1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetLastOp(v); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 assert( db->pParse==pParse ); 719 if( pParse->nErr ){ 720 goto insert_cleanup; 721 } 722 assert( db->mallocFailed==0 ); 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 /* If the Select object is really just a simple VALUES() list with a 726 ** single row (the common case) then keep that one row of values 727 ** and discard the other (unused) parts of the pSelect object 728 */ 729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 730 pList = pSelect->pEList; 731 pSelect->pEList = 0; 732 sqlite3SelectDelete(db, pSelect); 733 pSelect = 0; 734 } 735 736 /* Locate the table into which we will be inserting new information. 737 */ 738 assert( pTabList->nSrc==1 ); 739 pTab = sqlite3SrcListLookup(pParse, pTabList); 740 if( pTab==0 ){ 741 goto insert_cleanup; 742 } 743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 744 assert( iDb<db->nDb ); 745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 746 db->aDb[iDb].zDbSName) ){ 747 goto insert_cleanup; 748 } 749 withoutRowid = !HasRowid(pTab); 750 751 /* Figure out if we have any triggers and if the table being 752 ** inserted into is a view 753 */ 754 #ifndef SQLITE_OMIT_TRIGGER 755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 756 isView = IsView(pTab); 757 #else 758 # define pTrigger 0 759 # define tmask 0 760 # define isView 0 761 #endif 762 #ifdef SQLITE_OMIT_VIEW 763 # undef isView 764 # define isView 0 765 #endif 766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 767 768 #if TREETRACE_ENABLED 769 if( sqlite3TreeTrace & 0x10000 ){ 770 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 771 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 772 onError, pUpsert, pTrigger); 773 } 774 #endif 775 776 /* If pTab is really a view, make sure it has been initialized. 777 ** ViewGetColumnNames() is a no-op if pTab is not a view. 778 */ 779 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 780 goto insert_cleanup; 781 } 782 783 /* Cannot insert into a read-only table. 784 */ 785 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 786 goto insert_cleanup; 787 } 788 789 /* Allocate a VDBE 790 */ 791 v = sqlite3GetVdbe(pParse); 792 if( v==0 ) goto insert_cleanup; 793 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 794 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 795 796 #ifndef SQLITE_OMIT_XFER_OPT 797 /* If the statement is of the form 798 ** 799 ** INSERT INTO <table1> SELECT * FROM <table2>; 800 ** 801 ** Then special optimizations can be applied that make the transfer 802 ** very fast and which reduce fragmentation of indices. 803 ** 804 ** This is the 2nd template. 805 */ 806 if( pColumn==0 807 && pSelect!=0 808 && pTrigger==0 809 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 810 ){ 811 assert( !pTrigger ); 812 assert( pList==0 ); 813 goto insert_end; 814 } 815 #endif /* SQLITE_OMIT_XFER_OPT */ 816 817 /* If this is an AUTOINCREMENT table, look up the sequence number in the 818 ** sqlite_sequence table and store it in memory cell regAutoinc. 819 */ 820 regAutoinc = autoIncBegin(pParse, iDb, pTab); 821 822 /* Allocate a block registers to hold the rowid and the values 823 ** for all columns of the new row. 824 */ 825 regRowid = regIns = pParse->nMem+1; 826 pParse->nMem += pTab->nCol + 1; 827 if( IsVirtual(pTab) ){ 828 regRowid++; 829 pParse->nMem++; 830 } 831 regData = regRowid+1; 832 833 /* If the INSERT statement included an IDLIST term, then make sure 834 ** all elements of the IDLIST really are columns of the table and 835 ** remember the column indices. 836 ** 837 ** If the table has an INTEGER PRIMARY KEY column and that column 838 ** is named in the IDLIST, then record in the ipkColumn variable 839 ** the index into IDLIST of the primary key column. ipkColumn is 840 ** the index of the primary key as it appears in IDLIST, not as 841 ** is appears in the original table. (The index of the INTEGER 842 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 843 ** loop, if ipkColumn==(-1), that means that integer primary key 844 ** is unspecified, and hence the table is either WITHOUT ROWID or 845 ** it will automatically generated an integer primary key. 846 ** 847 ** bIdListInOrder is true if the columns in IDLIST are in storage 848 ** order. This enables an optimization that avoids shuffling the 849 ** columns into storage order. False negatives are harmless, 850 ** but false positives will cause database corruption. 851 */ 852 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 853 if( pColumn ){ 854 assert( pColumn->eU4!=EU4_EXPR ); 855 pColumn->eU4 = EU4_IDX; 856 for(i=0; i<pColumn->nId; i++){ 857 pColumn->a[i].u4.idx = -1; 858 } 859 for(i=0; i<pColumn->nId; i++){ 860 for(j=0; j<pTab->nCol; j++){ 861 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 862 pColumn->a[i].u4.idx = j; 863 if( i!=j ) bIdListInOrder = 0; 864 if( j==pTab->iPKey ){ 865 ipkColumn = i; assert( !withoutRowid ); 866 } 867 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 868 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 869 sqlite3ErrorMsg(pParse, 870 "cannot INSERT into generated column \"%s\"", 871 pTab->aCol[j].zCnName); 872 goto insert_cleanup; 873 } 874 #endif 875 break; 876 } 877 } 878 if( j>=pTab->nCol ){ 879 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 880 ipkColumn = i; 881 bIdListInOrder = 0; 882 }else{ 883 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 884 pTabList->a, pColumn->a[i].zName); 885 pParse->checkSchema = 1; 886 goto insert_cleanup; 887 } 888 } 889 } 890 } 891 892 /* Figure out how many columns of data are supplied. If the data 893 ** is coming from a SELECT statement, then generate a co-routine that 894 ** produces a single row of the SELECT on each invocation. The 895 ** co-routine is the common header to the 3rd and 4th templates. 896 */ 897 if( pSelect ){ 898 /* Data is coming from a SELECT or from a multi-row VALUES clause. 899 ** Generate a co-routine to run the SELECT. */ 900 int regYield; /* Register holding co-routine entry-point */ 901 int addrTop; /* Top of the co-routine */ 902 int rc; /* Result code */ 903 904 regYield = ++pParse->nMem; 905 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 906 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 907 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 908 dest.iSdst = bIdListInOrder ? regData : 0; 909 dest.nSdst = pTab->nCol; 910 rc = sqlite3Select(pParse, pSelect, &dest); 911 regFromSelect = dest.iSdst; 912 assert( db->pParse==pParse ); 913 if( rc || pParse->nErr ) goto insert_cleanup; 914 assert( db->mallocFailed==0 ); 915 sqlite3VdbeEndCoroutine(v, regYield); 916 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 917 assert( pSelect->pEList ); 918 nColumn = pSelect->pEList->nExpr; 919 920 /* Set useTempTable to TRUE if the result of the SELECT statement 921 ** should be written into a temporary table (template 4). Set to 922 ** FALSE if each output row of the SELECT can be written directly into 923 ** the destination table (template 3). 924 ** 925 ** A temp table must be used if the table being updated is also one 926 ** of the tables being read by the SELECT statement. Also use a 927 ** temp table in the case of row triggers. 928 */ 929 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 930 useTempTable = 1; 931 } 932 933 if( useTempTable ){ 934 /* Invoke the coroutine to extract information from the SELECT 935 ** and add it to a transient table srcTab. The code generated 936 ** here is from the 4th template: 937 ** 938 ** B: open temp table 939 ** L: yield X, goto M at EOF 940 ** insert row from R..R+n into temp table 941 ** goto L 942 ** M: ... 943 */ 944 int regRec; /* Register to hold packed record */ 945 int regTempRowid; /* Register to hold temp table ROWID */ 946 int addrL; /* Label "L" */ 947 948 srcTab = pParse->nTab++; 949 regRec = sqlite3GetTempReg(pParse); 950 regTempRowid = sqlite3GetTempReg(pParse); 951 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 952 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 953 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 954 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 955 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 956 sqlite3VdbeGoto(v, addrL); 957 sqlite3VdbeJumpHere(v, addrL); 958 sqlite3ReleaseTempReg(pParse, regRec); 959 sqlite3ReleaseTempReg(pParse, regTempRowid); 960 } 961 }else{ 962 /* This is the case if the data for the INSERT is coming from a 963 ** single-row VALUES clause 964 */ 965 NameContext sNC; 966 memset(&sNC, 0, sizeof(sNC)); 967 sNC.pParse = pParse; 968 srcTab = -1; 969 assert( useTempTable==0 ); 970 if( pList ){ 971 nColumn = pList->nExpr; 972 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 973 goto insert_cleanup; 974 } 975 }else{ 976 nColumn = 0; 977 } 978 } 979 980 /* If there is no IDLIST term but the table has an integer primary 981 ** key, the set the ipkColumn variable to the integer primary key 982 ** column index in the original table definition. 983 */ 984 if( pColumn==0 && nColumn>0 ){ 985 ipkColumn = pTab->iPKey; 986 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 987 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 988 testcase( pTab->tabFlags & TF_HasVirtual ); 989 testcase( pTab->tabFlags & TF_HasStored ); 990 for(i=ipkColumn-1; i>=0; i--){ 991 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 992 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 993 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 994 ipkColumn--; 995 } 996 } 997 } 998 #endif 999 1000 /* Make sure the number of columns in the source data matches the number 1001 ** of columns to be inserted into the table. 1002 */ 1003 assert( TF_HasHidden==COLFLAG_HIDDEN ); 1004 assert( TF_HasGenerated==COLFLAG_GENERATED ); 1005 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 1006 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 1007 for(i=0; i<pTab->nCol; i++){ 1008 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 1009 } 1010 } 1011 if( nColumn!=(pTab->nCol-nHidden) ){ 1012 sqlite3ErrorMsg(pParse, 1013 "table %S has %d columns but %d values were supplied", 1014 pTabList->a, pTab->nCol-nHidden, nColumn); 1015 goto insert_cleanup; 1016 } 1017 } 1018 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1019 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1020 goto insert_cleanup; 1021 } 1022 1023 /* Initialize the count of rows to be inserted 1024 */ 1025 if( (db->flags & SQLITE_CountRows)!=0 1026 && !pParse->nested 1027 && !pParse->pTriggerTab 1028 && !pParse->bReturning 1029 ){ 1030 regRowCount = ++pParse->nMem; 1031 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1032 } 1033 1034 /* If this is not a view, open the table and and all indices */ 1035 if( !isView ){ 1036 int nIdx; 1037 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1038 &iDataCur, &iIdxCur); 1039 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1040 if( aRegIdx==0 ){ 1041 goto insert_cleanup; 1042 } 1043 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1044 assert( pIdx ); 1045 aRegIdx[i] = ++pParse->nMem; 1046 pParse->nMem += pIdx->nColumn; 1047 } 1048 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1049 } 1050 #ifndef SQLITE_OMIT_UPSERT 1051 if( pUpsert ){ 1052 Upsert *pNx; 1053 if( IsVirtual(pTab) ){ 1054 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1055 pTab->zName); 1056 goto insert_cleanup; 1057 } 1058 if( IsView(pTab) ){ 1059 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1060 goto insert_cleanup; 1061 } 1062 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1063 goto insert_cleanup; 1064 } 1065 pTabList->a[0].iCursor = iDataCur; 1066 pNx = pUpsert; 1067 do{ 1068 pNx->pUpsertSrc = pTabList; 1069 pNx->regData = regData; 1070 pNx->iDataCur = iDataCur; 1071 pNx->iIdxCur = iIdxCur; 1072 if( pNx->pUpsertTarget ){ 1073 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1074 goto insert_cleanup; 1075 } 1076 } 1077 pNx = pNx->pNextUpsert; 1078 }while( pNx!=0 ); 1079 } 1080 #endif 1081 1082 1083 /* This is the top of the main insertion loop */ 1084 if( useTempTable ){ 1085 /* This block codes the top of loop only. The complete loop is the 1086 ** following pseudocode (template 4): 1087 ** 1088 ** rewind temp table, if empty goto D 1089 ** C: loop over rows of intermediate table 1090 ** transfer values form intermediate table into <table> 1091 ** end loop 1092 ** D: ... 1093 */ 1094 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1095 addrCont = sqlite3VdbeCurrentAddr(v); 1096 }else if( pSelect ){ 1097 /* This block codes the top of loop only. The complete loop is the 1098 ** following pseudocode (template 3): 1099 ** 1100 ** C: yield X, at EOF goto D 1101 ** insert the select result into <table> from R..R+n 1102 ** goto C 1103 ** D: ... 1104 */ 1105 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1106 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1107 VdbeCoverage(v); 1108 if( ipkColumn>=0 ){ 1109 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1110 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1111 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1112 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1113 } 1114 } 1115 1116 /* Compute data for ordinary columns of the new entry. Values 1117 ** are written in storage order into registers starting with regData. 1118 ** Only ordinary columns are computed in this loop. The rowid 1119 ** (if there is one) is computed later and generated columns are 1120 ** computed after the rowid since they might depend on the value 1121 ** of the rowid. 1122 */ 1123 nHidden = 0; 1124 iRegStore = regData; assert( regData==regRowid+1 ); 1125 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1126 int k; 1127 u32 colFlags; 1128 assert( i>=nHidden ); 1129 if( i==pTab->iPKey ){ 1130 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1131 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1132 ** using excess space. The file format definition requires this extra 1133 ** NULL - we cannot optimize further by skipping the column completely */ 1134 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1135 continue; 1136 } 1137 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1138 nHidden++; 1139 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1140 /* Virtual columns do not participate in OP_MakeRecord. So back up 1141 ** iRegStore by one slot to compensate for the iRegStore++ in the 1142 ** outer for() loop */ 1143 iRegStore--; 1144 continue; 1145 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1146 /* Stored columns are computed later. But if there are BEFORE 1147 ** triggers, the slots used for stored columns will be OP_Copy-ed 1148 ** to a second block of registers, so the register needs to be 1149 ** initialized to NULL to avoid an uninitialized register read */ 1150 if( tmask & TRIGGER_BEFORE ){ 1151 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1152 } 1153 continue; 1154 }else if( pColumn==0 ){ 1155 /* Hidden columns that are not explicitly named in the INSERT 1156 ** get there default value */ 1157 sqlite3ExprCodeFactorable(pParse, 1158 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1159 iRegStore); 1160 continue; 1161 } 1162 } 1163 if( pColumn ){ 1164 assert( pColumn->eU4==EU4_IDX ); 1165 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 1166 if( j>=pColumn->nId ){ 1167 /* A column not named in the insert column list gets its 1168 ** default value */ 1169 sqlite3ExprCodeFactorable(pParse, 1170 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1171 iRegStore); 1172 continue; 1173 } 1174 k = j; 1175 }else if( nColumn==0 ){ 1176 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1177 sqlite3ExprCodeFactorable(pParse, 1178 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1179 iRegStore); 1180 continue; 1181 }else{ 1182 k = i - nHidden; 1183 } 1184 1185 if( useTempTable ){ 1186 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1187 }else if( pSelect ){ 1188 if( regFromSelect!=regData ){ 1189 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1190 } 1191 }else{ 1192 Expr *pX = pList->a[k].pExpr; 1193 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 1194 if( y!=iRegStore ){ 1195 sqlite3VdbeAddOp2(v, 1196 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 1197 } 1198 } 1199 } 1200 1201 1202 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1203 */ 1204 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1205 if( tmask & TRIGGER_BEFORE ){ 1206 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1207 1208 /* build the NEW.* reference row. Note that if there is an INTEGER 1209 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1210 ** translated into a unique ID for the row. But on a BEFORE trigger, 1211 ** we do not know what the unique ID will be (because the insert has 1212 ** not happened yet) so we substitute a rowid of -1 1213 */ 1214 if( ipkColumn<0 ){ 1215 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1216 }else{ 1217 int addr1; 1218 assert( !withoutRowid ); 1219 if( useTempTable ){ 1220 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1221 }else{ 1222 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1223 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1224 } 1225 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1226 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1227 sqlite3VdbeJumpHere(v, addr1); 1228 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1229 } 1230 1231 /* Copy the new data already generated. */ 1232 assert( pTab->nNVCol>0 ); 1233 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1234 1235 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1236 /* Compute the new value for generated columns after all other 1237 ** columns have already been computed. This must be done after 1238 ** computing the ROWID in case one of the generated columns 1239 ** refers to the ROWID. */ 1240 if( pTab->tabFlags & TF_HasGenerated ){ 1241 testcase( pTab->tabFlags & TF_HasVirtual ); 1242 testcase( pTab->tabFlags & TF_HasStored ); 1243 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1244 } 1245 #endif 1246 1247 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1248 ** do not attempt any conversions before assembling the record. 1249 ** If this is a real table, attempt conversions as required by the 1250 ** table column affinities. 1251 */ 1252 if( !isView ){ 1253 sqlite3TableAffinity(v, pTab, regCols+1); 1254 } 1255 1256 /* Fire BEFORE or INSTEAD OF triggers */ 1257 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1258 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1259 1260 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1261 } 1262 1263 if( !isView ){ 1264 if( IsVirtual(pTab) ){ 1265 /* The row that the VUpdate opcode will delete: none */ 1266 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1267 } 1268 if( ipkColumn>=0 ){ 1269 /* Compute the new rowid */ 1270 if( useTempTable ){ 1271 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1272 }else if( pSelect ){ 1273 /* Rowid already initialized at tag-20191021-001 */ 1274 }else{ 1275 Expr *pIpk = pList->a[ipkColumn].pExpr; 1276 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1277 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1278 appendFlag = 1; 1279 }else{ 1280 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1281 } 1282 } 1283 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1284 ** to generate a unique primary key value. 1285 */ 1286 if( !appendFlag ){ 1287 int addr1; 1288 if( !IsVirtual(pTab) ){ 1289 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1290 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1291 sqlite3VdbeJumpHere(v, addr1); 1292 }else{ 1293 addr1 = sqlite3VdbeCurrentAddr(v); 1294 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1295 } 1296 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1297 } 1298 }else if( IsVirtual(pTab) || withoutRowid ){ 1299 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1300 }else{ 1301 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1302 appendFlag = 1; 1303 } 1304 autoIncStep(pParse, regAutoinc, regRowid); 1305 1306 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1307 /* Compute the new value for generated columns after all other 1308 ** columns have already been computed. This must be done after 1309 ** computing the ROWID in case one of the generated columns 1310 ** is derived from the INTEGER PRIMARY KEY. */ 1311 if( pTab->tabFlags & TF_HasGenerated ){ 1312 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1313 } 1314 #endif 1315 1316 /* Generate code to check constraints and generate index keys and 1317 ** do the insertion. 1318 */ 1319 #ifndef SQLITE_OMIT_VIRTUALTABLE 1320 if( IsVirtual(pTab) ){ 1321 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1322 sqlite3VtabMakeWritable(pParse, pTab); 1323 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1324 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1325 sqlite3MayAbort(pParse); 1326 }else 1327 #endif 1328 { 1329 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1330 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1331 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1332 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1333 ); 1334 if( db->flags & SQLITE_ForeignKeys ){ 1335 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1336 } 1337 1338 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1339 ** constraints or (b) there are no triggers and this table is not a 1340 ** parent table in a foreign key constraint. It is safe to set the 1341 ** flag in the second case as if any REPLACE constraint is hit, an 1342 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1343 ** cursor that is disturbed. And these instructions both clear the 1344 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1345 ** functionality. */ 1346 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1347 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1348 regIns, aRegIdx, 0, appendFlag, bUseSeek 1349 ); 1350 } 1351 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1352 }else if( pParse->bReturning ){ 1353 /* If there is a RETURNING clause, populate the rowid register with 1354 ** constant value -1, in case one or more of the returned expressions 1355 ** refer to the "rowid" of the view. */ 1356 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1357 #endif 1358 } 1359 1360 /* Update the count of rows that are inserted 1361 */ 1362 if( regRowCount ){ 1363 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1364 } 1365 1366 if( pTrigger ){ 1367 /* Code AFTER triggers */ 1368 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1369 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1370 } 1371 1372 /* The bottom of the main insertion loop, if the data source 1373 ** is a SELECT statement. 1374 */ 1375 sqlite3VdbeResolveLabel(v, endOfLoop); 1376 if( useTempTable ){ 1377 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1378 sqlite3VdbeJumpHere(v, addrInsTop); 1379 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1380 }else if( pSelect ){ 1381 sqlite3VdbeGoto(v, addrCont); 1382 #ifdef SQLITE_DEBUG 1383 /* If we are jumping back to an OP_Yield that is preceded by an 1384 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1385 ** OP_ReleaseReg will be included in the loop. */ 1386 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1387 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1388 sqlite3VdbeChangeP5(v, 1); 1389 } 1390 #endif 1391 sqlite3VdbeJumpHere(v, addrInsTop); 1392 } 1393 1394 #ifndef SQLITE_OMIT_XFER_OPT 1395 insert_end: 1396 #endif /* SQLITE_OMIT_XFER_OPT */ 1397 /* Update the sqlite_sequence table by storing the content of the 1398 ** maximum rowid counter values recorded while inserting into 1399 ** autoincrement tables. 1400 */ 1401 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1402 sqlite3AutoincrementEnd(pParse); 1403 } 1404 1405 /* 1406 ** Return the number of rows inserted. If this routine is 1407 ** generating code because of a call to sqlite3NestedParse(), do not 1408 ** invoke the callback function. 1409 */ 1410 if( regRowCount ){ 1411 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1412 } 1413 1414 insert_cleanup: 1415 sqlite3SrcListDelete(db, pTabList); 1416 sqlite3ExprListDelete(db, pList); 1417 sqlite3UpsertDelete(db, pUpsert); 1418 sqlite3SelectDelete(db, pSelect); 1419 sqlite3IdListDelete(db, pColumn); 1420 sqlite3DbFree(db, aRegIdx); 1421 } 1422 1423 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1424 ** they may interfere with compilation of other functions in this file 1425 ** (or in another file, if this file becomes part of the amalgamation). */ 1426 #ifdef isView 1427 #undef isView 1428 #endif 1429 #ifdef pTrigger 1430 #undef pTrigger 1431 #endif 1432 #ifdef tmask 1433 #undef tmask 1434 #endif 1435 1436 /* 1437 ** Meanings of bits in of pWalker->eCode for 1438 ** sqlite3ExprReferencesUpdatedColumn() 1439 */ 1440 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1441 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1442 1443 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1444 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1445 ** expression node references any of the 1446 ** columns that are being modifed by an UPDATE statement. 1447 */ 1448 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1449 if( pExpr->op==TK_COLUMN ){ 1450 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1451 if( pExpr->iColumn>=0 ){ 1452 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1453 pWalker->eCode |= CKCNSTRNT_COLUMN; 1454 } 1455 }else{ 1456 pWalker->eCode |= CKCNSTRNT_ROWID; 1457 } 1458 } 1459 return WRC_Continue; 1460 } 1461 1462 /* 1463 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1464 ** only columns that are modified by the UPDATE are those for which 1465 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1466 ** 1467 ** Return true if CHECK constraint pExpr uses any of the 1468 ** changing columns (or the rowid if it is changing). In other words, 1469 ** return true if this CHECK constraint must be validated for 1470 ** the new row in the UPDATE statement. 1471 ** 1472 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1473 ** The operation of this routine is the same - return true if an only if 1474 ** the expression uses one or more of columns identified by the second and 1475 ** third arguments. 1476 */ 1477 int sqlite3ExprReferencesUpdatedColumn( 1478 Expr *pExpr, /* The expression to be checked */ 1479 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1480 int chngRowid /* True if UPDATE changes the rowid */ 1481 ){ 1482 Walker w; 1483 memset(&w, 0, sizeof(w)); 1484 w.eCode = 0; 1485 w.xExprCallback = checkConstraintExprNode; 1486 w.u.aiCol = aiChng; 1487 sqlite3WalkExpr(&w, pExpr); 1488 if( !chngRowid ){ 1489 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1490 w.eCode &= ~CKCNSTRNT_ROWID; 1491 } 1492 testcase( w.eCode==0 ); 1493 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1494 testcase( w.eCode==CKCNSTRNT_ROWID ); 1495 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1496 return w.eCode!=0; 1497 } 1498 1499 /* 1500 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1501 ** the indexes of a table in the order provided in the Table->pIndex list. 1502 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1503 ** the indexes in a different order. The following data structures accomplish 1504 ** this. 1505 ** 1506 ** The IndexIterator object is used to walk through all of the indexes 1507 ** of a table in either Index.pNext order, or in some other order established 1508 ** by an array of IndexListTerm objects. 1509 */ 1510 typedef struct IndexListTerm IndexListTerm; 1511 typedef struct IndexIterator IndexIterator; 1512 struct IndexIterator { 1513 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1514 int i; /* Index of the current item from the list */ 1515 union { 1516 struct { /* Use this object for eType==0: A Index.pNext list */ 1517 Index *pIdx; /* The current Index */ 1518 } lx; 1519 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1520 int nIdx; /* Size of the array */ 1521 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1522 } ax; 1523 } u; 1524 }; 1525 1526 /* When IndexIterator.eType==1, then each index is an array of instances 1527 ** of the following object 1528 */ 1529 struct IndexListTerm { 1530 Index *p; /* The index */ 1531 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1532 }; 1533 1534 /* Return the first index on the list */ 1535 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1536 assert( pIter->i==0 ); 1537 if( pIter->eType ){ 1538 *pIx = pIter->u.ax.aIdx[0].ix; 1539 return pIter->u.ax.aIdx[0].p; 1540 }else{ 1541 *pIx = 0; 1542 return pIter->u.lx.pIdx; 1543 } 1544 } 1545 1546 /* Return the next index from the list. Return NULL when out of indexes */ 1547 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1548 if( pIter->eType ){ 1549 int i = ++pIter->i; 1550 if( i>=pIter->u.ax.nIdx ){ 1551 *pIx = i; 1552 return 0; 1553 } 1554 *pIx = pIter->u.ax.aIdx[i].ix; 1555 return pIter->u.ax.aIdx[i].p; 1556 }else{ 1557 ++(*pIx); 1558 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1559 return pIter->u.lx.pIdx; 1560 } 1561 } 1562 1563 /* 1564 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1565 ** on table pTab. 1566 ** 1567 ** The regNewData parameter is the first register in a range that contains 1568 ** the data to be inserted or the data after the update. There will be 1569 ** pTab->nCol+1 registers in this range. The first register (the one 1570 ** that regNewData points to) will contain the new rowid, or NULL in the 1571 ** case of a WITHOUT ROWID table. The second register in the range will 1572 ** contain the content of the first table column. The third register will 1573 ** contain the content of the second table column. And so forth. 1574 ** 1575 ** The regOldData parameter is similar to regNewData except that it contains 1576 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1577 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1578 ** checking regOldData for zero. 1579 ** 1580 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1581 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1582 ** might be modified by the UPDATE. If pkChng is false, then the key of 1583 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1584 ** 1585 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1586 ** was explicitly specified as part of the INSERT statement. If pkChng 1587 ** is zero, it means that the either rowid is computed automatically or 1588 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1589 ** pkChng will only be true if the INSERT statement provides an integer 1590 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1591 ** 1592 ** The code generated by this routine will store new index entries into 1593 ** registers identified by aRegIdx[]. No index entry is created for 1594 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1595 ** the same as the order of indices on the linked list of indices 1596 ** at pTab->pIndex. 1597 ** 1598 ** (2019-05-07) The generated code also creates a new record for the 1599 ** main table, if pTab is a rowid table, and stores that record in the 1600 ** register identified by aRegIdx[nIdx] - in other words in the first 1601 ** entry of aRegIdx[] past the last index. It is important that the 1602 ** record be generated during constraint checks to avoid affinity changes 1603 ** to the register content that occur after constraint checks but before 1604 ** the new record is inserted. 1605 ** 1606 ** The caller must have already opened writeable cursors on the main 1607 ** table and all applicable indices (that is to say, all indices for which 1608 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1609 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1610 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1611 ** for the first index in the pTab->pIndex list. Cursors for other indices 1612 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1613 ** 1614 ** This routine also generates code to check constraints. NOT NULL, 1615 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1616 ** then the appropriate action is performed. There are five possible 1617 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1618 ** 1619 ** Constraint type Action What Happens 1620 ** --------------- ---------- ---------------------------------------- 1621 ** any ROLLBACK The current transaction is rolled back and 1622 ** sqlite3_step() returns immediately with a 1623 ** return code of SQLITE_CONSTRAINT. 1624 ** 1625 ** any ABORT Back out changes from the current command 1626 ** only (do not do a complete rollback) then 1627 ** cause sqlite3_step() to return immediately 1628 ** with SQLITE_CONSTRAINT. 1629 ** 1630 ** any FAIL Sqlite3_step() returns immediately with a 1631 ** return code of SQLITE_CONSTRAINT. The 1632 ** transaction is not rolled back and any 1633 ** changes to prior rows are retained. 1634 ** 1635 ** any IGNORE The attempt in insert or update the current 1636 ** row is skipped, without throwing an error. 1637 ** Processing continues with the next row. 1638 ** (There is an immediate jump to ignoreDest.) 1639 ** 1640 ** NOT NULL REPLACE The NULL value is replace by the default 1641 ** value for that column. If the default value 1642 ** is NULL, the action is the same as ABORT. 1643 ** 1644 ** UNIQUE REPLACE The other row that conflicts with the row 1645 ** being inserted is removed. 1646 ** 1647 ** CHECK REPLACE Illegal. The results in an exception. 1648 ** 1649 ** Which action to take is determined by the overrideError parameter. 1650 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1651 ** is used. Or if pParse->onError==OE_Default then the onError value 1652 ** for the constraint is used. 1653 */ 1654 void sqlite3GenerateConstraintChecks( 1655 Parse *pParse, /* The parser context */ 1656 Table *pTab, /* The table being inserted or updated */ 1657 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1658 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1659 int iIdxCur, /* First index cursor */ 1660 int regNewData, /* First register in a range holding values to insert */ 1661 int regOldData, /* Previous content. 0 for INSERTs */ 1662 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1663 u8 overrideError, /* Override onError to this if not OE_Default */ 1664 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1665 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1666 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1667 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1668 ){ 1669 Vdbe *v; /* VDBE under constrution */ 1670 Index *pIdx; /* Pointer to one of the indices */ 1671 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1672 sqlite3 *db; /* Database connection */ 1673 int i; /* loop counter */ 1674 int ix; /* Index loop counter */ 1675 int nCol; /* Number of columns */ 1676 int onError; /* Conflict resolution strategy */ 1677 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1678 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1679 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1680 u8 isUpdate; /* True if this is an UPDATE operation */ 1681 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1682 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1683 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1684 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1685 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1686 /* Variables associated with retesting uniqueness constraints after 1687 ** replace triggers fire have run */ 1688 int regTrigCnt; /* Register used to count replace trigger invocations */ 1689 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1690 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1691 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1692 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1693 IndexIterator sIdxIter; /* Index iterator */ 1694 1695 isUpdate = regOldData!=0; 1696 db = pParse->db; 1697 v = pParse->pVdbe; 1698 assert( v!=0 ); 1699 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1700 nCol = pTab->nCol; 1701 1702 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1703 ** normal rowid tables. nPkField is the number of key fields in the 1704 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1705 ** number of fields in the true primary key of the table. */ 1706 if( HasRowid(pTab) ){ 1707 pPk = 0; 1708 nPkField = 1; 1709 }else{ 1710 pPk = sqlite3PrimaryKeyIndex(pTab); 1711 nPkField = pPk->nKeyCol; 1712 } 1713 1714 /* Record that this module has started */ 1715 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1716 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1717 1718 /* Test all NOT NULL constraints. 1719 */ 1720 if( pTab->tabFlags & TF_HasNotNull ){ 1721 int b2ndPass = 0; /* True if currently running 2nd pass */ 1722 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1723 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1724 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1725 for(i=0; i<nCol; i++){ 1726 int iReg; /* Register holding column value */ 1727 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1728 int isGenerated; /* non-zero if column is generated */ 1729 onError = pCol->notNull; 1730 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1731 if( i==pTab->iPKey ){ 1732 continue; /* ROWID is never NULL */ 1733 } 1734 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1735 if( isGenerated && !b2ndPass ){ 1736 nGenerated++; 1737 continue; /* Generated columns processed on 2nd pass */ 1738 } 1739 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1740 /* Do not check NOT NULL on columns that do not change */ 1741 continue; 1742 } 1743 if( overrideError!=OE_Default ){ 1744 onError = overrideError; 1745 }else if( onError==OE_Default ){ 1746 onError = OE_Abort; 1747 } 1748 if( onError==OE_Replace ){ 1749 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1750 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1751 ){ 1752 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1753 testcase( pCol->colFlags & COLFLAG_STORED ); 1754 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1755 onError = OE_Abort; 1756 }else{ 1757 assert( !isGenerated ); 1758 } 1759 }else if( b2ndPass && !isGenerated ){ 1760 continue; 1761 } 1762 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1763 || onError==OE_Ignore || onError==OE_Replace ); 1764 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1765 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1766 switch( onError ){ 1767 case OE_Replace: { 1768 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1769 VdbeCoverage(v); 1770 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1771 nSeenReplace++; 1772 sqlite3ExprCodeCopy(pParse, 1773 sqlite3ColumnExpr(pTab, pCol), iReg); 1774 sqlite3VdbeJumpHere(v, addr1); 1775 break; 1776 } 1777 case OE_Abort: 1778 sqlite3MayAbort(pParse); 1779 /* no break */ deliberate_fall_through 1780 case OE_Rollback: 1781 case OE_Fail: { 1782 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1783 pCol->zCnName); 1784 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1785 onError, iReg); 1786 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1787 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1788 VdbeCoverage(v); 1789 break; 1790 } 1791 default: { 1792 assert( onError==OE_Ignore ); 1793 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1794 VdbeCoverage(v); 1795 break; 1796 } 1797 } /* end switch(onError) */ 1798 } /* end loop i over columns */ 1799 if( nGenerated==0 && nSeenReplace==0 ){ 1800 /* If there are no generated columns with NOT NULL constraints 1801 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1802 ** pass is sufficient */ 1803 break; 1804 } 1805 if( b2ndPass ) break; /* Never need more than 2 passes */ 1806 b2ndPass = 1; 1807 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1808 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1809 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1810 ** first pass, recomputed values for all generated columns, as 1811 ** those values might depend on columns affected by the REPLACE. 1812 */ 1813 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1814 } 1815 #endif 1816 } /* end of 2-pass loop */ 1817 } /* end if( has-not-null-constraints ) */ 1818 1819 /* Test all CHECK constraints 1820 */ 1821 #ifndef SQLITE_OMIT_CHECK 1822 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1823 ExprList *pCheck = pTab->pCheck; 1824 pParse->iSelfTab = -(regNewData+1); 1825 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1826 for(i=0; i<pCheck->nExpr; i++){ 1827 int allOk; 1828 Expr *pCopy; 1829 Expr *pExpr = pCheck->a[i].pExpr; 1830 if( aiChng 1831 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1832 ){ 1833 /* The check constraints do not reference any of the columns being 1834 ** updated so there is no point it verifying the check constraint */ 1835 continue; 1836 } 1837 if( bAffinityDone==0 ){ 1838 sqlite3TableAffinity(v, pTab, regNewData+1); 1839 bAffinityDone = 1; 1840 } 1841 allOk = sqlite3VdbeMakeLabel(pParse); 1842 sqlite3VdbeVerifyAbortable(v, onError); 1843 pCopy = sqlite3ExprDup(db, pExpr, 0); 1844 if( !db->mallocFailed ){ 1845 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1846 } 1847 sqlite3ExprDelete(db, pCopy); 1848 if( onError==OE_Ignore ){ 1849 sqlite3VdbeGoto(v, ignoreDest); 1850 }else{ 1851 char *zName = pCheck->a[i].zEName; 1852 assert( zName!=0 || pParse->db->mallocFailed ); 1853 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1854 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1855 onError, zName, P4_TRANSIENT, 1856 P5_ConstraintCheck); 1857 } 1858 sqlite3VdbeResolveLabel(v, allOk); 1859 } 1860 pParse->iSelfTab = 0; 1861 } 1862 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1863 1864 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1865 ** order: 1866 ** 1867 ** (1) OE_Update 1868 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1869 ** (3) OE_Replace 1870 ** 1871 ** OE_Fail and OE_Ignore must happen before any changes are made. 1872 ** OE_Update guarantees that only a single row will change, so it 1873 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1874 ** could happen in any order, but they are grouped up front for 1875 ** convenience. 1876 ** 1877 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1878 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1879 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1880 ** constraint before any others, so it had to be moved. 1881 ** 1882 ** Constraint checking code is generated in this order: 1883 ** (A) The rowid constraint 1884 ** (B) Unique index constraints that do not have OE_Replace as their 1885 ** default conflict resolution strategy 1886 ** (C) Unique index that do use OE_Replace by default. 1887 ** 1888 ** The ordering of (2) and (3) is accomplished by making sure the linked 1889 ** list of indexes attached to a table puts all OE_Replace indexes last 1890 ** in the list. See sqlite3CreateIndex() for where that happens. 1891 */ 1892 sIdxIter.eType = 0; 1893 sIdxIter.i = 0; 1894 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1895 sIdxIter.u.lx.pIdx = pTab->pIndex; 1896 if( pUpsert ){ 1897 if( pUpsert->pUpsertTarget==0 ){ 1898 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1899 assert( pUpsert->pNextUpsert==0 ); 1900 if( pUpsert->isDoUpdate==0 ){ 1901 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1902 ** Make all unique constraint resolution be OE_Ignore */ 1903 overrideError = OE_Ignore; 1904 pUpsert = 0; 1905 }else{ 1906 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1907 overrideError = OE_Update; 1908 } 1909 }else if( pTab->pIndex!=0 ){ 1910 /* Otherwise, we'll need to run the IndexListTerm array version of the 1911 ** iterator to ensure that all of the ON CONFLICT conditions are 1912 ** checked first and in order. */ 1913 int nIdx, jj; 1914 u64 nByte; 1915 Upsert *pTerm; 1916 u8 *bUsed; 1917 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1918 assert( aRegIdx[nIdx]>0 ); 1919 } 1920 sIdxIter.eType = 1; 1921 sIdxIter.u.ax.nIdx = nIdx; 1922 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1923 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1924 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1925 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1926 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1927 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1928 if( pTerm->pUpsertTarget==0 ) break; 1929 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1930 jj = 0; 1931 pIdx = pTab->pIndex; 1932 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1933 pIdx = pIdx->pNext; 1934 jj++; 1935 } 1936 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1937 bUsed[jj] = 1; 1938 sIdxIter.u.ax.aIdx[i].p = pIdx; 1939 sIdxIter.u.ax.aIdx[i].ix = jj; 1940 i++; 1941 } 1942 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1943 if( bUsed[jj] ) continue; 1944 sIdxIter.u.ax.aIdx[i].p = pIdx; 1945 sIdxIter.u.ax.aIdx[i].ix = jj; 1946 i++; 1947 } 1948 assert( i==nIdx ); 1949 } 1950 } 1951 1952 /* Determine if it is possible that triggers (either explicitly coded 1953 ** triggers or FK resolution actions) might run as a result of deletes 1954 ** that happen when OE_Replace conflict resolution occurs. (Call these 1955 ** "replace triggers".) If any replace triggers run, we will need to 1956 ** recheck all of the uniqueness constraints after they have all run. 1957 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1958 ** 1959 ** If replace triggers are a possibility, then 1960 ** 1961 ** (1) Allocate register regTrigCnt and initialize it to zero. 1962 ** That register will count the number of replace triggers that 1963 ** fire. Constraint recheck only occurs if the number is positive. 1964 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1965 ** (3) Initialize addrRecheck and lblRecheckOk 1966 ** 1967 ** The uniqueness rechecking code will create a series of tests to run 1968 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1969 ** used to link together these tests which are separated from each other 1970 ** in the generate bytecode. 1971 */ 1972 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1973 /* There are not DELETE triggers nor FK constraints. No constraint 1974 ** rechecks are needed. */ 1975 pTrigger = 0; 1976 regTrigCnt = 0; 1977 }else{ 1978 if( db->flags&SQLITE_RecTriggers ){ 1979 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1980 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1981 }else{ 1982 pTrigger = 0; 1983 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1984 } 1985 if( regTrigCnt ){ 1986 /* Replace triggers might exist. Allocate the counter and 1987 ** initialize it to zero. */ 1988 regTrigCnt = ++pParse->nMem; 1989 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1990 VdbeComment((v, "trigger count")); 1991 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1992 addrRecheck = lblRecheckOk; 1993 } 1994 } 1995 1996 /* If rowid is changing, make sure the new rowid does not previously 1997 ** exist in the table. 1998 */ 1999 if( pkChng && pPk==0 ){ 2000 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 2001 2002 /* Figure out what action to take in case of a rowid collision */ 2003 onError = pTab->keyConf; 2004 if( overrideError!=OE_Default ){ 2005 onError = overrideError; 2006 }else if( onError==OE_Default ){ 2007 onError = OE_Abort; 2008 } 2009 2010 /* figure out whether or not upsert applies in this case */ 2011 if( pUpsert ){ 2012 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 2013 if( pUpsertClause!=0 ){ 2014 if( pUpsertClause->isDoUpdate==0 ){ 2015 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2016 }else{ 2017 onError = OE_Update; /* DO UPDATE */ 2018 } 2019 } 2020 if( pUpsertClause!=pUpsert ){ 2021 /* The first ON CONFLICT clause has a conflict target other than 2022 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2023 ** and then come back here and deal with the IPK afterwards */ 2024 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2025 } 2026 } 2027 2028 /* If the response to a rowid conflict is REPLACE but the response 2029 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2030 ** to defer the running of the rowid conflict checking until after 2031 ** the UNIQUE constraints have run. 2032 */ 2033 if( onError==OE_Replace /* IPK rule is REPLACE */ 2034 && onError!=overrideError /* Rules for other constraints are different */ 2035 && pTab->pIndex /* There exist other constraints */ 2036 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2037 ){ 2038 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2039 VdbeComment((v, "defer IPK REPLACE until last")); 2040 } 2041 2042 if( isUpdate ){ 2043 /* pkChng!=0 does not mean that the rowid has changed, only that 2044 ** it might have changed. Skip the conflict logic below if the rowid 2045 ** is unchanged. */ 2046 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2047 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2048 VdbeCoverage(v); 2049 } 2050 2051 /* Check to see if the new rowid already exists in the table. Skip 2052 ** the following conflict logic if it does not. */ 2053 VdbeNoopComment((v, "uniqueness check for ROWID")); 2054 sqlite3VdbeVerifyAbortable(v, onError); 2055 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2056 VdbeCoverage(v); 2057 2058 switch( onError ){ 2059 default: { 2060 onError = OE_Abort; 2061 /* no break */ deliberate_fall_through 2062 } 2063 case OE_Rollback: 2064 case OE_Abort: 2065 case OE_Fail: { 2066 testcase( onError==OE_Rollback ); 2067 testcase( onError==OE_Abort ); 2068 testcase( onError==OE_Fail ); 2069 sqlite3RowidConstraint(pParse, onError, pTab); 2070 break; 2071 } 2072 case OE_Replace: { 2073 /* If there are DELETE triggers on this table and the 2074 ** recursive-triggers flag is set, call GenerateRowDelete() to 2075 ** remove the conflicting row from the table. This will fire 2076 ** the triggers and remove both the table and index b-tree entries. 2077 ** 2078 ** Otherwise, if there are no triggers or the recursive-triggers 2079 ** flag is not set, but the table has one or more indexes, call 2080 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2081 ** only. The table b-tree entry will be replaced by the new entry 2082 ** when it is inserted. 2083 ** 2084 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2085 ** also invoke MultiWrite() to indicate that this VDBE may require 2086 ** statement rollback (if the statement is aborted after the delete 2087 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2088 ** but being more selective here allows statements like: 2089 ** 2090 ** REPLACE INTO t(rowid) VALUES($newrowid) 2091 ** 2092 ** to run without a statement journal if there are no indexes on the 2093 ** table. 2094 */ 2095 if( regTrigCnt ){ 2096 sqlite3MultiWrite(pParse); 2097 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2098 regNewData, 1, 0, OE_Replace, 1, -1); 2099 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2100 nReplaceTrig++; 2101 }else{ 2102 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2103 assert( HasRowid(pTab) ); 2104 /* This OP_Delete opcode fires the pre-update-hook only. It does 2105 ** not modify the b-tree. It is more efficient to let the coming 2106 ** OP_Insert replace the existing entry than it is to delete the 2107 ** existing entry and then insert a new one. */ 2108 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2109 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2110 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2111 if( pTab->pIndex ){ 2112 sqlite3MultiWrite(pParse); 2113 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2114 } 2115 } 2116 seenReplace = 1; 2117 break; 2118 } 2119 #ifndef SQLITE_OMIT_UPSERT 2120 case OE_Update: { 2121 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2122 /* no break */ deliberate_fall_through 2123 } 2124 #endif 2125 case OE_Ignore: { 2126 testcase( onError==OE_Ignore ); 2127 sqlite3VdbeGoto(v, ignoreDest); 2128 break; 2129 } 2130 } 2131 sqlite3VdbeResolveLabel(v, addrRowidOk); 2132 if( pUpsert && pUpsertClause!=pUpsert ){ 2133 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2134 }else if( ipkTop ){ 2135 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2136 sqlite3VdbeJumpHere(v, ipkTop-1); 2137 } 2138 } 2139 2140 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2141 ** index and making sure that duplicate entries do not already exist. 2142 ** Compute the revised record entries for indices as we go. 2143 ** 2144 ** This loop also handles the case of the PRIMARY KEY index for a 2145 ** WITHOUT ROWID table. 2146 */ 2147 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2148 pIdx; 2149 pIdx = indexIteratorNext(&sIdxIter, &ix) 2150 ){ 2151 int regIdx; /* Range of registers hold conent for pIdx */ 2152 int regR; /* Range of registers holding conflicting PK */ 2153 int iThisCur; /* Cursor for this UNIQUE index */ 2154 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2155 int addrConflictCk; /* First opcode in the conflict check logic */ 2156 2157 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2158 if( pUpsert ){ 2159 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2160 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2161 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2162 } 2163 } 2164 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2165 if( bAffinityDone==0 ){ 2166 sqlite3TableAffinity(v, pTab, regNewData+1); 2167 bAffinityDone = 1; 2168 } 2169 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2170 iThisCur = iIdxCur+ix; 2171 2172 2173 /* Skip partial indices for which the WHERE clause is not true */ 2174 if( pIdx->pPartIdxWhere ){ 2175 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2176 pParse->iSelfTab = -(regNewData+1); 2177 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2178 SQLITE_JUMPIFNULL); 2179 pParse->iSelfTab = 0; 2180 } 2181 2182 /* Create a record for this index entry as it should appear after 2183 ** the insert or update. Store that record in the aRegIdx[ix] register 2184 */ 2185 regIdx = aRegIdx[ix]+1; 2186 for(i=0; i<pIdx->nColumn; i++){ 2187 int iField = pIdx->aiColumn[i]; 2188 int x; 2189 if( iField==XN_EXPR ){ 2190 pParse->iSelfTab = -(regNewData+1); 2191 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2192 pParse->iSelfTab = 0; 2193 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2194 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2195 x = regNewData; 2196 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2197 VdbeComment((v, "rowid")); 2198 }else{ 2199 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2200 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2201 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2202 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2203 } 2204 } 2205 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2206 VdbeComment((v, "for %s", pIdx->zName)); 2207 #ifdef SQLITE_ENABLE_NULL_TRIM 2208 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2209 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2210 } 2211 #endif 2212 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2213 2214 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2215 ** of a WITHOUT ROWID table and there has been no change the 2216 ** primary key, then no collision is possible. The collision detection 2217 ** logic below can all be skipped. */ 2218 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2219 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2220 continue; 2221 } 2222 2223 /* Find out what action to take in case there is a uniqueness conflict */ 2224 onError = pIdx->onError; 2225 if( onError==OE_None ){ 2226 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2227 continue; /* pIdx is not a UNIQUE index */ 2228 } 2229 if( overrideError!=OE_Default ){ 2230 onError = overrideError; 2231 }else if( onError==OE_Default ){ 2232 onError = OE_Abort; 2233 } 2234 2235 /* Figure out if the upsert clause applies to this index */ 2236 if( pUpsertClause ){ 2237 if( pUpsertClause->isDoUpdate==0 ){ 2238 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2239 }else{ 2240 onError = OE_Update; /* DO UPDATE */ 2241 } 2242 } 2243 2244 /* Collision detection may be omitted if all of the following are true: 2245 ** (1) The conflict resolution algorithm is REPLACE 2246 ** (2) The table is a WITHOUT ROWID table 2247 ** (3) There are no secondary indexes on the table 2248 ** (4) No delete triggers need to be fired if there is a conflict 2249 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2250 ** 2251 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2252 ** must be explicitly deleted in order to ensure any pre-update hook 2253 ** is invoked. */ 2254 assert( IsOrdinaryTable(pTab) ); 2255 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2256 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2257 && pPk==pIdx /* Condition 2 */ 2258 && onError==OE_Replace /* Condition 1 */ 2259 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2260 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2261 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2262 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2263 ){ 2264 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2265 continue; 2266 } 2267 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2268 2269 /* Check to see if the new index entry will be unique */ 2270 sqlite3VdbeVerifyAbortable(v, onError); 2271 addrConflictCk = 2272 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2273 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2274 2275 /* Generate code to handle collisions */ 2276 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2277 if( isUpdate || onError==OE_Replace ){ 2278 if( HasRowid(pTab) ){ 2279 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2280 /* Conflict only if the rowid of the existing index entry 2281 ** is different from old-rowid */ 2282 if( isUpdate ){ 2283 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2284 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2285 VdbeCoverage(v); 2286 } 2287 }else{ 2288 int x; 2289 /* Extract the PRIMARY KEY from the end of the index entry and 2290 ** store it in registers regR..regR+nPk-1 */ 2291 if( pIdx!=pPk ){ 2292 for(i=0; i<pPk->nKeyCol; i++){ 2293 assert( pPk->aiColumn[i]>=0 ); 2294 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2295 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2296 VdbeComment((v, "%s.%s", pTab->zName, 2297 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2298 } 2299 } 2300 if( isUpdate ){ 2301 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2302 ** table, only conflict if the new PRIMARY KEY values are actually 2303 ** different from the old. See TH3 withoutrowid04.test. 2304 ** 2305 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2306 ** of the matched index row are different from the original PRIMARY 2307 ** KEY values of this row before the update. */ 2308 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2309 int op = OP_Ne; 2310 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2311 2312 for(i=0; i<pPk->nKeyCol; i++){ 2313 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2314 x = pPk->aiColumn[i]; 2315 assert( x>=0 ); 2316 if( i==(pPk->nKeyCol-1) ){ 2317 addrJump = addrUniqueOk; 2318 op = OP_Eq; 2319 } 2320 x = sqlite3TableColumnToStorage(pTab, x); 2321 sqlite3VdbeAddOp4(v, op, 2322 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2323 ); 2324 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2325 VdbeCoverageIf(v, op==OP_Eq); 2326 VdbeCoverageIf(v, op==OP_Ne); 2327 } 2328 } 2329 } 2330 } 2331 2332 /* Generate code that executes if the new index entry is not unique */ 2333 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2334 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2335 switch( onError ){ 2336 case OE_Rollback: 2337 case OE_Abort: 2338 case OE_Fail: { 2339 testcase( onError==OE_Rollback ); 2340 testcase( onError==OE_Abort ); 2341 testcase( onError==OE_Fail ); 2342 sqlite3UniqueConstraint(pParse, onError, pIdx); 2343 break; 2344 } 2345 #ifndef SQLITE_OMIT_UPSERT 2346 case OE_Update: { 2347 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2348 /* no break */ deliberate_fall_through 2349 } 2350 #endif 2351 case OE_Ignore: { 2352 testcase( onError==OE_Ignore ); 2353 sqlite3VdbeGoto(v, ignoreDest); 2354 break; 2355 } 2356 default: { 2357 int nConflictCk; /* Number of opcodes in conflict check logic */ 2358 2359 assert( onError==OE_Replace ); 2360 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2361 assert( nConflictCk>0 || db->mallocFailed ); 2362 testcase( nConflictCk<=0 ); 2363 testcase( nConflictCk>1 ); 2364 if( regTrigCnt ){ 2365 sqlite3MultiWrite(pParse); 2366 nReplaceTrig++; 2367 } 2368 if( pTrigger && isUpdate ){ 2369 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2370 } 2371 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2372 regR, nPkField, 0, OE_Replace, 2373 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2374 if( pTrigger && isUpdate ){ 2375 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2376 } 2377 if( regTrigCnt ){ 2378 int addrBypass; /* Jump destination to bypass recheck logic */ 2379 2380 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2381 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2382 VdbeComment((v, "bypass recheck")); 2383 2384 /* Here we insert code that will be invoked after all constraint 2385 ** checks have run, if and only if one or more replace triggers 2386 ** fired. */ 2387 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2388 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2389 if( pIdx->pPartIdxWhere ){ 2390 /* Bypass the recheck if this partial index is not defined 2391 ** for the current row */ 2392 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2393 VdbeCoverage(v); 2394 } 2395 /* Copy the constraint check code from above, except change 2396 ** the constraint-ok jump destination to be the address of 2397 ** the next retest block */ 2398 while( nConflictCk>0 ){ 2399 VdbeOp x; /* Conflict check opcode to copy */ 2400 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2401 ** Hence, make a complete copy of the opcode, rather than using 2402 ** a pointer to the opcode. */ 2403 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2404 if( x.opcode!=OP_IdxRowid ){ 2405 int p2; /* New P2 value for copied conflict check opcode */ 2406 const char *zP4; 2407 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2408 p2 = lblRecheckOk; 2409 }else{ 2410 p2 = x.p2; 2411 } 2412 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2413 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2414 sqlite3VdbeChangeP5(v, x.p5); 2415 VdbeCoverageIf(v, p2!=x.p2); 2416 } 2417 nConflictCk--; 2418 addrConflictCk++; 2419 } 2420 /* If the retest fails, issue an abort */ 2421 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2422 2423 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2424 } 2425 seenReplace = 1; 2426 break; 2427 } 2428 } 2429 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2430 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2431 if( pUpsertClause 2432 && upsertIpkReturn 2433 && sqlite3UpsertNextIsIPK(pUpsertClause) 2434 ){ 2435 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2436 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2437 upsertIpkReturn = 0; 2438 } 2439 } 2440 2441 /* If the IPK constraint is a REPLACE, run it last */ 2442 if( ipkTop ){ 2443 sqlite3VdbeGoto(v, ipkTop); 2444 VdbeComment((v, "Do IPK REPLACE")); 2445 assert( ipkBottom>0 ); 2446 sqlite3VdbeJumpHere(v, ipkBottom); 2447 } 2448 2449 /* Recheck all uniqueness constraints after replace triggers have run */ 2450 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2451 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2452 if( nReplaceTrig ){ 2453 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2454 if( !pPk ){ 2455 if( isUpdate ){ 2456 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2457 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2458 VdbeCoverage(v); 2459 } 2460 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2461 VdbeCoverage(v); 2462 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2463 }else{ 2464 sqlite3VdbeGoto(v, addrRecheck); 2465 } 2466 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2467 } 2468 2469 /* Generate the table record */ 2470 if( HasRowid(pTab) ){ 2471 int regRec = aRegIdx[ix]; 2472 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2473 sqlite3SetMakeRecordP5(v, pTab); 2474 if( !bAffinityDone ){ 2475 sqlite3TableAffinity(v, pTab, 0); 2476 } 2477 } 2478 2479 *pbMayReplace = seenReplace; 2480 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2481 } 2482 2483 #ifdef SQLITE_ENABLE_NULL_TRIM 2484 /* 2485 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2486 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2487 ** 2488 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2489 */ 2490 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2491 u16 i; 2492 2493 /* Records with omitted columns are only allowed for schema format 2494 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2495 if( pTab->pSchema->file_format<2 ) return; 2496 2497 for(i=pTab->nCol-1; i>0; i--){ 2498 if( pTab->aCol[i].iDflt!=0 ) break; 2499 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2500 } 2501 sqlite3VdbeChangeP5(v, i+1); 2502 } 2503 #endif 2504 2505 /* 2506 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2507 ** number is iCur, and register regData contains the new record for the 2508 ** PK index. This function adds code to invoke the pre-update hook, 2509 ** if one is registered. 2510 */ 2511 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2512 static void codeWithoutRowidPreupdate( 2513 Parse *pParse, /* Parse context */ 2514 Table *pTab, /* Table being updated */ 2515 int iCur, /* Cursor number for table */ 2516 int regData /* Data containing new record */ 2517 ){ 2518 Vdbe *v = pParse->pVdbe; 2519 int r = sqlite3GetTempReg(pParse); 2520 assert( !HasRowid(pTab) ); 2521 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2522 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2523 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2524 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2525 sqlite3ReleaseTempReg(pParse, r); 2526 } 2527 #else 2528 # define codeWithoutRowidPreupdate(a,b,c,d) 2529 #endif 2530 2531 /* 2532 ** This routine generates code to finish the INSERT or UPDATE operation 2533 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2534 ** A consecutive range of registers starting at regNewData contains the 2535 ** rowid and the content to be inserted. 2536 ** 2537 ** The arguments to this routine should be the same as the first six 2538 ** arguments to sqlite3GenerateConstraintChecks. 2539 */ 2540 void sqlite3CompleteInsertion( 2541 Parse *pParse, /* The parser context */ 2542 Table *pTab, /* the table into which we are inserting */ 2543 int iDataCur, /* Cursor of the canonical data source */ 2544 int iIdxCur, /* First index cursor */ 2545 int regNewData, /* Range of content */ 2546 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2547 int update_flags, /* True for UPDATE, False for INSERT */ 2548 int appendBias, /* True if this is likely to be an append */ 2549 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2550 ){ 2551 Vdbe *v; /* Prepared statements under construction */ 2552 Index *pIdx; /* An index being inserted or updated */ 2553 u8 pik_flags; /* flag values passed to the btree insert */ 2554 int i; /* Loop counter */ 2555 2556 assert( update_flags==0 2557 || update_flags==OPFLAG_ISUPDATE 2558 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2559 ); 2560 2561 v = pParse->pVdbe; 2562 assert( v!=0 ); 2563 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2564 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2565 /* All REPLACE indexes are at the end of the list */ 2566 assert( pIdx->onError!=OE_Replace 2567 || pIdx->pNext==0 2568 || pIdx->pNext->onError==OE_Replace ); 2569 if( aRegIdx[i]==0 ) continue; 2570 if( pIdx->pPartIdxWhere ){ 2571 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2572 VdbeCoverage(v); 2573 } 2574 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2575 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2576 pik_flags |= OPFLAG_NCHANGE; 2577 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2578 if( update_flags==0 ){ 2579 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2580 } 2581 } 2582 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2583 aRegIdx[i]+1, 2584 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2585 sqlite3VdbeChangeP5(v, pik_flags); 2586 } 2587 if( !HasRowid(pTab) ) return; 2588 if( pParse->nested ){ 2589 pik_flags = 0; 2590 }else{ 2591 pik_flags = OPFLAG_NCHANGE; 2592 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2593 } 2594 if( appendBias ){ 2595 pik_flags |= OPFLAG_APPEND; 2596 } 2597 if( useSeekResult ){ 2598 pik_flags |= OPFLAG_USESEEKRESULT; 2599 } 2600 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2601 if( !pParse->nested ){ 2602 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2603 } 2604 sqlite3VdbeChangeP5(v, pik_flags); 2605 } 2606 2607 /* 2608 ** Allocate cursors for the pTab table and all its indices and generate 2609 ** code to open and initialized those cursors. 2610 ** 2611 ** The cursor for the object that contains the complete data (normally 2612 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2613 ** ROWID table) is returned in *piDataCur. The first index cursor is 2614 ** returned in *piIdxCur. The number of indices is returned. 2615 ** 2616 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2617 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2618 ** If iBase is negative, then allocate the next available cursor. 2619 ** 2620 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2621 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2622 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2623 ** pTab->pIndex list. 2624 ** 2625 ** If pTab is a virtual table, then this routine is a no-op and the 2626 ** *piDataCur and *piIdxCur values are left uninitialized. 2627 */ 2628 int sqlite3OpenTableAndIndices( 2629 Parse *pParse, /* Parsing context */ 2630 Table *pTab, /* Table to be opened */ 2631 int op, /* OP_OpenRead or OP_OpenWrite */ 2632 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2633 int iBase, /* Use this for the table cursor, if there is one */ 2634 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2635 int *piDataCur, /* Write the database source cursor number here */ 2636 int *piIdxCur /* Write the first index cursor number here */ 2637 ){ 2638 int i; 2639 int iDb; 2640 int iDataCur; 2641 Index *pIdx; 2642 Vdbe *v; 2643 2644 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2645 assert( op==OP_OpenWrite || p5==0 ); 2646 if( IsVirtual(pTab) ){ 2647 /* This routine is a no-op for virtual tables. Leave the output 2648 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2649 ** for improved error detection. */ 2650 *piDataCur = *piIdxCur = -999; 2651 return 0; 2652 } 2653 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2654 v = pParse->pVdbe; 2655 assert( v!=0 ); 2656 if( iBase<0 ) iBase = pParse->nTab; 2657 iDataCur = iBase++; 2658 if( piDataCur ) *piDataCur = iDataCur; 2659 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2660 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2661 }else{ 2662 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2663 } 2664 if( piIdxCur ) *piIdxCur = iBase; 2665 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2666 int iIdxCur = iBase++; 2667 assert( pIdx->pSchema==pTab->pSchema ); 2668 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2669 if( piDataCur ) *piDataCur = iIdxCur; 2670 p5 = 0; 2671 } 2672 if( aToOpen==0 || aToOpen[i+1] ){ 2673 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2674 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2675 sqlite3VdbeChangeP5(v, p5); 2676 VdbeComment((v, "%s", pIdx->zName)); 2677 } 2678 } 2679 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2680 return i; 2681 } 2682 2683 2684 #ifdef SQLITE_TEST 2685 /* 2686 ** The following global variable is incremented whenever the 2687 ** transfer optimization is used. This is used for testing 2688 ** purposes only - to make sure the transfer optimization really 2689 ** is happening when it is supposed to. 2690 */ 2691 int sqlite3_xferopt_count; 2692 #endif /* SQLITE_TEST */ 2693 2694 2695 #ifndef SQLITE_OMIT_XFER_OPT 2696 /* 2697 ** Check to see if index pSrc is compatible as a source of data 2698 ** for index pDest in an insert transfer optimization. The rules 2699 ** for a compatible index: 2700 ** 2701 ** * The index is over the same set of columns 2702 ** * The same DESC and ASC markings occurs on all columns 2703 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2704 ** * The same collating sequence on each column 2705 ** * The index has the exact same WHERE clause 2706 */ 2707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2708 int i; 2709 assert( pDest && pSrc ); 2710 assert( pDest->pTable!=pSrc->pTable ); 2711 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2712 return 0; /* Different number of columns */ 2713 } 2714 if( pDest->onError!=pSrc->onError ){ 2715 return 0; /* Different conflict resolution strategies */ 2716 } 2717 for(i=0; i<pSrc->nKeyCol; i++){ 2718 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2719 return 0; /* Different columns indexed */ 2720 } 2721 if( pSrc->aiColumn[i]==XN_EXPR ){ 2722 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2723 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2724 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2725 return 0; /* Different expressions in the index */ 2726 } 2727 } 2728 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2729 return 0; /* Different sort orders */ 2730 } 2731 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2732 return 0; /* Different collating sequences */ 2733 } 2734 } 2735 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2736 return 0; /* Different WHERE clauses */ 2737 } 2738 2739 /* If no test above fails then the indices must be compatible */ 2740 return 1; 2741 } 2742 2743 /* 2744 ** Attempt the transfer optimization on INSERTs of the form 2745 ** 2746 ** INSERT INTO tab1 SELECT * FROM tab2; 2747 ** 2748 ** The xfer optimization transfers raw records from tab2 over to tab1. 2749 ** Columns are not decoded and reassembled, which greatly improves 2750 ** performance. Raw index records are transferred in the same way. 2751 ** 2752 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2753 ** There are lots of rules for determining compatibility - see comments 2754 ** embedded in the code for details. 2755 ** 2756 ** This routine returns TRUE if the optimization is guaranteed to be used. 2757 ** Sometimes the xfer optimization will only work if the destination table 2758 ** is empty - a factor that can only be determined at run-time. In that 2759 ** case, this routine generates code for the xfer optimization but also 2760 ** does a test to see if the destination table is empty and jumps over the 2761 ** xfer optimization code if the test fails. In that case, this routine 2762 ** returns FALSE so that the caller will know to go ahead and generate 2763 ** an unoptimized transfer. This routine also returns FALSE if there 2764 ** is no chance that the xfer optimization can be applied. 2765 ** 2766 ** This optimization is particularly useful at making VACUUM run faster. 2767 */ 2768 static int xferOptimization( 2769 Parse *pParse, /* Parser context */ 2770 Table *pDest, /* The table we are inserting into */ 2771 Select *pSelect, /* A SELECT statement to use as the data source */ 2772 int onError, /* How to handle constraint errors */ 2773 int iDbDest /* The database of pDest */ 2774 ){ 2775 sqlite3 *db = pParse->db; 2776 ExprList *pEList; /* The result set of the SELECT */ 2777 Table *pSrc; /* The table in the FROM clause of SELECT */ 2778 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2779 SrcItem *pItem; /* An element of pSelect->pSrc */ 2780 int i; /* Loop counter */ 2781 int iDbSrc; /* The database of pSrc */ 2782 int iSrc, iDest; /* Cursors from source and destination */ 2783 int addr1, addr2; /* Loop addresses */ 2784 int emptyDestTest = 0; /* Address of test for empty pDest */ 2785 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2786 Vdbe *v; /* The VDBE we are building */ 2787 int regAutoinc; /* Memory register used by AUTOINC */ 2788 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2789 int regData, regRowid; /* Registers holding data and rowid */ 2790 2791 assert( pSelect!=0 ); 2792 if( pParse->pWith || pSelect->pWith ){ 2793 /* Do not attempt to process this query if there are an WITH clauses 2794 ** attached to it. Proceeding may generate a false "no such table: xxx" 2795 ** error if pSelect reads from a CTE named "xxx". */ 2796 return 0; 2797 } 2798 #ifndef SQLITE_OMIT_VIRTUALTABLE 2799 if( IsVirtual(pDest) ){ 2800 return 0; /* tab1 must not be a virtual table */ 2801 } 2802 #endif 2803 if( onError==OE_Default ){ 2804 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2805 if( onError==OE_Default ) onError = OE_Abort; 2806 } 2807 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2808 if( pSelect->pSrc->nSrc!=1 ){ 2809 return 0; /* FROM clause must have exactly one term */ 2810 } 2811 if( pSelect->pSrc->a[0].pSelect ){ 2812 return 0; /* FROM clause cannot contain a subquery */ 2813 } 2814 if( pSelect->pWhere ){ 2815 return 0; /* SELECT may not have a WHERE clause */ 2816 } 2817 if( pSelect->pOrderBy ){ 2818 return 0; /* SELECT may not have an ORDER BY clause */ 2819 } 2820 /* Do not need to test for a HAVING clause. If HAVING is present but 2821 ** there is no ORDER BY, we will get an error. */ 2822 if( pSelect->pGroupBy ){ 2823 return 0; /* SELECT may not have a GROUP BY clause */ 2824 } 2825 if( pSelect->pLimit ){ 2826 return 0; /* SELECT may not have a LIMIT clause */ 2827 } 2828 if( pSelect->pPrior ){ 2829 return 0; /* SELECT may not be a compound query */ 2830 } 2831 if( pSelect->selFlags & SF_Distinct ){ 2832 return 0; /* SELECT may not be DISTINCT */ 2833 } 2834 pEList = pSelect->pEList; 2835 assert( pEList!=0 ); 2836 if( pEList->nExpr!=1 ){ 2837 return 0; /* The result set must have exactly one column */ 2838 } 2839 assert( pEList->a[0].pExpr ); 2840 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2841 return 0; /* The result set must be the special operator "*" */ 2842 } 2843 2844 /* At this point we have established that the statement is of the 2845 ** correct syntactic form to participate in this optimization. Now 2846 ** we have to check the semantics. 2847 */ 2848 pItem = pSelect->pSrc->a; 2849 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2850 if( pSrc==0 ){ 2851 return 0; /* FROM clause does not contain a real table */ 2852 } 2853 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2854 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2855 return 0; /* tab1 and tab2 may not be the same table */ 2856 } 2857 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2858 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2859 } 2860 if( !IsOrdinaryTable(pSrc) ){ 2861 return 0; /* tab2 may not be a view or virtual table */ 2862 } 2863 if( pDest->nCol!=pSrc->nCol ){ 2864 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2865 } 2866 if( pDest->iPKey!=pSrc->iPKey ){ 2867 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2868 } 2869 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2870 return 0; /* Cannot feed from a non-strict into a strict table */ 2871 } 2872 for(i=0; i<pDest->nCol; i++){ 2873 Column *pDestCol = &pDest->aCol[i]; 2874 Column *pSrcCol = &pSrc->aCol[i]; 2875 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2876 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2877 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2878 ){ 2879 return 0; /* Neither table may have __hidden__ columns */ 2880 } 2881 #endif 2882 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2883 /* Even if tables t1 and t2 have identical schemas, if they contain 2884 ** generated columns, then this statement is semantically incorrect: 2885 ** 2886 ** INSERT INTO t2 SELECT * FROM t1; 2887 ** 2888 ** The reason is that generated column values are returned by the 2889 ** the SELECT statement on the right but the INSERT statement on the 2890 ** left wants them to be omitted. 2891 ** 2892 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2893 ** to do a bulk transfer all of the content from t1 over to t2. 2894 ** 2895 ** We could, in theory, disable this (except for internal use by the 2896 ** VACUUM command where it is actually needed). But why do that? It 2897 ** seems harmless enough, and provides a useful service. 2898 */ 2899 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2900 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2901 return 0; /* Both columns have the same generated-column type */ 2902 } 2903 /* But the transfer is only allowed if both the source and destination 2904 ** tables have the exact same expressions for generated columns. 2905 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2906 */ 2907 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2908 if( sqlite3ExprCompare(0, 2909 sqlite3ColumnExpr(pSrc, pSrcCol), 2910 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2911 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2912 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2913 return 0; /* Different generator expressions */ 2914 } 2915 } 2916 #endif 2917 if( pDestCol->affinity!=pSrcCol->affinity ){ 2918 return 0; /* Affinity must be the same on all columns */ 2919 } 2920 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2921 sqlite3ColumnColl(pSrcCol))!=0 ){ 2922 return 0; /* Collating sequence must be the same on all columns */ 2923 } 2924 if( pDestCol->notNull && !pSrcCol->notNull ){ 2925 return 0; /* tab2 must be NOT NULL if tab1 is */ 2926 } 2927 /* Default values for second and subsequent columns need to match. */ 2928 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2929 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2930 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2931 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2932 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2933 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2934 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2935 if( (pDestExpr==0)!=(pSrcExpr==0) 2936 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2937 pSrcExpr->u.zToken)!=0) 2938 ){ 2939 return 0; /* Default values must be the same for all columns */ 2940 } 2941 } 2942 } 2943 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2944 if( IsUniqueIndex(pDestIdx) ){ 2945 destHasUniqueIdx = 1; 2946 } 2947 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2948 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2949 } 2950 if( pSrcIdx==0 ){ 2951 return 0; /* pDestIdx has no corresponding index in pSrc */ 2952 } 2953 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2954 && sqlite3FaultSim(411)==SQLITE_OK ){ 2955 /* The sqlite3FaultSim() call allows this corruption test to be 2956 ** bypassed during testing, in order to exercise other corruption tests 2957 ** further downstream. */ 2958 return 0; /* Corrupt schema - two indexes on the same btree */ 2959 } 2960 } 2961 #ifndef SQLITE_OMIT_CHECK 2962 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2963 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2964 } 2965 #endif 2966 #ifndef SQLITE_OMIT_FOREIGN_KEY 2967 /* Disallow the transfer optimization if the destination table constains 2968 ** any foreign key constraints. This is more restrictive than necessary. 2969 ** But the main beneficiary of the transfer optimization is the VACUUM 2970 ** command, and the VACUUM command disables foreign key constraints. So 2971 ** the extra complication to make this rule less restrictive is probably 2972 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2973 */ 2974 assert( IsOrdinaryTable(pDest) ); 2975 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2976 return 0; 2977 } 2978 #endif 2979 if( (db->flags & SQLITE_CountRows)!=0 ){ 2980 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2981 } 2982 2983 /* If we get this far, it means that the xfer optimization is at 2984 ** least a possibility, though it might only work if the destination 2985 ** table (tab1) is initially empty. 2986 */ 2987 #ifdef SQLITE_TEST 2988 sqlite3_xferopt_count++; 2989 #endif 2990 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2991 v = sqlite3GetVdbe(pParse); 2992 sqlite3CodeVerifySchema(pParse, iDbSrc); 2993 iSrc = pParse->nTab++; 2994 iDest = pParse->nTab++; 2995 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2996 regData = sqlite3GetTempReg(pParse); 2997 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2998 regRowid = sqlite3GetTempReg(pParse); 2999 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 3000 assert( HasRowid(pDest) || destHasUniqueIdx ); 3001 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 3002 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 3003 || destHasUniqueIdx /* (2) */ 3004 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 3005 )){ 3006 /* In some circumstances, we are able to run the xfer optimization 3007 ** only if the destination table is initially empty. Unless the 3008 ** DBFLAG_Vacuum flag is set, this block generates code to make 3009 ** that determination. If DBFLAG_Vacuum is set, then the destination 3010 ** table is always empty. 3011 ** 3012 ** Conditions under which the destination must be empty: 3013 ** 3014 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 3015 ** (If the destination is not initially empty, the rowid fields 3016 ** of index entries might need to change.) 3017 ** 3018 ** (2) The destination has a unique index. (The xfer optimization 3019 ** is unable to test uniqueness.) 3020 ** 3021 ** (3) onError is something other than OE_Abort and OE_Rollback. 3022 */ 3023 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3024 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3025 sqlite3VdbeJumpHere(v, addr1); 3026 } 3027 if( HasRowid(pSrc) ){ 3028 u8 insFlags; 3029 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3030 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3031 if( pDest->iPKey>=0 ){ 3032 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3033 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3034 sqlite3VdbeVerifyAbortable(v, onError); 3035 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3036 VdbeCoverage(v); 3037 sqlite3RowidConstraint(pParse, onError, pDest); 3038 sqlite3VdbeJumpHere(v, addr2); 3039 } 3040 autoIncStep(pParse, regAutoinc, regRowid); 3041 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3042 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3043 }else{ 3044 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3045 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3046 } 3047 3048 if( db->mDbFlags & DBFLAG_Vacuum ){ 3049 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3050 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3051 }else{ 3052 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3053 } 3054 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3055 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3056 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3057 insFlags &= ~OPFLAG_PREFORMAT; 3058 }else 3059 #endif 3060 { 3061 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3062 } 3063 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3064 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3065 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3066 } 3067 sqlite3VdbeChangeP5(v, insFlags); 3068 3069 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3070 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3071 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3072 }else{ 3073 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3074 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3075 } 3076 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3077 u8 idxInsFlags = 0; 3078 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3079 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3080 } 3081 assert( pSrcIdx ); 3082 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3083 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3084 VdbeComment((v, "%s", pSrcIdx->zName)); 3085 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3086 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3087 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3088 VdbeComment((v, "%s", pDestIdx->zName)); 3089 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3090 if( db->mDbFlags & DBFLAG_Vacuum ){ 3091 /* This INSERT command is part of a VACUUM operation, which guarantees 3092 ** that the destination table is empty. If all indexed columns use 3093 ** collation sequence BINARY, then it can also be assumed that the 3094 ** index will be populated by inserting keys in strictly sorted 3095 ** order. In this case, instead of seeking within the b-tree as part 3096 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3097 ** OP_IdxInsert to seek to the point within the b-tree where each key 3098 ** should be inserted. This is faster. 3099 ** 3100 ** If any of the indexed columns use a collation sequence other than 3101 ** BINARY, this optimization is disabled. This is because the user 3102 ** might change the definition of a collation sequence and then run 3103 ** a VACUUM command. In that case keys may not be written in strictly 3104 ** sorted order. */ 3105 for(i=0; i<pSrcIdx->nColumn; i++){ 3106 const char *zColl = pSrcIdx->azColl[i]; 3107 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3108 } 3109 if( i==pSrcIdx->nColumn ){ 3110 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3111 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3112 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3113 } 3114 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3115 idxInsFlags |= OPFLAG_NCHANGE; 3116 } 3117 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3118 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3119 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3120 && !HasRowid(pDest) 3121 && IsPrimaryKeyIndex(pDestIdx) 3122 ){ 3123 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3124 } 3125 } 3126 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3127 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3128 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3129 sqlite3VdbeJumpHere(v, addr1); 3130 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3131 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3132 } 3133 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3134 sqlite3ReleaseTempReg(pParse, regRowid); 3135 sqlite3ReleaseTempReg(pParse, regData); 3136 if( emptyDestTest ){ 3137 sqlite3AutoincrementEnd(pParse); 3138 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3139 sqlite3VdbeJumpHere(v, emptyDestTest); 3140 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3141 return 0; 3142 }else{ 3143 return 1; 3144 } 3145 } 3146 #endif /* SQLITE_OMIT_XFER_OPT */ 3147