1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 204 ** table. (Also return zero when doing a VACUUM since we do not want to 205 ** update the AUTOINCREMENT counters during a VACUUM.) 206 ** 207 ** There is at most one AutoincInfo structure per table even if the 208 ** same table is autoincremented multiple times due to inserts within 209 ** triggers. A new AutoincInfo structure is created if this is the 210 ** first use of table pTab. On 2nd and subsequent uses, the original 211 ** AutoincInfo structure is used. 212 ** 213 ** Three memory locations are allocated: 214 ** 215 ** (1) Register to hold the name of the pTab table. 216 ** (2) Register to hold the maximum ROWID of pTab. 217 ** (3) Register to hold the rowid in sqlite_sequence of pTab 218 ** 219 ** The 2nd register is the one that is returned. That is all the 220 ** insert routine needs to know about. 221 */ 222 static int autoIncBegin( 223 Parse *pParse, /* Parsing context */ 224 int iDb, /* Index of the database holding pTab */ 225 Table *pTab /* The table we are writing to */ 226 ){ 227 int memId = 0; /* Register holding maximum rowid */ 228 if( (pTab->tabFlags & TF_Autoincrement)!=0 229 && (pParse->db->flags & SQLITE_Vacuum)==0 230 ){ 231 Parse *pToplevel = sqlite3ParseToplevel(pParse); 232 AutoincInfo *pInfo; 233 234 pInfo = pToplevel->pAinc; 235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 236 if( pInfo==0 ){ 237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 238 if( pInfo==0 ) return 0; 239 pInfo->pNext = pToplevel->pAinc; 240 pToplevel->pAinc = pInfo; 241 pInfo->pTab = pTab; 242 pInfo->iDb = iDb; 243 pToplevel->nMem++; /* Register to hold name of table */ 244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 245 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 246 } 247 memId = pInfo->regCtr; 248 } 249 return memId; 250 } 251 252 /* 253 ** This routine generates code that will initialize all of the 254 ** register used by the autoincrement tracker. 255 */ 256 void sqlite3AutoincrementBegin(Parse *pParse){ 257 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 258 sqlite3 *db = pParse->db; /* The database connection */ 259 Db *pDb; /* Database only autoinc table */ 260 int memId; /* Register holding max rowid */ 261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 262 263 /* This routine is never called during trigger-generation. It is 264 ** only called from the top-level */ 265 assert( pParse->pTriggerTab==0 ); 266 assert( sqlite3IsToplevel(pParse) ); 267 268 assert( v ); /* We failed long ago if this is not so */ 269 for(p = pParse->pAinc; p; p = p->pNext){ 270 static const int iLn = VDBE_OFFSET_LINENO(2); 271 static const VdbeOpList autoInc[] = { 272 /* 0 */ {OP_Null, 0, 0, 0}, 273 /* 1 */ {OP_Rewind, 0, 9, 0}, 274 /* 2 */ {OP_Column, 0, 0, 0}, 275 /* 3 */ {OP_Ne, 0, 7, 0}, 276 /* 4 */ {OP_Rowid, 0, 0, 0}, 277 /* 5 */ {OP_Column, 0, 1, 0}, 278 /* 6 */ {OP_Goto, 0, 9, 0}, 279 /* 7 */ {OP_Next, 0, 2, 0}, 280 /* 8 */ {OP_Integer, 0, 0, 0}, 281 /* 9 */ {OP_Close, 0, 0, 0} 282 }; 283 VdbeOp *aOp; 284 pDb = &db->aDb[p->iDb]; 285 memId = p->regCtr; 286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 290 if( aOp==0 ) break; 291 aOp[0].p2 = memId; 292 aOp[0].p3 = memId+1; 293 aOp[2].p3 = memId; 294 aOp[3].p1 = memId-1; 295 aOp[3].p3 = memId; 296 aOp[3].p5 = SQLITE_JUMPIFNULL; 297 aOp[4].p2 = memId+1; 298 aOp[5].p3 = memId; 299 aOp[8].p2 = memId; 300 } 301 } 302 303 /* 304 ** Update the maximum rowid for an autoincrement calculation. 305 ** 306 ** This routine should be called when the regRowid register holds a 307 ** new rowid that is about to be inserted. If that new rowid is 308 ** larger than the maximum rowid in the memId memory cell, then the 309 ** memory cell is updated. 310 */ 311 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 312 if( memId>0 ){ 313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 314 } 315 } 316 317 /* 318 ** This routine generates the code needed to write autoincrement 319 ** maximum rowid values back into the sqlite_sequence register. 320 ** Every statement that might do an INSERT into an autoincrement 321 ** table (either directly or through triggers) needs to call this 322 ** routine just before the "exit" code. 323 */ 324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 325 AutoincInfo *p; 326 Vdbe *v = pParse->pVdbe; 327 sqlite3 *db = pParse->db; 328 329 assert( v ); 330 for(p = pParse->pAinc; p; p = p->pNext){ 331 static const int iLn = VDBE_OFFSET_LINENO(2); 332 static const VdbeOpList autoIncEnd[] = { 333 /* 0 */ {OP_NotNull, 0, 2, 0}, 334 /* 1 */ {OP_NewRowid, 0, 0, 0}, 335 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 336 /* 3 */ {OP_Insert, 0, 0, 0}, 337 /* 4 */ {OP_Close, 0, 0, 0} 338 }; 339 VdbeOp *aOp; 340 Db *pDb = &db->aDb[p->iDb]; 341 int iRec; 342 int memId = p->regCtr; 343 344 iRec = sqlite3GetTempReg(pParse); 345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 348 if( aOp==0 ) break; 349 aOp[0].p1 = memId+1; 350 aOp[1].p2 = memId+1; 351 aOp[2].p1 = memId-1; 352 aOp[2].p3 = iRec; 353 aOp[3].p2 = iRec; 354 aOp[3].p3 = memId+1; 355 aOp[3].p5 = OPFLAG_APPEND; 356 sqlite3ReleaseTempReg(pParse, iRec); 357 } 358 } 359 void sqlite3AutoincrementEnd(Parse *pParse){ 360 if( pParse->pAinc ) autoIncrementEnd(pParse); 361 } 362 #else 363 /* 364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 365 ** above are all no-ops 366 */ 367 # define autoIncBegin(A,B,C) (0) 368 # define autoIncStep(A,B,C) 369 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 370 371 372 /* Forward declaration */ 373 static int xferOptimization( 374 Parse *pParse, /* Parser context */ 375 Table *pDest, /* The table we are inserting into */ 376 Select *pSelect, /* A SELECT statement to use as the data source */ 377 int onError, /* How to handle constraint errors */ 378 int iDbDest /* The database of pDest */ 379 ); 380 381 /* 382 ** This routine is called to handle SQL of the following forms: 383 ** 384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 385 ** insert into TABLE (IDLIST) select 386 ** insert into TABLE (IDLIST) default values 387 ** 388 ** The IDLIST following the table name is always optional. If omitted, 389 ** then a list of all (non-hidden) columns for the table is substituted. 390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 391 ** is omitted. 392 ** 393 ** For the pSelect parameter holds the values to be inserted for the 394 ** first two forms shown above. A VALUES clause is really just short-hand 395 ** for a SELECT statement that omits the FROM clause and everything else 396 ** that follows. If the pSelect parameter is NULL, that means that the 397 ** DEFAULT VALUES form of the INSERT statement is intended. 398 ** 399 ** The code generated follows one of four templates. For a simple 400 ** insert with data coming from a single-row VALUES clause, the code executes 401 ** once straight down through. Pseudo-code follows (we call this 402 ** the "1st template"): 403 ** 404 ** open write cursor to <table> and its indices 405 ** put VALUES clause expressions into registers 406 ** write the resulting record into <table> 407 ** cleanup 408 ** 409 ** The three remaining templates assume the statement is of the form 410 ** 411 ** INSERT INTO <table> SELECT ... 412 ** 413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 414 ** in other words if the SELECT pulls all columns from a single table 415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 416 ** if <table2> and <table1> are distinct tables but have identical 417 ** schemas, including all the same indices, then a special optimization 418 ** is invoked that copies raw records from <table2> over to <table1>. 419 ** See the xferOptimization() function for the implementation of this 420 ** template. This is the 2nd template. 421 ** 422 ** open a write cursor to <table> 423 ** open read cursor on <table2> 424 ** transfer all records in <table2> over to <table> 425 ** close cursors 426 ** foreach index on <table> 427 ** open a write cursor on the <table> index 428 ** open a read cursor on the corresponding <table2> index 429 ** transfer all records from the read to the write cursors 430 ** close cursors 431 ** end foreach 432 ** 433 ** The 3rd template is for when the second template does not apply 434 ** and the SELECT clause does not read from <table> at any time. 435 ** The generated code follows this template: 436 ** 437 ** X <- A 438 ** goto B 439 ** A: setup for the SELECT 440 ** loop over the rows in the SELECT 441 ** load values into registers R..R+n 442 ** yield X 443 ** end loop 444 ** cleanup after the SELECT 445 ** end-coroutine X 446 ** B: open write cursor to <table> and its indices 447 ** C: yield X, at EOF goto D 448 ** insert the select result into <table> from R..R+n 449 ** goto C 450 ** D: cleanup 451 ** 452 ** The 4th template is used if the insert statement takes its 453 ** values from a SELECT but the data is being inserted into a table 454 ** that is also read as part of the SELECT. In the third form, 455 ** we have to use an intermediate table to store the results of 456 ** the select. The template is like this: 457 ** 458 ** X <- A 459 ** goto B 460 ** A: setup for the SELECT 461 ** loop over the tables in the SELECT 462 ** load value into register R..R+n 463 ** yield X 464 ** end loop 465 ** cleanup after the SELECT 466 ** end co-routine R 467 ** B: open temp table 468 ** L: yield X, at EOF goto M 469 ** insert row from R..R+n into temp table 470 ** goto L 471 ** M: open write cursor to <table> and its indices 472 ** rewind temp table 473 ** C: loop over rows of intermediate table 474 ** transfer values form intermediate table into <table> 475 ** end loop 476 ** D: cleanup 477 */ 478 void sqlite3Insert( 479 Parse *pParse, /* Parser context */ 480 SrcList *pTabList, /* Name of table into which we are inserting */ 481 Select *pSelect, /* A SELECT statement to use as the data source */ 482 IdList *pColumn, /* Column names corresponding to IDLIST. */ 483 int onError /* How to handle constraint errors */ 484 ){ 485 sqlite3 *db; /* The main database structure */ 486 Table *pTab; /* The table to insert into. aka TABLE */ 487 char *zTab; /* Name of the table into which we are inserting */ 488 int i, j; /* Loop counters */ 489 Vdbe *v; /* Generate code into this virtual machine */ 490 Index *pIdx; /* For looping over indices of the table */ 491 int nColumn; /* Number of columns in the data */ 492 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 493 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 494 int iIdxCur = 0; /* First index cursor */ 495 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 496 int endOfLoop; /* Label for the end of the insertion loop */ 497 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 498 int addrInsTop = 0; /* Jump to label "D" */ 499 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 500 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 501 int iDb; /* Index of database holding TABLE */ 502 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 503 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 504 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 505 u8 bIdListInOrder; /* True if IDLIST is in table order */ 506 ExprList *pList = 0; /* List of VALUES() to be inserted */ 507 508 /* Register allocations */ 509 int regFromSelect = 0;/* Base register for data coming from SELECT */ 510 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 511 int regRowCount = 0; /* Memory cell used for the row counter */ 512 int regIns; /* Block of regs holding rowid+data being inserted */ 513 int regRowid; /* registers holding insert rowid */ 514 int regData; /* register holding first column to insert */ 515 int *aRegIdx = 0; /* One register allocated to each index */ 516 517 #ifndef SQLITE_OMIT_TRIGGER 518 int isView; /* True if attempting to insert into a view */ 519 Trigger *pTrigger; /* List of triggers on pTab, if required */ 520 int tmask; /* Mask of trigger times */ 521 #endif 522 523 db = pParse->db; 524 if( pParse->nErr || db->mallocFailed ){ 525 goto insert_cleanup; 526 } 527 528 /* If the Select object is really just a simple VALUES() list with a 529 ** single row (the common case) then keep that one row of values 530 ** and discard the other (unused) parts of the pSelect object 531 */ 532 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 533 pList = pSelect->pEList; 534 pSelect->pEList = 0; 535 sqlite3SelectDelete(db, pSelect); 536 pSelect = 0; 537 } 538 539 /* Locate the table into which we will be inserting new information. 540 */ 541 assert( pTabList->nSrc==1 ); 542 zTab = pTabList->a[0].zName; 543 if( NEVER(zTab==0) ) goto insert_cleanup; 544 pTab = sqlite3SrcListLookup(pParse, pTabList); 545 if( pTab==0 ){ 546 goto insert_cleanup; 547 } 548 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 549 assert( iDb<db->nDb ); 550 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 551 db->aDb[iDb].zDbSName) ){ 552 goto insert_cleanup; 553 } 554 withoutRowid = !HasRowid(pTab); 555 556 /* Figure out if we have any triggers and if the table being 557 ** inserted into is a view 558 */ 559 #ifndef SQLITE_OMIT_TRIGGER 560 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 561 isView = pTab->pSelect!=0; 562 #else 563 # define pTrigger 0 564 # define tmask 0 565 # define isView 0 566 #endif 567 #ifdef SQLITE_OMIT_VIEW 568 # undef isView 569 # define isView 0 570 #endif 571 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 572 573 /* If pTab is really a view, make sure it has been initialized. 574 ** ViewGetColumnNames() is a no-op if pTab is not a view. 575 */ 576 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 577 goto insert_cleanup; 578 } 579 580 /* Cannot insert into a read-only table. 581 */ 582 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 583 goto insert_cleanup; 584 } 585 586 /* Allocate a VDBE 587 */ 588 v = sqlite3GetVdbe(pParse); 589 if( v==0 ) goto insert_cleanup; 590 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 591 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 592 593 #ifndef SQLITE_OMIT_XFER_OPT 594 /* If the statement is of the form 595 ** 596 ** INSERT INTO <table1> SELECT * FROM <table2>; 597 ** 598 ** Then special optimizations can be applied that make the transfer 599 ** very fast and which reduce fragmentation of indices. 600 ** 601 ** This is the 2nd template. 602 */ 603 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 604 assert( !pTrigger ); 605 assert( pList==0 ); 606 goto insert_end; 607 } 608 #endif /* SQLITE_OMIT_XFER_OPT */ 609 610 /* If this is an AUTOINCREMENT table, look up the sequence number in the 611 ** sqlite_sequence table and store it in memory cell regAutoinc. 612 */ 613 regAutoinc = autoIncBegin(pParse, iDb, pTab); 614 615 /* Allocate registers for holding the rowid of the new row, 616 ** the content of the new row, and the assembled row record. 617 */ 618 regRowid = regIns = pParse->nMem+1; 619 pParse->nMem += pTab->nCol + 1; 620 if( IsVirtual(pTab) ){ 621 regRowid++; 622 pParse->nMem++; 623 } 624 regData = regRowid+1; 625 626 /* If the INSERT statement included an IDLIST term, then make sure 627 ** all elements of the IDLIST really are columns of the table and 628 ** remember the column indices. 629 ** 630 ** If the table has an INTEGER PRIMARY KEY column and that column 631 ** is named in the IDLIST, then record in the ipkColumn variable 632 ** the index into IDLIST of the primary key column. ipkColumn is 633 ** the index of the primary key as it appears in IDLIST, not as 634 ** is appears in the original table. (The index of the INTEGER 635 ** PRIMARY KEY in the original table is pTab->iPKey.) 636 */ 637 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 638 if( pColumn ){ 639 for(i=0; i<pColumn->nId; i++){ 640 pColumn->a[i].idx = -1; 641 } 642 for(i=0; i<pColumn->nId; i++){ 643 for(j=0; j<pTab->nCol; j++){ 644 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 645 pColumn->a[i].idx = j; 646 if( i!=j ) bIdListInOrder = 0; 647 if( j==pTab->iPKey ){ 648 ipkColumn = i; assert( !withoutRowid ); 649 } 650 break; 651 } 652 } 653 if( j>=pTab->nCol ){ 654 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 655 ipkColumn = i; 656 bIdListInOrder = 0; 657 }else{ 658 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 659 pTabList, 0, pColumn->a[i].zName); 660 pParse->checkSchema = 1; 661 goto insert_cleanup; 662 } 663 } 664 } 665 } 666 667 /* Figure out how many columns of data are supplied. If the data 668 ** is coming from a SELECT statement, then generate a co-routine that 669 ** produces a single row of the SELECT on each invocation. The 670 ** co-routine is the common header to the 3rd and 4th templates. 671 */ 672 if( pSelect ){ 673 /* Data is coming from a SELECT or from a multi-row VALUES clause. 674 ** Generate a co-routine to run the SELECT. */ 675 int regYield; /* Register holding co-routine entry-point */ 676 int addrTop; /* Top of the co-routine */ 677 int rc; /* Result code */ 678 679 regYield = ++pParse->nMem; 680 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 681 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 682 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 683 dest.iSdst = bIdListInOrder ? regData : 0; 684 dest.nSdst = pTab->nCol; 685 rc = sqlite3Select(pParse, pSelect, &dest); 686 regFromSelect = dest.iSdst; 687 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 688 sqlite3VdbeEndCoroutine(v, regYield); 689 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 690 assert( pSelect->pEList ); 691 nColumn = pSelect->pEList->nExpr; 692 693 /* Set useTempTable to TRUE if the result of the SELECT statement 694 ** should be written into a temporary table (template 4). Set to 695 ** FALSE if each output row of the SELECT can be written directly into 696 ** the destination table (template 3). 697 ** 698 ** A temp table must be used if the table being updated is also one 699 ** of the tables being read by the SELECT statement. Also use a 700 ** temp table in the case of row triggers. 701 */ 702 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 703 useTempTable = 1; 704 } 705 706 if( useTempTable ){ 707 /* Invoke the coroutine to extract information from the SELECT 708 ** and add it to a transient table srcTab. The code generated 709 ** here is from the 4th template: 710 ** 711 ** B: open temp table 712 ** L: yield X, goto M at EOF 713 ** insert row from R..R+n into temp table 714 ** goto L 715 ** M: ... 716 */ 717 int regRec; /* Register to hold packed record */ 718 int regTempRowid; /* Register to hold temp table ROWID */ 719 int addrL; /* Label "L" */ 720 721 srcTab = pParse->nTab++; 722 regRec = sqlite3GetTempReg(pParse); 723 regTempRowid = sqlite3GetTempReg(pParse); 724 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 725 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 726 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 727 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 728 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 729 sqlite3VdbeGoto(v, addrL); 730 sqlite3VdbeJumpHere(v, addrL); 731 sqlite3ReleaseTempReg(pParse, regRec); 732 sqlite3ReleaseTempReg(pParse, regTempRowid); 733 } 734 }else{ 735 /* This is the case if the data for the INSERT is coming from a 736 ** single-row VALUES clause 737 */ 738 NameContext sNC; 739 memset(&sNC, 0, sizeof(sNC)); 740 sNC.pParse = pParse; 741 srcTab = -1; 742 assert( useTempTable==0 ); 743 if( pList ){ 744 nColumn = pList->nExpr; 745 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 746 goto insert_cleanup; 747 } 748 }else{ 749 nColumn = 0; 750 } 751 } 752 753 /* If there is no IDLIST term but the table has an integer primary 754 ** key, the set the ipkColumn variable to the integer primary key 755 ** column index in the original table definition. 756 */ 757 if( pColumn==0 && nColumn>0 ){ 758 ipkColumn = pTab->iPKey; 759 } 760 761 /* Make sure the number of columns in the source data matches the number 762 ** of columns to be inserted into the table. 763 */ 764 for(i=0; i<pTab->nCol; i++){ 765 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 766 } 767 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 768 sqlite3ErrorMsg(pParse, 769 "table %S has %d columns but %d values were supplied", 770 pTabList, 0, pTab->nCol-nHidden, nColumn); 771 goto insert_cleanup; 772 } 773 if( pColumn!=0 && nColumn!=pColumn->nId ){ 774 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 775 goto insert_cleanup; 776 } 777 778 /* Initialize the count of rows to be inserted 779 */ 780 if( db->flags & SQLITE_CountRows ){ 781 regRowCount = ++pParse->nMem; 782 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 783 } 784 785 /* If this is not a view, open the table and and all indices */ 786 if( !isView ){ 787 int nIdx; 788 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 789 &iDataCur, &iIdxCur); 790 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 791 if( aRegIdx==0 ){ 792 goto insert_cleanup; 793 } 794 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 795 assert( pIdx ); 796 aRegIdx[i] = ++pParse->nMem; 797 pParse->nMem += pIdx->nColumn; 798 } 799 } 800 801 /* This is the top of the main insertion loop */ 802 if( useTempTable ){ 803 /* This block codes the top of loop only. The complete loop is the 804 ** following pseudocode (template 4): 805 ** 806 ** rewind temp table, if empty goto D 807 ** C: loop over rows of intermediate table 808 ** transfer values form intermediate table into <table> 809 ** end loop 810 ** D: ... 811 */ 812 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 813 addrCont = sqlite3VdbeCurrentAddr(v); 814 }else if( pSelect ){ 815 /* This block codes the top of loop only. The complete loop is the 816 ** following pseudocode (template 3): 817 ** 818 ** C: yield X, at EOF goto D 819 ** insert the select result into <table> from R..R+n 820 ** goto C 821 ** D: ... 822 */ 823 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 824 VdbeCoverage(v); 825 } 826 827 /* Run the BEFORE and INSTEAD OF triggers, if there are any 828 */ 829 endOfLoop = sqlite3VdbeMakeLabel(v); 830 if( tmask & TRIGGER_BEFORE ){ 831 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 832 833 /* build the NEW.* reference row. Note that if there is an INTEGER 834 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 835 ** translated into a unique ID for the row. But on a BEFORE trigger, 836 ** we do not know what the unique ID will be (because the insert has 837 ** not happened yet) so we substitute a rowid of -1 838 */ 839 if( ipkColumn<0 ){ 840 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 841 }else{ 842 int addr1; 843 assert( !withoutRowid ); 844 if( useTempTable ){ 845 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 846 }else{ 847 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 848 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 849 } 850 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 851 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 852 sqlite3VdbeJumpHere(v, addr1); 853 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 854 } 855 856 /* Cannot have triggers on a virtual table. If it were possible, 857 ** this block would have to account for hidden column. 858 */ 859 assert( !IsVirtual(pTab) ); 860 861 /* Create the new column data 862 */ 863 for(i=j=0; i<pTab->nCol; i++){ 864 if( pColumn ){ 865 for(j=0; j<pColumn->nId; j++){ 866 if( pColumn->a[j].idx==i ) break; 867 } 868 } 869 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 870 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 871 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 872 }else if( useTempTable ){ 873 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 874 }else{ 875 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 876 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 877 } 878 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 879 } 880 881 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 882 ** do not attempt any conversions before assembling the record. 883 ** If this is a real table, attempt conversions as required by the 884 ** table column affinities. 885 */ 886 if( !isView ){ 887 sqlite3TableAffinity(v, pTab, regCols+1); 888 } 889 890 /* Fire BEFORE or INSTEAD OF triggers */ 891 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 892 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 893 894 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 895 } 896 897 /* Compute the content of the next row to insert into a range of 898 ** registers beginning at regIns. 899 */ 900 if( !isView ){ 901 if( IsVirtual(pTab) ){ 902 /* The row that the VUpdate opcode will delete: none */ 903 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 904 } 905 if( ipkColumn>=0 ){ 906 if( useTempTable ){ 907 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 908 }else if( pSelect ){ 909 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 910 }else{ 911 VdbeOp *pOp; 912 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 913 pOp = sqlite3VdbeGetOp(v, -1); 914 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 915 appendFlag = 1; 916 pOp->opcode = OP_NewRowid; 917 pOp->p1 = iDataCur; 918 pOp->p2 = regRowid; 919 pOp->p3 = regAutoinc; 920 } 921 } 922 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 923 ** to generate a unique primary key value. 924 */ 925 if( !appendFlag ){ 926 int addr1; 927 if( !IsVirtual(pTab) ){ 928 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 929 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 930 sqlite3VdbeJumpHere(v, addr1); 931 }else{ 932 addr1 = sqlite3VdbeCurrentAddr(v); 933 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 934 } 935 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 936 } 937 }else if( IsVirtual(pTab) || withoutRowid ){ 938 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 939 }else{ 940 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 941 appendFlag = 1; 942 } 943 autoIncStep(pParse, regAutoinc, regRowid); 944 945 /* Compute data for all columns of the new entry, beginning 946 ** with the first column. 947 */ 948 nHidden = 0; 949 for(i=0; i<pTab->nCol; i++){ 950 int iRegStore = regRowid+1+i; 951 if( i==pTab->iPKey ){ 952 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 953 ** Whenever this column is read, the rowid will be substituted 954 ** in its place. Hence, fill this column with a NULL to avoid 955 ** taking up data space with information that will never be used. 956 ** As there may be shallow copies of this value, make it a soft-NULL */ 957 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 958 continue; 959 } 960 if( pColumn==0 ){ 961 if( IsHiddenColumn(&pTab->aCol[i]) ){ 962 j = -1; 963 nHidden++; 964 }else{ 965 j = i - nHidden; 966 } 967 }else{ 968 for(j=0; j<pColumn->nId; j++){ 969 if( pColumn->a[j].idx==i ) break; 970 } 971 } 972 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 973 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 974 }else if( useTempTable ){ 975 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 976 }else if( pSelect ){ 977 if( regFromSelect!=regData ){ 978 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 979 } 980 }else{ 981 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 982 } 983 } 984 985 /* Generate code to check constraints and generate index keys and 986 ** do the insertion. 987 */ 988 #ifndef SQLITE_OMIT_VIRTUALTABLE 989 if( IsVirtual(pTab) ){ 990 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 991 sqlite3VtabMakeWritable(pParse, pTab); 992 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 993 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 994 sqlite3MayAbort(pParse); 995 }else 996 #endif 997 { 998 int isReplace; /* Set to true if constraints may cause a replace */ 999 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1000 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1001 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 1002 ); 1003 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1004 1005 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1006 ** constraints or (b) there are no triggers and this table is not a 1007 ** parent table in a foreign key constraint. It is safe to set the 1008 ** flag in the second case as if any REPLACE constraint is hit, an 1009 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1010 ** cursor that is disturbed. And these instructions both clear the 1011 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1012 ** functionality. */ 1013 bUseSeek = (isReplace==0 || (pTrigger==0 && 1014 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1015 )); 1016 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1017 regIns, aRegIdx, 0, appendFlag, bUseSeek 1018 ); 1019 } 1020 } 1021 1022 /* Update the count of rows that are inserted 1023 */ 1024 if( (db->flags & SQLITE_CountRows)!=0 ){ 1025 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1026 } 1027 1028 if( pTrigger ){ 1029 /* Code AFTER triggers */ 1030 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1031 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1032 } 1033 1034 /* The bottom of the main insertion loop, if the data source 1035 ** is a SELECT statement. 1036 */ 1037 sqlite3VdbeResolveLabel(v, endOfLoop); 1038 if( useTempTable ){ 1039 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1040 sqlite3VdbeJumpHere(v, addrInsTop); 1041 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1042 }else if( pSelect ){ 1043 sqlite3VdbeGoto(v, addrCont); 1044 sqlite3VdbeJumpHere(v, addrInsTop); 1045 } 1046 1047 insert_end: 1048 /* Update the sqlite_sequence table by storing the content of the 1049 ** maximum rowid counter values recorded while inserting into 1050 ** autoincrement tables. 1051 */ 1052 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1053 sqlite3AutoincrementEnd(pParse); 1054 } 1055 1056 /* 1057 ** Return the number of rows inserted. If this routine is 1058 ** generating code because of a call to sqlite3NestedParse(), do not 1059 ** invoke the callback function. 1060 */ 1061 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1062 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1063 sqlite3VdbeSetNumCols(v, 1); 1064 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1065 } 1066 1067 insert_cleanup: 1068 sqlite3SrcListDelete(db, pTabList); 1069 sqlite3ExprListDelete(db, pList); 1070 sqlite3SelectDelete(db, pSelect); 1071 sqlite3IdListDelete(db, pColumn); 1072 sqlite3DbFree(db, aRegIdx); 1073 } 1074 1075 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1076 ** they may interfere with compilation of other functions in this file 1077 ** (or in another file, if this file becomes part of the amalgamation). */ 1078 #ifdef isView 1079 #undef isView 1080 #endif 1081 #ifdef pTrigger 1082 #undef pTrigger 1083 #endif 1084 #ifdef tmask 1085 #undef tmask 1086 #endif 1087 1088 /* 1089 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 1090 */ 1091 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1092 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1093 1094 /* This is the Walker callback from checkConstraintUnchanged(). Set 1095 ** bit 0x01 of pWalker->eCode if 1096 ** pWalker->eCode to 0 if this expression node references any of the 1097 ** columns that are being modifed by an UPDATE statement. 1098 */ 1099 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1100 if( pExpr->op==TK_COLUMN ){ 1101 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1102 if( pExpr->iColumn>=0 ){ 1103 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1104 pWalker->eCode |= CKCNSTRNT_COLUMN; 1105 } 1106 }else{ 1107 pWalker->eCode |= CKCNSTRNT_ROWID; 1108 } 1109 } 1110 return WRC_Continue; 1111 } 1112 1113 /* 1114 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1115 ** only columns that are modified by the UPDATE are those for which 1116 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1117 ** 1118 ** Return true if CHECK constraint pExpr does not use any of the 1119 ** changing columns (or the rowid if it is changing). In other words, 1120 ** return true if this CHECK constraint can be skipped when validating 1121 ** the new row in the UPDATE statement. 1122 */ 1123 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 1124 Walker w; 1125 memset(&w, 0, sizeof(w)); 1126 w.eCode = 0; 1127 w.xExprCallback = checkConstraintExprNode; 1128 w.u.aiCol = aiChng; 1129 sqlite3WalkExpr(&w, pExpr); 1130 if( !chngRowid ){ 1131 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1132 w.eCode &= ~CKCNSTRNT_ROWID; 1133 } 1134 testcase( w.eCode==0 ); 1135 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1136 testcase( w.eCode==CKCNSTRNT_ROWID ); 1137 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1138 return !w.eCode; 1139 } 1140 1141 /* 1142 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1143 ** on table pTab. 1144 ** 1145 ** The regNewData parameter is the first register in a range that contains 1146 ** the data to be inserted or the data after the update. There will be 1147 ** pTab->nCol+1 registers in this range. The first register (the one 1148 ** that regNewData points to) will contain the new rowid, or NULL in the 1149 ** case of a WITHOUT ROWID table. The second register in the range will 1150 ** contain the content of the first table column. The third register will 1151 ** contain the content of the second table column. And so forth. 1152 ** 1153 ** The regOldData parameter is similar to regNewData except that it contains 1154 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1155 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1156 ** checking regOldData for zero. 1157 ** 1158 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1159 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1160 ** might be modified by the UPDATE. If pkChng is false, then the key of 1161 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1162 ** 1163 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1164 ** was explicitly specified as part of the INSERT statement. If pkChng 1165 ** is zero, it means that the either rowid is computed automatically or 1166 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1167 ** pkChng will only be true if the INSERT statement provides an integer 1168 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1169 ** 1170 ** The code generated by this routine will store new index entries into 1171 ** registers identified by aRegIdx[]. No index entry is created for 1172 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1173 ** the same as the order of indices on the linked list of indices 1174 ** at pTab->pIndex. 1175 ** 1176 ** The caller must have already opened writeable cursors on the main 1177 ** table and all applicable indices (that is to say, all indices for which 1178 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1179 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1180 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1181 ** for the first index in the pTab->pIndex list. Cursors for other indices 1182 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1183 ** 1184 ** This routine also generates code to check constraints. NOT NULL, 1185 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1186 ** then the appropriate action is performed. There are five possible 1187 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1188 ** 1189 ** Constraint type Action What Happens 1190 ** --------------- ---------- ---------------------------------------- 1191 ** any ROLLBACK The current transaction is rolled back and 1192 ** sqlite3_step() returns immediately with a 1193 ** return code of SQLITE_CONSTRAINT. 1194 ** 1195 ** any ABORT Back out changes from the current command 1196 ** only (do not do a complete rollback) then 1197 ** cause sqlite3_step() to return immediately 1198 ** with SQLITE_CONSTRAINT. 1199 ** 1200 ** any FAIL Sqlite3_step() returns immediately with a 1201 ** return code of SQLITE_CONSTRAINT. The 1202 ** transaction is not rolled back and any 1203 ** changes to prior rows are retained. 1204 ** 1205 ** any IGNORE The attempt in insert or update the current 1206 ** row is skipped, without throwing an error. 1207 ** Processing continues with the next row. 1208 ** (There is an immediate jump to ignoreDest.) 1209 ** 1210 ** NOT NULL REPLACE The NULL value is replace by the default 1211 ** value for that column. If the default value 1212 ** is NULL, the action is the same as ABORT. 1213 ** 1214 ** UNIQUE REPLACE The other row that conflicts with the row 1215 ** being inserted is removed. 1216 ** 1217 ** CHECK REPLACE Illegal. The results in an exception. 1218 ** 1219 ** Which action to take is determined by the overrideError parameter. 1220 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1221 ** is used. Or if pParse->onError==OE_Default then the onError value 1222 ** for the constraint is used. 1223 */ 1224 void sqlite3GenerateConstraintChecks( 1225 Parse *pParse, /* The parser context */ 1226 Table *pTab, /* The table being inserted or updated */ 1227 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1228 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1229 int iIdxCur, /* First index cursor */ 1230 int regNewData, /* First register in a range holding values to insert */ 1231 int regOldData, /* Previous content. 0 for INSERTs */ 1232 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1233 u8 overrideError, /* Override onError to this if not OE_Default */ 1234 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1235 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1236 int *aiChng /* column i is unchanged if aiChng[i]<0 */ 1237 ){ 1238 Vdbe *v; /* VDBE under constrution */ 1239 Index *pIdx; /* Pointer to one of the indices */ 1240 Index *pPk = 0; /* The PRIMARY KEY index */ 1241 sqlite3 *db; /* Database connection */ 1242 int i; /* loop counter */ 1243 int ix; /* Index loop counter */ 1244 int nCol; /* Number of columns */ 1245 int onError; /* Conflict resolution strategy */ 1246 int addr1; /* Address of jump instruction */ 1247 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1248 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1249 int ipkTop = 0; /* Top of the rowid change constraint check */ 1250 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1251 u8 isUpdate; /* True if this is an UPDATE operation */ 1252 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1253 1254 isUpdate = regOldData!=0; 1255 db = pParse->db; 1256 v = sqlite3GetVdbe(pParse); 1257 assert( v!=0 ); 1258 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1259 nCol = pTab->nCol; 1260 1261 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1262 ** normal rowid tables. nPkField is the number of key fields in the 1263 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1264 ** number of fields in the true primary key of the table. */ 1265 if( HasRowid(pTab) ){ 1266 pPk = 0; 1267 nPkField = 1; 1268 }else{ 1269 pPk = sqlite3PrimaryKeyIndex(pTab); 1270 nPkField = pPk->nKeyCol; 1271 } 1272 1273 /* Record that this module has started */ 1274 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1275 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1276 1277 /* Test all NOT NULL constraints. 1278 */ 1279 for(i=0; i<nCol; i++){ 1280 if( i==pTab->iPKey ){ 1281 continue; /* ROWID is never NULL */ 1282 } 1283 if( aiChng && aiChng[i]<0 ){ 1284 /* Don't bother checking for NOT NULL on columns that do not change */ 1285 continue; 1286 } 1287 onError = pTab->aCol[i].notNull; 1288 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1289 if( overrideError!=OE_Default ){ 1290 onError = overrideError; 1291 }else if( onError==OE_Default ){ 1292 onError = OE_Abort; 1293 } 1294 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1295 onError = OE_Abort; 1296 } 1297 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1298 || onError==OE_Ignore || onError==OE_Replace ); 1299 switch( onError ){ 1300 case OE_Abort: 1301 sqlite3MayAbort(pParse); 1302 /* Fall through */ 1303 case OE_Rollback: 1304 case OE_Fail: { 1305 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1306 pTab->aCol[i].zName); 1307 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1308 regNewData+1+i); 1309 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1310 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1311 VdbeCoverage(v); 1312 break; 1313 } 1314 case OE_Ignore: { 1315 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1316 VdbeCoverage(v); 1317 break; 1318 } 1319 default: { 1320 assert( onError==OE_Replace ); 1321 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1322 VdbeCoverage(v); 1323 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1324 sqlite3VdbeJumpHere(v, addr1); 1325 break; 1326 } 1327 } 1328 } 1329 1330 /* Test all CHECK constraints 1331 */ 1332 #ifndef SQLITE_OMIT_CHECK 1333 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1334 ExprList *pCheck = pTab->pCheck; 1335 pParse->ckBase = regNewData+1; 1336 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1337 for(i=0; i<pCheck->nExpr; i++){ 1338 int allOk; 1339 Expr *pExpr = pCheck->a[i].pExpr; 1340 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 1341 allOk = sqlite3VdbeMakeLabel(v); 1342 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1343 if( onError==OE_Ignore ){ 1344 sqlite3VdbeGoto(v, ignoreDest); 1345 }else{ 1346 char *zName = pCheck->a[i].zName; 1347 if( zName==0 ) zName = pTab->zName; 1348 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1349 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1350 onError, zName, P4_TRANSIENT, 1351 P5_ConstraintCheck); 1352 } 1353 sqlite3VdbeResolveLabel(v, allOk); 1354 } 1355 } 1356 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1357 1358 /* If rowid is changing, make sure the new rowid does not previously 1359 ** exist in the table. 1360 */ 1361 if( pkChng && pPk==0 ){ 1362 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1363 1364 /* Figure out what action to take in case of a rowid collision */ 1365 onError = pTab->keyConf; 1366 if( overrideError!=OE_Default ){ 1367 onError = overrideError; 1368 }else if( onError==OE_Default ){ 1369 onError = OE_Abort; 1370 } 1371 1372 if( isUpdate ){ 1373 /* pkChng!=0 does not mean that the rowid has changed, only that 1374 ** it might have changed. Skip the conflict logic below if the rowid 1375 ** is unchanged. */ 1376 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1377 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1378 VdbeCoverage(v); 1379 } 1380 1381 /* If the response to a rowid conflict is REPLACE but the response 1382 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1383 ** to defer the running of the rowid conflict checking until after 1384 ** the UNIQUE constraints have run. 1385 */ 1386 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1387 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1388 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1389 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1390 break; 1391 } 1392 } 1393 } 1394 1395 /* Check to see if the new rowid already exists in the table. Skip 1396 ** the following conflict logic if it does not. */ 1397 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1398 VdbeCoverage(v); 1399 1400 /* Generate code that deals with a rowid collision */ 1401 switch( onError ){ 1402 default: { 1403 onError = OE_Abort; 1404 /* Fall thru into the next case */ 1405 } 1406 case OE_Rollback: 1407 case OE_Abort: 1408 case OE_Fail: { 1409 sqlite3RowidConstraint(pParse, onError, pTab); 1410 break; 1411 } 1412 case OE_Replace: { 1413 /* If there are DELETE triggers on this table and the 1414 ** recursive-triggers flag is set, call GenerateRowDelete() to 1415 ** remove the conflicting row from the table. This will fire 1416 ** the triggers and remove both the table and index b-tree entries. 1417 ** 1418 ** Otherwise, if there are no triggers or the recursive-triggers 1419 ** flag is not set, but the table has one or more indexes, call 1420 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1421 ** only. The table b-tree entry will be replaced by the new entry 1422 ** when it is inserted. 1423 ** 1424 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1425 ** also invoke MultiWrite() to indicate that this VDBE may require 1426 ** statement rollback (if the statement is aborted after the delete 1427 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1428 ** but being more selective here allows statements like: 1429 ** 1430 ** REPLACE INTO t(rowid) VALUES($newrowid) 1431 ** 1432 ** to run without a statement journal if there are no indexes on the 1433 ** table. 1434 */ 1435 Trigger *pTrigger = 0; 1436 if( db->flags&SQLITE_RecTriggers ){ 1437 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1438 } 1439 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1440 sqlite3MultiWrite(pParse); 1441 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1442 regNewData, 1, 0, OE_Replace, 1, -1); 1443 }else{ 1444 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1445 if( HasRowid(pTab) ){ 1446 /* This OP_Delete opcode fires the pre-update-hook only. It does 1447 ** not modify the b-tree. It is more efficient to let the coming 1448 ** OP_Insert replace the existing entry than it is to delete the 1449 ** existing entry and then insert a new one. */ 1450 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1451 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1452 } 1453 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1454 if( pTab->pIndex ){ 1455 sqlite3MultiWrite(pParse); 1456 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1457 } 1458 } 1459 seenReplace = 1; 1460 break; 1461 } 1462 case OE_Ignore: { 1463 /*assert( seenReplace==0 );*/ 1464 sqlite3VdbeGoto(v, ignoreDest); 1465 break; 1466 } 1467 } 1468 sqlite3VdbeResolveLabel(v, addrRowidOk); 1469 if( ipkTop ){ 1470 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1471 sqlite3VdbeJumpHere(v, ipkTop); 1472 } 1473 } 1474 1475 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1476 ** index and making sure that duplicate entries do not already exist. 1477 ** Compute the revised record entries for indices as we go. 1478 ** 1479 ** This loop also handles the case of the PRIMARY KEY index for a 1480 ** WITHOUT ROWID table. 1481 */ 1482 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1483 int regIdx; /* Range of registers hold conent for pIdx */ 1484 int regR; /* Range of registers holding conflicting PK */ 1485 int iThisCur; /* Cursor for this UNIQUE index */ 1486 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1487 1488 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1489 if( bAffinityDone==0 ){ 1490 sqlite3TableAffinity(v, pTab, regNewData+1); 1491 bAffinityDone = 1; 1492 } 1493 iThisCur = iIdxCur+ix; 1494 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1495 1496 /* Skip partial indices for which the WHERE clause is not true */ 1497 if( pIdx->pPartIdxWhere ){ 1498 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1499 pParse->ckBase = regNewData+1; 1500 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1501 SQLITE_JUMPIFNULL); 1502 pParse->ckBase = 0; 1503 } 1504 1505 /* Create a record for this index entry as it should appear after 1506 ** the insert or update. Store that record in the aRegIdx[ix] register 1507 */ 1508 regIdx = aRegIdx[ix]+1; 1509 for(i=0; i<pIdx->nColumn; i++){ 1510 int iField = pIdx->aiColumn[i]; 1511 int x; 1512 if( iField==XN_EXPR ){ 1513 pParse->ckBase = regNewData+1; 1514 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1515 pParse->ckBase = 0; 1516 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1517 }else{ 1518 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1519 x = regNewData; 1520 }else{ 1521 x = iField + regNewData + 1; 1522 } 1523 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1524 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1525 } 1526 } 1527 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1528 VdbeComment((v, "for %s", pIdx->zName)); 1529 #ifdef SQLITE_ENABLE_NULL_TRIM 1530 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1531 #endif 1532 1533 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1534 ** of a WITHOUT ROWID table and there has been no change the 1535 ** primary key, then no collision is possible. The collision detection 1536 ** logic below can all be skipped. */ 1537 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1538 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1539 continue; 1540 } 1541 1542 /* Find out what action to take in case there is a uniqueness conflict */ 1543 onError = pIdx->onError; 1544 if( onError==OE_None ){ 1545 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1546 continue; /* pIdx is not a UNIQUE index */ 1547 } 1548 if( overrideError!=OE_Default ){ 1549 onError = overrideError; 1550 }else if( onError==OE_Default ){ 1551 onError = OE_Abort; 1552 } 1553 1554 /* Collision detection may be omitted if all of the following are true: 1555 ** (1) The conflict resolution algorithm is REPLACE 1556 ** (2) The table is a WITHOUT ROWID table 1557 ** (3) There are no secondary indexes on the table 1558 ** (4) No delete triggers need to be fired if there is a conflict 1559 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1560 */ 1561 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1562 && pPk==pIdx /* Condition 2 */ 1563 && onError==OE_Replace /* Condition 1 */ 1564 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1565 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1566 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1567 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1568 ){ 1569 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1570 continue; 1571 } 1572 1573 /* Check to see if the new index entry will be unique */ 1574 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1575 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1576 1577 /* Generate code to handle collisions */ 1578 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1579 if( isUpdate || onError==OE_Replace ){ 1580 if( HasRowid(pTab) ){ 1581 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1582 /* Conflict only if the rowid of the existing index entry 1583 ** is different from old-rowid */ 1584 if( isUpdate ){ 1585 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1586 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1587 VdbeCoverage(v); 1588 } 1589 }else{ 1590 int x; 1591 /* Extract the PRIMARY KEY from the end of the index entry and 1592 ** store it in registers regR..regR+nPk-1 */ 1593 if( pIdx!=pPk ){ 1594 for(i=0; i<pPk->nKeyCol; i++){ 1595 assert( pPk->aiColumn[i]>=0 ); 1596 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1597 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1598 VdbeComment((v, "%s.%s", pTab->zName, 1599 pTab->aCol[pPk->aiColumn[i]].zName)); 1600 } 1601 } 1602 if( isUpdate ){ 1603 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1604 ** table, only conflict if the new PRIMARY KEY values are actually 1605 ** different from the old. 1606 ** 1607 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1608 ** of the matched index row are different from the original PRIMARY 1609 ** KEY values of this row before the update. */ 1610 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1611 int op = OP_Ne; 1612 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1613 1614 for(i=0; i<pPk->nKeyCol; i++){ 1615 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1616 x = pPk->aiColumn[i]; 1617 assert( x>=0 ); 1618 if( i==(pPk->nKeyCol-1) ){ 1619 addrJump = addrUniqueOk; 1620 op = OP_Eq; 1621 } 1622 sqlite3VdbeAddOp4(v, op, 1623 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1624 ); 1625 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1626 VdbeCoverageIf(v, op==OP_Eq); 1627 VdbeCoverageIf(v, op==OP_Ne); 1628 } 1629 } 1630 } 1631 } 1632 1633 /* Generate code that executes if the new index entry is not unique */ 1634 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1635 || onError==OE_Ignore || onError==OE_Replace ); 1636 switch( onError ){ 1637 case OE_Rollback: 1638 case OE_Abort: 1639 case OE_Fail: { 1640 sqlite3UniqueConstraint(pParse, onError, pIdx); 1641 break; 1642 } 1643 case OE_Ignore: { 1644 sqlite3VdbeGoto(v, ignoreDest); 1645 break; 1646 } 1647 default: { 1648 Trigger *pTrigger = 0; 1649 assert( onError==OE_Replace ); 1650 sqlite3MultiWrite(pParse); 1651 if( db->flags&SQLITE_RecTriggers ){ 1652 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1653 } 1654 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1655 regR, nPkField, 0, OE_Replace, 1656 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1657 seenReplace = 1; 1658 break; 1659 } 1660 } 1661 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1662 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1663 } 1664 if( ipkTop ){ 1665 sqlite3VdbeGoto(v, ipkTop+1); 1666 sqlite3VdbeJumpHere(v, ipkBottom); 1667 } 1668 1669 *pbMayReplace = seenReplace; 1670 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1671 } 1672 1673 #ifdef SQLITE_ENABLE_NULL_TRIM 1674 /* 1675 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1676 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1677 ** 1678 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1679 */ 1680 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1681 u16 i; 1682 1683 /* Records with omitted columns are only allowed for schema format 1684 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1685 if( pTab->pSchema->file_format<2 ) return; 1686 1687 for(i=pTab->nCol-1; i>0; i--){ 1688 if( pTab->aCol[i].pDflt!=0 ) break; 1689 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1690 } 1691 sqlite3VdbeChangeP5(v, i+1); 1692 } 1693 #endif 1694 1695 /* 1696 ** This routine generates code to finish the INSERT or UPDATE operation 1697 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1698 ** A consecutive range of registers starting at regNewData contains the 1699 ** rowid and the content to be inserted. 1700 ** 1701 ** The arguments to this routine should be the same as the first six 1702 ** arguments to sqlite3GenerateConstraintChecks. 1703 */ 1704 void sqlite3CompleteInsertion( 1705 Parse *pParse, /* The parser context */ 1706 Table *pTab, /* the table into which we are inserting */ 1707 int iDataCur, /* Cursor of the canonical data source */ 1708 int iIdxCur, /* First index cursor */ 1709 int regNewData, /* Range of content */ 1710 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1711 int update_flags, /* True for UPDATE, False for INSERT */ 1712 int appendBias, /* True if this is likely to be an append */ 1713 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1714 ){ 1715 Vdbe *v; /* Prepared statements under construction */ 1716 Index *pIdx; /* An index being inserted or updated */ 1717 u8 pik_flags; /* flag values passed to the btree insert */ 1718 int regData; /* Content registers (after the rowid) */ 1719 int regRec; /* Register holding assembled record for the table */ 1720 int i; /* Loop counter */ 1721 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1722 1723 assert( update_flags==0 1724 || update_flags==OPFLAG_ISUPDATE 1725 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1726 ); 1727 1728 v = sqlite3GetVdbe(pParse); 1729 assert( v!=0 ); 1730 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1731 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1732 if( aRegIdx[i]==0 ) continue; 1733 bAffinityDone = 1; 1734 if( pIdx->pPartIdxWhere ){ 1735 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1736 VdbeCoverage(v); 1737 } 1738 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1739 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1740 assert( pParse->nested==0 ); 1741 pik_flags |= OPFLAG_NCHANGE; 1742 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1743 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1744 if( update_flags==0 ){ 1745 sqlite3VdbeAddOp4(v, OP_InsertInt, 1746 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1747 ); 1748 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1749 } 1750 #endif 1751 } 1752 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1753 aRegIdx[i]+1, 1754 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1755 sqlite3VdbeChangeP5(v, pik_flags); 1756 } 1757 if( !HasRowid(pTab) ) return; 1758 regData = regNewData + 1; 1759 regRec = sqlite3GetTempReg(pParse); 1760 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1761 sqlite3SetMakeRecordP5(v, pTab); 1762 if( !bAffinityDone ){ 1763 sqlite3TableAffinity(v, pTab, 0); 1764 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1765 } 1766 if( pParse->nested ){ 1767 pik_flags = 0; 1768 }else{ 1769 pik_flags = OPFLAG_NCHANGE; 1770 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1771 } 1772 if( appendBias ){ 1773 pik_flags |= OPFLAG_APPEND; 1774 } 1775 if( useSeekResult ){ 1776 pik_flags |= OPFLAG_USESEEKRESULT; 1777 } 1778 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1779 if( !pParse->nested ){ 1780 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1781 } 1782 sqlite3VdbeChangeP5(v, pik_flags); 1783 } 1784 1785 /* 1786 ** Allocate cursors for the pTab table and all its indices and generate 1787 ** code to open and initialized those cursors. 1788 ** 1789 ** The cursor for the object that contains the complete data (normally 1790 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1791 ** ROWID table) is returned in *piDataCur. The first index cursor is 1792 ** returned in *piIdxCur. The number of indices is returned. 1793 ** 1794 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1795 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1796 ** If iBase is negative, then allocate the next available cursor. 1797 ** 1798 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1799 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1800 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1801 ** pTab->pIndex list. 1802 ** 1803 ** If pTab is a virtual table, then this routine is a no-op and the 1804 ** *piDataCur and *piIdxCur values are left uninitialized. 1805 */ 1806 int sqlite3OpenTableAndIndices( 1807 Parse *pParse, /* Parsing context */ 1808 Table *pTab, /* Table to be opened */ 1809 int op, /* OP_OpenRead or OP_OpenWrite */ 1810 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1811 int iBase, /* Use this for the table cursor, if there is one */ 1812 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1813 int *piDataCur, /* Write the database source cursor number here */ 1814 int *piIdxCur /* Write the first index cursor number here */ 1815 ){ 1816 int i; 1817 int iDb; 1818 int iDataCur; 1819 Index *pIdx; 1820 Vdbe *v; 1821 1822 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1823 assert( op==OP_OpenWrite || p5==0 ); 1824 if( IsVirtual(pTab) ){ 1825 /* This routine is a no-op for virtual tables. Leave the output 1826 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1827 ** can detect if they are used by mistake in the caller. */ 1828 return 0; 1829 } 1830 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1831 v = sqlite3GetVdbe(pParse); 1832 assert( v!=0 ); 1833 if( iBase<0 ) iBase = pParse->nTab; 1834 iDataCur = iBase++; 1835 if( piDataCur ) *piDataCur = iDataCur; 1836 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1837 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1838 }else{ 1839 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1840 } 1841 if( piIdxCur ) *piIdxCur = iBase; 1842 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1843 int iIdxCur = iBase++; 1844 assert( pIdx->pSchema==pTab->pSchema ); 1845 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1846 if( piDataCur ) *piDataCur = iIdxCur; 1847 p5 = 0; 1848 } 1849 if( aToOpen==0 || aToOpen[i+1] ){ 1850 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1851 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1852 sqlite3VdbeChangeP5(v, p5); 1853 VdbeComment((v, "%s", pIdx->zName)); 1854 } 1855 } 1856 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1857 return i; 1858 } 1859 1860 1861 #ifdef SQLITE_TEST 1862 /* 1863 ** The following global variable is incremented whenever the 1864 ** transfer optimization is used. This is used for testing 1865 ** purposes only - to make sure the transfer optimization really 1866 ** is happening when it is supposed to. 1867 */ 1868 int sqlite3_xferopt_count; 1869 #endif /* SQLITE_TEST */ 1870 1871 1872 #ifndef SQLITE_OMIT_XFER_OPT 1873 /* 1874 ** Check to see if index pSrc is compatible as a source of data 1875 ** for index pDest in an insert transfer optimization. The rules 1876 ** for a compatible index: 1877 ** 1878 ** * The index is over the same set of columns 1879 ** * The same DESC and ASC markings occurs on all columns 1880 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1881 ** * The same collating sequence on each column 1882 ** * The index has the exact same WHERE clause 1883 */ 1884 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1885 int i; 1886 assert( pDest && pSrc ); 1887 assert( pDest->pTable!=pSrc->pTable ); 1888 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1889 return 0; /* Different number of columns */ 1890 } 1891 if( pDest->onError!=pSrc->onError ){ 1892 return 0; /* Different conflict resolution strategies */ 1893 } 1894 for(i=0; i<pSrc->nKeyCol; i++){ 1895 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1896 return 0; /* Different columns indexed */ 1897 } 1898 if( pSrc->aiColumn[i]==XN_EXPR ){ 1899 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 1900 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, 1901 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 1902 return 0; /* Different expressions in the index */ 1903 } 1904 } 1905 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1906 return 0; /* Different sort orders */ 1907 } 1908 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 1909 return 0; /* Different collating sequences */ 1910 } 1911 } 1912 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1913 return 0; /* Different WHERE clauses */ 1914 } 1915 1916 /* If no test above fails then the indices must be compatible */ 1917 return 1; 1918 } 1919 1920 /* 1921 ** Attempt the transfer optimization on INSERTs of the form 1922 ** 1923 ** INSERT INTO tab1 SELECT * FROM tab2; 1924 ** 1925 ** The xfer optimization transfers raw records from tab2 over to tab1. 1926 ** Columns are not decoded and reassembled, which greatly improves 1927 ** performance. Raw index records are transferred in the same way. 1928 ** 1929 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1930 ** There are lots of rules for determining compatibility - see comments 1931 ** embedded in the code for details. 1932 ** 1933 ** This routine returns TRUE if the optimization is guaranteed to be used. 1934 ** Sometimes the xfer optimization will only work if the destination table 1935 ** is empty - a factor that can only be determined at run-time. In that 1936 ** case, this routine generates code for the xfer optimization but also 1937 ** does a test to see if the destination table is empty and jumps over the 1938 ** xfer optimization code if the test fails. In that case, this routine 1939 ** returns FALSE so that the caller will know to go ahead and generate 1940 ** an unoptimized transfer. This routine also returns FALSE if there 1941 ** is no chance that the xfer optimization can be applied. 1942 ** 1943 ** This optimization is particularly useful at making VACUUM run faster. 1944 */ 1945 static int xferOptimization( 1946 Parse *pParse, /* Parser context */ 1947 Table *pDest, /* The table we are inserting into */ 1948 Select *pSelect, /* A SELECT statement to use as the data source */ 1949 int onError, /* How to handle constraint errors */ 1950 int iDbDest /* The database of pDest */ 1951 ){ 1952 sqlite3 *db = pParse->db; 1953 ExprList *pEList; /* The result set of the SELECT */ 1954 Table *pSrc; /* The table in the FROM clause of SELECT */ 1955 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1956 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1957 int i; /* Loop counter */ 1958 int iDbSrc; /* The database of pSrc */ 1959 int iSrc, iDest; /* Cursors from source and destination */ 1960 int addr1, addr2; /* Loop addresses */ 1961 int emptyDestTest = 0; /* Address of test for empty pDest */ 1962 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1963 Vdbe *v; /* The VDBE we are building */ 1964 int regAutoinc; /* Memory register used by AUTOINC */ 1965 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1966 int regData, regRowid; /* Registers holding data and rowid */ 1967 1968 if( pSelect==0 ){ 1969 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1970 } 1971 if( pParse->pWith || pSelect->pWith ){ 1972 /* Do not attempt to process this query if there are an WITH clauses 1973 ** attached to it. Proceeding may generate a false "no such table: xxx" 1974 ** error if pSelect reads from a CTE named "xxx". */ 1975 return 0; 1976 } 1977 if( sqlite3TriggerList(pParse, pDest) ){ 1978 return 0; /* tab1 must not have triggers */ 1979 } 1980 #ifndef SQLITE_OMIT_VIRTUALTABLE 1981 if( IsVirtual(pDest) ){ 1982 return 0; /* tab1 must not be a virtual table */ 1983 } 1984 #endif 1985 if( onError==OE_Default ){ 1986 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1987 if( onError==OE_Default ) onError = OE_Abort; 1988 } 1989 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1990 if( pSelect->pSrc->nSrc!=1 ){ 1991 return 0; /* FROM clause must have exactly one term */ 1992 } 1993 if( pSelect->pSrc->a[0].pSelect ){ 1994 return 0; /* FROM clause cannot contain a subquery */ 1995 } 1996 if( pSelect->pWhere ){ 1997 return 0; /* SELECT may not have a WHERE clause */ 1998 } 1999 if( pSelect->pOrderBy ){ 2000 return 0; /* SELECT may not have an ORDER BY clause */ 2001 } 2002 /* Do not need to test for a HAVING clause. If HAVING is present but 2003 ** there is no ORDER BY, we will get an error. */ 2004 if( pSelect->pGroupBy ){ 2005 return 0; /* SELECT may not have a GROUP BY clause */ 2006 } 2007 if( pSelect->pLimit ){ 2008 return 0; /* SELECT may not have a LIMIT clause */ 2009 } 2010 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 2011 if( pSelect->pPrior ){ 2012 return 0; /* SELECT may not be a compound query */ 2013 } 2014 if( pSelect->selFlags & SF_Distinct ){ 2015 return 0; /* SELECT may not be DISTINCT */ 2016 } 2017 pEList = pSelect->pEList; 2018 assert( pEList!=0 ); 2019 if( pEList->nExpr!=1 ){ 2020 return 0; /* The result set must have exactly one column */ 2021 } 2022 assert( pEList->a[0].pExpr ); 2023 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2024 return 0; /* The result set must be the special operator "*" */ 2025 } 2026 2027 /* At this point we have established that the statement is of the 2028 ** correct syntactic form to participate in this optimization. Now 2029 ** we have to check the semantics. 2030 */ 2031 pItem = pSelect->pSrc->a; 2032 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2033 if( pSrc==0 ){ 2034 return 0; /* FROM clause does not contain a real table */ 2035 } 2036 if( pSrc==pDest ){ 2037 return 0; /* tab1 and tab2 may not be the same table */ 2038 } 2039 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2040 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2041 } 2042 #ifndef SQLITE_OMIT_VIRTUALTABLE 2043 if( IsVirtual(pSrc) ){ 2044 return 0; /* tab2 must not be a virtual table */ 2045 } 2046 #endif 2047 if( pSrc->pSelect ){ 2048 return 0; /* tab2 may not be a view */ 2049 } 2050 if( pDest->nCol!=pSrc->nCol ){ 2051 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2052 } 2053 if( pDest->iPKey!=pSrc->iPKey ){ 2054 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2055 } 2056 for(i=0; i<pDest->nCol; i++){ 2057 Column *pDestCol = &pDest->aCol[i]; 2058 Column *pSrcCol = &pSrc->aCol[i]; 2059 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2060 if( (db->flags & SQLITE_Vacuum)==0 2061 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2062 ){ 2063 return 0; /* Neither table may have __hidden__ columns */ 2064 } 2065 #endif 2066 if( pDestCol->affinity!=pSrcCol->affinity ){ 2067 return 0; /* Affinity must be the same on all columns */ 2068 } 2069 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2070 return 0; /* Collating sequence must be the same on all columns */ 2071 } 2072 if( pDestCol->notNull && !pSrcCol->notNull ){ 2073 return 0; /* tab2 must be NOT NULL if tab1 is */ 2074 } 2075 /* Default values for second and subsequent columns need to match. */ 2076 if( i>0 ){ 2077 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2078 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2079 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2080 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2081 pSrcCol->pDflt->u.zToken)!=0) 2082 ){ 2083 return 0; /* Default values must be the same for all columns */ 2084 } 2085 } 2086 } 2087 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2088 if( IsUniqueIndex(pDestIdx) ){ 2089 destHasUniqueIdx = 1; 2090 } 2091 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2092 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2093 } 2094 if( pSrcIdx==0 ){ 2095 return 0; /* pDestIdx has no corresponding index in pSrc */ 2096 } 2097 } 2098 #ifndef SQLITE_OMIT_CHECK 2099 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2100 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2101 } 2102 #endif 2103 #ifndef SQLITE_OMIT_FOREIGN_KEY 2104 /* Disallow the transfer optimization if the destination table constains 2105 ** any foreign key constraints. This is more restrictive than necessary. 2106 ** But the main beneficiary of the transfer optimization is the VACUUM 2107 ** command, and the VACUUM command disables foreign key constraints. So 2108 ** the extra complication to make this rule less restrictive is probably 2109 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2110 */ 2111 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2112 return 0; 2113 } 2114 #endif 2115 if( (db->flags & SQLITE_CountRows)!=0 ){ 2116 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2117 } 2118 2119 /* If we get this far, it means that the xfer optimization is at 2120 ** least a possibility, though it might only work if the destination 2121 ** table (tab1) is initially empty. 2122 */ 2123 #ifdef SQLITE_TEST 2124 sqlite3_xferopt_count++; 2125 #endif 2126 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2127 v = sqlite3GetVdbe(pParse); 2128 sqlite3CodeVerifySchema(pParse, iDbSrc); 2129 iSrc = pParse->nTab++; 2130 iDest = pParse->nTab++; 2131 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2132 regData = sqlite3GetTempReg(pParse); 2133 regRowid = sqlite3GetTempReg(pParse); 2134 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2135 assert( HasRowid(pDest) || destHasUniqueIdx ); 2136 if( (db->flags & SQLITE_Vacuum)==0 && ( 2137 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2138 || destHasUniqueIdx /* (2) */ 2139 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2140 )){ 2141 /* In some circumstances, we are able to run the xfer optimization 2142 ** only if the destination table is initially empty. Unless the 2143 ** SQLITE_Vacuum flag is set, this block generates code to make 2144 ** that determination. If SQLITE_Vacuum is set, then the destination 2145 ** table is always empty. 2146 ** 2147 ** Conditions under which the destination must be empty: 2148 ** 2149 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2150 ** (If the destination is not initially empty, the rowid fields 2151 ** of index entries might need to change.) 2152 ** 2153 ** (2) The destination has a unique index. (The xfer optimization 2154 ** is unable to test uniqueness.) 2155 ** 2156 ** (3) onError is something other than OE_Abort and OE_Rollback. 2157 */ 2158 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2159 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2160 sqlite3VdbeJumpHere(v, addr1); 2161 } 2162 if( HasRowid(pSrc) ){ 2163 u8 insFlags; 2164 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2165 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2166 if( pDest->iPKey>=0 ){ 2167 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2168 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2169 VdbeCoverage(v); 2170 sqlite3RowidConstraint(pParse, onError, pDest); 2171 sqlite3VdbeJumpHere(v, addr2); 2172 autoIncStep(pParse, regAutoinc, regRowid); 2173 }else if( pDest->pIndex==0 ){ 2174 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2175 }else{ 2176 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2177 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2178 } 2179 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2180 if( db->flags & SQLITE_Vacuum ){ 2181 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 2182 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2183 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2184 }else{ 2185 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2186 } 2187 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2188 (char*)pDest, P4_TABLE); 2189 sqlite3VdbeChangeP5(v, insFlags); 2190 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2191 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2192 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2193 }else{ 2194 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2195 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2196 } 2197 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2198 u8 idxInsFlags = 0; 2199 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2200 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2201 } 2202 assert( pSrcIdx ); 2203 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2204 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2205 VdbeComment((v, "%s", pSrcIdx->zName)); 2206 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2207 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2208 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2209 VdbeComment((v, "%s", pDestIdx->zName)); 2210 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2211 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2212 if( db->flags & SQLITE_Vacuum ){ 2213 /* This INSERT command is part of a VACUUM operation, which guarantees 2214 ** that the destination table is empty. If all indexed columns use 2215 ** collation sequence BINARY, then it can also be assumed that the 2216 ** index will be populated by inserting keys in strictly sorted 2217 ** order. In this case, instead of seeking within the b-tree as part 2218 ** of every OP_IdxInsert opcode, an OP_Last is added before the 2219 ** OP_IdxInsert to seek to the point within the b-tree where each key 2220 ** should be inserted. This is faster. 2221 ** 2222 ** If any of the indexed columns use a collation sequence other than 2223 ** BINARY, this optimization is disabled. This is because the user 2224 ** might change the definition of a collation sequence and then run 2225 ** a VACUUM command. In that case keys may not be written in strictly 2226 ** sorted order. */ 2227 for(i=0; i<pSrcIdx->nColumn; i++){ 2228 const char *zColl = pSrcIdx->azColl[i]; 2229 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2230 } 2231 if( i==pSrcIdx->nColumn ){ 2232 idxInsFlags = OPFLAG_USESEEKRESULT; 2233 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 2234 } 2235 } 2236 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2237 idxInsFlags |= OPFLAG_NCHANGE; 2238 } 2239 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2240 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2241 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2242 sqlite3VdbeJumpHere(v, addr1); 2243 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2244 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2245 } 2246 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2247 sqlite3ReleaseTempReg(pParse, regRowid); 2248 sqlite3ReleaseTempReg(pParse, regData); 2249 if( emptyDestTest ){ 2250 sqlite3AutoincrementEnd(pParse); 2251 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2252 sqlite3VdbeJumpHere(v, emptyDestTest); 2253 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2254 return 0; 2255 }else{ 2256 return 1; 2257 } 2258 } 2259 #endif /* SQLITE_OMIT_XFER_OPT */ 2260