1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 char aff; 92 if( x>=0 ){ 93 aff = pTab->aCol[x].affinity; 94 }else if( x==XN_ROWID ){ 95 aff = SQLITE_AFF_INTEGER; 96 }else{ 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 } 101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 102 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 103 pIdx->zColAff[n] = aff; 104 } 105 pIdx->zColAff[n] = 0; 106 } 107 108 return pIdx->zColAff; 109 } 110 111 /* 112 ** Compute the affinity string for table pTab, if it has not already been 113 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 114 ** 115 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 116 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 117 ** for register iReg and following. Or if affinities exists and iReg==0, 118 ** then just set the P4 operand of the previous opcode (which should be 119 ** an OP_MakeRecord) to the affinity string. 120 ** 121 ** A column affinity string has one character per column: 122 ** 123 ** Character Column affinity 124 ** ------------------------------ 125 ** 'A' BLOB 126 ** 'B' TEXT 127 ** 'C' NUMERIC 128 ** 'D' INTEGER 129 ** 'E' REAL 130 */ 131 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 132 int i, j; 133 char *zColAff = pTab->zColAff; 134 if( zColAff==0 ){ 135 sqlite3 *db = sqlite3VdbeDb(v); 136 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 137 if( !zColAff ){ 138 sqlite3OomFault(db); 139 return; 140 } 141 142 for(i=j=0; i<pTab->nCol; i++){ 143 assert( pTab->aCol[i].affinity!=0 ); 144 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 145 zColAff[j++] = pTab->aCol[i].affinity; 146 } 147 } 148 do{ 149 zColAff[j--] = 0; 150 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 151 pTab->zColAff = zColAff; 152 } 153 assert( zColAff!=0 ); 154 i = sqlite3Strlen30NN(zColAff); 155 if( i ){ 156 if( iReg ){ 157 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 158 }else{ 159 sqlite3VdbeChangeP4(v, -1, zColAff, i); 160 } 161 } 162 } 163 164 /* 165 ** Return non-zero if the table pTab in database iDb or any of its indices 166 ** have been opened at any point in the VDBE program. This is used to see if 167 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 168 ** run without using a temporary table for the results of the SELECT. 169 */ 170 static int readsTable(Parse *p, int iDb, Table *pTab){ 171 Vdbe *v = sqlite3GetVdbe(p); 172 int i; 173 int iEnd = sqlite3VdbeCurrentAddr(v); 174 #ifndef SQLITE_OMIT_VIRTUALTABLE 175 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 176 #endif 177 178 for(i=1; i<iEnd; i++){ 179 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 180 assert( pOp!=0 ); 181 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 182 Index *pIndex; 183 int tnum = pOp->p2; 184 if( tnum==pTab->tnum ){ 185 return 1; 186 } 187 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 188 if( tnum==pIndex->tnum ){ 189 return 1; 190 } 191 } 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 195 assert( pOp->p4.pVtab!=0 ); 196 assert( pOp->p4type==P4_VTAB ); 197 return 1; 198 } 199 #endif 200 } 201 return 0; 202 } 203 204 /* This walker callback will compute the union of colFlags flags for all 205 ** referenced columns in a CHECK constraint or generated column expression. 206 */ 207 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 208 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 209 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 210 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 211 } 212 return WRC_Continue; 213 } 214 215 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 216 /* 217 ** All regular columns for table pTab have been puts into registers 218 ** starting with iRegStore. The registers that correspond to STORED 219 ** or VIRTUAL columns have not yet been initialized. This routine goes 220 ** back and computes the values for those columns based on the previously 221 ** computed normal columns. 222 */ 223 void sqlite3ComputeGeneratedColumns( 224 Parse *pParse, /* Parsing context */ 225 int iRegStore, /* Register holding the first column */ 226 Table *pTab /* The table */ 227 ){ 228 int i; 229 Walker w; 230 Column *pRedo; 231 int eProgress; 232 VdbeOp *pOp; 233 234 assert( pTab->tabFlags & TF_HasGenerated ); 235 testcase( pTab->tabFlags & TF_HasVirtual ); 236 testcase( pTab->tabFlags & TF_HasStored ); 237 238 /* Before computing generated columns, first go through and make sure 239 ** that appropriate affinity has been applied to the regular columns 240 */ 241 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 242 if( (pTab->tabFlags & TF_HasStored)!=0 243 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 244 ){ 245 /* Change the OP_Affinity argument to '@' (NONE) for all stored 246 ** columns. '@' is the no-op affinity and those columns have not 247 ** yet been computed. */ 248 int ii, jj; 249 char *zP4 = pOp->p4.z; 250 assert( zP4!=0 ); 251 assert( pOp->p4type==P4_DYNAMIC ); 252 for(ii=jj=0; zP4[jj]; ii++){ 253 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 254 continue; 255 } 256 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 257 zP4[jj] = SQLITE_AFF_NONE; 258 } 259 jj++; 260 } 261 } 262 263 /* Because there can be multiple generated columns that refer to one another, 264 ** this is a two-pass algorithm. On the first pass, mark all generated 265 ** columns as "not available". 266 */ 267 for(i=0; i<pTab->nCol; i++){ 268 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 269 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 270 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 271 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 272 } 273 } 274 275 w.u.pTab = pTab; 276 w.xExprCallback = exprColumnFlagUnion; 277 w.xSelectCallback = 0; 278 w.xSelectCallback2 = 0; 279 280 /* On the second pass, compute the value of each NOT-AVAILABLE column. 281 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 282 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 283 ** they are needed. 284 */ 285 pParse->iSelfTab = -iRegStore; 286 do{ 287 eProgress = 0; 288 pRedo = 0; 289 for(i=0; i<pTab->nCol; i++){ 290 Column *pCol = pTab->aCol + i; 291 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 292 int x; 293 pCol->colFlags |= COLFLAG_BUSY; 294 w.eCode = 0; 295 sqlite3WalkExpr(&w, pCol->pDflt); 296 pCol->colFlags &= ~COLFLAG_BUSY; 297 if( w.eCode & COLFLAG_NOTAVAIL ){ 298 pRedo = pCol; 299 continue; 300 } 301 eProgress = 1; 302 assert( pCol->colFlags & COLFLAG_GENERATED ); 303 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 304 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 305 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 306 } 307 } 308 }while( pRedo && eProgress ); 309 if( pRedo ){ 310 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 311 } 312 pParse->iSelfTab = 0; 313 } 314 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 315 316 317 #ifndef SQLITE_OMIT_AUTOINCREMENT 318 /* 319 ** Locate or create an AutoincInfo structure associated with table pTab 320 ** which is in database iDb. Return the register number for the register 321 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 322 ** table. (Also return zero when doing a VACUUM since we do not want to 323 ** update the AUTOINCREMENT counters during a VACUUM.) 324 ** 325 ** There is at most one AutoincInfo structure per table even if the 326 ** same table is autoincremented multiple times due to inserts within 327 ** triggers. A new AutoincInfo structure is created if this is the 328 ** first use of table pTab. On 2nd and subsequent uses, the original 329 ** AutoincInfo structure is used. 330 ** 331 ** Four consecutive registers are allocated: 332 ** 333 ** (1) The name of the pTab table. 334 ** (2) The maximum ROWID of pTab. 335 ** (3) The rowid in sqlite_sequence of pTab 336 ** (4) The original value of the max ROWID in pTab, or NULL if none 337 ** 338 ** The 2nd register is the one that is returned. That is all the 339 ** insert routine needs to know about. 340 */ 341 static int autoIncBegin( 342 Parse *pParse, /* Parsing context */ 343 int iDb, /* Index of the database holding pTab */ 344 Table *pTab /* The table we are writing to */ 345 ){ 346 int memId = 0; /* Register holding maximum rowid */ 347 assert( pParse->db->aDb[iDb].pSchema!=0 ); 348 if( (pTab->tabFlags & TF_Autoincrement)!=0 349 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 350 ){ 351 Parse *pToplevel = sqlite3ParseToplevel(pParse); 352 AutoincInfo *pInfo; 353 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 354 355 /* Verify that the sqlite_sequence table exists and is an ordinary 356 ** rowid table with exactly two columns. 357 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 358 if( pSeqTab==0 359 || !HasRowid(pSeqTab) 360 || IsVirtual(pSeqTab) 361 || pSeqTab->nCol!=2 362 ){ 363 pParse->nErr++; 364 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 365 return 0; 366 } 367 368 pInfo = pToplevel->pAinc; 369 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 370 if( pInfo==0 ){ 371 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 372 if( pInfo==0 ) return 0; 373 pInfo->pNext = pToplevel->pAinc; 374 pToplevel->pAinc = pInfo; 375 pInfo->pTab = pTab; 376 pInfo->iDb = iDb; 377 pToplevel->nMem++; /* Register to hold name of table */ 378 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 379 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 380 } 381 memId = pInfo->regCtr; 382 } 383 return memId; 384 } 385 386 /* 387 ** This routine generates code that will initialize all of the 388 ** register used by the autoincrement tracker. 389 */ 390 void sqlite3AutoincrementBegin(Parse *pParse){ 391 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 392 sqlite3 *db = pParse->db; /* The database connection */ 393 Db *pDb; /* Database only autoinc table */ 394 int memId; /* Register holding max rowid */ 395 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 396 397 /* This routine is never called during trigger-generation. It is 398 ** only called from the top-level */ 399 assert( pParse->pTriggerTab==0 ); 400 assert( sqlite3IsToplevel(pParse) ); 401 402 assert( v ); /* We failed long ago if this is not so */ 403 for(p = pParse->pAinc; p; p = p->pNext){ 404 static const int iLn = VDBE_OFFSET_LINENO(2); 405 static const VdbeOpList autoInc[] = { 406 /* 0 */ {OP_Null, 0, 0, 0}, 407 /* 1 */ {OP_Rewind, 0, 10, 0}, 408 /* 2 */ {OP_Column, 0, 0, 0}, 409 /* 3 */ {OP_Ne, 0, 9, 0}, 410 /* 4 */ {OP_Rowid, 0, 0, 0}, 411 /* 5 */ {OP_Column, 0, 1, 0}, 412 /* 6 */ {OP_AddImm, 0, 0, 0}, 413 /* 7 */ {OP_Copy, 0, 0, 0}, 414 /* 8 */ {OP_Goto, 0, 11, 0}, 415 /* 9 */ {OP_Next, 0, 2, 0}, 416 /* 10 */ {OP_Integer, 0, 0, 0}, 417 /* 11 */ {OP_Close, 0, 0, 0} 418 }; 419 VdbeOp *aOp; 420 pDb = &db->aDb[p->iDb]; 421 memId = p->regCtr; 422 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 423 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 424 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 425 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 426 if( aOp==0 ) break; 427 aOp[0].p2 = memId; 428 aOp[0].p3 = memId+2; 429 aOp[2].p3 = memId; 430 aOp[3].p1 = memId-1; 431 aOp[3].p3 = memId; 432 aOp[3].p5 = SQLITE_JUMPIFNULL; 433 aOp[4].p2 = memId+1; 434 aOp[5].p3 = memId; 435 aOp[6].p1 = memId; 436 aOp[7].p2 = memId+2; 437 aOp[7].p1 = memId; 438 aOp[10].p2 = memId; 439 if( pParse->nTab==0 ) pParse->nTab = 1; 440 } 441 } 442 443 /* 444 ** Update the maximum rowid for an autoincrement calculation. 445 ** 446 ** This routine should be called when the regRowid register holds a 447 ** new rowid that is about to be inserted. If that new rowid is 448 ** larger than the maximum rowid in the memId memory cell, then the 449 ** memory cell is updated. 450 */ 451 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 452 if( memId>0 ){ 453 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 454 } 455 } 456 457 /* 458 ** This routine generates the code needed to write autoincrement 459 ** maximum rowid values back into the sqlite_sequence register. 460 ** Every statement that might do an INSERT into an autoincrement 461 ** table (either directly or through triggers) needs to call this 462 ** routine just before the "exit" code. 463 */ 464 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 465 AutoincInfo *p; 466 Vdbe *v = pParse->pVdbe; 467 sqlite3 *db = pParse->db; 468 469 assert( v ); 470 for(p = pParse->pAinc; p; p = p->pNext){ 471 static const int iLn = VDBE_OFFSET_LINENO(2); 472 static const VdbeOpList autoIncEnd[] = { 473 /* 0 */ {OP_NotNull, 0, 2, 0}, 474 /* 1 */ {OP_NewRowid, 0, 0, 0}, 475 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 476 /* 3 */ {OP_Insert, 0, 0, 0}, 477 /* 4 */ {OP_Close, 0, 0, 0} 478 }; 479 VdbeOp *aOp; 480 Db *pDb = &db->aDb[p->iDb]; 481 int iRec; 482 int memId = p->regCtr; 483 484 iRec = sqlite3GetTempReg(pParse); 485 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 486 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 487 VdbeCoverage(v); 488 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 489 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 490 if( aOp==0 ) break; 491 aOp[0].p1 = memId+1; 492 aOp[1].p2 = memId+1; 493 aOp[2].p1 = memId-1; 494 aOp[2].p3 = iRec; 495 aOp[3].p2 = iRec; 496 aOp[3].p3 = memId+1; 497 aOp[3].p5 = OPFLAG_APPEND; 498 sqlite3ReleaseTempReg(pParse, iRec); 499 } 500 } 501 void sqlite3AutoincrementEnd(Parse *pParse){ 502 if( pParse->pAinc ) autoIncrementEnd(pParse); 503 } 504 #else 505 /* 506 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 507 ** above are all no-ops 508 */ 509 # define autoIncBegin(A,B,C) (0) 510 # define autoIncStep(A,B,C) 511 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 512 513 514 /* Forward declaration */ 515 static int xferOptimization( 516 Parse *pParse, /* Parser context */ 517 Table *pDest, /* The table we are inserting into */ 518 Select *pSelect, /* A SELECT statement to use as the data source */ 519 int onError, /* How to handle constraint errors */ 520 int iDbDest /* The database of pDest */ 521 ); 522 523 /* 524 ** This routine is called to handle SQL of the following forms: 525 ** 526 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 527 ** insert into TABLE (IDLIST) select 528 ** insert into TABLE (IDLIST) default values 529 ** 530 ** The IDLIST following the table name is always optional. If omitted, 531 ** then a list of all (non-hidden) columns for the table is substituted. 532 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 533 ** is omitted. 534 ** 535 ** For the pSelect parameter holds the values to be inserted for the 536 ** first two forms shown above. A VALUES clause is really just short-hand 537 ** for a SELECT statement that omits the FROM clause and everything else 538 ** that follows. If the pSelect parameter is NULL, that means that the 539 ** DEFAULT VALUES form of the INSERT statement is intended. 540 ** 541 ** The code generated follows one of four templates. For a simple 542 ** insert with data coming from a single-row VALUES clause, the code executes 543 ** once straight down through. Pseudo-code follows (we call this 544 ** the "1st template"): 545 ** 546 ** open write cursor to <table> and its indices 547 ** put VALUES clause expressions into registers 548 ** write the resulting record into <table> 549 ** cleanup 550 ** 551 ** The three remaining templates assume the statement is of the form 552 ** 553 ** INSERT INTO <table> SELECT ... 554 ** 555 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 556 ** in other words if the SELECT pulls all columns from a single table 557 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 558 ** if <table2> and <table1> are distinct tables but have identical 559 ** schemas, including all the same indices, then a special optimization 560 ** is invoked that copies raw records from <table2> over to <table1>. 561 ** See the xferOptimization() function for the implementation of this 562 ** template. This is the 2nd template. 563 ** 564 ** open a write cursor to <table> 565 ** open read cursor on <table2> 566 ** transfer all records in <table2> over to <table> 567 ** close cursors 568 ** foreach index on <table> 569 ** open a write cursor on the <table> index 570 ** open a read cursor on the corresponding <table2> index 571 ** transfer all records from the read to the write cursors 572 ** close cursors 573 ** end foreach 574 ** 575 ** The 3rd template is for when the second template does not apply 576 ** and the SELECT clause does not read from <table> at any time. 577 ** The generated code follows this template: 578 ** 579 ** X <- A 580 ** goto B 581 ** A: setup for the SELECT 582 ** loop over the rows in the SELECT 583 ** load values into registers R..R+n 584 ** yield X 585 ** end loop 586 ** cleanup after the SELECT 587 ** end-coroutine X 588 ** B: open write cursor to <table> and its indices 589 ** C: yield X, at EOF goto D 590 ** insert the select result into <table> from R..R+n 591 ** goto C 592 ** D: cleanup 593 ** 594 ** The 4th template is used if the insert statement takes its 595 ** values from a SELECT but the data is being inserted into a table 596 ** that is also read as part of the SELECT. In the third form, 597 ** we have to use an intermediate table to store the results of 598 ** the select. The template is like this: 599 ** 600 ** X <- A 601 ** goto B 602 ** A: setup for the SELECT 603 ** loop over the tables in the SELECT 604 ** load value into register R..R+n 605 ** yield X 606 ** end loop 607 ** cleanup after the SELECT 608 ** end co-routine R 609 ** B: open temp table 610 ** L: yield X, at EOF goto M 611 ** insert row from R..R+n into temp table 612 ** goto L 613 ** M: open write cursor to <table> and its indices 614 ** rewind temp table 615 ** C: loop over rows of intermediate table 616 ** transfer values form intermediate table into <table> 617 ** end loop 618 ** D: cleanup 619 */ 620 void sqlite3Insert( 621 Parse *pParse, /* Parser context */ 622 SrcList *pTabList, /* Name of table into which we are inserting */ 623 Select *pSelect, /* A SELECT statement to use as the data source */ 624 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 625 int onError, /* How to handle constraint errors */ 626 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 627 ){ 628 sqlite3 *db; /* The main database structure */ 629 Table *pTab; /* The table to insert into. aka TABLE */ 630 int i, j; /* Loop counters */ 631 Vdbe *v; /* Generate code into this virtual machine */ 632 Index *pIdx; /* For looping over indices of the table */ 633 int nColumn; /* Number of columns in the data */ 634 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 635 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 636 int iIdxCur = 0; /* First index cursor */ 637 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 638 int endOfLoop; /* Label for the end of the insertion loop */ 639 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 640 int addrInsTop = 0; /* Jump to label "D" */ 641 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 642 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 643 int iDb; /* Index of database holding TABLE */ 644 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 645 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 646 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 647 u8 bIdListInOrder; /* True if IDLIST is in table order */ 648 ExprList *pList = 0; /* List of VALUES() to be inserted */ 649 int iRegStore; /* Register in which to store next column */ 650 651 /* Register allocations */ 652 int regFromSelect = 0;/* Base register for data coming from SELECT */ 653 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 654 int regRowCount = 0; /* Memory cell used for the row counter */ 655 int regIns; /* Block of regs holding rowid+data being inserted */ 656 int regRowid; /* registers holding insert rowid */ 657 int regData; /* register holding first column to insert */ 658 int *aRegIdx = 0; /* One register allocated to each index */ 659 660 #ifndef SQLITE_OMIT_TRIGGER 661 int isView; /* True if attempting to insert into a view */ 662 Trigger *pTrigger; /* List of triggers on pTab, if required */ 663 int tmask; /* Mask of trigger times */ 664 #endif 665 666 db = pParse->db; 667 if( pParse->nErr || db->mallocFailed ){ 668 goto insert_cleanup; 669 } 670 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 671 672 /* If the Select object is really just a simple VALUES() list with a 673 ** single row (the common case) then keep that one row of values 674 ** and discard the other (unused) parts of the pSelect object 675 */ 676 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 677 pList = pSelect->pEList; 678 pSelect->pEList = 0; 679 sqlite3SelectDelete(db, pSelect); 680 pSelect = 0; 681 } 682 683 /* Locate the table into which we will be inserting new information. 684 */ 685 assert( pTabList->nSrc==1 ); 686 pTab = sqlite3SrcListLookup(pParse, pTabList); 687 if( pTab==0 ){ 688 goto insert_cleanup; 689 } 690 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 691 assert( iDb<db->nDb ); 692 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 693 db->aDb[iDb].zDbSName) ){ 694 goto insert_cleanup; 695 } 696 withoutRowid = !HasRowid(pTab); 697 698 /* Figure out if we have any triggers and if the table being 699 ** inserted into is a view 700 */ 701 #ifndef SQLITE_OMIT_TRIGGER 702 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 703 isView = pTab->pSelect!=0; 704 #else 705 # define pTrigger 0 706 # define tmask 0 707 # define isView 0 708 #endif 709 #ifdef SQLITE_OMIT_VIEW 710 # undef isView 711 # define isView 0 712 #endif 713 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 714 715 /* If pTab is really a view, make sure it has been initialized. 716 ** ViewGetColumnNames() is a no-op if pTab is not a view. 717 */ 718 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 719 goto insert_cleanup; 720 } 721 722 /* Cannot insert into a read-only table. 723 */ 724 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 725 goto insert_cleanup; 726 } 727 728 /* Allocate a VDBE 729 */ 730 v = sqlite3GetVdbe(pParse); 731 if( v==0 ) goto insert_cleanup; 732 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 733 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 734 735 #ifndef SQLITE_OMIT_XFER_OPT 736 /* If the statement is of the form 737 ** 738 ** INSERT INTO <table1> SELECT * FROM <table2>; 739 ** 740 ** Then special optimizations can be applied that make the transfer 741 ** very fast and which reduce fragmentation of indices. 742 ** 743 ** This is the 2nd template. 744 */ 745 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 746 assert( !pTrigger ); 747 assert( pList==0 ); 748 goto insert_end; 749 } 750 #endif /* SQLITE_OMIT_XFER_OPT */ 751 752 /* If this is an AUTOINCREMENT table, look up the sequence number in the 753 ** sqlite_sequence table and store it in memory cell regAutoinc. 754 */ 755 regAutoinc = autoIncBegin(pParse, iDb, pTab); 756 757 /* Allocate a block registers to hold the rowid and the values 758 ** for all columns of the new row. 759 */ 760 regRowid = regIns = pParse->nMem+1; 761 pParse->nMem += pTab->nCol + 1; 762 if( IsVirtual(pTab) ){ 763 regRowid++; 764 pParse->nMem++; 765 } 766 regData = regRowid+1; 767 768 /* If the INSERT statement included an IDLIST term, then make sure 769 ** all elements of the IDLIST really are columns of the table and 770 ** remember the column indices. 771 ** 772 ** If the table has an INTEGER PRIMARY KEY column and that column 773 ** is named in the IDLIST, then record in the ipkColumn variable 774 ** the index into IDLIST of the primary key column. ipkColumn is 775 ** the index of the primary key as it appears in IDLIST, not as 776 ** is appears in the original table. (The index of the INTEGER 777 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 778 ** loop, if ipkColumn==(-1), that means that integer primary key 779 ** is unspecified, and hence the table is either WITHOUT ROWID or 780 ** it will automatically generated an integer primary key. 781 ** 782 ** bIdListInOrder is true if the columns in IDLIST are in storage 783 ** order. This enables an optimization that avoids shuffling the 784 ** columns into storage order. False negatives are harmless, 785 ** but false positives will cause database corruption. 786 */ 787 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 788 if( pColumn ){ 789 for(i=0; i<pColumn->nId; i++){ 790 pColumn->a[i].idx = -1; 791 } 792 for(i=0; i<pColumn->nId; i++){ 793 for(j=0; j<pTab->nCol; j++){ 794 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 795 pColumn->a[i].idx = j; 796 if( i!=j ) bIdListInOrder = 0; 797 if( j==pTab->iPKey ){ 798 ipkColumn = i; assert( !withoutRowid ); 799 } 800 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 801 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 802 sqlite3ErrorMsg(pParse, 803 "cannot INSERT into generated column \"%s\"", 804 pTab->aCol[j].zName); 805 goto insert_cleanup; 806 } 807 #endif 808 break; 809 } 810 } 811 if( j>=pTab->nCol ){ 812 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 813 ipkColumn = i; 814 bIdListInOrder = 0; 815 }else{ 816 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 817 pTabList, 0, pColumn->a[i].zName); 818 pParse->checkSchema = 1; 819 goto insert_cleanup; 820 } 821 } 822 } 823 } 824 825 /* Figure out how many columns of data are supplied. If the data 826 ** is coming from a SELECT statement, then generate a co-routine that 827 ** produces a single row of the SELECT on each invocation. The 828 ** co-routine is the common header to the 3rd and 4th templates. 829 */ 830 if( pSelect ){ 831 /* Data is coming from a SELECT or from a multi-row VALUES clause. 832 ** Generate a co-routine to run the SELECT. */ 833 int regYield; /* Register holding co-routine entry-point */ 834 int addrTop; /* Top of the co-routine */ 835 int rc; /* Result code */ 836 837 regYield = ++pParse->nMem; 838 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 839 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 840 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 841 dest.iSdst = bIdListInOrder ? regData : 0; 842 dest.nSdst = pTab->nCol; 843 rc = sqlite3Select(pParse, pSelect, &dest); 844 regFromSelect = dest.iSdst; 845 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 846 sqlite3VdbeEndCoroutine(v, regYield); 847 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 848 assert( pSelect->pEList ); 849 nColumn = pSelect->pEList->nExpr; 850 851 /* Set useTempTable to TRUE if the result of the SELECT statement 852 ** should be written into a temporary table (template 4). Set to 853 ** FALSE if each output row of the SELECT can be written directly into 854 ** the destination table (template 3). 855 ** 856 ** A temp table must be used if the table being updated is also one 857 ** of the tables being read by the SELECT statement. Also use a 858 ** temp table in the case of row triggers. 859 */ 860 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 861 useTempTable = 1; 862 } 863 864 if( useTempTable ){ 865 /* Invoke the coroutine to extract information from the SELECT 866 ** and add it to a transient table srcTab. The code generated 867 ** here is from the 4th template: 868 ** 869 ** B: open temp table 870 ** L: yield X, goto M at EOF 871 ** insert row from R..R+n into temp table 872 ** goto L 873 ** M: ... 874 */ 875 int regRec; /* Register to hold packed record */ 876 int regTempRowid; /* Register to hold temp table ROWID */ 877 int addrL; /* Label "L" */ 878 879 srcTab = pParse->nTab++; 880 regRec = sqlite3GetTempReg(pParse); 881 regTempRowid = sqlite3GetTempReg(pParse); 882 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 883 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 884 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 885 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 886 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 887 sqlite3VdbeGoto(v, addrL); 888 sqlite3VdbeJumpHere(v, addrL); 889 sqlite3ReleaseTempReg(pParse, regRec); 890 sqlite3ReleaseTempReg(pParse, regTempRowid); 891 } 892 }else{ 893 /* This is the case if the data for the INSERT is coming from a 894 ** single-row VALUES clause 895 */ 896 NameContext sNC; 897 memset(&sNC, 0, sizeof(sNC)); 898 sNC.pParse = pParse; 899 srcTab = -1; 900 assert( useTempTable==0 ); 901 if( pList ){ 902 nColumn = pList->nExpr; 903 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 904 goto insert_cleanup; 905 } 906 }else{ 907 nColumn = 0; 908 } 909 } 910 911 /* If there is no IDLIST term but the table has an integer primary 912 ** key, the set the ipkColumn variable to the integer primary key 913 ** column index in the original table definition. 914 */ 915 if( pColumn==0 && nColumn>0 ){ 916 ipkColumn = pTab->iPKey; 917 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 918 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 919 testcase( pTab->tabFlags & TF_HasVirtual ); 920 testcase( pTab->tabFlags & TF_HasStored ); 921 for(i=ipkColumn-1; i>=0; i--){ 922 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 923 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 924 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 925 ipkColumn--; 926 } 927 } 928 } 929 #endif 930 } 931 932 /* Make sure the number of columns in the source data matches the number 933 ** of columns to be inserted into the table. 934 */ 935 for(i=0; i<pTab->nCol; i++){ 936 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 937 } 938 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 939 sqlite3ErrorMsg(pParse, 940 "table %S has %d columns but %d values were supplied", 941 pTabList, 0, pTab->nCol-nHidden, nColumn); 942 goto insert_cleanup; 943 } 944 if( pColumn!=0 && nColumn!=pColumn->nId ){ 945 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 946 goto insert_cleanup; 947 } 948 949 /* Initialize the count of rows to be inserted 950 */ 951 if( (db->flags & SQLITE_CountRows)!=0 952 && !pParse->nested 953 && !pParse->pTriggerTab 954 ){ 955 regRowCount = ++pParse->nMem; 956 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 957 } 958 959 /* If this is not a view, open the table and and all indices */ 960 if( !isView ){ 961 int nIdx; 962 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 963 &iDataCur, &iIdxCur); 964 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 965 if( aRegIdx==0 ){ 966 goto insert_cleanup; 967 } 968 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 969 assert( pIdx ); 970 aRegIdx[i] = ++pParse->nMem; 971 pParse->nMem += pIdx->nColumn; 972 } 973 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 974 } 975 #ifndef SQLITE_OMIT_UPSERT 976 if( pUpsert ){ 977 if( IsVirtual(pTab) ){ 978 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 979 pTab->zName); 980 goto insert_cleanup; 981 } 982 if( pTab->pSelect ){ 983 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 984 goto insert_cleanup; 985 } 986 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 987 goto insert_cleanup; 988 } 989 pTabList->a[0].iCursor = iDataCur; 990 pUpsert->pUpsertSrc = pTabList; 991 pUpsert->regData = regData; 992 pUpsert->iDataCur = iDataCur; 993 pUpsert->iIdxCur = iIdxCur; 994 if( pUpsert->pUpsertTarget ){ 995 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 996 } 997 } 998 #endif 999 1000 1001 /* This is the top of the main insertion loop */ 1002 if( useTempTable ){ 1003 /* This block codes the top of loop only. The complete loop is the 1004 ** following pseudocode (template 4): 1005 ** 1006 ** rewind temp table, if empty goto D 1007 ** C: loop over rows of intermediate table 1008 ** transfer values form intermediate table into <table> 1009 ** end loop 1010 ** D: ... 1011 */ 1012 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1013 addrCont = sqlite3VdbeCurrentAddr(v); 1014 }else if( pSelect ){ 1015 /* This block codes the top of loop only. The complete loop is the 1016 ** following pseudocode (template 3): 1017 ** 1018 ** C: yield X, at EOF goto D 1019 ** insert the select result into <table> from R..R+n 1020 ** goto C 1021 ** D: ... 1022 */ 1023 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1024 VdbeCoverage(v); 1025 if( ipkColumn>=0 ){ 1026 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1027 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1028 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1029 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1030 } 1031 } 1032 1033 /* Compute data for ordinary columns of the new entry. Values 1034 ** are written in storage order into registers starting with regData. 1035 ** Only ordinary columns are computed in this loop. The rowid 1036 ** (if there is one) is computed later and generated columns are 1037 ** computed after the rowid since they might depend on the value 1038 ** of the rowid. 1039 */ 1040 nHidden = 0; 1041 iRegStore = regData; assert( regData==regRowid+1 ); 1042 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1043 int k; 1044 u32 colFlags; 1045 assert( i>=nHidden ); 1046 if( i==pTab->iPKey ){ 1047 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1048 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1049 ** using excess space. The file format definition requires this extra 1050 ** NULL - we cannot optimize further by skipping the column completely */ 1051 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1052 continue; 1053 } 1054 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1055 nHidden++; 1056 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1057 /* Virtual columns do not participate in OP_MakeRecord. So back up 1058 ** iRegStore by one slot to compensate for the iRegStore++ in the 1059 ** outer for() loop */ 1060 iRegStore--; 1061 continue; 1062 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1063 /* Stored columns are computed later. But if there are BEFORE 1064 ** triggers, the slots used for stored columns will be OP_Copy-ed 1065 ** to a second block of registers, so the register needs to be 1066 ** initialized to NULL to avoid an uninitialized register read */ 1067 if( tmask & TRIGGER_BEFORE ){ 1068 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1069 } 1070 continue; 1071 }else if( pColumn==0 ){ 1072 /* Hidden columns that are not explicitly named in the INSERT 1073 ** get there default value */ 1074 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1075 continue; 1076 } 1077 } 1078 if( pColumn ){ 1079 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1080 if( j>=pColumn->nId ){ 1081 /* A column not named in the insert column list gets its 1082 ** default value */ 1083 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1084 continue; 1085 } 1086 k = j; 1087 }else if( nColumn==0 ){ 1088 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1089 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1090 continue; 1091 }else{ 1092 k = i - nHidden; 1093 } 1094 1095 if( useTempTable ){ 1096 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1097 }else if( pSelect ){ 1098 if( regFromSelect!=regData ){ 1099 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1100 } 1101 }else{ 1102 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1103 } 1104 } 1105 1106 1107 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1108 */ 1109 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1110 if( tmask & TRIGGER_BEFORE ){ 1111 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1112 1113 /* build the NEW.* reference row. Note that if there is an INTEGER 1114 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1115 ** translated into a unique ID for the row. But on a BEFORE trigger, 1116 ** we do not know what the unique ID will be (because the insert has 1117 ** not happened yet) so we substitute a rowid of -1 1118 */ 1119 if( ipkColumn<0 ){ 1120 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1121 }else{ 1122 int addr1; 1123 assert( !withoutRowid ); 1124 if( useTempTable ){ 1125 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1126 }else{ 1127 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1128 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1129 } 1130 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1131 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1132 sqlite3VdbeJumpHere(v, addr1); 1133 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1134 } 1135 1136 /* Cannot have triggers on a virtual table. If it were possible, 1137 ** this block would have to account for hidden column. 1138 */ 1139 assert( !IsVirtual(pTab) ); 1140 1141 /* Copy the new data already generated. */ 1142 assert( pTab->nNVCol>0 ); 1143 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1144 1145 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1146 /* Compute the new value for generated columns after all other 1147 ** columns have already been computed. This must be done after 1148 ** computing the ROWID in case one of the generated columns 1149 ** refers to the ROWID. */ 1150 if( pTab->tabFlags & TF_HasGenerated ){ 1151 testcase( pTab->tabFlags & TF_HasVirtual ); 1152 testcase( pTab->tabFlags & TF_HasStored ); 1153 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1154 } 1155 #endif 1156 1157 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1158 ** do not attempt any conversions before assembling the record. 1159 ** If this is a real table, attempt conversions as required by the 1160 ** table column affinities. 1161 */ 1162 if( !isView ){ 1163 sqlite3TableAffinity(v, pTab, regCols+1); 1164 } 1165 1166 /* Fire BEFORE or INSTEAD OF triggers */ 1167 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1168 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1169 1170 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1171 } 1172 1173 if( !isView ){ 1174 if( IsVirtual(pTab) ){ 1175 /* The row that the VUpdate opcode will delete: none */ 1176 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1177 } 1178 if( ipkColumn>=0 ){ 1179 /* Compute the new rowid */ 1180 if( useTempTable ){ 1181 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1182 }else if( pSelect ){ 1183 /* Rowid already initialized at tag-20191021-001 */ 1184 }else{ 1185 Expr *pIpk = pList->a[ipkColumn].pExpr; 1186 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1187 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1188 appendFlag = 1; 1189 }else{ 1190 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1191 } 1192 } 1193 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1194 ** to generate a unique primary key value. 1195 */ 1196 if( !appendFlag ){ 1197 int addr1; 1198 if( !IsVirtual(pTab) ){ 1199 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1200 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1201 sqlite3VdbeJumpHere(v, addr1); 1202 }else{ 1203 addr1 = sqlite3VdbeCurrentAddr(v); 1204 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1205 } 1206 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1207 } 1208 }else if( IsVirtual(pTab) || withoutRowid ){ 1209 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1210 }else{ 1211 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1212 appendFlag = 1; 1213 } 1214 autoIncStep(pParse, regAutoinc, regRowid); 1215 1216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1217 /* Compute the new value for generated columns after all other 1218 ** columns have already been computed. This must be done after 1219 ** computing the ROWID in case one of the generated columns 1220 ** is derived from the INTEGER PRIMARY KEY. */ 1221 if( pTab->tabFlags & TF_HasGenerated ){ 1222 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1223 } 1224 #endif 1225 1226 /* Generate code to check constraints and generate index keys and 1227 ** do the insertion. 1228 */ 1229 #ifndef SQLITE_OMIT_VIRTUALTABLE 1230 if( IsVirtual(pTab) ){ 1231 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1232 sqlite3VtabMakeWritable(pParse, pTab); 1233 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1234 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1235 sqlite3MayAbort(pParse); 1236 }else 1237 #endif 1238 { 1239 int isReplace; /* Set to true if constraints may cause a replace */ 1240 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1241 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1242 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1243 ); 1244 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1245 1246 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1247 ** constraints or (b) there are no triggers and this table is not a 1248 ** parent table in a foreign key constraint. It is safe to set the 1249 ** flag in the second case as if any REPLACE constraint is hit, an 1250 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1251 ** cursor that is disturbed. And these instructions both clear the 1252 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1253 ** functionality. */ 1254 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1255 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1256 regIns, aRegIdx, 0, appendFlag, bUseSeek 1257 ); 1258 } 1259 } 1260 1261 /* Update the count of rows that are inserted 1262 */ 1263 if( regRowCount ){ 1264 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1265 } 1266 1267 if( pTrigger ){ 1268 /* Code AFTER triggers */ 1269 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1270 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1271 } 1272 1273 /* The bottom of the main insertion loop, if the data source 1274 ** is a SELECT statement. 1275 */ 1276 sqlite3VdbeResolveLabel(v, endOfLoop); 1277 if( useTempTable ){ 1278 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1279 sqlite3VdbeJumpHere(v, addrInsTop); 1280 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1281 }else if( pSelect ){ 1282 sqlite3VdbeGoto(v, addrCont); 1283 sqlite3VdbeJumpHere(v, addrInsTop); 1284 } 1285 1286 insert_end: 1287 /* Update the sqlite_sequence table by storing the content of the 1288 ** maximum rowid counter values recorded while inserting into 1289 ** autoincrement tables. 1290 */ 1291 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1292 sqlite3AutoincrementEnd(pParse); 1293 } 1294 1295 /* 1296 ** Return the number of rows inserted. If this routine is 1297 ** generating code because of a call to sqlite3NestedParse(), do not 1298 ** invoke the callback function. 1299 */ 1300 if( regRowCount ){ 1301 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1302 sqlite3VdbeSetNumCols(v, 1); 1303 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1304 } 1305 1306 insert_cleanup: 1307 sqlite3SrcListDelete(db, pTabList); 1308 sqlite3ExprListDelete(db, pList); 1309 sqlite3UpsertDelete(db, pUpsert); 1310 sqlite3SelectDelete(db, pSelect); 1311 sqlite3IdListDelete(db, pColumn); 1312 sqlite3DbFree(db, aRegIdx); 1313 } 1314 1315 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1316 ** they may interfere with compilation of other functions in this file 1317 ** (or in another file, if this file becomes part of the amalgamation). */ 1318 #ifdef isView 1319 #undef isView 1320 #endif 1321 #ifdef pTrigger 1322 #undef pTrigger 1323 #endif 1324 #ifdef tmask 1325 #undef tmask 1326 #endif 1327 1328 /* 1329 ** Meanings of bits in of pWalker->eCode for 1330 ** sqlite3ExprReferencesUpdatedColumn() 1331 */ 1332 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1333 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1334 1335 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1336 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1337 ** expression node references any of the 1338 ** columns that are being modifed by an UPDATE statement. 1339 */ 1340 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1341 if( pExpr->op==TK_COLUMN ){ 1342 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1343 if( pExpr->iColumn>=0 ){ 1344 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1345 pWalker->eCode |= CKCNSTRNT_COLUMN; 1346 } 1347 }else{ 1348 pWalker->eCode |= CKCNSTRNT_ROWID; 1349 } 1350 } 1351 return WRC_Continue; 1352 } 1353 1354 /* 1355 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1356 ** only columns that are modified by the UPDATE are those for which 1357 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1358 ** 1359 ** Return true if CHECK constraint pExpr uses any of the 1360 ** changing columns (or the rowid if it is changing). In other words, 1361 ** return true if this CHECK constraint must be validated for 1362 ** the new row in the UPDATE statement. 1363 ** 1364 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1365 ** The operation of this routine is the same - return true if an only if 1366 ** the expression uses one or more of columns identified by the second and 1367 ** third arguments. 1368 */ 1369 int sqlite3ExprReferencesUpdatedColumn( 1370 Expr *pExpr, /* The expression to be checked */ 1371 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1372 int chngRowid /* True if UPDATE changes the rowid */ 1373 ){ 1374 Walker w; 1375 memset(&w, 0, sizeof(w)); 1376 w.eCode = 0; 1377 w.xExprCallback = checkConstraintExprNode; 1378 w.u.aiCol = aiChng; 1379 sqlite3WalkExpr(&w, pExpr); 1380 if( !chngRowid ){ 1381 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1382 w.eCode &= ~CKCNSTRNT_ROWID; 1383 } 1384 testcase( w.eCode==0 ); 1385 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1386 testcase( w.eCode==CKCNSTRNT_ROWID ); 1387 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1388 return w.eCode!=0; 1389 } 1390 1391 /* 1392 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1393 ** on table pTab. 1394 ** 1395 ** The regNewData parameter is the first register in a range that contains 1396 ** the data to be inserted or the data after the update. There will be 1397 ** pTab->nCol+1 registers in this range. The first register (the one 1398 ** that regNewData points to) will contain the new rowid, or NULL in the 1399 ** case of a WITHOUT ROWID table. The second register in the range will 1400 ** contain the content of the first table column. The third register will 1401 ** contain the content of the second table column. And so forth. 1402 ** 1403 ** The regOldData parameter is similar to regNewData except that it contains 1404 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1405 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1406 ** checking regOldData for zero. 1407 ** 1408 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1409 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1410 ** might be modified by the UPDATE. If pkChng is false, then the key of 1411 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1412 ** 1413 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1414 ** was explicitly specified as part of the INSERT statement. If pkChng 1415 ** is zero, it means that the either rowid is computed automatically or 1416 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1417 ** pkChng will only be true if the INSERT statement provides an integer 1418 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1419 ** 1420 ** The code generated by this routine will store new index entries into 1421 ** registers identified by aRegIdx[]. No index entry is created for 1422 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1423 ** the same as the order of indices on the linked list of indices 1424 ** at pTab->pIndex. 1425 ** 1426 ** (2019-05-07) The generated code also creates a new record for the 1427 ** main table, if pTab is a rowid table, and stores that record in the 1428 ** register identified by aRegIdx[nIdx] - in other words in the first 1429 ** entry of aRegIdx[] past the last index. It is important that the 1430 ** record be generated during constraint checks to avoid affinity changes 1431 ** to the register content that occur after constraint checks but before 1432 ** the new record is inserted. 1433 ** 1434 ** The caller must have already opened writeable cursors on the main 1435 ** table and all applicable indices (that is to say, all indices for which 1436 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1437 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1438 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1439 ** for the first index in the pTab->pIndex list. Cursors for other indices 1440 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1441 ** 1442 ** This routine also generates code to check constraints. NOT NULL, 1443 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1444 ** then the appropriate action is performed. There are five possible 1445 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1446 ** 1447 ** Constraint type Action What Happens 1448 ** --------------- ---------- ---------------------------------------- 1449 ** any ROLLBACK The current transaction is rolled back and 1450 ** sqlite3_step() returns immediately with a 1451 ** return code of SQLITE_CONSTRAINT. 1452 ** 1453 ** any ABORT Back out changes from the current command 1454 ** only (do not do a complete rollback) then 1455 ** cause sqlite3_step() to return immediately 1456 ** with SQLITE_CONSTRAINT. 1457 ** 1458 ** any FAIL Sqlite3_step() returns immediately with a 1459 ** return code of SQLITE_CONSTRAINT. The 1460 ** transaction is not rolled back and any 1461 ** changes to prior rows are retained. 1462 ** 1463 ** any IGNORE The attempt in insert or update the current 1464 ** row is skipped, without throwing an error. 1465 ** Processing continues with the next row. 1466 ** (There is an immediate jump to ignoreDest.) 1467 ** 1468 ** NOT NULL REPLACE The NULL value is replace by the default 1469 ** value for that column. If the default value 1470 ** is NULL, the action is the same as ABORT. 1471 ** 1472 ** UNIQUE REPLACE The other row that conflicts with the row 1473 ** being inserted is removed. 1474 ** 1475 ** CHECK REPLACE Illegal. The results in an exception. 1476 ** 1477 ** Which action to take is determined by the overrideError parameter. 1478 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1479 ** is used. Or if pParse->onError==OE_Default then the onError value 1480 ** for the constraint is used. 1481 */ 1482 void sqlite3GenerateConstraintChecks( 1483 Parse *pParse, /* The parser context */ 1484 Table *pTab, /* The table being inserted or updated */ 1485 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1486 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1487 int iIdxCur, /* First index cursor */ 1488 int regNewData, /* First register in a range holding values to insert */ 1489 int regOldData, /* Previous content. 0 for INSERTs */ 1490 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1491 u8 overrideError, /* Override onError to this if not OE_Default */ 1492 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1493 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1494 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1495 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1496 ){ 1497 Vdbe *v; /* VDBE under constrution */ 1498 Index *pIdx; /* Pointer to one of the indices */ 1499 Index *pPk = 0; /* The PRIMARY KEY index */ 1500 sqlite3 *db; /* Database connection */ 1501 int i; /* loop counter */ 1502 int ix; /* Index loop counter */ 1503 int nCol; /* Number of columns */ 1504 int onError; /* Conflict resolution strategy */ 1505 int addr1; /* Address of jump instruction */ 1506 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1507 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1508 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1509 u8 isUpdate; /* True if this is an UPDATE operation */ 1510 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1511 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1512 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1513 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1514 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1515 /* Variables associated with retesting uniqueness constraints after 1516 ** replace triggers fire have run */ 1517 int regTrigCnt; /* Register used to count replace trigger invocations */ 1518 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1519 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1520 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1521 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1522 1523 isUpdate = regOldData!=0; 1524 db = pParse->db; 1525 v = sqlite3GetVdbe(pParse); 1526 assert( v!=0 ); 1527 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1528 nCol = pTab->nCol; 1529 1530 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1531 ** normal rowid tables. nPkField is the number of key fields in the 1532 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1533 ** number of fields in the true primary key of the table. */ 1534 if( HasRowid(pTab) ){ 1535 pPk = 0; 1536 nPkField = 1; 1537 }else{ 1538 pPk = sqlite3PrimaryKeyIndex(pTab); 1539 nPkField = pPk->nKeyCol; 1540 } 1541 1542 /* Record that this module has started */ 1543 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1544 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1545 1546 /* Test all NOT NULL constraints. 1547 */ 1548 if( pTab->tabFlags & TF_HasNotNull ){ 1549 for(i=0; i<nCol; i++){ 1550 int iReg; 1551 onError = pTab->aCol[i].notNull; 1552 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1553 if( i==pTab->iPKey ){ 1554 continue; /* ROWID is never NULL */ 1555 } 1556 if( aiChng && aiChng[i]<0 ){ 1557 /* Don't bother checking for NOT NULL on columns that do not change */ 1558 continue; 1559 } 1560 if( overrideError!=OE_Default ){ 1561 onError = overrideError; 1562 }else if( onError==OE_Default ){ 1563 onError = OE_Abort; 1564 } 1565 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1566 onError = OE_Abort; 1567 } 1568 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1569 || onError==OE_Ignore || onError==OE_Replace ); 1570 addr1 = 0; 1571 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1572 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 1573 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 1574 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1575 switch( onError ){ 1576 case OE_Replace: { 1577 assert( onError==OE_Replace ); 1578 addr1 = sqlite3VdbeMakeLabel(pParse); 1579 sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1); 1580 VdbeCoverage(v); 1581 if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ){ 1582 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1583 sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1); 1584 VdbeCoverage(v); 1585 } 1586 onError = OE_Abort; 1587 /* Fall through into the OE_Abort case to generate code that runs 1588 ** if both the input and the default value are NULL */ 1589 } 1590 case OE_Abort: 1591 sqlite3MayAbort(pParse); 1592 /* Fall through */ 1593 case OE_Rollback: 1594 case OE_Fail: { 1595 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1596 pTab->aCol[i].zName); 1597 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1598 onError, iReg); 1599 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1600 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1601 VdbeCoverage(v); 1602 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1603 break; 1604 } 1605 default: { 1606 assert( onError==OE_Ignore ); 1607 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1608 VdbeCoverage(v); 1609 break; 1610 } 1611 } 1612 } 1613 } 1614 1615 /* Test all CHECK constraints 1616 */ 1617 #ifndef SQLITE_OMIT_CHECK 1618 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1619 ExprList *pCheck = pTab->pCheck; 1620 pParse->iSelfTab = -(regNewData+1); 1621 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1622 for(i=0; i<pCheck->nExpr; i++){ 1623 int allOk; 1624 Expr *pExpr = pCheck->a[i].pExpr; 1625 if( aiChng 1626 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1627 ){ 1628 /* The check constraints do not reference any of the columns being 1629 ** updated so there is no point it verifying the check constraint */ 1630 continue; 1631 } 1632 allOk = sqlite3VdbeMakeLabel(pParse); 1633 sqlite3VdbeVerifyAbortable(v, onError); 1634 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1635 if( onError==OE_Ignore ){ 1636 sqlite3VdbeGoto(v, ignoreDest); 1637 }else{ 1638 char *zName = pCheck->a[i].zName; 1639 if( zName==0 ) zName = pTab->zName; 1640 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1641 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1642 onError, zName, P4_TRANSIENT, 1643 P5_ConstraintCheck); 1644 } 1645 sqlite3VdbeResolveLabel(v, allOk); 1646 } 1647 pParse->iSelfTab = 0; 1648 } 1649 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1650 1651 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1652 ** order: 1653 ** 1654 ** (1) OE_Update 1655 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1656 ** (3) OE_Replace 1657 ** 1658 ** OE_Fail and OE_Ignore must happen before any changes are made. 1659 ** OE_Update guarantees that only a single row will change, so it 1660 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1661 ** could happen in any order, but they are grouped up front for 1662 ** convenience. 1663 ** 1664 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1665 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1666 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1667 ** constraint before any others, so it had to be moved. 1668 ** 1669 ** Constraint checking code is generated in this order: 1670 ** (A) The rowid constraint 1671 ** (B) Unique index constraints that do not have OE_Replace as their 1672 ** default conflict resolution strategy 1673 ** (C) Unique index that do use OE_Replace by default. 1674 ** 1675 ** The ordering of (2) and (3) is accomplished by making sure the linked 1676 ** list of indexes attached to a table puts all OE_Replace indexes last 1677 ** in the list. See sqlite3CreateIndex() for where that happens. 1678 */ 1679 1680 if( pUpsert ){ 1681 if( pUpsert->pUpsertTarget==0 ){ 1682 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1683 ** Make all unique constraint resolution be OE_Ignore */ 1684 assert( pUpsert->pUpsertSet==0 ); 1685 overrideError = OE_Ignore; 1686 pUpsert = 0; 1687 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1688 /* If the constraint-target uniqueness check must be run first. 1689 ** Jump to that uniqueness check now */ 1690 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1691 VdbeComment((v, "UPSERT constraint goes first")); 1692 } 1693 } 1694 1695 /* Determine if it is possible that triggers (either explicitly coded 1696 ** triggers or FK resolution actions) might run as a result of deletes 1697 ** that happen when OE_Replace conflict resolution occurs. (Call these 1698 ** "replace triggers".) If any replace triggers run, we will need to 1699 ** recheck all of the uniqueness constraints after they have all run. 1700 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1701 ** 1702 ** If replace triggers are a possibility, then 1703 ** 1704 ** (1) Allocate register regTrigCnt and initialize it to zero. 1705 ** That register will count the number of replace triggers that 1706 ** fire. Constraint recheck only occurs if the number is positive. 1707 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1708 ** (3) Initialize addrRecheck and lblRecheckOk 1709 ** 1710 ** The uniqueness rechecking code will create a series of tests to run 1711 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1712 ** used to link together these tests which are separated from each other 1713 ** in the generate bytecode. 1714 */ 1715 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1716 /* There are not DELETE triggers nor FK constraints. No constraint 1717 ** rechecks are needed. */ 1718 pTrigger = 0; 1719 regTrigCnt = 0; 1720 }else{ 1721 if( db->flags&SQLITE_RecTriggers ){ 1722 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1723 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1724 }else{ 1725 pTrigger = 0; 1726 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1727 } 1728 if( regTrigCnt ){ 1729 /* Replace triggers might exist. Allocate the counter and 1730 ** initialize it to zero. */ 1731 regTrigCnt = ++pParse->nMem; 1732 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1733 VdbeComment((v, "trigger count")); 1734 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1735 addrRecheck = lblRecheckOk; 1736 } 1737 } 1738 1739 /* If rowid is changing, make sure the new rowid does not previously 1740 ** exist in the table. 1741 */ 1742 if( pkChng && pPk==0 ){ 1743 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1744 1745 /* Figure out what action to take in case of a rowid collision */ 1746 onError = pTab->keyConf; 1747 if( overrideError!=OE_Default ){ 1748 onError = overrideError; 1749 }else if( onError==OE_Default ){ 1750 onError = OE_Abort; 1751 } 1752 1753 /* figure out whether or not upsert applies in this case */ 1754 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1755 if( pUpsert->pUpsertSet==0 ){ 1756 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1757 }else{ 1758 onError = OE_Update; /* DO UPDATE */ 1759 } 1760 } 1761 1762 /* If the response to a rowid conflict is REPLACE but the response 1763 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1764 ** to defer the running of the rowid conflict checking until after 1765 ** the UNIQUE constraints have run. 1766 */ 1767 if( onError==OE_Replace /* IPK rule is REPLACE */ 1768 && onError!=overrideError /* Rules for other contraints are different */ 1769 && pTab->pIndex /* There exist other constraints */ 1770 ){ 1771 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1772 VdbeComment((v, "defer IPK REPLACE until last")); 1773 } 1774 1775 if( isUpdate ){ 1776 /* pkChng!=0 does not mean that the rowid has changed, only that 1777 ** it might have changed. Skip the conflict logic below if the rowid 1778 ** is unchanged. */ 1779 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1780 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1781 VdbeCoverage(v); 1782 } 1783 1784 /* Check to see if the new rowid already exists in the table. Skip 1785 ** the following conflict logic if it does not. */ 1786 VdbeNoopComment((v, "uniqueness check for ROWID")); 1787 sqlite3VdbeVerifyAbortable(v, onError); 1788 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1789 VdbeCoverage(v); 1790 1791 switch( onError ){ 1792 default: { 1793 onError = OE_Abort; 1794 /* Fall thru into the next case */ 1795 } 1796 case OE_Rollback: 1797 case OE_Abort: 1798 case OE_Fail: { 1799 testcase( onError==OE_Rollback ); 1800 testcase( onError==OE_Abort ); 1801 testcase( onError==OE_Fail ); 1802 sqlite3RowidConstraint(pParse, onError, pTab); 1803 break; 1804 } 1805 case OE_Replace: { 1806 /* If there are DELETE triggers on this table and the 1807 ** recursive-triggers flag is set, call GenerateRowDelete() to 1808 ** remove the conflicting row from the table. This will fire 1809 ** the triggers and remove both the table and index b-tree entries. 1810 ** 1811 ** Otherwise, if there are no triggers or the recursive-triggers 1812 ** flag is not set, but the table has one or more indexes, call 1813 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1814 ** only. The table b-tree entry will be replaced by the new entry 1815 ** when it is inserted. 1816 ** 1817 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1818 ** also invoke MultiWrite() to indicate that this VDBE may require 1819 ** statement rollback (if the statement is aborted after the delete 1820 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1821 ** but being more selective here allows statements like: 1822 ** 1823 ** REPLACE INTO t(rowid) VALUES($newrowid) 1824 ** 1825 ** to run without a statement journal if there are no indexes on the 1826 ** table. 1827 */ 1828 if( regTrigCnt ){ 1829 sqlite3MultiWrite(pParse); 1830 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1831 regNewData, 1, 0, OE_Replace, 1, -1); 1832 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 1833 nReplaceTrig++; 1834 }else{ 1835 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1836 assert( HasRowid(pTab) ); 1837 /* This OP_Delete opcode fires the pre-update-hook only. It does 1838 ** not modify the b-tree. It is more efficient to let the coming 1839 ** OP_Insert replace the existing entry than it is to delete the 1840 ** existing entry and then insert a new one. */ 1841 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1842 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1843 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1844 if( pTab->pIndex ){ 1845 sqlite3MultiWrite(pParse); 1846 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1847 } 1848 } 1849 seenReplace = 1; 1850 break; 1851 } 1852 #ifndef SQLITE_OMIT_UPSERT 1853 case OE_Update: { 1854 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1855 /* Fall through */ 1856 } 1857 #endif 1858 case OE_Ignore: { 1859 testcase( onError==OE_Ignore ); 1860 sqlite3VdbeGoto(v, ignoreDest); 1861 break; 1862 } 1863 } 1864 sqlite3VdbeResolveLabel(v, addrRowidOk); 1865 if( ipkTop ){ 1866 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1867 sqlite3VdbeJumpHere(v, ipkTop-1); 1868 } 1869 } 1870 1871 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1872 ** index and making sure that duplicate entries do not already exist. 1873 ** Compute the revised record entries for indices as we go. 1874 ** 1875 ** This loop also handles the case of the PRIMARY KEY index for a 1876 ** WITHOUT ROWID table. 1877 */ 1878 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1879 int regIdx; /* Range of registers hold conent for pIdx */ 1880 int regR; /* Range of registers holding conflicting PK */ 1881 int iThisCur; /* Cursor for this UNIQUE index */ 1882 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1883 int addrConflictCk; /* First opcode in the conflict check logic */ 1884 1885 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1886 if( pUpIdx==pIdx ){ 1887 addrUniqueOk = upsertJump+1; 1888 upsertBypass = sqlite3VdbeGoto(v, 0); 1889 VdbeComment((v, "Skip upsert subroutine")); 1890 sqlite3VdbeJumpHere(v, upsertJump); 1891 }else{ 1892 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1893 } 1894 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1895 sqlite3TableAffinity(v, pTab, regNewData+1); 1896 bAffinityDone = 1; 1897 } 1898 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1899 iThisCur = iIdxCur+ix; 1900 1901 1902 /* Skip partial indices for which the WHERE clause is not true */ 1903 if( pIdx->pPartIdxWhere ){ 1904 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1905 pParse->iSelfTab = -(regNewData+1); 1906 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1907 SQLITE_JUMPIFNULL); 1908 pParse->iSelfTab = 0; 1909 } 1910 1911 /* Create a record for this index entry as it should appear after 1912 ** the insert or update. Store that record in the aRegIdx[ix] register 1913 */ 1914 regIdx = aRegIdx[ix]+1; 1915 for(i=0; i<pIdx->nColumn; i++){ 1916 int iField = pIdx->aiColumn[i]; 1917 int x; 1918 if( iField==XN_EXPR ){ 1919 pParse->iSelfTab = -(regNewData+1); 1920 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1921 pParse->iSelfTab = 0; 1922 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1923 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 1924 x = regNewData; 1925 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 1926 VdbeComment((v, "rowid")); 1927 }else{ 1928 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 1929 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 1930 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 1931 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 1932 } 1933 } 1934 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1935 VdbeComment((v, "for %s", pIdx->zName)); 1936 #ifdef SQLITE_ENABLE_NULL_TRIM 1937 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1938 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1939 } 1940 #endif 1941 1942 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1943 ** of a WITHOUT ROWID table and there has been no change the 1944 ** primary key, then no collision is possible. The collision detection 1945 ** logic below can all be skipped. */ 1946 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1947 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1948 continue; 1949 } 1950 1951 /* Find out what action to take in case there is a uniqueness conflict */ 1952 onError = pIdx->onError; 1953 if( onError==OE_None ){ 1954 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1955 continue; /* pIdx is not a UNIQUE index */ 1956 } 1957 if( overrideError!=OE_Default ){ 1958 onError = overrideError; 1959 }else if( onError==OE_Default ){ 1960 onError = OE_Abort; 1961 } 1962 1963 /* Figure out if the upsert clause applies to this index */ 1964 if( pUpIdx==pIdx ){ 1965 if( pUpsert->pUpsertSet==0 ){ 1966 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1967 }else{ 1968 onError = OE_Update; /* DO UPDATE */ 1969 } 1970 } 1971 1972 /* Collision detection may be omitted if all of the following are true: 1973 ** (1) The conflict resolution algorithm is REPLACE 1974 ** (2) The table is a WITHOUT ROWID table 1975 ** (3) There are no secondary indexes on the table 1976 ** (4) No delete triggers need to be fired if there is a conflict 1977 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1978 ** 1979 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 1980 ** must be explicitly deleted in order to ensure any pre-update hook 1981 ** is invoked. */ 1982 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 1983 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1984 && pPk==pIdx /* Condition 2 */ 1985 && onError==OE_Replace /* Condition 1 */ 1986 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1987 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1988 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1989 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1990 ){ 1991 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1992 continue; 1993 } 1994 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 1995 1996 /* Check to see if the new index entry will be unique */ 1997 sqlite3VdbeVerifyAbortable(v, onError); 1998 addrConflictCk = 1999 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2000 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2001 2002 /* Generate code to handle collisions */ 2003 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2004 if( isUpdate || onError==OE_Replace ){ 2005 if( HasRowid(pTab) ){ 2006 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2007 /* Conflict only if the rowid of the existing index entry 2008 ** is different from old-rowid */ 2009 if( isUpdate ){ 2010 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2011 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2012 VdbeCoverage(v); 2013 } 2014 }else{ 2015 int x; 2016 /* Extract the PRIMARY KEY from the end of the index entry and 2017 ** store it in registers regR..regR+nPk-1 */ 2018 if( pIdx!=pPk ){ 2019 for(i=0; i<pPk->nKeyCol; i++){ 2020 assert( pPk->aiColumn[i]>=0 ); 2021 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2022 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2023 VdbeComment((v, "%s.%s", pTab->zName, 2024 pTab->aCol[pPk->aiColumn[i]].zName)); 2025 } 2026 } 2027 if( isUpdate ){ 2028 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2029 ** table, only conflict if the new PRIMARY KEY values are actually 2030 ** different from the old. 2031 ** 2032 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2033 ** of the matched index row are different from the original PRIMARY 2034 ** KEY values of this row before the update. */ 2035 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2036 int op = OP_Ne; 2037 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2038 2039 for(i=0; i<pPk->nKeyCol; i++){ 2040 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2041 x = pPk->aiColumn[i]; 2042 assert( x>=0 ); 2043 if( i==(pPk->nKeyCol-1) ){ 2044 addrJump = addrUniqueOk; 2045 op = OP_Eq; 2046 } 2047 x = sqlite3TableColumnToStorage(pTab, x); 2048 sqlite3VdbeAddOp4(v, op, 2049 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2050 ); 2051 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2052 VdbeCoverageIf(v, op==OP_Eq); 2053 VdbeCoverageIf(v, op==OP_Ne); 2054 } 2055 } 2056 } 2057 } 2058 2059 /* Generate code that executes if the new index entry is not unique */ 2060 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2061 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2062 switch( onError ){ 2063 case OE_Rollback: 2064 case OE_Abort: 2065 case OE_Fail: { 2066 testcase( onError==OE_Rollback ); 2067 testcase( onError==OE_Abort ); 2068 testcase( onError==OE_Fail ); 2069 sqlite3UniqueConstraint(pParse, onError, pIdx); 2070 break; 2071 } 2072 #ifndef SQLITE_OMIT_UPSERT 2073 case OE_Update: { 2074 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2075 /* Fall through */ 2076 } 2077 #endif 2078 case OE_Ignore: { 2079 testcase( onError==OE_Ignore ); 2080 sqlite3VdbeGoto(v, ignoreDest); 2081 break; 2082 } 2083 default: { 2084 int nConflictCk; /* Number of opcodes in conflict check logic */ 2085 2086 assert( onError==OE_Replace ); 2087 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2088 assert( nConflictCk>0 ); 2089 testcase( nConflictCk>1 ); 2090 if( regTrigCnt ){ 2091 sqlite3MultiWrite(pParse); 2092 nReplaceTrig++; 2093 } 2094 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2095 regR, nPkField, 0, OE_Replace, 2096 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2097 if( regTrigCnt ){ 2098 int addrBypass; /* Jump destination to bypass recheck logic */ 2099 2100 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2101 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2102 VdbeComment((v, "bypass recheck")); 2103 2104 /* Here we insert code that will be invoked after all constraint 2105 ** checks have run, if and only if one or more replace triggers 2106 ** fired. */ 2107 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2108 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2109 if( pIdx->pPartIdxWhere ){ 2110 /* Bypass the recheck if this partial index is not defined 2111 ** for the current row */ 2112 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2113 VdbeCoverage(v); 2114 } 2115 /* Copy the constraint check code from above, except change 2116 ** the constraint-ok jump destination to be the address of 2117 ** the next retest block */ 2118 while( nConflictCk>0 ){ 2119 VdbeOp x; /* Conflict check opcode to copy */ 2120 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2121 ** Hence, make a complete copy of the opcode, rather than using 2122 ** a pointer to the opcode. */ 2123 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2124 if( x.opcode!=OP_IdxRowid ){ 2125 int p2; /* New P2 value for copied conflict check opcode */ 2126 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2127 p2 = lblRecheckOk; 2128 }else{ 2129 p2 = x.p2; 2130 } 2131 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, x.p4.z, x.p4type); 2132 sqlite3VdbeChangeP5(v, x.p5); 2133 VdbeCoverageIf(v, p2!=x.p2); 2134 } 2135 nConflictCk--; 2136 addrConflictCk++; 2137 } 2138 /* If the retest fails, issue an abort */ 2139 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2140 2141 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2142 } 2143 seenReplace = 1; 2144 break; 2145 } 2146 } 2147 if( pUpIdx==pIdx ){ 2148 sqlite3VdbeGoto(v, upsertJump+1); 2149 sqlite3VdbeJumpHere(v, upsertBypass); 2150 }else{ 2151 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2152 } 2153 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2154 } 2155 2156 /* If the IPK constraint is a REPLACE, run it last */ 2157 if( ipkTop ){ 2158 sqlite3VdbeGoto(v, ipkTop); 2159 VdbeComment((v, "Do IPK REPLACE")); 2160 sqlite3VdbeJumpHere(v, ipkBottom); 2161 } 2162 2163 /* Recheck all uniqueness constraints after replace triggers have run */ 2164 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2165 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2166 if( nReplaceTrig ){ 2167 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2168 if( !pPk ){ 2169 if( isUpdate ){ 2170 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2171 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2172 VdbeCoverage(v); 2173 } 2174 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2175 VdbeCoverage(v); 2176 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2177 }else{ 2178 sqlite3VdbeGoto(v, addrRecheck); 2179 } 2180 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2181 } 2182 2183 /* Generate the table record */ 2184 if( HasRowid(pTab) ){ 2185 int regRec = aRegIdx[ix]; 2186 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2187 sqlite3SetMakeRecordP5(v, pTab); 2188 if( !bAffinityDone ){ 2189 sqlite3TableAffinity(v, pTab, 0); 2190 } 2191 } 2192 2193 *pbMayReplace = seenReplace; 2194 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2195 } 2196 2197 #ifdef SQLITE_ENABLE_NULL_TRIM 2198 /* 2199 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2200 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2201 ** 2202 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2203 */ 2204 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2205 u16 i; 2206 2207 /* Records with omitted columns are only allowed for schema format 2208 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2209 if( pTab->pSchema->file_format<2 ) return; 2210 2211 for(i=pTab->nCol-1; i>0; i--){ 2212 if( pTab->aCol[i].pDflt!=0 ) break; 2213 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2214 } 2215 sqlite3VdbeChangeP5(v, i+1); 2216 } 2217 #endif 2218 2219 /* 2220 ** This routine generates code to finish the INSERT or UPDATE operation 2221 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2222 ** A consecutive range of registers starting at regNewData contains the 2223 ** rowid and the content to be inserted. 2224 ** 2225 ** The arguments to this routine should be the same as the first six 2226 ** arguments to sqlite3GenerateConstraintChecks. 2227 */ 2228 void sqlite3CompleteInsertion( 2229 Parse *pParse, /* The parser context */ 2230 Table *pTab, /* the table into which we are inserting */ 2231 int iDataCur, /* Cursor of the canonical data source */ 2232 int iIdxCur, /* First index cursor */ 2233 int regNewData, /* Range of content */ 2234 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2235 int update_flags, /* True for UPDATE, False for INSERT */ 2236 int appendBias, /* True if this is likely to be an append */ 2237 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2238 ){ 2239 Vdbe *v; /* Prepared statements under construction */ 2240 Index *pIdx; /* An index being inserted or updated */ 2241 u8 pik_flags; /* flag values passed to the btree insert */ 2242 int i; /* Loop counter */ 2243 2244 assert( update_flags==0 2245 || update_flags==OPFLAG_ISUPDATE 2246 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2247 ); 2248 2249 v = sqlite3GetVdbe(pParse); 2250 assert( v!=0 ); 2251 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2252 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2253 /* All REPLACE indexes are at the end of the list */ 2254 assert( pIdx->onError!=OE_Replace 2255 || pIdx->pNext==0 2256 || pIdx->pNext->onError==OE_Replace ); 2257 if( aRegIdx[i]==0 ) continue; 2258 if( pIdx->pPartIdxWhere ){ 2259 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2260 VdbeCoverage(v); 2261 } 2262 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2263 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2264 assert( pParse->nested==0 ); 2265 pik_flags |= OPFLAG_NCHANGE; 2266 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2267 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2268 if( update_flags==0 ){ 2269 int r = sqlite3GetTempReg(pParse); 2270 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2271 sqlite3VdbeAddOp4(v, OP_Insert, 2272 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2273 ); 2274 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2275 sqlite3ReleaseTempReg(pParse, r); 2276 } 2277 #endif 2278 } 2279 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2280 aRegIdx[i]+1, 2281 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2282 sqlite3VdbeChangeP5(v, pik_flags); 2283 } 2284 if( !HasRowid(pTab) ) return; 2285 if( pParse->nested ){ 2286 pik_flags = 0; 2287 }else{ 2288 pik_flags = OPFLAG_NCHANGE; 2289 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2290 } 2291 if( appendBias ){ 2292 pik_flags |= OPFLAG_APPEND; 2293 } 2294 if( useSeekResult ){ 2295 pik_flags |= OPFLAG_USESEEKRESULT; 2296 } 2297 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2298 if( !pParse->nested ){ 2299 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2300 } 2301 sqlite3VdbeChangeP5(v, pik_flags); 2302 } 2303 2304 /* 2305 ** Allocate cursors for the pTab table and all its indices and generate 2306 ** code to open and initialized those cursors. 2307 ** 2308 ** The cursor for the object that contains the complete data (normally 2309 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2310 ** ROWID table) is returned in *piDataCur. The first index cursor is 2311 ** returned in *piIdxCur. The number of indices is returned. 2312 ** 2313 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2314 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2315 ** If iBase is negative, then allocate the next available cursor. 2316 ** 2317 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2318 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2319 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2320 ** pTab->pIndex list. 2321 ** 2322 ** If pTab is a virtual table, then this routine is a no-op and the 2323 ** *piDataCur and *piIdxCur values are left uninitialized. 2324 */ 2325 int sqlite3OpenTableAndIndices( 2326 Parse *pParse, /* Parsing context */ 2327 Table *pTab, /* Table to be opened */ 2328 int op, /* OP_OpenRead or OP_OpenWrite */ 2329 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2330 int iBase, /* Use this for the table cursor, if there is one */ 2331 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2332 int *piDataCur, /* Write the database source cursor number here */ 2333 int *piIdxCur /* Write the first index cursor number here */ 2334 ){ 2335 int i; 2336 int iDb; 2337 int iDataCur; 2338 Index *pIdx; 2339 Vdbe *v; 2340 2341 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2342 assert( op==OP_OpenWrite || p5==0 ); 2343 if( IsVirtual(pTab) ){ 2344 /* This routine is a no-op for virtual tables. Leave the output 2345 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2346 ** can detect if they are used by mistake in the caller. */ 2347 return 0; 2348 } 2349 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2350 v = sqlite3GetVdbe(pParse); 2351 assert( v!=0 ); 2352 if( iBase<0 ) iBase = pParse->nTab; 2353 iDataCur = iBase++; 2354 if( piDataCur ) *piDataCur = iDataCur; 2355 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2356 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2357 }else{ 2358 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2359 } 2360 if( piIdxCur ) *piIdxCur = iBase; 2361 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2362 int iIdxCur = iBase++; 2363 assert( pIdx->pSchema==pTab->pSchema ); 2364 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2365 if( piDataCur ) *piDataCur = iIdxCur; 2366 p5 = 0; 2367 } 2368 if( aToOpen==0 || aToOpen[i+1] ){ 2369 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2370 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2371 sqlite3VdbeChangeP5(v, p5); 2372 VdbeComment((v, "%s", pIdx->zName)); 2373 } 2374 } 2375 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2376 return i; 2377 } 2378 2379 2380 #ifdef SQLITE_TEST 2381 /* 2382 ** The following global variable is incremented whenever the 2383 ** transfer optimization is used. This is used for testing 2384 ** purposes only - to make sure the transfer optimization really 2385 ** is happening when it is supposed to. 2386 */ 2387 int sqlite3_xferopt_count; 2388 #endif /* SQLITE_TEST */ 2389 2390 2391 #ifndef SQLITE_OMIT_XFER_OPT 2392 /* 2393 ** Check to see if index pSrc is compatible as a source of data 2394 ** for index pDest in an insert transfer optimization. The rules 2395 ** for a compatible index: 2396 ** 2397 ** * The index is over the same set of columns 2398 ** * The same DESC and ASC markings occurs on all columns 2399 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2400 ** * The same collating sequence on each column 2401 ** * The index has the exact same WHERE clause 2402 */ 2403 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2404 int i; 2405 assert( pDest && pSrc ); 2406 assert( pDest->pTable!=pSrc->pTable ); 2407 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2408 return 0; /* Different number of columns */ 2409 } 2410 if( pDest->onError!=pSrc->onError ){ 2411 return 0; /* Different conflict resolution strategies */ 2412 } 2413 for(i=0; i<pSrc->nKeyCol; i++){ 2414 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2415 return 0; /* Different columns indexed */ 2416 } 2417 if( pSrc->aiColumn[i]==XN_EXPR ){ 2418 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2419 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2420 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2421 return 0; /* Different expressions in the index */ 2422 } 2423 } 2424 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2425 return 0; /* Different sort orders */ 2426 } 2427 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2428 return 0; /* Different collating sequences */ 2429 } 2430 } 2431 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2432 return 0; /* Different WHERE clauses */ 2433 } 2434 2435 /* If no test above fails then the indices must be compatible */ 2436 return 1; 2437 } 2438 2439 /* 2440 ** Attempt the transfer optimization on INSERTs of the form 2441 ** 2442 ** INSERT INTO tab1 SELECT * FROM tab2; 2443 ** 2444 ** The xfer optimization transfers raw records from tab2 over to tab1. 2445 ** Columns are not decoded and reassembled, which greatly improves 2446 ** performance. Raw index records are transferred in the same way. 2447 ** 2448 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2449 ** There are lots of rules for determining compatibility - see comments 2450 ** embedded in the code for details. 2451 ** 2452 ** This routine returns TRUE if the optimization is guaranteed to be used. 2453 ** Sometimes the xfer optimization will only work if the destination table 2454 ** is empty - a factor that can only be determined at run-time. In that 2455 ** case, this routine generates code for the xfer optimization but also 2456 ** does a test to see if the destination table is empty and jumps over the 2457 ** xfer optimization code if the test fails. In that case, this routine 2458 ** returns FALSE so that the caller will know to go ahead and generate 2459 ** an unoptimized transfer. This routine also returns FALSE if there 2460 ** is no chance that the xfer optimization can be applied. 2461 ** 2462 ** This optimization is particularly useful at making VACUUM run faster. 2463 */ 2464 static int xferOptimization( 2465 Parse *pParse, /* Parser context */ 2466 Table *pDest, /* The table we are inserting into */ 2467 Select *pSelect, /* A SELECT statement to use as the data source */ 2468 int onError, /* How to handle constraint errors */ 2469 int iDbDest /* The database of pDest */ 2470 ){ 2471 sqlite3 *db = pParse->db; 2472 ExprList *pEList; /* The result set of the SELECT */ 2473 Table *pSrc; /* The table in the FROM clause of SELECT */ 2474 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2475 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2476 int i; /* Loop counter */ 2477 int iDbSrc; /* The database of pSrc */ 2478 int iSrc, iDest; /* Cursors from source and destination */ 2479 int addr1, addr2; /* Loop addresses */ 2480 int emptyDestTest = 0; /* Address of test for empty pDest */ 2481 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2482 Vdbe *v; /* The VDBE we are building */ 2483 int regAutoinc; /* Memory register used by AUTOINC */ 2484 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2485 int regData, regRowid; /* Registers holding data and rowid */ 2486 2487 if( pSelect==0 ){ 2488 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2489 } 2490 if( pParse->pWith || pSelect->pWith ){ 2491 /* Do not attempt to process this query if there are an WITH clauses 2492 ** attached to it. Proceeding may generate a false "no such table: xxx" 2493 ** error if pSelect reads from a CTE named "xxx". */ 2494 return 0; 2495 } 2496 if( sqlite3TriggerList(pParse, pDest) ){ 2497 return 0; /* tab1 must not have triggers */ 2498 } 2499 #ifndef SQLITE_OMIT_VIRTUALTABLE 2500 if( IsVirtual(pDest) ){ 2501 return 0; /* tab1 must not be a virtual table */ 2502 } 2503 #endif 2504 if( onError==OE_Default ){ 2505 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2506 if( onError==OE_Default ) onError = OE_Abort; 2507 } 2508 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2509 if( pSelect->pSrc->nSrc!=1 ){ 2510 return 0; /* FROM clause must have exactly one term */ 2511 } 2512 if( pSelect->pSrc->a[0].pSelect ){ 2513 return 0; /* FROM clause cannot contain a subquery */ 2514 } 2515 if( pSelect->pWhere ){ 2516 return 0; /* SELECT may not have a WHERE clause */ 2517 } 2518 if( pSelect->pOrderBy ){ 2519 return 0; /* SELECT may not have an ORDER BY clause */ 2520 } 2521 /* Do not need to test for a HAVING clause. If HAVING is present but 2522 ** there is no ORDER BY, we will get an error. */ 2523 if( pSelect->pGroupBy ){ 2524 return 0; /* SELECT may not have a GROUP BY clause */ 2525 } 2526 if( pSelect->pLimit ){ 2527 return 0; /* SELECT may not have a LIMIT clause */ 2528 } 2529 if( pSelect->pPrior ){ 2530 return 0; /* SELECT may not be a compound query */ 2531 } 2532 if( pSelect->selFlags & SF_Distinct ){ 2533 return 0; /* SELECT may not be DISTINCT */ 2534 } 2535 pEList = pSelect->pEList; 2536 assert( pEList!=0 ); 2537 if( pEList->nExpr!=1 ){ 2538 return 0; /* The result set must have exactly one column */ 2539 } 2540 assert( pEList->a[0].pExpr ); 2541 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2542 return 0; /* The result set must be the special operator "*" */ 2543 } 2544 2545 /* At this point we have established that the statement is of the 2546 ** correct syntactic form to participate in this optimization. Now 2547 ** we have to check the semantics. 2548 */ 2549 pItem = pSelect->pSrc->a; 2550 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2551 if( pSrc==0 ){ 2552 return 0; /* FROM clause does not contain a real table */ 2553 } 2554 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2555 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */ 2556 return 0; /* tab1 and tab2 may not be the same table */ 2557 } 2558 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2559 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2560 } 2561 #ifndef SQLITE_OMIT_VIRTUALTABLE 2562 if( IsVirtual(pSrc) ){ 2563 return 0; /* tab2 must not be a virtual table */ 2564 } 2565 #endif 2566 if( pSrc->pSelect ){ 2567 return 0; /* tab2 may not be a view */ 2568 } 2569 if( pDest->nCol!=pSrc->nCol ){ 2570 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2571 } 2572 if( pDest->iPKey!=pSrc->iPKey ){ 2573 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2574 } 2575 for(i=0; i<pDest->nCol; i++){ 2576 Column *pDestCol = &pDest->aCol[i]; 2577 Column *pSrcCol = &pSrc->aCol[i]; 2578 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2579 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2580 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2581 ){ 2582 return 0; /* Neither table may have __hidden__ columns */ 2583 } 2584 #endif 2585 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2586 /* Even if tables t1 and t2 have identical schemas, if they contain 2587 ** generated columns, then this statement is semantically incorrect: 2588 ** 2589 ** INSERT INTO t2 SELECT * FROM t1; 2590 ** 2591 ** The reason is that generated column values are returned by the 2592 ** the SELECT statement on the right but the INSERT statement on the 2593 ** left wants them to be omitted. 2594 ** 2595 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2596 ** to do a bulk transfer all of the content from t1 over to t2. 2597 ** 2598 ** We could, in theory, disable this (except for internal use by the 2599 ** VACUUM command where it is actually needed). But why do that? It 2600 ** seems harmless enough, and provides a useful service. 2601 */ 2602 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2603 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2604 return 0; /* Both columns have the same generated-column type */ 2605 } 2606 /* But the transfer is only allowed if both the source and destination 2607 ** tables have the exact same expressions for generated columns. 2608 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2609 */ 2610 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2611 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2612 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2613 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2614 return 0; /* Different generator expressions */ 2615 } 2616 } 2617 #endif 2618 if( pDestCol->affinity!=pSrcCol->affinity ){ 2619 return 0; /* Affinity must be the same on all columns */ 2620 } 2621 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2622 return 0; /* Collating sequence must be the same on all columns */ 2623 } 2624 if( pDestCol->notNull && !pSrcCol->notNull ){ 2625 return 0; /* tab2 must be NOT NULL if tab1 is */ 2626 } 2627 /* Default values for second and subsequent columns need to match. */ 2628 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2629 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2630 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2631 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2632 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2633 pSrcCol->pDflt->u.zToken)!=0) 2634 ){ 2635 return 0; /* Default values must be the same for all columns */ 2636 } 2637 } 2638 } 2639 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2640 if( IsUniqueIndex(pDestIdx) ){ 2641 destHasUniqueIdx = 1; 2642 } 2643 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2644 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2645 } 2646 if( pSrcIdx==0 ){ 2647 return 0; /* pDestIdx has no corresponding index in pSrc */ 2648 } 2649 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2650 && sqlite3FaultSim(411)==SQLITE_OK ){ 2651 /* The sqlite3FaultSim() call allows this corruption test to be 2652 ** bypassed during testing, in order to exercise other corruption tests 2653 ** further downstream. */ 2654 return 0; /* Corrupt schema - two indexes on the same btree */ 2655 } 2656 } 2657 #ifndef SQLITE_OMIT_CHECK 2658 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2659 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2660 } 2661 #endif 2662 #ifndef SQLITE_OMIT_FOREIGN_KEY 2663 /* Disallow the transfer optimization if the destination table constains 2664 ** any foreign key constraints. This is more restrictive than necessary. 2665 ** But the main beneficiary of the transfer optimization is the VACUUM 2666 ** command, and the VACUUM command disables foreign key constraints. So 2667 ** the extra complication to make this rule less restrictive is probably 2668 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2669 */ 2670 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2671 return 0; 2672 } 2673 #endif 2674 if( (db->flags & SQLITE_CountRows)!=0 ){ 2675 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2676 } 2677 2678 /* If we get this far, it means that the xfer optimization is at 2679 ** least a possibility, though it might only work if the destination 2680 ** table (tab1) is initially empty. 2681 */ 2682 #ifdef SQLITE_TEST 2683 sqlite3_xferopt_count++; 2684 #endif 2685 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2686 v = sqlite3GetVdbe(pParse); 2687 sqlite3CodeVerifySchema(pParse, iDbSrc); 2688 iSrc = pParse->nTab++; 2689 iDest = pParse->nTab++; 2690 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2691 regData = sqlite3GetTempReg(pParse); 2692 regRowid = sqlite3GetTempReg(pParse); 2693 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2694 assert( HasRowid(pDest) || destHasUniqueIdx ); 2695 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2696 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2697 || destHasUniqueIdx /* (2) */ 2698 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2699 )){ 2700 /* In some circumstances, we are able to run the xfer optimization 2701 ** only if the destination table is initially empty. Unless the 2702 ** DBFLAG_Vacuum flag is set, this block generates code to make 2703 ** that determination. If DBFLAG_Vacuum is set, then the destination 2704 ** table is always empty. 2705 ** 2706 ** Conditions under which the destination must be empty: 2707 ** 2708 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2709 ** (If the destination is not initially empty, the rowid fields 2710 ** of index entries might need to change.) 2711 ** 2712 ** (2) The destination has a unique index. (The xfer optimization 2713 ** is unable to test uniqueness.) 2714 ** 2715 ** (3) onError is something other than OE_Abort and OE_Rollback. 2716 */ 2717 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2718 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2719 sqlite3VdbeJumpHere(v, addr1); 2720 } 2721 if( HasRowid(pSrc) ){ 2722 u8 insFlags; 2723 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2724 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2725 if( pDest->iPKey>=0 ){ 2726 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2727 sqlite3VdbeVerifyAbortable(v, onError); 2728 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2729 VdbeCoverage(v); 2730 sqlite3RowidConstraint(pParse, onError, pDest); 2731 sqlite3VdbeJumpHere(v, addr2); 2732 autoIncStep(pParse, regAutoinc, regRowid); 2733 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2734 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2735 }else{ 2736 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2737 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2738 } 2739 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2740 if( db->mDbFlags & DBFLAG_Vacuum ){ 2741 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2742 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2743 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2744 }else{ 2745 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2746 } 2747 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2748 (char*)pDest, P4_TABLE); 2749 sqlite3VdbeChangeP5(v, insFlags); 2750 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2751 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2752 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2753 }else{ 2754 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2755 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2756 } 2757 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2758 u8 idxInsFlags = 0; 2759 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2760 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2761 } 2762 assert( pSrcIdx ); 2763 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2764 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2765 VdbeComment((v, "%s", pSrcIdx->zName)); 2766 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2767 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2768 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2769 VdbeComment((v, "%s", pDestIdx->zName)); 2770 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2771 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2772 if( db->mDbFlags & DBFLAG_Vacuum ){ 2773 /* This INSERT command is part of a VACUUM operation, which guarantees 2774 ** that the destination table is empty. If all indexed columns use 2775 ** collation sequence BINARY, then it can also be assumed that the 2776 ** index will be populated by inserting keys in strictly sorted 2777 ** order. In this case, instead of seeking within the b-tree as part 2778 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2779 ** OP_IdxInsert to seek to the point within the b-tree where each key 2780 ** should be inserted. This is faster. 2781 ** 2782 ** If any of the indexed columns use a collation sequence other than 2783 ** BINARY, this optimization is disabled. This is because the user 2784 ** might change the definition of a collation sequence and then run 2785 ** a VACUUM command. In that case keys may not be written in strictly 2786 ** sorted order. */ 2787 for(i=0; i<pSrcIdx->nColumn; i++){ 2788 const char *zColl = pSrcIdx->azColl[i]; 2789 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2790 } 2791 if( i==pSrcIdx->nColumn ){ 2792 idxInsFlags = OPFLAG_USESEEKRESULT; 2793 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2794 } 2795 } 2796 if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2797 idxInsFlags |= OPFLAG_NCHANGE; 2798 } 2799 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2800 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2801 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2802 sqlite3VdbeJumpHere(v, addr1); 2803 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2804 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2805 } 2806 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2807 sqlite3ReleaseTempReg(pParse, regRowid); 2808 sqlite3ReleaseTempReg(pParse, regData); 2809 if( emptyDestTest ){ 2810 sqlite3AutoincrementEnd(pParse); 2811 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2812 sqlite3VdbeJumpHere(v, emptyDestTest); 2813 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2814 return 0; 2815 }else{ 2816 return 1; 2817 } 2818 } 2819 #endif /* SQLITE_OMIT_XFER_OPT */ 2820