xref: /sqlite-3.40.0/src/insert.c (revision c59b7b1f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0 ){
286     pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287     if( pOp->opcode==OP_Affinity ){
288       /* Change the OP_Affinity argument to '@' (NONE) for all stored
289       ** columns.  '@' is the no-op affinity and those columns have not
290       ** yet been computed. */
291       int ii, jj;
292       char *zP4 = pOp->p4.z;
293       assert( zP4!=0 );
294       assert( pOp->p4type==P4_DYNAMIC );
295       for(ii=jj=0; zP4[jj]; ii++){
296         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297           continue;
298         }
299         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300           zP4[jj] = SQLITE_AFF_NONE;
301         }
302         jj++;
303       }
304     }else if( pOp->opcode==OP_TypeCheck ){
305       /* If an OP_TypeCheck was generated because the table is STRICT,
306       ** then set the P3 operand to indicate that generated columns should
307       ** not be checked */
308       pOp->p3 = 1;
309     }
310   }
311 
312   /* Because there can be multiple generated columns that refer to one another,
313   ** this is a two-pass algorithm.  On the first pass, mark all generated
314   ** columns as "not available".
315   */
316   for(i=0; i<pTab->nCol; i++){
317     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
318       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
319       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
320       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
321     }
322   }
323 
324   w.u.pTab = pTab;
325   w.xExprCallback = exprColumnFlagUnion;
326   w.xSelectCallback = 0;
327   w.xSelectCallback2 = 0;
328 
329   /* On the second pass, compute the value of each NOT-AVAILABLE column.
330   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
332   ** they are needed.
333   */
334   pParse->iSelfTab = -iRegStore;
335   do{
336     eProgress = 0;
337     pRedo = 0;
338     for(i=0; i<pTab->nCol; i++){
339       Column *pCol = pTab->aCol + i;
340       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
341         int x;
342         pCol->colFlags |= COLFLAG_BUSY;
343         w.eCode = 0;
344         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
345         pCol->colFlags &= ~COLFLAG_BUSY;
346         if( w.eCode & COLFLAG_NOTAVAIL ){
347           pRedo = pCol;
348           continue;
349         }
350         eProgress = 1;
351         assert( pCol->colFlags & COLFLAG_GENERATED );
352         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
353         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
354         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
355       }
356     }
357   }while( pRedo && eProgress );
358   if( pRedo ){
359     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
360   }
361   pParse->iSelfTab = 0;
362 }
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
364 
365 
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
367 /*
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb.  Return the register number for the register
370 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
371 ** table.  (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
373 **
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers.  A new AutoincInfo structure is created if this is the
377 ** first use of table pTab.  On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
379 **
380 ** Four consecutive registers are allocated:
381 **
382 **   (1)  The name of the pTab table.
383 **   (2)  The maximum ROWID of pTab.
384 **   (3)  The rowid in sqlite_sequence of pTab
385 **   (4)  The original value of the max ROWID in pTab, or NULL if none
386 **
387 ** The 2nd register is the one that is returned.  That is all the
388 ** insert routine needs to know about.
389 */
390 static int autoIncBegin(
391   Parse *pParse,      /* Parsing context */
392   int iDb,            /* Index of the database holding pTab */
393   Table *pTab         /* The table we are writing to */
394 ){
395   int memId = 0;      /* Register holding maximum rowid */
396   assert( pParse->db->aDb[iDb].pSchema!=0 );
397   if( (pTab->tabFlags & TF_Autoincrement)!=0
398    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
399   ){
400     Parse *pToplevel = sqlite3ParseToplevel(pParse);
401     AutoincInfo *pInfo;
402     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
403 
404     /* Verify that the sqlite_sequence table exists and is an ordinary
405     ** rowid table with exactly two columns.
406     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
407     if( pSeqTab==0
408      || !HasRowid(pSeqTab)
409      || NEVER(IsVirtual(pSeqTab))
410      || pSeqTab->nCol!=2
411     ){
412       pParse->nErr++;
413       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
414       return 0;
415     }
416 
417     pInfo = pToplevel->pAinc;
418     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
419     if( pInfo==0 ){
420       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
421       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
422       testcase( pParse->earlyCleanup );
423       if( pParse->db->mallocFailed ) return 0;
424       pInfo->pNext = pToplevel->pAinc;
425       pToplevel->pAinc = pInfo;
426       pInfo->pTab = pTab;
427       pInfo->iDb = iDb;
428       pToplevel->nMem++;                  /* Register to hold name of table */
429       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
430       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
431     }
432     memId = pInfo->regCtr;
433   }
434   return memId;
435 }
436 
437 /*
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
440 */
441 void sqlite3AutoincrementBegin(Parse *pParse){
442   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
443   sqlite3 *db = pParse->db;  /* The database connection */
444   Db *pDb;                   /* Database only autoinc table */
445   int memId;                 /* Register holding max rowid */
446   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
447 
448   /* This routine is never called during trigger-generation.  It is
449   ** only called from the top-level */
450   assert( pParse->pTriggerTab==0 );
451   assert( sqlite3IsToplevel(pParse) );
452 
453   assert( v );   /* We failed long ago if this is not so */
454   for(p = pParse->pAinc; p; p = p->pNext){
455     static const int iLn = VDBE_OFFSET_LINENO(2);
456     static const VdbeOpList autoInc[] = {
457       /* 0  */ {OP_Null,    0,  0, 0},
458       /* 1  */ {OP_Rewind,  0, 10, 0},
459       /* 2  */ {OP_Column,  0,  0, 0},
460       /* 3  */ {OP_Ne,      0,  9, 0},
461       /* 4  */ {OP_Rowid,   0,  0, 0},
462       /* 5  */ {OP_Column,  0,  1, 0},
463       /* 6  */ {OP_AddImm,  0,  0, 0},
464       /* 7  */ {OP_Copy,    0,  0, 0},
465       /* 8  */ {OP_Goto,    0, 11, 0},
466       /* 9  */ {OP_Next,    0,  2, 0},
467       /* 10 */ {OP_Integer, 0,  0, 0},
468       /* 11 */ {OP_Close,   0,  0, 0}
469     };
470     VdbeOp *aOp;
471     pDb = &db->aDb[p->iDb];
472     memId = p->regCtr;
473     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
474     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
475     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
476     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
477     if( aOp==0 ) break;
478     aOp[0].p2 = memId;
479     aOp[0].p3 = memId+2;
480     aOp[2].p3 = memId;
481     aOp[3].p1 = memId-1;
482     aOp[3].p3 = memId;
483     aOp[3].p5 = SQLITE_JUMPIFNULL;
484     aOp[4].p2 = memId+1;
485     aOp[5].p3 = memId;
486     aOp[6].p1 = memId;
487     aOp[7].p2 = memId+2;
488     aOp[7].p1 = memId;
489     aOp[10].p2 = memId;
490     if( pParse->nTab==0 ) pParse->nTab = 1;
491   }
492 }
493 
494 /*
495 ** Update the maximum rowid for an autoincrement calculation.
496 **
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted.  If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
501 */
502 static void autoIncStep(Parse *pParse, int memId, int regRowid){
503   if( memId>0 ){
504     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
505   }
506 }
507 
508 /*
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
514 */
515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
516   AutoincInfo *p;
517   Vdbe *v = pParse->pVdbe;
518   sqlite3 *db = pParse->db;
519 
520   assert( v );
521   for(p = pParse->pAinc; p; p = p->pNext){
522     static const int iLn = VDBE_OFFSET_LINENO(2);
523     static const VdbeOpList autoIncEnd[] = {
524       /* 0 */ {OP_NotNull,     0, 2, 0},
525       /* 1 */ {OP_NewRowid,    0, 0, 0},
526       /* 2 */ {OP_MakeRecord,  0, 2, 0},
527       /* 3 */ {OP_Insert,      0, 0, 0},
528       /* 4 */ {OP_Close,       0, 0, 0}
529     };
530     VdbeOp *aOp;
531     Db *pDb = &db->aDb[p->iDb];
532     int iRec;
533     int memId = p->regCtr;
534 
535     iRec = sqlite3GetTempReg(pParse);
536     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
537     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
538     VdbeCoverage(v);
539     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
540     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
541     if( aOp==0 ) break;
542     aOp[0].p1 = memId+1;
543     aOp[1].p2 = memId+1;
544     aOp[2].p1 = memId-1;
545     aOp[2].p3 = iRec;
546     aOp[3].p2 = iRec;
547     aOp[3].p3 = memId+1;
548     aOp[3].p5 = OPFLAG_APPEND;
549     sqlite3ReleaseTempReg(pParse, iRec);
550   }
551 }
552 void sqlite3AutoincrementEnd(Parse *pParse){
553   if( pParse->pAinc ) autoIncrementEnd(pParse);
554 }
555 #else
556 /*
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
559 */
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
563 
564 
565 /* Forward declaration */
566 static int xferOptimization(
567   Parse *pParse,        /* Parser context */
568   Table *pDest,         /* The table we are inserting into */
569   Select *pSelect,      /* A SELECT statement to use as the data source */
570   int onError,          /* How to handle constraint errors */
571   int iDbDest           /* The database of pDest */
572 );
573 
574 /*
575 ** This routine is called to handle SQL of the following forms:
576 **
577 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 **    insert into TABLE (IDLIST) select
579 **    insert into TABLE (IDLIST) default values
580 **
581 ** The IDLIST following the table name is always optional.  If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
584 ** is omitted.
585 **
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above.  A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows.  If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
591 **
592 ** The code generated follows one of four templates.  For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through.  Pseudo-code follows (we call this
595 ** the "1st template"):
596 **
597 **         open write cursor to <table> and its indices
598 **         put VALUES clause expressions into registers
599 **         write the resulting record into <table>
600 **         cleanup
601 **
602 ** The three remaining templates assume the statement is of the form
603 **
604 **   INSERT INTO <table> SELECT ...
605 **
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template.  This is the 2nd template.
614 **
615 **         open a write cursor to <table>
616 **         open read cursor on <table2>
617 **         transfer all records in <table2> over to <table>
618 **         close cursors
619 **         foreach index on <table>
620 **           open a write cursor on the <table> index
621 **           open a read cursor on the corresponding <table2> index
622 **           transfer all records from the read to the write cursors
623 **           close cursors
624 **         end foreach
625 **
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
629 **
630 **         X <- A
631 **         goto B
632 **      A: setup for the SELECT
633 **         loop over the rows in the SELECT
634 **           load values into registers R..R+n
635 **           yield X
636 **         end loop
637 **         cleanup after the SELECT
638 **         end-coroutine X
639 **      B: open write cursor to <table> and its indices
640 **      C: yield X, at EOF goto D
641 **         insert the select result into <table> from R..R+n
642 **         goto C
643 **      D: cleanup
644 **
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT.  In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select.  The template is like this:
650 **
651 **         X <- A
652 **         goto B
653 **      A: setup for the SELECT
654 **         loop over the tables in the SELECT
655 **           load value into register R..R+n
656 **           yield X
657 **         end loop
658 **         cleanup after the SELECT
659 **         end co-routine R
660 **      B: open temp table
661 **      L: yield X, at EOF goto M
662 **         insert row from R..R+n into temp table
663 **         goto L
664 **      M: open write cursor to <table> and its indices
665 **         rewind temp table
666 **      C: loop over rows of intermediate table
667 **           transfer values form intermediate table into <table>
668 **         end loop
669 **      D: cleanup
670 */
671 void sqlite3Insert(
672   Parse *pParse,        /* Parser context */
673   SrcList *pTabList,    /* Name of table into which we are inserting */
674   Select *pSelect,      /* A SELECT statement to use as the data source */
675   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
676   int onError,          /* How to handle constraint errors */
677   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
678 ){
679   sqlite3 *db;          /* The main database structure */
680   Table *pTab;          /* The table to insert into.  aka TABLE */
681   int i, j;             /* Loop counters */
682   Vdbe *v;              /* Generate code into this virtual machine */
683   Index *pIdx;          /* For looping over indices of the table */
684   int nColumn;          /* Number of columns in the data */
685   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
686   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
687   int iIdxCur = 0;      /* First index cursor */
688   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
689   int endOfLoop;        /* Label for the end of the insertion loop */
690   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
691   int addrInsTop = 0;   /* Jump to label "D" */
692   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
693   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
694   int iDb;              /* Index of database holding TABLE */
695   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
696   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
697   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
698   u8 bIdListInOrder;    /* True if IDLIST is in table order */
699   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
700   int iRegStore;        /* Register in which to store next column */
701 
702   /* Register allocations */
703   int regFromSelect = 0;/* Base register for data coming from SELECT */
704   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
705   int regRowCount = 0;  /* Memory cell used for the row counter */
706   int regIns;           /* Block of regs holding rowid+data being inserted */
707   int regRowid;         /* registers holding insert rowid */
708   int regData;          /* register holding first column to insert */
709   int *aRegIdx = 0;     /* One register allocated to each index */
710 
711 #ifndef SQLITE_OMIT_TRIGGER
712   int isView;                 /* True if attempting to insert into a view */
713   Trigger *pTrigger;          /* List of triggers on pTab, if required */
714   int tmask;                  /* Mask of trigger times */
715 #endif
716 
717   db = pParse->db;
718   assert( db->pParse==pParse );
719   if( pParse->nErr ){
720     goto insert_cleanup;
721   }
722   assert( db->mallocFailed==0 );
723   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
724 
725   /* If the Select object is really just a simple VALUES() list with a
726   ** single row (the common case) then keep that one row of values
727   ** and discard the other (unused) parts of the pSelect object
728   */
729   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
730     pList = pSelect->pEList;
731     pSelect->pEList = 0;
732     sqlite3SelectDelete(db, pSelect);
733     pSelect = 0;
734   }
735 
736   /* Locate the table into which we will be inserting new information.
737   */
738   assert( pTabList->nSrc==1 );
739   pTab = sqlite3SrcListLookup(pParse, pTabList);
740   if( pTab==0 ){
741     goto insert_cleanup;
742   }
743   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
744   assert( iDb<db->nDb );
745   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
746                        db->aDb[iDb].zDbSName) ){
747     goto insert_cleanup;
748   }
749   withoutRowid = !HasRowid(pTab);
750 
751   /* Figure out if we have any triggers and if the table being
752   ** inserted into is a view
753   */
754 #ifndef SQLITE_OMIT_TRIGGER
755   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
756   isView = IsView(pTab);
757 #else
758 # define pTrigger 0
759 # define tmask 0
760 # define isView 0
761 #endif
762 #ifdef SQLITE_OMIT_VIEW
763 # undef isView
764 # define isView 0
765 #endif
766   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
767 
768 #if TREETRACE_ENABLED
769   if( sqlite3TreeTrace & 0x10000 ){
770     sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__);
771     sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList,
772                           onError, pUpsert, pTrigger);
773   }
774 #endif
775 
776   /* If pTab is really a view, make sure it has been initialized.
777   ** ViewGetColumnNames() is a no-op if pTab is not a view.
778   */
779   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
780     goto insert_cleanup;
781   }
782 
783   /* Cannot insert into a read-only table.
784   */
785   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
786     goto insert_cleanup;
787   }
788 
789   /* Allocate a VDBE
790   */
791   v = sqlite3GetVdbe(pParse);
792   if( v==0 ) goto insert_cleanup;
793   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
794   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
795 
796 #ifndef SQLITE_OMIT_XFER_OPT
797   /* If the statement is of the form
798   **
799   **       INSERT INTO <table1> SELECT * FROM <table2>;
800   **
801   ** Then special optimizations can be applied that make the transfer
802   ** very fast and which reduce fragmentation of indices.
803   **
804   ** This is the 2nd template.
805   */
806   if( pColumn==0
807    && pSelect!=0
808    && pTrigger==0
809    && xferOptimization(pParse, pTab, pSelect, onError, iDb)
810   ){
811     assert( !pTrigger );
812     assert( pList==0 );
813     goto insert_end;
814   }
815 #endif /* SQLITE_OMIT_XFER_OPT */
816 
817   /* If this is an AUTOINCREMENT table, look up the sequence number in the
818   ** sqlite_sequence table and store it in memory cell regAutoinc.
819   */
820   regAutoinc = autoIncBegin(pParse, iDb, pTab);
821 
822   /* Allocate a block registers to hold the rowid and the values
823   ** for all columns of the new row.
824   */
825   regRowid = regIns = pParse->nMem+1;
826   pParse->nMem += pTab->nCol + 1;
827   if( IsVirtual(pTab) ){
828     regRowid++;
829     pParse->nMem++;
830   }
831   regData = regRowid+1;
832 
833   /* If the INSERT statement included an IDLIST term, then make sure
834   ** all elements of the IDLIST really are columns of the table and
835   ** remember the column indices.
836   **
837   ** If the table has an INTEGER PRIMARY KEY column and that column
838   ** is named in the IDLIST, then record in the ipkColumn variable
839   ** the index into IDLIST of the primary key column.  ipkColumn is
840   ** the index of the primary key as it appears in IDLIST, not as
841   ** is appears in the original table.  (The index of the INTEGER
842   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
843   ** loop, if ipkColumn==(-1), that means that integer primary key
844   ** is unspecified, and hence the table is either WITHOUT ROWID or
845   ** it will automatically generated an integer primary key.
846   **
847   ** bIdListInOrder is true if the columns in IDLIST are in storage
848   ** order.  This enables an optimization that avoids shuffling the
849   ** columns into storage order.  False negatives are harmless,
850   ** but false positives will cause database corruption.
851   */
852   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
853   if( pColumn ){
854     assert( pColumn->eU4!=EU4_EXPR );
855     pColumn->eU4 = EU4_IDX;
856     for(i=0; i<pColumn->nId; i++){
857       pColumn->a[i].u4.idx = -1;
858     }
859     for(i=0; i<pColumn->nId; i++){
860       for(j=0; j<pTab->nCol; j++){
861         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
862           pColumn->a[i].u4.idx = j;
863           if( i!=j ) bIdListInOrder = 0;
864           if( j==pTab->iPKey ){
865             ipkColumn = i;  assert( !withoutRowid );
866           }
867 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
868           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
869             sqlite3ErrorMsg(pParse,
870                "cannot INSERT into generated column \"%s\"",
871                pTab->aCol[j].zCnName);
872             goto insert_cleanup;
873           }
874 #endif
875           break;
876         }
877       }
878       if( j>=pTab->nCol ){
879         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
880           ipkColumn = i;
881           bIdListInOrder = 0;
882         }else{
883           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
884               pTabList->a, pColumn->a[i].zName);
885           pParse->checkSchema = 1;
886           goto insert_cleanup;
887         }
888       }
889     }
890   }
891 
892   /* Figure out how many columns of data are supplied.  If the data
893   ** is coming from a SELECT statement, then generate a co-routine that
894   ** produces a single row of the SELECT on each invocation.  The
895   ** co-routine is the common header to the 3rd and 4th templates.
896   */
897   if( pSelect ){
898     /* Data is coming from a SELECT or from a multi-row VALUES clause.
899     ** Generate a co-routine to run the SELECT. */
900     int regYield;       /* Register holding co-routine entry-point */
901     int addrTop;        /* Top of the co-routine */
902     int rc;             /* Result code */
903 
904     regYield = ++pParse->nMem;
905     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
906     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
907     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
908     dest.iSdst = bIdListInOrder ? regData : 0;
909     dest.nSdst = pTab->nCol;
910     rc = sqlite3Select(pParse, pSelect, &dest);
911     regFromSelect = dest.iSdst;
912     assert( db->pParse==pParse );
913     if( rc || pParse->nErr ) goto insert_cleanup;
914     assert( db->mallocFailed==0 );
915     sqlite3VdbeEndCoroutine(v, regYield);
916     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
917     assert( pSelect->pEList );
918     nColumn = pSelect->pEList->nExpr;
919 
920     /* Set useTempTable to TRUE if the result of the SELECT statement
921     ** should be written into a temporary table (template 4).  Set to
922     ** FALSE if each output row of the SELECT can be written directly into
923     ** the destination table (template 3).
924     **
925     ** A temp table must be used if the table being updated is also one
926     ** of the tables being read by the SELECT statement.  Also use a
927     ** temp table in the case of row triggers.
928     */
929     if( pTrigger || readsTable(pParse, iDb, pTab) ){
930       useTempTable = 1;
931     }
932 
933     if( useTempTable ){
934       /* Invoke the coroutine to extract information from the SELECT
935       ** and add it to a transient table srcTab.  The code generated
936       ** here is from the 4th template:
937       **
938       **      B: open temp table
939       **      L: yield X, goto M at EOF
940       **         insert row from R..R+n into temp table
941       **         goto L
942       **      M: ...
943       */
944       int regRec;          /* Register to hold packed record */
945       int regTempRowid;    /* Register to hold temp table ROWID */
946       int addrL;           /* Label "L" */
947 
948       srcTab = pParse->nTab++;
949       regRec = sqlite3GetTempReg(pParse);
950       regTempRowid = sqlite3GetTempReg(pParse);
951       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
952       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
953       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
954       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
955       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
956       sqlite3VdbeGoto(v, addrL);
957       sqlite3VdbeJumpHere(v, addrL);
958       sqlite3ReleaseTempReg(pParse, regRec);
959       sqlite3ReleaseTempReg(pParse, regTempRowid);
960     }
961   }else{
962     /* This is the case if the data for the INSERT is coming from a
963     ** single-row VALUES clause
964     */
965     NameContext sNC;
966     memset(&sNC, 0, sizeof(sNC));
967     sNC.pParse = pParse;
968     srcTab = -1;
969     assert( useTempTable==0 );
970     if( pList ){
971       nColumn = pList->nExpr;
972       if( sqlite3ResolveExprListNames(&sNC, pList) ){
973         goto insert_cleanup;
974       }
975     }else{
976       nColumn = 0;
977     }
978   }
979 
980   /* If there is no IDLIST term but the table has an integer primary
981   ** key, the set the ipkColumn variable to the integer primary key
982   ** column index in the original table definition.
983   */
984   if( pColumn==0 && nColumn>0 ){
985     ipkColumn = pTab->iPKey;
986 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
987     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
988       testcase( pTab->tabFlags & TF_HasVirtual );
989       testcase( pTab->tabFlags & TF_HasStored );
990       for(i=ipkColumn-1; i>=0; i--){
991         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
992           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
993           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
994           ipkColumn--;
995         }
996       }
997     }
998 #endif
999 
1000     /* Make sure the number of columns in the source data matches the number
1001     ** of columns to be inserted into the table.
1002     */
1003     assert( TF_HasHidden==COLFLAG_HIDDEN );
1004     assert( TF_HasGenerated==COLFLAG_GENERATED );
1005     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
1006     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
1007       for(i=0; i<pTab->nCol; i++){
1008         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
1009       }
1010     }
1011     if( nColumn!=(pTab->nCol-nHidden) ){
1012       sqlite3ErrorMsg(pParse,
1013          "table %S has %d columns but %d values were supplied",
1014          pTabList->a, pTab->nCol-nHidden, nColumn);
1015      goto insert_cleanup;
1016     }
1017   }
1018   if( pColumn!=0 && nColumn!=pColumn->nId ){
1019     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1020     goto insert_cleanup;
1021   }
1022 
1023   /* Initialize the count of rows to be inserted
1024   */
1025   if( (db->flags & SQLITE_CountRows)!=0
1026    && !pParse->nested
1027    && !pParse->pTriggerTab
1028    && !pParse->bReturning
1029   ){
1030     regRowCount = ++pParse->nMem;
1031     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1032   }
1033 
1034   /* If this is not a view, open the table and and all indices */
1035   if( !isView ){
1036     int nIdx;
1037     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1038                                       &iDataCur, &iIdxCur);
1039     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1040     if( aRegIdx==0 ){
1041       goto insert_cleanup;
1042     }
1043     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1044       assert( pIdx );
1045       aRegIdx[i] = ++pParse->nMem;
1046       pParse->nMem += pIdx->nColumn;
1047     }
1048     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1049   }
1050 #ifndef SQLITE_OMIT_UPSERT
1051   if( pUpsert ){
1052     Upsert *pNx;
1053     if( IsVirtual(pTab) ){
1054       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1055               pTab->zName);
1056       goto insert_cleanup;
1057     }
1058     if( IsView(pTab) ){
1059       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1060       goto insert_cleanup;
1061     }
1062     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1063       goto insert_cleanup;
1064     }
1065     pTabList->a[0].iCursor = iDataCur;
1066     pNx = pUpsert;
1067     do{
1068       pNx->pUpsertSrc = pTabList;
1069       pNx->regData = regData;
1070       pNx->iDataCur = iDataCur;
1071       pNx->iIdxCur = iIdxCur;
1072       if( pNx->pUpsertTarget ){
1073         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1074           goto insert_cleanup;
1075         }
1076       }
1077       pNx = pNx->pNextUpsert;
1078     }while( pNx!=0 );
1079   }
1080 #endif
1081 
1082 
1083   /* This is the top of the main insertion loop */
1084   if( useTempTable ){
1085     /* This block codes the top of loop only.  The complete loop is the
1086     ** following pseudocode (template 4):
1087     **
1088     **         rewind temp table, if empty goto D
1089     **      C: loop over rows of intermediate table
1090     **           transfer values form intermediate table into <table>
1091     **         end loop
1092     **      D: ...
1093     */
1094     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1095     addrCont = sqlite3VdbeCurrentAddr(v);
1096   }else if( pSelect ){
1097     /* This block codes the top of loop only.  The complete loop is the
1098     ** following pseudocode (template 3):
1099     **
1100     **      C: yield X, at EOF goto D
1101     **         insert the select result into <table> from R..R+n
1102     **         goto C
1103     **      D: ...
1104     */
1105     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1106     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1107     VdbeCoverage(v);
1108     if( ipkColumn>=0 ){
1109       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1110       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1111       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1112       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1113     }
1114   }
1115 
1116   /* Compute data for ordinary columns of the new entry.  Values
1117   ** are written in storage order into registers starting with regData.
1118   ** Only ordinary columns are computed in this loop. The rowid
1119   ** (if there is one) is computed later and generated columns are
1120   ** computed after the rowid since they might depend on the value
1121   ** of the rowid.
1122   */
1123   nHidden = 0;
1124   iRegStore = regData;  assert( regData==regRowid+1 );
1125   for(i=0; i<pTab->nCol; i++, iRegStore++){
1126     int k;
1127     u32 colFlags;
1128     assert( i>=nHidden );
1129     if( i==pTab->iPKey ){
1130       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1131       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1132       ** using excess space.  The file format definition requires this extra
1133       ** NULL - we cannot optimize further by skipping the column completely */
1134       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1135       continue;
1136     }
1137     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1138       nHidden++;
1139       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1140         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1141         ** iRegStore by one slot to compensate for the iRegStore++ in the
1142         ** outer for() loop */
1143         iRegStore--;
1144         continue;
1145       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1146         /* Stored columns are computed later.  But if there are BEFORE
1147         ** triggers, the slots used for stored columns will be OP_Copy-ed
1148         ** to a second block of registers, so the register needs to be
1149         ** initialized to NULL to avoid an uninitialized register read */
1150         if( tmask & TRIGGER_BEFORE ){
1151           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1152         }
1153         continue;
1154       }else if( pColumn==0 ){
1155         /* Hidden columns that are not explicitly named in the INSERT
1156         ** get there default value */
1157         sqlite3ExprCodeFactorable(pParse,
1158             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1159             iRegStore);
1160         continue;
1161       }
1162     }
1163     if( pColumn ){
1164       assert( pColumn->eU4==EU4_IDX );
1165       for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){}
1166       if( j>=pColumn->nId ){
1167         /* A column not named in the insert column list gets its
1168         ** default value */
1169         sqlite3ExprCodeFactorable(pParse,
1170             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1171             iRegStore);
1172         continue;
1173       }
1174       k = j;
1175     }else if( nColumn==0 ){
1176       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1177       sqlite3ExprCodeFactorable(pParse,
1178           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1179           iRegStore);
1180       continue;
1181     }else{
1182       k = i - nHidden;
1183     }
1184 
1185     if( useTempTable ){
1186       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1187     }else if( pSelect ){
1188       if( regFromSelect!=regData ){
1189         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1190       }
1191     }else{
1192       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1193     }
1194   }
1195 
1196 
1197   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1198   */
1199   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1200   if( tmask & TRIGGER_BEFORE ){
1201     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1202 
1203     /* build the NEW.* reference row.  Note that if there is an INTEGER
1204     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1205     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1206     ** we do not know what the unique ID will be (because the insert has
1207     ** not happened yet) so we substitute a rowid of -1
1208     */
1209     if( ipkColumn<0 ){
1210       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1211     }else{
1212       int addr1;
1213       assert( !withoutRowid );
1214       if( useTempTable ){
1215         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1216       }else{
1217         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1218         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1219       }
1220       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1221       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1222       sqlite3VdbeJumpHere(v, addr1);
1223       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1224     }
1225 
1226     /* Copy the new data already generated. */
1227     assert( pTab->nNVCol>0 );
1228     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1229 
1230 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1231     /* Compute the new value for generated columns after all other
1232     ** columns have already been computed.  This must be done after
1233     ** computing the ROWID in case one of the generated columns
1234     ** refers to the ROWID. */
1235     if( pTab->tabFlags & TF_HasGenerated ){
1236       testcase( pTab->tabFlags & TF_HasVirtual );
1237       testcase( pTab->tabFlags & TF_HasStored );
1238       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1239     }
1240 #endif
1241 
1242     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1243     ** do not attempt any conversions before assembling the record.
1244     ** If this is a real table, attempt conversions as required by the
1245     ** table column affinities.
1246     */
1247     if( !isView ){
1248       sqlite3TableAffinity(v, pTab, regCols+1);
1249     }
1250 
1251     /* Fire BEFORE or INSTEAD OF triggers */
1252     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1253         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1254 
1255     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1256   }
1257 
1258   if( !isView ){
1259     if( IsVirtual(pTab) ){
1260       /* The row that the VUpdate opcode will delete: none */
1261       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1262     }
1263     if( ipkColumn>=0 ){
1264       /* Compute the new rowid */
1265       if( useTempTable ){
1266         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1267       }else if( pSelect ){
1268         /* Rowid already initialized at tag-20191021-001 */
1269       }else{
1270         Expr *pIpk = pList->a[ipkColumn].pExpr;
1271         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1272           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1273           appendFlag = 1;
1274         }else{
1275           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1276         }
1277       }
1278       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1279       ** to generate a unique primary key value.
1280       */
1281       if( !appendFlag ){
1282         int addr1;
1283         if( !IsVirtual(pTab) ){
1284           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1285           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1286           sqlite3VdbeJumpHere(v, addr1);
1287         }else{
1288           addr1 = sqlite3VdbeCurrentAddr(v);
1289           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1290         }
1291         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1292       }
1293     }else if( IsVirtual(pTab) || withoutRowid ){
1294       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1295     }else{
1296       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1297       appendFlag = 1;
1298     }
1299     autoIncStep(pParse, regAutoinc, regRowid);
1300 
1301 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1302     /* Compute the new value for generated columns after all other
1303     ** columns have already been computed.  This must be done after
1304     ** computing the ROWID in case one of the generated columns
1305     ** is derived from the INTEGER PRIMARY KEY. */
1306     if( pTab->tabFlags & TF_HasGenerated ){
1307       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1308     }
1309 #endif
1310 
1311     /* Generate code to check constraints and generate index keys and
1312     ** do the insertion.
1313     */
1314 #ifndef SQLITE_OMIT_VIRTUALTABLE
1315     if( IsVirtual(pTab) ){
1316       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1317       sqlite3VtabMakeWritable(pParse, pTab);
1318       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1319       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1320       sqlite3MayAbort(pParse);
1321     }else
1322 #endif
1323     {
1324       int isReplace = 0;/* Set to true if constraints may cause a replace */
1325       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1326       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1327           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1328       );
1329       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1330 
1331       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1332       ** constraints or (b) there are no triggers and this table is not a
1333       ** parent table in a foreign key constraint. It is safe to set the
1334       ** flag in the second case as if any REPLACE constraint is hit, an
1335       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1336       ** cursor that is disturbed. And these instructions both clear the
1337       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1338       ** functionality.  */
1339       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1340       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1341           regIns, aRegIdx, 0, appendFlag, bUseSeek
1342       );
1343     }
1344 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1345   }else if( pParse->bReturning ){
1346     /* If there is a RETURNING clause, populate the rowid register with
1347     ** constant value -1, in case one or more of the returned expressions
1348     ** refer to the "rowid" of the view.  */
1349     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1350 #endif
1351   }
1352 
1353   /* Update the count of rows that are inserted
1354   */
1355   if( regRowCount ){
1356     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1357   }
1358 
1359   if( pTrigger ){
1360     /* Code AFTER triggers */
1361     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1362         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1363   }
1364 
1365   /* The bottom of the main insertion loop, if the data source
1366   ** is a SELECT statement.
1367   */
1368   sqlite3VdbeResolveLabel(v, endOfLoop);
1369   if( useTempTable ){
1370     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1371     sqlite3VdbeJumpHere(v, addrInsTop);
1372     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1373   }else if( pSelect ){
1374     sqlite3VdbeGoto(v, addrCont);
1375 #ifdef SQLITE_DEBUG
1376     /* If we are jumping back to an OP_Yield that is preceded by an
1377     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1378     ** OP_ReleaseReg will be included in the loop. */
1379     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1380       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1381       sqlite3VdbeChangeP5(v, 1);
1382     }
1383 #endif
1384     sqlite3VdbeJumpHere(v, addrInsTop);
1385   }
1386 
1387 #ifndef SQLITE_OMIT_XFER_OPT
1388 insert_end:
1389 #endif /* SQLITE_OMIT_XFER_OPT */
1390   /* Update the sqlite_sequence table by storing the content of the
1391   ** maximum rowid counter values recorded while inserting into
1392   ** autoincrement tables.
1393   */
1394   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1395     sqlite3AutoincrementEnd(pParse);
1396   }
1397 
1398   /*
1399   ** Return the number of rows inserted. If this routine is
1400   ** generating code because of a call to sqlite3NestedParse(), do not
1401   ** invoke the callback function.
1402   */
1403   if( regRowCount ){
1404     sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1405   }
1406 
1407 insert_cleanup:
1408   sqlite3SrcListDelete(db, pTabList);
1409   sqlite3ExprListDelete(db, pList);
1410   sqlite3UpsertDelete(db, pUpsert);
1411   sqlite3SelectDelete(db, pSelect);
1412   sqlite3IdListDelete(db, pColumn);
1413   sqlite3DbFree(db, aRegIdx);
1414 }
1415 
1416 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1417 ** they may interfere with compilation of other functions in this file
1418 ** (or in another file, if this file becomes part of the amalgamation).  */
1419 #ifdef isView
1420  #undef isView
1421 #endif
1422 #ifdef pTrigger
1423  #undef pTrigger
1424 #endif
1425 #ifdef tmask
1426  #undef tmask
1427 #endif
1428 
1429 /*
1430 ** Meanings of bits in of pWalker->eCode for
1431 ** sqlite3ExprReferencesUpdatedColumn()
1432 */
1433 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1434 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1435 
1436 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1437 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1438 ** expression node references any of the
1439 ** columns that are being modifed by an UPDATE statement.
1440 */
1441 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1442   if( pExpr->op==TK_COLUMN ){
1443     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1444     if( pExpr->iColumn>=0 ){
1445       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1446         pWalker->eCode |= CKCNSTRNT_COLUMN;
1447       }
1448     }else{
1449       pWalker->eCode |= CKCNSTRNT_ROWID;
1450     }
1451   }
1452   return WRC_Continue;
1453 }
1454 
1455 /*
1456 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1457 ** only columns that are modified by the UPDATE are those for which
1458 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1459 **
1460 ** Return true if CHECK constraint pExpr uses any of the
1461 ** changing columns (or the rowid if it is changing).  In other words,
1462 ** return true if this CHECK constraint must be validated for
1463 ** the new row in the UPDATE statement.
1464 **
1465 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1466 ** The operation of this routine is the same - return true if an only if
1467 ** the expression uses one or more of columns identified by the second and
1468 ** third arguments.
1469 */
1470 int sqlite3ExprReferencesUpdatedColumn(
1471   Expr *pExpr,    /* The expression to be checked */
1472   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1473   int chngRowid   /* True if UPDATE changes the rowid */
1474 ){
1475   Walker w;
1476   memset(&w, 0, sizeof(w));
1477   w.eCode = 0;
1478   w.xExprCallback = checkConstraintExprNode;
1479   w.u.aiCol = aiChng;
1480   sqlite3WalkExpr(&w, pExpr);
1481   if( !chngRowid ){
1482     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1483     w.eCode &= ~CKCNSTRNT_ROWID;
1484   }
1485   testcase( w.eCode==0 );
1486   testcase( w.eCode==CKCNSTRNT_COLUMN );
1487   testcase( w.eCode==CKCNSTRNT_ROWID );
1488   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1489   return w.eCode!=0;
1490 }
1491 
1492 /*
1493 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1494 ** the indexes of a table in the order provided in the Table->pIndex list.
1495 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1496 ** the indexes in a different order.  The following data structures accomplish
1497 ** this.
1498 **
1499 ** The IndexIterator object is used to walk through all of the indexes
1500 ** of a table in either Index.pNext order, or in some other order established
1501 ** by an array of IndexListTerm objects.
1502 */
1503 typedef struct IndexListTerm IndexListTerm;
1504 typedef struct IndexIterator IndexIterator;
1505 struct IndexIterator {
1506   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1507   int i;        /* Index of the current item from the list */
1508   union {
1509     struct {    /* Use this object for eType==0: A Index.pNext list */
1510       Index *pIdx;   /* The current Index */
1511     } lx;
1512     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1513       int nIdx;               /* Size of the array */
1514       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1515     } ax;
1516   } u;
1517 };
1518 
1519 /* When IndexIterator.eType==1, then each index is an array of instances
1520 ** of the following object
1521 */
1522 struct IndexListTerm {
1523   Index *p;  /* The index */
1524   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1525 };
1526 
1527 /* Return the first index on the list */
1528 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1529   assert( pIter->i==0 );
1530   if( pIter->eType ){
1531     *pIx = pIter->u.ax.aIdx[0].ix;
1532     return pIter->u.ax.aIdx[0].p;
1533   }else{
1534     *pIx = 0;
1535     return pIter->u.lx.pIdx;
1536   }
1537 }
1538 
1539 /* Return the next index from the list.  Return NULL when out of indexes */
1540 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1541   if( pIter->eType ){
1542     int i = ++pIter->i;
1543     if( i>=pIter->u.ax.nIdx ){
1544       *pIx = i;
1545       return 0;
1546     }
1547     *pIx = pIter->u.ax.aIdx[i].ix;
1548     return pIter->u.ax.aIdx[i].p;
1549   }else{
1550     ++(*pIx);
1551     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1552     return pIter->u.lx.pIdx;
1553   }
1554 }
1555 
1556 /*
1557 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1558 ** on table pTab.
1559 **
1560 ** The regNewData parameter is the first register in a range that contains
1561 ** the data to be inserted or the data after the update.  There will be
1562 ** pTab->nCol+1 registers in this range.  The first register (the one
1563 ** that regNewData points to) will contain the new rowid, or NULL in the
1564 ** case of a WITHOUT ROWID table.  The second register in the range will
1565 ** contain the content of the first table column.  The third register will
1566 ** contain the content of the second table column.  And so forth.
1567 **
1568 ** The regOldData parameter is similar to regNewData except that it contains
1569 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1570 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1571 ** checking regOldData for zero.
1572 **
1573 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1574 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1575 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1576 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1577 **
1578 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1579 ** was explicitly specified as part of the INSERT statement.  If pkChng
1580 ** is zero, it means that the either rowid is computed automatically or
1581 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1582 ** pkChng will only be true if the INSERT statement provides an integer
1583 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1584 **
1585 ** The code generated by this routine will store new index entries into
1586 ** registers identified by aRegIdx[].  No index entry is created for
1587 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1588 ** the same as the order of indices on the linked list of indices
1589 ** at pTab->pIndex.
1590 **
1591 ** (2019-05-07) The generated code also creates a new record for the
1592 ** main table, if pTab is a rowid table, and stores that record in the
1593 ** register identified by aRegIdx[nIdx] - in other words in the first
1594 ** entry of aRegIdx[] past the last index.  It is important that the
1595 ** record be generated during constraint checks to avoid affinity changes
1596 ** to the register content that occur after constraint checks but before
1597 ** the new record is inserted.
1598 **
1599 ** The caller must have already opened writeable cursors on the main
1600 ** table and all applicable indices (that is to say, all indices for which
1601 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1602 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1603 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1604 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1605 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1606 **
1607 ** This routine also generates code to check constraints.  NOT NULL,
1608 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1609 ** then the appropriate action is performed.  There are five possible
1610 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1611 **
1612 **  Constraint type  Action       What Happens
1613 **  ---------------  ----------   ----------------------------------------
1614 **  any              ROLLBACK     The current transaction is rolled back and
1615 **                                sqlite3_step() returns immediately with a
1616 **                                return code of SQLITE_CONSTRAINT.
1617 **
1618 **  any              ABORT        Back out changes from the current command
1619 **                                only (do not do a complete rollback) then
1620 **                                cause sqlite3_step() to return immediately
1621 **                                with SQLITE_CONSTRAINT.
1622 **
1623 **  any              FAIL         Sqlite3_step() returns immediately with a
1624 **                                return code of SQLITE_CONSTRAINT.  The
1625 **                                transaction is not rolled back and any
1626 **                                changes to prior rows are retained.
1627 **
1628 **  any              IGNORE       The attempt in insert or update the current
1629 **                                row is skipped, without throwing an error.
1630 **                                Processing continues with the next row.
1631 **                                (There is an immediate jump to ignoreDest.)
1632 **
1633 **  NOT NULL         REPLACE      The NULL value is replace by the default
1634 **                                value for that column.  If the default value
1635 **                                is NULL, the action is the same as ABORT.
1636 **
1637 **  UNIQUE           REPLACE      The other row that conflicts with the row
1638 **                                being inserted is removed.
1639 **
1640 **  CHECK            REPLACE      Illegal.  The results in an exception.
1641 **
1642 ** Which action to take is determined by the overrideError parameter.
1643 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1644 ** is used.  Or if pParse->onError==OE_Default then the onError value
1645 ** for the constraint is used.
1646 */
1647 void sqlite3GenerateConstraintChecks(
1648   Parse *pParse,       /* The parser context */
1649   Table *pTab,         /* The table being inserted or updated */
1650   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1651   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1652   int iIdxCur,         /* First index cursor */
1653   int regNewData,      /* First register in a range holding values to insert */
1654   int regOldData,      /* Previous content.  0 for INSERTs */
1655   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1656   u8 overrideError,    /* Override onError to this if not OE_Default */
1657   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1658   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1659   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1660   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1661 ){
1662   Vdbe *v;             /* VDBE under constrution */
1663   Index *pIdx;         /* Pointer to one of the indices */
1664   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1665   sqlite3 *db;         /* Database connection */
1666   int i;               /* loop counter */
1667   int ix;              /* Index loop counter */
1668   int nCol;            /* Number of columns */
1669   int onError;         /* Conflict resolution strategy */
1670   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1671   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1672   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1673   u8 isUpdate;           /* True if this is an UPDATE operation */
1674   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1675   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1676   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1677   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1678   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1679   /* Variables associated with retesting uniqueness constraints after
1680   ** replace triggers fire have run */
1681   int regTrigCnt;       /* Register used to count replace trigger invocations */
1682   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1683   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1684   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1685   int nReplaceTrig = 0; /* Number of replace triggers coded */
1686   IndexIterator sIdxIter;  /* Index iterator */
1687 
1688   isUpdate = regOldData!=0;
1689   db = pParse->db;
1690   v = pParse->pVdbe;
1691   assert( v!=0 );
1692   assert( !IsView(pTab) );  /* This table is not a VIEW */
1693   nCol = pTab->nCol;
1694 
1695   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1696   ** normal rowid tables.  nPkField is the number of key fields in the
1697   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1698   ** number of fields in the true primary key of the table. */
1699   if( HasRowid(pTab) ){
1700     pPk = 0;
1701     nPkField = 1;
1702   }else{
1703     pPk = sqlite3PrimaryKeyIndex(pTab);
1704     nPkField = pPk->nKeyCol;
1705   }
1706 
1707   /* Record that this module has started */
1708   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1709                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1710 
1711   /* Test all NOT NULL constraints.
1712   */
1713   if( pTab->tabFlags & TF_HasNotNull ){
1714     int b2ndPass = 0;         /* True if currently running 2nd pass */
1715     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1716     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1717     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1718       for(i=0; i<nCol; i++){
1719         int iReg;                        /* Register holding column value */
1720         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1721         int isGenerated;                 /* non-zero if column is generated */
1722         onError = pCol->notNull;
1723         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1724         if( i==pTab->iPKey ){
1725           continue;        /* ROWID is never NULL */
1726         }
1727         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1728         if( isGenerated && !b2ndPass ){
1729           nGenerated++;
1730           continue;        /* Generated columns processed on 2nd pass */
1731         }
1732         if( aiChng && aiChng[i]<0 && !isGenerated ){
1733           /* Do not check NOT NULL on columns that do not change */
1734           continue;
1735         }
1736         if( overrideError!=OE_Default ){
1737           onError = overrideError;
1738         }else if( onError==OE_Default ){
1739           onError = OE_Abort;
1740         }
1741         if( onError==OE_Replace ){
1742           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1743            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1744           ){
1745             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1746             testcase( pCol->colFlags & COLFLAG_STORED );
1747             testcase( pCol->colFlags & COLFLAG_GENERATED );
1748             onError = OE_Abort;
1749           }else{
1750             assert( !isGenerated );
1751           }
1752         }else if( b2ndPass && !isGenerated ){
1753           continue;
1754         }
1755         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1756             || onError==OE_Ignore || onError==OE_Replace );
1757         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1758         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1759         switch( onError ){
1760           case OE_Replace: {
1761             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1762             VdbeCoverage(v);
1763             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1764             nSeenReplace++;
1765             sqlite3ExprCodeCopy(pParse,
1766                sqlite3ColumnExpr(pTab, pCol), iReg);
1767             sqlite3VdbeJumpHere(v, addr1);
1768             break;
1769           }
1770           case OE_Abort:
1771             sqlite3MayAbort(pParse);
1772             /* no break */ deliberate_fall_through
1773           case OE_Rollback:
1774           case OE_Fail: {
1775             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1776                                         pCol->zCnName);
1777             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1778                               onError, iReg);
1779             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1780             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1781             VdbeCoverage(v);
1782             break;
1783           }
1784           default: {
1785             assert( onError==OE_Ignore );
1786             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1787             VdbeCoverage(v);
1788             break;
1789           }
1790         } /* end switch(onError) */
1791       } /* end loop i over columns */
1792       if( nGenerated==0 && nSeenReplace==0 ){
1793         /* If there are no generated columns with NOT NULL constraints
1794         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1795         ** pass is sufficient */
1796         break;
1797       }
1798       if( b2ndPass ) break;  /* Never need more than 2 passes */
1799       b2ndPass = 1;
1800 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1801       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1802         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1803         ** first pass, recomputed values for all generated columns, as
1804         ** those values might depend on columns affected by the REPLACE.
1805         */
1806         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1807       }
1808 #endif
1809     } /* end of 2-pass loop */
1810   } /* end if( has-not-null-constraints ) */
1811 
1812   /* Test all CHECK constraints
1813   */
1814 #ifndef SQLITE_OMIT_CHECK
1815   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1816     ExprList *pCheck = pTab->pCheck;
1817     pParse->iSelfTab = -(regNewData+1);
1818     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1819     for(i=0; i<pCheck->nExpr; i++){
1820       int allOk;
1821       Expr *pCopy;
1822       Expr *pExpr = pCheck->a[i].pExpr;
1823       if( aiChng
1824        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1825       ){
1826         /* The check constraints do not reference any of the columns being
1827         ** updated so there is no point it verifying the check constraint */
1828         continue;
1829       }
1830       if( bAffinityDone==0 ){
1831         sqlite3TableAffinity(v, pTab, regNewData+1);
1832         bAffinityDone = 1;
1833       }
1834       allOk = sqlite3VdbeMakeLabel(pParse);
1835       sqlite3VdbeVerifyAbortable(v, onError);
1836       pCopy = sqlite3ExprDup(db, pExpr, 0);
1837       if( !db->mallocFailed ){
1838         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1839       }
1840       sqlite3ExprDelete(db, pCopy);
1841       if( onError==OE_Ignore ){
1842         sqlite3VdbeGoto(v, ignoreDest);
1843       }else{
1844         char *zName = pCheck->a[i].zEName;
1845         assert( zName!=0 || pParse->db->mallocFailed );
1846         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1847         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1848                               onError, zName, P4_TRANSIENT,
1849                               P5_ConstraintCheck);
1850       }
1851       sqlite3VdbeResolveLabel(v, allOk);
1852     }
1853     pParse->iSelfTab = 0;
1854   }
1855 #endif /* !defined(SQLITE_OMIT_CHECK) */
1856 
1857   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1858   ** order:
1859   **
1860   **   (1)  OE_Update
1861   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1862   **   (3)  OE_Replace
1863   **
1864   ** OE_Fail and OE_Ignore must happen before any changes are made.
1865   ** OE_Update guarantees that only a single row will change, so it
1866   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1867   ** could happen in any order, but they are grouped up front for
1868   ** convenience.
1869   **
1870   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1871   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1872   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1873   ** constraint before any others, so it had to be moved.
1874   **
1875   ** Constraint checking code is generated in this order:
1876   **   (A)  The rowid constraint
1877   **   (B)  Unique index constraints that do not have OE_Replace as their
1878   **        default conflict resolution strategy
1879   **   (C)  Unique index that do use OE_Replace by default.
1880   **
1881   ** The ordering of (2) and (3) is accomplished by making sure the linked
1882   ** list of indexes attached to a table puts all OE_Replace indexes last
1883   ** in the list.  See sqlite3CreateIndex() for where that happens.
1884   */
1885   sIdxIter.eType = 0;
1886   sIdxIter.i = 0;
1887   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1888   sIdxIter.u.lx.pIdx = pTab->pIndex;
1889   if( pUpsert ){
1890     if( pUpsert->pUpsertTarget==0 ){
1891       /* There is just on ON CONFLICT clause and it has no constraint-target */
1892       assert( pUpsert->pNextUpsert==0 );
1893       if( pUpsert->isDoUpdate==0 ){
1894         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1895         ** Make all unique constraint resolution be OE_Ignore */
1896         overrideError = OE_Ignore;
1897         pUpsert = 0;
1898       }else{
1899         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1900         overrideError = OE_Update;
1901       }
1902     }else if( pTab->pIndex!=0 ){
1903       /* Otherwise, we'll need to run the IndexListTerm array version of the
1904       ** iterator to ensure that all of the ON CONFLICT conditions are
1905       ** checked first and in order. */
1906       int nIdx, jj;
1907       u64 nByte;
1908       Upsert *pTerm;
1909       u8 *bUsed;
1910       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1911          assert( aRegIdx[nIdx]>0 );
1912       }
1913       sIdxIter.eType = 1;
1914       sIdxIter.u.ax.nIdx = nIdx;
1915       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1916       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1917       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1918       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1919       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1920       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1921         if( pTerm->pUpsertTarget==0 ) break;
1922         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1923         jj = 0;
1924         pIdx = pTab->pIndex;
1925         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1926            pIdx = pIdx->pNext;
1927            jj++;
1928         }
1929         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1930         bUsed[jj] = 1;
1931         sIdxIter.u.ax.aIdx[i].p = pIdx;
1932         sIdxIter.u.ax.aIdx[i].ix = jj;
1933         i++;
1934       }
1935       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1936         if( bUsed[jj] ) continue;
1937         sIdxIter.u.ax.aIdx[i].p = pIdx;
1938         sIdxIter.u.ax.aIdx[i].ix = jj;
1939         i++;
1940       }
1941       assert( i==nIdx );
1942     }
1943   }
1944 
1945   /* Determine if it is possible that triggers (either explicitly coded
1946   ** triggers or FK resolution actions) might run as a result of deletes
1947   ** that happen when OE_Replace conflict resolution occurs. (Call these
1948   ** "replace triggers".)  If any replace triggers run, we will need to
1949   ** recheck all of the uniqueness constraints after they have all run.
1950   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1951   **
1952   ** If replace triggers are a possibility, then
1953   **
1954   **   (1) Allocate register regTrigCnt and initialize it to zero.
1955   **       That register will count the number of replace triggers that
1956   **       fire.  Constraint recheck only occurs if the number is positive.
1957   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1958   **   (3) Initialize addrRecheck and lblRecheckOk
1959   **
1960   ** The uniqueness rechecking code will create a series of tests to run
1961   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1962   ** used to link together these tests which are separated from each other
1963   ** in the generate bytecode.
1964   */
1965   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1966     /* There are not DELETE triggers nor FK constraints.  No constraint
1967     ** rechecks are needed. */
1968     pTrigger = 0;
1969     regTrigCnt = 0;
1970   }else{
1971     if( db->flags&SQLITE_RecTriggers ){
1972       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1973       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1974     }else{
1975       pTrigger = 0;
1976       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1977     }
1978     if( regTrigCnt ){
1979       /* Replace triggers might exist.  Allocate the counter and
1980       ** initialize it to zero. */
1981       regTrigCnt = ++pParse->nMem;
1982       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1983       VdbeComment((v, "trigger count"));
1984       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1985       addrRecheck = lblRecheckOk;
1986     }
1987   }
1988 
1989   /* If rowid is changing, make sure the new rowid does not previously
1990   ** exist in the table.
1991   */
1992   if( pkChng && pPk==0 ){
1993     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1994 
1995     /* Figure out what action to take in case of a rowid collision */
1996     onError = pTab->keyConf;
1997     if( overrideError!=OE_Default ){
1998       onError = overrideError;
1999     }else if( onError==OE_Default ){
2000       onError = OE_Abort;
2001     }
2002 
2003     /* figure out whether or not upsert applies in this case */
2004     if( pUpsert ){
2005       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
2006       if( pUpsertClause!=0 ){
2007         if( pUpsertClause->isDoUpdate==0 ){
2008           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2009         }else{
2010           onError = OE_Update;  /* DO UPDATE */
2011         }
2012       }
2013       if( pUpsertClause!=pUpsert ){
2014         /* The first ON CONFLICT clause has a conflict target other than
2015         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
2016         ** and then come back here and deal with the IPK afterwards */
2017         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2018       }
2019     }
2020 
2021     /* If the response to a rowid conflict is REPLACE but the response
2022     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2023     ** to defer the running of the rowid conflict checking until after
2024     ** the UNIQUE constraints have run.
2025     */
2026     if( onError==OE_Replace      /* IPK rule is REPLACE */
2027      && onError!=overrideError   /* Rules for other constraints are different */
2028      && pTab->pIndex             /* There exist other constraints */
2029      && !upsertIpkDelay          /* IPK check already deferred by UPSERT */
2030     ){
2031       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2032       VdbeComment((v, "defer IPK REPLACE until last"));
2033     }
2034 
2035     if( isUpdate ){
2036       /* pkChng!=0 does not mean that the rowid has changed, only that
2037       ** it might have changed.  Skip the conflict logic below if the rowid
2038       ** is unchanged. */
2039       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2040       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2041       VdbeCoverage(v);
2042     }
2043 
2044     /* Check to see if the new rowid already exists in the table.  Skip
2045     ** the following conflict logic if it does not. */
2046     VdbeNoopComment((v, "uniqueness check for ROWID"));
2047     sqlite3VdbeVerifyAbortable(v, onError);
2048     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2049     VdbeCoverage(v);
2050 
2051     switch( onError ){
2052       default: {
2053         onError = OE_Abort;
2054         /* no break */ deliberate_fall_through
2055       }
2056       case OE_Rollback:
2057       case OE_Abort:
2058       case OE_Fail: {
2059         testcase( onError==OE_Rollback );
2060         testcase( onError==OE_Abort );
2061         testcase( onError==OE_Fail );
2062         sqlite3RowidConstraint(pParse, onError, pTab);
2063         break;
2064       }
2065       case OE_Replace: {
2066         /* If there are DELETE triggers on this table and the
2067         ** recursive-triggers flag is set, call GenerateRowDelete() to
2068         ** remove the conflicting row from the table. This will fire
2069         ** the triggers and remove both the table and index b-tree entries.
2070         **
2071         ** Otherwise, if there are no triggers or the recursive-triggers
2072         ** flag is not set, but the table has one or more indexes, call
2073         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2074         ** only. The table b-tree entry will be replaced by the new entry
2075         ** when it is inserted.
2076         **
2077         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2078         ** also invoke MultiWrite() to indicate that this VDBE may require
2079         ** statement rollback (if the statement is aborted after the delete
2080         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2081         ** but being more selective here allows statements like:
2082         **
2083         **   REPLACE INTO t(rowid) VALUES($newrowid)
2084         **
2085         ** to run without a statement journal if there are no indexes on the
2086         ** table.
2087         */
2088         if( regTrigCnt ){
2089           sqlite3MultiWrite(pParse);
2090           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2091                                    regNewData, 1, 0, OE_Replace, 1, -1);
2092           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2093           nReplaceTrig++;
2094         }else{
2095 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2096           assert( HasRowid(pTab) );
2097           /* This OP_Delete opcode fires the pre-update-hook only. It does
2098           ** not modify the b-tree. It is more efficient to let the coming
2099           ** OP_Insert replace the existing entry than it is to delete the
2100           ** existing entry and then insert a new one. */
2101           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2102           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2103 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2104           if( pTab->pIndex ){
2105             sqlite3MultiWrite(pParse);
2106             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2107           }
2108         }
2109         seenReplace = 1;
2110         break;
2111       }
2112 #ifndef SQLITE_OMIT_UPSERT
2113       case OE_Update: {
2114         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2115         /* no break */ deliberate_fall_through
2116       }
2117 #endif
2118       case OE_Ignore: {
2119         testcase( onError==OE_Ignore );
2120         sqlite3VdbeGoto(v, ignoreDest);
2121         break;
2122       }
2123     }
2124     sqlite3VdbeResolveLabel(v, addrRowidOk);
2125     if( pUpsert && pUpsertClause!=pUpsert ){
2126       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2127     }else if( ipkTop ){
2128       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2129       sqlite3VdbeJumpHere(v, ipkTop-1);
2130     }
2131   }
2132 
2133   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2134   ** index and making sure that duplicate entries do not already exist.
2135   ** Compute the revised record entries for indices as we go.
2136   **
2137   ** This loop also handles the case of the PRIMARY KEY index for a
2138   ** WITHOUT ROWID table.
2139   */
2140   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2141       pIdx;
2142       pIdx = indexIteratorNext(&sIdxIter, &ix)
2143   ){
2144     int regIdx;          /* Range of registers hold conent for pIdx */
2145     int regR;            /* Range of registers holding conflicting PK */
2146     int iThisCur;        /* Cursor for this UNIQUE index */
2147     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2148     int addrConflictCk;  /* First opcode in the conflict check logic */
2149 
2150     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2151     if( pUpsert ){
2152       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2153       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2154         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2155       }
2156     }
2157     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2158     if( bAffinityDone==0 ){
2159       sqlite3TableAffinity(v, pTab, regNewData+1);
2160       bAffinityDone = 1;
2161     }
2162     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2163     iThisCur = iIdxCur+ix;
2164 
2165 
2166     /* Skip partial indices for which the WHERE clause is not true */
2167     if( pIdx->pPartIdxWhere ){
2168       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2169       pParse->iSelfTab = -(regNewData+1);
2170       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2171                             SQLITE_JUMPIFNULL);
2172       pParse->iSelfTab = 0;
2173     }
2174 
2175     /* Create a record for this index entry as it should appear after
2176     ** the insert or update.  Store that record in the aRegIdx[ix] register
2177     */
2178     regIdx = aRegIdx[ix]+1;
2179     for(i=0; i<pIdx->nColumn; i++){
2180       int iField = pIdx->aiColumn[i];
2181       int x;
2182       if( iField==XN_EXPR ){
2183         pParse->iSelfTab = -(regNewData+1);
2184         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2185         pParse->iSelfTab = 0;
2186         VdbeComment((v, "%s column %d", pIdx->zName, i));
2187       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2188         x = regNewData;
2189         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2190         VdbeComment((v, "rowid"));
2191       }else{
2192         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2193         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2194         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2195         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2196       }
2197     }
2198     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2199     VdbeComment((v, "for %s", pIdx->zName));
2200 #ifdef SQLITE_ENABLE_NULL_TRIM
2201     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2202       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2203     }
2204 #endif
2205     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2206 
2207     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2208     ** of a WITHOUT ROWID table and there has been no change the
2209     ** primary key, then no collision is possible.  The collision detection
2210     ** logic below can all be skipped. */
2211     if( isUpdate && pPk==pIdx && pkChng==0 ){
2212       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2213       continue;
2214     }
2215 
2216     /* Find out what action to take in case there is a uniqueness conflict */
2217     onError = pIdx->onError;
2218     if( onError==OE_None ){
2219       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2220       continue;  /* pIdx is not a UNIQUE index */
2221     }
2222     if( overrideError!=OE_Default ){
2223       onError = overrideError;
2224     }else if( onError==OE_Default ){
2225       onError = OE_Abort;
2226     }
2227 
2228     /* Figure out if the upsert clause applies to this index */
2229     if( pUpsertClause ){
2230       if( pUpsertClause->isDoUpdate==0 ){
2231         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2232       }else{
2233         onError = OE_Update;  /* DO UPDATE */
2234       }
2235     }
2236 
2237     /* Collision detection may be omitted if all of the following are true:
2238     **   (1) The conflict resolution algorithm is REPLACE
2239     **   (2) The table is a WITHOUT ROWID table
2240     **   (3) There are no secondary indexes on the table
2241     **   (4) No delete triggers need to be fired if there is a conflict
2242     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2243     **
2244     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2245     ** must be explicitly deleted in order to ensure any pre-update hook
2246     ** is invoked.  */
2247     assert( IsOrdinaryTable(pTab) );
2248 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2249     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2250      && pPk==pIdx                                   /* Condition 2 */
2251      && onError==OE_Replace                         /* Condition 1 */
2252      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2253           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2254      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2255          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2256     ){
2257       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2258       continue;
2259     }
2260 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2261 
2262     /* Check to see if the new index entry will be unique */
2263     sqlite3VdbeVerifyAbortable(v, onError);
2264     addrConflictCk =
2265       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2266                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2267 
2268     /* Generate code to handle collisions */
2269     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2270     if( isUpdate || onError==OE_Replace ){
2271       if( HasRowid(pTab) ){
2272         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2273         /* Conflict only if the rowid of the existing index entry
2274         ** is different from old-rowid */
2275         if( isUpdate ){
2276           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2277           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2278           VdbeCoverage(v);
2279         }
2280       }else{
2281         int x;
2282         /* Extract the PRIMARY KEY from the end of the index entry and
2283         ** store it in registers regR..regR+nPk-1 */
2284         if( pIdx!=pPk ){
2285           for(i=0; i<pPk->nKeyCol; i++){
2286             assert( pPk->aiColumn[i]>=0 );
2287             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2288             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2289             VdbeComment((v, "%s.%s", pTab->zName,
2290                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2291           }
2292         }
2293         if( isUpdate ){
2294           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2295           ** table, only conflict if the new PRIMARY KEY values are actually
2296           ** different from the old.  See TH3 withoutrowid04.test.
2297           **
2298           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2299           ** of the matched index row are different from the original PRIMARY
2300           ** KEY values of this row before the update.  */
2301           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2302           int op = OP_Ne;
2303           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2304 
2305           for(i=0; i<pPk->nKeyCol; i++){
2306             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2307             x = pPk->aiColumn[i];
2308             assert( x>=0 );
2309             if( i==(pPk->nKeyCol-1) ){
2310               addrJump = addrUniqueOk;
2311               op = OP_Eq;
2312             }
2313             x = sqlite3TableColumnToStorage(pTab, x);
2314             sqlite3VdbeAddOp4(v, op,
2315                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2316             );
2317             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2318             VdbeCoverageIf(v, op==OP_Eq);
2319             VdbeCoverageIf(v, op==OP_Ne);
2320           }
2321         }
2322       }
2323     }
2324 
2325     /* Generate code that executes if the new index entry is not unique */
2326     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2327         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2328     switch( onError ){
2329       case OE_Rollback:
2330       case OE_Abort:
2331       case OE_Fail: {
2332         testcase( onError==OE_Rollback );
2333         testcase( onError==OE_Abort );
2334         testcase( onError==OE_Fail );
2335         sqlite3UniqueConstraint(pParse, onError, pIdx);
2336         break;
2337       }
2338 #ifndef SQLITE_OMIT_UPSERT
2339       case OE_Update: {
2340         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2341         /* no break */ deliberate_fall_through
2342       }
2343 #endif
2344       case OE_Ignore: {
2345         testcase( onError==OE_Ignore );
2346         sqlite3VdbeGoto(v, ignoreDest);
2347         break;
2348       }
2349       default: {
2350         int nConflictCk;   /* Number of opcodes in conflict check logic */
2351 
2352         assert( onError==OE_Replace );
2353         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2354         assert( nConflictCk>0 || db->mallocFailed );
2355         testcase( nConflictCk<=0 );
2356         testcase( nConflictCk>1 );
2357         if( regTrigCnt ){
2358           sqlite3MultiWrite(pParse);
2359           nReplaceTrig++;
2360         }
2361         if( pTrigger && isUpdate ){
2362           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2363         }
2364         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2365             regR, nPkField, 0, OE_Replace,
2366             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2367         if( pTrigger && isUpdate ){
2368           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2369         }
2370         if( regTrigCnt ){
2371           int addrBypass;  /* Jump destination to bypass recheck logic */
2372 
2373           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2374           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2375           VdbeComment((v, "bypass recheck"));
2376 
2377           /* Here we insert code that will be invoked after all constraint
2378           ** checks have run, if and only if one or more replace triggers
2379           ** fired. */
2380           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2381           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2382           if( pIdx->pPartIdxWhere ){
2383             /* Bypass the recheck if this partial index is not defined
2384             ** for the current row */
2385             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2386             VdbeCoverage(v);
2387           }
2388           /* Copy the constraint check code from above, except change
2389           ** the constraint-ok jump destination to be the address of
2390           ** the next retest block */
2391           while( nConflictCk>0 ){
2392             VdbeOp x;    /* Conflict check opcode to copy */
2393             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2394             ** Hence, make a complete copy of the opcode, rather than using
2395             ** a pointer to the opcode. */
2396             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2397             if( x.opcode!=OP_IdxRowid ){
2398               int p2;      /* New P2 value for copied conflict check opcode */
2399               const char *zP4;
2400               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2401                 p2 = lblRecheckOk;
2402               }else{
2403                 p2 = x.p2;
2404               }
2405               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2406               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2407               sqlite3VdbeChangeP5(v, x.p5);
2408               VdbeCoverageIf(v, p2!=x.p2);
2409             }
2410             nConflictCk--;
2411             addrConflictCk++;
2412           }
2413           /* If the retest fails, issue an abort */
2414           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2415 
2416           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2417         }
2418         seenReplace = 1;
2419         break;
2420       }
2421     }
2422     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2423     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2424     if( pUpsertClause
2425      && upsertIpkReturn
2426      && sqlite3UpsertNextIsIPK(pUpsertClause)
2427     ){
2428       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2429       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2430       upsertIpkReturn = 0;
2431     }
2432   }
2433 
2434   /* If the IPK constraint is a REPLACE, run it last */
2435   if( ipkTop ){
2436     sqlite3VdbeGoto(v, ipkTop);
2437     VdbeComment((v, "Do IPK REPLACE"));
2438     assert( ipkBottom>0 );
2439     sqlite3VdbeJumpHere(v, ipkBottom);
2440   }
2441 
2442   /* Recheck all uniqueness constraints after replace triggers have run */
2443   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2444   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2445   if( nReplaceTrig ){
2446     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2447     if( !pPk ){
2448       if( isUpdate ){
2449         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2450         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2451         VdbeCoverage(v);
2452       }
2453       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2454       VdbeCoverage(v);
2455       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2456     }else{
2457       sqlite3VdbeGoto(v, addrRecheck);
2458     }
2459     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2460   }
2461 
2462   /* Generate the table record */
2463   if( HasRowid(pTab) ){
2464     int regRec = aRegIdx[ix];
2465     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2466     sqlite3SetMakeRecordP5(v, pTab);
2467     if( !bAffinityDone ){
2468       sqlite3TableAffinity(v, pTab, 0);
2469     }
2470   }
2471 
2472   *pbMayReplace = seenReplace;
2473   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2474 }
2475 
2476 #ifdef SQLITE_ENABLE_NULL_TRIM
2477 /*
2478 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2479 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2480 **
2481 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2482 */
2483 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2484   u16 i;
2485 
2486   /* Records with omitted columns are only allowed for schema format
2487   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2488   if( pTab->pSchema->file_format<2 ) return;
2489 
2490   for(i=pTab->nCol-1; i>0; i--){
2491     if( pTab->aCol[i].iDflt!=0 ) break;
2492     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2493   }
2494   sqlite3VdbeChangeP5(v, i+1);
2495 }
2496 #endif
2497 
2498 /*
2499 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2500 ** number is iCur, and register regData contains the new record for the
2501 ** PK index. This function adds code to invoke the pre-update hook,
2502 ** if one is registered.
2503 */
2504 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2505 static void codeWithoutRowidPreupdate(
2506   Parse *pParse,                  /* Parse context */
2507   Table *pTab,                    /* Table being updated */
2508   int iCur,                       /* Cursor number for table */
2509   int regData                     /* Data containing new record */
2510 ){
2511   Vdbe *v = pParse->pVdbe;
2512   int r = sqlite3GetTempReg(pParse);
2513   assert( !HasRowid(pTab) );
2514   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2515   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2516   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2517   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2518   sqlite3ReleaseTempReg(pParse, r);
2519 }
2520 #else
2521 # define codeWithoutRowidPreupdate(a,b,c,d)
2522 #endif
2523 
2524 /*
2525 ** This routine generates code to finish the INSERT or UPDATE operation
2526 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2527 ** A consecutive range of registers starting at regNewData contains the
2528 ** rowid and the content to be inserted.
2529 **
2530 ** The arguments to this routine should be the same as the first six
2531 ** arguments to sqlite3GenerateConstraintChecks.
2532 */
2533 void sqlite3CompleteInsertion(
2534   Parse *pParse,      /* The parser context */
2535   Table *pTab,        /* the table into which we are inserting */
2536   int iDataCur,       /* Cursor of the canonical data source */
2537   int iIdxCur,        /* First index cursor */
2538   int regNewData,     /* Range of content */
2539   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2540   int update_flags,   /* True for UPDATE, False for INSERT */
2541   int appendBias,     /* True if this is likely to be an append */
2542   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2543 ){
2544   Vdbe *v;            /* Prepared statements under construction */
2545   Index *pIdx;        /* An index being inserted or updated */
2546   u8 pik_flags;       /* flag values passed to the btree insert */
2547   int i;              /* Loop counter */
2548 
2549   assert( update_flags==0
2550        || update_flags==OPFLAG_ISUPDATE
2551        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2552   );
2553 
2554   v = pParse->pVdbe;
2555   assert( v!=0 );
2556   assert( !IsView(pTab) );  /* This table is not a VIEW */
2557   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2558     /* All REPLACE indexes are at the end of the list */
2559     assert( pIdx->onError!=OE_Replace
2560          || pIdx->pNext==0
2561          || pIdx->pNext->onError==OE_Replace );
2562     if( aRegIdx[i]==0 ) continue;
2563     if( pIdx->pPartIdxWhere ){
2564       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2565       VdbeCoverage(v);
2566     }
2567     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2568     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2569       pik_flags |= OPFLAG_NCHANGE;
2570       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2571       if( update_flags==0 ){
2572         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2573       }
2574     }
2575     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2576                          aRegIdx[i]+1,
2577                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2578     sqlite3VdbeChangeP5(v, pik_flags);
2579   }
2580   if( !HasRowid(pTab) ) return;
2581   if( pParse->nested ){
2582     pik_flags = 0;
2583   }else{
2584     pik_flags = OPFLAG_NCHANGE;
2585     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2586   }
2587   if( appendBias ){
2588     pik_flags |= OPFLAG_APPEND;
2589   }
2590   if( useSeekResult ){
2591     pik_flags |= OPFLAG_USESEEKRESULT;
2592   }
2593   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2594   if( !pParse->nested ){
2595     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2596   }
2597   sqlite3VdbeChangeP5(v, pik_flags);
2598 }
2599 
2600 /*
2601 ** Allocate cursors for the pTab table and all its indices and generate
2602 ** code to open and initialized those cursors.
2603 **
2604 ** The cursor for the object that contains the complete data (normally
2605 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2606 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2607 ** returned in *piIdxCur.  The number of indices is returned.
2608 **
2609 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2610 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2611 ** If iBase is negative, then allocate the next available cursor.
2612 **
2613 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2614 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2615 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2616 ** pTab->pIndex list.
2617 **
2618 ** If pTab is a virtual table, then this routine is a no-op and the
2619 ** *piDataCur and *piIdxCur values are left uninitialized.
2620 */
2621 int sqlite3OpenTableAndIndices(
2622   Parse *pParse,   /* Parsing context */
2623   Table *pTab,     /* Table to be opened */
2624   int op,          /* OP_OpenRead or OP_OpenWrite */
2625   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2626   int iBase,       /* Use this for the table cursor, if there is one */
2627   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2628   int *piDataCur,  /* Write the database source cursor number here */
2629   int *piIdxCur    /* Write the first index cursor number here */
2630 ){
2631   int i;
2632   int iDb;
2633   int iDataCur;
2634   Index *pIdx;
2635   Vdbe *v;
2636 
2637   assert( op==OP_OpenRead || op==OP_OpenWrite );
2638   assert( op==OP_OpenWrite || p5==0 );
2639   if( IsVirtual(pTab) ){
2640     /* This routine is a no-op for virtual tables. Leave the output
2641     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2642     ** for improved error detection. */
2643     *piDataCur = *piIdxCur = -999;
2644     return 0;
2645   }
2646   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2647   v = pParse->pVdbe;
2648   assert( v!=0 );
2649   if( iBase<0 ) iBase = pParse->nTab;
2650   iDataCur = iBase++;
2651   if( piDataCur ) *piDataCur = iDataCur;
2652   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2653     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2654   }else{
2655     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2656   }
2657   if( piIdxCur ) *piIdxCur = iBase;
2658   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2659     int iIdxCur = iBase++;
2660     assert( pIdx->pSchema==pTab->pSchema );
2661     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2662       if( piDataCur ) *piDataCur = iIdxCur;
2663       p5 = 0;
2664     }
2665     if( aToOpen==0 || aToOpen[i+1] ){
2666       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2667       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2668       sqlite3VdbeChangeP5(v, p5);
2669       VdbeComment((v, "%s", pIdx->zName));
2670     }
2671   }
2672   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2673   return i;
2674 }
2675 
2676 
2677 #ifdef SQLITE_TEST
2678 /*
2679 ** The following global variable is incremented whenever the
2680 ** transfer optimization is used.  This is used for testing
2681 ** purposes only - to make sure the transfer optimization really
2682 ** is happening when it is supposed to.
2683 */
2684 int sqlite3_xferopt_count;
2685 #endif /* SQLITE_TEST */
2686 
2687 
2688 #ifndef SQLITE_OMIT_XFER_OPT
2689 /*
2690 ** Check to see if index pSrc is compatible as a source of data
2691 ** for index pDest in an insert transfer optimization.  The rules
2692 ** for a compatible index:
2693 **
2694 **    *   The index is over the same set of columns
2695 **    *   The same DESC and ASC markings occurs on all columns
2696 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2697 **    *   The same collating sequence on each column
2698 **    *   The index has the exact same WHERE clause
2699 */
2700 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2701   int i;
2702   assert( pDest && pSrc );
2703   assert( pDest->pTable!=pSrc->pTable );
2704   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2705     return 0;   /* Different number of columns */
2706   }
2707   if( pDest->onError!=pSrc->onError ){
2708     return 0;   /* Different conflict resolution strategies */
2709   }
2710   for(i=0; i<pSrc->nKeyCol; i++){
2711     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2712       return 0;   /* Different columns indexed */
2713     }
2714     if( pSrc->aiColumn[i]==XN_EXPR ){
2715       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2716       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2717                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2718         return 0;   /* Different expressions in the index */
2719       }
2720     }
2721     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2722       return 0;   /* Different sort orders */
2723     }
2724     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2725       return 0;   /* Different collating sequences */
2726     }
2727   }
2728   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2729     return 0;     /* Different WHERE clauses */
2730   }
2731 
2732   /* If no test above fails then the indices must be compatible */
2733   return 1;
2734 }
2735 
2736 /*
2737 ** Attempt the transfer optimization on INSERTs of the form
2738 **
2739 **     INSERT INTO tab1 SELECT * FROM tab2;
2740 **
2741 ** The xfer optimization transfers raw records from tab2 over to tab1.
2742 ** Columns are not decoded and reassembled, which greatly improves
2743 ** performance.  Raw index records are transferred in the same way.
2744 **
2745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2746 ** There are lots of rules for determining compatibility - see comments
2747 ** embedded in the code for details.
2748 **
2749 ** This routine returns TRUE if the optimization is guaranteed to be used.
2750 ** Sometimes the xfer optimization will only work if the destination table
2751 ** is empty - a factor that can only be determined at run-time.  In that
2752 ** case, this routine generates code for the xfer optimization but also
2753 ** does a test to see if the destination table is empty and jumps over the
2754 ** xfer optimization code if the test fails.  In that case, this routine
2755 ** returns FALSE so that the caller will know to go ahead and generate
2756 ** an unoptimized transfer.  This routine also returns FALSE if there
2757 ** is no chance that the xfer optimization can be applied.
2758 **
2759 ** This optimization is particularly useful at making VACUUM run faster.
2760 */
2761 static int xferOptimization(
2762   Parse *pParse,        /* Parser context */
2763   Table *pDest,         /* The table we are inserting into */
2764   Select *pSelect,      /* A SELECT statement to use as the data source */
2765   int onError,          /* How to handle constraint errors */
2766   int iDbDest           /* The database of pDest */
2767 ){
2768   sqlite3 *db = pParse->db;
2769   ExprList *pEList;                /* The result set of the SELECT */
2770   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2771   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2772   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2773   int i;                           /* Loop counter */
2774   int iDbSrc;                      /* The database of pSrc */
2775   int iSrc, iDest;                 /* Cursors from source and destination */
2776   int addr1, addr2;                /* Loop addresses */
2777   int emptyDestTest = 0;           /* Address of test for empty pDest */
2778   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2779   Vdbe *v;                         /* The VDBE we are building */
2780   int regAutoinc;                  /* Memory register used by AUTOINC */
2781   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2782   int regData, regRowid;           /* Registers holding data and rowid */
2783 
2784   assert( pSelect!=0 );
2785   if( pParse->pWith || pSelect->pWith ){
2786     /* Do not attempt to process this query if there are an WITH clauses
2787     ** attached to it. Proceeding may generate a false "no such table: xxx"
2788     ** error if pSelect reads from a CTE named "xxx".  */
2789     return 0;
2790   }
2791 #ifndef SQLITE_OMIT_VIRTUALTABLE
2792   if( IsVirtual(pDest) ){
2793     return 0;   /* tab1 must not be a virtual table */
2794   }
2795 #endif
2796   if( onError==OE_Default ){
2797     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2798     if( onError==OE_Default ) onError = OE_Abort;
2799   }
2800   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2801   if( pSelect->pSrc->nSrc!=1 ){
2802     return 0;   /* FROM clause must have exactly one term */
2803   }
2804   if( pSelect->pSrc->a[0].pSelect ){
2805     return 0;   /* FROM clause cannot contain a subquery */
2806   }
2807   if( pSelect->pWhere ){
2808     return 0;   /* SELECT may not have a WHERE clause */
2809   }
2810   if( pSelect->pOrderBy ){
2811     return 0;   /* SELECT may not have an ORDER BY clause */
2812   }
2813   /* Do not need to test for a HAVING clause.  If HAVING is present but
2814   ** there is no ORDER BY, we will get an error. */
2815   if( pSelect->pGroupBy ){
2816     return 0;   /* SELECT may not have a GROUP BY clause */
2817   }
2818   if( pSelect->pLimit ){
2819     return 0;   /* SELECT may not have a LIMIT clause */
2820   }
2821   if( pSelect->pPrior ){
2822     return 0;   /* SELECT may not be a compound query */
2823   }
2824   if( pSelect->selFlags & SF_Distinct ){
2825     return 0;   /* SELECT may not be DISTINCT */
2826   }
2827   pEList = pSelect->pEList;
2828   assert( pEList!=0 );
2829   if( pEList->nExpr!=1 ){
2830     return 0;   /* The result set must have exactly one column */
2831   }
2832   assert( pEList->a[0].pExpr );
2833   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2834     return 0;   /* The result set must be the special operator "*" */
2835   }
2836 
2837   /* At this point we have established that the statement is of the
2838   ** correct syntactic form to participate in this optimization.  Now
2839   ** we have to check the semantics.
2840   */
2841   pItem = pSelect->pSrc->a;
2842   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2843   if( pSrc==0 ){
2844     return 0;   /* FROM clause does not contain a real table */
2845   }
2846   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2847     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2848     return 0;   /* tab1 and tab2 may not be the same table */
2849   }
2850   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2851     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2852   }
2853   if( !IsOrdinaryTable(pSrc) ){
2854     return 0;   /* tab2 may not be a view or virtual table */
2855   }
2856   if( pDest->nCol!=pSrc->nCol ){
2857     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2858   }
2859   if( pDest->iPKey!=pSrc->iPKey ){
2860     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2861   }
2862   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2863     return 0;   /* Cannot feed from a non-strict into a strict table */
2864   }
2865   for(i=0; i<pDest->nCol; i++){
2866     Column *pDestCol = &pDest->aCol[i];
2867     Column *pSrcCol = &pSrc->aCol[i];
2868 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2869     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2870      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2871     ){
2872       return 0;    /* Neither table may have __hidden__ columns */
2873     }
2874 #endif
2875 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2876     /* Even if tables t1 and t2 have identical schemas, if they contain
2877     ** generated columns, then this statement is semantically incorrect:
2878     **
2879     **     INSERT INTO t2 SELECT * FROM t1;
2880     **
2881     ** The reason is that generated column values are returned by the
2882     ** the SELECT statement on the right but the INSERT statement on the
2883     ** left wants them to be omitted.
2884     **
2885     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2886     ** to do a bulk transfer all of the content from t1 over to t2.
2887     **
2888     ** We could, in theory, disable this (except for internal use by the
2889     ** VACUUM command where it is actually needed).  But why do that?  It
2890     ** seems harmless enough, and provides a useful service.
2891     */
2892     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2893         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2894       return 0;    /* Both columns have the same generated-column type */
2895     }
2896     /* But the transfer is only allowed if both the source and destination
2897     ** tables have the exact same expressions for generated columns.
2898     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2899     */
2900     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2901       if( sqlite3ExprCompare(0,
2902              sqlite3ColumnExpr(pSrc, pSrcCol),
2903              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2904         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2905         testcase( pDestCol->colFlags & COLFLAG_STORED );
2906         return 0;  /* Different generator expressions */
2907       }
2908     }
2909 #endif
2910     if( pDestCol->affinity!=pSrcCol->affinity ){
2911       return 0;    /* Affinity must be the same on all columns */
2912     }
2913     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2914                         sqlite3ColumnColl(pSrcCol))!=0 ){
2915       return 0;    /* Collating sequence must be the same on all columns */
2916     }
2917     if( pDestCol->notNull && !pSrcCol->notNull ){
2918       return 0;    /* tab2 must be NOT NULL if tab1 is */
2919     }
2920     /* Default values for second and subsequent columns need to match. */
2921     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2922       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2923       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2924       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2925       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2926       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2927       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2928       if( (pDestExpr==0)!=(pSrcExpr==0)
2929        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2930                                        pSrcExpr->u.zToken)!=0)
2931       ){
2932         return 0;    /* Default values must be the same for all columns */
2933       }
2934     }
2935   }
2936   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2937     if( IsUniqueIndex(pDestIdx) ){
2938       destHasUniqueIdx = 1;
2939     }
2940     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2941       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2942     }
2943     if( pSrcIdx==0 ){
2944       return 0;    /* pDestIdx has no corresponding index in pSrc */
2945     }
2946     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2947          && sqlite3FaultSim(411)==SQLITE_OK ){
2948       /* The sqlite3FaultSim() call allows this corruption test to be
2949       ** bypassed during testing, in order to exercise other corruption tests
2950       ** further downstream. */
2951       return 0;   /* Corrupt schema - two indexes on the same btree */
2952     }
2953   }
2954 #ifndef SQLITE_OMIT_CHECK
2955   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2956     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2957   }
2958 #endif
2959 #ifndef SQLITE_OMIT_FOREIGN_KEY
2960   /* Disallow the transfer optimization if the destination table constains
2961   ** any foreign key constraints.  This is more restrictive than necessary.
2962   ** But the main beneficiary of the transfer optimization is the VACUUM
2963   ** command, and the VACUUM command disables foreign key constraints.  So
2964   ** the extra complication to make this rule less restrictive is probably
2965   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2966   */
2967   assert( IsOrdinaryTable(pDest) );
2968   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2969     return 0;
2970   }
2971 #endif
2972   if( (db->flags & SQLITE_CountRows)!=0 ){
2973     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2974   }
2975 
2976   /* If we get this far, it means that the xfer optimization is at
2977   ** least a possibility, though it might only work if the destination
2978   ** table (tab1) is initially empty.
2979   */
2980 #ifdef SQLITE_TEST
2981   sqlite3_xferopt_count++;
2982 #endif
2983   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2984   v = sqlite3GetVdbe(pParse);
2985   sqlite3CodeVerifySchema(pParse, iDbSrc);
2986   iSrc = pParse->nTab++;
2987   iDest = pParse->nTab++;
2988   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2989   regData = sqlite3GetTempReg(pParse);
2990   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2991   regRowid = sqlite3GetTempReg(pParse);
2992   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2993   assert( HasRowid(pDest) || destHasUniqueIdx );
2994   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2995       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2996    || destHasUniqueIdx                              /* (2) */
2997    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2998   )){
2999     /* In some circumstances, we are able to run the xfer optimization
3000     ** only if the destination table is initially empty. Unless the
3001     ** DBFLAG_Vacuum flag is set, this block generates code to make
3002     ** that determination. If DBFLAG_Vacuum is set, then the destination
3003     ** table is always empty.
3004     **
3005     ** Conditions under which the destination must be empty:
3006     **
3007     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3008     **     (If the destination is not initially empty, the rowid fields
3009     **     of index entries might need to change.)
3010     **
3011     ** (2) The destination has a unique index.  (The xfer optimization
3012     **     is unable to test uniqueness.)
3013     **
3014     ** (3) onError is something other than OE_Abort and OE_Rollback.
3015     */
3016     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3017     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3018     sqlite3VdbeJumpHere(v, addr1);
3019   }
3020   if( HasRowid(pSrc) ){
3021     u8 insFlags;
3022     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3023     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3024     if( pDest->iPKey>=0 ){
3025       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3026       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3027         sqlite3VdbeVerifyAbortable(v, onError);
3028         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3029         VdbeCoverage(v);
3030         sqlite3RowidConstraint(pParse, onError, pDest);
3031         sqlite3VdbeJumpHere(v, addr2);
3032       }
3033       autoIncStep(pParse, regAutoinc, regRowid);
3034     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3035       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3036     }else{
3037       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3038       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3039     }
3040 
3041     if( db->mDbFlags & DBFLAG_Vacuum ){
3042       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3043       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3044     }else{
3045       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3046     }
3047 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3048     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3049       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3050       insFlags &= ~OPFLAG_PREFORMAT;
3051     }else
3052 #endif
3053     {
3054       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3055     }
3056     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3057     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3058       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3059     }
3060     sqlite3VdbeChangeP5(v, insFlags);
3061 
3062     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3063     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3064     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3065   }else{
3066     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3067     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3068   }
3069   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3070     u8 idxInsFlags = 0;
3071     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3072       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3073     }
3074     assert( pSrcIdx );
3075     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3076     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3077     VdbeComment((v, "%s", pSrcIdx->zName));
3078     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3079     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3080     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3081     VdbeComment((v, "%s", pDestIdx->zName));
3082     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3083     if( db->mDbFlags & DBFLAG_Vacuum ){
3084       /* This INSERT command is part of a VACUUM operation, which guarantees
3085       ** that the destination table is empty. If all indexed columns use
3086       ** collation sequence BINARY, then it can also be assumed that the
3087       ** index will be populated by inserting keys in strictly sorted
3088       ** order. In this case, instead of seeking within the b-tree as part
3089       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3090       ** OP_IdxInsert to seek to the point within the b-tree where each key
3091       ** should be inserted. This is faster.
3092       **
3093       ** If any of the indexed columns use a collation sequence other than
3094       ** BINARY, this optimization is disabled. This is because the user
3095       ** might change the definition of a collation sequence and then run
3096       ** a VACUUM command. In that case keys may not be written in strictly
3097       ** sorted order.  */
3098       for(i=0; i<pSrcIdx->nColumn; i++){
3099         const char *zColl = pSrcIdx->azColl[i];
3100         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3101       }
3102       if( i==pSrcIdx->nColumn ){
3103         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3104         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3105         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3106       }
3107     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3108       idxInsFlags |= OPFLAG_NCHANGE;
3109     }
3110     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3111       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3112       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3113        && !HasRowid(pDest)
3114        && IsPrimaryKeyIndex(pDestIdx)
3115       ){
3116         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3117       }
3118     }
3119     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3120     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3121     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3122     sqlite3VdbeJumpHere(v, addr1);
3123     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3124     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3125   }
3126   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3127   sqlite3ReleaseTempReg(pParse, regRowid);
3128   sqlite3ReleaseTempReg(pParse, regData);
3129   if( emptyDestTest ){
3130     sqlite3AutoincrementEnd(pParse);
3131     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3132     sqlite3VdbeJumpHere(v, emptyDestTest);
3133     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3134     return 0;
3135   }else{
3136     return 1;
3137   }
3138 }
3139 #endif /* SQLITE_OMIT_XFER_OPT */
3140