1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 assert( zColAff!=0 ); 150 i = sqlite3Strlen30NN(zColAff); 151 if( i ){ 152 if( iReg ){ 153 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 154 }else{ 155 sqlite3VdbeChangeP4(v, -1, zColAff, i); 156 } 157 } 158 } 159 160 /* 161 ** Return non-zero if the table pTab in database iDb or any of its indices 162 ** have been opened at any point in the VDBE program. This is used to see if 163 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 164 ** run without using a temporary table for the results of the SELECT. 165 */ 166 static int readsTable(Parse *p, int iDb, Table *pTab){ 167 Vdbe *v = sqlite3GetVdbe(p); 168 int i; 169 int iEnd = sqlite3VdbeCurrentAddr(v); 170 #ifndef SQLITE_OMIT_VIRTUALTABLE 171 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 172 #endif 173 174 for(i=1; i<iEnd; i++){ 175 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 176 assert( pOp!=0 ); 177 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 178 Index *pIndex; 179 int tnum = pOp->p2; 180 if( tnum==pTab->tnum ){ 181 return 1; 182 } 183 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 184 if( tnum==pIndex->tnum ){ 185 return 1; 186 } 187 } 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 191 assert( pOp->p4.pVtab!=0 ); 192 assert( pOp->p4type==P4_VTAB ); 193 return 1; 194 } 195 #endif 196 } 197 return 0; 198 } 199 200 #ifndef SQLITE_OMIT_AUTOINCREMENT 201 /* 202 ** Locate or create an AutoincInfo structure associated with table pTab 203 ** which is in database iDb. Return the register number for the register 204 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 205 ** table. (Also return zero when doing a VACUUM since we do not want to 206 ** update the AUTOINCREMENT counters during a VACUUM.) 207 ** 208 ** There is at most one AutoincInfo structure per table even if the 209 ** same table is autoincremented multiple times due to inserts within 210 ** triggers. A new AutoincInfo structure is created if this is the 211 ** first use of table pTab. On 2nd and subsequent uses, the original 212 ** AutoincInfo structure is used. 213 ** 214 ** Four consecutive registers are allocated: 215 ** 216 ** (1) The name of the pTab table. 217 ** (2) The maximum ROWID of pTab. 218 ** (3) The rowid in sqlite_sequence of pTab 219 ** (4) The original value of the max ROWID in pTab, or NULL if none 220 ** 221 ** The 2nd register is the one that is returned. That is all the 222 ** insert routine needs to know about. 223 */ 224 static int autoIncBegin( 225 Parse *pParse, /* Parsing context */ 226 int iDb, /* Index of the database holding pTab */ 227 Table *pTab /* The table we are writing to */ 228 ){ 229 int memId = 0; /* Register holding maximum rowid */ 230 assert( pParse->db->aDb[iDb].pSchema!=0 ); 231 if( (pTab->tabFlags & TF_Autoincrement)!=0 232 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 233 ){ 234 Parse *pToplevel = sqlite3ParseToplevel(pParse); 235 AutoincInfo *pInfo; 236 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 237 238 /* Verify that the sqlite_sequence table exists and is an ordinary 239 ** rowid table with exactly two columns. 240 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 241 if( pSeqTab==0 242 || !HasRowid(pSeqTab) 243 || IsVirtual(pSeqTab) 244 || pSeqTab->nCol!=2 245 ){ 246 pParse->nErr++; 247 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 248 return 0; 249 } 250 251 pInfo = pToplevel->pAinc; 252 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 253 if( pInfo==0 ){ 254 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 255 if( pInfo==0 ) return 0; 256 pInfo->pNext = pToplevel->pAinc; 257 pToplevel->pAinc = pInfo; 258 pInfo->pTab = pTab; 259 pInfo->iDb = iDb; 260 pToplevel->nMem++; /* Register to hold name of table */ 261 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 262 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 263 } 264 memId = pInfo->regCtr; 265 } 266 return memId; 267 } 268 269 /* 270 ** This routine generates code that will initialize all of the 271 ** register used by the autoincrement tracker. 272 */ 273 void sqlite3AutoincrementBegin(Parse *pParse){ 274 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 275 sqlite3 *db = pParse->db; /* The database connection */ 276 Db *pDb; /* Database only autoinc table */ 277 int memId; /* Register holding max rowid */ 278 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 279 280 /* This routine is never called during trigger-generation. It is 281 ** only called from the top-level */ 282 assert( pParse->pTriggerTab==0 ); 283 assert( sqlite3IsToplevel(pParse) ); 284 285 assert( v ); /* We failed long ago if this is not so */ 286 for(p = pParse->pAinc; p; p = p->pNext){ 287 static const int iLn = VDBE_OFFSET_LINENO(2); 288 static const VdbeOpList autoInc[] = { 289 /* 0 */ {OP_Null, 0, 0, 0}, 290 /* 1 */ {OP_Rewind, 0, 10, 0}, 291 /* 2 */ {OP_Column, 0, 0, 0}, 292 /* 3 */ {OP_Ne, 0, 9, 0}, 293 /* 4 */ {OP_Rowid, 0, 0, 0}, 294 /* 5 */ {OP_Column, 0, 1, 0}, 295 /* 6 */ {OP_AddImm, 0, 0, 0}, 296 /* 7 */ {OP_Copy, 0, 0, 0}, 297 /* 8 */ {OP_Goto, 0, 11, 0}, 298 /* 9 */ {OP_Next, 0, 2, 0}, 299 /* 10 */ {OP_Integer, 0, 0, 0}, 300 /* 11 */ {OP_Close, 0, 0, 0} 301 }; 302 VdbeOp *aOp; 303 pDb = &db->aDb[p->iDb]; 304 memId = p->regCtr; 305 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 306 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 307 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 308 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 309 if( aOp==0 ) break; 310 aOp[0].p2 = memId; 311 aOp[0].p3 = memId+2; 312 aOp[2].p3 = memId; 313 aOp[3].p1 = memId-1; 314 aOp[3].p3 = memId; 315 aOp[3].p5 = SQLITE_JUMPIFNULL; 316 aOp[4].p2 = memId+1; 317 aOp[5].p3 = memId; 318 aOp[6].p1 = memId; 319 aOp[7].p2 = memId+2; 320 aOp[7].p1 = memId; 321 aOp[10].p2 = memId; 322 if( pParse->nTab==0 ) pParse->nTab = 1; 323 } 324 } 325 326 /* 327 ** Update the maximum rowid for an autoincrement calculation. 328 ** 329 ** This routine should be called when the regRowid register holds a 330 ** new rowid that is about to be inserted. If that new rowid is 331 ** larger than the maximum rowid in the memId memory cell, then the 332 ** memory cell is updated. 333 */ 334 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 335 if( memId>0 ){ 336 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 337 } 338 } 339 340 /* 341 ** This routine generates the code needed to write autoincrement 342 ** maximum rowid values back into the sqlite_sequence register. 343 ** Every statement that might do an INSERT into an autoincrement 344 ** table (either directly or through triggers) needs to call this 345 ** routine just before the "exit" code. 346 */ 347 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 348 AutoincInfo *p; 349 Vdbe *v = pParse->pVdbe; 350 sqlite3 *db = pParse->db; 351 352 assert( v ); 353 for(p = pParse->pAinc; p; p = p->pNext){ 354 static const int iLn = VDBE_OFFSET_LINENO(2); 355 static const VdbeOpList autoIncEnd[] = { 356 /* 0 */ {OP_NotNull, 0, 2, 0}, 357 /* 1 */ {OP_NewRowid, 0, 0, 0}, 358 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 359 /* 3 */ {OP_Insert, 0, 0, 0}, 360 /* 4 */ {OP_Close, 0, 0, 0} 361 }; 362 VdbeOp *aOp; 363 Db *pDb = &db->aDb[p->iDb]; 364 int iRec; 365 int memId = p->regCtr; 366 367 iRec = sqlite3GetTempReg(pParse); 368 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 369 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 370 VdbeCoverage(v); 371 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 372 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 373 if( aOp==0 ) break; 374 aOp[0].p1 = memId+1; 375 aOp[1].p2 = memId+1; 376 aOp[2].p1 = memId-1; 377 aOp[2].p3 = iRec; 378 aOp[3].p2 = iRec; 379 aOp[3].p3 = memId+1; 380 aOp[3].p5 = OPFLAG_APPEND; 381 sqlite3ReleaseTempReg(pParse, iRec); 382 } 383 } 384 void sqlite3AutoincrementEnd(Parse *pParse){ 385 if( pParse->pAinc ) autoIncrementEnd(pParse); 386 } 387 #else 388 /* 389 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 390 ** above are all no-ops 391 */ 392 # define autoIncBegin(A,B,C) (0) 393 # define autoIncStep(A,B,C) 394 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 395 396 397 /* Forward declaration */ 398 static int xferOptimization( 399 Parse *pParse, /* Parser context */ 400 Table *pDest, /* The table we are inserting into */ 401 Select *pSelect, /* A SELECT statement to use as the data source */ 402 int onError, /* How to handle constraint errors */ 403 int iDbDest /* The database of pDest */ 404 ); 405 406 /* 407 ** This routine is called to handle SQL of the following forms: 408 ** 409 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 410 ** insert into TABLE (IDLIST) select 411 ** insert into TABLE (IDLIST) default values 412 ** 413 ** The IDLIST following the table name is always optional. If omitted, 414 ** then a list of all (non-hidden) columns for the table is substituted. 415 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 416 ** is omitted. 417 ** 418 ** For the pSelect parameter holds the values to be inserted for the 419 ** first two forms shown above. A VALUES clause is really just short-hand 420 ** for a SELECT statement that omits the FROM clause and everything else 421 ** that follows. If the pSelect parameter is NULL, that means that the 422 ** DEFAULT VALUES form of the INSERT statement is intended. 423 ** 424 ** The code generated follows one of four templates. For a simple 425 ** insert with data coming from a single-row VALUES clause, the code executes 426 ** once straight down through. Pseudo-code follows (we call this 427 ** the "1st template"): 428 ** 429 ** open write cursor to <table> and its indices 430 ** put VALUES clause expressions into registers 431 ** write the resulting record into <table> 432 ** cleanup 433 ** 434 ** The three remaining templates assume the statement is of the form 435 ** 436 ** INSERT INTO <table> SELECT ... 437 ** 438 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 439 ** in other words if the SELECT pulls all columns from a single table 440 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 441 ** if <table2> and <table1> are distinct tables but have identical 442 ** schemas, including all the same indices, then a special optimization 443 ** is invoked that copies raw records from <table2> over to <table1>. 444 ** See the xferOptimization() function for the implementation of this 445 ** template. This is the 2nd template. 446 ** 447 ** open a write cursor to <table> 448 ** open read cursor on <table2> 449 ** transfer all records in <table2> over to <table> 450 ** close cursors 451 ** foreach index on <table> 452 ** open a write cursor on the <table> index 453 ** open a read cursor on the corresponding <table2> index 454 ** transfer all records from the read to the write cursors 455 ** close cursors 456 ** end foreach 457 ** 458 ** The 3rd template is for when the second template does not apply 459 ** and the SELECT clause does not read from <table> at any time. 460 ** The generated code follows this template: 461 ** 462 ** X <- A 463 ** goto B 464 ** A: setup for the SELECT 465 ** loop over the rows in the SELECT 466 ** load values into registers R..R+n 467 ** yield X 468 ** end loop 469 ** cleanup after the SELECT 470 ** end-coroutine X 471 ** B: open write cursor to <table> and its indices 472 ** C: yield X, at EOF goto D 473 ** insert the select result into <table> from R..R+n 474 ** goto C 475 ** D: cleanup 476 ** 477 ** The 4th template is used if the insert statement takes its 478 ** values from a SELECT but the data is being inserted into a table 479 ** that is also read as part of the SELECT. In the third form, 480 ** we have to use an intermediate table to store the results of 481 ** the select. The template is like this: 482 ** 483 ** X <- A 484 ** goto B 485 ** A: setup for the SELECT 486 ** loop over the tables in the SELECT 487 ** load value into register R..R+n 488 ** yield X 489 ** end loop 490 ** cleanup after the SELECT 491 ** end co-routine R 492 ** B: open temp table 493 ** L: yield X, at EOF goto M 494 ** insert row from R..R+n into temp table 495 ** goto L 496 ** M: open write cursor to <table> and its indices 497 ** rewind temp table 498 ** C: loop over rows of intermediate table 499 ** transfer values form intermediate table into <table> 500 ** end loop 501 ** D: cleanup 502 */ 503 void sqlite3Insert( 504 Parse *pParse, /* Parser context */ 505 SrcList *pTabList, /* Name of table into which we are inserting */ 506 Select *pSelect, /* A SELECT statement to use as the data source */ 507 IdList *pColumn, /* Column names corresponding to IDLIST. */ 508 int onError, /* How to handle constraint errors */ 509 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 510 ){ 511 sqlite3 *db; /* The main database structure */ 512 Table *pTab; /* The table to insert into. aka TABLE */ 513 int i, j; /* Loop counters */ 514 Vdbe *v; /* Generate code into this virtual machine */ 515 Index *pIdx; /* For looping over indices of the table */ 516 int nColumn; /* Number of columns in the data */ 517 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 518 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 519 int iIdxCur = 0; /* First index cursor */ 520 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 521 int endOfLoop; /* Label for the end of the insertion loop */ 522 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 523 int addrInsTop = 0; /* Jump to label "D" */ 524 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 525 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 526 int iDb; /* Index of database holding TABLE */ 527 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 528 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 529 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 530 u8 bIdListInOrder; /* True if IDLIST is in table order */ 531 ExprList *pList = 0; /* List of VALUES() to be inserted */ 532 533 /* Register allocations */ 534 int regFromSelect = 0;/* Base register for data coming from SELECT */ 535 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 536 int regRowCount = 0; /* Memory cell used for the row counter */ 537 int regIns; /* Block of regs holding rowid+data being inserted */ 538 int regRowid; /* registers holding insert rowid */ 539 int regData; /* register holding first column to insert */ 540 int *aRegIdx = 0; /* One register allocated to each index */ 541 542 #ifndef SQLITE_OMIT_TRIGGER 543 int isView; /* True if attempting to insert into a view */ 544 Trigger *pTrigger; /* List of triggers on pTab, if required */ 545 int tmask; /* Mask of trigger times */ 546 #endif 547 548 db = pParse->db; 549 if( pParse->nErr || db->mallocFailed ){ 550 goto insert_cleanup; 551 } 552 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 553 554 /* If the Select object is really just a simple VALUES() list with a 555 ** single row (the common case) then keep that one row of values 556 ** and discard the other (unused) parts of the pSelect object 557 */ 558 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 559 pList = pSelect->pEList; 560 pSelect->pEList = 0; 561 sqlite3SelectDelete(db, pSelect); 562 pSelect = 0; 563 } 564 565 /* Locate the table into which we will be inserting new information. 566 */ 567 assert( pTabList->nSrc==1 ); 568 pTab = sqlite3SrcListLookup(pParse, pTabList); 569 if( pTab==0 ){ 570 goto insert_cleanup; 571 } 572 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 573 assert( iDb<db->nDb ); 574 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 575 db->aDb[iDb].zDbSName) ){ 576 goto insert_cleanup; 577 } 578 withoutRowid = !HasRowid(pTab); 579 580 /* Figure out if we have any triggers and if the table being 581 ** inserted into is a view 582 */ 583 #ifndef SQLITE_OMIT_TRIGGER 584 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 585 isView = pTab->pSelect!=0; 586 #else 587 # define pTrigger 0 588 # define tmask 0 589 # define isView 0 590 #endif 591 #ifdef SQLITE_OMIT_VIEW 592 # undef isView 593 # define isView 0 594 #endif 595 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 596 597 /* If pTab is really a view, make sure it has been initialized. 598 ** ViewGetColumnNames() is a no-op if pTab is not a view. 599 */ 600 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 601 goto insert_cleanup; 602 } 603 604 /* Cannot insert into a read-only table. 605 */ 606 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 607 goto insert_cleanup; 608 } 609 610 /* Allocate a VDBE 611 */ 612 v = sqlite3GetVdbe(pParse); 613 if( v==0 ) goto insert_cleanup; 614 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 615 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 616 617 #ifndef SQLITE_OMIT_XFER_OPT 618 /* If the statement is of the form 619 ** 620 ** INSERT INTO <table1> SELECT * FROM <table2>; 621 ** 622 ** Then special optimizations can be applied that make the transfer 623 ** very fast and which reduce fragmentation of indices. 624 ** 625 ** This is the 2nd template. 626 */ 627 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 628 assert( !pTrigger ); 629 assert( pList==0 ); 630 goto insert_end; 631 } 632 #endif /* SQLITE_OMIT_XFER_OPT */ 633 634 /* If this is an AUTOINCREMENT table, look up the sequence number in the 635 ** sqlite_sequence table and store it in memory cell regAutoinc. 636 */ 637 regAutoinc = autoIncBegin(pParse, iDb, pTab); 638 639 /* Allocate registers for holding the rowid of the new row, 640 ** the content of the new row, and the assembled row record. 641 */ 642 regRowid = regIns = pParse->nMem+1; 643 pParse->nMem += pTab->nCol + 1; 644 if( IsVirtual(pTab) ){ 645 regRowid++; 646 pParse->nMem++; 647 } 648 regData = regRowid+1; 649 650 /* If the INSERT statement included an IDLIST term, then make sure 651 ** all elements of the IDLIST really are columns of the table and 652 ** remember the column indices. 653 ** 654 ** If the table has an INTEGER PRIMARY KEY column and that column 655 ** is named in the IDLIST, then record in the ipkColumn variable 656 ** the index into IDLIST of the primary key column. ipkColumn is 657 ** the index of the primary key as it appears in IDLIST, not as 658 ** is appears in the original table. (The index of the INTEGER 659 ** PRIMARY KEY in the original table is pTab->iPKey.) 660 */ 661 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 662 if( pColumn ){ 663 for(i=0; i<pColumn->nId; i++){ 664 pColumn->a[i].idx = -1; 665 } 666 for(i=0; i<pColumn->nId; i++){ 667 for(j=0; j<pTab->nCol; j++){ 668 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 669 pColumn->a[i].idx = j; 670 if( i!=j ) bIdListInOrder = 0; 671 if( j==pTab->iPKey ){ 672 ipkColumn = i; assert( !withoutRowid ); 673 } 674 break; 675 } 676 } 677 if( j>=pTab->nCol ){ 678 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 679 ipkColumn = i; 680 bIdListInOrder = 0; 681 }else{ 682 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 683 pTabList, 0, pColumn->a[i].zName); 684 pParse->checkSchema = 1; 685 goto insert_cleanup; 686 } 687 } 688 } 689 } 690 691 /* Figure out how many columns of data are supplied. If the data 692 ** is coming from a SELECT statement, then generate a co-routine that 693 ** produces a single row of the SELECT on each invocation. The 694 ** co-routine is the common header to the 3rd and 4th templates. 695 */ 696 if( pSelect ){ 697 /* Data is coming from a SELECT or from a multi-row VALUES clause. 698 ** Generate a co-routine to run the SELECT. */ 699 int regYield; /* Register holding co-routine entry-point */ 700 int addrTop; /* Top of the co-routine */ 701 int rc; /* Result code */ 702 703 regYield = ++pParse->nMem; 704 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 705 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 706 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 707 dest.iSdst = bIdListInOrder ? regData : 0; 708 dest.nSdst = pTab->nCol; 709 rc = sqlite3Select(pParse, pSelect, &dest); 710 regFromSelect = dest.iSdst; 711 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 712 sqlite3VdbeEndCoroutine(v, regYield); 713 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 714 assert( pSelect->pEList ); 715 nColumn = pSelect->pEList->nExpr; 716 717 /* Set useTempTable to TRUE if the result of the SELECT statement 718 ** should be written into a temporary table (template 4). Set to 719 ** FALSE if each output row of the SELECT can be written directly into 720 ** the destination table (template 3). 721 ** 722 ** A temp table must be used if the table being updated is also one 723 ** of the tables being read by the SELECT statement. Also use a 724 ** temp table in the case of row triggers. 725 */ 726 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 727 useTempTable = 1; 728 } 729 730 if( useTempTable ){ 731 /* Invoke the coroutine to extract information from the SELECT 732 ** and add it to a transient table srcTab. The code generated 733 ** here is from the 4th template: 734 ** 735 ** B: open temp table 736 ** L: yield X, goto M at EOF 737 ** insert row from R..R+n into temp table 738 ** goto L 739 ** M: ... 740 */ 741 int regRec; /* Register to hold packed record */ 742 int regTempRowid; /* Register to hold temp table ROWID */ 743 int addrL; /* Label "L" */ 744 745 srcTab = pParse->nTab++; 746 regRec = sqlite3GetTempReg(pParse); 747 regTempRowid = sqlite3GetTempReg(pParse); 748 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 749 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 750 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 751 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 752 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 753 sqlite3VdbeGoto(v, addrL); 754 sqlite3VdbeJumpHere(v, addrL); 755 sqlite3ReleaseTempReg(pParse, regRec); 756 sqlite3ReleaseTempReg(pParse, regTempRowid); 757 } 758 }else{ 759 /* This is the case if the data for the INSERT is coming from a 760 ** single-row VALUES clause 761 */ 762 NameContext sNC; 763 memset(&sNC, 0, sizeof(sNC)); 764 sNC.pParse = pParse; 765 srcTab = -1; 766 assert( useTempTable==0 ); 767 if( pList ){ 768 nColumn = pList->nExpr; 769 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 770 goto insert_cleanup; 771 } 772 }else{ 773 nColumn = 0; 774 } 775 } 776 777 /* If there is no IDLIST term but the table has an integer primary 778 ** key, the set the ipkColumn variable to the integer primary key 779 ** column index in the original table definition. 780 */ 781 if( pColumn==0 && nColumn>0 ){ 782 ipkColumn = pTab->iPKey; 783 } 784 785 /* Make sure the number of columns in the source data matches the number 786 ** of columns to be inserted into the table. 787 */ 788 for(i=0; i<pTab->nCol; i++){ 789 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 790 } 791 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 792 sqlite3ErrorMsg(pParse, 793 "table %S has %d columns but %d values were supplied", 794 pTabList, 0, pTab->nCol-nHidden, nColumn); 795 goto insert_cleanup; 796 } 797 if( pColumn!=0 && nColumn!=pColumn->nId ){ 798 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 799 goto insert_cleanup; 800 } 801 802 /* Initialize the count of rows to be inserted 803 */ 804 if( (db->flags & SQLITE_CountRows)!=0 805 && !pParse->nested 806 && !pParse->pTriggerTab 807 ){ 808 regRowCount = ++pParse->nMem; 809 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 810 } 811 812 /* If this is not a view, open the table and and all indices */ 813 if( !isView ){ 814 int nIdx; 815 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 816 &iDataCur, &iIdxCur); 817 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 818 if( aRegIdx==0 ){ 819 goto insert_cleanup; 820 } 821 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 822 assert( pIdx ); 823 aRegIdx[i] = ++pParse->nMem; 824 pParse->nMem += pIdx->nColumn; 825 } 826 } 827 #ifndef SQLITE_OMIT_UPSERT 828 if( pUpsert ){ 829 pTabList->a[0].iCursor = iDataCur; 830 pUpsert->pUpsertSrc = pTabList; 831 pUpsert->regData = regData; 832 pUpsert->iDataCur = iDataCur; 833 pUpsert->iIdxCur = iIdxCur; 834 if( pUpsert->pUpsertTarget ){ 835 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 836 } 837 } 838 #endif 839 840 841 /* This is the top of the main insertion loop */ 842 if( useTempTable ){ 843 /* This block codes the top of loop only. The complete loop is the 844 ** following pseudocode (template 4): 845 ** 846 ** rewind temp table, if empty goto D 847 ** C: loop over rows of intermediate table 848 ** transfer values form intermediate table into <table> 849 ** end loop 850 ** D: ... 851 */ 852 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 853 addrCont = sqlite3VdbeCurrentAddr(v); 854 }else if( pSelect ){ 855 /* This block codes the top of loop only. The complete loop is the 856 ** following pseudocode (template 3): 857 ** 858 ** C: yield X, at EOF goto D 859 ** insert the select result into <table> from R..R+n 860 ** goto C 861 ** D: ... 862 */ 863 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 864 VdbeCoverage(v); 865 } 866 867 /* Run the BEFORE and INSTEAD OF triggers, if there are any 868 */ 869 endOfLoop = sqlite3VdbeMakeLabel(v); 870 if( tmask & TRIGGER_BEFORE ){ 871 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 872 873 /* build the NEW.* reference row. Note that if there is an INTEGER 874 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 875 ** translated into a unique ID for the row. But on a BEFORE trigger, 876 ** we do not know what the unique ID will be (because the insert has 877 ** not happened yet) so we substitute a rowid of -1 878 */ 879 if( ipkColumn<0 ){ 880 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 881 }else{ 882 int addr1; 883 assert( !withoutRowid ); 884 if( useTempTable ){ 885 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 886 }else{ 887 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 888 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 889 } 890 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 891 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 892 sqlite3VdbeJumpHere(v, addr1); 893 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 894 } 895 896 /* Cannot have triggers on a virtual table. If it were possible, 897 ** this block would have to account for hidden column. 898 */ 899 assert( !IsVirtual(pTab) ); 900 901 /* Create the new column data 902 */ 903 for(i=j=0; i<pTab->nCol; i++){ 904 if( pColumn ){ 905 for(j=0; j<pColumn->nId; j++){ 906 if( pColumn->a[j].idx==i ) break; 907 } 908 } 909 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 910 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 911 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 912 }else if( useTempTable ){ 913 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 914 }else{ 915 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 916 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 917 } 918 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 919 } 920 921 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 922 ** do not attempt any conversions before assembling the record. 923 ** If this is a real table, attempt conversions as required by the 924 ** table column affinities. 925 */ 926 if( !isView ){ 927 sqlite3TableAffinity(v, pTab, regCols+1); 928 } 929 930 /* Fire BEFORE or INSTEAD OF triggers */ 931 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 932 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 933 934 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 935 } 936 937 /* Compute the content of the next row to insert into a range of 938 ** registers beginning at regIns. 939 */ 940 if( !isView ){ 941 if( IsVirtual(pTab) ){ 942 /* The row that the VUpdate opcode will delete: none */ 943 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 944 } 945 if( ipkColumn>=0 ){ 946 if( useTempTable ){ 947 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 948 }else if( pSelect ){ 949 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 950 }else{ 951 VdbeOp *pOp; 952 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 953 pOp = sqlite3VdbeGetOp(v, -1); 954 assert( pOp!=0 ); 955 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 956 appendFlag = 1; 957 pOp->opcode = OP_NewRowid; 958 pOp->p1 = iDataCur; 959 pOp->p2 = regRowid; 960 pOp->p3 = regAutoinc; 961 } 962 } 963 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 964 ** to generate a unique primary key value. 965 */ 966 if( !appendFlag ){ 967 int addr1; 968 if( !IsVirtual(pTab) ){ 969 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 970 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 971 sqlite3VdbeJumpHere(v, addr1); 972 }else{ 973 addr1 = sqlite3VdbeCurrentAddr(v); 974 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 975 } 976 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 977 } 978 }else if( IsVirtual(pTab) || withoutRowid ){ 979 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 980 }else{ 981 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 982 appendFlag = 1; 983 } 984 autoIncStep(pParse, regAutoinc, regRowid); 985 986 /* Compute data for all columns of the new entry, beginning 987 ** with the first column. 988 */ 989 nHidden = 0; 990 for(i=0; i<pTab->nCol; i++){ 991 int iRegStore = regRowid+1+i; 992 if( i==pTab->iPKey ){ 993 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 994 ** Whenever this column is read, the rowid will be substituted 995 ** in its place. Hence, fill this column with a NULL to avoid 996 ** taking up data space with information that will never be used. 997 ** As there may be shallow copies of this value, make it a soft-NULL */ 998 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 999 continue; 1000 } 1001 if( pColumn==0 ){ 1002 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1003 j = -1; 1004 nHidden++; 1005 }else{ 1006 j = i - nHidden; 1007 } 1008 }else{ 1009 for(j=0; j<pColumn->nId; j++){ 1010 if( pColumn->a[j].idx==i ) break; 1011 } 1012 } 1013 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1014 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1015 }else if( useTempTable ){ 1016 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1017 }else if( pSelect ){ 1018 if( regFromSelect!=regData ){ 1019 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1020 } 1021 }else{ 1022 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1023 } 1024 } 1025 1026 /* Generate code to check constraints and generate index keys and 1027 ** do the insertion. 1028 */ 1029 #ifndef SQLITE_OMIT_VIRTUALTABLE 1030 if( IsVirtual(pTab) ){ 1031 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1032 sqlite3VtabMakeWritable(pParse, pTab); 1033 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1034 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1035 sqlite3MayAbort(pParse); 1036 }else 1037 #endif 1038 { 1039 int isReplace; /* Set to true if constraints may cause a replace */ 1040 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1041 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1042 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1043 ); 1044 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1045 1046 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1047 ** constraints or (b) there are no triggers and this table is not a 1048 ** parent table in a foreign key constraint. It is safe to set the 1049 ** flag in the second case as if any REPLACE constraint is hit, an 1050 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1051 ** cursor that is disturbed. And these instructions both clear the 1052 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1053 ** functionality. */ 1054 bUseSeek = (isReplace==0 || (pTrigger==0 && 1055 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1056 )); 1057 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1058 regIns, aRegIdx, 0, appendFlag, bUseSeek 1059 ); 1060 } 1061 } 1062 1063 /* Update the count of rows that are inserted 1064 */ 1065 if( regRowCount ){ 1066 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1067 } 1068 1069 if( pTrigger ){ 1070 /* Code AFTER triggers */ 1071 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1072 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1073 } 1074 1075 /* The bottom of the main insertion loop, if the data source 1076 ** is a SELECT statement. 1077 */ 1078 sqlite3VdbeResolveLabel(v, endOfLoop); 1079 if( useTempTable ){ 1080 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1081 sqlite3VdbeJumpHere(v, addrInsTop); 1082 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1083 }else if( pSelect ){ 1084 sqlite3VdbeGoto(v, addrCont); 1085 sqlite3VdbeJumpHere(v, addrInsTop); 1086 } 1087 1088 insert_end: 1089 /* Update the sqlite_sequence table by storing the content of the 1090 ** maximum rowid counter values recorded while inserting into 1091 ** autoincrement tables. 1092 */ 1093 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1094 sqlite3AutoincrementEnd(pParse); 1095 } 1096 1097 /* 1098 ** Return the number of rows inserted. If this routine is 1099 ** generating code because of a call to sqlite3NestedParse(), do not 1100 ** invoke the callback function. 1101 */ 1102 if( regRowCount ){ 1103 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1104 sqlite3VdbeSetNumCols(v, 1); 1105 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1106 } 1107 1108 insert_cleanup: 1109 sqlite3SrcListDelete(db, pTabList); 1110 sqlite3ExprListDelete(db, pList); 1111 sqlite3UpsertDelete(db, pUpsert); 1112 sqlite3SelectDelete(db, pSelect); 1113 sqlite3IdListDelete(db, pColumn); 1114 sqlite3DbFree(db, aRegIdx); 1115 } 1116 1117 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1118 ** they may interfere with compilation of other functions in this file 1119 ** (or in another file, if this file becomes part of the amalgamation). */ 1120 #ifdef isView 1121 #undef isView 1122 #endif 1123 #ifdef pTrigger 1124 #undef pTrigger 1125 #endif 1126 #ifdef tmask 1127 #undef tmask 1128 #endif 1129 1130 /* 1131 ** Meanings of bits in of pWalker->eCode for 1132 ** sqlite3ExprReferencesUpdatedColumn() 1133 */ 1134 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1135 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1136 1137 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1138 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1139 ** expression node references any of the 1140 ** columns that are being modifed by an UPDATE statement. 1141 */ 1142 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1143 if( pExpr->op==TK_COLUMN ){ 1144 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1145 if( pExpr->iColumn>=0 ){ 1146 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1147 pWalker->eCode |= CKCNSTRNT_COLUMN; 1148 } 1149 }else{ 1150 pWalker->eCode |= CKCNSTRNT_ROWID; 1151 } 1152 } 1153 return WRC_Continue; 1154 } 1155 1156 /* 1157 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1158 ** only columns that are modified by the UPDATE are those for which 1159 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1160 ** 1161 ** Return true if CHECK constraint pExpr uses any of the 1162 ** changing columns (or the rowid if it is changing). In other words, 1163 ** return true if this CHECK constraint must be validated for 1164 ** the new row in the UPDATE statement. 1165 ** 1166 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1167 ** The operation of this routine is the same - return true if an only if 1168 ** the expression uses one or more of columns identified by the second and 1169 ** third arguments. 1170 */ 1171 int sqlite3ExprReferencesUpdatedColumn( 1172 Expr *pExpr, /* The expression to be checked */ 1173 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1174 int chngRowid /* True if UPDATE changes the rowid */ 1175 ){ 1176 Walker w; 1177 memset(&w, 0, sizeof(w)); 1178 w.eCode = 0; 1179 w.xExprCallback = checkConstraintExprNode; 1180 w.u.aiCol = aiChng; 1181 sqlite3WalkExpr(&w, pExpr); 1182 if( !chngRowid ){ 1183 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1184 w.eCode &= ~CKCNSTRNT_ROWID; 1185 } 1186 testcase( w.eCode==0 ); 1187 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1188 testcase( w.eCode==CKCNSTRNT_ROWID ); 1189 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1190 return w.eCode!=0; 1191 } 1192 1193 /* 1194 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1195 ** on table pTab. 1196 ** 1197 ** The regNewData parameter is the first register in a range that contains 1198 ** the data to be inserted or the data after the update. There will be 1199 ** pTab->nCol+1 registers in this range. The first register (the one 1200 ** that regNewData points to) will contain the new rowid, or NULL in the 1201 ** case of a WITHOUT ROWID table. The second register in the range will 1202 ** contain the content of the first table column. The third register will 1203 ** contain the content of the second table column. And so forth. 1204 ** 1205 ** The regOldData parameter is similar to regNewData except that it contains 1206 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1207 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1208 ** checking regOldData for zero. 1209 ** 1210 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1211 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1212 ** might be modified by the UPDATE. If pkChng is false, then the key of 1213 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1214 ** 1215 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1216 ** was explicitly specified as part of the INSERT statement. If pkChng 1217 ** is zero, it means that the either rowid is computed automatically or 1218 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1219 ** pkChng will only be true if the INSERT statement provides an integer 1220 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1221 ** 1222 ** The code generated by this routine will store new index entries into 1223 ** registers identified by aRegIdx[]. No index entry is created for 1224 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1225 ** the same as the order of indices on the linked list of indices 1226 ** at pTab->pIndex. 1227 ** 1228 ** The caller must have already opened writeable cursors on the main 1229 ** table and all applicable indices (that is to say, all indices for which 1230 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1231 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1232 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1233 ** for the first index in the pTab->pIndex list. Cursors for other indices 1234 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1235 ** 1236 ** This routine also generates code to check constraints. NOT NULL, 1237 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1238 ** then the appropriate action is performed. There are five possible 1239 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1240 ** 1241 ** Constraint type Action What Happens 1242 ** --------------- ---------- ---------------------------------------- 1243 ** any ROLLBACK The current transaction is rolled back and 1244 ** sqlite3_step() returns immediately with a 1245 ** return code of SQLITE_CONSTRAINT. 1246 ** 1247 ** any ABORT Back out changes from the current command 1248 ** only (do not do a complete rollback) then 1249 ** cause sqlite3_step() to return immediately 1250 ** with SQLITE_CONSTRAINT. 1251 ** 1252 ** any FAIL Sqlite3_step() returns immediately with a 1253 ** return code of SQLITE_CONSTRAINT. The 1254 ** transaction is not rolled back and any 1255 ** changes to prior rows are retained. 1256 ** 1257 ** any IGNORE The attempt in insert or update the current 1258 ** row is skipped, without throwing an error. 1259 ** Processing continues with the next row. 1260 ** (There is an immediate jump to ignoreDest.) 1261 ** 1262 ** NOT NULL REPLACE The NULL value is replace by the default 1263 ** value for that column. If the default value 1264 ** is NULL, the action is the same as ABORT. 1265 ** 1266 ** UNIQUE REPLACE The other row that conflicts with the row 1267 ** being inserted is removed. 1268 ** 1269 ** CHECK REPLACE Illegal. The results in an exception. 1270 ** 1271 ** Which action to take is determined by the overrideError parameter. 1272 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1273 ** is used. Or if pParse->onError==OE_Default then the onError value 1274 ** for the constraint is used. 1275 */ 1276 void sqlite3GenerateConstraintChecks( 1277 Parse *pParse, /* The parser context */ 1278 Table *pTab, /* The table being inserted or updated */ 1279 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1280 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1281 int iIdxCur, /* First index cursor */ 1282 int regNewData, /* First register in a range holding values to insert */ 1283 int regOldData, /* Previous content. 0 for INSERTs */ 1284 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1285 u8 overrideError, /* Override onError to this if not OE_Default */ 1286 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1287 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1288 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1289 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1290 ){ 1291 Vdbe *v; /* VDBE under constrution */ 1292 Index *pIdx; /* Pointer to one of the indices */ 1293 Index *pPk = 0; /* The PRIMARY KEY index */ 1294 sqlite3 *db; /* Database connection */ 1295 int i; /* loop counter */ 1296 int ix; /* Index loop counter */ 1297 int nCol; /* Number of columns */ 1298 int onError; /* Conflict resolution strategy */ 1299 int addr1; /* Address of jump instruction */ 1300 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1301 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1302 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1303 u8 isUpdate; /* True if this is an UPDATE operation */ 1304 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1305 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1306 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1307 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1308 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1309 1310 isUpdate = regOldData!=0; 1311 db = pParse->db; 1312 v = sqlite3GetVdbe(pParse); 1313 assert( v!=0 ); 1314 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1315 nCol = pTab->nCol; 1316 1317 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1318 ** normal rowid tables. nPkField is the number of key fields in the 1319 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1320 ** number of fields in the true primary key of the table. */ 1321 if( HasRowid(pTab) ){ 1322 pPk = 0; 1323 nPkField = 1; 1324 }else{ 1325 pPk = sqlite3PrimaryKeyIndex(pTab); 1326 nPkField = pPk->nKeyCol; 1327 } 1328 1329 /* Record that this module has started */ 1330 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1331 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1332 1333 /* Test all NOT NULL constraints. 1334 */ 1335 for(i=0; i<nCol; i++){ 1336 if( i==pTab->iPKey ){ 1337 continue; /* ROWID is never NULL */ 1338 } 1339 if( aiChng && aiChng[i]<0 ){ 1340 /* Don't bother checking for NOT NULL on columns that do not change */ 1341 continue; 1342 } 1343 onError = pTab->aCol[i].notNull; 1344 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1345 if( overrideError!=OE_Default ){ 1346 onError = overrideError; 1347 }else if( onError==OE_Default ){ 1348 onError = OE_Abort; 1349 } 1350 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1351 onError = OE_Abort; 1352 } 1353 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1354 || onError==OE_Ignore || onError==OE_Replace ); 1355 addr1 = 0; 1356 switch( onError ){ 1357 case OE_Replace: { 1358 assert( onError==OE_Replace ); 1359 addr1 = sqlite3VdbeMakeLabel(v); 1360 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1361 VdbeCoverage(v); 1362 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1363 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1364 VdbeCoverage(v); 1365 onError = OE_Abort; 1366 /* Fall through into the OE_Abort case to generate code that runs 1367 ** if both the input and the default value are NULL */ 1368 } 1369 case OE_Abort: 1370 sqlite3MayAbort(pParse); 1371 /* Fall through */ 1372 case OE_Rollback: 1373 case OE_Fail: { 1374 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1375 pTab->aCol[i].zName); 1376 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1377 regNewData+1+i); 1378 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1379 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1380 VdbeCoverage(v); 1381 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1382 break; 1383 } 1384 default: { 1385 assert( onError==OE_Ignore ); 1386 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1387 VdbeCoverage(v); 1388 break; 1389 } 1390 } 1391 } 1392 1393 /* Test all CHECK constraints 1394 */ 1395 #ifndef SQLITE_OMIT_CHECK 1396 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1397 ExprList *pCheck = pTab->pCheck; 1398 pParse->iSelfTab = -(regNewData+1); 1399 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1400 for(i=0; i<pCheck->nExpr; i++){ 1401 int allOk; 1402 Expr *pExpr = pCheck->a[i].pExpr; 1403 if( aiChng 1404 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1405 ){ 1406 /* The check constraints do not reference any of the columns being 1407 ** updated so there is no point it verifying the check constraint */ 1408 continue; 1409 } 1410 allOk = sqlite3VdbeMakeLabel(v); 1411 sqlite3VdbeVerifyAbortable(v, onError); 1412 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1413 if( onError==OE_Ignore ){ 1414 sqlite3VdbeGoto(v, ignoreDest); 1415 }else{ 1416 char *zName = pCheck->a[i].zName; 1417 if( zName==0 ) zName = pTab->zName; 1418 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1419 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1420 onError, zName, P4_TRANSIENT, 1421 P5_ConstraintCheck); 1422 } 1423 sqlite3VdbeResolveLabel(v, allOk); 1424 } 1425 pParse->iSelfTab = 0; 1426 } 1427 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1428 1429 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1430 ** order: 1431 ** 1432 ** (1) OE_Update 1433 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1434 ** (3) OE_Replace 1435 ** 1436 ** OE_Fail and OE_Ignore must happen before any changes are made. 1437 ** OE_Update guarantees that only a single row will change, so it 1438 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1439 ** could happen in any order, but they are grouped up front for 1440 ** convenience. 1441 ** 1442 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1443 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1444 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1445 ** constraint before any others, so it had to be moved. 1446 ** 1447 ** Constraint checking code is generated in this order: 1448 ** (A) The rowid constraint 1449 ** (B) Unique index constraints that do not have OE_Replace as their 1450 ** default conflict resolution strategy 1451 ** (C) Unique index that do use OE_Replace by default. 1452 ** 1453 ** The ordering of (2) and (3) is accomplished by making sure the linked 1454 ** list of indexes attached to a table puts all OE_Replace indexes last 1455 ** in the list. See sqlite3CreateIndex() for where that happens. 1456 */ 1457 1458 if( pUpsert ){ 1459 if( pUpsert->pUpsertTarget==0 ){ 1460 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1461 ** Make all unique constraint resolution be OE_Ignore */ 1462 assert( pUpsert->pUpsertSet==0 ); 1463 overrideError = OE_Ignore; 1464 pUpsert = 0; 1465 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1466 /* If the constraint-target uniqueness check must be run first. 1467 ** Jump to that uniqueness check now */ 1468 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1469 VdbeComment((v, "UPSERT constraint goes first")); 1470 } 1471 } 1472 1473 /* If rowid is changing, make sure the new rowid does not previously 1474 ** exist in the table. 1475 */ 1476 if( pkChng && pPk==0 ){ 1477 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1478 1479 /* Figure out what action to take in case of a rowid collision */ 1480 onError = pTab->keyConf; 1481 if( overrideError!=OE_Default ){ 1482 onError = overrideError; 1483 }else if( onError==OE_Default ){ 1484 onError = OE_Abort; 1485 } 1486 1487 /* figure out whether or not upsert applies in this case */ 1488 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1489 if( pUpsert->pUpsertSet==0 ){ 1490 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1491 }else{ 1492 onError = OE_Update; /* DO UPDATE */ 1493 } 1494 } 1495 1496 /* If the response to a rowid conflict is REPLACE but the response 1497 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1498 ** to defer the running of the rowid conflict checking until after 1499 ** the UNIQUE constraints have run. 1500 */ 1501 if( onError==OE_Replace /* IPK rule is REPLACE */ 1502 && onError!=overrideError /* Rules for other contraints are different */ 1503 && pTab->pIndex /* There exist other constraints */ 1504 ){ 1505 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1506 VdbeComment((v, "defer IPK REPLACE until last")); 1507 } 1508 1509 if( isUpdate ){ 1510 /* pkChng!=0 does not mean that the rowid has changed, only that 1511 ** it might have changed. Skip the conflict logic below if the rowid 1512 ** is unchanged. */ 1513 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1514 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1515 VdbeCoverage(v); 1516 } 1517 1518 /* Check to see if the new rowid already exists in the table. Skip 1519 ** the following conflict logic if it does not. */ 1520 VdbeNoopComment((v, "uniqueness check for ROWID")); 1521 sqlite3VdbeVerifyAbortable(v, onError); 1522 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1523 VdbeCoverage(v); 1524 1525 switch( onError ){ 1526 default: { 1527 onError = OE_Abort; 1528 /* Fall thru into the next case */ 1529 } 1530 case OE_Rollback: 1531 case OE_Abort: 1532 case OE_Fail: { 1533 testcase( onError==OE_Rollback ); 1534 testcase( onError==OE_Abort ); 1535 testcase( onError==OE_Fail ); 1536 sqlite3RowidConstraint(pParse, onError, pTab); 1537 break; 1538 } 1539 case OE_Replace: { 1540 /* If there are DELETE triggers on this table and the 1541 ** recursive-triggers flag is set, call GenerateRowDelete() to 1542 ** remove the conflicting row from the table. This will fire 1543 ** the triggers and remove both the table and index b-tree entries. 1544 ** 1545 ** Otherwise, if there are no triggers or the recursive-triggers 1546 ** flag is not set, but the table has one or more indexes, call 1547 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1548 ** only. The table b-tree entry will be replaced by the new entry 1549 ** when it is inserted. 1550 ** 1551 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1552 ** also invoke MultiWrite() to indicate that this VDBE may require 1553 ** statement rollback (if the statement is aborted after the delete 1554 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1555 ** but being more selective here allows statements like: 1556 ** 1557 ** REPLACE INTO t(rowid) VALUES($newrowid) 1558 ** 1559 ** to run without a statement journal if there are no indexes on the 1560 ** table. 1561 */ 1562 Trigger *pTrigger = 0; 1563 if( db->flags&SQLITE_RecTriggers ){ 1564 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1565 } 1566 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1567 sqlite3MultiWrite(pParse); 1568 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1569 regNewData, 1, 0, OE_Replace, 1, -1); 1570 }else{ 1571 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1572 assert( HasRowid(pTab) ); 1573 /* This OP_Delete opcode fires the pre-update-hook only. It does 1574 ** not modify the b-tree. It is more efficient to let the coming 1575 ** OP_Insert replace the existing entry than it is to delete the 1576 ** existing entry and then insert a new one. */ 1577 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1578 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1579 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1580 if( pTab->pIndex ){ 1581 sqlite3MultiWrite(pParse); 1582 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1583 } 1584 } 1585 seenReplace = 1; 1586 break; 1587 } 1588 #ifndef SQLITE_OMIT_UPSERT 1589 case OE_Update: { 1590 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1591 /* Fall through */ 1592 } 1593 #endif 1594 case OE_Ignore: { 1595 testcase( onError==OE_Ignore ); 1596 sqlite3VdbeGoto(v, ignoreDest); 1597 break; 1598 } 1599 } 1600 sqlite3VdbeResolveLabel(v, addrRowidOk); 1601 if( ipkTop ){ 1602 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1603 sqlite3VdbeJumpHere(v, ipkTop-1); 1604 } 1605 } 1606 1607 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1608 ** index and making sure that duplicate entries do not already exist. 1609 ** Compute the revised record entries for indices as we go. 1610 ** 1611 ** This loop also handles the case of the PRIMARY KEY index for a 1612 ** WITHOUT ROWID table. 1613 */ 1614 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1615 int regIdx; /* Range of registers hold conent for pIdx */ 1616 int regR; /* Range of registers holding conflicting PK */ 1617 int iThisCur; /* Cursor for this UNIQUE index */ 1618 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1619 1620 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1621 if( pUpIdx==pIdx ){ 1622 addrUniqueOk = upsertJump+1; 1623 upsertBypass = sqlite3VdbeGoto(v, 0); 1624 VdbeComment((v, "Skip upsert subroutine")); 1625 sqlite3VdbeJumpHere(v, upsertJump); 1626 }else{ 1627 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1628 } 1629 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1630 sqlite3TableAffinity(v, pTab, regNewData+1); 1631 bAffinityDone = 1; 1632 } 1633 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1634 iThisCur = iIdxCur+ix; 1635 1636 1637 /* Skip partial indices for which the WHERE clause is not true */ 1638 if( pIdx->pPartIdxWhere ){ 1639 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1640 pParse->iSelfTab = -(regNewData+1); 1641 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1642 SQLITE_JUMPIFNULL); 1643 pParse->iSelfTab = 0; 1644 } 1645 1646 /* Create a record for this index entry as it should appear after 1647 ** the insert or update. Store that record in the aRegIdx[ix] register 1648 */ 1649 regIdx = aRegIdx[ix]+1; 1650 for(i=0; i<pIdx->nColumn; i++){ 1651 int iField = pIdx->aiColumn[i]; 1652 int x; 1653 if( iField==XN_EXPR ){ 1654 pParse->iSelfTab = -(regNewData+1); 1655 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1656 pParse->iSelfTab = 0; 1657 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1658 }else{ 1659 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1660 x = regNewData; 1661 }else{ 1662 x = iField + regNewData + 1; 1663 } 1664 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1665 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1666 } 1667 } 1668 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1669 VdbeComment((v, "for %s", pIdx->zName)); 1670 #ifdef SQLITE_ENABLE_NULL_TRIM 1671 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1672 #endif 1673 1674 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1675 ** of a WITHOUT ROWID table and there has been no change the 1676 ** primary key, then no collision is possible. The collision detection 1677 ** logic below can all be skipped. */ 1678 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1679 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1680 continue; 1681 } 1682 1683 /* Find out what action to take in case there is a uniqueness conflict */ 1684 onError = pIdx->onError; 1685 if( onError==OE_None ){ 1686 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1687 continue; /* pIdx is not a UNIQUE index */ 1688 } 1689 if( overrideError!=OE_Default ){ 1690 onError = overrideError; 1691 }else if( onError==OE_Default ){ 1692 onError = OE_Abort; 1693 } 1694 1695 /* Figure out if the upsert clause applies to this index */ 1696 if( pUpIdx==pIdx ){ 1697 if( pUpsert->pUpsertSet==0 ){ 1698 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1699 }else{ 1700 onError = OE_Update; /* DO UPDATE */ 1701 } 1702 } 1703 1704 /* Collision detection may be omitted if all of the following are true: 1705 ** (1) The conflict resolution algorithm is REPLACE 1706 ** (2) The table is a WITHOUT ROWID table 1707 ** (3) There are no secondary indexes on the table 1708 ** (4) No delete triggers need to be fired if there is a conflict 1709 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1710 */ 1711 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1712 && pPk==pIdx /* Condition 2 */ 1713 && onError==OE_Replace /* Condition 1 */ 1714 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1715 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1716 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1717 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1718 ){ 1719 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1720 continue; 1721 } 1722 1723 /* Check to see if the new index entry will be unique */ 1724 sqlite3VdbeVerifyAbortable(v, onError); 1725 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1726 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1727 1728 /* Generate code to handle collisions */ 1729 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1730 if( isUpdate || onError==OE_Replace ){ 1731 if( HasRowid(pTab) ){ 1732 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1733 /* Conflict only if the rowid of the existing index entry 1734 ** is different from old-rowid */ 1735 if( isUpdate ){ 1736 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1737 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1738 VdbeCoverage(v); 1739 } 1740 }else{ 1741 int x; 1742 /* Extract the PRIMARY KEY from the end of the index entry and 1743 ** store it in registers regR..regR+nPk-1 */ 1744 if( pIdx!=pPk ){ 1745 for(i=0; i<pPk->nKeyCol; i++){ 1746 assert( pPk->aiColumn[i]>=0 ); 1747 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1748 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1749 VdbeComment((v, "%s.%s", pTab->zName, 1750 pTab->aCol[pPk->aiColumn[i]].zName)); 1751 } 1752 } 1753 if( isUpdate ){ 1754 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1755 ** table, only conflict if the new PRIMARY KEY values are actually 1756 ** different from the old. 1757 ** 1758 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1759 ** of the matched index row are different from the original PRIMARY 1760 ** KEY values of this row before the update. */ 1761 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1762 int op = OP_Ne; 1763 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1764 1765 for(i=0; i<pPk->nKeyCol; i++){ 1766 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1767 x = pPk->aiColumn[i]; 1768 assert( x>=0 ); 1769 if( i==(pPk->nKeyCol-1) ){ 1770 addrJump = addrUniqueOk; 1771 op = OP_Eq; 1772 } 1773 sqlite3VdbeAddOp4(v, op, 1774 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1775 ); 1776 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1777 VdbeCoverageIf(v, op==OP_Eq); 1778 VdbeCoverageIf(v, op==OP_Ne); 1779 } 1780 } 1781 } 1782 } 1783 1784 /* Generate code that executes if the new index entry is not unique */ 1785 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1786 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1787 switch( onError ){ 1788 case OE_Rollback: 1789 case OE_Abort: 1790 case OE_Fail: { 1791 testcase( onError==OE_Rollback ); 1792 testcase( onError==OE_Abort ); 1793 testcase( onError==OE_Fail ); 1794 sqlite3UniqueConstraint(pParse, onError, pIdx); 1795 break; 1796 } 1797 #ifndef SQLITE_OMIT_UPSERT 1798 case OE_Update: { 1799 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1800 /* Fall through */ 1801 } 1802 #endif 1803 case OE_Ignore: { 1804 testcase( onError==OE_Ignore ); 1805 sqlite3VdbeGoto(v, ignoreDest); 1806 break; 1807 } 1808 default: { 1809 Trigger *pTrigger = 0; 1810 assert( onError==OE_Replace ); 1811 if( db->flags&SQLITE_RecTriggers ){ 1812 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1813 } 1814 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1815 sqlite3MultiWrite(pParse); 1816 } 1817 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1818 regR, nPkField, 0, OE_Replace, 1819 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1820 seenReplace = 1; 1821 break; 1822 } 1823 } 1824 if( pUpIdx==pIdx ){ 1825 sqlite3VdbeGoto(v, upsertJump+1); 1826 sqlite3VdbeJumpHere(v, upsertBypass); 1827 }else{ 1828 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1829 } 1830 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1831 } 1832 1833 /* If the IPK constraint is a REPLACE, run it last */ 1834 if( ipkTop ){ 1835 sqlite3VdbeGoto(v, ipkTop+1); 1836 VdbeComment((v, "Do IPK REPLACE")); 1837 sqlite3VdbeJumpHere(v, ipkBottom); 1838 } 1839 1840 *pbMayReplace = seenReplace; 1841 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1842 } 1843 1844 #ifdef SQLITE_ENABLE_NULL_TRIM 1845 /* 1846 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1847 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1848 ** 1849 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1850 */ 1851 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1852 u16 i; 1853 1854 /* Records with omitted columns are only allowed for schema format 1855 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1856 if( pTab->pSchema->file_format<2 ) return; 1857 1858 for(i=pTab->nCol-1; i>0; i--){ 1859 if( pTab->aCol[i].pDflt!=0 ) break; 1860 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1861 } 1862 sqlite3VdbeChangeP5(v, i+1); 1863 } 1864 #endif 1865 1866 /* 1867 ** This routine generates code to finish the INSERT or UPDATE operation 1868 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1869 ** A consecutive range of registers starting at regNewData contains the 1870 ** rowid and the content to be inserted. 1871 ** 1872 ** The arguments to this routine should be the same as the first six 1873 ** arguments to sqlite3GenerateConstraintChecks. 1874 */ 1875 void sqlite3CompleteInsertion( 1876 Parse *pParse, /* The parser context */ 1877 Table *pTab, /* the table into which we are inserting */ 1878 int iDataCur, /* Cursor of the canonical data source */ 1879 int iIdxCur, /* First index cursor */ 1880 int regNewData, /* Range of content */ 1881 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1882 int update_flags, /* True for UPDATE, False for INSERT */ 1883 int appendBias, /* True if this is likely to be an append */ 1884 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1885 ){ 1886 Vdbe *v; /* Prepared statements under construction */ 1887 Index *pIdx; /* An index being inserted or updated */ 1888 u8 pik_flags; /* flag values passed to the btree insert */ 1889 int regData; /* Content registers (after the rowid) */ 1890 int regRec; /* Register holding assembled record for the table */ 1891 int i; /* Loop counter */ 1892 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1893 1894 assert( update_flags==0 1895 || update_flags==OPFLAG_ISUPDATE 1896 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1897 ); 1898 1899 v = sqlite3GetVdbe(pParse); 1900 assert( v!=0 ); 1901 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1902 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1903 if( aRegIdx[i]==0 ) continue; 1904 bAffinityDone = 1; 1905 if( pIdx->pPartIdxWhere ){ 1906 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1907 VdbeCoverage(v); 1908 } 1909 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1910 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1911 assert( pParse->nested==0 ); 1912 pik_flags |= OPFLAG_NCHANGE; 1913 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1914 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1915 if( update_flags==0 ){ 1916 sqlite3VdbeAddOp4(v, OP_InsertInt, 1917 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1918 ); 1919 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1920 } 1921 #endif 1922 } 1923 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1924 aRegIdx[i]+1, 1925 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1926 sqlite3VdbeChangeP5(v, pik_flags); 1927 } 1928 if( !HasRowid(pTab) ) return; 1929 regData = regNewData + 1; 1930 regRec = sqlite3GetTempReg(pParse); 1931 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1932 sqlite3SetMakeRecordP5(v, pTab); 1933 if( !bAffinityDone ){ 1934 sqlite3TableAffinity(v, pTab, 0); 1935 } 1936 if( pParse->nested ){ 1937 pik_flags = 0; 1938 }else{ 1939 pik_flags = OPFLAG_NCHANGE; 1940 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1941 } 1942 if( appendBias ){ 1943 pik_flags |= OPFLAG_APPEND; 1944 } 1945 if( useSeekResult ){ 1946 pik_flags |= OPFLAG_USESEEKRESULT; 1947 } 1948 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1949 if( !pParse->nested ){ 1950 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1951 } 1952 sqlite3VdbeChangeP5(v, pik_flags); 1953 } 1954 1955 /* 1956 ** Allocate cursors for the pTab table and all its indices and generate 1957 ** code to open and initialized those cursors. 1958 ** 1959 ** The cursor for the object that contains the complete data (normally 1960 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1961 ** ROWID table) is returned in *piDataCur. The first index cursor is 1962 ** returned in *piIdxCur. The number of indices is returned. 1963 ** 1964 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1965 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1966 ** If iBase is negative, then allocate the next available cursor. 1967 ** 1968 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1969 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1970 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1971 ** pTab->pIndex list. 1972 ** 1973 ** If pTab is a virtual table, then this routine is a no-op and the 1974 ** *piDataCur and *piIdxCur values are left uninitialized. 1975 */ 1976 int sqlite3OpenTableAndIndices( 1977 Parse *pParse, /* Parsing context */ 1978 Table *pTab, /* Table to be opened */ 1979 int op, /* OP_OpenRead or OP_OpenWrite */ 1980 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1981 int iBase, /* Use this for the table cursor, if there is one */ 1982 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1983 int *piDataCur, /* Write the database source cursor number here */ 1984 int *piIdxCur /* Write the first index cursor number here */ 1985 ){ 1986 int i; 1987 int iDb; 1988 int iDataCur; 1989 Index *pIdx; 1990 Vdbe *v; 1991 1992 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1993 assert( op==OP_OpenWrite || p5==0 ); 1994 if( IsVirtual(pTab) ){ 1995 /* This routine is a no-op for virtual tables. Leave the output 1996 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1997 ** can detect if they are used by mistake in the caller. */ 1998 return 0; 1999 } 2000 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2001 v = sqlite3GetVdbe(pParse); 2002 assert( v!=0 ); 2003 if( iBase<0 ) iBase = pParse->nTab; 2004 iDataCur = iBase++; 2005 if( piDataCur ) *piDataCur = iDataCur; 2006 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2007 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2008 }else{ 2009 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2010 } 2011 if( piIdxCur ) *piIdxCur = iBase; 2012 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2013 int iIdxCur = iBase++; 2014 assert( pIdx->pSchema==pTab->pSchema ); 2015 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2016 if( piDataCur ) *piDataCur = iIdxCur; 2017 p5 = 0; 2018 } 2019 if( aToOpen==0 || aToOpen[i+1] ){ 2020 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2021 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2022 sqlite3VdbeChangeP5(v, p5); 2023 VdbeComment((v, "%s", pIdx->zName)); 2024 } 2025 } 2026 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2027 return i; 2028 } 2029 2030 2031 #ifdef SQLITE_TEST 2032 /* 2033 ** The following global variable is incremented whenever the 2034 ** transfer optimization is used. This is used for testing 2035 ** purposes only - to make sure the transfer optimization really 2036 ** is happening when it is supposed to. 2037 */ 2038 int sqlite3_xferopt_count; 2039 #endif /* SQLITE_TEST */ 2040 2041 2042 #ifndef SQLITE_OMIT_XFER_OPT 2043 /* 2044 ** Check to see if index pSrc is compatible as a source of data 2045 ** for index pDest in an insert transfer optimization. The rules 2046 ** for a compatible index: 2047 ** 2048 ** * The index is over the same set of columns 2049 ** * The same DESC and ASC markings occurs on all columns 2050 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2051 ** * The same collating sequence on each column 2052 ** * The index has the exact same WHERE clause 2053 */ 2054 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2055 int i; 2056 assert( pDest && pSrc ); 2057 assert( pDest->pTable!=pSrc->pTable ); 2058 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2059 return 0; /* Different number of columns */ 2060 } 2061 if( pDest->onError!=pSrc->onError ){ 2062 return 0; /* Different conflict resolution strategies */ 2063 } 2064 for(i=0; i<pSrc->nKeyCol; i++){ 2065 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2066 return 0; /* Different columns indexed */ 2067 } 2068 if( pSrc->aiColumn[i]==XN_EXPR ){ 2069 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2070 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2071 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2072 return 0; /* Different expressions in the index */ 2073 } 2074 } 2075 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2076 return 0; /* Different sort orders */ 2077 } 2078 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2079 return 0; /* Different collating sequences */ 2080 } 2081 } 2082 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2083 return 0; /* Different WHERE clauses */ 2084 } 2085 2086 /* If no test above fails then the indices must be compatible */ 2087 return 1; 2088 } 2089 2090 /* 2091 ** Attempt the transfer optimization on INSERTs of the form 2092 ** 2093 ** INSERT INTO tab1 SELECT * FROM tab2; 2094 ** 2095 ** The xfer optimization transfers raw records from tab2 over to tab1. 2096 ** Columns are not decoded and reassembled, which greatly improves 2097 ** performance. Raw index records are transferred in the same way. 2098 ** 2099 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2100 ** There are lots of rules for determining compatibility - see comments 2101 ** embedded in the code for details. 2102 ** 2103 ** This routine returns TRUE if the optimization is guaranteed to be used. 2104 ** Sometimes the xfer optimization will only work if the destination table 2105 ** is empty - a factor that can only be determined at run-time. In that 2106 ** case, this routine generates code for the xfer optimization but also 2107 ** does a test to see if the destination table is empty and jumps over the 2108 ** xfer optimization code if the test fails. In that case, this routine 2109 ** returns FALSE so that the caller will know to go ahead and generate 2110 ** an unoptimized transfer. This routine also returns FALSE if there 2111 ** is no chance that the xfer optimization can be applied. 2112 ** 2113 ** This optimization is particularly useful at making VACUUM run faster. 2114 */ 2115 static int xferOptimization( 2116 Parse *pParse, /* Parser context */ 2117 Table *pDest, /* The table we are inserting into */ 2118 Select *pSelect, /* A SELECT statement to use as the data source */ 2119 int onError, /* How to handle constraint errors */ 2120 int iDbDest /* The database of pDest */ 2121 ){ 2122 sqlite3 *db = pParse->db; 2123 ExprList *pEList; /* The result set of the SELECT */ 2124 Table *pSrc; /* The table in the FROM clause of SELECT */ 2125 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2126 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2127 int i; /* Loop counter */ 2128 int iDbSrc; /* The database of pSrc */ 2129 int iSrc, iDest; /* Cursors from source and destination */ 2130 int addr1, addr2; /* Loop addresses */ 2131 int emptyDestTest = 0; /* Address of test for empty pDest */ 2132 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2133 Vdbe *v; /* The VDBE we are building */ 2134 int regAutoinc; /* Memory register used by AUTOINC */ 2135 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2136 int regData, regRowid; /* Registers holding data and rowid */ 2137 2138 if( pSelect==0 ){ 2139 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2140 } 2141 if( pParse->pWith || pSelect->pWith ){ 2142 /* Do not attempt to process this query if there are an WITH clauses 2143 ** attached to it. Proceeding may generate a false "no such table: xxx" 2144 ** error if pSelect reads from a CTE named "xxx". */ 2145 return 0; 2146 } 2147 if( sqlite3TriggerList(pParse, pDest) ){ 2148 return 0; /* tab1 must not have triggers */ 2149 } 2150 #ifndef SQLITE_OMIT_VIRTUALTABLE 2151 if( IsVirtual(pDest) ){ 2152 return 0; /* tab1 must not be a virtual table */ 2153 } 2154 #endif 2155 if( onError==OE_Default ){ 2156 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2157 if( onError==OE_Default ) onError = OE_Abort; 2158 } 2159 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2160 if( pSelect->pSrc->nSrc!=1 ){ 2161 return 0; /* FROM clause must have exactly one term */ 2162 } 2163 if( pSelect->pSrc->a[0].pSelect ){ 2164 return 0; /* FROM clause cannot contain a subquery */ 2165 } 2166 if( pSelect->pWhere ){ 2167 return 0; /* SELECT may not have a WHERE clause */ 2168 } 2169 if( pSelect->pOrderBy ){ 2170 return 0; /* SELECT may not have an ORDER BY clause */ 2171 } 2172 /* Do not need to test for a HAVING clause. If HAVING is present but 2173 ** there is no ORDER BY, we will get an error. */ 2174 if( pSelect->pGroupBy ){ 2175 return 0; /* SELECT may not have a GROUP BY clause */ 2176 } 2177 if( pSelect->pLimit ){ 2178 return 0; /* SELECT may not have a LIMIT clause */ 2179 } 2180 if( pSelect->pPrior ){ 2181 return 0; /* SELECT may not be a compound query */ 2182 } 2183 if( pSelect->selFlags & SF_Distinct ){ 2184 return 0; /* SELECT may not be DISTINCT */ 2185 } 2186 pEList = pSelect->pEList; 2187 assert( pEList!=0 ); 2188 if( pEList->nExpr!=1 ){ 2189 return 0; /* The result set must have exactly one column */ 2190 } 2191 assert( pEList->a[0].pExpr ); 2192 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2193 return 0; /* The result set must be the special operator "*" */ 2194 } 2195 2196 /* At this point we have established that the statement is of the 2197 ** correct syntactic form to participate in this optimization. Now 2198 ** we have to check the semantics. 2199 */ 2200 pItem = pSelect->pSrc->a; 2201 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2202 if( pSrc==0 ){ 2203 return 0; /* FROM clause does not contain a real table */ 2204 } 2205 if( pSrc==pDest ){ 2206 return 0; /* tab1 and tab2 may not be the same table */ 2207 } 2208 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2209 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2210 } 2211 #ifndef SQLITE_OMIT_VIRTUALTABLE 2212 if( IsVirtual(pSrc) ){ 2213 return 0; /* tab2 must not be a virtual table */ 2214 } 2215 #endif 2216 if( pSrc->pSelect ){ 2217 return 0; /* tab2 may not be a view */ 2218 } 2219 if( pDest->nCol!=pSrc->nCol ){ 2220 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2221 } 2222 if( pDest->iPKey!=pSrc->iPKey ){ 2223 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2224 } 2225 for(i=0; i<pDest->nCol; i++){ 2226 Column *pDestCol = &pDest->aCol[i]; 2227 Column *pSrcCol = &pSrc->aCol[i]; 2228 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2229 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2230 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2231 ){ 2232 return 0; /* Neither table may have __hidden__ columns */ 2233 } 2234 #endif 2235 if( pDestCol->affinity!=pSrcCol->affinity ){ 2236 return 0; /* Affinity must be the same on all columns */ 2237 } 2238 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2239 return 0; /* Collating sequence must be the same on all columns */ 2240 } 2241 if( pDestCol->notNull && !pSrcCol->notNull ){ 2242 return 0; /* tab2 must be NOT NULL if tab1 is */ 2243 } 2244 /* Default values for second and subsequent columns need to match. */ 2245 if( i>0 ){ 2246 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2247 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2248 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2249 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2250 pSrcCol->pDflt->u.zToken)!=0) 2251 ){ 2252 return 0; /* Default values must be the same for all columns */ 2253 } 2254 } 2255 } 2256 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2257 if( IsUniqueIndex(pDestIdx) ){ 2258 destHasUniqueIdx = 1; 2259 } 2260 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2261 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2262 } 2263 if( pSrcIdx==0 ){ 2264 return 0; /* pDestIdx has no corresponding index in pSrc */ 2265 } 2266 } 2267 #ifndef SQLITE_OMIT_CHECK 2268 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2269 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2270 } 2271 #endif 2272 #ifndef SQLITE_OMIT_FOREIGN_KEY 2273 /* Disallow the transfer optimization if the destination table constains 2274 ** any foreign key constraints. This is more restrictive than necessary. 2275 ** But the main beneficiary of the transfer optimization is the VACUUM 2276 ** command, and the VACUUM command disables foreign key constraints. So 2277 ** the extra complication to make this rule less restrictive is probably 2278 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2279 */ 2280 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2281 return 0; 2282 } 2283 #endif 2284 if( (db->flags & SQLITE_CountRows)!=0 ){ 2285 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2286 } 2287 2288 /* If we get this far, it means that the xfer optimization is at 2289 ** least a possibility, though it might only work if the destination 2290 ** table (tab1) is initially empty. 2291 */ 2292 #ifdef SQLITE_TEST 2293 sqlite3_xferopt_count++; 2294 #endif 2295 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2296 v = sqlite3GetVdbe(pParse); 2297 sqlite3CodeVerifySchema(pParse, iDbSrc); 2298 iSrc = pParse->nTab++; 2299 iDest = pParse->nTab++; 2300 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2301 regData = sqlite3GetTempReg(pParse); 2302 regRowid = sqlite3GetTempReg(pParse); 2303 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2304 assert( HasRowid(pDest) || destHasUniqueIdx ); 2305 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2306 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2307 || destHasUniqueIdx /* (2) */ 2308 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2309 )){ 2310 /* In some circumstances, we are able to run the xfer optimization 2311 ** only if the destination table is initially empty. Unless the 2312 ** DBFLAG_Vacuum flag is set, this block generates code to make 2313 ** that determination. If DBFLAG_Vacuum is set, then the destination 2314 ** table is always empty. 2315 ** 2316 ** Conditions under which the destination must be empty: 2317 ** 2318 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2319 ** (If the destination is not initially empty, the rowid fields 2320 ** of index entries might need to change.) 2321 ** 2322 ** (2) The destination has a unique index. (The xfer optimization 2323 ** is unable to test uniqueness.) 2324 ** 2325 ** (3) onError is something other than OE_Abort and OE_Rollback. 2326 */ 2327 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2328 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2329 sqlite3VdbeJumpHere(v, addr1); 2330 } 2331 if( HasRowid(pSrc) ){ 2332 u8 insFlags; 2333 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2334 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2335 if( pDest->iPKey>=0 ){ 2336 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2337 sqlite3VdbeVerifyAbortable(v, onError); 2338 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2339 VdbeCoverage(v); 2340 sqlite3RowidConstraint(pParse, onError, pDest); 2341 sqlite3VdbeJumpHere(v, addr2); 2342 autoIncStep(pParse, regAutoinc, regRowid); 2343 }else if( pDest->pIndex==0 ){ 2344 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2345 }else{ 2346 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2347 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2348 } 2349 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2350 if( db->mDbFlags & DBFLAG_Vacuum ){ 2351 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2352 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2353 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2354 }else{ 2355 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2356 } 2357 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2358 (char*)pDest, P4_TABLE); 2359 sqlite3VdbeChangeP5(v, insFlags); 2360 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2361 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2362 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2363 }else{ 2364 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2365 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2366 } 2367 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2368 u8 idxInsFlags = 0; 2369 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2370 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2371 } 2372 assert( pSrcIdx ); 2373 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2374 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2375 VdbeComment((v, "%s", pSrcIdx->zName)); 2376 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2377 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2378 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2379 VdbeComment((v, "%s", pDestIdx->zName)); 2380 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2381 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2382 if( db->mDbFlags & DBFLAG_Vacuum ){ 2383 /* This INSERT command is part of a VACUUM operation, which guarantees 2384 ** that the destination table is empty. If all indexed columns use 2385 ** collation sequence BINARY, then it can also be assumed that the 2386 ** index will be populated by inserting keys in strictly sorted 2387 ** order. In this case, instead of seeking within the b-tree as part 2388 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2389 ** OP_IdxInsert to seek to the point within the b-tree where each key 2390 ** should be inserted. This is faster. 2391 ** 2392 ** If any of the indexed columns use a collation sequence other than 2393 ** BINARY, this optimization is disabled. This is because the user 2394 ** might change the definition of a collation sequence and then run 2395 ** a VACUUM command. In that case keys may not be written in strictly 2396 ** sorted order. */ 2397 for(i=0; i<pSrcIdx->nColumn; i++){ 2398 const char *zColl = pSrcIdx->azColl[i]; 2399 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2400 } 2401 if( i==pSrcIdx->nColumn ){ 2402 idxInsFlags = OPFLAG_USESEEKRESULT; 2403 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2404 } 2405 } 2406 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2407 idxInsFlags |= OPFLAG_NCHANGE; 2408 } 2409 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2410 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2411 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2412 sqlite3VdbeJumpHere(v, addr1); 2413 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2414 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2415 } 2416 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2417 sqlite3ReleaseTempReg(pParse, regRowid); 2418 sqlite3ReleaseTempReg(pParse, regData); 2419 if( emptyDestTest ){ 2420 sqlite3AutoincrementEnd(pParse); 2421 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2422 sqlite3VdbeJumpHere(v, emptyDestTest); 2423 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2424 return 0; 2425 }else{ 2426 return 1; 2427 } 2428 } 2429 #endif /* SQLITE_OMIT_XFER_OPT */ 2430