pIndex /* There exist other constraints */ 2018 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2019 ){ 2020 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2021 VdbeComment((v, "defer IPK REPLACE until last")); 2022 } 2023 2024 if( isUpdate ){ 2025 /* pkChng!=0 does not mean that the rowid has changed, only that 2026 ** it might have changed. Skip the conflict logic below if the rowid 2027 ** is unchanged. */ 2028 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2029 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2030 VdbeCoverage(v); 2031 } 2032 2033 /* Check to see if the new rowid already exists in the table. Skip 2034 ** the following conflict logic if it does not. */ 2035 VdbeNoopComment((v, "uniqueness check for ROWID")); 2036 sqlite3VdbeVerifyAbortable(v, onError); 2037 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2038 VdbeCoverage(v); 2039 2040 switch( onError ){ 2041 default: { 2042 onError = OE_Abort; 2043 /* no break */ deliberate_fall_through 2044 } 2045 case OE_Rollback: 2046 case OE_Abort: 2047 case OE_Fail: { 2048 testcase( onError==OE_Rollback ); 2049 testcase( onError==OE_Abort ); 2050 testcase( onError==OE_Fail ); 2051 sqlite3RowidConstraint(pParse, onError, pTab); 2052 break; 2053 } 2054 case OE_Replace: { 2055 /* If there are DELETE triggers on this table and the 2056 ** recursive-triggers flag is set, call GenerateRowDelete() to 2057 ** remove the conflicting row from the table. This will fire 2058 ** the triggers and remove both the table and index b-tree entries. 2059 ** 2060 ** Otherwise, if there are no triggers or the recursive-triggers 2061 ** flag is not set, but the table has one or more indexes, call 2062 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2063 ** only. The table b-tree entry will be replaced by the new entry 2064 ** when it is inserted. 2065 ** 2066 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2067 ** also invoke MultiWrite() to indicate that this VDBE may require 2068 ** statement rollback (if the statement is aborted after the delete 2069 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2070 ** but being more selective here allows statements like: 2071 ** 2072 ** REPLACE INTO t(rowid) VALUES($newrowid) 2073 ** 2074 ** to run without a statement journal if there are no indexes on the 2075 ** table. 2076 */ 2077 if( regTrigCnt ){ 2078 sqlite3MultiWrite(pParse); 2079 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2080 regNewData, 1, 0, OE_Replace, 1, -1); 2081 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2082 nReplaceTrig++; 2083 }else{ 2084 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2085 assert( HasRowid(pTab) ); 2086 /* This OP_Delete opcode fires the pre-update-hook only. It does 2087 ** not modify the b-tree. It is more efficient to let the coming 2088 ** OP_Insert replace the existing entry than it is to delete the 2089 ** existing entry and then insert a new one. */ 2090 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2091 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2092 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2093 if( pTab->pIndex ){ 2094 sqlite3MultiWrite(pParse); 2095 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2096 } 2097 } 2098 seenReplace = 1; 2099 break; 2100 } 2101 #ifndef SQLITE_OMIT_UPSERT 2102 case OE_Update: { 2103 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2104 /* no break */ deliberate_fall_through 2105 } 2106 #endif 2107 case OE_Ignore: { 2108 testcase( onError==OE_Ignore ); 2109 sqlite3VdbeGoto(v, ignoreDest); 2110 break; 2111 } 2112 } 2113 sqlite3VdbeResolveLabel(v, addrRowidOk); 2114 if( pUpsert && pUpsertClause!=pUpsert ){ 2115 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2116 }else if( ipkTop ){ 2117 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2118 sqlite3VdbeJumpHere(v, ipkTop-1); 2119 } 2120 } 2121 2122 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2123 ** index and making sure that duplicate entries do not already exist. 2124 ** Compute the revised record entries for indices as we go. 2125 ** 2126 ** This loop also handles the case of the PRIMARY KEY index for a 2127 ** WITHOUT ROWID table. 2128 */ 2129 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2130 pIdx; 2131 pIdx = indexIteratorNext(&sIdxIter, &ix) 2132 ){ 2133 int regIdx; /* Range of registers hold conent for pIdx */ 2134 int regR; /* Range of registers holding conflicting PK */ 2135 int iThisCur; /* Cursor for this UNIQUE index */ 2136 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2137 int addrConflictCk; /* First opcode in the conflict check logic */ 2138 2139 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2140 if( pUpsert ){ 2141 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2142 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2143 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2144 } 2145 } 2146 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2147 if( bAffinityDone==0 ){ 2148 sqlite3TableAffinity(v, pTab, regNewData+1); 2149 bAffinityDone = 1; 2150 } 2151 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2152 iThisCur = iIdxCur+ix; 2153 2154 2155 /* Skip partial indices for which the WHERE clause is not true */ 2156 if( pIdx->pPartIdxWhere ){ 2157 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2158 pParse->iSelfTab = -(regNewData+1); 2159 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2160 SQLITE_JUMPIFNULL); 2161 pParse->iSelfTab = 0; 2162 } 2163 2164 /* Create a record for this index entry as it should appear after 2165 ** the insert or update. Store that record in the aRegIdx[ix] register 2166 */ 2167 regIdx = aRegIdx[ix]+1; 2168 for(i=0; i<pIdx->nColumn; i++){ 2169 int iField = pIdx->aiColumn[i]; 2170 int x; 2171 if( iField==XN_EXPR ){ 2172 pParse->iSelfTab = -(regNewData+1); 2173 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2174 pParse->iSelfTab = 0; 2175 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2176 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2177 x = regNewData; 2178 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2179 VdbeComment((v, "rowid")); 2180 }else{ 2181 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2182 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2183 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2184 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2185 } 2186 } 2187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2188 VdbeComment((v, "for %s", pIdx->zName)); 2189 #ifdef SQLITE_ENABLE_NULL_TRIM 2190 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2191 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2192 } 2193 #endif 2194 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2195 2196 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2197 ** of a WITHOUT ROWID table and there has been no change the 2198 ** primary key, then no collision is possible. The collision detection 2199 ** logic below can all be skipped. */ 2200 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2201 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2202 continue; 2203 } 2204 2205 /* Find out what action to take in case there is a uniqueness conflict */ 2206 onError = pIdx->onError; 2207 if( onError==OE_None ){ 2208 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2209 continue; /* pIdx is not a UNIQUE index */ 2210 } 2211 if( overrideError!=OE_Default ){ 2212 onError = overrideError; 2213 }else if( onError==OE_Default ){ 2214 onError = OE_Abort; 2215 } 2216 2217 /* Figure out if the upsert clause applies to this index */ 2218 if( pUpsertClause ){ 2219 if( pUpsertClause->isDoUpdate==0 ){ 2220 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2221 }else{ 2222 onError = OE_Update; /* DO UPDATE */ 2223 } 2224 } 2225 2226 /* Collision detection may be omitted if all of the following are true: 2227 ** (1) The conflict resolution algorithm is REPLACE 2228 ** (2) The table is a WITHOUT ROWID table 2229 ** (3) There are no secondary indexes on the table 2230 ** (4) No delete triggers need to be fired if there is a conflict 2231 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2232 ** 2233 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2234 ** must be explicitly deleted in order to ensure any pre-update hook 2235 ** is invoked. */ 2236 assert( IsOrdinaryTable(pTab) ); 2237 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2238 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2239 && pPk==pIdx /* Condition 2 */ 2240 && onError==OE_Replace /* Condition 1 */ 2241 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2242 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2243 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2244 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2245 ){ 2246 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2247 continue; 2248 } 2249 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2250 2251 /* Check to see if the new index entry will be unique */ 2252 sqlite3VdbeVerifyAbortable(v, onError); 2253 addrConflictCk = 2254 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2255 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2256 2257 /* Generate code to handle collisions */ 2258 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2259 if( isUpdate || onError==OE_Replace ){ 2260 if( HasRowid(pTab) ){ 2261 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2262 /* Conflict only if the rowid of the existing index entry 2263 ** is different from old-rowid */ 2264 if( isUpdate ){ 2265 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2266 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2267 VdbeCoverage(v); 2268 } 2269 }else{ 2270 int x; 2271 /* Extract the PRIMARY KEY from the end of the index entry and 2272 ** store it in registers regR..regR+nPk-1 */ 2273 if( pIdx!=pPk ){ 2274 for(i=0; i<pPk->nKeyCol; i++){ 2275 assert( pPk->aiColumn[i]>=0 ); 2276 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2277 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2278 VdbeComment((v, "%s.%s", pTab->zName, 2279 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2280 } 2281 } 2282 if( isUpdate ){ 2283 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2284 ** table, only conflict if the new PRIMARY KEY values are actually 2285 ** different from the old. See TH3 withoutrowid04.test. 2286 ** 2287 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2288 ** of the matched index row are different from the original PRIMARY 2289 ** KEY values of this row before the update. */ 2290 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2291 int op = OP_Ne; 2292 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2293 2294 for(i=0; i<pPk->nKeyCol; i++){ 2295 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2296 x = pPk->aiColumn[i]; 2297 assert( x>=0 ); 2298 if( i==(pPk->nKeyCol-1) ){ 2299 addrJump = addrUniqueOk; 2300 op = OP_Eq; 2301 } 2302 x = sqlite3TableColumnToStorage(pTab, x); 2303 sqlite3VdbeAddOp4(v, op, 2304 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2305 ); 2306 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2307 VdbeCoverageIf(v, op==OP_Eq); 2308 VdbeCoverageIf(v, op==OP_Ne); 2309 } 2310 } 2311 } 2312 } 2313 2314 /* Generate code that executes if the new index entry is not unique */ 2315 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2316 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2317 switch( onError ){ 2318 case OE_Rollback: 2319 case OE_Abort: 2320 case OE_Fail: { 2321 testcase( onError==OE_Rollback ); 2322 testcase( onError==OE_Abort ); 2323 testcase( onError==OE_Fail ); 2324 sqlite3UniqueConstraint(pParse, onError, pIdx); 2325 break; 2326 } 2327 #ifndef SQLITE_OMIT_UPSERT 2328 case OE_Update: { 2329 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2330 /* no break */ deliberate_fall_through 2331 } 2332 #endif 2333 case OE_Ignore: { 2334 testcase( onError==OE_Ignore ); 2335 sqlite3VdbeGoto(v, ignoreDest); 2336 break; 2337 } 2338 default: { 2339 int nConflictCk; /* Number of opcodes in conflict check logic */ 2340 2341 assert( onError==OE_Replace ); 2342 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2343 assert( nConflictCk>0 || db->mallocFailed ); 2344 testcase( nConflictCk<=0 ); 2345 testcase( nConflictCk>1 ); 2346 if( regTrigCnt ){ 2347 sqlite3MultiWrite(pParse); 2348 nReplaceTrig++; 2349 } 2350 if( pTrigger && isUpdate ){ 2351 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2352 } 2353 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2354 regR, nPkField, 0, OE_Replace, 2355 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2356 if( pTrigger && isUpdate ){ 2357 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2358 } 2359 if( regTrigCnt ){ 2360 int addrBypass; /* Jump destination to bypass recheck logic */ 2361 2362 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2363 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2364 VdbeComment((v, "bypass recheck")); 2365 2366 /* Here we insert code that will be invoked after all constraint 2367 ** checks have run, if and only if one or more replace triggers 2368 ** fired. */ 2369 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2370 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2371 if( pIdx->pPartIdxWhere ){ 2372 /* Bypass the recheck if this partial index is not defined 2373 ** for the current row */ 2374 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2375 VdbeCoverage(v); 2376 } 2377 /* Copy the constraint check code from above, except change 2378 ** the constraint-ok jump destination to be the address of 2379 ** the next retest block */ 2380 while( nConflictCk>0 ){ 2381 VdbeOp x; /* Conflict check opcode to copy */ 2382 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2383 ** Hence, make a complete copy of the opcode, rather than using 2384 ** a pointer to the opcode. */ 2385 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2386 if( x.opcode!=OP_IdxRowid ){ 2387 int p2; /* New P2 value for copied conflict check opcode */ 2388 const char *zP4; 2389 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2390 p2 = lblRecheckOk; 2391 }else{ 2392 p2 = x.p2; 2393 } 2394 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2395 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2396 sqlite3VdbeChangeP5(v, x.p5); 2397 VdbeCoverageIf(v, p2!=x.p2); 2398 } 2399 nConflictCk--; 2400 addrConflictCk++; 2401 } 2402 /* If the retest fails, issue an abort */ 2403 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2404 2405 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2406 } 2407 seenReplace = 1; 2408 break; 2409 } 2410 } 2411 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2412 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2413 if( pUpsertClause 2414 && upsertIpkReturn 2415 && sqlite3UpsertNextIsIPK(pUpsertClause) 2416 ){ 2417 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2418 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2419 upsertIpkReturn = 0; 2420 } 2421 } 2422 2423 /* If the IPK constraint is a REPLACE, run it last */ 2424 if( ipkTop ){ 2425 sqlite3VdbeGoto(v, ipkTop); 2426 VdbeComment((v, "Do IPK REPLACE")); 2427 assert( ipkBottom>0 ); 2428 sqlite3VdbeJumpHere(v, ipkBottom); 2429 } 2430 2431 /* Recheck all uniqueness constraints after replace triggers have run */ 2432 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2433 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2434 if( nReplaceTrig ){ 2435 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2436 if( !pPk ){ 2437 if( isUpdate ){ 2438 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2439 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2440 VdbeCoverage(v); 2441 } 2442 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2443 VdbeCoverage(v); 2444 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2445 }else{ 2446 sqlite3VdbeGoto(v, addrRecheck); 2447 } 2448 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2449 } 2450 2451 /* Generate the table record */ 2452 if( HasRowid(pTab) ){ 2453 int regRec = aRegIdx[ix]; 2454 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2455 sqlite3SetMakeRecordP5(v, pTab); 2456 if( !bAffinityDone ){ 2457 sqlite3TableAffinity(v, pTab, 0); 2458 } 2459 } 2460 2461 *pbMayReplace = seenReplace; 2462 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2463 } 2464 2465 #ifdef SQLITE_ENABLE_NULL_TRIM 2466 /* 2467 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2468 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2469 ** 2470 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2471 */ 2472 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2473 u16 i; 2474 2475 /* Records with omitted columns are only allowed for schema format 2476 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2477 if( pTab->pSchema->file_format<2 ) return; 2478 2479 for(i=pTab->nCol-1; i>0; i--){ 2480 if( pTab->aCol[i].iDflt!=0 ) break; 2481 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2482 } 2483 sqlite3VdbeChangeP5(v, i+1); 2484 } 2485 #endif 2486 2487 /* 2488 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2489 ** number is iCur, and register regData contains the new record for the 2490 ** PK index. This function adds code to invoke the pre-update hook, 2491 ** if one is registered. 2492 */ 2493 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2494 static void codeWithoutRowidPreupdate( 2495 Parse *pParse, /* Parse context */ 2496 Table *pTab, /* Table being updated */ 2497 int iCur, /* Cursor number for table */ 2498 int regData /* Data containing new record */ 2499 ){ 2500 Vdbe *v = pParse->pVdbe; 2501 int r = sqlite3GetTempReg(pParse); 2502 assert( !HasRowid(pTab) ); 2503 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2504 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2505 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2506 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2507 sqlite3ReleaseTempReg(pParse, r); 2508 } 2509 #else 2510 # define codeWithoutRowidPreupdate(a,b,c,d) 2511 #endif 2512 2513 /* 2514 ** This routine generates code to finish the INSERT or UPDATE operation 2515 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2516 ** A consecutive range of registers starting at regNewData contains the 2517 ** rowid and the content to be inserted. 2518 ** 2519 ** The arguments to this routine should be the same as the first six 2520 ** arguments to sqlite3GenerateConstraintChecks. 2521 */ 2522 void sqlite3CompleteInsertion( 2523 Parse *pParse, /* The parser context */ 2524 Table *pTab, /* the table into which we are inserting */ 2525 int iDataCur, /* Cursor of the canonical data source */ 2526 int iIdxCur, /* First index cursor */ 2527 int regNewData, /* Range of content */ 2528 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2529 int update_flags, /* True for UPDATE, False for INSERT */ 2530 int appendBias, /* True if this is likely to be an append */ 2531 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2532 ){ 2533 Vdbe *v; /* Prepared statements under construction */ 2534 Index *pIdx; /* An index being inserted or updated */ 2535 u8 pik_flags; /* flag values passed to the btree insert */ 2536 int i; /* Loop counter */ 2537 2538 assert( update_flags==0 2539 || update_flags==OPFLAG_ISUPDATE 2540 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2541 ); 2542 2543 v = pParse->pVdbe; 2544 assert( v!=0 ); 2545 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2546 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2547 /* All REPLACE indexes are at the end of the list */ 2548 assert( pIdx->onError!=OE_Replace 2549 || pIdx->pNext==0 2550 || pIdx->pNext->onError==OE_Replace ); 2551 if( aRegIdx[i]==0 ) continue; 2552 if( pIdx->pPartIdxWhere ){ 2553 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2554 VdbeCoverage(v); 2555 } 2556 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2557 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2558 pik_flags |= OPFLAG_NCHANGE; 2559 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2560 if( update_flags==0 ){ 2561 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2562 } 2563 } 2564 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2565 aRegIdx[i]+1, 2566 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2567 sqlite3VdbeChangeP5(v, pik_flags); 2568 } 2569 if( !HasRowid(pTab) ) return; 2570 if( pParse->nested ){ 2571 pik_flags = 0; 2572 }else{ 2573 pik_flags = OPFLAG_NCHANGE; 2574 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2575 } 2576 if( appendBias ){ 2577 pik_flags |= OPFLAG_APPEND; 2578 } 2579 if( useSeekResult ){ 2580 pik_flags |= OPFLAG_USESEEKRESULT; 2581 } 2582 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2583 if( !pParse->nested ){ 2584 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2585 } 2586 sqlite3VdbeChangeP5(v, pik_flags); 2587 } 2588 2589 /* 2590 ** Allocate cursors for the pTab table and all its indices and generate 2591 ** code to open and initialized those cursors. 2592 ** 2593 ** The cursor for the object that contains the complete data (normally 2594 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2595 ** ROWID table) is returned in *piDataCur. The first index cursor is 2596 ** returned in *piIdxCur. The number of indices is returned. 2597 ** 2598 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2599 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2600 ** If iBase is negative, then allocate the next available cursor. 2601 ** 2602 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2603 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2604 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2605 ** pTab->pIndex list. 2606 ** 2607 ** If pTab is a virtual table, then this routine is a no-op and the 2608 ** *piDataCur and *piIdxCur values are left uninitialized. 2609 */ 2610 int sqlite3OpenTableAndIndices( 2611 Parse *pParse, /* Parsing context */ 2612 Table *pTab, /* Table to be opened */ 2613 int op, /* OP_OpenRead or OP_OpenWrite */ 2614 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2615 int iBase, /* Use this for the table cursor, if there is one */ 2616 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2617 int *piDataCur, /* Write the database source cursor number here */ 2618 int *piIdxCur /* Write the first index cursor number here */ 2619 ){ 2620 int i; 2621 int iDb; 2622 int iDataCur; 2623 Index *pIdx; 2624 Vdbe *v; 2625 2626 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2627 assert( op==OP_OpenWrite || p5==0 ); 2628 if( IsVirtual(pTab) ){ 2629 /* This routine is a no-op for virtual tables. Leave the output 2630 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2631 ** for improved error detection. */ 2632 *piDataCur = *piIdxCur = -999; 2633 return 0; 2634 } 2635 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2636 v = pParse->pVdbe; 2637 assert( v!=0 ); 2638 if( iBase<0 ) iBase = pParse->nTab; 2639 iDataCur = iBase++; 2640 if( piDataCur ) *piDataCur = iDataCur; 2641 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2642 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2643 }else{ 2644 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2645 } 2646 if( piIdxCur ) *piIdxCur = iBase; 2647 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2648 int iIdxCur = iBase++; 2649 assert( pIdx->pSchema==pTab->pSchema ); 2650 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2651 if( piDataCur ) *piDataCur = iIdxCur; 2652 p5 = 0; 2653 } 2654 if( aToOpen==0 || aToOpen[i+1] ){ 2655 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2656 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2657 sqlite3VdbeChangeP5(v, p5); 2658 VdbeComment((v, "%s", pIdx->zName)); 2659 } 2660 } 2661 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2662 return i; 2663 } 2664 2665 2666 #ifdef SQLITE_TEST 2667 /* 2668 ** The following global variable is incremented whenever the 2669 ** transfer optimization is used. This is used for testing 2670 ** purposes only - to make sure the transfer optimization really 2671 ** is happening when it is supposed to. 2672 */ 2673 int sqlite3_xferopt_count; 2674 #endif /* SQLITE_TEST */ 2675 2676 2677 #ifndef SQLITE_OMIT_XFER_OPT 2678 /* 2679 ** Check to see if index pSrc is compatible as a source of data 2680 ** for index pDest in an insert transfer optimization. The rules 2681 ** for a compatible index: 2682 ** 2683 ** * The index is over the same set of columns 2684 ** * The same DESC and ASC markings occurs on all columns 2685 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2686 ** * The same collating sequence on each column 2687 ** * The index has the exact same WHERE clause 2688 */ 2689 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2690 int i; 2691 assert( pDest && pSrc ); 2692 assert( pDest->pTable!=pSrc->pTable ); 2693 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2694 return 0; /* Different number of columns */ 2695 } 2696 if( pDest->onError!=pSrc->onError ){ 2697 return 0; /* Different conflict resolution strategies */ 2698 } 2699 for(i=0; i<pSrc->nKeyCol; i++){ 2700 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2701 return 0; /* Different columns indexed */ 2702 } 2703 if( pSrc->aiColumn[i]==XN_EXPR ){ 2704 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2705 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2706 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2707 return 0; /* Different expressions in the index */ 2708 } 2709 } 2710 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2711 return 0; /* Different sort orders */ 2712 } 2713 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2714 return 0; /* Different collating sequences */ 2715 } 2716 } 2717 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2718 return 0; /* Different WHERE clauses */ 2719 } 2720 2721 /* If no test above fails then the indices must be compatible */ 2722 return 1; 2723 } 2724 2725 /* 2726 ** Attempt the transfer optimization on INSERTs of the form 2727 ** 2728 ** INSERT INTO tab1 SELECT * FROM tab2; 2729 ** 2730 ** The xfer optimization transfers raw records from tab2 over to tab1. 2731 ** Columns are not decoded and reassembled, which greatly improves 2732 ** performance. Raw index records are transferred in the same way. 2733 ** 2734 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2735 ** There are lots of rules for determining compatibility - see comments 2736 ** embedded in the code for details. 2737 ** 2738 ** This routine returns TRUE if the optimization is guaranteed to be used. 2739 ** Sometimes the xfer optimization will only work if the destination table 2740 ** is empty - a factor that can only be determined at run-time. In that 2741 ** case, this routine generates code for the xfer optimization but also 2742 ** does a test to see if the destination table is empty and jumps over the 2743 ** xfer optimization code if the test fails. In that case, this routine 2744 ** returns FALSE so that the caller will know to go ahead and generate 2745 ** an unoptimized transfer. This routine also returns FALSE if there 2746 ** is no chance that the xfer optimization can be applied. 2747 ** 2748 ** This optimization is particularly useful at making VACUUM run faster. 2749 */ 2750 static int xferOptimization( 2751 Parse *pParse, /* Parser context */ 2752 Table *pDest, /* The table we are inserting into */ 2753 Select *pSelect, /* A SELECT statement to use as the data source */ 2754 int onError, /* How to handle constraint errors */ 2755 int iDbDest /* The database of pDest */ 2756 ){ 2757 sqlite3 *db = pParse->db; 2758 ExprList *pEList; /* The result set of the SELECT */ 2759 Table *pSrc; /* The table in the FROM clause of SELECT */ 2760 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2761 SrcItem *pItem; /* An element of pSelect->pSrc */ 2762 int i; /* Loop counter */ 2763 int iDbSrc; /* The database of pSrc */ 2764 int iSrc, iDest; /* Cursors from source and destination */ 2765 int addr1, addr2; /* Loop addresses */ 2766 int emptyDestTest = 0; /* Address of test for empty pDest */ 2767 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2768 Vdbe *v; /* The VDBE we are building */ 2769 int regAutoinc; /* Memory register used by AUTOINC */ 2770 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2771 int regData, regRowid; /* Registers holding data and rowid */ 2772 2773 assert( pSelect!=0 ); 2774 if( pParse->pWith || pSelect->pWith ){ 2775 /* Do not attempt to process this query if there are an WITH clauses 2776 ** attached to it. Proceeding may generate a false "no such table: xxx" 2777 ** error if pSelect reads from a CTE named "xxx". */ 2778 return 0; 2779 } 2780 #ifndef SQLITE_OMIT_VIRTUALTABLE 2781 if( IsVirtual(pDest) ){ 2782 return 0; /* tab1 must not be a virtual table */ 2783 } 2784 #endif 2785 if( onError==OE_Default ){ 2786 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2787 if( onError==OE_Default ) onError = OE_Abort; 2788 } 2789 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2790 if( pSelect->pSrc->nSrc!=1 ){ 2791 return 0; /* FROM clause must have exactly one term */ 2792 } 2793 if( pSelect->pSrc->a[0].pSelect ){ 2794 return 0; /* FROM clause cannot contain a subquery */ 2795 } 2796 if( pSelect->pWhere ){ 2797 return 0; /* SELECT may not have a WHERE clause */ 2798 } 2799 if( pSelect->pOrderBy ){ 2800 return 0; /* SELECT may not have an ORDER BY clause */ 2801 } 2802 /* Do not need to test for a HAVING clause. If HAVING is present but 2803 ** there is no ORDER BY, we will get an error. */ 2804 if( pSelect->pGroupBy ){ 2805 return 0; /* SELECT may not have a GROUP BY clause */ 2806 } 2807 if( pSelect->pLimit ){ 2808 return 0; /* SELECT may not have a LIMIT clause */ 2809 } 2810 if( pSelect->pPrior ){ 2811 return 0; /* SELECT may not be a compound query */ 2812 } 2813 if( pSelect->selFlags & SF_Distinct ){ 2814 return 0; /* SELECT may not be DISTINCT */ 2815 } 2816 pEList = pSelect->pEList; 2817 assert( pEList!=0 ); 2818 if( pEList->nExpr!=1 ){ 2819 return 0; /* The result set must have exactly one column */ 2820 } 2821 assert( pEList->a[0].pExpr ); 2822 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2823 return 0; /* The result set must be the special operator "*" */ 2824 } 2825 2826 /* At this point we have established that the statement is of the 2827 ** correct syntactic form to participate in this optimization. Now 2828 ** we have to check the semantics. 2829 */ 2830 pItem = pSelect->pSrc->a; 2831 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2832 if( pSrc==0 ){ 2833 return 0; /* FROM clause does not contain a real table */ 2834 } 2835 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2836 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2837 return 0; /* tab1 and tab2 may not be the same table */ 2838 } 2839 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2840 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2841 } 2842 if( !IsOrdinaryTable(pSrc) ){ 2843 return 0; /* tab2 may not be a view or virtual table */ 2844 } 2845 if( pDest->nCol!=pSrc->nCol ){ 2846 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2847 } 2848 if( pDest->iPKey!=pSrc->iPKey ){ 2849 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2850 } 2851 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2852 return 0; /* Cannot feed from a non-strict into a strict table */ 2853 } 2854 for(i=0; i<pDest->nCol; i++){ 2855 Column *pDestCol = &pDest->aCol[i]; 2856 Column *pSrcCol = &pSrc->aCol[i]; 2857 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2858 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2859 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2860 ){ 2861 return 0; /* Neither table may have __hidden__ columns */ 2862 } 2863 #endif 2864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2865 /* Even if tables t1 and t2 have identical schemas, if they contain 2866 ** generated columns, then this statement is semantically incorrect: 2867 ** 2868 ** INSERT INTO t2 SELECT * FROM t1; 2869 ** 2870 ** The reason is that generated column values are returned by the 2871 ** the SELECT statement on the right but the INSERT statement on the 2872 ** left wants them to be omitted. 2873 ** 2874 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2875 ** to do a bulk transfer all of the content from t1 over to t2. 2876 ** 2877 ** We could, in theory, disable this (except for internal use by the 2878 ** VACUUM command where it is actually needed). But why do that? It 2879 ** seems harmless enough, and provides a useful service. 2880 */ 2881 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2882 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2883 return 0; /* Both columns have the same generated-column type */ 2884 } 2885 /* But the transfer is only allowed if both the source and destination 2886 ** tables have the exact same expressions for generated columns. 2887 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2888 */ 2889 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2890 if( sqlite3ExprCompare(0, 2891 sqlite3ColumnExpr(pSrc, pSrcCol), 2892 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2893 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2894 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2895 return 0; /* Different generator expressions */ 2896 } 2897 } 2898 #endif 2899 if( pDestCol->affinity!=pSrcCol->affinity ){ 2900 return 0; /* Affinity must be the same on all columns */ 2901 } 2902 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2903 sqlite3ColumnColl(pSrcCol))!=0 ){ 2904 return 0; /* Collating sequence must be the same on all columns */ 2905 } 2906 if( pDestCol->notNull && !pSrcCol->notNull ){ 2907 return 0; /* tab2 must be NOT NULL if tab1 is */ 2908 } 2909 /* Default values for second and subsequent columns need to match. */ 2910 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2911 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2912 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2913 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2914 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2915 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2916 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2917 if( (pDestExpr==0)!=(pSrcExpr==0) 2918 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2919 pSrcExpr->u.zToken)!=0) 2920 ){ 2921 return 0; /* Default values must be the same for all columns */ 2922 } 2923 } 2924 } 2925 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2926 if( IsUniqueIndex(pDestIdx) ){ 2927 destHasUniqueIdx = 1; 2928 } 2929 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2930 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2931 } 2932 if( pSrcIdx==0 ){ 2933 return 0; /* pDestIdx has no corresponding index in pSrc */ 2934 } 2935 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2936 && sqlite3FaultSim(411)==SQLITE_OK ){ 2937 /* The sqlite3FaultSim() call allows this corruption test to be 2938 ** bypassed during testing, in order to exercise other corruption tests 2939 ** further downstream. */ 2940 return 0; /* Corrupt schema - two indexes on the same btree */ 2941 } 2942 } 2943 #ifndef SQLITE_OMIT_CHECK 2944 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2945 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2946 } 2947 #endif 2948 #ifndef SQLITE_OMIT_FOREIGN_KEY 2949 /* Disallow the transfer optimization if the destination table constains 2950 ** any foreign key constraints. This is more restrictive than necessary. 2951 ** But the main beneficiary of the transfer optimization is the VACUUM 2952 ** command, and the VACUUM command disables foreign key constraints. So 2953 ** the extra complication to make this rule less restrictive is probably 2954 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2955 */ 2956 assert( IsOrdinaryTable(pDest) ); 2957 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2958 return 0; 2959 } 2960 #endif 2961 if( (db->flags & SQLITE_CountRows)!=0 ){ 2962 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2963 } 2964 2965 /* If we get this far, it means that the xfer optimization is at 2966 ** least a possibility, though it might only work if the destination 2967 ** table (tab1) is initially empty. 2968 */ 2969 #ifdef SQLITE_TEST 2970 sqlite3_xferopt_count++; 2971 #endif 2972 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2973 v = sqlite3GetVdbe(pParse); 2974 sqlite3CodeVerifySchema(pParse, iDbSrc); 2975 iSrc = pParse->nTab++; 2976 iDest = pParse->nTab++; 2977 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2978 regData = sqlite3GetTempReg(pParse); 2979 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2980 regRowid = sqlite3GetTempReg(pParse); 2981 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2982 assert( HasRowid(pDest) || destHasUniqueIdx ); 2983 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2984 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2985 || destHasUniqueIdx /* (2) */ 2986 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2987 )){ 2988 /* In some circumstances, we are able to run the xfer optimization 2989 ** only if the destination table is initially empty. Unless the 2990 ** DBFLAG_Vacuum flag is set, this block generates code to make 2991 ** that determination. If DBFLAG_Vacuum is set, then the destination 2992 ** table is always empty. 2993 ** 2994 ** Conditions under which the destination must be empty: 2995 ** 2996 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2997 ** (If the destination is not initially empty, the rowid fields 2998 ** of index entries might need to change.) 2999 ** 3000 ** (2) The destination has a unique index. (The xfer optimization 3001 ** is unable to test uniqueness.) 3002 ** 3003 ** (3) onError is something other than OE_Abort and OE_Rollback. 3004 */ 3005 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3006 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3007 sqlite3VdbeJumpHere(v, addr1); 3008 } 3009 if( HasRowid(pSrc) ){ 3010 u8 insFlags; 3011 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3012 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3013 if( pDest->iPKey>=0 ){ 3014 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3015 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3016 sqlite3VdbeVerifyAbortable(v, onError); 3017 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3018 VdbeCoverage(v); 3019 sqlite3RowidConstraint(pParse, onError, pDest); 3020 sqlite3VdbeJumpHere(v, addr2); 3021 } 3022 autoIncStep(pParse, regAutoinc, regRowid); 3023 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3024 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3025 }else{ 3026 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3027 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3028 } 3029 3030 if( db->mDbFlags & DBFLAG_Vacuum ){ 3031 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3032 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3033 }else{ 3034 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3035 } 3036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3037 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3038 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3039 insFlags &= ~OPFLAG_PREFORMAT; 3040 }else 3041 #endif 3042 { 3043 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3044 } 3045 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3046 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3047 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3048 } 3049 sqlite3VdbeChangeP5(v, insFlags); 3050 3051 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3052 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3053 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3054 }else{ 3055 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3056 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3057 } 3058 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3059 u8 idxInsFlags = 0; 3060 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3061 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3062 } 3063 assert( pSrcIdx ); 3064 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3065 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3066 VdbeComment((v, "%s", pSrcIdx->zName)); 3067 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3068 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3069 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3070 VdbeComment((v, "%s", pDestIdx->zName)); 3071 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3072 if( db->mDbFlags & DBFLAG_Vacuum ){ 3073 /* This INSERT command is part of a VACUUM operation, which guarantees 3074 ** that the destination table is empty. If all indexed columns use 3075 ** collation sequence BINARY, then it can also be assumed that the 3076 ** index will be populated by inserting keys in strictly sorted 3077 ** order. In this case, instead of seeking within the b-tree as part 3078 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3079 ** OP_IdxInsert to seek to the point within the b-tree where each key 3080 ** should be inserted. This is faster. 3081 ** 3082 ** If any of the indexed columns use a collation sequence other than 3083 ** BINARY, this optimization is disabled. This is because the user 3084 ** might change the definition of a collation sequence and then run 3085 ** a VACUUM command. In that case keys may not be written in strictly 3086 ** sorted order. */ 3087 for(i=0; i<pSrcIdx->nColumn; i++){ 3088 const char *zColl = pSrcIdx->azColl[i]; 3089 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3090 } 3091 if( i==pSrcIdx->nColumn ){ 3092 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3093 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3094 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3095 } 3096 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3097 idxInsFlags |= OPFLAG_NCHANGE; 3098 } 3099 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3100 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3101 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3102 && !HasRowid(pDest) 3103 && IsPrimaryKeyIndex(pDestIdx) 3104 ){ 3105 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3106 } 3107 } 3108 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3109 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3110 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3111 sqlite3VdbeJumpHere(v, addr1); 3112 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3113 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3114 } 3115 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3116 sqlite3ReleaseTempReg(pParse, regRowid); 3117 sqlite3ReleaseTempReg(pParse, regData); 3118 if( emptyDestTest ){ 3119 sqlite3AutoincrementEnd(pParse); 3120 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3121 sqlite3VdbeJumpHere(v, emptyDestTest); 3122 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3123 return 0; 3124 }else{ 3125 return 1; 3126 } 3127 } 3128 #endif /* SQLITE_OMIT_XFER_OPT */ 3129