1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 assert( db->pParse==pParse ); 719 if( pParse->nErr ){ 720 goto insert_cleanup; 721 } 722 assert( db->mallocFailed==0 ); 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 /* If the Select object is really just a simple VALUES() list with a 726 ** single row (the common case) then keep that one row of values 727 ** and discard the other (unused) parts of the pSelect object 728 */ 729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 730 pList = pSelect->pEList; 731 pSelect->pEList = 0; 732 sqlite3SelectDelete(db, pSelect); 733 pSelect = 0; 734 } 735 736 /* Locate the table into which we will be inserting new information. 737 */ 738 assert( pTabList->nSrc==1 ); 739 pTab = sqlite3SrcListLookup(pParse, pTabList); 740 if( pTab==0 ){ 741 goto insert_cleanup; 742 } 743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 744 assert( iDb<db->nDb ); 745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 746 db->aDb[iDb].zDbSName) ){ 747 goto insert_cleanup; 748 } 749 withoutRowid = !HasRowid(pTab); 750 751 /* Figure out if we have any triggers and if the table being 752 ** inserted into is a view 753 */ 754 #ifndef SQLITE_OMIT_TRIGGER 755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 756 isView = IsView(pTab); 757 #else 758 # define pTrigger 0 759 # define tmask 0 760 # define isView 0 761 #endif 762 #ifdef SQLITE_OMIT_VIEW 763 # undef isView 764 # define isView 0 765 #endif 766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 767 768 #if TREETRACE_ENABLED 769 if( sqlite3TreeTrace & 0x10000 ){ 770 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 771 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 772 onError, pUpsert, pTrigger); 773 } 774 #endif 775 776 /* If pTab is really a view, make sure it has been initialized. 777 ** ViewGetColumnNames() is a no-op if pTab is not a view. 778 */ 779 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 780 goto insert_cleanup; 781 } 782 783 /* Cannot insert into a read-only table. 784 */ 785 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 786 goto insert_cleanup; 787 } 788 789 /* Allocate a VDBE 790 */ 791 v = sqlite3GetVdbe(pParse); 792 if( v==0 ) goto insert_cleanup; 793 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 794 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 795 796 #ifndef SQLITE_OMIT_XFER_OPT 797 /* If the statement is of the form 798 ** 799 ** INSERT INTO <table1> SELECT * FROM <table2>; 800 ** 801 ** Then special optimizations can be applied that make the transfer 802 ** very fast and which reduce fragmentation of indices. 803 ** 804 ** This is the 2nd template. 805 */ 806 if( pColumn==0 807 && pSelect!=0 808 && pTrigger==0 809 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 810 ){ 811 assert( !pTrigger ); 812 assert( pList==0 ); 813 goto insert_end; 814 } 815 #endif /* SQLITE_OMIT_XFER_OPT */ 816 817 /* If this is an AUTOINCREMENT table, look up the sequence number in the 818 ** sqlite_sequence table and store it in memory cell regAutoinc. 819 */ 820 regAutoinc = autoIncBegin(pParse, iDb, pTab); 821 822 /* Allocate a block registers to hold the rowid and the values 823 ** for all columns of the new row. 824 */ 825 regRowid = regIns = pParse->nMem+1; 826 pParse->nMem += pTab->nCol + 1; 827 if( IsVirtual(pTab) ){ 828 regRowid++; 829 pParse->nMem++; 830 } 831 regData = regRowid+1; 832 833 /* If the INSERT statement included an IDLIST term, then make sure 834 ** all elements of the IDLIST really are columns of the table and 835 ** remember the column indices. 836 ** 837 ** If the table has an INTEGER PRIMARY KEY column and that column 838 ** is named in the IDLIST, then record in the ipkColumn variable 839 ** the index into IDLIST of the primary key column. ipkColumn is 840 ** the index of the primary key as it appears in IDLIST, not as 841 ** is appears in the original table. (The index of the INTEGER 842 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 843 ** loop, if ipkColumn==(-1), that means that integer primary key 844 ** is unspecified, and hence the table is either WITHOUT ROWID or 845 ** it will automatically generated an integer primary key. 846 ** 847 ** bIdListInOrder is true if the columns in IDLIST are in storage 848 ** order. This enables an optimization that avoids shuffling the 849 ** columns into storage order. False negatives are harmless, 850 ** but false positives will cause database corruption. 851 */ 852 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 853 if( pColumn ){ 854 assert( pColumn->eU4!=EU4_EXPR ); 855 pColumn->eU4 = EU4_IDX; 856 for(i=0; i<pColumn->nId; i++){ 857 pColumn->a[i].u4.idx = -1; 858 } 859 for(i=0; i<pColumn->nId; i++){ 860 for(j=0; j<pTab->nCol; j++){ 861 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 862 pColumn->a[i].u4.idx = j; 863 if( i!=j ) bIdListInOrder = 0; 864 if( j==pTab->iPKey ){ 865 ipkColumn = i; assert( !withoutRowid ); 866 } 867 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 868 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 869 sqlite3ErrorMsg(pParse, 870 "cannot INSERT into generated column \"%s\"", 871 pTab->aCol[j].zCnName); 872 goto insert_cleanup; 873 } 874 #endif 875 break; 876 } 877 } 878 if( j>=pTab->nCol ){ 879 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 880 ipkColumn = i; 881 bIdListInOrder = 0; 882 }else{ 883 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 884 pTabList->a, pColumn->a[i].zName); 885 pParse->checkSchema = 1; 886 goto insert_cleanup; 887 } 888 } 889 } 890 } 891 892 /* Figure out how many columns of data are supplied. If the data 893 ** is coming from a SELECT statement, then generate a co-routine that 894 ** produces a single row of the SELECT on each invocation. The 895 ** co-routine is the common header to the 3rd and 4th templates. 896 */ 897 if( pSelect ){ 898 /* Data is coming from a SELECT or from a multi-row VALUES clause. 899 ** Generate a co-routine to run the SELECT. */ 900 int regYield; /* Register holding co-routine entry-point */ 901 int addrTop; /* Top of the co-routine */ 902 int rc; /* Result code */ 903 904 regYield = ++pParse->nMem; 905 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 906 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 907 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 908 dest.iSdst = bIdListInOrder ? regData : 0; 909 dest.nSdst = pTab->nCol; 910 rc = sqlite3Select(pParse, pSelect, &dest); 911 regFromSelect = dest.iSdst; 912 assert( db->pParse==pParse ); 913 if( rc || pParse->nErr ) goto insert_cleanup; 914 assert( db->mallocFailed==0 ); 915 sqlite3VdbeEndCoroutine(v, regYield); 916 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 917 assert( pSelect->pEList ); 918 nColumn = pSelect->pEList->nExpr; 919 920 /* Set useTempTable to TRUE if the result of the SELECT statement 921 ** should be written into a temporary table (template 4). Set to 922 ** FALSE if each output row of the SELECT can be written directly into 923 ** the destination table (template 3). 924 ** 925 ** A temp table must be used if the table being updated is also one 926 ** of the tables being read by the SELECT statement. Also use a 927 ** temp table in the case of row triggers. 928 */ 929 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 930 useTempTable = 1; 931 } 932 933 if( useTempTable ){ 934 /* Invoke the coroutine to extract information from the SELECT 935 ** and add it to a transient table srcTab. The code generated 936 ** here is from the 4th template: 937 ** 938 ** B: open temp table 939 ** L: yield X, goto M at EOF 940 ** insert row from R..R+n into temp table 941 ** goto L 942 ** M: ... 943 */ 944 int regRec; /* Register to hold packed record */ 945 int regTempRowid; /* Register to hold temp table ROWID */ 946 int addrL; /* Label "L" */ 947 948 srcTab = pParse->nTab++; 949 regRec = sqlite3GetTempReg(pParse); 950 regTempRowid = sqlite3GetTempReg(pParse); 951 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 952 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 953 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 954 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 955 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 956 sqlite3VdbeGoto(v, addrL); 957 sqlite3VdbeJumpHere(v, addrL); 958 sqlite3ReleaseTempReg(pParse, regRec); 959 sqlite3ReleaseTempReg(pParse, regTempRowid); 960 } 961 }else{ 962 /* This is the case if the data for the INSERT is coming from a 963 ** single-row VALUES clause 964 */ 965 NameContext sNC; 966 memset(&sNC, 0, sizeof(sNC)); 967 sNC.pParse = pParse; 968 srcTab = -1; 969 assert( useTempTable==0 ); 970 if( pList ){ 971 nColumn = pList->nExpr; 972 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 973 goto insert_cleanup; 974 } 975 }else{ 976 nColumn = 0; 977 } 978 } 979 980 /* If there is no IDLIST term but the table has an integer primary 981 ** key, the set the ipkColumn variable to the integer primary key 982 ** column index in the original table definition. 983 */ 984 if( pColumn==0 && nColumn>0 ){ 985 ipkColumn = pTab->iPKey; 986 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 987 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 988 testcase( pTab->tabFlags & TF_HasVirtual ); 989 testcase( pTab->tabFlags & TF_HasStored ); 990 for(i=ipkColumn-1; i>=0; i--){ 991 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 992 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 993 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 994 ipkColumn--; 995 } 996 } 997 } 998 #endif 999 1000 /* Make sure the number of columns in the source data matches the number 1001 ** of columns to be inserted into the table. 1002 */ 1003 assert( TF_HasHidden==COLFLAG_HIDDEN ); 1004 assert( TF_HasGenerated==COLFLAG_GENERATED ); 1005 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 1006 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 1007 for(i=0; i<pTab->nCol; i++){ 1008 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 1009 } 1010 } 1011 if( nColumn!=(pTab->nCol-nHidden) ){ 1012 sqlite3ErrorMsg(pParse, 1013 "table %S has %d columns but %d values were supplied", 1014 pTabList->a, pTab->nCol-nHidden, nColumn); 1015 goto insert_cleanup; 1016 } 1017 } 1018 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1019 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1020 goto insert_cleanup; 1021 } 1022 1023 /* Initialize the count of rows to be inserted 1024 */ 1025 if( (db->flags & SQLITE_CountRows)!=0 1026 && !pParse->nested 1027 && !pParse->pTriggerTab 1028 && !pParse->bReturning 1029 ){ 1030 regRowCount = ++pParse->nMem; 1031 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1032 } 1033 1034 /* If this is not a view, open the table and and all indices */ 1035 if( !isView ){ 1036 int nIdx; 1037 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1038 &iDataCur, &iIdxCur); 1039 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1040 if( aRegIdx==0 ){ 1041 goto insert_cleanup; 1042 } 1043 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1044 assert( pIdx ); 1045 aRegIdx[i] = ++pParse->nMem; 1046 pParse->nMem += pIdx->nColumn; 1047 } 1048 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1049 } 1050 #ifndef SQLITE_OMIT_UPSERT 1051 if( pUpsert ){ 1052 Upsert *pNx; 1053 if( IsVirtual(pTab) ){ 1054 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1055 pTab->zName); 1056 goto insert_cleanup; 1057 } 1058 if( IsView(pTab) ){ 1059 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1060 goto insert_cleanup; 1061 } 1062 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1063 goto insert_cleanup; 1064 } 1065 pTabList->a[0].iCursor = iDataCur; 1066 pNx = pUpsert; 1067 do{ 1068 pNx->pUpsertSrc = pTabList; 1069 pNx->regData = regData; 1070 pNx->iDataCur = iDataCur; 1071 pNx->iIdxCur = iIdxCur; 1072 if( pNx->pUpsertTarget ){ 1073 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1074 goto insert_cleanup; 1075 } 1076 } 1077 pNx = pNx->pNextUpsert; 1078 }while( pNx!=0 ); 1079 } 1080 #endif 1081 1082 1083 /* This is the top of the main insertion loop */ 1084 if( useTempTable ){ 1085 /* This block codes the top of loop only. The complete loop is the 1086 ** following pseudocode (template 4): 1087 ** 1088 ** rewind temp table, if empty goto D 1089 ** C: loop over rows of intermediate table 1090 ** transfer values form intermediate table into <table> 1091 ** end loop 1092 ** D: ... 1093 */ 1094 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1095 addrCont = sqlite3VdbeCurrentAddr(v); 1096 }else if( pSelect ){ 1097 /* This block codes the top of loop only. The complete loop is the 1098 ** following pseudocode (template 3): 1099 ** 1100 ** C: yield X, at EOF goto D 1101 ** insert the select result into <table> from R..R+n 1102 ** goto C 1103 ** D: ... 1104 */ 1105 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1106 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1107 VdbeCoverage(v); 1108 if( ipkColumn>=0 ){ 1109 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1110 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1111 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1112 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1113 } 1114 } 1115 1116 /* Compute data for ordinary columns of the new entry. Values 1117 ** are written in storage order into registers starting with regData. 1118 ** Only ordinary columns are computed in this loop. The rowid 1119 ** (if there is one) is computed later and generated columns are 1120 ** computed after the rowid since they might depend on the value 1121 ** of the rowid. 1122 */ 1123 nHidden = 0; 1124 iRegStore = regData; assert( regData==regRowid+1 ); 1125 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1126 int k; 1127 u32 colFlags; 1128 assert( i>=nHidden ); 1129 if( i==pTab->iPKey ){ 1130 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1131 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1132 ** using excess space. The file format definition requires this extra 1133 ** NULL - we cannot optimize further by skipping the column completely */ 1134 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1135 continue; 1136 } 1137 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1138 nHidden++; 1139 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1140 /* Virtual columns do not participate in OP_MakeRecord. So back up 1141 ** iRegStore by one slot to compensate for the iRegStore++ in the 1142 ** outer for() loop */ 1143 iRegStore--; 1144 continue; 1145 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1146 /* Stored columns are computed later. But if there are BEFORE 1147 ** triggers, the slots used for stored columns will be OP_Copy-ed 1148 ** to a second block of registers, so the register needs to be 1149 ** initialized to NULL to avoid an uninitialized register read */ 1150 if( tmask & TRIGGER_BEFORE ){ 1151 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1152 } 1153 continue; 1154 }else if( pColumn==0 ){ 1155 /* Hidden columns that are not explicitly named in the INSERT 1156 ** get there default value */ 1157 sqlite3ExprCodeFactorable(pParse, 1158 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1159 iRegStore); 1160 continue; 1161 } 1162 } 1163 if( pColumn ){ 1164 assert( pColumn->eU4==EU4_IDX ); 1165 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 1166 if( j>=pColumn->nId ){ 1167 /* A column not named in the insert column list gets its 1168 ** default value */ 1169 sqlite3ExprCodeFactorable(pParse, 1170 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1171 iRegStore); 1172 continue; 1173 } 1174 k = j; 1175 }else if( nColumn==0 ){ 1176 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1177 sqlite3ExprCodeFactorable(pParse, 1178 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1179 iRegStore); 1180 continue; 1181 }else{ 1182 k = i - nHidden; 1183 } 1184 1185 if( useTempTable ){ 1186 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1187 }else if( pSelect ){ 1188 if( regFromSelect!=regData ){ 1189 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1190 } 1191 }else{ 1192 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1193 } 1194 } 1195 1196 1197 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1198 */ 1199 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1200 if( tmask & TRIGGER_BEFORE ){ 1201 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1202 1203 /* build the NEW.* reference row. Note that if there is an INTEGER 1204 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1205 ** translated into a unique ID for the row. But on a BEFORE trigger, 1206 ** we do not know what the unique ID will be (because the insert has 1207 ** not happened yet) so we substitute a rowid of -1 1208 */ 1209 if( ipkColumn<0 ){ 1210 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1211 }else{ 1212 int addr1; 1213 assert( !withoutRowid ); 1214 if( useTempTable ){ 1215 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1216 }else{ 1217 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1218 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1219 } 1220 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1221 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1222 sqlite3VdbeJumpHere(v, addr1); 1223 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1224 } 1225 1226 /* Copy the new data already generated. */ 1227 assert( pTab->nNVCol>0 ); 1228 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1229 1230 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1231 /* Compute the new value for generated columns after all other 1232 ** columns have already been computed. This must be done after 1233 ** computing the ROWID in case one of the generated columns 1234 ** refers to the ROWID. */ 1235 if( pTab->tabFlags & TF_HasGenerated ){ 1236 testcase( pTab->tabFlags & TF_HasVirtual ); 1237 testcase( pTab->tabFlags & TF_HasStored ); 1238 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1239 } 1240 #endif 1241 1242 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1243 ** do not attempt any conversions before assembling the record. 1244 ** If this is a real table, attempt conversions as required by the 1245 ** table column affinities. 1246 */ 1247 if( !isView ){ 1248 sqlite3TableAffinity(v, pTab, regCols+1); 1249 } 1250 1251 /* Fire BEFORE or INSTEAD OF triggers */ 1252 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1253 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1254 1255 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1256 } 1257 1258 if( !isView ){ 1259 if( IsVirtual(pTab) ){ 1260 /* The row that the VUpdate opcode will delete: none */ 1261 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1262 } 1263 if( ipkColumn>=0 ){ 1264 /* Compute the new rowid */ 1265 if( useTempTable ){ 1266 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1267 }else if( pSelect ){ 1268 /* Rowid already initialized at tag-20191021-001 */ 1269 }else{ 1270 Expr *pIpk = pList->a[ipkColumn].pExpr; 1271 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1272 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1273 appendFlag = 1; 1274 }else{ 1275 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1276 } 1277 } 1278 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1279 ** to generate a unique primary key value. 1280 */ 1281 if( !appendFlag ){ 1282 int addr1; 1283 if( !IsVirtual(pTab) ){ 1284 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1285 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1286 sqlite3VdbeJumpHere(v, addr1); 1287 }else{ 1288 addr1 = sqlite3VdbeCurrentAddr(v); 1289 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1290 } 1291 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1292 } 1293 }else if( IsVirtual(pTab) || withoutRowid ){ 1294 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1295 }else{ 1296 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1297 appendFlag = 1; 1298 } 1299 autoIncStep(pParse, regAutoinc, regRowid); 1300 1301 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1302 /* Compute the new value for generated columns after all other 1303 ** columns have already been computed. This must be done after 1304 ** computing the ROWID in case one of the generated columns 1305 ** is derived from the INTEGER PRIMARY KEY. */ 1306 if( pTab->tabFlags & TF_HasGenerated ){ 1307 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1308 } 1309 #endif 1310 1311 /* Generate code to check constraints and generate index keys and 1312 ** do the insertion. 1313 */ 1314 #ifndef SQLITE_OMIT_VIRTUALTABLE 1315 if( IsVirtual(pTab) ){ 1316 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1317 sqlite3VtabMakeWritable(pParse, pTab); 1318 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1319 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1320 sqlite3MayAbort(pParse); 1321 }else 1322 #endif 1323 { 1324 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1325 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1326 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1327 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1328 ); 1329 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1330 1331 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1332 ** constraints or (b) there are no triggers and this table is not a 1333 ** parent table in a foreign key constraint. It is safe to set the 1334 ** flag in the second case as if any REPLACE constraint is hit, an 1335 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1336 ** cursor that is disturbed. And these instructions both clear the 1337 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1338 ** functionality. */ 1339 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1340 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1341 regIns, aRegIdx, 0, appendFlag, bUseSeek 1342 ); 1343 } 1344 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1345 }else if( pParse->bReturning ){ 1346 /* If there is a RETURNING clause, populate the rowid register with 1347 ** constant value -1, in case one or more of the returned expressions 1348 ** refer to the "rowid" of the view. */ 1349 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1350 #endif 1351 } 1352 1353 /* Update the count of rows that are inserted 1354 */ 1355 if( regRowCount ){ 1356 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1357 } 1358 1359 if( pTrigger ){ 1360 /* Code AFTER triggers */ 1361 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1362 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1363 } 1364 1365 /* The bottom of the main insertion loop, if the data source 1366 ** is a SELECT statement. 1367 */ 1368 sqlite3VdbeResolveLabel(v, endOfLoop); 1369 if( useTempTable ){ 1370 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1371 sqlite3VdbeJumpHere(v, addrInsTop); 1372 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1373 }else if( pSelect ){ 1374 sqlite3VdbeGoto(v, addrCont); 1375 #ifdef SQLITE_DEBUG 1376 /* If we are jumping back to an OP_Yield that is preceded by an 1377 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1378 ** OP_ReleaseReg will be included in the loop. */ 1379 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1380 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1381 sqlite3VdbeChangeP5(v, 1); 1382 } 1383 #endif 1384 sqlite3VdbeJumpHere(v, addrInsTop); 1385 } 1386 1387 #ifndef SQLITE_OMIT_XFER_OPT 1388 insert_end: 1389 #endif /* SQLITE_OMIT_XFER_OPT */ 1390 /* Update the sqlite_sequence table by storing the content of the 1391 ** maximum rowid counter values recorded while inserting into 1392 ** autoincrement tables. 1393 */ 1394 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1395 sqlite3AutoincrementEnd(pParse); 1396 } 1397 1398 /* 1399 ** Return the number of rows inserted. If this routine is 1400 ** generating code because of a call to sqlite3NestedParse(), do not 1401 ** invoke the callback function. 1402 */ 1403 if( regRowCount ){ 1404 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1405 } 1406 1407 insert_cleanup: 1408 sqlite3SrcListDelete(db, pTabList); 1409 sqlite3ExprListDelete(db, pList); 1410 sqlite3UpsertDelete(db, pUpsert); 1411 sqlite3SelectDelete(db, pSelect); 1412 sqlite3IdListDelete(db, pColumn); 1413 sqlite3DbFree(db, aRegIdx); 1414 } 1415 1416 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1417 ** they may interfere with compilation of other functions in this file 1418 ** (or in another file, if this file becomes part of the amalgamation). */ 1419 #ifdef isView 1420 #undef isView 1421 #endif 1422 #ifdef pTrigger 1423 #undef pTrigger 1424 #endif 1425 #ifdef tmask 1426 #undef tmask 1427 #endif 1428 1429 /* 1430 ** Meanings of bits in of pWalker->eCode for 1431 ** sqlite3ExprReferencesUpdatedColumn() 1432 */ 1433 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1434 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1435 1436 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1437 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1438 ** expression node references any of the 1439 ** columns that are being modifed by an UPDATE statement. 1440 */ 1441 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1442 if( pExpr->op==TK_COLUMN ){ 1443 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1444 if( pExpr->iColumn>=0 ){ 1445 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1446 pWalker->eCode |= CKCNSTRNT_COLUMN; 1447 } 1448 }else{ 1449 pWalker->eCode |= CKCNSTRNT_ROWID; 1450 } 1451 } 1452 return WRC_Continue; 1453 } 1454 1455 /* 1456 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1457 ** only columns that are modified by the UPDATE are those for which 1458 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1459 ** 1460 ** Return true if CHECK constraint pExpr uses any of the 1461 ** changing columns (or the rowid if it is changing). In other words, 1462 ** return true if this CHECK constraint must be validated for 1463 ** the new row in the UPDATE statement. 1464 ** 1465 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1466 ** The operation of this routine is the same - return true if an only if 1467 ** the expression uses one or more of columns identified by the second and 1468 ** third arguments. 1469 */ 1470 int sqlite3ExprReferencesUpdatedColumn( 1471 Expr *pExpr, /* The expression to be checked */ 1472 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1473 int chngRowid /* True if UPDATE changes the rowid */ 1474 ){ 1475 Walker w; 1476 memset(&w, 0, sizeof(w)); 1477 w.eCode = 0; 1478 w.xExprCallback = checkConstraintExprNode; 1479 w.u.aiCol = aiChng; 1480 sqlite3WalkExpr(&w, pExpr); 1481 if( !chngRowid ){ 1482 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1483 w.eCode &= ~CKCNSTRNT_ROWID; 1484 } 1485 testcase( w.eCode==0 ); 1486 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1487 testcase( w.eCode==CKCNSTRNT_ROWID ); 1488 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1489 return w.eCode!=0; 1490 } 1491 1492 /* 1493 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1494 ** the indexes of a table in the order provided in the Table->pIndex list. 1495 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1496 ** the indexes in a different order. The following data structures accomplish 1497 ** this. 1498 ** 1499 ** The IndexIterator object is used to walk through all of the indexes 1500 ** of a table in either Index.pNext order, or in some other order established 1501 ** by an array of IndexListTerm objects. 1502 */ 1503 typedef struct IndexListTerm IndexListTerm; 1504 typedef struct IndexIterator IndexIterator; 1505 struct IndexIterator { 1506 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1507 int i; /* Index of the current item from the list */ 1508 union { 1509 struct { /* Use this object for eType==0: A Index.pNext list */ 1510 Index *pIdx; /* The current Index */ 1511 } lx; 1512 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1513 int nIdx; /* Size of the array */ 1514 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1515 } ax; 1516 } u; 1517 }; 1518 1519 /* When IndexIterator.eType==1, then each index is an array of instances 1520 ** of the following object 1521 */ 1522 struct IndexListTerm { 1523 Index *p; /* The index */ 1524 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1525 }; 1526 1527 /* Return the first index on the list */ 1528 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1529 assert( pIter->i==0 ); 1530 if( pIter->eType ){ 1531 *pIx = pIter->u.ax.aIdx[0].ix; 1532 return pIter->u.ax.aIdx[0].p; 1533 }else{ 1534 *pIx = 0; 1535 return pIter->u.lx.pIdx; 1536 } 1537 } 1538 1539 /* Return the next index from the list. Return NULL when out of indexes */ 1540 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1541 if( pIter->eType ){ 1542 int i = ++pIter->i; 1543 if( i>=pIter->u.ax.nIdx ){ 1544 *pIx = i; 1545 return 0; 1546 } 1547 *pIx = pIter->u.ax.aIdx[i].ix; 1548 return pIter->u.ax.aIdx[i].p; 1549 }else{ 1550 ++(*pIx); 1551 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1552 return pIter->u.lx.pIdx; 1553 } 1554 } 1555 1556 /* 1557 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1558 ** on table pTab. 1559 ** 1560 ** The regNewData parameter is the first register in a range that contains 1561 ** the data to be inserted or the data after the update. There will be 1562 ** pTab->nCol+1 registers in this range. The first register (the one 1563 ** that regNewData points to) will contain the new rowid, or NULL in the 1564 ** case of a WITHOUT ROWID table. The second register in the range will 1565 ** contain the content of the first table column. The third register will 1566 ** contain the content of the second table column. And so forth. 1567 ** 1568 ** The regOldData parameter is similar to regNewData except that it contains 1569 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1570 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1571 ** checking regOldData for zero. 1572 ** 1573 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1574 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1575 ** might be modified by the UPDATE. If pkChng is false, then the key of 1576 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1577 ** 1578 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1579 ** was explicitly specified as part of the INSERT statement. If pkChng 1580 ** is zero, it means that the either rowid is computed automatically or 1581 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1582 ** pkChng will only be true if the INSERT statement provides an integer 1583 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1584 ** 1585 ** The code generated by this routine will store new index entries into 1586 ** registers identified by aRegIdx[]. No index entry is created for 1587 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1588 ** the same as the order of indices on the linked list of indices 1589 ** at pTab->pIndex. 1590 ** 1591 ** (2019-05-07) The generated code also creates a new record for the 1592 ** main table, if pTab is a rowid table, and stores that record in the 1593 ** register identified by aRegIdx[nIdx] - in other words in the first 1594 ** entry of aRegIdx[] past the last index. It is important that the 1595 ** record be generated during constraint checks to avoid affinity changes 1596 ** to the register content that occur after constraint checks but before 1597 ** the new record is inserted. 1598 ** 1599 ** The caller must have already opened writeable cursors on the main 1600 ** table and all applicable indices (that is to say, all indices for which 1601 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1602 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1603 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1604 ** for the first index in the pTab->pIndex list. Cursors for other indices 1605 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1606 ** 1607 ** This routine also generates code to check constraints. NOT NULL, 1608 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1609 ** then the appropriate action is performed. There are five possible 1610 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1611 ** 1612 ** Constraint type Action What Happens 1613 ** --------------- ---------- ---------------------------------------- 1614 ** any ROLLBACK The current transaction is rolled back and 1615 ** sqlite3_step() returns immediately with a 1616 ** return code of SQLITE_CONSTRAINT. 1617 ** 1618 ** any ABORT Back out changes from the current command 1619 ** only (do not do a complete rollback) then 1620 ** cause sqlite3_step() to return immediately 1621 ** with SQLITE_CONSTRAINT. 1622 ** 1623 ** any FAIL Sqlite3_step() returns immediately with a 1624 ** return code of SQLITE_CONSTRAINT. The 1625 ** transaction is not rolled back and any 1626 ** changes to prior rows are retained. 1627 ** 1628 ** any IGNORE The attempt in insert or update the current 1629 ** row is skipped, without throwing an error. 1630 ** Processing continues with the next row. 1631 ** (There is an immediate jump to ignoreDest.) 1632 ** 1633 ** NOT NULL REPLACE The NULL value is replace by the default 1634 ** value for that column. If the default value 1635 ** is NULL, the action is the same as ABORT. 1636 ** 1637 ** UNIQUE REPLACE The other row that conflicts with the row 1638 ** being inserted is removed. 1639 ** 1640 ** CHECK REPLACE Illegal. The results in an exception. 1641 ** 1642 ** Which action to take is determined by the overrideError parameter. 1643 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1644 ** is used. Or if pParse->onError==OE_Default then the onError value 1645 ** for the constraint is used. 1646 */ 1647 void sqlite3GenerateConstraintChecks( 1648 Parse *pParse, /* The parser context */ 1649 Table *pTab, /* The table being inserted or updated */ 1650 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1651 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1652 int iIdxCur, /* First index cursor */ 1653 int regNewData, /* First register in a range holding values to insert */ 1654 int regOldData, /* Previous content. 0 for INSERTs */ 1655 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1656 u8 overrideError, /* Override onError to this if not OE_Default */ 1657 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1658 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1659 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1660 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1661 ){ 1662 Vdbe *v; /* VDBE under constrution */ 1663 Index *pIdx; /* Pointer to one of the indices */ 1664 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1665 sqlite3 *db; /* Database connection */ 1666 int i; /* loop counter */ 1667 int ix; /* Index loop counter */ 1668 int nCol; /* Number of columns */ 1669 int onError; /* Conflict resolution strategy */ 1670 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1671 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1672 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1673 u8 isUpdate; /* True if this is an UPDATE operation */ 1674 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1675 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1676 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1677 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1678 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1679 /* Variables associated with retesting uniqueness constraints after 1680 ** replace triggers fire have run */ 1681 int regTrigCnt; /* Register used to count replace trigger invocations */ 1682 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1683 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1684 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1685 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1686 IndexIterator sIdxIter; /* Index iterator */ 1687 1688 isUpdate = regOldData!=0; 1689 db = pParse->db; 1690 v = pParse->pVdbe; 1691 assert( v!=0 ); 1692 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1693 nCol = pTab->nCol; 1694 1695 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1696 ** normal rowid tables. nPkField is the number of key fields in the 1697 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1698 ** number of fields in the true primary key of the table. */ 1699 if( HasRowid(pTab) ){ 1700 pPk = 0; 1701 nPkField = 1; 1702 }else{ 1703 pPk = sqlite3PrimaryKeyIndex(pTab); 1704 nPkField = pPk->nKeyCol; 1705 } 1706 1707 /* Record that this module has started */ 1708 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1709 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1710 1711 /* Test all NOT NULL constraints. 1712 */ 1713 if( pTab->tabFlags & TF_HasNotNull ){ 1714 int b2ndPass = 0; /* True if currently running 2nd pass */ 1715 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1716 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1717 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1718 for(i=0; i<nCol; i++){ 1719 int iReg; /* Register holding column value */ 1720 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1721 int isGenerated; /* non-zero if column is generated */ 1722 onError = pCol->notNull; 1723 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1724 if( i==pTab->iPKey ){ 1725 continue; /* ROWID is never NULL */ 1726 } 1727 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1728 if( isGenerated && !b2ndPass ){ 1729 nGenerated++; 1730 continue; /* Generated columns processed on 2nd pass */ 1731 } 1732 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1733 /* Do not check NOT NULL on columns that do not change */ 1734 continue; 1735 } 1736 if( overrideError!=OE_Default ){ 1737 onError = overrideError; 1738 }else if( onError==OE_Default ){ 1739 onError = OE_Abort; 1740 } 1741 if( onError==OE_Replace ){ 1742 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1743 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1744 ){ 1745 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1746 testcase( pCol->colFlags & COLFLAG_STORED ); 1747 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1748 onError = OE_Abort; 1749 }else{ 1750 assert( !isGenerated ); 1751 } 1752 }else if( b2ndPass && !isGenerated ){ 1753 continue; 1754 } 1755 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1756 || onError==OE_Ignore || onError==OE_Replace ); 1757 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1758 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1759 switch( onError ){ 1760 case OE_Replace: { 1761 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1762 VdbeCoverage(v); 1763 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1764 nSeenReplace++; 1765 sqlite3ExprCodeCopy(pParse, 1766 sqlite3ColumnExpr(pTab, pCol), iReg); 1767 sqlite3VdbeJumpHere(v, addr1); 1768 break; 1769 } 1770 case OE_Abort: 1771 sqlite3MayAbort(pParse); 1772 /* no break */ deliberate_fall_through 1773 case OE_Rollback: 1774 case OE_Fail: { 1775 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1776 pCol->zCnName); 1777 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1778 onError, iReg); 1779 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1780 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1781 VdbeCoverage(v); 1782 break; 1783 } 1784 default: { 1785 assert( onError==OE_Ignore ); 1786 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1787 VdbeCoverage(v); 1788 break; 1789 } 1790 } /* end switch(onError) */ 1791 } /* end loop i over columns */ 1792 if( nGenerated==0 && nSeenReplace==0 ){ 1793 /* If there are no generated columns with NOT NULL constraints 1794 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1795 ** pass is sufficient */ 1796 break; 1797 } 1798 if( b2ndPass ) break; /* Never need more than 2 passes */ 1799 b2ndPass = 1; 1800 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1801 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1802 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1803 ** first pass, recomputed values for all generated columns, as 1804 ** those values might depend on columns affected by the REPLACE. 1805 */ 1806 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1807 } 1808 #endif 1809 } /* end of 2-pass loop */ 1810 } /* end if( has-not-null-constraints ) */ 1811 1812 /* Test all CHECK constraints 1813 */ 1814 #ifndef SQLITE_OMIT_CHECK 1815 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1816 ExprList *pCheck = pTab->pCheck; 1817 pParse->iSelfTab = -(regNewData+1); 1818 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1819 for(i=0; i<pCheck->nExpr; i++){ 1820 int allOk; 1821 Expr *pCopy; 1822 Expr *pExpr = pCheck->a[i].pExpr; 1823 if( aiChng 1824 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1825 ){ 1826 /* The check constraints do not reference any of the columns being 1827 ** updated so there is no point it verifying the check constraint */ 1828 continue; 1829 } 1830 if( bAffinityDone==0 ){ 1831 sqlite3TableAffinity(v, pTab, regNewData+1); 1832 bAffinityDone = 1; 1833 } 1834 allOk = sqlite3VdbeMakeLabel(pParse); 1835 sqlite3VdbeVerifyAbortable(v, onError); 1836 pCopy = sqlite3ExprDup(db, pExpr, 0); 1837 if( !db->mallocFailed ){ 1838 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1839 } 1840 sqlite3ExprDelete(db, pCopy); 1841 if( onError==OE_Ignore ){ 1842 sqlite3VdbeGoto(v, ignoreDest); 1843 }else{ 1844 char *zName = pCheck->a[i].zEName; 1845 assert( zName!=0 || pParse->db->mallocFailed ); 1846 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1847 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1848 onError, zName, P4_TRANSIENT, 1849 P5_ConstraintCheck); 1850 } 1851 sqlite3VdbeResolveLabel(v, allOk); 1852 } 1853 pParse->iSelfTab = 0; 1854 } 1855 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1856 1857 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1858 ** order: 1859 ** 1860 ** (1) OE_Update 1861 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1862 ** (3) OE_Replace 1863 ** 1864 ** OE_Fail and OE_Ignore must happen before any changes are made. 1865 ** OE_Update guarantees that only a single row will change, so it 1866 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1867 ** could happen in any order, but they are grouped up front for 1868 ** convenience. 1869 ** 1870 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1871 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1872 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1873 ** constraint before any others, so it had to be moved. 1874 ** 1875 ** Constraint checking code is generated in this order: 1876 ** (A) The rowid constraint 1877 ** (B) Unique index constraints that do not have OE_Replace as their 1878 ** default conflict resolution strategy 1879 ** (C) Unique index that do use OE_Replace by default. 1880 ** 1881 ** The ordering of (2) and (3) is accomplished by making sure the linked 1882 ** list of indexes attached to a table puts all OE_Replace indexes last 1883 ** in the list. See sqlite3CreateIndex() for where that happens. 1884 */ 1885 sIdxIter.eType = 0; 1886 sIdxIter.i = 0; 1887 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1888 sIdxIter.u.lx.pIdx = pTab->pIndex; 1889 if( pUpsert ){ 1890 if( pUpsert->pUpsertTarget==0 ){ 1891 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1892 assert( pUpsert->pNextUpsert==0 ); 1893 if( pUpsert->isDoUpdate==0 ){ 1894 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1895 ** Make all unique constraint resolution be OE_Ignore */ 1896 overrideError = OE_Ignore; 1897 pUpsert = 0; 1898 }else{ 1899 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1900 overrideError = OE_Update; 1901 } 1902 }else if( pTab->pIndex!=0 ){ 1903 /* Otherwise, we'll need to run the IndexListTerm array version of the 1904 ** iterator to ensure that all of the ON CONFLICT conditions are 1905 ** checked first and in order. */ 1906 int nIdx, jj; 1907 u64 nByte; 1908 Upsert *pTerm; 1909 u8 *bUsed; 1910 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1911 assert( aRegIdx[nIdx]>0 ); 1912 } 1913 sIdxIter.eType = 1; 1914 sIdxIter.u.ax.nIdx = nIdx; 1915 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1916 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1917 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1918 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1919 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1920 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1921 if( pTerm->pUpsertTarget==0 ) break; 1922 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1923 jj = 0; 1924 pIdx = pTab->pIndex; 1925 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1926 pIdx = pIdx->pNext; 1927 jj++; 1928 } 1929 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1930 bUsed[jj] = 1; 1931 sIdxIter.u.ax.aIdx[i].p = pIdx; 1932 sIdxIter.u.ax.aIdx[i].ix = jj; 1933 i++; 1934 } 1935 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1936 if( bUsed[jj] ) continue; 1937 sIdxIter.u.ax.aIdx[i].p = pIdx; 1938 sIdxIter.u.ax.aIdx[i].ix = jj; 1939 i++; 1940 } 1941 assert( i==nIdx ); 1942 } 1943 } 1944 1945 /* Determine if it is possible that triggers (either explicitly coded 1946 ** triggers or FK resolution actions) might run as a result of deletes 1947 ** that happen when OE_Replace conflict resolution occurs. (Call these 1948 ** "replace triggers".) If any replace triggers run, we will need to 1949 ** recheck all of the uniqueness constraints after they have all run. 1950 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1951 ** 1952 ** If replace triggers are a possibility, then 1953 ** 1954 ** (1) Allocate register regTrigCnt and initialize it to zero. 1955 ** That register will count the number of replace triggers that 1956 ** fire. Constraint recheck only occurs if the number is positive. 1957 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1958 ** (3) Initialize addrRecheck and lblRecheckOk 1959 ** 1960 ** The uniqueness rechecking code will create a series of tests to run 1961 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1962 ** used to link together these tests which are separated from each other 1963 ** in the generate bytecode. 1964 */ 1965 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1966 /* There are not DELETE triggers nor FK constraints. No constraint 1967 ** rechecks are needed. */ 1968 pTrigger = 0; 1969 regTrigCnt = 0; 1970 }else{ 1971 if( db->flags&SQLITE_RecTriggers ){ 1972 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1973 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1974 }else{ 1975 pTrigger = 0; 1976 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1977 } 1978 if( regTrigCnt ){ 1979 /* Replace triggers might exist. Allocate the counter and 1980 ** initialize it to zero. */ 1981 regTrigCnt = ++pParse->nMem; 1982 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1983 VdbeComment((v, "trigger count")); 1984 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1985 addrRecheck = lblRecheckOk; 1986 } 1987 } 1988 1989 /* If rowid is changing, make sure the new rowid does not previously 1990 ** exist in the table. 1991 */ 1992 if( pkChng && pPk==0 ){ 1993 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1994 1995 /* Figure out what action to take in case of a rowid collision */ 1996 onError = pTab->keyConf; 1997 if( overrideError!=OE_Default ){ 1998 onError = overrideError; 1999 }else if( onError==OE_Default ){ 2000 onError = OE_Abort; 2001 } 2002 2003 /* figure out whether or not upsert applies in this case */ 2004 if( pUpsert ){ 2005 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 2006 if( pUpsertClause!=0 ){ 2007 if( pUpsertClause->isDoUpdate==0 ){ 2008 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2009 }else{ 2010 onError = OE_Update; /* DO UPDATE */ 2011 } 2012 } 2013 if( pUpsertClause!=pUpsert ){ 2014 /* The first ON CONFLICT clause has a conflict target other than 2015 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2016 ** and then come back here and deal with the IPK afterwards */ 2017 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2018 } 2019 } 2020 2021 /* If the response to a rowid conflict is REPLACE but the response 2022 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2023 ** to defer the running of the rowid conflict checking until after 2024 ** the UNIQUE constraints have run. 2025 */ 2026 if( onError==OE_Replace /* IPK rule is REPLACE */ 2027 && onError!=overrideError /* Rules for other constraints are different */ 2028 && pTab->pIndex /* There exist other constraints */ 2029 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2030 ){ 2031 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2032 VdbeComment((v, "defer IPK REPLACE until last")); 2033 } 2034 2035 if( isUpdate ){ 2036 /* pkChng!=0 does not mean that the rowid has changed, only that 2037 ** it might have changed. Skip the conflict logic below if the rowid 2038 ** is unchanged. */ 2039 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2040 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2041 VdbeCoverage(v); 2042 } 2043 2044 /* Check to see if the new rowid already exists in the table. Skip 2045 ** the following conflict logic if it does not. */ 2046 VdbeNoopComment((v, "uniqueness check for ROWID")); 2047 sqlite3VdbeVerifyAbortable(v, onError); 2048 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2049 VdbeCoverage(v); 2050 2051 switch( onError ){ 2052 default: { 2053 onError = OE_Abort; 2054 /* no break */ deliberate_fall_through 2055 } 2056 case OE_Rollback: 2057 case OE_Abort: 2058 case OE_Fail: { 2059 testcase( onError==OE_Rollback ); 2060 testcase( onError==OE_Abort ); 2061 testcase( onError==OE_Fail ); 2062 sqlite3RowidConstraint(pParse, onError, pTab); 2063 break; 2064 } 2065 case OE_Replace: { 2066 /* If there are DELETE triggers on this table and the 2067 ** recursive-triggers flag is set, call GenerateRowDelete() to 2068 ** remove the conflicting row from the table. This will fire 2069 ** the triggers and remove both the table and index b-tree entries. 2070 ** 2071 ** Otherwise, if there are no triggers or the recursive-triggers 2072 ** flag is not set, but the table has one or more indexes, call 2073 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2074 ** only. The table b-tree entry will be replaced by the new entry 2075 ** when it is inserted. 2076 ** 2077 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2078 ** also invoke MultiWrite() to indicate that this VDBE may require 2079 ** statement rollback (if the statement is aborted after the delete 2080 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2081 ** but being more selective here allows statements like: 2082 ** 2083 ** REPLACE INTO t(rowid) VALUES($newrowid) 2084 ** 2085 ** to run without a statement journal if there are no indexes on the 2086 ** table. 2087 */ 2088 if( regTrigCnt ){ 2089 sqlite3MultiWrite(pParse); 2090 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2091 regNewData, 1, 0, OE_Replace, 1, -1); 2092 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2093 nReplaceTrig++; 2094 }else{ 2095 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2096 assert( HasRowid(pTab) ); 2097 /* This OP_Delete opcode fires the pre-update-hook only. It does 2098 ** not modify the b-tree. It is more efficient to let the coming 2099 ** OP_Insert replace the existing entry than it is to delete the 2100 ** existing entry and then insert a new one. */ 2101 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2102 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2103 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2104 if( pTab->pIndex ){ 2105 sqlite3MultiWrite(pParse); 2106 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2107 } 2108 } 2109 seenReplace = 1; 2110 break; 2111 } 2112 #ifndef SQLITE_OMIT_UPSERT 2113 case OE_Update: { 2114 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2115 /* no break */ deliberate_fall_through 2116 } 2117 #endif 2118 case OE_Ignore: { 2119 testcase( onError==OE_Ignore ); 2120 sqlite3VdbeGoto(v, ignoreDest); 2121 break; 2122 } 2123 } 2124 sqlite3VdbeResolveLabel(v, addrRowidOk); 2125 if( pUpsert && pUpsertClause!=pUpsert ){ 2126 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2127 }else if( ipkTop ){ 2128 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2129 sqlite3VdbeJumpHere(v, ipkTop-1); 2130 } 2131 } 2132 2133 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2134 ** index and making sure that duplicate entries do not already exist. 2135 ** Compute the revised record entries for indices as we go. 2136 ** 2137 ** This loop also handles the case of the PRIMARY KEY index for a 2138 ** WITHOUT ROWID table. 2139 */ 2140 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2141 pIdx; 2142 pIdx = indexIteratorNext(&sIdxIter, &ix) 2143 ){ 2144 int regIdx; /* Range of registers hold conent for pIdx */ 2145 int regR; /* Range of registers holding conflicting PK */ 2146 int iThisCur; /* Cursor for this UNIQUE index */ 2147 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2148 int addrConflictCk; /* First opcode in the conflict check logic */ 2149 2150 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2151 if( pUpsert ){ 2152 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2153 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2154 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2155 } 2156 } 2157 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2158 if( bAffinityDone==0 ){ 2159 sqlite3TableAffinity(v, pTab, regNewData+1); 2160 bAffinityDone = 1; 2161 } 2162 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2163 iThisCur = iIdxCur+ix; 2164 2165 2166 /* Skip partial indices for which the WHERE clause is not true */ 2167 if( pIdx->pPartIdxWhere ){ 2168 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2169 pParse->iSelfTab = -(regNewData+1); 2170 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2171 SQLITE_JUMPIFNULL); 2172 pParse->iSelfTab = 0; 2173 } 2174 2175 /* Create a record for this index entry as it should appear after 2176 ** the insert or update. Store that record in the aRegIdx[ix] register 2177 */ 2178 regIdx = aRegIdx[ix]+1; 2179 for(i=0; i<pIdx->nColumn; i++){ 2180 int iField = pIdx->aiColumn[i]; 2181 int x; 2182 if( iField==XN_EXPR ){ 2183 pParse->iSelfTab = -(regNewData+1); 2184 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2185 pParse->iSelfTab = 0; 2186 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2187 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2188 x = regNewData; 2189 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2190 VdbeComment((v, "rowid")); 2191 }else{ 2192 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2193 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2194 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2195 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2196 } 2197 } 2198 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2199 VdbeComment((v, "for %s", pIdx->zName)); 2200 #ifdef SQLITE_ENABLE_NULL_TRIM 2201 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2202 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2203 } 2204 #endif 2205 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2206 2207 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2208 ** of a WITHOUT ROWID table and there has been no change the 2209 ** primary key, then no collision is possible. The collision detection 2210 ** logic below can all be skipped. */ 2211 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2212 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2213 continue; 2214 } 2215 2216 /* Find out what action to take in case there is a uniqueness conflict */ 2217 onError = pIdx->onError; 2218 if( onError==OE_None ){ 2219 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2220 continue; /* pIdx is not a UNIQUE index */ 2221 } 2222 if( overrideError!=OE_Default ){ 2223 onError = overrideError; 2224 }else if( onError==OE_Default ){ 2225 onError = OE_Abort; 2226 } 2227 2228 /* Figure out if the upsert clause applies to this index */ 2229 if( pUpsertClause ){ 2230 if( pUpsertClause->isDoUpdate==0 ){ 2231 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2232 }else{ 2233 onError = OE_Update; /* DO UPDATE */ 2234 } 2235 } 2236 2237 /* Collision detection may be omitted if all of the following are true: 2238 ** (1) The conflict resolution algorithm is REPLACE 2239 ** (2) The table is a WITHOUT ROWID table 2240 ** (3) There are no secondary indexes on the table 2241 ** (4) No delete triggers need to be fired if there is a conflict 2242 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2243 ** 2244 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2245 ** must be explicitly deleted in order to ensure any pre-update hook 2246 ** is invoked. */ 2247 assert( IsOrdinaryTable(pTab) ); 2248 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2249 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2250 && pPk==pIdx /* Condition 2 */ 2251 && onError==OE_Replace /* Condition 1 */ 2252 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2253 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2254 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2255 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2256 ){ 2257 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2258 continue; 2259 } 2260 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2261 2262 /* Check to see if the new index entry will be unique */ 2263 sqlite3VdbeVerifyAbortable(v, onError); 2264 addrConflictCk = 2265 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2266 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2267 2268 /* Generate code to handle collisions */ 2269 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2270 if( isUpdate || onError==OE_Replace ){ 2271 if( HasRowid(pTab) ){ 2272 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2273 /* Conflict only if the rowid of the existing index entry 2274 ** is different from old-rowid */ 2275 if( isUpdate ){ 2276 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2277 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2278 VdbeCoverage(v); 2279 } 2280 }else{ 2281 int x; 2282 /* Extract the PRIMARY KEY from the end of the index entry and 2283 ** store it in registers regR..regR+nPk-1 */ 2284 if( pIdx!=pPk ){ 2285 for(i=0; i<pPk->nKeyCol; i++){ 2286 assert( pPk->aiColumn[i]>=0 ); 2287 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2288 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2289 VdbeComment((v, "%s.%s", pTab->zName, 2290 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2291 } 2292 } 2293 if( isUpdate ){ 2294 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2295 ** table, only conflict if the new PRIMARY KEY values are actually 2296 ** different from the old. See TH3 withoutrowid04.test. 2297 ** 2298 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2299 ** of the matched index row are different from the original PRIMARY 2300 ** KEY values of this row before the update. */ 2301 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2302 int op = OP_Ne; 2303 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2304 2305 for(i=0; i<pPk->nKeyCol; i++){ 2306 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2307 x = pPk->aiColumn[i]; 2308 assert( x>=0 ); 2309 if( i==(pPk->nKeyCol-1) ){ 2310 addrJump = addrUniqueOk; 2311 op = OP_Eq; 2312 } 2313 x = sqlite3TableColumnToStorage(pTab, x); 2314 sqlite3VdbeAddOp4(v, op, 2315 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2316 ); 2317 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2318 VdbeCoverageIf(v, op==OP_Eq); 2319 VdbeCoverageIf(v, op==OP_Ne); 2320 } 2321 } 2322 } 2323 } 2324 2325 /* Generate code that executes if the new index entry is not unique */ 2326 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2327 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2328 switch( onError ){ 2329 case OE_Rollback: 2330 case OE_Abort: 2331 case OE_Fail: { 2332 testcase( onError==OE_Rollback ); 2333 testcase( onError==OE_Abort ); 2334 testcase( onError==OE_Fail ); 2335 sqlite3UniqueConstraint(pParse, onError, pIdx); 2336 break; 2337 } 2338 #ifndef SQLITE_OMIT_UPSERT 2339 case OE_Update: { 2340 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2341 /* no break */ deliberate_fall_through 2342 } 2343 #endif 2344 case OE_Ignore: { 2345 testcase( onError==OE_Ignore ); 2346 sqlite3VdbeGoto(v, ignoreDest); 2347 break; 2348 } 2349 default: { 2350 int nConflictCk; /* Number of opcodes in conflict check logic */ 2351 2352 assert( onError==OE_Replace ); 2353 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2354 assert( nConflictCk>0 || db->mallocFailed ); 2355 testcase( nConflictCk<=0 ); 2356 testcase( nConflictCk>1 ); 2357 if( regTrigCnt ){ 2358 sqlite3MultiWrite(pParse); 2359 nReplaceTrig++; 2360 } 2361 if( pTrigger && isUpdate ){ 2362 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2363 } 2364 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2365 regR, nPkField, 0, OE_Replace, 2366 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2367 if( pTrigger && isUpdate ){ 2368 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2369 } 2370 if( regTrigCnt ){ 2371 int addrBypass; /* Jump destination to bypass recheck logic */ 2372 2373 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2374 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2375 VdbeComment((v, "bypass recheck")); 2376 2377 /* Here we insert code that will be invoked after all constraint 2378 ** checks have run, if and only if one or more replace triggers 2379 ** fired. */ 2380 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2381 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2382 if( pIdx->pPartIdxWhere ){ 2383 /* Bypass the recheck if this partial index is not defined 2384 ** for the current row */ 2385 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2386 VdbeCoverage(v); 2387 } 2388 /* Copy the constraint check code from above, except change 2389 ** the constraint-ok jump destination to be the address of 2390 ** the next retest block */ 2391 while( nConflictCk>0 ){ 2392 VdbeOp x; /* Conflict check opcode to copy */ 2393 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2394 ** Hence, make a complete copy of the opcode, rather than using 2395 ** a pointer to the opcode. */ 2396 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2397 if( x.opcode!=OP_IdxRowid ){ 2398 int p2; /* New P2 value for copied conflict check opcode */ 2399 const char *zP4; 2400 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2401 p2 = lblRecheckOk; 2402 }else{ 2403 p2 = x.p2; 2404 } 2405 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2406 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2407 sqlite3VdbeChangeP5(v, x.p5); 2408 VdbeCoverageIf(v, p2!=x.p2); 2409 } 2410 nConflictCk--; 2411 addrConflictCk++; 2412 } 2413 /* If the retest fails, issue an abort */ 2414 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2415 2416 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2417 } 2418 seenReplace = 1; 2419 break; 2420 } 2421 } 2422 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2423 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2424 if( pUpsertClause 2425 && upsertIpkReturn 2426 && sqlite3UpsertNextIsIPK(pUpsertClause) 2427 ){ 2428 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2429 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2430 upsertIpkReturn = 0; 2431 } 2432 } 2433 2434 /* If the IPK constraint is a REPLACE, run it last */ 2435 if( ipkTop ){ 2436 sqlite3VdbeGoto(v, ipkTop); 2437 VdbeComment((v, "Do IPK REPLACE")); 2438 assert( ipkBottom>0 ); 2439 sqlite3VdbeJumpHere(v, ipkBottom); 2440 } 2441 2442 /* Recheck all uniqueness constraints after replace triggers have run */ 2443 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2444 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2445 if( nReplaceTrig ){ 2446 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2447 if( !pPk ){ 2448 if( isUpdate ){ 2449 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2450 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2451 VdbeCoverage(v); 2452 } 2453 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2454 VdbeCoverage(v); 2455 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2456 }else{ 2457 sqlite3VdbeGoto(v, addrRecheck); 2458 } 2459 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2460 } 2461 2462 /* Generate the table record */ 2463 if( HasRowid(pTab) ){ 2464 int regRec = aRegIdx[ix]; 2465 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2466 sqlite3SetMakeRecordP5(v, pTab); 2467 if( !bAffinityDone ){ 2468 sqlite3TableAffinity(v, pTab, 0); 2469 } 2470 } 2471 2472 *pbMayReplace = seenReplace; 2473 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2474 } 2475 2476 #ifdef SQLITE_ENABLE_NULL_TRIM 2477 /* 2478 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2479 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2480 ** 2481 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2482 */ 2483 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2484 u16 i; 2485 2486 /* Records with omitted columns are only allowed for schema format 2487 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2488 if( pTab->pSchema->file_format<2 ) return; 2489 2490 for(i=pTab->nCol-1; i>0; i--){ 2491 if( pTab->aCol[i].iDflt!=0 ) break; 2492 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2493 } 2494 sqlite3VdbeChangeP5(v, i+1); 2495 } 2496 #endif 2497 2498 /* 2499 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2500 ** number is iCur, and register regData contains the new record for the 2501 ** PK index. This function adds code to invoke the pre-update hook, 2502 ** if one is registered. 2503 */ 2504 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2505 static void codeWithoutRowidPreupdate( 2506 Parse *pParse, /* Parse context */ 2507 Table *pTab, /* Table being updated */ 2508 int iCur, /* Cursor number for table */ 2509 int regData /* Data containing new record */ 2510 ){ 2511 Vdbe *v = pParse->pVdbe; 2512 int r = sqlite3GetTempReg(pParse); 2513 assert( !HasRowid(pTab) ); 2514 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2515 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2516 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2517 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2518 sqlite3ReleaseTempReg(pParse, r); 2519 } 2520 #else 2521 # define codeWithoutRowidPreupdate(a,b,c,d) 2522 #endif 2523 2524 /* 2525 ** This routine generates code to finish the INSERT or UPDATE operation 2526 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2527 ** A consecutive range of registers starting at regNewData contains the 2528 ** rowid and the content to be inserted. 2529 ** 2530 ** The arguments to this routine should be the same as the first six 2531 ** arguments to sqlite3GenerateConstraintChecks. 2532 */ 2533 void sqlite3CompleteInsertion( 2534 Parse *pParse, /* The parser context */ 2535 Table *pTab, /* the table into which we are inserting */ 2536 int iDataCur, /* Cursor of the canonical data source */ 2537 int iIdxCur, /* First index cursor */ 2538 int regNewData, /* Range of content */ 2539 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2540 int update_flags, /* True for UPDATE, False for INSERT */ 2541 int appendBias, /* True if this is likely to be an append */ 2542 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2543 ){ 2544 Vdbe *v; /* Prepared statements under construction */ 2545 Index *pIdx; /* An index being inserted or updated */ 2546 u8 pik_flags; /* flag values passed to the btree insert */ 2547 int i; /* Loop counter */ 2548 2549 assert( update_flags==0 2550 || update_flags==OPFLAG_ISUPDATE 2551 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2552 ); 2553 2554 v = pParse->pVdbe; 2555 assert( v!=0 ); 2556 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2557 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2558 /* All REPLACE indexes are at the end of the list */ 2559 assert( pIdx->onError!=OE_Replace 2560 || pIdx->pNext==0 2561 || pIdx->pNext->onError==OE_Replace ); 2562 if( aRegIdx[i]==0 ) continue; 2563 if( pIdx->pPartIdxWhere ){ 2564 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2565 VdbeCoverage(v); 2566 } 2567 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2568 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2569 pik_flags |= OPFLAG_NCHANGE; 2570 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2571 if( update_flags==0 ){ 2572 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2573 } 2574 } 2575 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2576 aRegIdx[i]+1, 2577 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2578 sqlite3VdbeChangeP5(v, pik_flags); 2579 } 2580 if( !HasRowid(pTab) ) return; 2581 if( pParse->nested ){ 2582 pik_flags = 0; 2583 }else{ 2584 pik_flags = OPFLAG_NCHANGE; 2585 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2586 } 2587 if( appendBias ){ 2588 pik_flags |= OPFLAG_APPEND; 2589 } 2590 if( useSeekResult ){ 2591 pik_flags |= OPFLAG_USESEEKRESULT; 2592 } 2593 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2594 if( !pParse->nested ){ 2595 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2596 } 2597 sqlite3VdbeChangeP5(v, pik_flags); 2598 } 2599 2600 /* 2601 ** Allocate cursors for the pTab table and all its indices and generate 2602 ** code to open and initialized those cursors. 2603 ** 2604 ** The cursor for the object that contains the complete data (normally 2605 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2606 ** ROWID table) is returned in *piDataCur. The first index cursor is 2607 ** returned in *piIdxCur. The number of indices is returned. 2608 ** 2609 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2610 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2611 ** If iBase is negative, then allocate the next available cursor. 2612 ** 2613 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2614 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2615 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2616 ** pTab->pIndex list. 2617 ** 2618 ** If pTab is a virtual table, then this routine is a no-op and the 2619 ** *piDataCur and *piIdxCur values are left uninitialized. 2620 */ 2621 int sqlite3OpenTableAndIndices( 2622 Parse *pParse, /* Parsing context */ 2623 Table *pTab, /* Table to be opened */ 2624 int op, /* OP_OpenRead or OP_OpenWrite */ 2625 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2626 int iBase, /* Use this for the table cursor, if there is one */ 2627 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2628 int *piDataCur, /* Write the database source cursor number here */ 2629 int *piIdxCur /* Write the first index cursor number here */ 2630 ){ 2631 int i; 2632 int iDb; 2633 int iDataCur; 2634 Index *pIdx; 2635 Vdbe *v; 2636 2637 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2638 assert( op==OP_OpenWrite || p5==0 ); 2639 if( IsVirtual(pTab) ){ 2640 /* This routine is a no-op for virtual tables. Leave the output 2641 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2642 ** for improved error detection. */ 2643 *piDataCur = *piIdxCur = -999; 2644 return 0; 2645 } 2646 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2647 v = pParse->pVdbe; 2648 assert( v!=0 ); 2649 if( iBase<0 ) iBase = pParse->nTab; 2650 iDataCur = iBase++; 2651 if( piDataCur ) *piDataCur = iDataCur; 2652 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2653 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2654 }else{ 2655 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2656 } 2657 if( piIdxCur ) *piIdxCur = iBase; 2658 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2659 int iIdxCur = iBase++; 2660 assert( pIdx->pSchema==pTab->pSchema ); 2661 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2662 if( piDataCur ) *piDataCur = iIdxCur; 2663 p5 = 0; 2664 } 2665 if( aToOpen==0 || aToOpen[i+1] ){ 2666 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2667 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2668 sqlite3VdbeChangeP5(v, p5); 2669 VdbeComment((v, "%s", pIdx->zName)); 2670 } 2671 } 2672 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2673 return i; 2674 } 2675 2676 2677 #ifdef SQLITE_TEST 2678 /* 2679 ** The following global variable is incremented whenever the 2680 ** transfer optimization is used. This is used for testing 2681 ** purposes only - to make sure the transfer optimization really 2682 ** is happening when it is supposed to. 2683 */ 2684 int sqlite3_xferopt_count; 2685 #endif /* SQLITE_TEST */ 2686 2687 2688 #ifndef SQLITE_OMIT_XFER_OPT 2689 /* 2690 ** Check to see if index pSrc is compatible as a source of data 2691 ** for index pDest in an insert transfer optimization. The rules 2692 ** for a compatible index: 2693 ** 2694 ** * The index is over the same set of columns 2695 ** * The same DESC and ASC markings occurs on all columns 2696 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2697 ** * The same collating sequence on each column 2698 ** * The index has the exact same WHERE clause 2699 */ 2700 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2701 int i; 2702 assert( pDest && pSrc ); 2703 assert( pDest->pTable!=pSrc->pTable ); 2704 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2705 return 0; /* Different number of columns */ 2706 } 2707 if( pDest->onError!=pSrc->onError ){ 2708 return 0; /* Different conflict resolution strategies */ 2709 } 2710 for(i=0; i<pSrc->nKeyCol; i++){ 2711 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2712 return 0; /* Different columns indexed */ 2713 } 2714 if( pSrc->aiColumn[i]==XN_EXPR ){ 2715 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2716 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2717 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2718 return 0; /* Different expressions in the index */ 2719 } 2720 } 2721 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2722 return 0; /* Different sort orders */ 2723 } 2724 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2725 return 0; /* Different collating sequences */ 2726 } 2727 } 2728 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2729 return 0; /* Different WHERE clauses */ 2730 } 2731 2732 /* If no test above fails then the indices must be compatible */ 2733 return 1; 2734 } 2735 2736 /* 2737 ** Attempt the transfer optimization on INSERTs of the form 2738 ** 2739 ** INSERT INTO tab1 SELECT * FROM tab2; 2740 ** 2741 ** The xfer optimization transfers raw records from tab2 over to tab1. 2742 ** Columns are not decoded and reassembled, which greatly improves 2743 ** performance. Raw index records are transferred in the same way. 2744 ** 2745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2746 ** There are lots of rules for determining compatibility - see comments 2747 ** embedded in the code for details. 2748 ** 2749 ** This routine returns TRUE if the optimization is guaranteed to be used. 2750 ** Sometimes the xfer optimization will only work if the destination table 2751 ** is empty - a factor that can only be determined at run-time. In that 2752 ** case, this routine generates code for the xfer optimization but also 2753 ** does a test to see if the destination table is empty and jumps over the 2754 ** xfer optimization code if the test fails. In that case, this routine 2755 ** returns FALSE so that the caller will know to go ahead and generate 2756 ** an unoptimized transfer. This routine also returns FALSE if there 2757 ** is no chance that the xfer optimization can be applied. 2758 ** 2759 ** This optimization is particularly useful at making VACUUM run faster. 2760 */ 2761 static int xferOptimization( 2762 Parse *pParse, /* Parser context */ 2763 Table *pDest, /* The table we are inserting into */ 2764 Select *pSelect, /* A SELECT statement to use as the data source */ 2765 int onError, /* How to handle constraint errors */ 2766 int iDbDest /* The database of pDest */ 2767 ){ 2768 sqlite3 *db = pParse->db; 2769 ExprList *pEList; /* The result set of the SELECT */ 2770 Table *pSrc; /* The table in the FROM clause of SELECT */ 2771 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2772 SrcItem *pItem; /* An element of pSelect->pSrc */ 2773 int i; /* Loop counter */ 2774 int iDbSrc; /* The database of pSrc */ 2775 int iSrc, iDest; /* Cursors from source and destination */ 2776 int addr1, addr2; /* Loop addresses */ 2777 int emptyDestTest = 0; /* Address of test for empty pDest */ 2778 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2779 Vdbe *v; /* The VDBE we are building */ 2780 int regAutoinc; /* Memory register used by AUTOINC */ 2781 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2782 int regData, regRowid; /* Registers holding data and rowid */ 2783 2784 assert( pSelect!=0 ); 2785 if( pParse->pWith || pSelect->pWith ){ 2786 /* Do not attempt to process this query if there are an WITH clauses 2787 ** attached to it. Proceeding may generate a false "no such table: xxx" 2788 ** error if pSelect reads from a CTE named "xxx". */ 2789 return 0; 2790 } 2791 #ifndef SQLITE_OMIT_VIRTUALTABLE 2792 if( IsVirtual(pDest) ){ 2793 return 0; /* tab1 must not be a virtual table */ 2794 } 2795 #endif 2796 if( onError==OE_Default ){ 2797 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2798 if( onError==OE_Default ) onError = OE_Abort; 2799 } 2800 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2801 if( pSelect->pSrc->nSrc!=1 ){ 2802 return 0; /* FROM clause must have exactly one term */ 2803 } 2804 if( pSelect->pSrc->a[0].pSelect ){ 2805 return 0; /* FROM clause cannot contain a subquery */ 2806 } 2807 if( pSelect->pWhere ){ 2808 return 0; /* SELECT may not have a WHERE clause */ 2809 } 2810 if( pSelect->pOrderBy ){ 2811 return 0; /* SELECT may not have an ORDER BY clause */ 2812 } 2813 /* Do not need to test for a HAVING clause. If HAVING is present but 2814 ** there is no ORDER BY, we will get an error. */ 2815 if( pSelect->pGroupBy ){ 2816 return 0; /* SELECT may not have a GROUP BY clause */ 2817 } 2818 if( pSelect->pLimit ){ 2819 return 0; /* SELECT may not have a LIMIT clause */ 2820 } 2821 if( pSelect->pPrior ){ 2822 return 0; /* SELECT may not be a compound query */ 2823 } 2824 if( pSelect->selFlags & SF_Distinct ){ 2825 return 0; /* SELECT may not be DISTINCT */ 2826 } 2827 pEList = pSelect->pEList; 2828 assert( pEList!=0 ); 2829 if( pEList->nExpr!=1 ){ 2830 return 0; /* The result set must have exactly one column */ 2831 } 2832 assert( pEList->a[0].pExpr ); 2833 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2834 return 0; /* The result set must be the special operator "*" */ 2835 } 2836 2837 /* At this point we have established that the statement is of the 2838 ** correct syntactic form to participate in this optimization. Now 2839 ** we have to check the semantics. 2840 */ 2841 pItem = pSelect->pSrc->a; 2842 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2843 if( pSrc==0 ){ 2844 return 0; /* FROM clause does not contain a real table */ 2845 } 2846 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2847 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2848 return 0; /* tab1 and tab2 may not be the same table */ 2849 } 2850 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2851 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2852 } 2853 if( !IsOrdinaryTable(pSrc) ){ 2854 return 0; /* tab2 may not be a view or virtual table */ 2855 } 2856 if( pDest->nCol!=pSrc->nCol ){ 2857 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2858 } 2859 if( pDest->iPKey!=pSrc->iPKey ){ 2860 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2861 } 2862 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2863 return 0; /* Cannot feed from a non-strict into a strict table */ 2864 } 2865 for(i=0; i<pDest->nCol; i++){ 2866 Column *pDestCol = &pDest->aCol[i]; 2867 Column *pSrcCol = &pSrc->aCol[i]; 2868 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2869 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2870 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2871 ){ 2872 return 0; /* Neither table may have __hidden__ columns */ 2873 } 2874 #endif 2875 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2876 /* Even if tables t1 and t2 have identical schemas, if they contain 2877 ** generated columns, then this statement is semantically incorrect: 2878 ** 2879 ** INSERT INTO t2 SELECT * FROM t1; 2880 ** 2881 ** The reason is that generated column values are returned by the 2882 ** the SELECT statement on the right but the INSERT statement on the 2883 ** left wants them to be omitted. 2884 ** 2885 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2886 ** to do a bulk transfer all of the content from t1 over to t2. 2887 ** 2888 ** We could, in theory, disable this (except for internal use by the 2889 ** VACUUM command where it is actually needed). But why do that? It 2890 ** seems harmless enough, and provides a useful service. 2891 */ 2892 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2893 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2894 return 0; /* Both columns have the same generated-column type */ 2895 } 2896 /* But the transfer is only allowed if both the source and destination 2897 ** tables have the exact same expressions for generated columns. 2898 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2899 */ 2900 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2901 if( sqlite3ExprCompare(0, 2902 sqlite3ColumnExpr(pSrc, pSrcCol), 2903 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2904 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2905 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2906 return 0; /* Different generator expressions */ 2907 } 2908 } 2909 #endif 2910 if( pDestCol->affinity!=pSrcCol->affinity ){ 2911 return 0; /* Affinity must be the same on all columns */ 2912 } 2913 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2914 sqlite3ColumnColl(pSrcCol))!=0 ){ 2915 return 0; /* Collating sequence must be the same on all columns */ 2916 } 2917 if( pDestCol->notNull && !pSrcCol->notNull ){ 2918 return 0; /* tab2 must be NOT NULL if tab1 is */ 2919 } 2920 /* Default values for second and subsequent columns need to match. */ 2921 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2922 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2923 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2924 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2925 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2926 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2927 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2928 if( (pDestExpr==0)!=(pSrcExpr==0) 2929 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2930 pSrcExpr->u.zToken)!=0) 2931 ){ 2932 return 0; /* Default values must be the same for all columns */ 2933 } 2934 } 2935 } 2936 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2937 if( IsUniqueIndex(pDestIdx) ){ 2938 destHasUniqueIdx = 1; 2939 } 2940 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2941 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2942 } 2943 if( pSrcIdx==0 ){ 2944 return 0; /* pDestIdx has no corresponding index in pSrc */ 2945 } 2946 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2947 && sqlite3FaultSim(411)==SQLITE_OK ){ 2948 /* The sqlite3FaultSim() call allows this corruption test to be 2949 ** bypassed during testing, in order to exercise other corruption tests 2950 ** further downstream. */ 2951 return 0; /* Corrupt schema - two indexes on the same btree */ 2952 } 2953 } 2954 #ifndef SQLITE_OMIT_CHECK 2955 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2956 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2957 } 2958 #endif 2959 #ifndef SQLITE_OMIT_FOREIGN_KEY 2960 /* Disallow the transfer optimization if the destination table constains 2961 ** any foreign key constraints. This is more restrictive than necessary. 2962 ** But the main beneficiary of the transfer optimization is the VACUUM 2963 ** command, and the VACUUM command disables foreign key constraints. So 2964 ** the extra complication to make this rule less restrictive is probably 2965 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2966 */ 2967 assert( IsOrdinaryTable(pDest) ); 2968 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2969 return 0; 2970 } 2971 #endif 2972 if( (db->flags & SQLITE_CountRows)!=0 ){ 2973 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2974 } 2975 2976 /* If we get this far, it means that the xfer optimization is at 2977 ** least a possibility, though it might only work if the destination 2978 ** table (tab1) is initially empty. 2979 */ 2980 #ifdef SQLITE_TEST 2981 sqlite3_xferopt_count++; 2982 #endif 2983 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2984 v = sqlite3GetVdbe(pParse); 2985 sqlite3CodeVerifySchema(pParse, iDbSrc); 2986 iSrc = pParse->nTab++; 2987 iDest = pParse->nTab++; 2988 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2989 regData = sqlite3GetTempReg(pParse); 2990 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2991 regRowid = sqlite3GetTempReg(pParse); 2992 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2993 assert( HasRowid(pDest) || destHasUniqueIdx ); 2994 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2995 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2996 || destHasUniqueIdx /* (2) */ 2997 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2998 )){ 2999 /* In some circumstances, we are able to run the xfer optimization 3000 ** only if the destination table is initially empty. Unless the 3001 ** DBFLAG_Vacuum flag is set, this block generates code to make 3002 ** that determination. If DBFLAG_Vacuum is set, then the destination 3003 ** table is always empty. 3004 ** 3005 ** Conditions under which the destination must be empty: 3006 ** 3007 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 3008 ** (If the destination is not initially empty, the rowid fields 3009 ** of index entries might need to change.) 3010 ** 3011 ** (2) The destination has a unique index. (The xfer optimization 3012 ** is unable to test uniqueness.) 3013 ** 3014 ** (3) onError is something other than OE_Abort and OE_Rollback. 3015 */ 3016 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3017 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3018 sqlite3VdbeJumpHere(v, addr1); 3019 } 3020 if( HasRowid(pSrc) ){ 3021 u8 insFlags; 3022 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3023 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3024 if( pDest->iPKey>=0 ){ 3025 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3026 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3027 sqlite3VdbeVerifyAbortable(v, onError); 3028 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3029 VdbeCoverage(v); 3030 sqlite3RowidConstraint(pParse, onError, pDest); 3031 sqlite3VdbeJumpHere(v, addr2); 3032 } 3033 autoIncStep(pParse, regAutoinc, regRowid); 3034 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3035 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3036 }else{ 3037 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3038 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3039 } 3040 3041 if( db->mDbFlags & DBFLAG_Vacuum ){ 3042 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3043 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3044 }else{ 3045 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3046 } 3047 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3048 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3049 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3050 insFlags &= ~OPFLAG_PREFORMAT; 3051 }else 3052 #endif 3053 { 3054 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3055 } 3056 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3057 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3058 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3059 } 3060 sqlite3VdbeChangeP5(v, insFlags); 3061 3062 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3063 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3064 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3065 }else{ 3066 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3067 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3068 } 3069 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3070 u8 idxInsFlags = 0; 3071 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3072 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3073 } 3074 assert( pSrcIdx ); 3075 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3076 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3077 VdbeComment((v, "%s", pSrcIdx->zName)); 3078 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3079 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3080 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3081 VdbeComment((v, "%s", pDestIdx->zName)); 3082 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3083 if( db->mDbFlags & DBFLAG_Vacuum ){ 3084 /* This INSERT command is part of a VACUUM operation, which guarantees 3085 ** that the destination table is empty. If all indexed columns use 3086 ** collation sequence BINARY, then it can also be assumed that the 3087 ** index will be populated by inserting keys in strictly sorted 3088 ** order. In this case, instead of seeking within the b-tree as part 3089 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3090 ** OP_IdxInsert to seek to the point within the b-tree where each key 3091 ** should be inserted. This is faster. 3092 ** 3093 ** If any of the indexed columns use a collation sequence other than 3094 ** BINARY, this optimization is disabled. This is because the user 3095 ** might change the definition of a collation sequence and then run 3096 ** a VACUUM command. In that case keys may not be written in strictly 3097 ** sorted order. */ 3098 for(i=0; i<pSrcIdx->nColumn; i++){ 3099 const char *zColl = pSrcIdx->azColl[i]; 3100 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3101 } 3102 if( i==pSrcIdx->nColumn ){ 3103 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3104 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3105 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3106 } 3107 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3108 idxInsFlags |= OPFLAG_NCHANGE; 3109 } 3110 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3111 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3112 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3113 && !HasRowid(pDest) 3114 && IsPrimaryKeyIndex(pDestIdx) 3115 ){ 3116 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3117 } 3118 } 3119 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3120 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3121 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3122 sqlite3VdbeJumpHere(v, addr1); 3123 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3124 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3125 } 3126 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3127 sqlite3ReleaseTempReg(pParse, regRowid); 3128 sqlite3ReleaseTempReg(pParse, regData); 3129 if( emptyDestTest ){ 3130 sqlite3AutoincrementEnd(pParse); 3131 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3132 sqlite3VdbeJumpHere(v, emptyDestTest); 3133 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3134 return 0; 3135 }else{ 3136 return 1; 3137 } 3138 } 3139 #endif /* SQLITE_OMIT_XFER_OPT */ 3140