xref: /sqlite-3.40.0/src/insert.c (revision eb4ac06f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.261 2009/04/30 00:11:10 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Generate code that will open a table for reading.
21 */
22 void sqlite3OpenTable(
23   Parse *p,       /* Generate code into this VDBE */
24   int iCur,       /* The cursor number of the table */
25   int iDb,        /* The database index in sqlite3.aDb[] */
26   Table *pTab,    /* The table to be opened */
27   int opcode      /* OP_OpenRead or OP_OpenWrite */
28 ){
29   Vdbe *v;
30   if( IsVirtual(pTab) ) return;
31   v = sqlite3GetVdbe(p);
32   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
33   sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
34   sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
35   sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
36   VdbeComment((v, "%s", pTab->zName));
37 }
38 
39 /*
40 ** Set P4 of the most recently inserted opcode to a column affinity
41 ** string for index pIdx. A column affinity string has one character
42 ** for each column in the table, according to the affinity of the column:
43 **
44 **  Character      Column affinity
45 **  ------------------------------
46 **  'a'            TEXT
47 **  'b'            NONE
48 **  'c'            NUMERIC
49 **  'd'            INTEGER
50 **  'e'            REAL
51 **
52 ** An extra 'b' is appended to the end of the string to cover the
53 ** rowid that appears as the last column in every index.
54 */
55 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
56   if( !pIdx->zColAff ){
57     /* The first time a column affinity string for a particular index is
58     ** required, it is allocated and populated here. It is then stored as
59     ** a member of the Index structure for subsequent use.
60     **
61     ** The column affinity string will eventually be deleted by
62     ** sqliteDeleteIndex() when the Index structure itself is cleaned
63     ** up.
64     */
65     int n;
66     Table *pTab = pIdx->pTable;
67     sqlite3 *db = sqlite3VdbeDb(v);
68     pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
69     if( !pIdx->zColAff ){
70       db->mallocFailed = 1;
71       return;
72     }
73     for(n=0; n<pIdx->nColumn; n++){
74       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
75     }
76     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
77     pIdx->zColAff[n] = 0;
78   }
79 
80   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
81 }
82 
83 /*
84 ** Set P4 of the most recently inserted opcode to a column affinity
85 ** string for table pTab. A column affinity string has one character
86 ** for each column indexed by the index, according to the affinity of the
87 ** column:
88 **
89 **  Character      Column affinity
90 **  ------------------------------
91 **  'a'            TEXT
92 **  'b'            NONE
93 **  'c'            NUMERIC
94 **  'd'            INTEGER
95 **  'e'            REAL
96 */
97 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
98   /* The first time a column affinity string for a particular table
99   ** is required, it is allocated and populated here. It is then
100   ** stored as a member of the Table structure for subsequent use.
101   **
102   ** The column affinity string will eventually be deleted by
103   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
104   */
105   if( !pTab->zColAff ){
106     char *zColAff;
107     int i;
108     sqlite3 *db = sqlite3VdbeDb(v);
109 
110     zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
111     if( !zColAff ){
112       db->mallocFailed = 1;
113       return;
114     }
115 
116     for(i=0; i<pTab->nCol; i++){
117       zColAff[i] = pTab->aCol[i].affinity;
118     }
119     zColAff[pTab->nCol] = '\0';
120 
121     pTab->zColAff = zColAff;
122   }
123 
124   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
125 }
126 
127 /*
128 ** Return non-zero if the table pTab in database iDb or any of its indices
129 ** have been opened at any point in the VDBE program beginning at location
130 ** iStartAddr throught the end of the program.  This is used to see if
131 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
132 ** run without using temporary table for the results of the SELECT.
133 */
134 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
135   int i;
136   int iEnd = sqlite3VdbeCurrentAddr(v);
137   for(i=iStartAddr; i<iEnd; i++){
138     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
139     assert( pOp!=0 );
140     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
141       Index *pIndex;
142       int tnum = pOp->p2;
143       if( tnum==pTab->tnum ){
144         return 1;
145       }
146       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
147         if( tnum==pIndex->tnum ){
148           return 1;
149         }
150       }
151     }
152 #ifndef SQLITE_OMIT_VIRTUALTABLE
153     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
154       assert( pOp->p4.pVtab!=0 );
155       assert( pOp->p4type==P4_VTAB );
156       return 1;
157     }
158 #endif
159   }
160   return 0;
161 }
162 
163 #ifndef SQLITE_OMIT_AUTOINCREMENT
164 /*
165 ** Write out code to initialize the autoincrement logic.  This code
166 ** looks up the current autoincrement value in the sqlite_sequence
167 ** table and stores that value in a register.  Code generated by
168 ** autoIncStep() will keep that register holding the largest
169 ** rowid value.  Code generated by autoIncEnd() will write the new
170 ** largest value of the counter back into the sqlite_sequence table.
171 **
172 ** This routine returns the index of the mem[] cell that contains
173 ** the maximum rowid counter.
174 **
175 ** Three consecutive registers are allocated by this routine.  The
176 ** first two hold the name of the target table and the maximum rowid
177 ** inserted into the target table, respectively.
178 ** The third holds the rowid in sqlite_sequence where we will
179 ** write back the revised maximum rowid.  This routine returns the
180 ** index of the second of these three registers.
181 */
182 static int autoIncBegin(
183   Parse *pParse,      /* Parsing context */
184   int iDb,            /* Index of the database holding pTab */
185   Table *pTab         /* The table we are writing to */
186 ){
187   int memId = 0;      /* Register holding maximum rowid */
188   if( pTab->tabFlags & TF_Autoincrement ){
189     Vdbe *v = pParse->pVdbe;
190     Db *pDb = &pParse->db->aDb[iDb];
191     int iCur = pParse->nTab++;
192     int addr;               /* Address of the top of the loop */
193     assert( v );
194     pParse->nMem++;         /* Holds name of table */
195     memId = ++pParse->nMem;
196     pParse->nMem++;
197     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
198     addr = sqlite3VdbeCurrentAddr(v);
199     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
200     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
201     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
202     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
203     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
204     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
205     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
206     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
207     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
208     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
209     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
210   }
211   return memId;
212 }
213 
214 /*
215 ** Update the maximum rowid for an autoincrement calculation.
216 **
217 ** This routine should be called when the top of the stack holds a
218 ** new rowid that is about to be inserted.  If that new rowid is
219 ** larger than the maximum rowid in the memId memory cell, then the
220 ** memory cell is updated.  The stack is unchanged.
221 */
222 static void autoIncStep(Parse *pParse, int memId, int regRowid){
223   if( memId>0 ){
224     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
225   }
226 }
227 
228 /*
229 ** After doing one or more inserts, the maximum rowid is stored
230 ** in reg[memId].  Generate code to write this value back into the
231 ** the sqlite_sequence table.
232 */
233 static void autoIncEnd(
234   Parse *pParse,     /* The parsing context */
235   int iDb,           /* Index of the database holding pTab */
236   Table *pTab,       /* Table we are inserting into */
237   int memId          /* Memory cell holding the maximum rowid */
238 ){
239   if( pTab->tabFlags & TF_Autoincrement ){
240     int iCur = pParse->nTab++;
241     Vdbe *v = pParse->pVdbe;
242     Db *pDb = &pParse->db->aDb[iDb];
243     int j1;
244     int iRec = ++pParse->nMem;    /* Memory cell used for record */
245 
246     assert( v );
247     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
248     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
249     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
250     sqlite3VdbeJumpHere(v, j1);
251     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
252     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
253     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
254     sqlite3VdbeAddOp1(v, OP_Close, iCur);
255   }
256 }
257 #else
258 /*
259 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
260 ** above are all no-ops
261 */
262 # define autoIncBegin(A,B,C) (0)
263 # define autoIncStep(A,B,C)
264 # define autoIncEnd(A,B,C,D)
265 #endif /* SQLITE_OMIT_AUTOINCREMENT */
266 
267 
268 /* Forward declaration */
269 static int xferOptimization(
270   Parse *pParse,        /* Parser context */
271   Table *pDest,         /* The table we are inserting into */
272   Select *pSelect,      /* A SELECT statement to use as the data source */
273   int onError,          /* How to handle constraint errors */
274   int iDbDest           /* The database of pDest */
275 );
276 
277 /*
278 ** This routine is call to handle SQL of the following forms:
279 **
280 **    insert into TABLE (IDLIST) values(EXPRLIST)
281 **    insert into TABLE (IDLIST) select
282 **
283 ** The IDLIST following the table name is always optional.  If omitted,
284 ** then a list of all columns for the table is substituted.  The IDLIST
285 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
286 **
287 ** The pList parameter holds EXPRLIST in the first form of the INSERT
288 ** statement above, and pSelect is NULL.  For the second form, pList is
289 ** NULL and pSelect is a pointer to the select statement used to generate
290 ** data for the insert.
291 **
292 ** The code generated follows one of four templates.  For a simple
293 ** select with data coming from a VALUES clause, the code executes
294 ** once straight down through.  Pseudo-code follows (we call this
295 ** the "1st template"):
296 **
297 **         open write cursor to <table> and its indices
298 **         puts VALUES clause expressions onto the stack
299 **         write the resulting record into <table>
300 **         cleanup
301 **
302 ** The three remaining templates assume the statement is of the form
303 **
304 **   INSERT INTO <table> SELECT ...
305 **
306 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
307 ** in other words if the SELECT pulls all columns from a single table
308 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
309 ** if <table2> and <table1> are distinct tables but have identical
310 ** schemas, including all the same indices, then a special optimization
311 ** is invoked that copies raw records from <table2> over to <table1>.
312 ** See the xferOptimization() function for the implementation of this
313 ** template.  This is the 2nd template.
314 **
315 **         open a write cursor to <table>
316 **         open read cursor on <table2>
317 **         transfer all records in <table2> over to <table>
318 **         close cursors
319 **         foreach index on <table>
320 **           open a write cursor on the <table> index
321 **           open a read cursor on the corresponding <table2> index
322 **           transfer all records from the read to the write cursors
323 **           close cursors
324 **         end foreach
325 **
326 ** The 3rd template is for when the second template does not apply
327 ** and the SELECT clause does not read from <table> at any time.
328 ** The generated code follows this template:
329 **
330 **         EOF <- 0
331 **         X <- A
332 **         goto B
333 **      A: setup for the SELECT
334 **         loop over the rows in the SELECT
335 **           load values into registers R..R+n
336 **           yield X
337 **         end loop
338 **         cleanup after the SELECT
339 **         EOF <- 1
340 **         yield X
341 **         goto A
342 **      B: open write cursor to <table> and its indices
343 **      C: yield X
344 **         if EOF goto D
345 **         insert the select result into <table> from R..R+n
346 **         goto C
347 **      D: cleanup
348 **
349 ** The 4th template is used if the insert statement takes its
350 ** values from a SELECT but the data is being inserted into a table
351 ** that is also read as part of the SELECT.  In the third form,
352 ** we have to use a intermediate table to store the results of
353 ** the select.  The template is like this:
354 **
355 **         EOF <- 0
356 **         X <- A
357 **         goto B
358 **      A: setup for the SELECT
359 **         loop over the tables in the SELECT
360 **           load value into register R..R+n
361 **           yield X
362 **         end loop
363 **         cleanup after the SELECT
364 **         EOF <- 1
365 **         yield X
366 **         halt-error
367 **      B: open temp table
368 **      L: yield X
369 **         if EOF goto M
370 **         insert row from R..R+n into temp table
371 **         goto L
372 **      M: open write cursor to <table> and its indices
373 **         rewind temp table
374 **      C: loop over rows of intermediate table
375 **           transfer values form intermediate table into <table>
376 **         end loop
377 **      D: cleanup
378 */
379 void sqlite3Insert(
380   Parse *pParse,        /* Parser context */
381   SrcList *pTabList,    /* Name of table into which we are inserting */
382   ExprList *pList,      /* List of values to be inserted */
383   Select *pSelect,      /* A SELECT statement to use as the data source */
384   IdList *pColumn,      /* Column names corresponding to IDLIST. */
385   int onError           /* How to handle constraint errors */
386 ){
387   sqlite3 *db;          /* The main database structure */
388   Table *pTab;          /* The table to insert into.  aka TABLE */
389   char *zTab;           /* Name of the table into which we are inserting */
390   const char *zDb;      /* Name of the database holding this table */
391   int i, j, idx;        /* Loop counters */
392   Vdbe *v;              /* Generate code into this virtual machine */
393   Index *pIdx;          /* For looping over indices of the table */
394   int nColumn;          /* Number of columns in the data */
395   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
396   int baseCur = 0;      /* VDBE Cursor number for pTab */
397   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
398   int endOfLoop;        /* Label for the end of the insertion loop */
399   int useTempTable = 0; /* Store SELECT results in intermediate table */
400   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
401   int addrInsTop = 0;   /* Jump to label "D" */
402   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
403   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
404   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
405   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
406   int iDb;              /* Index of database holding TABLE */
407   Db *pDb;              /* The database containing table being inserted into */
408   int appendFlag = 0;   /* True if the insert is likely to be an append */
409 
410   /* Register allocations */
411   int regFromSelect = 0;/* Base register for data coming from SELECT */
412   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
413   int regRowCount = 0;  /* Memory cell used for the row counter */
414   int regIns;           /* Block of regs holding rowid+data being inserted */
415   int regRowid;         /* registers holding insert rowid */
416   int regData;          /* register holding first column to insert */
417   int regRecord;        /* Holds the assemblied row record */
418   int regEof = 0;       /* Register recording end of SELECT data */
419   int *aRegIdx = 0;     /* One register allocated to each index */
420 
421 
422 #ifndef SQLITE_OMIT_TRIGGER
423   int isView;                 /* True if attempting to insert into a view */
424   Trigger *pTrigger;          /* List of triggers on pTab, if required */
425   int tmask;                  /* Mask of trigger times */
426 #endif
427 
428   db = pParse->db;
429   memset(&dest, 0, sizeof(dest));
430   if( pParse->nErr || db->mallocFailed ){
431     goto insert_cleanup;
432   }
433 
434   /* Locate the table into which we will be inserting new information.
435   */
436   assert( pTabList->nSrc==1 );
437   zTab = pTabList->a[0].zName;
438   if( zTab==0 ) goto insert_cleanup;
439   pTab = sqlite3SrcListLookup(pParse, pTabList);
440   if( pTab==0 ){
441     goto insert_cleanup;
442   }
443   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
444   assert( iDb<db->nDb );
445   pDb = &db->aDb[iDb];
446   zDb = pDb->zName;
447   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
448     goto insert_cleanup;
449   }
450 
451   /* Figure out if we have any triggers and if the table being
452   ** inserted into is a view
453   */
454 #ifndef SQLITE_OMIT_TRIGGER
455   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
456   isView = pTab->pSelect!=0;
457 #else
458 # define pTrigger 0
459 # define tmask 0
460 # define isView 0
461 #endif
462 #ifdef SQLITE_OMIT_VIEW
463 # undef isView
464 # define isView 0
465 #endif
466   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
467 
468   /* Ensure that:
469   *  (a) the table is not read-only,
470   *  (b) that if it is a view then ON INSERT triggers exist
471   */
472   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
473     goto insert_cleanup;
474   }
475   assert( pTab!=0 );
476 
477   /* If pTab is really a view, make sure it has been initialized.
478   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
479   ** module table).
480   */
481   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
482     goto insert_cleanup;
483   }
484 
485   /* Allocate a VDBE
486   */
487   v = sqlite3GetVdbe(pParse);
488   if( v==0 ) goto insert_cleanup;
489   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
490   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
491 
492   /* if there are row triggers, allocate a temp table for new.* references. */
493   if( pTrigger ){
494     newIdx = pParse->nTab++;
495   }
496 
497 #ifndef SQLITE_OMIT_XFER_OPT
498   /* If the statement is of the form
499   **
500   **       INSERT INTO <table1> SELECT * FROM <table2>;
501   **
502   ** Then special optimizations can be applied that make the transfer
503   ** very fast and which reduce fragmentation of indices.
504   **
505   ** This is the 2nd template.
506   */
507   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
508     assert( !pTrigger );
509     assert( pList==0 );
510     goto insert_cleanup;
511   }
512 #endif /* SQLITE_OMIT_XFER_OPT */
513 
514   /* If this is an AUTOINCREMENT table, look up the sequence number in the
515   ** sqlite_sequence table and store it in memory cell regAutoinc.
516   */
517   regAutoinc = autoIncBegin(pParse, iDb, pTab);
518 
519   /* Figure out how many columns of data are supplied.  If the data
520   ** is coming from a SELECT statement, then generate a co-routine that
521   ** produces a single row of the SELECT on each invocation.  The
522   ** co-routine is the common header to the 3rd and 4th templates.
523   */
524   if( pSelect ){
525     /* Data is coming from a SELECT.  Generate code to implement that SELECT
526     ** as a co-routine.  The code is common to both the 3rd and 4th
527     ** templates:
528     **
529     **         EOF <- 0
530     **         X <- A
531     **         goto B
532     **      A: setup for the SELECT
533     **         loop over the tables in the SELECT
534     **           load value into register R..R+n
535     **           yield X
536     **         end loop
537     **         cleanup after the SELECT
538     **         EOF <- 1
539     **         yield X
540     **         halt-error
541     **
542     ** On each invocation of the co-routine, it puts a single row of the
543     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
544     ** (These output registers are allocated by sqlite3Select().)  When
545     ** the SELECT completes, it sets the EOF flag stored in regEof.
546     */
547     int rc, j1;
548 
549     regEof = ++pParse->nMem;
550     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
551     VdbeComment((v, "SELECT eof flag"));
552     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
553     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
554     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
555     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
556     VdbeComment((v, "Jump over SELECT coroutine"));
557 
558     /* Resolve the expressions in the SELECT statement and execute it. */
559     rc = sqlite3Select(pParse, pSelect, &dest);
560     if( rc || pParse->nErr || db->mallocFailed ){
561       goto insert_cleanup;
562     }
563     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
564     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
565     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
566     VdbeComment((v, "End of SELECT coroutine"));
567     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
568 
569     regFromSelect = dest.iMem;
570     assert( pSelect->pEList );
571     nColumn = pSelect->pEList->nExpr;
572     assert( dest.nMem==nColumn );
573 
574     /* Set useTempTable to TRUE if the result of the SELECT statement
575     ** should be written into a temporary table (template 4).  Set to
576     ** FALSE if each* row of the SELECT can be written directly into
577     ** the destination table (template 3).
578     **
579     ** A temp table must be used if the table being updated is also one
580     ** of the tables being read by the SELECT statement.  Also use a
581     ** temp table in the case of row triggers.
582     */
583     if( pTrigger || readsTable(v, addrSelect, iDb, pTab) ){
584       useTempTable = 1;
585     }
586 
587     if( useTempTable ){
588       /* Invoke the coroutine to extract information from the SELECT
589       ** and add it to a transient table srcTab.  The code generated
590       ** here is from the 4th template:
591       **
592       **      B: open temp table
593       **      L: yield X
594       **         if EOF goto M
595       **         insert row from R..R+n into temp table
596       **         goto L
597       **      M: ...
598       */
599       int regRec;          /* Register to hold packed record */
600       int regTempRowid;    /* Register to hold temp table ROWID */
601       int addrTop;         /* Label "L" */
602       int addrIf;          /* Address of jump to M */
603 
604       srcTab = pParse->nTab++;
605       regRec = sqlite3GetTempReg(pParse);
606       regTempRowid = sqlite3GetTempReg(pParse);
607       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
608       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
609       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
610       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
611       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
612       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
613       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
614       sqlite3VdbeJumpHere(v, addrIf);
615       sqlite3ReleaseTempReg(pParse, regRec);
616       sqlite3ReleaseTempReg(pParse, regTempRowid);
617     }
618   }else{
619     /* This is the case if the data for the INSERT is coming from a VALUES
620     ** clause
621     */
622     NameContext sNC;
623     memset(&sNC, 0, sizeof(sNC));
624     sNC.pParse = pParse;
625     srcTab = -1;
626     assert( useTempTable==0 );
627     nColumn = pList ? pList->nExpr : 0;
628     for(i=0; i<nColumn; i++){
629       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
630         goto insert_cleanup;
631       }
632     }
633   }
634 
635   /* Make sure the number of columns in the source data matches the number
636   ** of columns to be inserted into the table.
637   */
638   if( IsVirtual(pTab) ){
639     for(i=0; i<pTab->nCol; i++){
640       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
641     }
642   }
643   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
644     sqlite3ErrorMsg(pParse,
645        "table %S has %d columns but %d values were supplied",
646        pTabList, 0, pTab->nCol, nColumn);
647     goto insert_cleanup;
648   }
649   if( pColumn!=0 && nColumn!=pColumn->nId ){
650     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
651     goto insert_cleanup;
652   }
653 
654   /* If the INSERT statement included an IDLIST term, then make sure
655   ** all elements of the IDLIST really are columns of the table and
656   ** remember the column indices.
657   **
658   ** If the table has an INTEGER PRIMARY KEY column and that column
659   ** is named in the IDLIST, then record in the keyColumn variable
660   ** the index into IDLIST of the primary key column.  keyColumn is
661   ** the index of the primary key as it appears in IDLIST, not as
662   ** is appears in the original table.  (The index of the primary
663   ** key in the original table is pTab->iPKey.)
664   */
665   if( pColumn ){
666     for(i=0; i<pColumn->nId; i++){
667       pColumn->a[i].idx = -1;
668     }
669     for(i=0; i<pColumn->nId; i++){
670       for(j=0; j<pTab->nCol; j++){
671         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
672           pColumn->a[i].idx = j;
673           if( j==pTab->iPKey ){
674             keyColumn = i;
675           }
676           break;
677         }
678       }
679       if( j>=pTab->nCol ){
680         if( sqlite3IsRowid(pColumn->a[i].zName) ){
681           keyColumn = i;
682         }else{
683           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
684               pTabList, 0, pColumn->a[i].zName);
685           pParse->nErr++;
686           goto insert_cleanup;
687         }
688       }
689     }
690   }
691 
692   /* If there is no IDLIST term but the table has an integer primary
693   ** key, the set the keyColumn variable to the primary key column index
694   ** in the original table definition.
695   */
696   if( pColumn==0 && nColumn>0 ){
697     keyColumn = pTab->iPKey;
698   }
699 
700   /* Open the temp table for FOR EACH ROW triggers
701   */
702   if( pTrigger ){
703     sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol);
704   }
705 
706   /* Initialize the count of rows to be inserted
707   */
708   if( db->flags & SQLITE_CountRows ){
709     regRowCount = ++pParse->nMem;
710     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
711   }
712 
713   /* If this is not a view, open the table and and all indices */
714   if( !isView ){
715     int nIdx;
716 
717     baseCur = pParse->nTab;
718     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
719     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
720     if( aRegIdx==0 ){
721       goto insert_cleanup;
722     }
723     for(i=0; i<nIdx; i++){
724       aRegIdx[i] = ++pParse->nMem;
725     }
726   }
727 
728   /* This is the top of the main insertion loop */
729   if( useTempTable ){
730     /* This block codes the top of loop only.  The complete loop is the
731     ** following pseudocode (template 4):
732     **
733     **         rewind temp table
734     **      C: loop over rows of intermediate table
735     **           transfer values form intermediate table into <table>
736     **         end loop
737     **      D: ...
738     */
739     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
740     addrCont = sqlite3VdbeCurrentAddr(v);
741   }else if( pSelect ){
742     /* This block codes the top of loop only.  The complete loop is the
743     ** following pseudocode (template 3):
744     **
745     **      C: yield X
746     **         if EOF goto D
747     **         insert the select result into <table> from R..R+n
748     **         goto C
749     **      D: ...
750     */
751     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
752     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
753   }
754 
755   /* Allocate registers for holding the rowid of the new row,
756   ** the content of the new row, and the assemblied row record.
757   */
758   regRecord = ++pParse->nMem;
759   regRowid = regIns = pParse->nMem+1;
760   pParse->nMem += pTab->nCol + 1;
761   if( IsVirtual(pTab) ){
762     regRowid++;
763     pParse->nMem++;
764   }
765   regData = regRowid+1;
766 
767   /* Run the BEFORE and INSTEAD OF triggers, if there are any
768   */
769   endOfLoop = sqlite3VdbeMakeLabel(v);
770   if( tmask & TRIGGER_BEFORE ){
771     int regTrigRowid;
772     int regCols;
773     int regRec;
774 
775     /* build the NEW.* reference row.  Note that if there is an INTEGER
776     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
777     ** translated into a unique ID for the row.  But on a BEFORE trigger,
778     ** we do not know what the unique ID will be (because the insert has
779     ** not happened yet) so we substitute a rowid of -1
780     */
781     regTrigRowid = sqlite3GetTempReg(pParse);
782     if( keyColumn<0 ){
783       sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
784     }else if( useTempTable ){
785       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regTrigRowid);
786     }else{
787       int j1;
788       assert( pSelect==0 );  /* Otherwise useTempTable is true */
789       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regTrigRowid);
790       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regTrigRowid);
791       sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
792       sqlite3VdbeJumpHere(v, j1);
793       sqlite3VdbeAddOp1(v, OP_MustBeInt, regTrigRowid);
794     }
795 
796     /* Cannot have triggers on a virtual table. If it were possible,
797     ** this block would have to account for hidden column.
798     */
799     assert(!IsVirtual(pTab));
800 
801     /* Create the new column data
802     */
803     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
804     for(i=0; i<pTab->nCol; i++){
805       if( pColumn==0 ){
806         j = i;
807       }else{
808         for(j=0; j<pColumn->nId; j++){
809           if( pColumn->a[j].idx==i ) break;
810         }
811       }
812       if( pColumn && j>=pColumn->nId ){
813         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
814       }else if( useTempTable ){
815         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
816       }else{
817         assert( pSelect==0 ); /* Otherwise useTempTable is true */
818         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
819       }
820     }
821     regRec = sqlite3GetTempReg(pParse);
822     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
823 
824     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
825     ** do not attempt any conversions before assembling the record.
826     ** If this is a real table, attempt conversions as required by the
827     ** table column affinities.
828     */
829     if( !isView ){
830       sqlite3TableAffinityStr(v, pTab);
831     }
832     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regTrigRowid);
833     sqlite3ReleaseTempReg(pParse, regRec);
834     sqlite3ReleaseTempReg(pParse, regTrigRowid);
835     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
836 
837     /* Fire BEFORE or INSTEAD OF triggers */
838     if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
839         pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
840       goto insert_cleanup;
841     }
842   }
843 
844   /* Push the record number for the new entry onto the stack.  The
845   ** record number is a randomly generate integer created by NewRowid
846   ** except when the table has an INTEGER PRIMARY KEY column, in which
847   ** case the record number is the same as that column.
848   */
849   if( !isView ){
850     if( IsVirtual(pTab) ){
851       /* The row that the VUpdate opcode will delete: none */
852       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
853     }
854     if( keyColumn>=0 ){
855       if( useTempTable ){
856         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
857       }else if( pSelect ){
858         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
859       }else{
860         VdbeOp *pOp;
861         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
862         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
863         if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
864           appendFlag = 1;
865           pOp->opcode = OP_NewRowid;
866           pOp->p1 = baseCur;
867           pOp->p2 = regRowid;
868           pOp->p3 = regAutoinc;
869         }
870       }
871       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
872       ** to generate a unique primary key value.
873       */
874       if( !appendFlag ){
875         int j1;
876         if( !IsVirtual(pTab) ){
877           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
878           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
879           sqlite3VdbeJumpHere(v, j1);
880         }else{
881           j1 = sqlite3VdbeCurrentAddr(v);
882           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
883         }
884         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
885       }
886     }else if( IsVirtual(pTab) ){
887       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
888     }else{
889       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
890       appendFlag = 1;
891     }
892     autoIncStep(pParse, regAutoinc, regRowid);
893 
894     /* Push onto the stack, data for all columns of the new entry, beginning
895     ** with the first column.
896     */
897     nHidden = 0;
898     for(i=0; i<pTab->nCol; i++){
899       int iRegStore = regRowid+1+i;
900       if( i==pTab->iPKey ){
901         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
902         ** Whenever this column is read, the record number will be substituted
903         ** in its place.  So will fill this column with a NULL to avoid
904         ** taking up data space with information that will never be used. */
905         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
906         continue;
907       }
908       if( pColumn==0 ){
909         if( IsHiddenColumn(&pTab->aCol[i]) ){
910           assert( IsVirtual(pTab) );
911           j = -1;
912           nHidden++;
913         }else{
914           j = i - nHidden;
915         }
916       }else{
917         for(j=0; j<pColumn->nId; j++){
918           if( pColumn->a[j].idx==i ) break;
919         }
920       }
921       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
922         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
923       }else if( useTempTable ){
924         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
925       }else if( pSelect ){
926         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
927       }else{
928         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
929       }
930     }
931 
932     /* Generate code to check constraints and generate index keys and
933     ** do the insertion.
934     */
935 #ifndef SQLITE_OMIT_VIRTUALTABLE
936     if( IsVirtual(pTab) ){
937       sqlite3VtabMakeWritable(pParse, pTab);
938       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
939                      (const char*)pTab->pVtab, P4_VTAB);
940     }else
941 #endif
942     {
943       sqlite3GenerateConstraintChecks(
944           pParse,
945           pTab,
946           baseCur,
947           regIns,
948           aRegIdx,
949           keyColumn>=0,
950           0,
951           onError,
952           endOfLoop
953       );
954       sqlite3CompleteInsertion(
955           pParse,
956           pTab,
957           baseCur,
958           regIns,
959           aRegIdx,
960           0,
961           (tmask&TRIGGER_AFTER) ? newIdx : -1,
962           appendFlag
963        );
964     }
965   }
966 
967   /* Update the count of rows that are inserted
968   */
969   if( (db->flags & SQLITE_CountRows)!=0 ){
970     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
971   }
972 
973   if( pTrigger ){
974     /* Code AFTER triggers */
975     if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
976           pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
977       goto insert_cleanup;
978     }
979   }
980 
981   /* The bottom of the main insertion loop, if the data source
982   ** is a SELECT statement.
983   */
984   sqlite3VdbeResolveLabel(v, endOfLoop);
985   if( useTempTable ){
986     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
987     sqlite3VdbeJumpHere(v, addrInsTop);
988     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
989   }else if( pSelect ){
990     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
991     sqlite3VdbeJumpHere(v, addrInsTop);
992   }
993 
994   if( !IsVirtual(pTab) && !isView ){
995     /* Close all tables opened */
996     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
997     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
998       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
999     }
1000   }
1001 
1002   /* Update the sqlite_sequence table by storing the content of the
1003   ** counter value in memory regAutoinc back into the sqlite_sequence
1004   ** table.
1005   */
1006   autoIncEnd(pParse, iDb, pTab, regAutoinc);
1007 
1008   /*
1009   ** Return the number of rows inserted. If this routine is
1010   ** generating code because of a call to sqlite3NestedParse(), do not
1011   ** invoke the callback function.
1012   */
1013   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
1014     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1015     sqlite3VdbeSetNumCols(v, 1);
1016     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1017   }
1018 
1019 insert_cleanup:
1020   sqlite3SrcListDelete(db, pTabList);
1021   sqlite3ExprListDelete(db, pList);
1022   sqlite3SelectDelete(db, pSelect);
1023   sqlite3IdListDelete(db, pColumn);
1024   sqlite3DbFree(db, aRegIdx);
1025 }
1026 
1027 /*
1028 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
1029 **
1030 ** The input is a range of consecutive registers as follows:
1031 **
1032 **    1.  The rowid of the row to be updated before the update.  This
1033 **        value is omitted unless we are doing an UPDATE that involves a
1034 **        change to the record number or writing to a virtual table.
1035 **
1036 **    2.  The rowid of the row after the update.
1037 **
1038 **    3.  The data in the first column of the entry after the update.
1039 **
1040 **    i.  Data from middle columns...
1041 **
1042 **    N.  The data in the last column of the entry after the update.
1043 **
1044 ** The regRowid parameter is the index of the register containing (2).
1045 **
1046 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
1047 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
1048 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
1049 ** the update or insert statement.  If rowidChng is false, it means that
1050 ** the rowid is computed automatically in an insert or that the rowid value
1051 ** is not modified by the update.
1052 **
1053 ** The code generated by this routine store new index entries into
1054 ** registers identified by aRegIdx[].  No index entry is created for
1055 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1056 ** the same as the order of indices on the linked list of indices
1057 ** attached to the table.
1058 **
1059 ** This routine also generates code to check constraints.  NOT NULL,
1060 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1061 ** then the appropriate action is performed.  There are five possible
1062 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1063 **
1064 **  Constraint type  Action       What Happens
1065 **  ---------------  ----------   ----------------------------------------
1066 **  any              ROLLBACK     The current transaction is rolled back and
1067 **                                sqlite3_exec() returns immediately with a
1068 **                                return code of SQLITE_CONSTRAINT.
1069 **
1070 **  any              ABORT        Back out changes from the current command
1071 **                                only (do not do a complete rollback) then
1072 **                                cause sqlite3_exec() to return immediately
1073 **                                with SQLITE_CONSTRAINT.
1074 **
1075 **  any              FAIL         Sqlite_exec() returns immediately with a
1076 **                                return code of SQLITE_CONSTRAINT.  The
1077 **                                transaction is not rolled back and any
1078 **                                prior changes are retained.
1079 **
1080 **  any              IGNORE       The record number and data is popped from
1081 **                                the stack and there is an immediate jump
1082 **                                to label ignoreDest.
1083 **
1084 **  NOT NULL         REPLACE      The NULL value is replace by the default
1085 **                                value for that column.  If the default value
1086 **                                is NULL, the action is the same as ABORT.
1087 **
1088 **  UNIQUE           REPLACE      The other row that conflicts with the row
1089 **                                being inserted is removed.
1090 **
1091 **  CHECK            REPLACE      Illegal.  The results in an exception.
1092 **
1093 ** Which action to take is determined by the overrideError parameter.
1094 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1095 ** is used.  Or if pParse->onError==OE_Default then the onError value
1096 ** for the constraint is used.
1097 **
1098 ** The calling routine must open a read/write cursor for pTab with
1099 ** cursor number "baseCur".  All indices of pTab must also have open
1100 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1101 ** Except, if there is no possibility of a REPLACE action then
1102 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1103 */
1104 void sqlite3GenerateConstraintChecks(
1105   Parse *pParse,      /* The parser context */
1106   Table *pTab,        /* the table into which we are inserting */
1107   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1108   int regRowid,       /* Index of the range of input registers */
1109   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1110   int rowidChng,      /* True if the rowid might collide with existing entry */
1111   int isUpdate,       /* True for UPDATE, False for INSERT */
1112   int overrideError,  /* Override onError to this if not OE_Default */
1113   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
1114 ){
1115   int i;
1116   Vdbe *v;
1117   int nCol;
1118   int onError;
1119   int j1;             /* Addresss of jump instruction */
1120   int j2 = 0, j3;     /* Addresses of jump instructions */
1121   int regData;        /* Register containing first data column */
1122   int iCur;
1123   Index *pIdx;
1124   int seenReplace = 0;
1125   int hasTwoRowids = (isUpdate && rowidChng);
1126 
1127   v = sqlite3GetVdbe(pParse);
1128   assert( v!=0 );
1129   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1130   nCol = pTab->nCol;
1131   regData = regRowid + 1;
1132 
1133 
1134   /* Test all NOT NULL constraints.
1135   */
1136   for(i=0; i<nCol; i++){
1137     if( i==pTab->iPKey ){
1138       continue;
1139     }
1140     onError = pTab->aCol[i].notNull;
1141     if( onError==OE_None ) continue;
1142     if( overrideError!=OE_Default ){
1143       onError = overrideError;
1144     }else if( onError==OE_Default ){
1145       onError = OE_Abort;
1146     }
1147     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1148       onError = OE_Abort;
1149     }
1150     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1151         || onError==OE_Ignore || onError==OE_Replace );
1152     switch( onError ){
1153       case OE_Rollback:
1154       case OE_Abort:
1155       case OE_Fail: {
1156         char *zMsg;
1157         j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull,
1158                                   SQLITE_CONSTRAINT, onError, regData+i);
1159         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
1160                               pTab->zName, pTab->aCol[i].zName);
1161         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1162         break;
1163       }
1164       case OE_Ignore: {
1165         sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
1166         break;
1167       }
1168       case OE_Replace: {
1169         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1170         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1171         sqlite3VdbeJumpHere(v, j1);
1172         break;
1173       }
1174     }
1175   }
1176 
1177   /* Test all CHECK constraints
1178   */
1179 #ifndef SQLITE_OMIT_CHECK
1180   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1181     int allOk = sqlite3VdbeMakeLabel(v);
1182     pParse->ckBase = regData;
1183     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1184     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1185     if( onError==OE_Ignore ){
1186       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1187     }else{
1188       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1189     }
1190     sqlite3VdbeResolveLabel(v, allOk);
1191   }
1192 #endif /* !defined(SQLITE_OMIT_CHECK) */
1193 
1194   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1195   ** of the new record does not previously exist.  Except, if this
1196   ** is an UPDATE and the primary key is not changing, that is OK.
1197   */
1198   if( rowidChng ){
1199     onError = pTab->keyConf;
1200     if( overrideError!=OE_Default ){
1201       onError = overrideError;
1202     }else if( onError==OE_Default ){
1203       onError = OE_Abort;
1204     }
1205 
1206     if( onError!=OE_Replace || pTab->pIndex ){
1207       if( isUpdate ){
1208         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1209       }
1210       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1211       switch( onError ){
1212         default: {
1213           onError = OE_Abort;
1214           /* Fall thru into the next case */
1215         }
1216         case OE_Rollback:
1217         case OE_Abort:
1218         case OE_Fail: {
1219           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1220                            "PRIMARY KEY must be unique", P4_STATIC);
1221           break;
1222         }
1223         case OE_Replace: {
1224           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1225           seenReplace = 1;
1226           break;
1227         }
1228         case OE_Ignore: {
1229           assert( seenReplace==0 );
1230           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1231           break;
1232         }
1233       }
1234       sqlite3VdbeJumpHere(v, j3);
1235       if( isUpdate ){
1236         sqlite3VdbeJumpHere(v, j2);
1237       }
1238     }
1239   }
1240 
1241   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1242   ** index and making sure that duplicate entries do not already exist.
1243   ** Add the new records to the indices as we go.
1244   */
1245   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1246     int regIdx;
1247     int regR;
1248 
1249     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
1250 
1251     /* Create a key for accessing the index entry */
1252     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1253     for(i=0; i<pIdx->nColumn; i++){
1254       int idx = pIdx->aiColumn[i];
1255       if( idx==pTab->iPKey ){
1256         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1257       }else{
1258         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1259       }
1260     }
1261     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1262     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1263     sqlite3IndexAffinityStr(v, pIdx);
1264     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1265     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1266 
1267     /* Find out what action to take in case there is an indexing conflict */
1268     onError = pIdx->onError;
1269     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1270     if( overrideError!=OE_Default ){
1271       onError = overrideError;
1272     }else if( onError==OE_Default ){
1273       onError = OE_Abort;
1274     }
1275     if( seenReplace ){
1276       if( onError==OE_Ignore ) onError = OE_Replace;
1277       else if( onError==OE_Fail ) onError = OE_Abort;
1278     }
1279 
1280 
1281     /* Check to see if the new index entry will be unique */
1282     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1283     regR = sqlite3GetTempReg(pParse);
1284     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1285     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1286                            regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
1287                            P4_INT32);
1288 
1289     /* Generate code that executes if the new index entry is not unique */
1290     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1291         || onError==OE_Ignore || onError==OE_Replace );
1292     switch( onError ){
1293       case OE_Rollback:
1294       case OE_Abort:
1295       case OE_Fail: {
1296         int j, n1, n2;
1297         char zErrMsg[200];
1298         sqlite3_snprintf(ArraySize(zErrMsg), zErrMsg,
1299                          pIdx->nColumn>1 ? "columns " : "column ");
1300         n1 = sqlite3Strlen30(zErrMsg);
1301         for(j=0; j<pIdx->nColumn && n1<ArraySize(zErrMsg)-30; j++){
1302           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1303           n2 = sqlite3Strlen30(zCol);
1304           if( j>0 ){
1305             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], ", ");
1306             n1 += 2;
1307           }
1308           if( n1+n2>ArraySize(zErrMsg)-30 ){
1309             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], "...");
1310             n1 += 3;
1311             break;
1312           }else{
1313             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1314             n1 += n2;
1315           }
1316         }
1317         sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1],
1318             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1319         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1320         break;
1321       }
1322       case OE_Ignore: {
1323         assert( seenReplace==0 );
1324         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1325         break;
1326       }
1327       case OE_Replace: {
1328         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1329         seenReplace = 1;
1330         break;
1331       }
1332     }
1333     sqlite3VdbeJumpHere(v, j2);
1334     sqlite3VdbeJumpHere(v, j3);
1335     sqlite3ReleaseTempReg(pParse, regR);
1336   }
1337 }
1338 
1339 /*
1340 ** This routine generates code to finish the INSERT or UPDATE operation
1341 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1342 ** A consecutive range of registers starting at regRowid contains the
1343 ** rowid and the content to be inserted.
1344 **
1345 ** The arguments to this routine should be the same as the first six
1346 ** arguments to sqlite3GenerateConstraintChecks.
1347 */
1348 void sqlite3CompleteInsertion(
1349   Parse *pParse,      /* The parser context */
1350   Table *pTab,        /* the table into which we are inserting */
1351   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1352   int regRowid,       /* Range of content */
1353   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1354   int isUpdate,       /* True for UPDATE, False for INSERT */
1355   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1356   int appendBias      /* True if this is likely to be an append */
1357 ){
1358   int i;
1359   Vdbe *v;
1360   int nIdx;
1361   Index *pIdx;
1362   u8 pik_flags;
1363   int regData;
1364   int regRec;
1365 
1366   v = sqlite3GetVdbe(pParse);
1367   assert( v!=0 );
1368   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1369   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1370   for(i=nIdx-1; i>=0; i--){
1371     if( aRegIdx[i]==0 ) continue;
1372     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1373   }
1374   regData = regRowid + 1;
1375   regRec = sqlite3GetTempReg(pParse);
1376   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1377   sqlite3TableAffinityStr(v, pTab);
1378   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1379 #ifndef SQLITE_OMIT_TRIGGER
1380   if( newIdx>=0 ){
1381     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1382   }
1383 #endif
1384   if( pParse->nested ){
1385     pik_flags = 0;
1386   }else{
1387     pik_flags = OPFLAG_NCHANGE;
1388     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1389   }
1390   if( appendBias ){
1391     pik_flags |= OPFLAG_APPEND;
1392   }
1393   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1394   if( !pParse->nested ){
1395     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1396   }
1397   sqlite3VdbeChangeP5(v, pik_flags);
1398 }
1399 
1400 /*
1401 ** Generate code that will open cursors for a table and for all
1402 ** indices of that table.  The "baseCur" parameter is the cursor number used
1403 ** for the table.  Indices are opened on subsequent cursors.
1404 **
1405 ** Return the number of indices on the table.
1406 */
1407 int sqlite3OpenTableAndIndices(
1408   Parse *pParse,   /* Parsing context */
1409   Table *pTab,     /* Table to be opened */
1410   int baseCur,     /* Cursor number assigned to the table */
1411   int op           /* OP_OpenRead or OP_OpenWrite */
1412 ){
1413   int i;
1414   int iDb;
1415   Index *pIdx;
1416   Vdbe *v;
1417 
1418   if( IsVirtual(pTab) ) return 0;
1419   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1420   v = sqlite3GetVdbe(pParse);
1421   assert( v!=0 );
1422   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1423   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1424     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1425     assert( pIdx->pSchema==pTab->pSchema );
1426     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1427                       (char*)pKey, P4_KEYINFO_HANDOFF);
1428     VdbeComment((v, "%s", pIdx->zName));
1429   }
1430   if( pParse->nTab<=baseCur+i ){
1431     pParse->nTab = baseCur+i;
1432   }
1433   return i-1;
1434 }
1435 
1436 
1437 #ifdef SQLITE_TEST
1438 /*
1439 ** The following global variable is incremented whenever the
1440 ** transfer optimization is used.  This is used for testing
1441 ** purposes only - to make sure the transfer optimization really
1442 ** is happening when it is suppose to.
1443 */
1444 int sqlite3_xferopt_count;
1445 #endif /* SQLITE_TEST */
1446 
1447 
1448 #ifndef SQLITE_OMIT_XFER_OPT
1449 /*
1450 ** Check to collation names to see if they are compatible.
1451 */
1452 static int xferCompatibleCollation(const char *z1, const char *z2){
1453   if( z1==0 ){
1454     return z2==0;
1455   }
1456   if( z2==0 ){
1457     return 0;
1458   }
1459   return sqlite3StrICmp(z1, z2)==0;
1460 }
1461 
1462 
1463 /*
1464 ** Check to see if index pSrc is compatible as a source of data
1465 ** for index pDest in an insert transfer optimization.  The rules
1466 ** for a compatible index:
1467 **
1468 **    *   The index is over the same set of columns
1469 **    *   The same DESC and ASC markings occurs on all columns
1470 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1471 **    *   The same collating sequence on each column
1472 */
1473 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1474   int i;
1475   assert( pDest && pSrc );
1476   assert( pDest->pTable!=pSrc->pTable );
1477   if( pDest->nColumn!=pSrc->nColumn ){
1478     return 0;   /* Different number of columns */
1479   }
1480   if( pDest->onError!=pSrc->onError ){
1481     return 0;   /* Different conflict resolution strategies */
1482   }
1483   for(i=0; i<pSrc->nColumn; i++){
1484     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1485       return 0;   /* Different columns indexed */
1486     }
1487     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1488       return 0;   /* Different sort orders */
1489     }
1490     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1491       return 0;   /* Different collating sequences */
1492     }
1493   }
1494 
1495   /* If no test above fails then the indices must be compatible */
1496   return 1;
1497 }
1498 
1499 /*
1500 ** Attempt the transfer optimization on INSERTs of the form
1501 **
1502 **     INSERT INTO tab1 SELECT * FROM tab2;
1503 **
1504 ** This optimization is only attempted if
1505 **
1506 **    (1)  tab1 and tab2 have identical schemas including all the
1507 **         same indices and constraints
1508 **
1509 **    (2)  tab1 and tab2 are different tables
1510 **
1511 **    (3)  There must be no triggers on tab1
1512 **
1513 **    (4)  The result set of the SELECT statement is "*"
1514 **
1515 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1516 **         or LIMIT clause.
1517 **
1518 **    (6)  The SELECT statement is a simple (not a compound) select that
1519 **         contains only tab2 in its FROM clause
1520 **
1521 ** This method for implementing the INSERT transfers raw records from
1522 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1523 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1524 ** the resulting tab1 has much less fragmentation.
1525 **
1526 ** This routine returns TRUE if the optimization is attempted.  If any
1527 ** of the conditions above fail so that the optimization should not
1528 ** be attempted, then this routine returns FALSE.
1529 */
1530 static int xferOptimization(
1531   Parse *pParse,        /* Parser context */
1532   Table *pDest,         /* The table we are inserting into */
1533   Select *pSelect,      /* A SELECT statement to use as the data source */
1534   int onError,          /* How to handle constraint errors */
1535   int iDbDest           /* The database of pDest */
1536 ){
1537   ExprList *pEList;                /* The result set of the SELECT */
1538   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1539   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1540   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1541   int i;                           /* Loop counter */
1542   int iDbSrc;                      /* The database of pSrc */
1543   int iSrc, iDest;                 /* Cursors from source and destination */
1544   int addr1, addr2;                /* Loop addresses */
1545   int emptyDestTest;               /* Address of test for empty pDest */
1546   int emptySrcTest;                /* Address of test for empty pSrc */
1547   Vdbe *v;                         /* The VDBE we are building */
1548   KeyInfo *pKey;                   /* Key information for an index */
1549   int regAutoinc;                  /* Memory register used by AUTOINC */
1550   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1551   int regData, regRowid;           /* Registers holding data and rowid */
1552 
1553   if( pSelect==0 ){
1554     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1555   }
1556   if( sqlite3TriggerList(pParse, pDest) ){
1557     return 0;   /* tab1 must not have triggers */
1558   }
1559 #ifndef SQLITE_OMIT_VIRTUALTABLE
1560   if( pDest->tabFlags & TF_Virtual ){
1561     return 0;   /* tab1 must not be a virtual table */
1562   }
1563 #endif
1564   if( onError==OE_Default ){
1565     onError = OE_Abort;
1566   }
1567   if( onError!=OE_Abort && onError!=OE_Rollback ){
1568     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1569   }
1570   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1571   if( pSelect->pSrc->nSrc!=1 ){
1572     return 0;   /* FROM clause must have exactly one term */
1573   }
1574   if( pSelect->pSrc->a[0].pSelect ){
1575     return 0;   /* FROM clause cannot contain a subquery */
1576   }
1577   if( pSelect->pWhere ){
1578     return 0;   /* SELECT may not have a WHERE clause */
1579   }
1580   if( pSelect->pOrderBy ){
1581     return 0;   /* SELECT may not have an ORDER BY clause */
1582   }
1583   /* Do not need to test for a HAVING clause.  If HAVING is present but
1584   ** there is no ORDER BY, we will get an error. */
1585   if( pSelect->pGroupBy ){
1586     return 0;   /* SELECT may not have a GROUP BY clause */
1587   }
1588   if( pSelect->pLimit ){
1589     return 0;   /* SELECT may not have a LIMIT clause */
1590   }
1591   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1592   if( pSelect->pPrior ){
1593     return 0;   /* SELECT may not be a compound query */
1594   }
1595   if( pSelect->selFlags & SF_Distinct ){
1596     return 0;   /* SELECT may not be DISTINCT */
1597   }
1598   pEList = pSelect->pEList;
1599   assert( pEList!=0 );
1600   if( pEList->nExpr!=1 ){
1601     return 0;   /* The result set must have exactly one column */
1602   }
1603   assert( pEList->a[0].pExpr );
1604   if( pEList->a[0].pExpr->op!=TK_ALL ){
1605     return 0;   /* The result set must be the special operator "*" */
1606   }
1607 
1608   /* At this point we have established that the statement is of the
1609   ** correct syntactic form to participate in this optimization.  Now
1610   ** we have to check the semantics.
1611   */
1612   pItem = pSelect->pSrc->a;
1613   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1614   if( pSrc==0 ){
1615     return 0;   /* FROM clause does not contain a real table */
1616   }
1617   if( pSrc==pDest ){
1618     return 0;   /* tab1 and tab2 may not be the same table */
1619   }
1620 #ifndef SQLITE_OMIT_VIRTUALTABLE
1621   if( pSrc->tabFlags & TF_Virtual ){
1622     return 0;   /* tab2 must not be a virtual table */
1623   }
1624 #endif
1625   if( pSrc->pSelect ){
1626     return 0;   /* tab2 may not be a view */
1627   }
1628   if( pDest->nCol!=pSrc->nCol ){
1629     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1630   }
1631   if( pDest->iPKey!=pSrc->iPKey ){
1632     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1633   }
1634   for(i=0; i<pDest->nCol; i++){
1635     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1636       return 0;    /* Affinity must be the same on all columns */
1637     }
1638     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1639       return 0;    /* Collating sequence must be the same on all columns */
1640     }
1641     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1642       return 0;    /* tab2 must be NOT NULL if tab1 is */
1643     }
1644   }
1645   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1646     if( pDestIdx->onError!=OE_None ){
1647       destHasUniqueIdx = 1;
1648     }
1649     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1650       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1651     }
1652     if( pSrcIdx==0 ){
1653       return 0;    /* pDestIdx has no corresponding index in pSrc */
1654     }
1655   }
1656 #ifndef SQLITE_OMIT_CHECK
1657   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1658     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1659   }
1660 #endif
1661 
1662   /* If we get this far, it means either:
1663   **
1664   **    *   We can always do the transfer if the table contains an
1665   **        an integer primary key
1666   **
1667   **    *   We can conditionally do the transfer if the destination
1668   **        table is empty.
1669   */
1670 #ifdef SQLITE_TEST
1671   sqlite3_xferopt_count++;
1672 #endif
1673   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1674   v = sqlite3GetVdbe(pParse);
1675   sqlite3CodeVerifySchema(pParse, iDbSrc);
1676   iSrc = pParse->nTab++;
1677   iDest = pParse->nTab++;
1678   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1679   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1680   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1681     /* If tables do not have an INTEGER PRIMARY KEY and there
1682     ** are indices to be copied and the destination is not empty,
1683     ** we have to disallow the transfer optimization because the
1684     ** the rowids might change which will mess up indexing.
1685     **
1686     ** Or if the destination has a UNIQUE index and is not empty,
1687     ** we also disallow the transfer optimization because we cannot
1688     ** insure that all entries in the union of DEST and SRC will be
1689     ** unique.
1690     */
1691     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1692     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1693     sqlite3VdbeJumpHere(v, addr1);
1694   }else{
1695     emptyDestTest = 0;
1696   }
1697   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1698   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1699   regData = sqlite3GetTempReg(pParse);
1700   regRowid = sqlite3GetTempReg(pParse);
1701   if( pDest->iPKey>=0 ){
1702     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1703     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1704     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1705                       "PRIMARY KEY must be unique", P4_STATIC);
1706     sqlite3VdbeJumpHere(v, addr2);
1707     autoIncStep(pParse, regAutoinc, regRowid);
1708   }else if( pDest->pIndex==0 ){
1709     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1710   }else{
1711     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1712     assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1713   }
1714   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1715   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1716   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1717   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1718   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1719   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1720   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1721     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1722       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1723     }
1724     assert( pSrcIdx );
1725     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1726     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1727     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1728     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1729                       (char*)pKey, P4_KEYINFO_HANDOFF);
1730     VdbeComment((v, "%s", pSrcIdx->zName));
1731     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1732     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1733                       (char*)pKey, P4_KEYINFO_HANDOFF);
1734     VdbeComment((v, "%s", pDestIdx->zName));
1735     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1736     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1737     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1738     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1739     sqlite3VdbeJumpHere(v, addr1);
1740   }
1741   sqlite3VdbeJumpHere(v, emptySrcTest);
1742   sqlite3ReleaseTempReg(pParse, regRowid);
1743   sqlite3ReleaseTempReg(pParse, regData);
1744   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1745   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1746   if( emptyDestTest ){
1747     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1748     sqlite3VdbeJumpHere(v, emptyDestTest);
1749     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1750     return 0;
1751   }else{
1752     return 1;
1753   }
1754 }
1755 #endif /* SQLITE_OMIT_XFER_OPT */
1756 
1757 /* Make sure "isView" gets undefined in case this file becomes part of
1758 ** the amalgamation - so that subsequent files do not see isView as a
1759 ** macro. */
1760 #undef isView
1761