1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 if( pParse->nErr || db->mallocFailed ){ 719 goto insert_cleanup; 720 } 721 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 722 723 /* If the Select object is really just a simple VALUES() list with a 724 ** single row (the common case) then keep that one row of values 725 ** and discard the other (unused) parts of the pSelect object 726 */ 727 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 728 pList = pSelect->pEList; 729 pSelect->pEList = 0; 730 sqlite3SelectDelete(db, pSelect); 731 pSelect = 0; 732 } 733 734 /* Locate the table into which we will be inserting new information. 735 */ 736 assert( pTabList->nSrc==1 ); 737 pTab = sqlite3SrcListLookup(pParse, pTabList); 738 if( pTab==0 ){ 739 goto insert_cleanup; 740 } 741 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 742 assert( iDb<db->nDb ); 743 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 744 db->aDb[iDb].zDbSName) ){ 745 goto insert_cleanup; 746 } 747 withoutRowid = !HasRowid(pTab); 748 749 /* Figure out if we have any triggers and if the table being 750 ** inserted into is a view 751 */ 752 #ifndef SQLITE_OMIT_TRIGGER 753 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 754 isView = IsView(pTab); 755 #else 756 # define pTrigger 0 757 # define tmask 0 758 # define isView 0 759 #endif 760 #ifdef SQLITE_OMIT_VIEW 761 # undef isView 762 # define isView 0 763 #endif 764 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 765 766 /* If pTab is really a view, make sure it has been initialized. 767 ** ViewGetColumnNames() is a no-op if pTab is not a view. 768 */ 769 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 770 goto insert_cleanup; 771 } 772 773 /* Cannot insert into a read-only table. 774 */ 775 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 776 goto insert_cleanup; 777 } 778 779 /* Allocate a VDBE 780 */ 781 v = sqlite3GetVdbe(pParse); 782 if( v==0 ) goto insert_cleanup; 783 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 784 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 785 786 #ifndef SQLITE_OMIT_XFER_OPT 787 /* If the statement is of the form 788 ** 789 ** INSERT INTO <table1> SELECT * FROM <table2>; 790 ** 791 ** Then special optimizations can be applied that make the transfer 792 ** very fast and which reduce fragmentation of indices. 793 ** 794 ** This is the 2nd template. 795 */ 796 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 797 assert( !pTrigger ); 798 assert( pList==0 ); 799 goto insert_end; 800 } 801 #endif /* SQLITE_OMIT_XFER_OPT */ 802 803 /* If this is an AUTOINCREMENT table, look up the sequence number in the 804 ** sqlite_sequence table and store it in memory cell regAutoinc. 805 */ 806 regAutoinc = autoIncBegin(pParse, iDb, pTab); 807 808 /* Allocate a block registers to hold the rowid and the values 809 ** for all columns of the new row. 810 */ 811 regRowid = regIns = pParse->nMem+1; 812 pParse->nMem += pTab->nCol + 1; 813 if( IsVirtual(pTab) ){ 814 regRowid++; 815 pParse->nMem++; 816 } 817 regData = regRowid+1; 818 819 /* If the INSERT statement included an IDLIST term, then make sure 820 ** all elements of the IDLIST really are columns of the table and 821 ** remember the column indices. 822 ** 823 ** If the table has an INTEGER PRIMARY KEY column and that column 824 ** is named in the IDLIST, then record in the ipkColumn variable 825 ** the index into IDLIST of the primary key column. ipkColumn is 826 ** the index of the primary key as it appears in IDLIST, not as 827 ** is appears in the original table. (The index of the INTEGER 828 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 829 ** loop, if ipkColumn==(-1), that means that integer primary key 830 ** is unspecified, and hence the table is either WITHOUT ROWID or 831 ** it will automatically generated an integer primary key. 832 ** 833 ** bIdListInOrder is true if the columns in IDLIST are in storage 834 ** order. This enables an optimization that avoids shuffling the 835 ** columns into storage order. False negatives are harmless, 836 ** but false positives will cause database corruption. 837 */ 838 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 839 if( pColumn ){ 840 for(i=0; i<pColumn->nId; i++){ 841 pColumn->a[i].idx = -1; 842 } 843 for(i=0; i<pColumn->nId; i++){ 844 for(j=0; j<pTab->nCol; j++){ 845 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 846 pColumn->a[i].idx = j; 847 if( i!=j ) bIdListInOrder = 0; 848 if( j==pTab->iPKey ){ 849 ipkColumn = i; assert( !withoutRowid ); 850 } 851 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 852 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 853 sqlite3ErrorMsg(pParse, 854 "cannot INSERT into generated column \"%s\"", 855 pTab->aCol[j].zCnName); 856 goto insert_cleanup; 857 } 858 #endif 859 break; 860 } 861 } 862 if( j>=pTab->nCol ){ 863 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 864 ipkColumn = i; 865 bIdListInOrder = 0; 866 }else{ 867 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 868 pTabList->a, pColumn->a[i].zName); 869 pParse->checkSchema = 1; 870 goto insert_cleanup; 871 } 872 } 873 } 874 } 875 876 /* Figure out how many columns of data are supplied. If the data 877 ** is coming from a SELECT statement, then generate a co-routine that 878 ** produces a single row of the SELECT on each invocation. The 879 ** co-routine is the common header to the 3rd and 4th templates. 880 */ 881 if( pSelect ){ 882 /* Data is coming from a SELECT or from a multi-row VALUES clause. 883 ** Generate a co-routine to run the SELECT. */ 884 int regYield; /* Register holding co-routine entry-point */ 885 int addrTop; /* Top of the co-routine */ 886 int rc; /* Result code */ 887 888 regYield = ++pParse->nMem; 889 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 890 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 891 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 892 dest.iSdst = bIdListInOrder ? regData : 0; 893 dest.nSdst = pTab->nCol; 894 rc = sqlite3Select(pParse, pSelect, &dest); 895 regFromSelect = dest.iSdst; 896 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 897 sqlite3VdbeEndCoroutine(v, regYield); 898 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 899 assert( pSelect->pEList ); 900 nColumn = pSelect->pEList->nExpr; 901 902 /* Set useTempTable to TRUE if the result of the SELECT statement 903 ** should be written into a temporary table (template 4). Set to 904 ** FALSE if each output row of the SELECT can be written directly into 905 ** the destination table (template 3). 906 ** 907 ** A temp table must be used if the table being updated is also one 908 ** of the tables being read by the SELECT statement. Also use a 909 ** temp table in the case of row triggers. 910 */ 911 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 912 useTempTable = 1; 913 } 914 915 if( useTempTable ){ 916 /* Invoke the coroutine to extract information from the SELECT 917 ** and add it to a transient table srcTab. The code generated 918 ** here is from the 4th template: 919 ** 920 ** B: open temp table 921 ** L: yield X, goto M at EOF 922 ** insert row from R..R+n into temp table 923 ** goto L 924 ** M: ... 925 */ 926 int regRec; /* Register to hold packed record */ 927 int regTempRowid; /* Register to hold temp table ROWID */ 928 int addrL; /* Label "L" */ 929 930 srcTab = pParse->nTab++; 931 regRec = sqlite3GetTempReg(pParse); 932 regTempRowid = sqlite3GetTempReg(pParse); 933 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 934 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 935 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 936 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 937 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 938 sqlite3VdbeGoto(v, addrL); 939 sqlite3VdbeJumpHere(v, addrL); 940 sqlite3ReleaseTempReg(pParse, regRec); 941 sqlite3ReleaseTempReg(pParse, regTempRowid); 942 } 943 }else{ 944 /* This is the case if the data for the INSERT is coming from a 945 ** single-row VALUES clause 946 */ 947 NameContext sNC; 948 memset(&sNC, 0, sizeof(sNC)); 949 sNC.pParse = pParse; 950 srcTab = -1; 951 assert( useTempTable==0 ); 952 if( pList ){ 953 nColumn = pList->nExpr; 954 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 955 goto insert_cleanup; 956 } 957 }else{ 958 nColumn = 0; 959 } 960 } 961 962 /* If there is no IDLIST term but the table has an integer primary 963 ** key, the set the ipkColumn variable to the integer primary key 964 ** column index in the original table definition. 965 */ 966 if( pColumn==0 && nColumn>0 ){ 967 ipkColumn = pTab->iPKey; 968 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 969 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 970 testcase( pTab->tabFlags & TF_HasVirtual ); 971 testcase( pTab->tabFlags & TF_HasStored ); 972 for(i=ipkColumn-1; i>=0; i--){ 973 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 974 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 975 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 976 ipkColumn--; 977 } 978 } 979 } 980 #endif 981 982 /* Make sure the number of columns in the source data matches the number 983 ** of columns to be inserted into the table. 984 */ 985 assert( TF_HasHidden==COLFLAG_HIDDEN ); 986 assert( TF_HasGenerated==COLFLAG_GENERATED ); 987 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 988 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 989 for(i=0; i<pTab->nCol; i++){ 990 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 991 } 992 } 993 if( nColumn!=(pTab->nCol-nHidden) ){ 994 sqlite3ErrorMsg(pParse, 995 "table %S has %d columns but %d values were supplied", 996 pTabList->a, pTab->nCol-nHidden, nColumn); 997 goto insert_cleanup; 998 } 999 } 1000 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1001 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1002 goto insert_cleanup; 1003 } 1004 1005 /* Initialize the count of rows to be inserted 1006 */ 1007 if( (db->flags & SQLITE_CountRows)!=0 1008 && !pParse->nested 1009 && !pParse->pTriggerTab 1010 && !pParse->bReturning 1011 ){ 1012 regRowCount = ++pParse->nMem; 1013 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1014 } 1015 1016 /* If this is not a view, open the table and and all indices */ 1017 if( !isView ){ 1018 int nIdx; 1019 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1020 &iDataCur, &iIdxCur); 1021 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1022 if( aRegIdx==0 ){ 1023 goto insert_cleanup; 1024 } 1025 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1026 assert( pIdx ); 1027 aRegIdx[i] = ++pParse->nMem; 1028 pParse->nMem += pIdx->nColumn; 1029 } 1030 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1031 } 1032 #ifndef SQLITE_OMIT_UPSERT 1033 if( pUpsert ){ 1034 Upsert *pNx; 1035 if( IsVirtual(pTab) ){ 1036 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1037 pTab->zName); 1038 goto insert_cleanup; 1039 } 1040 if( IsView(pTab) ){ 1041 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1042 goto insert_cleanup; 1043 } 1044 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1045 goto insert_cleanup; 1046 } 1047 pTabList->a[0].iCursor = iDataCur; 1048 pNx = pUpsert; 1049 do{ 1050 pNx->pUpsertSrc = pTabList; 1051 pNx->regData = regData; 1052 pNx->iDataCur = iDataCur; 1053 pNx->iIdxCur = iIdxCur; 1054 if( pNx->pUpsertTarget ){ 1055 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1056 goto insert_cleanup; 1057 } 1058 } 1059 pNx = pNx->pNextUpsert; 1060 }while( pNx!=0 ); 1061 } 1062 #endif 1063 1064 1065 /* This is the top of the main insertion loop */ 1066 if( useTempTable ){ 1067 /* This block codes the top of loop only. The complete loop is the 1068 ** following pseudocode (template 4): 1069 ** 1070 ** rewind temp table, if empty goto D 1071 ** C: loop over rows of intermediate table 1072 ** transfer values form intermediate table into <table> 1073 ** end loop 1074 ** D: ... 1075 */ 1076 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1077 addrCont = sqlite3VdbeCurrentAddr(v); 1078 }else if( pSelect ){ 1079 /* This block codes the top of loop only. The complete loop is the 1080 ** following pseudocode (template 3): 1081 ** 1082 ** C: yield X, at EOF goto D 1083 ** insert the select result into <table> from R..R+n 1084 ** goto C 1085 ** D: ... 1086 */ 1087 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1088 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1089 VdbeCoverage(v); 1090 if( ipkColumn>=0 ){ 1091 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1092 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1093 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1094 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1095 } 1096 } 1097 1098 /* Compute data for ordinary columns of the new entry. Values 1099 ** are written in storage order into registers starting with regData. 1100 ** Only ordinary columns are computed in this loop. The rowid 1101 ** (if there is one) is computed later and generated columns are 1102 ** computed after the rowid since they might depend on the value 1103 ** of the rowid. 1104 */ 1105 nHidden = 0; 1106 iRegStore = regData; assert( regData==regRowid+1 ); 1107 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1108 int k; 1109 u32 colFlags; 1110 assert( i>=nHidden ); 1111 if( i==pTab->iPKey ){ 1112 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1113 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1114 ** using excess space. The file format definition requires this extra 1115 ** NULL - we cannot optimize further by skipping the column completely */ 1116 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1117 continue; 1118 } 1119 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1120 nHidden++; 1121 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1122 /* Virtual columns do not participate in OP_MakeRecord. So back up 1123 ** iRegStore by one slot to compensate for the iRegStore++ in the 1124 ** outer for() loop */ 1125 iRegStore--; 1126 continue; 1127 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1128 /* Stored columns are computed later. But if there are BEFORE 1129 ** triggers, the slots used for stored columns will be OP_Copy-ed 1130 ** to a second block of registers, so the register needs to be 1131 ** initialized to NULL to avoid an uninitialized register read */ 1132 if( tmask & TRIGGER_BEFORE ){ 1133 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1134 } 1135 continue; 1136 }else if( pColumn==0 ){ 1137 /* Hidden columns that are not explicitly named in the INSERT 1138 ** get there default value */ 1139 sqlite3ExprCodeFactorable(pParse, 1140 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1141 iRegStore); 1142 continue; 1143 } 1144 } 1145 if( pColumn ){ 1146 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1147 if( j>=pColumn->nId ){ 1148 /* A column not named in the insert column list gets its 1149 ** default value */ 1150 sqlite3ExprCodeFactorable(pParse, 1151 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1152 iRegStore); 1153 continue; 1154 } 1155 k = j; 1156 }else if( nColumn==0 ){ 1157 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1158 sqlite3ExprCodeFactorable(pParse, 1159 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1160 iRegStore); 1161 continue; 1162 }else{ 1163 k = i - nHidden; 1164 } 1165 1166 if( useTempTable ){ 1167 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1168 }else if( pSelect ){ 1169 if( regFromSelect!=regData ){ 1170 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1171 } 1172 }else{ 1173 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1174 } 1175 } 1176 1177 1178 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1179 */ 1180 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1181 if( tmask & TRIGGER_BEFORE ){ 1182 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1183 1184 /* build the NEW.* reference row. Note that if there is an INTEGER 1185 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1186 ** translated into a unique ID for the row. But on a BEFORE trigger, 1187 ** we do not know what the unique ID will be (because the insert has 1188 ** not happened yet) so we substitute a rowid of -1 1189 */ 1190 if( ipkColumn<0 ){ 1191 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1192 }else{ 1193 int addr1; 1194 assert( !withoutRowid ); 1195 if( useTempTable ){ 1196 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1197 }else{ 1198 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1199 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1200 } 1201 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1202 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1203 sqlite3VdbeJumpHere(v, addr1); 1204 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1205 } 1206 1207 /* Copy the new data already generated. */ 1208 assert( pTab->nNVCol>0 ); 1209 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1210 1211 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1212 /* Compute the new value for generated columns after all other 1213 ** columns have already been computed. This must be done after 1214 ** computing the ROWID in case one of the generated columns 1215 ** refers to the ROWID. */ 1216 if( pTab->tabFlags & TF_HasGenerated ){ 1217 testcase( pTab->tabFlags & TF_HasVirtual ); 1218 testcase( pTab->tabFlags & TF_HasStored ); 1219 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1220 } 1221 #endif 1222 1223 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1224 ** do not attempt any conversions before assembling the record. 1225 ** If this is a real table, attempt conversions as required by the 1226 ** table column affinities. 1227 */ 1228 if( !isView ){ 1229 sqlite3TableAffinity(v, pTab, regCols+1); 1230 } 1231 1232 /* Fire BEFORE or INSTEAD OF triggers */ 1233 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1234 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1235 1236 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1237 } 1238 1239 if( !isView ){ 1240 if( IsVirtual(pTab) ){ 1241 /* The row that the VUpdate opcode will delete: none */ 1242 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1243 } 1244 if( ipkColumn>=0 ){ 1245 /* Compute the new rowid */ 1246 if( useTempTable ){ 1247 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1248 }else if( pSelect ){ 1249 /* Rowid already initialized at tag-20191021-001 */ 1250 }else{ 1251 Expr *pIpk = pList->a[ipkColumn].pExpr; 1252 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1253 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1254 appendFlag = 1; 1255 }else{ 1256 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1257 } 1258 } 1259 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1260 ** to generate a unique primary key value. 1261 */ 1262 if( !appendFlag ){ 1263 int addr1; 1264 if( !IsVirtual(pTab) ){ 1265 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1266 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1267 sqlite3VdbeJumpHere(v, addr1); 1268 }else{ 1269 addr1 = sqlite3VdbeCurrentAddr(v); 1270 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1271 } 1272 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1273 } 1274 }else if( IsVirtual(pTab) || withoutRowid ){ 1275 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1276 }else{ 1277 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1278 appendFlag = 1; 1279 } 1280 autoIncStep(pParse, regAutoinc, regRowid); 1281 1282 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1283 /* Compute the new value for generated columns after all other 1284 ** columns have already been computed. This must be done after 1285 ** computing the ROWID in case one of the generated columns 1286 ** is derived from the INTEGER PRIMARY KEY. */ 1287 if( pTab->tabFlags & TF_HasGenerated ){ 1288 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1289 } 1290 #endif 1291 1292 /* Generate code to check constraints and generate index keys and 1293 ** do the insertion. 1294 */ 1295 #ifndef SQLITE_OMIT_VIRTUALTABLE 1296 if( IsVirtual(pTab) ){ 1297 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1298 sqlite3VtabMakeWritable(pParse, pTab); 1299 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1300 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1301 sqlite3MayAbort(pParse); 1302 }else 1303 #endif 1304 { 1305 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1306 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1307 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1308 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1309 ); 1310 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1311 1312 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1313 ** constraints or (b) there are no triggers and this table is not a 1314 ** parent table in a foreign key constraint. It is safe to set the 1315 ** flag in the second case as if any REPLACE constraint is hit, an 1316 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1317 ** cursor that is disturbed. And these instructions both clear the 1318 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1319 ** functionality. */ 1320 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1321 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1322 regIns, aRegIdx, 0, appendFlag, bUseSeek 1323 ); 1324 } 1325 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1326 }else if( pParse->bReturning ){ 1327 /* If there is a RETURNING clause, populate the rowid register with 1328 ** constant value -1, in case one or more of the returned expressions 1329 ** refer to the "rowid" of the view. */ 1330 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1331 #endif 1332 } 1333 1334 /* Update the count of rows that are inserted 1335 */ 1336 if( regRowCount ){ 1337 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1338 } 1339 1340 if( pTrigger ){ 1341 /* Code AFTER triggers */ 1342 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1343 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1344 } 1345 1346 /* The bottom of the main insertion loop, if the data source 1347 ** is a SELECT statement. 1348 */ 1349 sqlite3VdbeResolveLabel(v, endOfLoop); 1350 if( useTempTable ){ 1351 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1352 sqlite3VdbeJumpHere(v, addrInsTop); 1353 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1354 }else if( pSelect ){ 1355 sqlite3VdbeGoto(v, addrCont); 1356 #ifdef SQLITE_DEBUG 1357 /* If we are jumping back to an OP_Yield that is preceded by an 1358 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1359 ** OP_ReleaseReg will be included in the loop. */ 1360 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1361 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1362 sqlite3VdbeChangeP5(v, 1); 1363 } 1364 #endif 1365 sqlite3VdbeJumpHere(v, addrInsTop); 1366 } 1367 1368 #ifndef SQLITE_OMIT_XFER_OPT 1369 insert_end: 1370 #endif /* SQLITE_OMIT_XFER_OPT */ 1371 /* Update the sqlite_sequence table by storing the content of the 1372 ** maximum rowid counter values recorded while inserting into 1373 ** autoincrement tables. 1374 */ 1375 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1376 sqlite3AutoincrementEnd(pParse); 1377 } 1378 1379 /* 1380 ** Return the number of rows inserted. If this routine is 1381 ** generating code because of a call to sqlite3NestedParse(), do not 1382 ** invoke the callback function. 1383 */ 1384 if( regRowCount ){ 1385 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1386 } 1387 1388 insert_cleanup: 1389 sqlite3SrcListDelete(db, pTabList); 1390 sqlite3ExprListDelete(db, pList); 1391 sqlite3UpsertDelete(db, pUpsert); 1392 sqlite3SelectDelete(db, pSelect); 1393 sqlite3IdListDelete(db, pColumn); 1394 sqlite3DbFree(db, aRegIdx); 1395 } 1396 1397 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1398 ** they may interfere with compilation of other functions in this file 1399 ** (or in another file, if this file becomes part of the amalgamation). */ 1400 #ifdef isView 1401 #undef isView 1402 #endif 1403 #ifdef pTrigger 1404 #undef pTrigger 1405 #endif 1406 #ifdef tmask 1407 #undef tmask 1408 #endif 1409 1410 /* 1411 ** Meanings of bits in of pWalker->eCode for 1412 ** sqlite3ExprReferencesUpdatedColumn() 1413 */ 1414 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1415 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1416 1417 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1418 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1419 ** expression node references any of the 1420 ** columns that are being modifed by an UPDATE statement. 1421 */ 1422 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1423 if( pExpr->op==TK_COLUMN ){ 1424 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1425 if( pExpr->iColumn>=0 ){ 1426 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1427 pWalker->eCode |= CKCNSTRNT_COLUMN; 1428 } 1429 }else{ 1430 pWalker->eCode |= CKCNSTRNT_ROWID; 1431 } 1432 } 1433 return WRC_Continue; 1434 } 1435 1436 /* 1437 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1438 ** only columns that are modified by the UPDATE are those for which 1439 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1440 ** 1441 ** Return true if CHECK constraint pExpr uses any of the 1442 ** changing columns (or the rowid if it is changing). In other words, 1443 ** return true if this CHECK constraint must be validated for 1444 ** the new row in the UPDATE statement. 1445 ** 1446 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1447 ** The operation of this routine is the same - return true if an only if 1448 ** the expression uses one or more of columns identified by the second and 1449 ** third arguments. 1450 */ 1451 int sqlite3ExprReferencesUpdatedColumn( 1452 Expr *pExpr, /* The expression to be checked */ 1453 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1454 int chngRowid /* True if UPDATE changes the rowid */ 1455 ){ 1456 Walker w; 1457 memset(&w, 0, sizeof(w)); 1458 w.eCode = 0; 1459 w.xExprCallback = checkConstraintExprNode; 1460 w.u.aiCol = aiChng; 1461 sqlite3WalkExpr(&w, pExpr); 1462 if( !chngRowid ){ 1463 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1464 w.eCode &= ~CKCNSTRNT_ROWID; 1465 } 1466 testcase( w.eCode==0 ); 1467 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1468 testcase( w.eCode==CKCNSTRNT_ROWID ); 1469 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1470 return w.eCode!=0; 1471 } 1472 1473 /* 1474 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1475 ** the indexes of a table in the order provided in the Table->pIndex list. 1476 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1477 ** the indexes in a different order. The following data structures accomplish 1478 ** this. 1479 ** 1480 ** The IndexIterator object is used to walk through all of the indexes 1481 ** of a table in either Index.pNext order, or in some other order established 1482 ** by an array of IndexListTerm objects. 1483 */ 1484 typedef struct IndexListTerm IndexListTerm; 1485 typedef struct IndexIterator IndexIterator; 1486 struct IndexIterator { 1487 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1488 int i; /* Index of the current item from the list */ 1489 union { 1490 struct { /* Use this object for eType==0: A Index.pNext list */ 1491 Index *pIdx; /* The current Index */ 1492 } lx; 1493 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1494 int nIdx; /* Size of the array */ 1495 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1496 } ax; 1497 } u; 1498 }; 1499 1500 /* When IndexIterator.eType==1, then each index is an array of instances 1501 ** of the following object 1502 */ 1503 struct IndexListTerm { 1504 Index *p; /* The index */ 1505 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1506 }; 1507 1508 /* Return the first index on the list */ 1509 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1510 assert( pIter->i==0 ); 1511 if( pIter->eType ){ 1512 *pIx = pIter->u.ax.aIdx[0].ix; 1513 return pIter->u.ax.aIdx[0].p; 1514 }else{ 1515 *pIx = 0; 1516 return pIter->u.lx.pIdx; 1517 } 1518 } 1519 1520 /* Return the next index from the list. Return NULL when out of indexes */ 1521 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1522 if( pIter->eType ){ 1523 int i = ++pIter->i; 1524 if( i>=pIter->u.ax.nIdx ){ 1525 *pIx = i; 1526 return 0; 1527 } 1528 *pIx = pIter->u.ax.aIdx[i].ix; 1529 return pIter->u.ax.aIdx[i].p; 1530 }else{ 1531 ++(*pIx); 1532 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1533 return pIter->u.lx.pIdx; 1534 } 1535 } 1536 1537 /* 1538 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1539 ** on table pTab. 1540 ** 1541 ** The regNewData parameter is the first register in a range that contains 1542 ** the data to be inserted or the data after the update. There will be 1543 ** pTab->nCol+1 registers in this range. The first register (the one 1544 ** that regNewData points to) will contain the new rowid, or NULL in the 1545 ** case of a WITHOUT ROWID table. The second register in the range will 1546 ** contain the content of the first table column. The third register will 1547 ** contain the content of the second table column. And so forth. 1548 ** 1549 ** The regOldData parameter is similar to regNewData except that it contains 1550 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1551 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1552 ** checking regOldData for zero. 1553 ** 1554 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1555 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1556 ** might be modified by the UPDATE. If pkChng is false, then the key of 1557 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1558 ** 1559 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1560 ** was explicitly specified as part of the INSERT statement. If pkChng 1561 ** is zero, it means that the either rowid is computed automatically or 1562 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1563 ** pkChng will only be true if the INSERT statement provides an integer 1564 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1565 ** 1566 ** The code generated by this routine will store new index entries into 1567 ** registers identified by aRegIdx[]. No index entry is created for 1568 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1569 ** the same as the order of indices on the linked list of indices 1570 ** at pTab->pIndex. 1571 ** 1572 ** (2019-05-07) The generated code also creates a new record for the 1573 ** main table, if pTab is a rowid table, and stores that record in the 1574 ** register identified by aRegIdx[nIdx] - in other words in the first 1575 ** entry of aRegIdx[] past the last index. It is important that the 1576 ** record be generated during constraint checks to avoid affinity changes 1577 ** to the register content that occur after constraint checks but before 1578 ** the new record is inserted. 1579 ** 1580 ** The caller must have already opened writeable cursors on the main 1581 ** table and all applicable indices (that is to say, all indices for which 1582 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1583 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1584 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1585 ** for the first index in the pTab->pIndex list. Cursors for other indices 1586 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1587 ** 1588 ** This routine also generates code to check constraints. NOT NULL, 1589 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1590 ** then the appropriate action is performed. There are five possible 1591 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1592 ** 1593 ** Constraint type Action What Happens 1594 ** --------------- ---------- ---------------------------------------- 1595 ** any ROLLBACK The current transaction is rolled back and 1596 ** sqlite3_step() returns immediately with a 1597 ** return code of SQLITE_CONSTRAINT. 1598 ** 1599 ** any ABORT Back out changes from the current command 1600 ** only (do not do a complete rollback) then 1601 ** cause sqlite3_step() to return immediately 1602 ** with SQLITE_CONSTRAINT. 1603 ** 1604 ** any FAIL Sqlite3_step() returns immediately with a 1605 ** return code of SQLITE_CONSTRAINT. The 1606 ** transaction is not rolled back and any 1607 ** changes to prior rows are retained. 1608 ** 1609 ** any IGNORE The attempt in insert or update the current 1610 ** row is skipped, without throwing an error. 1611 ** Processing continues with the next row. 1612 ** (There is an immediate jump to ignoreDest.) 1613 ** 1614 ** NOT NULL REPLACE The NULL value is replace by the default 1615 ** value for that column. If the default value 1616 ** is NULL, the action is the same as ABORT. 1617 ** 1618 ** UNIQUE REPLACE The other row that conflicts with the row 1619 ** being inserted is removed. 1620 ** 1621 ** CHECK REPLACE Illegal. The results in an exception. 1622 ** 1623 ** Which action to take is determined by the overrideError parameter. 1624 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1625 ** is used. Or if pParse->onError==OE_Default then the onError value 1626 ** for the constraint is used. 1627 */ 1628 void sqlite3GenerateConstraintChecks( 1629 Parse *pParse, /* The parser context */ 1630 Table *pTab, /* The table being inserted or updated */ 1631 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1632 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1633 int iIdxCur, /* First index cursor */ 1634 int regNewData, /* First register in a range holding values to insert */ 1635 int regOldData, /* Previous content. 0 for INSERTs */ 1636 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1637 u8 overrideError, /* Override onError to this if not OE_Default */ 1638 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1639 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1640 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1641 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1642 ){ 1643 Vdbe *v; /* VDBE under constrution */ 1644 Index *pIdx; /* Pointer to one of the indices */ 1645 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1646 sqlite3 *db; /* Database connection */ 1647 int i; /* loop counter */ 1648 int ix; /* Index loop counter */ 1649 int nCol; /* Number of columns */ 1650 int onError; /* Conflict resolution strategy */ 1651 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1652 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1653 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1654 u8 isUpdate; /* True if this is an UPDATE operation */ 1655 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1656 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1657 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1658 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1659 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1660 /* Variables associated with retesting uniqueness constraints after 1661 ** replace triggers fire have run */ 1662 int regTrigCnt; /* Register used to count replace trigger invocations */ 1663 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1664 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1665 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1666 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1667 IndexIterator sIdxIter; /* Index iterator */ 1668 1669 isUpdate = regOldData!=0; 1670 db = pParse->db; 1671 v = pParse->pVdbe; 1672 assert( v!=0 ); 1673 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1674 nCol = pTab->nCol; 1675 1676 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1677 ** normal rowid tables. nPkField is the number of key fields in the 1678 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1679 ** number of fields in the true primary key of the table. */ 1680 if( HasRowid(pTab) ){ 1681 pPk = 0; 1682 nPkField = 1; 1683 }else{ 1684 pPk = sqlite3PrimaryKeyIndex(pTab); 1685 nPkField = pPk->nKeyCol; 1686 } 1687 1688 /* Record that this module has started */ 1689 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1690 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1691 1692 /* Test all NOT NULL constraints. 1693 */ 1694 if( pTab->tabFlags & TF_HasNotNull ){ 1695 int b2ndPass = 0; /* True if currently running 2nd pass */ 1696 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1697 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1698 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1699 for(i=0; i<nCol; i++){ 1700 int iReg; /* Register holding column value */ 1701 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1702 int isGenerated; /* non-zero if column is generated */ 1703 onError = pCol->notNull; 1704 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1705 if( i==pTab->iPKey ){ 1706 continue; /* ROWID is never NULL */ 1707 } 1708 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1709 if( isGenerated && !b2ndPass ){ 1710 nGenerated++; 1711 continue; /* Generated columns processed on 2nd pass */ 1712 } 1713 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1714 /* Do not check NOT NULL on columns that do not change */ 1715 continue; 1716 } 1717 if( overrideError!=OE_Default ){ 1718 onError = overrideError; 1719 }else if( onError==OE_Default ){ 1720 onError = OE_Abort; 1721 } 1722 if( onError==OE_Replace ){ 1723 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1724 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1725 ){ 1726 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1727 testcase( pCol->colFlags & COLFLAG_STORED ); 1728 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1729 onError = OE_Abort; 1730 }else{ 1731 assert( !isGenerated ); 1732 } 1733 }else if( b2ndPass && !isGenerated ){ 1734 continue; 1735 } 1736 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1737 || onError==OE_Ignore || onError==OE_Replace ); 1738 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1739 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1740 switch( onError ){ 1741 case OE_Replace: { 1742 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1743 VdbeCoverage(v); 1744 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1745 nSeenReplace++; 1746 sqlite3ExprCodeCopy(pParse, 1747 sqlite3ColumnExpr(pTab, pCol), iReg); 1748 sqlite3VdbeJumpHere(v, addr1); 1749 break; 1750 } 1751 case OE_Abort: 1752 sqlite3MayAbort(pParse); 1753 /* no break */ deliberate_fall_through 1754 case OE_Rollback: 1755 case OE_Fail: { 1756 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1757 pCol->zCnName); 1758 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1759 onError, iReg); 1760 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1761 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1762 VdbeCoverage(v); 1763 break; 1764 } 1765 default: { 1766 assert( onError==OE_Ignore ); 1767 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1768 VdbeCoverage(v); 1769 break; 1770 } 1771 } /* end switch(onError) */ 1772 } /* end loop i over columns */ 1773 if( nGenerated==0 && nSeenReplace==0 ){ 1774 /* If there are no generated columns with NOT NULL constraints 1775 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1776 ** pass is sufficient */ 1777 break; 1778 } 1779 if( b2ndPass ) break; /* Never need more than 2 passes */ 1780 b2ndPass = 1; 1781 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1782 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1783 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1784 ** first pass, recomputed values for all generated columns, as 1785 ** those values might depend on columns affected by the REPLACE. 1786 */ 1787 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1788 } 1789 #endif 1790 } /* end of 2-pass loop */ 1791 } /* end if( has-not-null-constraints ) */ 1792 1793 /* Test all CHECK constraints 1794 */ 1795 #ifndef SQLITE_OMIT_CHECK 1796 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1797 ExprList *pCheck = pTab->pCheck; 1798 pParse->iSelfTab = -(regNewData+1); 1799 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1800 for(i=0; i<pCheck->nExpr; i++){ 1801 int allOk; 1802 Expr *pCopy; 1803 Expr *pExpr = pCheck->a[i].pExpr; 1804 if( aiChng 1805 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1806 ){ 1807 /* The check constraints do not reference any of the columns being 1808 ** updated so there is no point it verifying the check constraint */ 1809 continue; 1810 } 1811 if( bAffinityDone==0 ){ 1812 sqlite3TableAffinity(v, pTab, regNewData+1); 1813 bAffinityDone = 1; 1814 } 1815 allOk = sqlite3VdbeMakeLabel(pParse); 1816 sqlite3VdbeVerifyAbortable(v, onError); 1817 pCopy = sqlite3ExprDup(db, pExpr, 0); 1818 if( !db->mallocFailed ){ 1819 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1820 } 1821 sqlite3ExprDelete(db, pCopy); 1822 if( onError==OE_Ignore ){ 1823 sqlite3VdbeGoto(v, ignoreDest); 1824 }else{ 1825 char *zName = pCheck->a[i].zEName; 1826 assert( zName!=0 || pParse->db->mallocFailed ); 1827 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1828 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1829 onError, zName, P4_TRANSIENT, 1830 P5_ConstraintCheck); 1831 } 1832 sqlite3VdbeResolveLabel(v, allOk); 1833 } 1834 pParse->iSelfTab = 0; 1835 } 1836 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1837 1838 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1839 ** order: 1840 ** 1841 ** (1) OE_Update 1842 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1843 ** (3) OE_Replace 1844 ** 1845 ** OE_Fail and OE_Ignore must happen before any changes are made. 1846 ** OE_Update guarantees that only a single row will change, so it 1847 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1848 ** could happen in any order, but they are grouped up front for 1849 ** convenience. 1850 ** 1851 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1852 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1853 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1854 ** constraint before any others, so it had to be moved. 1855 ** 1856 ** Constraint checking code is generated in this order: 1857 ** (A) The rowid constraint 1858 ** (B) Unique index constraints that do not have OE_Replace as their 1859 ** default conflict resolution strategy 1860 ** (C) Unique index that do use OE_Replace by default. 1861 ** 1862 ** The ordering of (2) and (3) is accomplished by making sure the linked 1863 ** list of indexes attached to a table puts all OE_Replace indexes last 1864 ** in the list. See sqlite3CreateIndex() for where that happens. 1865 */ 1866 sIdxIter.eType = 0; 1867 sIdxIter.i = 0; 1868 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1869 sIdxIter.u.lx.pIdx = pTab->pIndex; 1870 if( pUpsert ){ 1871 if( pUpsert->pUpsertTarget==0 ){ 1872 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1873 assert( pUpsert->pNextUpsert==0 ); 1874 if( pUpsert->isDoUpdate==0 ){ 1875 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1876 ** Make all unique constraint resolution be OE_Ignore */ 1877 overrideError = OE_Ignore; 1878 pUpsert = 0; 1879 }else{ 1880 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1881 overrideError = OE_Update; 1882 } 1883 }else if( pTab->pIndex!=0 ){ 1884 /* Otherwise, we'll need to run the IndexListTerm array version of the 1885 ** iterator to ensure that all of the ON CONFLICT conditions are 1886 ** checked first and in order. */ 1887 int nIdx, jj; 1888 u64 nByte; 1889 Upsert *pTerm; 1890 u8 *bUsed; 1891 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1892 assert( aRegIdx[nIdx]>0 ); 1893 } 1894 sIdxIter.eType = 1; 1895 sIdxIter.u.ax.nIdx = nIdx; 1896 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1897 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1898 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1899 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1900 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1901 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1902 if( pTerm->pUpsertTarget==0 ) break; 1903 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1904 jj = 0; 1905 pIdx = pTab->pIndex; 1906 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1907 pIdx = pIdx->pNext; 1908 jj++; 1909 } 1910 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1911 bUsed[jj] = 1; 1912 sIdxIter.u.ax.aIdx[i].p = pIdx; 1913 sIdxIter.u.ax.aIdx[i].ix = jj; 1914 i++; 1915 } 1916 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1917 if( bUsed[jj] ) continue; 1918 sIdxIter.u.ax.aIdx[i].p = pIdx; 1919 sIdxIter.u.ax.aIdx[i].ix = jj; 1920 i++; 1921 } 1922 assert( i==nIdx ); 1923 } 1924 } 1925 1926 /* Determine if it is possible that triggers (either explicitly coded 1927 ** triggers or FK resolution actions) might run as a result of deletes 1928 ** that happen when OE_Replace conflict resolution occurs. (Call these 1929 ** "replace triggers".) If any replace triggers run, we will need to 1930 ** recheck all of the uniqueness constraints after they have all run. 1931 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1932 ** 1933 ** If replace triggers are a possibility, then 1934 ** 1935 ** (1) Allocate register regTrigCnt and initialize it to zero. 1936 ** That register will count the number of replace triggers that 1937 ** fire. Constraint recheck only occurs if the number is positive. 1938 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1939 ** (3) Initialize addrRecheck and lblRecheckOk 1940 ** 1941 ** The uniqueness rechecking code will create a series of tests to run 1942 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1943 ** used to link together these tests which are separated from each other 1944 ** in the generate bytecode. 1945 */ 1946 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1947 /* There are not DELETE triggers nor FK constraints. No constraint 1948 ** rechecks are needed. */ 1949 pTrigger = 0; 1950 regTrigCnt = 0; 1951 }else{ 1952 if( db->flags&SQLITE_RecTriggers ){ 1953 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1954 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1955 }else{ 1956 pTrigger = 0; 1957 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1958 } 1959 if( regTrigCnt ){ 1960 /* Replace triggers might exist. Allocate the counter and 1961 ** initialize it to zero. */ 1962 regTrigCnt = ++pParse->nMem; 1963 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1964 VdbeComment((v, "trigger count")); 1965 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1966 addrRecheck = lblRecheckOk; 1967 } 1968 } 1969 1970 /* If rowid is changing, make sure the new rowid does not previously 1971 ** exist in the table. 1972 */ 1973 if( pkChng && pPk==0 ){ 1974 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1975 1976 /* Figure out what action to take in case of a rowid collision */ 1977 onError = pTab->keyConf; 1978 if( overrideError!=OE_Default ){ 1979 onError = overrideError; 1980 }else if( onError==OE_Default ){ 1981 onError = OE_Abort; 1982 } 1983 1984 /* figure out whether or not upsert applies in this case */ 1985 if( pUpsert ){ 1986 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1987 if( pUpsertClause!=0 ){ 1988 if( pUpsertClause->isDoUpdate==0 ){ 1989 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1990 }else{ 1991 onError = OE_Update; /* DO UPDATE */ 1992 } 1993 } 1994 if( pUpsertClause!=pUpsert ){ 1995 /* The first ON CONFLICT clause has a conflict target other than 1996 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1997 ** and then come back here and deal with the IPK afterwards */ 1998 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1999 } 2000 } 2001 2002 /* If the response to a rowid conflict is REPLACE but the response 2003 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2004 ** to defer the running of the rowid conflict checking until after 2005 ** the UNIQUE constraints have run. 2006 */ 2007 if( onError==OE_Replace /* IPK rule is REPLACE */ 2008 && onError!=overrideError /* Rules for other constraints are different */ 2009 && pTab->pIndex /* There exist other constraints */ 2010 ){ 2011 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2012 VdbeComment((v, "defer IPK REPLACE until last")); 2013 } 2014 2015 if( isUpdate ){ 2016 /* pkChng!=0 does not mean that the rowid has changed, only that 2017 ** it might have changed. Skip the conflict logic below if the rowid 2018 ** is unchanged. */ 2019 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2020 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2021 VdbeCoverage(v); 2022 } 2023 2024 /* Check to see if the new rowid already exists in the table. Skip 2025 ** the following conflict logic if it does not. */ 2026 VdbeNoopComment((v, "uniqueness check for ROWID")); 2027 sqlite3VdbeVerifyAbortable(v, onError); 2028 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2029 VdbeCoverage(v); 2030 2031 switch( onError ){ 2032 default: { 2033 onError = OE_Abort; 2034 /* no break */ deliberate_fall_through 2035 } 2036 case OE_Rollback: 2037 case OE_Abort: 2038 case OE_Fail: { 2039 testcase( onError==OE_Rollback ); 2040 testcase( onError==OE_Abort ); 2041 testcase( onError==OE_Fail ); 2042 sqlite3RowidConstraint(pParse, onError, pTab); 2043 break; 2044 } 2045 case OE_Replace: { 2046 /* If there are DELETE triggers on this table and the 2047 ** recursive-triggers flag is set, call GenerateRowDelete() to 2048 ** remove the conflicting row from the table. This will fire 2049 ** the triggers and remove both the table and index b-tree entries. 2050 ** 2051 ** Otherwise, if there are no triggers or the recursive-triggers 2052 ** flag is not set, but the table has one or more indexes, call 2053 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2054 ** only. The table b-tree entry will be replaced by the new entry 2055 ** when it is inserted. 2056 ** 2057 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2058 ** also invoke MultiWrite() to indicate that this VDBE may require 2059 ** statement rollback (if the statement is aborted after the delete 2060 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2061 ** but being more selective here allows statements like: 2062 ** 2063 ** REPLACE INTO t(rowid) VALUES($newrowid) 2064 ** 2065 ** to run without a statement journal if there are no indexes on the 2066 ** table. 2067 */ 2068 if( regTrigCnt ){ 2069 sqlite3MultiWrite(pParse); 2070 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2071 regNewData, 1, 0, OE_Replace, 1, -1); 2072 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2073 nReplaceTrig++; 2074 }else{ 2075 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2076 assert( HasRowid(pTab) ); 2077 /* This OP_Delete opcode fires the pre-update-hook only. It does 2078 ** not modify the b-tree. It is more efficient to let the coming 2079 ** OP_Insert replace the existing entry than it is to delete the 2080 ** existing entry and then insert a new one. */ 2081 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2082 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2083 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2084 if( pTab->pIndex ){ 2085 sqlite3MultiWrite(pParse); 2086 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2087 } 2088 } 2089 seenReplace = 1; 2090 break; 2091 } 2092 #ifndef SQLITE_OMIT_UPSERT 2093 case OE_Update: { 2094 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2095 /* no break */ deliberate_fall_through 2096 } 2097 #endif 2098 case OE_Ignore: { 2099 testcase( onError==OE_Ignore ); 2100 sqlite3VdbeGoto(v, ignoreDest); 2101 break; 2102 } 2103 } 2104 sqlite3VdbeResolveLabel(v, addrRowidOk); 2105 if( pUpsert && pUpsertClause!=pUpsert ){ 2106 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2107 }else if( ipkTop ){ 2108 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2109 sqlite3VdbeJumpHere(v, ipkTop-1); 2110 } 2111 } 2112 2113 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2114 ** index and making sure that duplicate entries do not already exist. 2115 ** Compute the revised record entries for indices as we go. 2116 ** 2117 ** This loop also handles the case of the PRIMARY KEY index for a 2118 ** WITHOUT ROWID table. 2119 */ 2120 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2121 pIdx; 2122 pIdx = indexIteratorNext(&sIdxIter, &ix) 2123 ){ 2124 int regIdx; /* Range of registers hold conent for pIdx */ 2125 int regR; /* Range of registers holding conflicting PK */ 2126 int iThisCur; /* Cursor for this UNIQUE index */ 2127 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2128 int addrConflictCk; /* First opcode in the conflict check logic */ 2129 2130 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2131 if( pUpsert ){ 2132 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2133 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2134 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2135 } 2136 } 2137 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2138 if( bAffinityDone==0 ){ 2139 sqlite3TableAffinity(v, pTab, regNewData+1); 2140 bAffinityDone = 1; 2141 } 2142 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2143 iThisCur = iIdxCur+ix; 2144 2145 2146 /* Skip partial indices for which the WHERE clause is not true */ 2147 if( pIdx->pPartIdxWhere ){ 2148 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2149 pParse->iSelfTab = -(regNewData+1); 2150 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2151 SQLITE_JUMPIFNULL); 2152 pParse->iSelfTab = 0; 2153 } 2154 2155 /* Create a record for this index entry as it should appear after 2156 ** the insert or update. Store that record in the aRegIdx[ix] register 2157 */ 2158 regIdx = aRegIdx[ix]+1; 2159 for(i=0; i<pIdx->nColumn; i++){ 2160 int iField = pIdx->aiColumn[i]; 2161 int x; 2162 if( iField==XN_EXPR ){ 2163 pParse->iSelfTab = -(regNewData+1); 2164 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2165 pParse->iSelfTab = 0; 2166 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2167 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2168 x = regNewData; 2169 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2170 VdbeComment((v, "rowid")); 2171 }else{ 2172 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2173 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2174 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2175 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2176 } 2177 } 2178 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2179 VdbeComment((v, "for %s", pIdx->zName)); 2180 #ifdef SQLITE_ENABLE_NULL_TRIM 2181 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2182 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2183 } 2184 #endif 2185 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2186 2187 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2188 ** of a WITHOUT ROWID table and there has been no change the 2189 ** primary key, then no collision is possible. The collision detection 2190 ** logic below can all be skipped. */ 2191 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2192 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2193 continue; 2194 } 2195 2196 /* Find out what action to take in case there is a uniqueness conflict */ 2197 onError = pIdx->onError; 2198 if( onError==OE_None ){ 2199 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2200 continue; /* pIdx is not a UNIQUE index */ 2201 } 2202 if( overrideError!=OE_Default ){ 2203 onError = overrideError; 2204 }else if( onError==OE_Default ){ 2205 onError = OE_Abort; 2206 } 2207 2208 /* Figure out if the upsert clause applies to this index */ 2209 if( pUpsertClause ){ 2210 if( pUpsertClause->isDoUpdate==0 ){ 2211 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2212 }else{ 2213 onError = OE_Update; /* DO UPDATE */ 2214 } 2215 } 2216 2217 /* Collision detection may be omitted if all of the following are true: 2218 ** (1) The conflict resolution algorithm is REPLACE 2219 ** (2) The table is a WITHOUT ROWID table 2220 ** (3) There are no secondary indexes on the table 2221 ** (4) No delete triggers need to be fired if there is a conflict 2222 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2223 ** 2224 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2225 ** must be explicitly deleted in order to ensure any pre-update hook 2226 ** is invoked. */ 2227 assert( IsOrdinaryTable(pTab) ); 2228 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2229 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2230 && pPk==pIdx /* Condition 2 */ 2231 && onError==OE_Replace /* Condition 1 */ 2232 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2233 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2234 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2235 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2236 ){ 2237 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2238 continue; 2239 } 2240 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2241 2242 /* Check to see if the new index entry will be unique */ 2243 sqlite3VdbeVerifyAbortable(v, onError); 2244 addrConflictCk = 2245 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2246 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2247 2248 /* Generate code to handle collisions */ 2249 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2250 if( isUpdate || onError==OE_Replace ){ 2251 if( HasRowid(pTab) ){ 2252 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2253 /* Conflict only if the rowid of the existing index entry 2254 ** is different from old-rowid */ 2255 if( isUpdate ){ 2256 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2257 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2258 VdbeCoverage(v); 2259 } 2260 }else{ 2261 int x; 2262 /* Extract the PRIMARY KEY from the end of the index entry and 2263 ** store it in registers regR..regR+nPk-1 */ 2264 if( pIdx!=pPk ){ 2265 for(i=0; i<pPk->nKeyCol; i++){ 2266 assert( pPk->aiColumn[i]>=0 ); 2267 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2268 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2269 VdbeComment((v, "%s.%s", pTab->zName, 2270 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2271 } 2272 } 2273 if( isUpdate ){ 2274 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2275 ** table, only conflict if the new PRIMARY KEY values are actually 2276 ** different from the old. 2277 ** 2278 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2279 ** of the matched index row are different from the original PRIMARY 2280 ** KEY values of this row before the update. */ 2281 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2282 int op = OP_Ne; 2283 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2284 2285 for(i=0; i<pPk->nKeyCol; i++){ 2286 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2287 x = pPk->aiColumn[i]; 2288 assert( x>=0 ); 2289 if( i==(pPk->nKeyCol-1) ){ 2290 addrJump = addrUniqueOk; 2291 op = OP_Eq; 2292 } 2293 x = sqlite3TableColumnToStorage(pTab, x); 2294 sqlite3VdbeAddOp4(v, op, 2295 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2296 ); 2297 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2298 VdbeCoverageIf(v, op==OP_Eq); 2299 VdbeCoverageIf(v, op==OP_Ne); 2300 } 2301 } 2302 } 2303 } 2304 2305 /* Generate code that executes if the new index entry is not unique */ 2306 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2307 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2308 switch( onError ){ 2309 case OE_Rollback: 2310 case OE_Abort: 2311 case OE_Fail: { 2312 testcase( onError==OE_Rollback ); 2313 testcase( onError==OE_Abort ); 2314 testcase( onError==OE_Fail ); 2315 sqlite3UniqueConstraint(pParse, onError, pIdx); 2316 break; 2317 } 2318 #ifndef SQLITE_OMIT_UPSERT 2319 case OE_Update: { 2320 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2321 /* no break */ deliberate_fall_through 2322 } 2323 #endif 2324 case OE_Ignore: { 2325 testcase( onError==OE_Ignore ); 2326 sqlite3VdbeGoto(v, ignoreDest); 2327 break; 2328 } 2329 default: { 2330 int nConflictCk; /* Number of opcodes in conflict check logic */ 2331 2332 assert( onError==OE_Replace ); 2333 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2334 assert( nConflictCk>0 || db->mallocFailed ); 2335 testcase( nConflictCk<=0 ); 2336 testcase( nConflictCk>1 ); 2337 if( regTrigCnt ){ 2338 sqlite3MultiWrite(pParse); 2339 nReplaceTrig++; 2340 } 2341 if( pTrigger && isUpdate ){ 2342 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2343 } 2344 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2345 regR, nPkField, 0, OE_Replace, 2346 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2347 if( pTrigger && isUpdate ){ 2348 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2349 } 2350 if( regTrigCnt ){ 2351 int addrBypass; /* Jump destination to bypass recheck logic */ 2352 2353 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2354 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2355 VdbeComment((v, "bypass recheck")); 2356 2357 /* Here we insert code that will be invoked after all constraint 2358 ** checks have run, if and only if one or more replace triggers 2359 ** fired. */ 2360 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2361 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2362 if( pIdx->pPartIdxWhere ){ 2363 /* Bypass the recheck if this partial index is not defined 2364 ** for the current row */ 2365 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2366 VdbeCoverage(v); 2367 } 2368 /* Copy the constraint check code from above, except change 2369 ** the constraint-ok jump destination to be the address of 2370 ** the next retest block */ 2371 while( nConflictCk>0 ){ 2372 VdbeOp x; /* Conflict check opcode to copy */ 2373 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2374 ** Hence, make a complete copy of the opcode, rather than using 2375 ** a pointer to the opcode. */ 2376 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2377 if( x.opcode!=OP_IdxRowid ){ 2378 int p2; /* New P2 value for copied conflict check opcode */ 2379 const char *zP4; 2380 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2381 p2 = lblRecheckOk; 2382 }else{ 2383 p2 = x.p2; 2384 } 2385 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2386 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2387 sqlite3VdbeChangeP5(v, x.p5); 2388 VdbeCoverageIf(v, p2!=x.p2); 2389 } 2390 nConflictCk--; 2391 addrConflictCk++; 2392 } 2393 /* If the retest fails, issue an abort */ 2394 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2395 2396 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2397 } 2398 seenReplace = 1; 2399 break; 2400 } 2401 } 2402 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2403 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2404 if( pUpsertClause 2405 && upsertIpkReturn 2406 && sqlite3UpsertNextIsIPK(pUpsertClause) 2407 ){ 2408 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2409 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2410 upsertIpkReturn = 0; 2411 } 2412 } 2413 2414 /* If the IPK constraint is a REPLACE, run it last */ 2415 if( ipkTop ){ 2416 sqlite3VdbeGoto(v, ipkTop); 2417 VdbeComment((v, "Do IPK REPLACE")); 2418 sqlite3VdbeJumpHere(v, ipkBottom); 2419 } 2420 2421 /* Recheck all uniqueness constraints after replace triggers have run */ 2422 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2423 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2424 if( nReplaceTrig ){ 2425 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2426 if( !pPk ){ 2427 if( isUpdate ){ 2428 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2429 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2430 VdbeCoverage(v); 2431 } 2432 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2433 VdbeCoverage(v); 2434 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2435 }else{ 2436 sqlite3VdbeGoto(v, addrRecheck); 2437 } 2438 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2439 } 2440 2441 /* Generate the table record */ 2442 if( HasRowid(pTab) ){ 2443 int regRec = aRegIdx[ix]; 2444 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2445 sqlite3SetMakeRecordP5(v, pTab); 2446 if( !bAffinityDone ){ 2447 sqlite3TableAffinity(v, pTab, 0); 2448 } 2449 } 2450 2451 *pbMayReplace = seenReplace; 2452 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2453 } 2454 2455 #ifdef SQLITE_ENABLE_NULL_TRIM 2456 /* 2457 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2458 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2459 ** 2460 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2461 */ 2462 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2463 u16 i; 2464 2465 /* Records with omitted columns are only allowed for schema format 2466 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2467 if( pTab->pSchema->file_format<2 ) return; 2468 2469 for(i=pTab->nCol-1; i>0; i--){ 2470 if( pTab->aCol[i].iDflt!=0 ) break; 2471 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2472 } 2473 sqlite3VdbeChangeP5(v, i+1); 2474 } 2475 #endif 2476 2477 /* 2478 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2479 ** number is iCur, and register regData contains the new record for the 2480 ** PK index. This function adds code to invoke the pre-update hook, 2481 ** if one is registered. 2482 */ 2483 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2484 static void codeWithoutRowidPreupdate( 2485 Parse *pParse, /* Parse context */ 2486 Table *pTab, /* Table being updated */ 2487 int iCur, /* Cursor number for table */ 2488 int regData /* Data containing new record */ 2489 ){ 2490 Vdbe *v = pParse->pVdbe; 2491 int r = sqlite3GetTempReg(pParse); 2492 assert( !HasRowid(pTab) ); 2493 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2494 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2495 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2496 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2497 sqlite3ReleaseTempReg(pParse, r); 2498 } 2499 #else 2500 # define codeWithoutRowidPreupdate(a,b,c,d) 2501 #endif 2502 2503 /* 2504 ** This routine generates code to finish the INSERT or UPDATE operation 2505 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2506 ** A consecutive range of registers starting at regNewData contains the 2507 ** rowid and the content to be inserted. 2508 ** 2509 ** The arguments to this routine should be the same as the first six 2510 ** arguments to sqlite3GenerateConstraintChecks. 2511 */ 2512 void sqlite3CompleteInsertion( 2513 Parse *pParse, /* The parser context */ 2514 Table *pTab, /* the table into which we are inserting */ 2515 int iDataCur, /* Cursor of the canonical data source */ 2516 int iIdxCur, /* First index cursor */ 2517 int regNewData, /* Range of content */ 2518 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2519 int update_flags, /* True for UPDATE, False for INSERT */ 2520 int appendBias, /* True if this is likely to be an append */ 2521 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2522 ){ 2523 Vdbe *v; /* Prepared statements under construction */ 2524 Index *pIdx; /* An index being inserted or updated */ 2525 u8 pik_flags; /* flag values passed to the btree insert */ 2526 int i; /* Loop counter */ 2527 2528 assert( update_flags==0 2529 || update_flags==OPFLAG_ISUPDATE 2530 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2531 ); 2532 2533 v = pParse->pVdbe; 2534 assert( v!=0 ); 2535 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2536 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2537 /* All REPLACE indexes are at the end of the list */ 2538 assert( pIdx->onError!=OE_Replace 2539 || pIdx->pNext==0 2540 || pIdx->pNext->onError==OE_Replace ); 2541 if( aRegIdx[i]==0 ) continue; 2542 if( pIdx->pPartIdxWhere ){ 2543 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2544 VdbeCoverage(v); 2545 } 2546 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2547 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2548 assert( pParse->nested==0 ); 2549 pik_flags |= OPFLAG_NCHANGE; 2550 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2551 if( update_flags==0 ){ 2552 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2553 } 2554 } 2555 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2556 aRegIdx[i]+1, 2557 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2558 sqlite3VdbeChangeP5(v, pik_flags); 2559 } 2560 if( !HasRowid(pTab) ) return; 2561 if( pParse->nested ){ 2562 pik_flags = 0; 2563 }else{ 2564 pik_flags = OPFLAG_NCHANGE; 2565 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2566 } 2567 if( appendBias ){ 2568 pik_flags |= OPFLAG_APPEND; 2569 } 2570 if( useSeekResult ){ 2571 pik_flags |= OPFLAG_USESEEKRESULT; 2572 } 2573 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2574 if( !pParse->nested ){ 2575 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2576 } 2577 sqlite3VdbeChangeP5(v, pik_flags); 2578 } 2579 2580 /* 2581 ** Allocate cursors for the pTab table and all its indices and generate 2582 ** code to open and initialized those cursors. 2583 ** 2584 ** The cursor for the object that contains the complete data (normally 2585 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2586 ** ROWID table) is returned in *piDataCur. The first index cursor is 2587 ** returned in *piIdxCur. The number of indices is returned. 2588 ** 2589 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2590 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2591 ** If iBase is negative, then allocate the next available cursor. 2592 ** 2593 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2594 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2595 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2596 ** pTab->pIndex list. 2597 ** 2598 ** If pTab is a virtual table, then this routine is a no-op and the 2599 ** *piDataCur and *piIdxCur values are left uninitialized. 2600 */ 2601 int sqlite3OpenTableAndIndices( 2602 Parse *pParse, /* Parsing context */ 2603 Table *pTab, /* Table to be opened */ 2604 int op, /* OP_OpenRead or OP_OpenWrite */ 2605 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2606 int iBase, /* Use this for the table cursor, if there is one */ 2607 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2608 int *piDataCur, /* Write the database source cursor number here */ 2609 int *piIdxCur /* Write the first index cursor number here */ 2610 ){ 2611 int i; 2612 int iDb; 2613 int iDataCur; 2614 Index *pIdx; 2615 Vdbe *v; 2616 2617 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2618 assert( op==OP_OpenWrite || p5==0 ); 2619 if( IsVirtual(pTab) ){ 2620 /* This routine is a no-op for virtual tables. Leave the output 2621 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2622 ** for improved error detection. */ 2623 *piDataCur = *piIdxCur = -999; 2624 return 0; 2625 } 2626 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2627 v = pParse->pVdbe; 2628 assert( v!=0 ); 2629 if( iBase<0 ) iBase = pParse->nTab; 2630 iDataCur = iBase++; 2631 if( piDataCur ) *piDataCur = iDataCur; 2632 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2633 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2634 }else{ 2635 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2636 } 2637 if( piIdxCur ) *piIdxCur = iBase; 2638 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2639 int iIdxCur = iBase++; 2640 assert( pIdx->pSchema==pTab->pSchema ); 2641 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2642 if( piDataCur ) *piDataCur = iIdxCur; 2643 p5 = 0; 2644 } 2645 if( aToOpen==0 || aToOpen[i+1] ){ 2646 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2647 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2648 sqlite3VdbeChangeP5(v, p5); 2649 VdbeComment((v, "%s", pIdx->zName)); 2650 } 2651 } 2652 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2653 return i; 2654 } 2655 2656 2657 #ifdef SQLITE_TEST 2658 /* 2659 ** The following global variable is incremented whenever the 2660 ** transfer optimization is used. This is used for testing 2661 ** purposes only - to make sure the transfer optimization really 2662 ** is happening when it is supposed to. 2663 */ 2664 int sqlite3_xferopt_count; 2665 #endif /* SQLITE_TEST */ 2666 2667 2668 #ifndef SQLITE_OMIT_XFER_OPT 2669 /* 2670 ** Check to see if index pSrc is compatible as a source of data 2671 ** for index pDest in an insert transfer optimization. The rules 2672 ** for a compatible index: 2673 ** 2674 ** * The index is over the same set of columns 2675 ** * The same DESC and ASC markings occurs on all columns 2676 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2677 ** * The same collating sequence on each column 2678 ** * The index has the exact same WHERE clause 2679 */ 2680 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2681 int i; 2682 assert( pDest && pSrc ); 2683 assert( pDest->pTable!=pSrc->pTable ); 2684 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2685 return 0; /* Different number of columns */ 2686 } 2687 if( pDest->onError!=pSrc->onError ){ 2688 return 0; /* Different conflict resolution strategies */ 2689 } 2690 for(i=0; i<pSrc->nKeyCol; i++){ 2691 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2692 return 0; /* Different columns indexed */ 2693 } 2694 if( pSrc->aiColumn[i]==XN_EXPR ){ 2695 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2696 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2697 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2698 return 0; /* Different expressions in the index */ 2699 } 2700 } 2701 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2702 return 0; /* Different sort orders */ 2703 } 2704 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2705 return 0; /* Different collating sequences */ 2706 } 2707 } 2708 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2709 return 0; /* Different WHERE clauses */ 2710 } 2711 2712 /* If no test above fails then the indices must be compatible */ 2713 return 1; 2714 } 2715 2716 /* 2717 ** Attempt the transfer optimization on INSERTs of the form 2718 ** 2719 ** INSERT INTO tab1 SELECT * FROM tab2; 2720 ** 2721 ** The xfer optimization transfers raw records from tab2 over to tab1. 2722 ** Columns are not decoded and reassembled, which greatly improves 2723 ** performance. Raw index records are transferred in the same way. 2724 ** 2725 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2726 ** There are lots of rules for determining compatibility - see comments 2727 ** embedded in the code for details. 2728 ** 2729 ** This routine returns TRUE if the optimization is guaranteed to be used. 2730 ** Sometimes the xfer optimization will only work if the destination table 2731 ** is empty - a factor that can only be determined at run-time. In that 2732 ** case, this routine generates code for the xfer optimization but also 2733 ** does a test to see if the destination table is empty and jumps over the 2734 ** xfer optimization code if the test fails. In that case, this routine 2735 ** returns FALSE so that the caller will know to go ahead and generate 2736 ** an unoptimized transfer. This routine also returns FALSE if there 2737 ** is no chance that the xfer optimization can be applied. 2738 ** 2739 ** This optimization is particularly useful at making VACUUM run faster. 2740 */ 2741 static int xferOptimization( 2742 Parse *pParse, /* Parser context */ 2743 Table *pDest, /* The table we are inserting into */ 2744 Select *pSelect, /* A SELECT statement to use as the data source */ 2745 int onError, /* How to handle constraint errors */ 2746 int iDbDest /* The database of pDest */ 2747 ){ 2748 sqlite3 *db = pParse->db; 2749 ExprList *pEList; /* The result set of the SELECT */ 2750 Table *pSrc; /* The table in the FROM clause of SELECT */ 2751 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2752 SrcItem *pItem; /* An element of pSelect->pSrc */ 2753 int i; /* Loop counter */ 2754 int iDbSrc; /* The database of pSrc */ 2755 int iSrc, iDest; /* Cursors from source and destination */ 2756 int addr1, addr2; /* Loop addresses */ 2757 int emptyDestTest = 0; /* Address of test for empty pDest */ 2758 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2759 Vdbe *v; /* The VDBE we are building */ 2760 int regAutoinc; /* Memory register used by AUTOINC */ 2761 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2762 int regData, regRowid; /* Registers holding data and rowid */ 2763 2764 if( pSelect==0 ){ 2765 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2766 } 2767 if( pParse->pWith || pSelect->pWith ){ 2768 /* Do not attempt to process this query if there are an WITH clauses 2769 ** attached to it. Proceeding may generate a false "no such table: xxx" 2770 ** error if pSelect reads from a CTE named "xxx". */ 2771 return 0; 2772 } 2773 if( sqlite3TriggerList(pParse, pDest) ){ 2774 return 0; /* tab1 must not have triggers */ 2775 } 2776 #ifndef SQLITE_OMIT_VIRTUALTABLE 2777 if( IsVirtual(pDest) ){ 2778 return 0; /* tab1 must not be a virtual table */ 2779 } 2780 #endif 2781 if( onError==OE_Default ){ 2782 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2783 if( onError==OE_Default ) onError = OE_Abort; 2784 } 2785 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2786 if( pSelect->pSrc->nSrc!=1 ){ 2787 return 0; /* FROM clause must have exactly one term */ 2788 } 2789 if( pSelect->pSrc->a[0].pSelect ){ 2790 return 0; /* FROM clause cannot contain a subquery */ 2791 } 2792 if( pSelect->pWhere ){ 2793 return 0; /* SELECT may not have a WHERE clause */ 2794 } 2795 if( pSelect->pOrderBy ){ 2796 return 0; /* SELECT may not have an ORDER BY clause */ 2797 } 2798 /* Do not need to test for a HAVING clause. If HAVING is present but 2799 ** there is no ORDER BY, we will get an error. */ 2800 if( pSelect->pGroupBy ){ 2801 return 0; /* SELECT may not have a GROUP BY clause */ 2802 } 2803 if( pSelect->pLimit ){ 2804 return 0; /* SELECT may not have a LIMIT clause */ 2805 } 2806 if( pSelect->pPrior ){ 2807 return 0; /* SELECT may not be a compound query */ 2808 } 2809 if( pSelect->selFlags & SF_Distinct ){ 2810 return 0; /* SELECT may not be DISTINCT */ 2811 } 2812 pEList = pSelect->pEList; 2813 assert( pEList!=0 ); 2814 if( pEList->nExpr!=1 ){ 2815 return 0; /* The result set must have exactly one column */ 2816 } 2817 assert( pEList->a[0].pExpr ); 2818 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2819 return 0; /* The result set must be the special operator "*" */ 2820 } 2821 2822 /* At this point we have established that the statement is of the 2823 ** correct syntactic form to participate in this optimization. Now 2824 ** we have to check the semantics. 2825 */ 2826 pItem = pSelect->pSrc->a; 2827 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2828 if( pSrc==0 ){ 2829 return 0; /* FROM clause does not contain a real table */ 2830 } 2831 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2832 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2833 return 0; /* tab1 and tab2 may not be the same table */ 2834 } 2835 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2836 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2837 } 2838 if( !IsOrdinaryTable(pSrc) ){ 2839 return 0; /* tab2 may not be a view or virtual table */ 2840 } 2841 if( pDest->nCol!=pSrc->nCol ){ 2842 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2843 } 2844 if( pDest->iPKey!=pSrc->iPKey ){ 2845 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2846 } 2847 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2848 return 0; /* Cannot feed from a non-strict into a strict table */ 2849 } 2850 for(i=0; i<pDest->nCol; i++){ 2851 Column *pDestCol = &pDest->aCol[i]; 2852 Column *pSrcCol = &pSrc->aCol[i]; 2853 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2854 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2855 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2856 ){ 2857 return 0; /* Neither table may have __hidden__ columns */ 2858 } 2859 #endif 2860 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2861 /* Even if tables t1 and t2 have identical schemas, if they contain 2862 ** generated columns, then this statement is semantically incorrect: 2863 ** 2864 ** INSERT INTO t2 SELECT * FROM t1; 2865 ** 2866 ** The reason is that generated column values are returned by the 2867 ** the SELECT statement on the right but the INSERT statement on the 2868 ** left wants them to be omitted. 2869 ** 2870 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2871 ** to do a bulk transfer all of the content from t1 over to t2. 2872 ** 2873 ** We could, in theory, disable this (except for internal use by the 2874 ** VACUUM command where it is actually needed). But why do that? It 2875 ** seems harmless enough, and provides a useful service. 2876 */ 2877 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2878 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2879 return 0; /* Both columns have the same generated-column type */ 2880 } 2881 /* But the transfer is only allowed if both the source and destination 2882 ** tables have the exact same expressions for generated columns. 2883 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2884 */ 2885 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2886 if( sqlite3ExprCompare(0, 2887 sqlite3ColumnExpr(pSrc, pSrcCol), 2888 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2889 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2890 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2891 return 0; /* Different generator expressions */ 2892 } 2893 } 2894 #endif 2895 if( pDestCol->affinity!=pSrcCol->affinity ){ 2896 return 0; /* Affinity must be the same on all columns */ 2897 } 2898 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2899 sqlite3ColumnColl(pSrcCol))!=0 ){ 2900 return 0; /* Collating sequence must be the same on all columns */ 2901 } 2902 if( pDestCol->notNull && !pSrcCol->notNull ){ 2903 return 0; /* tab2 must be NOT NULL if tab1 is */ 2904 } 2905 /* Default values for second and subsequent columns need to match. */ 2906 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2907 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2908 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2909 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2910 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2911 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2912 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2913 if( (pDestExpr==0)!=(pSrcExpr==0) 2914 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2915 pSrcExpr->u.zToken)!=0) 2916 ){ 2917 return 0; /* Default values must be the same for all columns */ 2918 } 2919 } 2920 } 2921 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2922 if( IsUniqueIndex(pDestIdx) ){ 2923 destHasUniqueIdx = 1; 2924 } 2925 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2926 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2927 } 2928 if( pSrcIdx==0 ){ 2929 return 0; /* pDestIdx has no corresponding index in pSrc */ 2930 } 2931 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2932 && sqlite3FaultSim(411)==SQLITE_OK ){ 2933 /* The sqlite3FaultSim() call allows this corruption test to be 2934 ** bypassed during testing, in order to exercise other corruption tests 2935 ** further downstream. */ 2936 return 0; /* Corrupt schema - two indexes on the same btree */ 2937 } 2938 } 2939 #ifndef SQLITE_OMIT_CHECK 2940 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2941 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2942 } 2943 #endif 2944 #ifndef SQLITE_OMIT_FOREIGN_KEY 2945 /* Disallow the transfer optimization if the destination table constains 2946 ** any foreign key constraints. This is more restrictive than necessary. 2947 ** But the main beneficiary of the transfer optimization is the VACUUM 2948 ** command, and the VACUUM command disables foreign key constraints. So 2949 ** the extra complication to make this rule less restrictive is probably 2950 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2951 */ 2952 assert( IsOrdinaryTable(pDest) ); 2953 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2954 return 0; 2955 } 2956 #endif 2957 if( (db->flags & SQLITE_CountRows)!=0 ){ 2958 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2959 } 2960 2961 /* If we get this far, it means that the xfer optimization is at 2962 ** least a possibility, though it might only work if the destination 2963 ** table (tab1) is initially empty. 2964 */ 2965 #ifdef SQLITE_TEST 2966 sqlite3_xferopt_count++; 2967 #endif 2968 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2969 v = sqlite3GetVdbe(pParse); 2970 sqlite3CodeVerifySchema(pParse, iDbSrc); 2971 iSrc = pParse->nTab++; 2972 iDest = pParse->nTab++; 2973 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2974 regData = sqlite3GetTempReg(pParse); 2975 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2976 regRowid = sqlite3GetTempReg(pParse); 2977 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2978 assert( HasRowid(pDest) || destHasUniqueIdx ); 2979 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2980 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2981 || destHasUniqueIdx /* (2) */ 2982 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2983 )){ 2984 /* In some circumstances, we are able to run the xfer optimization 2985 ** only if the destination table is initially empty. Unless the 2986 ** DBFLAG_Vacuum flag is set, this block generates code to make 2987 ** that determination. If DBFLAG_Vacuum is set, then the destination 2988 ** table is always empty. 2989 ** 2990 ** Conditions under which the destination must be empty: 2991 ** 2992 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2993 ** (If the destination is not initially empty, the rowid fields 2994 ** of index entries might need to change.) 2995 ** 2996 ** (2) The destination has a unique index. (The xfer optimization 2997 ** is unable to test uniqueness.) 2998 ** 2999 ** (3) onError is something other than OE_Abort and OE_Rollback. 3000 */ 3001 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3002 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3003 sqlite3VdbeJumpHere(v, addr1); 3004 } 3005 if( HasRowid(pSrc) ){ 3006 u8 insFlags; 3007 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3008 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3009 if( pDest->iPKey>=0 ){ 3010 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3011 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3012 sqlite3VdbeVerifyAbortable(v, onError); 3013 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3014 VdbeCoverage(v); 3015 sqlite3RowidConstraint(pParse, onError, pDest); 3016 sqlite3VdbeJumpHere(v, addr2); 3017 } 3018 autoIncStep(pParse, regAutoinc, regRowid); 3019 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3020 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3021 }else{ 3022 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3023 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3024 } 3025 3026 if( db->mDbFlags & DBFLAG_Vacuum ){ 3027 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3028 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3029 }else{ 3030 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3031 } 3032 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3033 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3034 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3035 insFlags &= ~OPFLAG_PREFORMAT; 3036 }else 3037 #endif 3038 { 3039 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3040 } 3041 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3042 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3043 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3044 } 3045 sqlite3VdbeChangeP5(v, insFlags); 3046 3047 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3048 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3049 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3050 }else{ 3051 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3052 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3053 } 3054 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3055 u8 idxInsFlags = 0; 3056 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3057 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3058 } 3059 assert( pSrcIdx ); 3060 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3061 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3062 VdbeComment((v, "%s", pSrcIdx->zName)); 3063 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3064 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3065 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3066 VdbeComment((v, "%s", pDestIdx->zName)); 3067 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3068 if( db->mDbFlags & DBFLAG_Vacuum ){ 3069 /* This INSERT command is part of a VACUUM operation, which guarantees 3070 ** that the destination table is empty. If all indexed columns use 3071 ** collation sequence BINARY, then it can also be assumed that the 3072 ** index will be populated by inserting keys in strictly sorted 3073 ** order. In this case, instead of seeking within the b-tree as part 3074 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3075 ** OP_IdxInsert to seek to the point within the b-tree where each key 3076 ** should be inserted. This is faster. 3077 ** 3078 ** If any of the indexed columns use a collation sequence other than 3079 ** BINARY, this optimization is disabled. This is because the user 3080 ** might change the definition of a collation sequence and then run 3081 ** a VACUUM command. In that case keys may not be written in strictly 3082 ** sorted order. */ 3083 for(i=0; i<pSrcIdx->nColumn; i++){ 3084 const char *zColl = pSrcIdx->azColl[i]; 3085 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3086 } 3087 if( i==pSrcIdx->nColumn ){ 3088 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3089 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3090 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3091 } 3092 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3093 idxInsFlags |= OPFLAG_NCHANGE; 3094 } 3095 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3096 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3097 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3098 && !HasRowid(pDest) 3099 && IsPrimaryKeyIndex(pDestIdx) 3100 ){ 3101 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3102 } 3103 } 3104 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3105 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3106 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3107 sqlite3VdbeJumpHere(v, addr1); 3108 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3109 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3110 } 3111 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3112 sqlite3ReleaseTempReg(pParse, regRowid); 3113 sqlite3ReleaseTempReg(pParse, regData); 3114 if( emptyDestTest ){ 3115 sqlite3AutoincrementEnd(pParse); 3116 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3117 sqlite3VdbeJumpHere(v, emptyDestTest); 3118 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3119 return 0; 3120 }else{ 3121 return 1; 3122 } 3123 } 3124 #endif /* SQLITE_OMIT_XFER_OPT */ 3125