1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 char aff; 92 if( x>=0 ){ 93 aff = pTab->aCol[x].affinity; 94 }else if( x==XN_ROWID ){ 95 aff = SQLITE_AFF_INTEGER; 96 }else{ 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 } 101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 102 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 103 pIdx->zColAff[n] = aff; 104 } 105 pIdx->zColAff[n] = 0; 106 } 107 108 return pIdx->zColAff; 109 } 110 111 /* 112 ** Compute the affinity string for table pTab, if it has not already been 113 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 114 ** 115 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 116 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 117 ** for register iReg and following. Or if affinities exists and iReg==0, 118 ** then just set the P4 operand of the previous opcode (which should be 119 ** an OP_MakeRecord) to the affinity string. 120 ** 121 ** A column affinity string has one character per column: 122 ** 123 ** Character Column affinity 124 ** ------------------------------ 125 ** 'A' BLOB 126 ** 'B' TEXT 127 ** 'C' NUMERIC 128 ** 'D' INTEGER 129 ** 'E' REAL 130 */ 131 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 132 int i, j; 133 char *zColAff = pTab->zColAff; 134 if( zColAff==0 ){ 135 sqlite3 *db = sqlite3VdbeDb(v); 136 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 137 if( !zColAff ){ 138 sqlite3OomFault(db); 139 return; 140 } 141 142 for(i=j=0; i<pTab->nCol; i++){ 143 assert( pTab->aCol[i].affinity!=0 ); 144 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 145 zColAff[j++] = pTab->aCol[i].affinity; 146 } 147 } 148 do{ 149 zColAff[j--] = 0; 150 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 151 pTab->zColAff = zColAff; 152 } 153 assert( zColAff!=0 ); 154 i = sqlite3Strlen30NN(zColAff); 155 if( i ){ 156 if( iReg ){ 157 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 158 }else{ 159 sqlite3VdbeChangeP4(v, -1, zColAff, i); 160 } 161 } 162 } 163 164 /* 165 ** Return non-zero if the table pTab in database iDb or any of its indices 166 ** have been opened at any point in the VDBE program. This is used to see if 167 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 168 ** run without using a temporary table for the results of the SELECT. 169 */ 170 static int readsTable(Parse *p, int iDb, Table *pTab){ 171 Vdbe *v = sqlite3GetVdbe(p); 172 int i; 173 int iEnd = sqlite3VdbeCurrentAddr(v); 174 #ifndef SQLITE_OMIT_VIRTUALTABLE 175 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 176 #endif 177 178 for(i=1; i<iEnd; i++){ 179 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 180 assert( pOp!=0 ); 181 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 182 Index *pIndex; 183 int tnum = pOp->p2; 184 if( tnum==pTab->tnum ){ 185 return 1; 186 } 187 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 188 if( tnum==pIndex->tnum ){ 189 return 1; 190 } 191 } 192 } 193 #ifndef SQLITE_OMIT_VIRTUALTABLE 194 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 195 assert( pOp->p4.pVtab!=0 ); 196 assert( pOp->p4type==P4_VTAB ); 197 return 1; 198 } 199 #endif 200 } 201 return 0; 202 } 203 204 /* This walker callback will compute the union of colFlags flags for all 205 ** references columns in a CHECK constraint or generated column expression. 206 */ 207 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 208 if( pExpr->op==TK_COLUMN ){ 209 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 210 } 211 return WRC_Continue; 212 } 213 214 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 215 /* 216 ** All regular columns for table pTab have been puts into registers 217 ** starting with iRegStore. The registers that correspond to STORED 218 ** or VIRTUAL columns have not yet been initialized. This routine goes 219 ** back and computes the values for those columns based on the previously 220 ** computed normal columns. 221 */ 222 void sqlite3ComputeGeneratedColumns( 223 Parse *pParse, /* Parsing context */ 224 int iRegStore, /* Register holding the first column */ 225 Table *pTab /* The table */ 226 ){ 227 int i; 228 Walker w; 229 Column *pRedo; 230 int eProgress; 231 232 /* Because there can be multiple generated columns that refer to one another, 233 ** this is a two-pass algorithm. On the first pass, mark all generated 234 ** columns as "not available". 235 */ 236 for(i=0; i<pTab->nCol; i++){ 237 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 238 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 239 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 240 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 241 } 242 } 243 244 w.u.pTab = pTab; 245 w.xExprCallback = exprColumnFlagUnion; 246 w.xSelectCallback = 0; 247 w.xSelectCallback2 = 0; 248 249 /* On the second pass, compute the value of each NOT-AVAILABLE column. 250 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 251 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 252 ** they are needed. 253 */ 254 pParse->iSelfTab = -iRegStore; 255 do{ 256 eProgress = 0; 257 pRedo = 0; 258 for(i=0; i<pTab->nCol; i++){ 259 Column *pCol = pTab->aCol + i; 260 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 261 int x; 262 pCol->colFlags |= COLFLAG_BUSY; 263 w.eCode = 0; 264 sqlite3WalkExpr(&w, pCol->pDflt); 265 pCol->colFlags &= ~COLFLAG_BUSY; 266 if( w.eCode & COLFLAG_NOTAVAIL ){ 267 pRedo = pCol; 268 continue; 269 } 270 eProgress = 1; 271 assert( pCol->colFlags & COLFLAG_GENERATED ); 272 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 273 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 274 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 275 } 276 } 277 }while( pRedo && eProgress ); 278 if( pRedo ){ 279 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 280 } 281 pParse->iSelfTab = 0; 282 } 283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 284 285 286 #ifndef SQLITE_OMIT_AUTOINCREMENT 287 /* 288 ** Locate or create an AutoincInfo structure associated with table pTab 289 ** which is in database iDb. Return the register number for the register 290 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 291 ** table. (Also return zero when doing a VACUUM since we do not want to 292 ** update the AUTOINCREMENT counters during a VACUUM.) 293 ** 294 ** There is at most one AutoincInfo structure per table even if the 295 ** same table is autoincremented multiple times due to inserts within 296 ** triggers. A new AutoincInfo structure is created if this is the 297 ** first use of table pTab. On 2nd and subsequent uses, the original 298 ** AutoincInfo structure is used. 299 ** 300 ** Four consecutive registers are allocated: 301 ** 302 ** (1) The name of the pTab table. 303 ** (2) The maximum ROWID of pTab. 304 ** (3) The rowid in sqlite_sequence of pTab 305 ** (4) The original value of the max ROWID in pTab, or NULL if none 306 ** 307 ** The 2nd register is the one that is returned. That is all the 308 ** insert routine needs to know about. 309 */ 310 static int autoIncBegin( 311 Parse *pParse, /* Parsing context */ 312 int iDb, /* Index of the database holding pTab */ 313 Table *pTab /* The table we are writing to */ 314 ){ 315 int memId = 0; /* Register holding maximum rowid */ 316 assert( pParse->db->aDb[iDb].pSchema!=0 ); 317 if( (pTab->tabFlags & TF_Autoincrement)!=0 318 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 319 ){ 320 Parse *pToplevel = sqlite3ParseToplevel(pParse); 321 AutoincInfo *pInfo; 322 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 323 324 /* Verify that the sqlite_sequence table exists and is an ordinary 325 ** rowid table with exactly two columns. 326 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 327 if( pSeqTab==0 328 || !HasRowid(pSeqTab) 329 || IsVirtual(pSeqTab) 330 || pSeqTab->nCol!=2 331 ){ 332 pParse->nErr++; 333 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 334 return 0; 335 } 336 337 pInfo = pToplevel->pAinc; 338 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 339 if( pInfo==0 ){ 340 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 341 if( pInfo==0 ) return 0; 342 pInfo->pNext = pToplevel->pAinc; 343 pToplevel->pAinc = pInfo; 344 pInfo->pTab = pTab; 345 pInfo->iDb = iDb; 346 pToplevel->nMem++; /* Register to hold name of table */ 347 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 348 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 349 } 350 memId = pInfo->regCtr; 351 } 352 return memId; 353 } 354 355 /* 356 ** This routine generates code that will initialize all of the 357 ** register used by the autoincrement tracker. 358 */ 359 void sqlite3AutoincrementBegin(Parse *pParse){ 360 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 361 sqlite3 *db = pParse->db; /* The database connection */ 362 Db *pDb; /* Database only autoinc table */ 363 int memId; /* Register holding max rowid */ 364 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 365 366 /* This routine is never called during trigger-generation. It is 367 ** only called from the top-level */ 368 assert( pParse->pTriggerTab==0 ); 369 assert( sqlite3IsToplevel(pParse) ); 370 371 assert( v ); /* We failed long ago if this is not so */ 372 for(p = pParse->pAinc; p; p = p->pNext){ 373 static const int iLn = VDBE_OFFSET_LINENO(2); 374 static const VdbeOpList autoInc[] = { 375 /* 0 */ {OP_Null, 0, 0, 0}, 376 /* 1 */ {OP_Rewind, 0, 10, 0}, 377 /* 2 */ {OP_Column, 0, 0, 0}, 378 /* 3 */ {OP_Ne, 0, 9, 0}, 379 /* 4 */ {OP_Rowid, 0, 0, 0}, 380 /* 5 */ {OP_Column, 0, 1, 0}, 381 /* 6 */ {OP_AddImm, 0, 0, 0}, 382 /* 7 */ {OP_Copy, 0, 0, 0}, 383 /* 8 */ {OP_Goto, 0, 11, 0}, 384 /* 9 */ {OP_Next, 0, 2, 0}, 385 /* 10 */ {OP_Integer, 0, 0, 0}, 386 /* 11 */ {OP_Close, 0, 0, 0} 387 }; 388 VdbeOp *aOp; 389 pDb = &db->aDb[p->iDb]; 390 memId = p->regCtr; 391 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 392 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 393 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 394 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 395 if( aOp==0 ) break; 396 aOp[0].p2 = memId; 397 aOp[0].p3 = memId+2; 398 aOp[2].p3 = memId; 399 aOp[3].p1 = memId-1; 400 aOp[3].p3 = memId; 401 aOp[3].p5 = SQLITE_JUMPIFNULL; 402 aOp[4].p2 = memId+1; 403 aOp[5].p3 = memId; 404 aOp[6].p1 = memId; 405 aOp[7].p2 = memId+2; 406 aOp[7].p1 = memId; 407 aOp[10].p2 = memId; 408 if( pParse->nTab==0 ) pParse->nTab = 1; 409 } 410 } 411 412 /* 413 ** Update the maximum rowid for an autoincrement calculation. 414 ** 415 ** This routine should be called when the regRowid register holds a 416 ** new rowid that is about to be inserted. If that new rowid is 417 ** larger than the maximum rowid in the memId memory cell, then the 418 ** memory cell is updated. 419 */ 420 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 421 if( memId>0 ){ 422 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 423 } 424 } 425 426 /* 427 ** This routine generates the code needed to write autoincrement 428 ** maximum rowid values back into the sqlite_sequence register. 429 ** Every statement that might do an INSERT into an autoincrement 430 ** table (either directly or through triggers) needs to call this 431 ** routine just before the "exit" code. 432 */ 433 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 434 AutoincInfo *p; 435 Vdbe *v = pParse->pVdbe; 436 sqlite3 *db = pParse->db; 437 438 assert( v ); 439 for(p = pParse->pAinc; p; p = p->pNext){ 440 static const int iLn = VDBE_OFFSET_LINENO(2); 441 static const VdbeOpList autoIncEnd[] = { 442 /* 0 */ {OP_NotNull, 0, 2, 0}, 443 /* 1 */ {OP_NewRowid, 0, 0, 0}, 444 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 445 /* 3 */ {OP_Insert, 0, 0, 0}, 446 /* 4 */ {OP_Close, 0, 0, 0} 447 }; 448 VdbeOp *aOp; 449 Db *pDb = &db->aDb[p->iDb]; 450 int iRec; 451 int memId = p->regCtr; 452 453 iRec = sqlite3GetTempReg(pParse); 454 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 455 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 456 VdbeCoverage(v); 457 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 458 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 459 if( aOp==0 ) break; 460 aOp[0].p1 = memId+1; 461 aOp[1].p2 = memId+1; 462 aOp[2].p1 = memId-1; 463 aOp[2].p3 = iRec; 464 aOp[3].p2 = iRec; 465 aOp[3].p3 = memId+1; 466 aOp[3].p5 = OPFLAG_APPEND; 467 sqlite3ReleaseTempReg(pParse, iRec); 468 } 469 } 470 void sqlite3AutoincrementEnd(Parse *pParse){ 471 if( pParse->pAinc ) autoIncrementEnd(pParse); 472 } 473 #else 474 /* 475 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 476 ** above are all no-ops 477 */ 478 # define autoIncBegin(A,B,C) (0) 479 # define autoIncStep(A,B,C) 480 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 481 482 483 /* Forward declaration */ 484 static int xferOptimization( 485 Parse *pParse, /* Parser context */ 486 Table *pDest, /* The table we are inserting into */ 487 Select *pSelect, /* A SELECT statement to use as the data source */ 488 int onError, /* How to handle constraint errors */ 489 int iDbDest /* The database of pDest */ 490 ); 491 492 /* 493 ** This routine is called to handle SQL of the following forms: 494 ** 495 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 496 ** insert into TABLE (IDLIST) select 497 ** insert into TABLE (IDLIST) default values 498 ** 499 ** The IDLIST following the table name is always optional. If omitted, 500 ** then a list of all (non-hidden) columns for the table is substituted. 501 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 502 ** is omitted. 503 ** 504 ** For the pSelect parameter holds the values to be inserted for the 505 ** first two forms shown above. A VALUES clause is really just short-hand 506 ** for a SELECT statement that omits the FROM clause and everything else 507 ** that follows. If the pSelect parameter is NULL, that means that the 508 ** DEFAULT VALUES form of the INSERT statement is intended. 509 ** 510 ** The code generated follows one of four templates. For a simple 511 ** insert with data coming from a single-row VALUES clause, the code executes 512 ** once straight down through. Pseudo-code follows (we call this 513 ** the "1st template"): 514 ** 515 ** open write cursor to <table> and its indices 516 ** put VALUES clause expressions into registers 517 ** write the resulting record into <table> 518 ** cleanup 519 ** 520 ** The three remaining templates assume the statement is of the form 521 ** 522 ** INSERT INTO <table> SELECT ... 523 ** 524 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 525 ** in other words if the SELECT pulls all columns from a single table 526 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 527 ** if <table2> and <table1> are distinct tables but have identical 528 ** schemas, including all the same indices, then a special optimization 529 ** is invoked that copies raw records from <table2> over to <table1>. 530 ** See the xferOptimization() function for the implementation of this 531 ** template. This is the 2nd template. 532 ** 533 ** open a write cursor to <table> 534 ** open read cursor on <table2> 535 ** transfer all records in <table2> over to <table> 536 ** close cursors 537 ** foreach index on <table> 538 ** open a write cursor on the <table> index 539 ** open a read cursor on the corresponding <table2> index 540 ** transfer all records from the read to the write cursors 541 ** close cursors 542 ** end foreach 543 ** 544 ** The 3rd template is for when the second template does not apply 545 ** and the SELECT clause does not read from <table> at any time. 546 ** The generated code follows this template: 547 ** 548 ** X <- A 549 ** goto B 550 ** A: setup for the SELECT 551 ** loop over the rows in the SELECT 552 ** load values into registers R..R+n 553 ** yield X 554 ** end loop 555 ** cleanup after the SELECT 556 ** end-coroutine X 557 ** B: open write cursor to <table> and its indices 558 ** C: yield X, at EOF goto D 559 ** insert the select result into <table> from R..R+n 560 ** goto C 561 ** D: cleanup 562 ** 563 ** The 4th template is used if the insert statement takes its 564 ** values from a SELECT but the data is being inserted into a table 565 ** that is also read as part of the SELECT. In the third form, 566 ** we have to use an intermediate table to store the results of 567 ** the select. The template is like this: 568 ** 569 ** X <- A 570 ** goto B 571 ** A: setup for the SELECT 572 ** loop over the tables in the SELECT 573 ** load value into register R..R+n 574 ** yield X 575 ** end loop 576 ** cleanup after the SELECT 577 ** end co-routine R 578 ** B: open temp table 579 ** L: yield X, at EOF goto M 580 ** insert row from R..R+n into temp table 581 ** goto L 582 ** M: open write cursor to <table> and its indices 583 ** rewind temp table 584 ** C: loop over rows of intermediate table 585 ** transfer values form intermediate table into <table> 586 ** end loop 587 ** D: cleanup 588 */ 589 void sqlite3Insert( 590 Parse *pParse, /* Parser context */ 591 SrcList *pTabList, /* Name of table into which we are inserting */ 592 Select *pSelect, /* A SELECT statement to use as the data source */ 593 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 594 int onError, /* How to handle constraint errors */ 595 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 596 ){ 597 sqlite3 *db; /* The main database structure */ 598 Table *pTab; /* The table to insert into. aka TABLE */ 599 int i, j; /* Loop counters */ 600 Vdbe *v; /* Generate code into this virtual machine */ 601 Index *pIdx; /* For looping over indices of the table */ 602 int nColumn; /* Number of columns in the data */ 603 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 604 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 605 int iIdxCur = 0; /* First index cursor */ 606 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 607 int endOfLoop; /* Label for the end of the insertion loop */ 608 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 609 int addrInsTop = 0; /* Jump to label "D" */ 610 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 611 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 612 int iDb; /* Index of database holding TABLE */ 613 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 614 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 615 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 616 u8 bIdListInOrder; /* True if IDLIST is in table order */ 617 ExprList *pList = 0; /* List of VALUES() to be inserted */ 618 int iRegStore; /* Register in which to store next column */ 619 620 /* Register allocations */ 621 int regFromSelect = 0;/* Base register for data coming from SELECT */ 622 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 623 int regRowCount = 0; /* Memory cell used for the row counter */ 624 int regIns; /* Block of regs holding rowid+data being inserted */ 625 int regRowid; /* registers holding insert rowid */ 626 int regData; /* register holding first column to insert */ 627 int *aRegIdx = 0; /* One register allocated to each index */ 628 629 #ifndef SQLITE_OMIT_TRIGGER 630 int isView; /* True if attempting to insert into a view */ 631 Trigger *pTrigger; /* List of triggers on pTab, if required */ 632 int tmask; /* Mask of trigger times */ 633 #endif 634 635 db = pParse->db; 636 if( pParse->nErr || db->mallocFailed ){ 637 goto insert_cleanup; 638 } 639 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 640 641 /* If the Select object is really just a simple VALUES() list with a 642 ** single row (the common case) then keep that one row of values 643 ** and discard the other (unused) parts of the pSelect object 644 */ 645 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 646 pList = pSelect->pEList; 647 pSelect->pEList = 0; 648 sqlite3SelectDelete(db, pSelect); 649 pSelect = 0; 650 } 651 652 /* Locate the table into which we will be inserting new information. 653 */ 654 assert( pTabList->nSrc==1 ); 655 pTab = sqlite3SrcListLookup(pParse, pTabList); 656 if( pTab==0 ){ 657 goto insert_cleanup; 658 } 659 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 660 assert( iDb<db->nDb ); 661 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 662 db->aDb[iDb].zDbSName) ){ 663 goto insert_cleanup; 664 } 665 withoutRowid = !HasRowid(pTab); 666 667 /* Figure out if we have any triggers and if the table being 668 ** inserted into is a view 669 */ 670 #ifndef SQLITE_OMIT_TRIGGER 671 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 672 isView = pTab->pSelect!=0; 673 #else 674 # define pTrigger 0 675 # define tmask 0 676 # define isView 0 677 #endif 678 #ifdef SQLITE_OMIT_VIEW 679 # undef isView 680 # define isView 0 681 #endif 682 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 683 684 /* If pTab is really a view, make sure it has been initialized. 685 ** ViewGetColumnNames() is a no-op if pTab is not a view. 686 */ 687 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 688 goto insert_cleanup; 689 } 690 691 /* Cannot insert into a read-only table. 692 */ 693 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 694 goto insert_cleanup; 695 } 696 697 /* Allocate a VDBE 698 */ 699 v = sqlite3GetVdbe(pParse); 700 if( v==0 ) goto insert_cleanup; 701 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 702 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 703 704 #ifndef SQLITE_OMIT_XFER_OPT 705 /* If the statement is of the form 706 ** 707 ** INSERT INTO <table1> SELECT * FROM <table2>; 708 ** 709 ** Then special optimizations can be applied that make the transfer 710 ** very fast and which reduce fragmentation of indices. 711 ** 712 ** This is the 2nd template. 713 */ 714 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 715 assert( !pTrigger ); 716 assert( pList==0 ); 717 goto insert_end; 718 } 719 #endif /* SQLITE_OMIT_XFER_OPT */ 720 721 /* If this is an AUTOINCREMENT table, look up the sequence number in the 722 ** sqlite_sequence table and store it in memory cell regAutoinc. 723 */ 724 regAutoinc = autoIncBegin(pParse, iDb, pTab); 725 726 /* Allocate a block registers to hold the rowid and the values 727 ** for all columns of the new row. 728 */ 729 regRowid = regIns = pParse->nMem+1; 730 pParse->nMem += pTab->nCol + 1; 731 if( IsVirtual(pTab) ){ 732 regRowid++; 733 pParse->nMem++; 734 } 735 regData = regRowid+1; 736 737 /* If the INSERT statement included an IDLIST term, then make sure 738 ** all elements of the IDLIST really are columns of the table and 739 ** remember the column indices. 740 ** 741 ** If the table has an INTEGER PRIMARY KEY column and that column 742 ** is named in the IDLIST, then record in the ipkColumn variable 743 ** the index into IDLIST of the primary key column. ipkColumn is 744 ** the index of the primary key as it appears in IDLIST, not as 745 ** is appears in the original table. (The index of the INTEGER 746 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 747 ** loop, if ipkColumn==(-1), that means that integer primary key 748 ** is unspecified, and hence the table is either WITHOUT ROWID or 749 ** it will automatically generated an integer primary key. 750 ** 751 ** bIdListInOrder is true if the columns in IDLIST are in storage 752 ** order. This enables an optimization that avoids shuffling the 753 ** columns into storage order. False negatives are harmless, 754 ** but false positives will cause database corruption. 755 */ 756 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 757 if( pColumn ){ 758 for(i=0; i<pColumn->nId; i++){ 759 pColumn->a[i].idx = -1; 760 } 761 for(i=0; i<pColumn->nId; i++){ 762 for(j=0; j<pTab->nCol; j++){ 763 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 764 pColumn->a[i].idx = j; 765 if( i!=j ) bIdListInOrder = 0; 766 if( j==pTab->iPKey ){ 767 ipkColumn = i; assert( !withoutRowid ); 768 } 769 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 770 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 771 sqlite3ErrorMsg(pParse, 772 "cannot INSERT into generated column \"%s\"", 773 pTab->aCol[j].zName); 774 goto insert_cleanup; 775 } 776 #endif 777 break; 778 } 779 } 780 if( j>=pTab->nCol ){ 781 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 782 ipkColumn = i; 783 bIdListInOrder = 0; 784 }else{ 785 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 786 pTabList, 0, pColumn->a[i].zName); 787 pParse->checkSchema = 1; 788 goto insert_cleanup; 789 } 790 } 791 } 792 } 793 794 /* Figure out how many columns of data are supplied. If the data 795 ** is coming from a SELECT statement, then generate a co-routine that 796 ** produces a single row of the SELECT on each invocation. The 797 ** co-routine is the common header to the 3rd and 4th templates. 798 */ 799 if( pSelect ){ 800 /* Data is coming from a SELECT or from a multi-row VALUES clause. 801 ** Generate a co-routine to run the SELECT. */ 802 int regYield; /* Register holding co-routine entry-point */ 803 int addrTop; /* Top of the co-routine */ 804 int rc; /* Result code */ 805 806 regYield = ++pParse->nMem; 807 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 808 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 809 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 810 dest.iSdst = bIdListInOrder ? regData : 0; 811 dest.nSdst = pTab->nCol; 812 rc = sqlite3Select(pParse, pSelect, &dest); 813 regFromSelect = dest.iSdst; 814 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 815 sqlite3VdbeEndCoroutine(v, regYield); 816 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 817 assert( pSelect->pEList ); 818 nColumn = pSelect->pEList->nExpr; 819 820 /* Set useTempTable to TRUE if the result of the SELECT statement 821 ** should be written into a temporary table (template 4). Set to 822 ** FALSE if each output row of the SELECT can be written directly into 823 ** the destination table (template 3). 824 ** 825 ** A temp table must be used if the table being updated is also one 826 ** of the tables being read by the SELECT statement. Also use a 827 ** temp table in the case of row triggers. 828 */ 829 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 830 useTempTable = 1; 831 } 832 833 if( useTempTable ){ 834 /* Invoke the coroutine to extract information from the SELECT 835 ** and add it to a transient table srcTab. The code generated 836 ** here is from the 4th template: 837 ** 838 ** B: open temp table 839 ** L: yield X, goto M at EOF 840 ** insert row from R..R+n into temp table 841 ** goto L 842 ** M: ... 843 */ 844 int regRec; /* Register to hold packed record */ 845 int regTempRowid; /* Register to hold temp table ROWID */ 846 int addrL; /* Label "L" */ 847 848 srcTab = pParse->nTab++; 849 regRec = sqlite3GetTempReg(pParse); 850 regTempRowid = sqlite3GetTempReg(pParse); 851 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 852 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 853 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 854 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 855 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 856 sqlite3VdbeGoto(v, addrL); 857 sqlite3VdbeJumpHere(v, addrL); 858 sqlite3ReleaseTempReg(pParse, regRec); 859 sqlite3ReleaseTempReg(pParse, regTempRowid); 860 } 861 }else{ 862 /* This is the case if the data for the INSERT is coming from a 863 ** single-row VALUES clause 864 */ 865 NameContext sNC; 866 memset(&sNC, 0, sizeof(sNC)); 867 sNC.pParse = pParse; 868 srcTab = -1; 869 assert( useTempTable==0 ); 870 if( pList ){ 871 nColumn = pList->nExpr; 872 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 873 goto insert_cleanup; 874 } 875 }else{ 876 nColumn = 0; 877 } 878 } 879 880 /* If there is no IDLIST term but the table has an integer primary 881 ** key, the set the ipkColumn variable to the integer primary key 882 ** column index in the original table definition. 883 */ 884 if( pColumn==0 && nColumn>0 ){ 885 ipkColumn = pTab->iPKey; 886 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 887 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 888 testcase( pTab->tabFlags & TF_HasVirtual ); 889 testcase( pTab->tabFlags & TF_HasStored ); 890 for(i=ipkColumn-1; i>=0; i--){ 891 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 892 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 893 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 894 ipkColumn--; 895 } 896 } 897 } 898 #endif 899 } 900 901 /* Make sure the number of columns in the source data matches the number 902 ** of columns to be inserted into the table. 903 */ 904 for(i=0; i<pTab->nCol; i++){ 905 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 906 } 907 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 908 sqlite3ErrorMsg(pParse, 909 "table %S has %d columns but %d values were supplied", 910 pTabList, 0, pTab->nCol-nHidden, nColumn); 911 goto insert_cleanup; 912 } 913 if( pColumn!=0 && nColumn!=pColumn->nId ){ 914 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 915 goto insert_cleanup; 916 } 917 918 /* Initialize the count of rows to be inserted 919 */ 920 if( (db->flags & SQLITE_CountRows)!=0 921 && !pParse->nested 922 && !pParse->pTriggerTab 923 ){ 924 regRowCount = ++pParse->nMem; 925 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 926 } 927 928 /* If this is not a view, open the table and and all indices */ 929 if( !isView ){ 930 int nIdx; 931 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 932 &iDataCur, &iIdxCur); 933 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 934 if( aRegIdx==0 ){ 935 goto insert_cleanup; 936 } 937 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 938 assert( pIdx ); 939 aRegIdx[i] = ++pParse->nMem; 940 pParse->nMem += pIdx->nColumn; 941 } 942 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 943 } 944 #ifndef SQLITE_OMIT_UPSERT 945 if( pUpsert ){ 946 if( IsVirtual(pTab) ){ 947 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 948 pTab->zName); 949 goto insert_cleanup; 950 } 951 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 952 goto insert_cleanup; 953 } 954 pTabList->a[0].iCursor = iDataCur; 955 pUpsert->pUpsertSrc = pTabList; 956 pUpsert->regData = regData; 957 pUpsert->iDataCur = iDataCur; 958 pUpsert->iIdxCur = iIdxCur; 959 if( pUpsert->pUpsertTarget ){ 960 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 961 } 962 } 963 #endif 964 965 966 /* This is the top of the main insertion loop */ 967 if( useTempTable ){ 968 /* This block codes the top of loop only. The complete loop is the 969 ** following pseudocode (template 4): 970 ** 971 ** rewind temp table, if empty goto D 972 ** C: loop over rows of intermediate table 973 ** transfer values form intermediate table into <table> 974 ** end loop 975 ** D: ... 976 */ 977 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 978 addrCont = sqlite3VdbeCurrentAddr(v); 979 }else if( pSelect ){ 980 /* This block codes the top of loop only. The complete loop is the 981 ** following pseudocode (template 3): 982 ** 983 ** C: yield X, at EOF goto D 984 ** insert the select result into <table> from R..R+n 985 ** goto C 986 ** D: ... 987 */ 988 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 989 VdbeCoverage(v); 990 if( ipkColumn>=0 ){ 991 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 992 ** SELECT, go ahead and copy the value into the rowid slot now, so that 993 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 994 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 995 } 996 } 997 998 /* Compute data for ordinary columns of the new entry. Values 999 ** are written in storage order into registers starting with regData. 1000 ** Only ordinary columns are computed in this loop. The rowid 1001 ** (if there is one) is computed later and generated columns are 1002 ** computed after the rowid since they might depend on the value 1003 ** of the rowid. 1004 */ 1005 nHidden = 0; 1006 iRegStore = regData; assert( regData==regRowid+1 ); 1007 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1008 int k; 1009 u32 colFlags; 1010 assert( i>=nHidden ); 1011 if( i==pTab->iPKey ){ 1012 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1013 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1014 ** using excess space. The file format definition requires this extra 1015 ** NULL - we cannot optimize further by skipping the column completely */ 1016 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1017 continue; 1018 } 1019 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1020 nHidden++; 1021 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1022 /* Virtual columns do not participate in OP_MakeRecord. So back up 1023 ** iRegStore by one slot to compensate for the iRegStore++ in the 1024 ** outer for() loop */ 1025 iRegStore--; 1026 continue; 1027 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1028 /* Stored columns are computed later. But if there are BEFORE 1029 ** triggers, the slots used for stored columns will be OP_Copy-ed 1030 ** to a second block of registers, so the register needs to be 1031 ** initialized to NULL to avoid an uninitialized register read */ 1032 if( tmask & TRIGGER_BEFORE ){ 1033 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1034 } 1035 continue; 1036 }else if( pColumn==0 ){ 1037 /* Hidden columns that are not explicitly named in the INSERT 1038 ** get there default value */ 1039 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1040 continue; 1041 } 1042 } 1043 if( pColumn ){ 1044 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1045 if( j>=pColumn->nId ){ 1046 /* A column not named in the insert column list gets its 1047 ** default value */ 1048 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1049 continue; 1050 } 1051 k = j; 1052 }else if( nColumn==0 ){ 1053 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1054 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1055 continue; 1056 }else{ 1057 k = i - nHidden; 1058 } 1059 1060 if( useTempTable ){ 1061 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1062 }else if( pSelect ){ 1063 if( regFromSelect!=regData ){ 1064 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1065 } 1066 }else{ 1067 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1068 } 1069 } 1070 1071 1072 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1073 */ 1074 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1075 if( tmask & TRIGGER_BEFORE ){ 1076 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1077 1078 /* build the NEW.* reference row. Note that if there is an INTEGER 1079 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1080 ** translated into a unique ID for the row. But on a BEFORE trigger, 1081 ** we do not know what the unique ID will be (because the insert has 1082 ** not happened yet) so we substitute a rowid of -1 1083 */ 1084 if( ipkColumn<0 ){ 1085 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1086 }else{ 1087 int addr1; 1088 assert( !withoutRowid ); 1089 if( useTempTable ){ 1090 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1091 }else{ 1092 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1093 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1094 } 1095 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1096 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1097 sqlite3VdbeJumpHere(v, addr1); 1098 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1099 } 1100 1101 /* Cannot have triggers on a virtual table. If it were possible, 1102 ** this block would have to account for hidden column. 1103 */ 1104 assert( !IsVirtual(pTab) ); 1105 1106 /* Copy the new data already generated. */ 1107 assert( pTab->nNVCol>0 ); 1108 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1109 1110 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1111 /* Compute the new value for generated columns after all other 1112 ** columns have already been computed. This must be done after 1113 ** computing the ROWID in case one of the generated columns 1114 ** refers to the ROWID. */ 1115 if( pTab->tabFlags & TF_HasGenerated ){ 1116 testcase( pTab->tabFlags & TF_HasVirtual ); 1117 testcase( pTab->tabFlags & TF_HasStored ); 1118 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1119 } 1120 #endif 1121 1122 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1123 ** do not attempt any conversions before assembling the record. 1124 ** If this is a real table, attempt conversions as required by the 1125 ** table column affinities. 1126 */ 1127 if( !isView ){ 1128 sqlite3TableAffinity(v, pTab, regCols+1); 1129 } 1130 1131 /* Fire BEFORE or INSTEAD OF triggers */ 1132 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1133 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1134 1135 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1136 } 1137 1138 if( !isView ){ 1139 if( IsVirtual(pTab) ){ 1140 /* The row that the VUpdate opcode will delete: none */ 1141 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1142 } 1143 if( ipkColumn>=0 ){ 1144 /* Compute the new rowid */ 1145 if( useTempTable ){ 1146 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1147 }else if( pSelect ){ 1148 /* Rowid already initialized at tag-20191021-001 */ 1149 }else{ 1150 Expr *pIpk = pList->a[ipkColumn].pExpr; 1151 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1152 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1153 appendFlag = 1; 1154 }else{ 1155 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1156 } 1157 } 1158 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1159 ** to generate a unique primary key value. 1160 */ 1161 if( !appendFlag ){ 1162 int addr1; 1163 if( !IsVirtual(pTab) ){ 1164 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1165 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1166 sqlite3VdbeJumpHere(v, addr1); 1167 }else{ 1168 addr1 = sqlite3VdbeCurrentAddr(v); 1169 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1170 } 1171 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1172 } 1173 }else if( IsVirtual(pTab) || withoutRowid ){ 1174 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1175 }else{ 1176 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1177 appendFlag = 1; 1178 } 1179 autoIncStep(pParse, regAutoinc, regRowid); 1180 1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1182 /* Compute the new value for generated columns after all other 1183 ** columns have already been computed. This must be done after 1184 ** computing the ROWID in case one of the generated columns 1185 ** refers to the ROWID. */ 1186 if( pTab->tabFlags & TF_HasGenerated ){ 1187 testcase( pTab->tabFlags & TF_HasVirtual ); 1188 testcase( pTab->tabFlags & TF_HasStored ); 1189 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1190 } 1191 #endif 1192 1193 /* Generate code to check constraints and generate index keys and 1194 ** do the insertion. 1195 */ 1196 #ifndef SQLITE_OMIT_VIRTUALTABLE 1197 if( IsVirtual(pTab) ){ 1198 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1199 sqlite3VtabMakeWritable(pParse, pTab); 1200 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1201 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1202 sqlite3MayAbort(pParse); 1203 }else 1204 #endif 1205 { 1206 int isReplace; /* Set to true if constraints may cause a replace */ 1207 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1208 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1209 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1210 ); 1211 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1212 1213 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1214 ** constraints or (b) there are no triggers and this table is not a 1215 ** parent table in a foreign key constraint. It is safe to set the 1216 ** flag in the second case as if any REPLACE constraint is hit, an 1217 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1218 ** cursor that is disturbed. And these instructions both clear the 1219 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1220 ** functionality. */ 1221 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1222 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1223 regIns, aRegIdx, 0, appendFlag, bUseSeek 1224 ); 1225 } 1226 } 1227 1228 /* Update the count of rows that are inserted 1229 */ 1230 if( regRowCount ){ 1231 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1232 } 1233 1234 if( pTrigger ){ 1235 /* Code AFTER triggers */ 1236 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1237 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1238 } 1239 1240 /* The bottom of the main insertion loop, if the data source 1241 ** is a SELECT statement. 1242 */ 1243 sqlite3VdbeResolveLabel(v, endOfLoop); 1244 if( useTempTable ){ 1245 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1246 sqlite3VdbeJumpHere(v, addrInsTop); 1247 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1248 }else if( pSelect ){ 1249 sqlite3VdbeGoto(v, addrCont); 1250 sqlite3VdbeJumpHere(v, addrInsTop); 1251 } 1252 1253 insert_end: 1254 /* Update the sqlite_sequence table by storing the content of the 1255 ** maximum rowid counter values recorded while inserting into 1256 ** autoincrement tables. 1257 */ 1258 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1259 sqlite3AutoincrementEnd(pParse); 1260 } 1261 1262 /* 1263 ** Return the number of rows inserted. If this routine is 1264 ** generating code because of a call to sqlite3NestedParse(), do not 1265 ** invoke the callback function. 1266 */ 1267 if( regRowCount ){ 1268 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1269 sqlite3VdbeSetNumCols(v, 1); 1270 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1271 } 1272 1273 insert_cleanup: 1274 sqlite3SrcListDelete(db, pTabList); 1275 sqlite3ExprListDelete(db, pList); 1276 sqlite3UpsertDelete(db, pUpsert); 1277 sqlite3SelectDelete(db, pSelect); 1278 sqlite3IdListDelete(db, pColumn); 1279 sqlite3DbFree(db, aRegIdx); 1280 } 1281 1282 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1283 ** they may interfere with compilation of other functions in this file 1284 ** (or in another file, if this file becomes part of the amalgamation). */ 1285 #ifdef isView 1286 #undef isView 1287 #endif 1288 #ifdef pTrigger 1289 #undef pTrigger 1290 #endif 1291 #ifdef tmask 1292 #undef tmask 1293 #endif 1294 1295 /* 1296 ** Meanings of bits in of pWalker->eCode for 1297 ** sqlite3ExprReferencesUpdatedColumn() 1298 */ 1299 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1300 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1301 1302 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1303 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1304 ** expression node references any of the 1305 ** columns that are being modifed by an UPDATE statement. 1306 */ 1307 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1308 if( pExpr->op==TK_COLUMN ){ 1309 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1310 if( pExpr->iColumn>=0 ){ 1311 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1312 pWalker->eCode |= CKCNSTRNT_COLUMN; 1313 } 1314 }else{ 1315 pWalker->eCode |= CKCNSTRNT_ROWID; 1316 } 1317 } 1318 return WRC_Continue; 1319 } 1320 1321 /* 1322 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1323 ** only columns that are modified by the UPDATE are those for which 1324 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1325 ** 1326 ** Return true if CHECK constraint pExpr uses any of the 1327 ** changing columns (or the rowid if it is changing). In other words, 1328 ** return true if this CHECK constraint must be validated for 1329 ** the new row in the UPDATE statement. 1330 ** 1331 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1332 ** The operation of this routine is the same - return true if an only if 1333 ** the expression uses one or more of columns identified by the second and 1334 ** third arguments. 1335 */ 1336 int sqlite3ExprReferencesUpdatedColumn( 1337 Expr *pExpr, /* The expression to be checked */ 1338 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1339 int chngRowid /* True if UPDATE changes the rowid */ 1340 ){ 1341 Walker w; 1342 memset(&w, 0, sizeof(w)); 1343 w.eCode = 0; 1344 w.xExprCallback = checkConstraintExprNode; 1345 w.u.aiCol = aiChng; 1346 sqlite3WalkExpr(&w, pExpr); 1347 if( !chngRowid ){ 1348 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1349 w.eCode &= ~CKCNSTRNT_ROWID; 1350 } 1351 testcase( w.eCode==0 ); 1352 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1353 testcase( w.eCode==CKCNSTRNT_ROWID ); 1354 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1355 return w.eCode!=0; 1356 } 1357 1358 /* 1359 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1360 ** on table pTab. 1361 ** 1362 ** The regNewData parameter is the first register in a range that contains 1363 ** the data to be inserted or the data after the update. There will be 1364 ** pTab->nCol+1 registers in this range. The first register (the one 1365 ** that regNewData points to) will contain the new rowid, or NULL in the 1366 ** case of a WITHOUT ROWID table. The second register in the range will 1367 ** contain the content of the first table column. The third register will 1368 ** contain the content of the second table column. And so forth. 1369 ** 1370 ** The regOldData parameter is similar to regNewData except that it contains 1371 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1372 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1373 ** checking regOldData for zero. 1374 ** 1375 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1376 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1377 ** might be modified by the UPDATE. If pkChng is false, then the key of 1378 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1379 ** 1380 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1381 ** was explicitly specified as part of the INSERT statement. If pkChng 1382 ** is zero, it means that the either rowid is computed automatically or 1383 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1384 ** pkChng will only be true if the INSERT statement provides an integer 1385 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1386 ** 1387 ** The code generated by this routine will store new index entries into 1388 ** registers identified by aRegIdx[]. No index entry is created for 1389 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1390 ** the same as the order of indices on the linked list of indices 1391 ** at pTab->pIndex. 1392 ** 1393 ** (2019-05-07) The generated code also creates a new record for the 1394 ** main table, if pTab is a rowid table, and stores that record in the 1395 ** register identified by aRegIdx[nIdx] - in other words in the first 1396 ** entry of aRegIdx[] past the last index. It is important that the 1397 ** record be generated during constraint checks to avoid affinity changes 1398 ** to the register content that occur after constraint checks but before 1399 ** the new record is inserted. 1400 ** 1401 ** The caller must have already opened writeable cursors on the main 1402 ** table and all applicable indices (that is to say, all indices for which 1403 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1404 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1405 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1406 ** for the first index in the pTab->pIndex list. Cursors for other indices 1407 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1408 ** 1409 ** This routine also generates code to check constraints. NOT NULL, 1410 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1411 ** then the appropriate action is performed. There are five possible 1412 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1413 ** 1414 ** Constraint type Action What Happens 1415 ** --------------- ---------- ---------------------------------------- 1416 ** any ROLLBACK The current transaction is rolled back and 1417 ** sqlite3_step() returns immediately with a 1418 ** return code of SQLITE_CONSTRAINT. 1419 ** 1420 ** any ABORT Back out changes from the current command 1421 ** only (do not do a complete rollback) then 1422 ** cause sqlite3_step() to return immediately 1423 ** with SQLITE_CONSTRAINT. 1424 ** 1425 ** any FAIL Sqlite3_step() returns immediately with a 1426 ** return code of SQLITE_CONSTRAINT. The 1427 ** transaction is not rolled back and any 1428 ** changes to prior rows are retained. 1429 ** 1430 ** any IGNORE The attempt in insert or update the current 1431 ** row is skipped, without throwing an error. 1432 ** Processing continues with the next row. 1433 ** (There is an immediate jump to ignoreDest.) 1434 ** 1435 ** NOT NULL REPLACE The NULL value is replace by the default 1436 ** value for that column. If the default value 1437 ** is NULL, the action is the same as ABORT. 1438 ** 1439 ** UNIQUE REPLACE The other row that conflicts with the row 1440 ** being inserted is removed. 1441 ** 1442 ** CHECK REPLACE Illegal. The results in an exception. 1443 ** 1444 ** Which action to take is determined by the overrideError parameter. 1445 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1446 ** is used. Or if pParse->onError==OE_Default then the onError value 1447 ** for the constraint is used. 1448 */ 1449 void sqlite3GenerateConstraintChecks( 1450 Parse *pParse, /* The parser context */ 1451 Table *pTab, /* The table being inserted or updated */ 1452 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1453 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1454 int iIdxCur, /* First index cursor */ 1455 int regNewData, /* First register in a range holding values to insert */ 1456 int regOldData, /* Previous content. 0 for INSERTs */ 1457 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1458 u8 overrideError, /* Override onError to this if not OE_Default */ 1459 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1460 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1461 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1462 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1463 ){ 1464 Vdbe *v; /* VDBE under constrution */ 1465 Index *pIdx; /* Pointer to one of the indices */ 1466 Index *pPk = 0; /* The PRIMARY KEY index */ 1467 sqlite3 *db; /* Database connection */ 1468 int i; /* loop counter */ 1469 int ix; /* Index loop counter */ 1470 int nCol; /* Number of columns */ 1471 int onError; /* Conflict resolution strategy */ 1472 int addr1; /* Address of jump instruction */ 1473 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1474 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1475 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1476 u8 isUpdate; /* True if this is an UPDATE operation */ 1477 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1478 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1479 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1480 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1481 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1482 /* Variables associated with retesting uniqueness constraints after 1483 ** replace triggers fire have run */ 1484 int regTrigCnt; /* Register used to count replace trigger invocations */ 1485 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1486 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1487 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1488 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1489 1490 isUpdate = regOldData!=0; 1491 db = pParse->db; 1492 v = sqlite3GetVdbe(pParse); 1493 assert( v!=0 ); 1494 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1495 nCol = pTab->nCol; 1496 1497 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1498 ** normal rowid tables. nPkField is the number of key fields in the 1499 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1500 ** number of fields in the true primary key of the table. */ 1501 if( HasRowid(pTab) ){ 1502 pPk = 0; 1503 nPkField = 1; 1504 }else{ 1505 pPk = sqlite3PrimaryKeyIndex(pTab); 1506 nPkField = pPk->nKeyCol; 1507 } 1508 1509 /* Record that this module has started */ 1510 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1511 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1512 1513 /* Test all NOT NULL constraints. 1514 */ 1515 if( pTab->tabFlags & TF_HasNotNull ){ 1516 for(i=0; i<nCol; i++){ 1517 int iReg; 1518 onError = pTab->aCol[i].notNull; 1519 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1520 if( i==pTab->iPKey ){ 1521 continue; /* ROWID is never NULL */ 1522 } 1523 if( aiChng && aiChng[i]<0 ){ 1524 /* Don't bother checking for NOT NULL on columns that do not change */ 1525 continue; 1526 } 1527 if( overrideError!=OE_Default ){ 1528 onError = overrideError; 1529 }else if( onError==OE_Default ){ 1530 onError = OE_Abort; 1531 } 1532 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1533 onError = OE_Abort; 1534 } 1535 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1536 || onError==OE_Ignore || onError==OE_Replace ); 1537 addr1 = 0; 1538 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1539 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 1540 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 1541 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1542 switch( onError ){ 1543 case OE_Replace: { 1544 assert( onError==OE_Replace ); 1545 addr1 = sqlite3VdbeMakeLabel(pParse); 1546 sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1); 1547 VdbeCoverage(v); 1548 if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ){ 1549 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1550 sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1); 1551 VdbeCoverage(v); 1552 } 1553 onError = OE_Abort; 1554 /* Fall through into the OE_Abort case to generate code that runs 1555 ** if both the input and the default value are NULL */ 1556 } 1557 case OE_Abort: 1558 sqlite3MayAbort(pParse); 1559 /* Fall through */ 1560 case OE_Rollback: 1561 case OE_Fail: { 1562 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1563 pTab->aCol[i].zName); 1564 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1565 onError, iReg); 1566 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1567 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1568 VdbeCoverage(v); 1569 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1570 break; 1571 } 1572 default: { 1573 assert( onError==OE_Ignore ); 1574 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1575 VdbeCoverage(v); 1576 break; 1577 } 1578 } 1579 } 1580 } 1581 1582 /* Test all CHECK constraints 1583 */ 1584 #ifndef SQLITE_OMIT_CHECK 1585 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1586 ExprList *pCheck = pTab->pCheck; 1587 pParse->iSelfTab = -(regNewData+1); 1588 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1589 for(i=0; i<pCheck->nExpr; i++){ 1590 int allOk; 1591 Expr *pExpr = pCheck->a[i].pExpr; 1592 if( aiChng 1593 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1594 ){ 1595 /* The check constraints do not reference any of the columns being 1596 ** updated so there is no point it verifying the check constraint */ 1597 continue; 1598 } 1599 allOk = sqlite3VdbeMakeLabel(pParse); 1600 sqlite3VdbeVerifyAbortable(v, onError); 1601 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1602 if( onError==OE_Ignore ){ 1603 sqlite3VdbeGoto(v, ignoreDest); 1604 }else{ 1605 char *zName = pCheck->a[i].zName; 1606 if( zName==0 ) zName = pTab->zName; 1607 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1608 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1609 onError, zName, P4_TRANSIENT, 1610 P5_ConstraintCheck); 1611 } 1612 sqlite3VdbeResolveLabel(v, allOk); 1613 } 1614 pParse->iSelfTab = 0; 1615 } 1616 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1617 1618 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1619 ** order: 1620 ** 1621 ** (1) OE_Update 1622 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1623 ** (3) OE_Replace 1624 ** 1625 ** OE_Fail and OE_Ignore must happen before any changes are made. 1626 ** OE_Update guarantees that only a single row will change, so it 1627 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1628 ** could happen in any order, but they are grouped up front for 1629 ** convenience. 1630 ** 1631 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1632 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1633 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1634 ** constraint before any others, so it had to be moved. 1635 ** 1636 ** Constraint checking code is generated in this order: 1637 ** (A) The rowid constraint 1638 ** (B) Unique index constraints that do not have OE_Replace as their 1639 ** default conflict resolution strategy 1640 ** (C) Unique index that do use OE_Replace by default. 1641 ** 1642 ** The ordering of (2) and (3) is accomplished by making sure the linked 1643 ** list of indexes attached to a table puts all OE_Replace indexes last 1644 ** in the list. See sqlite3CreateIndex() for where that happens. 1645 */ 1646 1647 if( pUpsert ){ 1648 if( pUpsert->pUpsertTarget==0 ){ 1649 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1650 ** Make all unique constraint resolution be OE_Ignore */ 1651 assert( pUpsert->pUpsertSet==0 ); 1652 overrideError = OE_Ignore; 1653 pUpsert = 0; 1654 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1655 /* If the constraint-target uniqueness check must be run first. 1656 ** Jump to that uniqueness check now */ 1657 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1658 VdbeComment((v, "UPSERT constraint goes first")); 1659 } 1660 } 1661 1662 /* Determine if it is possible that triggers (either explicitly coded 1663 ** triggers or FK resolution actions) might run as a result of deletes 1664 ** that happen when OE_Replace conflict resolution occurs. (Call these 1665 ** "replace triggers".) If any replace triggers run, we will need to 1666 ** recheck all of the uniqueness constraints after they have all run. 1667 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1668 ** 1669 ** If replace triggers are a possibility, then 1670 ** 1671 ** (1) Allocate register regTrigCnt and initialize it to zero. 1672 ** That register will count the number of replace triggers that 1673 ** fire. Constraint recheck only occurs if the number is positive. 1674 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1675 ** (3) Initialize addrRecheck and lblRecheckOk 1676 ** 1677 ** The uniqueness rechecking code will create a series of tests to run 1678 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1679 ** used to link together these tests which are separated from each other 1680 ** in the generate bytecode. 1681 */ 1682 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1683 /* There are not DELETE triggers nor FK constraints. No constraint 1684 ** rechecks are needed. */ 1685 pTrigger = 0; 1686 regTrigCnt = 0; 1687 }else{ 1688 if( db->flags&SQLITE_RecTriggers ){ 1689 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1690 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1691 }else{ 1692 pTrigger = 0; 1693 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1694 } 1695 if( regTrigCnt ){ 1696 /* Replace triggers might exist. Allocate the counter and 1697 ** initialize it to zero. */ 1698 regTrigCnt = ++pParse->nMem; 1699 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1700 VdbeComment((v, "trigger count")); 1701 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1702 addrRecheck = lblRecheckOk; 1703 } 1704 } 1705 1706 /* If rowid is changing, make sure the new rowid does not previously 1707 ** exist in the table. 1708 */ 1709 if( pkChng && pPk==0 ){ 1710 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1711 1712 /* Figure out what action to take in case of a rowid collision */ 1713 onError = pTab->keyConf; 1714 if( overrideError!=OE_Default ){ 1715 onError = overrideError; 1716 }else if( onError==OE_Default ){ 1717 onError = OE_Abort; 1718 } 1719 1720 /* figure out whether or not upsert applies in this case */ 1721 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1722 if( pUpsert->pUpsertSet==0 ){ 1723 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1724 }else{ 1725 onError = OE_Update; /* DO UPDATE */ 1726 } 1727 } 1728 1729 /* If the response to a rowid conflict is REPLACE but the response 1730 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1731 ** to defer the running of the rowid conflict checking until after 1732 ** the UNIQUE constraints have run. 1733 */ 1734 if( onError==OE_Replace /* IPK rule is REPLACE */ 1735 && onError!=overrideError /* Rules for other contraints are different */ 1736 && pTab->pIndex /* There exist other constraints */ 1737 ){ 1738 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1739 VdbeComment((v, "defer IPK REPLACE until last")); 1740 } 1741 1742 if( isUpdate ){ 1743 /* pkChng!=0 does not mean that the rowid has changed, only that 1744 ** it might have changed. Skip the conflict logic below if the rowid 1745 ** is unchanged. */ 1746 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1747 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1748 VdbeCoverage(v); 1749 } 1750 1751 /* Check to see if the new rowid already exists in the table. Skip 1752 ** the following conflict logic if it does not. */ 1753 VdbeNoopComment((v, "uniqueness check for ROWID")); 1754 sqlite3VdbeVerifyAbortable(v, onError); 1755 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1756 VdbeCoverage(v); 1757 1758 switch( onError ){ 1759 default: { 1760 onError = OE_Abort; 1761 /* Fall thru into the next case */ 1762 } 1763 case OE_Rollback: 1764 case OE_Abort: 1765 case OE_Fail: { 1766 testcase( onError==OE_Rollback ); 1767 testcase( onError==OE_Abort ); 1768 testcase( onError==OE_Fail ); 1769 sqlite3RowidConstraint(pParse, onError, pTab); 1770 break; 1771 } 1772 case OE_Replace: { 1773 /* If there are DELETE triggers on this table and the 1774 ** recursive-triggers flag is set, call GenerateRowDelete() to 1775 ** remove the conflicting row from the table. This will fire 1776 ** the triggers and remove both the table and index b-tree entries. 1777 ** 1778 ** Otherwise, if there are no triggers or the recursive-triggers 1779 ** flag is not set, but the table has one or more indexes, call 1780 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1781 ** only. The table b-tree entry will be replaced by the new entry 1782 ** when it is inserted. 1783 ** 1784 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1785 ** also invoke MultiWrite() to indicate that this VDBE may require 1786 ** statement rollback (if the statement is aborted after the delete 1787 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1788 ** but being more selective here allows statements like: 1789 ** 1790 ** REPLACE INTO t(rowid) VALUES($newrowid) 1791 ** 1792 ** to run without a statement journal if there are no indexes on the 1793 ** table. 1794 */ 1795 if( regTrigCnt ){ 1796 sqlite3MultiWrite(pParse); 1797 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1798 regNewData, 1, 0, OE_Replace, 1, -1); 1799 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 1800 nReplaceTrig++; 1801 }else{ 1802 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1803 assert( HasRowid(pTab) ); 1804 /* This OP_Delete opcode fires the pre-update-hook only. It does 1805 ** not modify the b-tree. It is more efficient to let the coming 1806 ** OP_Insert replace the existing entry than it is to delete the 1807 ** existing entry and then insert a new one. */ 1808 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1809 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1810 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1811 if( pTab->pIndex ){ 1812 sqlite3MultiWrite(pParse); 1813 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1814 } 1815 } 1816 seenReplace = 1; 1817 break; 1818 } 1819 #ifndef SQLITE_OMIT_UPSERT 1820 case OE_Update: { 1821 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1822 /* Fall through */ 1823 } 1824 #endif 1825 case OE_Ignore: { 1826 testcase( onError==OE_Ignore ); 1827 sqlite3VdbeGoto(v, ignoreDest); 1828 break; 1829 } 1830 } 1831 sqlite3VdbeResolveLabel(v, addrRowidOk); 1832 if( ipkTop ){ 1833 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1834 sqlite3VdbeJumpHere(v, ipkTop-1); 1835 } 1836 } 1837 1838 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1839 ** index and making sure that duplicate entries do not already exist. 1840 ** Compute the revised record entries for indices as we go. 1841 ** 1842 ** This loop also handles the case of the PRIMARY KEY index for a 1843 ** WITHOUT ROWID table. 1844 */ 1845 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1846 int regIdx; /* Range of registers hold conent for pIdx */ 1847 int regR; /* Range of registers holding conflicting PK */ 1848 int iThisCur; /* Cursor for this UNIQUE index */ 1849 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1850 int addrConflictCk; /* First opcode in the conflict check logic */ 1851 1852 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1853 if( pUpIdx==pIdx ){ 1854 addrUniqueOk = upsertJump+1; 1855 upsertBypass = sqlite3VdbeGoto(v, 0); 1856 VdbeComment((v, "Skip upsert subroutine")); 1857 sqlite3VdbeJumpHere(v, upsertJump); 1858 }else{ 1859 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1860 } 1861 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1862 sqlite3TableAffinity(v, pTab, regNewData+1); 1863 bAffinityDone = 1; 1864 } 1865 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1866 iThisCur = iIdxCur+ix; 1867 1868 1869 /* Skip partial indices for which the WHERE clause is not true */ 1870 if( pIdx->pPartIdxWhere ){ 1871 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1872 pParse->iSelfTab = -(regNewData+1); 1873 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1874 SQLITE_JUMPIFNULL); 1875 pParse->iSelfTab = 0; 1876 } 1877 1878 /* Create a record for this index entry as it should appear after 1879 ** the insert or update. Store that record in the aRegIdx[ix] register 1880 */ 1881 regIdx = aRegIdx[ix]+1; 1882 for(i=0; i<pIdx->nColumn; i++){ 1883 int iField = pIdx->aiColumn[i]; 1884 int x; 1885 if( iField==XN_EXPR ){ 1886 pParse->iSelfTab = -(regNewData+1); 1887 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1888 pParse->iSelfTab = 0; 1889 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1890 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 1891 x = regNewData; 1892 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 1893 VdbeComment((v, "rowid")); 1894 }else{ 1895 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 1896 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 1897 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 1898 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 1899 } 1900 } 1901 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1902 VdbeComment((v, "for %s", pIdx->zName)); 1903 #ifdef SQLITE_ENABLE_NULL_TRIM 1904 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1905 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1906 } 1907 #endif 1908 1909 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1910 ** of a WITHOUT ROWID table and there has been no change the 1911 ** primary key, then no collision is possible. The collision detection 1912 ** logic below can all be skipped. */ 1913 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1914 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1915 continue; 1916 } 1917 1918 /* Find out what action to take in case there is a uniqueness conflict */ 1919 onError = pIdx->onError; 1920 if( onError==OE_None ){ 1921 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1922 continue; /* pIdx is not a UNIQUE index */ 1923 } 1924 if( overrideError!=OE_Default ){ 1925 onError = overrideError; 1926 }else if( onError==OE_Default ){ 1927 onError = OE_Abort; 1928 } 1929 1930 /* Figure out if the upsert clause applies to this index */ 1931 if( pUpIdx==pIdx ){ 1932 if( pUpsert->pUpsertSet==0 ){ 1933 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1934 }else{ 1935 onError = OE_Update; /* DO UPDATE */ 1936 } 1937 } 1938 1939 /* Collision detection may be omitted if all of the following are true: 1940 ** (1) The conflict resolution algorithm is REPLACE 1941 ** (2) The table is a WITHOUT ROWID table 1942 ** (3) There are no secondary indexes on the table 1943 ** (4) No delete triggers need to be fired if there is a conflict 1944 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1945 ** 1946 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 1947 ** must be explicitly deleted in order to ensure any pre-update hook 1948 ** is invoked. */ 1949 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 1950 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1951 && pPk==pIdx /* Condition 2 */ 1952 && onError==OE_Replace /* Condition 1 */ 1953 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1954 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1955 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1956 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1957 ){ 1958 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1959 continue; 1960 } 1961 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 1962 1963 /* Check to see if the new index entry will be unique */ 1964 sqlite3VdbeVerifyAbortable(v, onError); 1965 addrConflictCk = 1966 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1967 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1968 1969 /* Generate code to handle collisions */ 1970 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1971 if( isUpdate || onError==OE_Replace ){ 1972 if( HasRowid(pTab) ){ 1973 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1974 /* Conflict only if the rowid of the existing index entry 1975 ** is different from old-rowid */ 1976 if( isUpdate ){ 1977 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1978 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1979 VdbeCoverage(v); 1980 } 1981 }else{ 1982 int x; 1983 /* Extract the PRIMARY KEY from the end of the index entry and 1984 ** store it in registers regR..regR+nPk-1 */ 1985 if( pIdx!=pPk ){ 1986 for(i=0; i<pPk->nKeyCol; i++){ 1987 assert( pPk->aiColumn[i]>=0 ); 1988 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 1989 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1990 VdbeComment((v, "%s.%s", pTab->zName, 1991 pTab->aCol[pPk->aiColumn[i]].zName)); 1992 } 1993 } 1994 if( isUpdate ){ 1995 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1996 ** table, only conflict if the new PRIMARY KEY values are actually 1997 ** different from the old. 1998 ** 1999 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2000 ** of the matched index row are different from the original PRIMARY 2001 ** KEY values of this row before the update. */ 2002 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2003 int op = OP_Ne; 2004 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2005 2006 for(i=0; i<pPk->nKeyCol; i++){ 2007 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2008 x = pPk->aiColumn[i]; 2009 assert( x>=0 ); 2010 if( i==(pPk->nKeyCol-1) ){ 2011 addrJump = addrUniqueOk; 2012 op = OP_Eq; 2013 } 2014 x = sqlite3TableColumnToStorage(pTab, x); 2015 sqlite3VdbeAddOp4(v, op, 2016 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2017 ); 2018 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2019 VdbeCoverageIf(v, op==OP_Eq); 2020 VdbeCoverageIf(v, op==OP_Ne); 2021 } 2022 } 2023 } 2024 } 2025 2026 /* Generate code that executes if the new index entry is not unique */ 2027 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2028 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2029 switch( onError ){ 2030 case OE_Rollback: 2031 case OE_Abort: 2032 case OE_Fail: { 2033 testcase( onError==OE_Rollback ); 2034 testcase( onError==OE_Abort ); 2035 testcase( onError==OE_Fail ); 2036 sqlite3UniqueConstraint(pParse, onError, pIdx); 2037 break; 2038 } 2039 #ifndef SQLITE_OMIT_UPSERT 2040 case OE_Update: { 2041 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2042 /* Fall through */ 2043 } 2044 #endif 2045 case OE_Ignore: { 2046 testcase( onError==OE_Ignore ); 2047 sqlite3VdbeGoto(v, ignoreDest); 2048 break; 2049 } 2050 default: { 2051 int nConflictCk; /* Number of opcodes in conflict check logic */ 2052 2053 assert( onError==OE_Replace ); 2054 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2055 assert( nConflictCk>0 ); 2056 testcase( nConflictCk>1 ); 2057 if( regTrigCnt ){ 2058 sqlite3MultiWrite(pParse); 2059 nReplaceTrig++; 2060 } 2061 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2062 regR, nPkField, 0, OE_Replace, 2063 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2064 if( regTrigCnt ){ 2065 int addrBypass; /* Jump destination to bypass recheck logic */ 2066 2067 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2068 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2069 VdbeComment((v, "bypass recheck")); 2070 2071 /* Here we insert code that will be invoked after all constraint 2072 ** checks have run, if and only if one or more replace triggers 2073 ** fired. */ 2074 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2075 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2076 if( pIdx->pPartIdxWhere ){ 2077 /* Bypass the recheck if this partial index is not defined 2078 ** for the current row */ 2079 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2080 VdbeCoverage(v); 2081 } 2082 /* Copy the constraint check code from above, except change 2083 ** the constraint-ok jump destination to be the address of 2084 ** the next retest block */ 2085 while( nConflictCk>0 ){ 2086 VdbeOp x; /* Conflict check opcode to copy */ 2087 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2088 ** Hence, make a complete copy of the opcode, rather than using 2089 ** a pointer to the opcode. */ 2090 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2091 if( x.opcode!=OP_IdxRowid ){ 2092 int p2; /* New P2 value for copied conflict check opcode */ 2093 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2094 p2 = lblRecheckOk; 2095 }else{ 2096 p2 = x.p2; 2097 } 2098 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, x.p4.z, x.p4type); 2099 sqlite3VdbeChangeP5(v, x.p5); 2100 VdbeCoverageIf(v, p2!=x.p2); 2101 } 2102 nConflictCk--; 2103 addrConflictCk++; 2104 } 2105 /* If the retest fails, issue an abort */ 2106 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2107 2108 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2109 } 2110 seenReplace = 1; 2111 break; 2112 } 2113 } 2114 if( pUpIdx==pIdx ){ 2115 sqlite3VdbeGoto(v, upsertJump+1); 2116 sqlite3VdbeJumpHere(v, upsertBypass); 2117 }else{ 2118 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2119 } 2120 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2121 } 2122 2123 /* If the IPK constraint is a REPLACE, run it last */ 2124 if( ipkTop ){ 2125 sqlite3VdbeGoto(v, ipkTop); 2126 VdbeComment((v, "Do IPK REPLACE")); 2127 sqlite3VdbeJumpHere(v, ipkBottom); 2128 } 2129 2130 /* Recheck all uniqueness constraints after replace triggers have run */ 2131 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2132 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2133 if( nReplaceTrig ){ 2134 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2135 if( !pPk ){ 2136 if( isUpdate ){ 2137 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2138 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2139 VdbeCoverage(v); 2140 } 2141 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2142 VdbeCoverage(v); 2143 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2144 }else{ 2145 sqlite3VdbeGoto(v, addrRecheck); 2146 } 2147 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2148 } 2149 2150 /* Generate the table record */ 2151 if( HasRowid(pTab) ){ 2152 int regRec = aRegIdx[ix]; 2153 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2154 sqlite3SetMakeRecordP5(v, pTab); 2155 if( !bAffinityDone ){ 2156 sqlite3TableAffinity(v, pTab, 0); 2157 } 2158 } 2159 2160 *pbMayReplace = seenReplace; 2161 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2162 } 2163 2164 #ifdef SQLITE_ENABLE_NULL_TRIM 2165 /* 2166 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2167 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2168 ** 2169 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2170 */ 2171 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2172 u16 i; 2173 2174 /* Records with omitted columns are only allowed for schema format 2175 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2176 if( pTab->pSchema->file_format<2 ) return; 2177 2178 for(i=pTab->nCol-1; i>0; i--){ 2179 if( pTab->aCol[i].pDflt!=0 ) break; 2180 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2181 } 2182 sqlite3VdbeChangeP5(v, i+1); 2183 } 2184 #endif 2185 2186 /* 2187 ** This routine generates code to finish the INSERT or UPDATE operation 2188 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2189 ** A consecutive range of registers starting at regNewData contains the 2190 ** rowid and the content to be inserted. 2191 ** 2192 ** The arguments to this routine should be the same as the first six 2193 ** arguments to sqlite3GenerateConstraintChecks. 2194 */ 2195 void sqlite3CompleteInsertion( 2196 Parse *pParse, /* The parser context */ 2197 Table *pTab, /* the table into which we are inserting */ 2198 int iDataCur, /* Cursor of the canonical data source */ 2199 int iIdxCur, /* First index cursor */ 2200 int regNewData, /* Range of content */ 2201 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2202 int update_flags, /* True for UPDATE, False for INSERT */ 2203 int appendBias, /* True if this is likely to be an append */ 2204 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2205 ){ 2206 Vdbe *v; /* Prepared statements under construction */ 2207 Index *pIdx; /* An index being inserted or updated */ 2208 u8 pik_flags; /* flag values passed to the btree insert */ 2209 int i; /* Loop counter */ 2210 2211 assert( update_flags==0 2212 || update_flags==OPFLAG_ISUPDATE 2213 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2214 ); 2215 2216 v = sqlite3GetVdbe(pParse); 2217 assert( v!=0 ); 2218 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2219 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2220 if( aRegIdx[i]==0 ) continue; 2221 if( pIdx->pPartIdxWhere ){ 2222 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2223 VdbeCoverage(v); 2224 } 2225 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2226 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2227 assert( pParse->nested==0 ); 2228 pik_flags |= OPFLAG_NCHANGE; 2229 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2230 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2231 if( update_flags==0 ){ 2232 int r = sqlite3GetTempReg(pParse); 2233 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2234 sqlite3VdbeAddOp4(v, OP_Insert, 2235 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2236 ); 2237 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2238 sqlite3ReleaseTempReg(pParse, r); 2239 } 2240 #endif 2241 } 2242 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2243 aRegIdx[i]+1, 2244 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2245 sqlite3VdbeChangeP5(v, pik_flags); 2246 } 2247 if( !HasRowid(pTab) ) return; 2248 if( pParse->nested ){ 2249 pik_flags = 0; 2250 }else{ 2251 pik_flags = OPFLAG_NCHANGE; 2252 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2253 } 2254 if( appendBias ){ 2255 pik_flags |= OPFLAG_APPEND; 2256 } 2257 if( useSeekResult ){ 2258 pik_flags |= OPFLAG_USESEEKRESULT; 2259 } 2260 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2261 if( !pParse->nested ){ 2262 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2263 } 2264 sqlite3VdbeChangeP5(v, pik_flags); 2265 } 2266 2267 /* 2268 ** Allocate cursors for the pTab table and all its indices and generate 2269 ** code to open and initialized those cursors. 2270 ** 2271 ** The cursor for the object that contains the complete data (normally 2272 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2273 ** ROWID table) is returned in *piDataCur. The first index cursor is 2274 ** returned in *piIdxCur. The number of indices is returned. 2275 ** 2276 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2277 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2278 ** If iBase is negative, then allocate the next available cursor. 2279 ** 2280 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2281 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2282 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2283 ** pTab->pIndex list. 2284 ** 2285 ** If pTab is a virtual table, then this routine is a no-op and the 2286 ** *piDataCur and *piIdxCur values are left uninitialized. 2287 */ 2288 int sqlite3OpenTableAndIndices( 2289 Parse *pParse, /* Parsing context */ 2290 Table *pTab, /* Table to be opened */ 2291 int op, /* OP_OpenRead or OP_OpenWrite */ 2292 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2293 int iBase, /* Use this for the table cursor, if there is one */ 2294 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2295 int *piDataCur, /* Write the database source cursor number here */ 2296 int *piIdxCur /* Write the first index cursor number here */ 2297 ){ 2298 int i; 2299 int iDb; 2300 int iDataCur; 2301 Index *pIdx; 2302 Vdbe *v; 2303 2304 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2305 assert( op==OP_OpenWrite || p5==0 ); 2306 if( IsVirtual(pTab) ){ 2307 /* This routine is a no-op for virtual tables. Leave the output 2308 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2309 ** can detect if they are used by mistake in the caller. */ 2310 return 0; 2311 } 2312 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2313 v = sqlite3GetVdbe(pParse); 2314 assert( v!=0 ); 2315 if( iBase<0 ) iBase = pParse->nTab; 2316 iDataCur = iBase++; 2317 if( piDataCur ) *piDataCur = iDataCur; 2318 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2319 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2320 }else{ 2321 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2322 } 2323 if( piIdxCur ) *piIdxCur = iBase; 2324 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2325 int iIdxCur = iBase++; 2326 assert( pIdx->pSchema==pTab->pSchema ); 2327 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2328 if( piDataCur ) *piDataCur = iIdxCur; 2329 p5 = 0; 2330 } 2331 if( aToOpen==0 || aToOpen[i+1] ){ 2332 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2333 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2334 sqlite3VdbeChangeP5(v, p5); 2335 VdbeComment((v, "%s", pIdx->zName)); 2336 } 2337 } 2338 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2339 return i; 2340 } 2341 2342 2343 #ifdef SQLITE_TEST 2344 /* 2345 ** The following global variable is incremented whenever the 2346 ** transfer optimization is used. This is used for testing 2347 ** purposes only - to make sure the transfer optimization really 2348 ** is happening when it is supposed to. 2349 */ 2350 int sqlite3_xferopt_count; 2351 #endif /* SQLITE_TEST */ 2352 2353 2354 #ifndef SQLITE_OMIT_XFER_OPT 2355 /* 2356 ** Check to see if index pSrc is compatible as a source of data 2357 ** for index pDest in an insert transfer optimization. The rules 2358 ** for a compatible index: 2359 ** 2360 ** * The index is over the same set of columns 2361 ** * The same DESC and ASC markings occurs on all columns 2362 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2363 ** * The same collating sequence on each column 2364 ** * The index has the exact same WHERE clause 2365 */ 2366 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2367 int i; 2368 assert( pDest && pSrc ); 2369 assert( pDest->pTable!=pSrc->pTable ); 2370 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2371 return 0; /* Different number of columns */ 2372 } 2373 if( pDest->onError!=pSrc->onError ){ 2374 return 0; /* Different conflict resolution strategies */ 2375 } 2376 for(i=0; i<pSrc->nKeyCol; i++){ 2377 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2378 return 0; /* Different columns indexed */ 2379 } 2380 if( pSrc->aiColumn[i]==XN_EXPR ){ 2381 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2382 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2383 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2384 return 0; /* Different expressions in the index */ 2385 } 2386 } 2387 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2388 return 0; /* Different sort orders */ 2389 } 2390 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2391 return 0; /* Different collating sequences */ 2392 } 2393 } 2394 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2395 return 0; /* Different WHERE clauses */ 2396 } 2397 2398 /* If no test above fails then the indices must be compatible */ 2399 return 1; 2400 } 2401 2402 /* 2403 ** Attempt the transfer optimization on INSERTs of the form 2404 ** 2405 ** INSERT INTO tab1 SELECT * FROM tab2; 2406 ** 2407 ** The xfer optimization transfers raw records from tab2 over to tab1. 2408 ** Columns are not decoded and reassembled, which greatly improves 2409 ** performance. Raw index records are transferred in the same way. 2410 ** 2411 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2412 ** There are lots of rules for determining compatibility - see comments 2413 ** embedded in the code for details. 2414 ** 2415 ** This routine returns TRUE if the optimization is guaranteed to be used. 2416 ** Sometimes the xfer optimization will only work if the destination table 2417 ** is empty - a factor that can only be determined at run-time. In that 2418 ** case, this routine generates code for the xfer optimization but also 2419 ** does a test to see if the destination table is empty and jumps over the 2420 ** xfer optimization code if the test fails. In that case, this routine 2421 ** returns FALSE so that the caller will know to go ahead and generate 2422 ** an unoptimized transfer. This routine also returns FALSE if there 2423 ** is no chance that the xfer optimization can be applied. 2424 ** 2425 ** This optimization is particularly useful at making VACUUM run faster. 2426 */ 2427 static int xferOptimization( 2428 Parse *pParse, /* Parser context */ 2429 Table *pDest, /* The table we are inserting into */ 2430 Select *pSelect, /* A SELECT statement to use as the data source */ 2431 int onError, /* How to handle constraint errors */ 2432 int iDbDest /* The database of pDest */ 2433 ){ 2434 sqlite3 *db = pParse->db; 2435 ExprList *pEList; /* The result set of the SELECT */ 2436 Table *pSrc; /* The table in the FROM clause of SELECT */ 2437 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2438 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2439 int i; /* Loop counter */ 2440 int iDbSrc; /* The database of pSrc */ 2441 int iSrc, iDest; /* Cursors from source and destination */ 2442 int addr1, addr2; /* Loop addresses */ 2443 int emptyDestTest = 0; /* Address of test for empty pDest */ 2444 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2445 Vdbe *v; /* The VDBE we are building */ 2446 int regAutoinc; /* Memory register used by AUTOINC */ 2447 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2448 int regData, regRowid; /* Registers holding data and rowid */ 2449 2450 if( pSelect==0 ){ 2451 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2452 } 2453 if( pParse->pWith || pSelect->pWith ){ 2454 /* Do not attempt to process this query if there are an WITH clauses 2455 ** attached to it. Proceeding may generate a false "no such table: xxx" 2456 ** error if pSelect reads from a CTE named "xxx". */ 2457 return 0; 2458 } 2459 if( sqlite3TriggerList(pParse, pDest) ){ 2460 return 0; /* tab1 must not have triggers */ 2461 } 2462 #ifndef SQLITE_OMIT_VIRTUALTABLE 2463 if( IsVirtual(pDest) ){ 2464 return 0; /* tab1 must not be a virtual table */ 2465 } 2466 #endif 2467 if( onError==OE_Default ){ 2468 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2469 if( onError==OE_Default ) onError = OE_Abort; 2470 } 2471 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2472 if( pSelect->pSrc->nSrc!=1 ){ 2473 return 0; /* FROM clause must have exactly one term */ 2474 } 2475 if( pSelect->pSrc->a[0].pSelect ){ 2476 return 0; /* FROM clause cannot contain a subquery */ 2477 } 2478 if( pSelect->pWhere ){ 2479 return 0; /* SELECT may not have a WHERE clause */ 2480 } 2481 if( pSelect->pOrderBy ){ 2482 return 0; /* SELECT may not have an ORDER BY clause */ 2483 } 2484 /* Do not need to test for a HAVING clause. If HAVING is present but 2485 ** there is no ORDER BY, we will get an error. */ 2486 if( pSelect->pGroupBy ){ 2487 return 0; /* SELECT may not have a GROUP BY clause */ 2488 } 2489 if( pSelect->pLimit ){ 2490 return 0; /* SELECT may not have a LIMIT clause */ 2491 } 2492 if( pSelect->pPrior ){ 2493 return 0; /* SELECT may not be a compound query */ 2494 } 2495 if( pSelect->selFlags & SF_Distinct ){ 2496 return 0; /* SELECT may not be DISTINCT */ 2497 } 2498 pEList = pSelect->pEList; 2499 assert( pEList!=0 ); 2500 if( pEList->nExpr!=1 ){ 2501 return 0; /* The result set must have exactly one column */ 2502 } 2503 assert( pEList->a[0].pExpr ); 2504 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2505 return 0; /* The result set must be the special operator "*" */ 2506 } 2507 2508 /* At this point we have established that the statement is of the 2509 ** correct syntactic form to participate in this optimization. Now 2510 ** we have to check the semantics. 2511 */ 2512 pItem = pSelect->pSrc->a; 2513 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2514 if( pSrc==0 ){ 2515 return 0; /* FROM clause does not contain a real table */ 2516 } 2517 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2518 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */ 2519 return 0; /* tab1 and tab2 may not be the same table */ 2520 } 2521 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2522 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2523 } 2524 #ifndef SQLITE_OMIT_VIRTUALTABLE 2525 if( IsVirtual(pSrc) ){ 2526 return 0; /* tab2 must not be a virtual table */ 2527 } 2528 #endif 2529 if( pSrc->pSelect ){ 2530 return 0; /* tab2 may not be a view */ 2531 } 2532 if( pDest->nCol!=pSrc->nCol ){ 2533 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2534 } 2535 if( pDest->iPKey!=pSrc->iPKey ){ 2536 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2537 } 2538 for(i=0; i<pDest->nCol; i++){ 2539 Column *pDestCol = &pDest->aCol[i]; 2540 Column *pSrcCol = &pSrc->aCol[i]; 2541 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2542 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2543 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2544 ){ 2545 return 0; /* Neither table may have __hidden__ columns */ 2546 } 2547 #endif 2548 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2549 /* Even if tables t1 and t2 have identical schemas, if they contain 2550 ** generated columns, then this statement is semantically incorrect: 2551 ** 2552 ** INSERT INTO t2 SELECT * FROM t1; 2553 ** 2554 ** The reason is that generated column values are returned by the 2555 ** the SELECT statement on the right but the INSERT statement on the 2556 ** left wants them to be omitted. 2557 ** 2558 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2559 ** to do a bulk transfer all of the content from t1 over to t2. 2560 ** 2561 ** We could, in theory, disable this (except for internal use by the 2562 ** VACUUM command where it is actually needed). But why do that? It 2563 ** seems harmless enough, and provides a useful service. 2564 */ 2565 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2566 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2567 return 0; /* Both columns have the same generated-column type */ 2568 } 2569 /* But the transfer is only allowed if both the source and destination 2570 ** tables have the exact same expressions for generated columns. 2571 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2572 */ 2573 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2574 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2575 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2576 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2577 return 0; /* Different generator expressions */ 2578 } 2579 } 2580 #endif 2581 if( pDestCol->affinity!=pSrcCol->affinity ){ 2582 return 0; /* Affinity must be the same on all columns */ 2583 } 2584 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2585 return 0; /* Collating sequence must be the same on all columns */ 2586 } 2587 if( pDestCol->notNull && !pSrcCol->notNull ){ 2588 return 0; /* tab2 must be NOT NULL if tab1 is */ 2589 } 2590 /* Default values for second and subsequent columns need to match. */ 2591 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2592 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2593 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2594 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2595 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2596 pSrcCol->pDflt->u.zToken)!=0) 2597 ){ 2598 return 0; /* Default values must be the same for all columns */ 2599 } 2600 } 2601 } 2602 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2603 if( IsUniqueIndex(pDestIdx) ){ 2604 destHasUniqueIdx = 1; 2605 } 2606 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2607 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2608 } 2609 if( pSrcIdx==0 ){ 2610 return 0; /* pDestIdx has no corresponding index in pSrc */ 2611 } 2612 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2613 && sqlite3FaultSim(411)==SQLITE_OK ){ 2614 /* The sqlite3FaultSim() call allows this corruption test to be 2615 ** bypassed during testing, in order to exercise other corruption tests 2616 ** further downstream. */ 2617 return 0; /* Corrupt schema - two indexes on the same btree */ 2618 } 2619 } 2620 #ifndef SQLITE_OMIT_CHECK 2621 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2622 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2623 } 2624 #endif 2625 #ifndef SQLITE_OMIT_FOREIGN_KEY 2626 /* Disallow the transfer optimization if the destination table constains 2627 ** any foreign key constraints. This is more restrictive than necessary. 2628 ** But the main beneficiary of the transfer optimization is the VACUUM 2629 ** command, and the VACUUM command disables foreign key constraints. So 2630 ** the extra complication to make this rule less restrictive is probably 2631 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2632 */ 2633 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2634 return 0; 2635 } 2636 #endif 2637 if( (db->flags & SQLITE_CountRows)!=0 ){ 2638 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2639 } 2640 2641 /* If we get this far, it means that the xfer optimization is at 2642 ** least a possibility, though it might only work if the destination 2643 ** table (tab1) is initially empty. 2644 */ 2645 #ifdef SQLITE_TEST 2646 sqlite3_xferopt_count++; 2647 #endif 2648 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2649 v = sqlite3GetVdbe(pParse); 2650 sqlite3CodeVerifySchema(pParse, iDbSrc); 2651 iSrc = pParse->nTab++; 2652 iDest = pParse->nTab++; 2653 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2654 regData = sqlite3GetTempReg(pParse); 2655 regRowid = sqlite3GetTempReg(pParse); 2656 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2657 assert( HasRowid(pDest) || destHasUniqueIdx ); 2658 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2659 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2660 || destHasUniqueIdx /* (2) */ 2661 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2662 )){ 2663 /* In some circumstances, we are able to run the xfer optimization 2664 ** only if the destination table is initially empty. Unless the 2665 ** DBFLAG_Vacuum flag is set, this block generates code to make 2666 ** that determination. If DBFLAG_Vacuum is set, then the destination 2667 ** table is always empty. 2668 ** 2669 ** Conditions under which the destination must be empty: 2670 ** 2671 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2672 ** (If the destination is not initially empty, the rowid fields 2673 ** of index entries might need to change.) 2674 ** 2675 ** (2) The destination has a unique index. (The xfer optimization 2676 ** is unable to test uniqueness.) 2677 ** 2678 ** (3) onError is something other than OE_Abort and OE_Rollback. 2679 */ 2680 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2681 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2682 sqlite3VdbeJumpHere(v, addr1); 2683 } 2684 if( HasRowid(pSrc) ){ 2685 u8 insFlags; 2686 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2687 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2688 if( pDest->iPKey>=0 ){ 2689 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2690 sqlite3VdbeVerifyAbortable(v, onError); 2691 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2692 VdbeCoverage(v); 2693 sqlite3RowidConstraint(pParse, onError, pDest); 2694 sqlite3VdbeJumpHere(v, addr2); 2695 autoIncStep(pParse, regAutoinc, regRowid); 2696 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2697 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2698 }else{ 2699 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2700 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2701 } 2702 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2703 if( db->mDbFlags & DBFLAG_Vacuum ){ 2704 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2705 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2706 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2707 }else{ 2708 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2709 } 2710 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2711 (char*)pDest, P4_TABLE); 2712 sqlite3VdbeChangeP5(v, insFlags); 2713 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2714 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2715 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2716 }else{ 2717 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2718 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2719 } 2720 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2721 u8 idxInsFlags = 0; 2722 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2723 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2724 } 2725 assert( pSrcIdx ); 2726 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2727 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2728 VdbeComment((v, "%s", pSrcIdx->zName)); 2729 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2730 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2731 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2732 VdbeComment((v, "%s", pDestIdx->zName)); 2733 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2734 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2735 if( db->mDbFlags & DBFLAG_Vacuum ){ 2736 /* This INSERT command is part of a VACUUM operation, which guarantees 2737 ** that the destination table is empty. If all indexed columns use 2738 ** collation sequence BINARY, then it can also be assumed that the 2739 ** index will be populated by inserting keys in strictly sorted 2740 ** order. In this case, instead of seeking within the b-tree as part 2741 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2742 ** OP_IdxInsert to seek to the point within the b-tree where each key 2743 ** should be inserted. This is faster. 2744 ** 2745 ** If any of the indexed columns use a collation sequence other than 2746 ** BINARY, this optimization is disabled. This is because the user 2747 ** might change the definition of a collation sequence and then run 2748 ** a VACUUM command. In that case keys may not be written in strictly 2749 ** sorted order. */ 2750 for(i=0; i<pSrcIdx->nColumn; i++){ 2751 const char *zColl = pSrcIdx->azColl[i]; 2752 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2753 } 2754 if( i==pSrcIdx->nColumn ){ 2755 idxInsFlags = OPFLAG_USESEEKRESULT; 2756 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2757 } 2758 } 2759 if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2760 idxInsFlags |= OPFLAG_NCHANGE; 2761 } 2762 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2763 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2764 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2765 sqlite3VdbeJumpHere(v, addr1); 2766 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2767 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2768 } 2769 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2770 sqlite3ReleaseTempReg(pParse, regRowid); 2771 sqlite3ReleaseTempReg(pParse, regData); 2772 if( emptyDestTest ){ 2773 sqlite3AutoincrementEnd(pParse); 2774 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2775 sqlite3VdbeJumpHere(v, emptyDestTest); 2776 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2777 return 0; 2778 }else{ 2779 return 1; 2780 } 2781 } 2782 #endif /* SQLITE_OMIT_XFER_OPT */ 2783