xref: /sqlite-3.40.0/src/insert.c (revision b88eaf16)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85     if( !pIdx->zColAff ){
86       sqlite3OomFault(db);
87       return 0;
88     }
89     for(n=0; n<pIdx->nColumn; n++){
90       i16 x = pIdx->aiColumn[n];
91       char aff;
92       if( x>=0 ){
93         aff = pTab->aCol[x].affinity;
94       }else if( x==XN_ROWID ){
95         aff = SQLITE_AFF_INTEGER;
96       }else{
97         assert( x==XN_EXPR );
98         assert( pIdx->aColExpr!=0 );
99         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100       }
101       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
102       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
103       pIdx->zColAff[n] = aff;
104     }
105     pIdx->zColAff[n] = 0;
106   }
107 
108   return pIdx->zColAff;
109 }
110 
111 /*
112 ** Compute the affinity string for table pTab, if it has not already been
113 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
114 **
115 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
116 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
117 ** for register iReg and following.  Or if affinities exists and iReg==0,
118 ** then just set the P4 operand of the previous opcode (which should  be
119 ** an OP_MakeRecord) to the affinity string.
120 **
121 ** A column affinity string has one character per column:
122 **
123 **  Character      Column affinity
124 **  ------------------------------
125 **  'A'            BLOB
126 **  'B'            TEXT
127 **  'C'            NUMERIC
128 **  'D'            INTEGER
129 **  'E'            REAL
130 */
131 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
132   int i, j;
133   char *zColAff = pTab->zColAff;
134   if( zColAff==0 ){
135     sqlite3 *db = sqlite3VdbeDb(v);
136     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
137     if( !zColAff ){
138       sqlite3OomFault(db);
139       return;
140     }
141 
142     for(i=j=0; i<pTab->nCol; i++){
143       assert( pTab->aCol[i].affinity!=0 );
144       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
145         zColAff[j++] = pTab->aCol[i].affinity;
146       }
147     }
148     do{
149       zColAff[j--] = 0;
150     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
151     pTab->zColAff = zColAff;
152   }
153   assert( zColAff!=0 );
154   i = sqlite3Strlen30NN(zColAff);
155   if( i ){
156     if( iReg ){
157       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
158     }else{
159       sqlite3VdbeChangeP4(v, -1, zColAff, i);
160     }
161   }
162 }
163 
164 /*
165 ** Return non-zero if the table pTab in database iDb or any of its indices
166 ** have been opened at any point in the VDBE program. This is used to see if
167 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
168 ** run without using a temporary table for the results of the SELECT.
169 */
170 static int readsTable(Parse *p, int iDb, Table *pTab){
171   Vdbe *v = sqlite3GetVdbe(p);
172   int i;
173   int iEnd = sqlite3VdbeCurrentAddr(v);
174 #ifndef SQLITE_OMIT_VIRTUALTABLE
175   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
176 #endif
177 
178   for(i=1; i<iEnd; i++){
179     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
180     assert( pOp!=0 );
181     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
182       Index *pIndex;
183       int tnum = pOp->p2;
184       if( tnum==pTab->tnum ){
185         return 1;
186       }
187       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
188         if( tnum==pIndex->tnum ){
189           return 1;
190         }
191       }
192     }
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
195       assert( pOp->p4.pVtab!=0 );
196       assert( pOp->p4type==P4_VTAB );
197       return 1;
198     }
199 #endif
200   }
201   return 0;
202 }
203 
204 /* This walker callback will compute the union of colFlags flags for all
205 ** references columns in a CHECK constraint or generated column expression.
206 */
207 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
208   if( pExpr->op==TK_COLUMN ){
209     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
210   }
211   return WRC_Continue;
212 }
213 
214 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
215 /*
216 ** All regular columns for table pTab have been puts into registers
217 ** starting with iRegStore.  The registers that correspond to STORED
218 ** or VIRTUAL columns have not yet been initialized.  This routine goes
219 ** back and computes the values for those columns based on the previously
220 ** computed normal columns.
221 */
222 void sqlite3ComputeGeneratedColumns(
223   Parse *pParse,    /* Parsing context */
224   int iRegStore,    /* Register holding the first column */
225   Table *pTab       /* The table */
226 ){
227   int i;
228   Walker w;
229   Column *pRedo;
230   int eProgress;
231 
232   /* Because there can be multiple generated columns that refer to one another,
233   ** this is a two-pass algorithm.  On the first pass, mark all generated
234   ** columns as "not available".
235   */
236   for(i=0; i<pTab->nCol; i++){
237     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
238       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
239       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
240       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
241     }
242   }
243 
244   w.u.pTab = pTab;
245   w.xExprCallback = exprColumnFlagUnion;
246   w.xSelectCallback = 0;
247   w.xSelectCallback2 = 0;
248 
249   /* On the second pass, compute the value of each NOT-AVAILABLE column.
250   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
251   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
252   ** they are needed.
253   */
254   pParse->iSelfTab = -iRegStore;
255   do{
256     eProgress = 0;
257     pRedo = 0;
258     for(i=0; i<pTab->nCol; i++){
259       Column *pCol = pTab->aCol + i;
260       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
261         int x;
262         pCol->colFlags |= COLFLAG_BUSY;
263         w.eCode = 0;
264         sqlite3WalkExpr(&w, pCol->pDflt);
265         pCol->colFlags &= ~COLFLAG_BUSY;
266         if( w.eCode & COLFLAG_NOTAVAIL ){
267           pRedo = pCol;
268           continue;
269         }
270         eProgress = 1;
271         assert( pCol->colFlags & COLFLAG_GENERATED );
272         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
273         sqlite3ExprCodeGeneratedColumn(pParse, pCol, x);
274         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
275       }
276     }
277   }while( pRedo && eProgress );
278   if( pRedo ){
279     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName);
280   }
281   pParse->iSelfTab = 0;
282 }
283 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
284 
285 
286 #ifndef SQLITE_OMIT_AUTOINCREMENT
287 /*
288 ** Locate or create an AutoincInfo structure associated with table pTab
289 ** which is in database iDb.  Return the register number for the register
290 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
291 ** table.  (Also return zero when doing a VACUUM since we do not want to
292 ** update the AUTOINCREMENT counters during a VACUUM.)
293 **
294 ** There is at most one AutoincInfo structure per table even if the
295 ** same table is autoincremented multiple times due to inserts within
296 ** triggers.  A new AutoincInfo structure is created if this is the
297 ** first use of table pTab.  On 2nd and subsequent uses, the original
298 ** AutoincInfo structure is used.
299 **
300 ** Four consecutive registers are allocated:
301 **
302 **   (1)  The name of the pTab table.
303 **   (2)  The maximum ROWID of pTab.
304 **   (3)  The rowid in sqlite_sequence of pTab
305 **   (4)  The original value of the max ROWID in pTab, or NULL if none
306 **
307 ** The 2nd register is the one that is returned.  That is all the
308 ** insert routine needs to know about.
309 */
310 static int autoIncBegin(
311   Parse *pParse,      /* Parsing context */
312   int iDb,            /* Index of the database holding pTab */
313   Table *pTab         /* The table we are writing to */
314 ){
315   int memId = 0;      /* Register holding maximum rowid */
316   assert( pParse->db->aDb[iDb].pSchema!=0 );
317   if( (pTab->tabFlags & TF_Autoincrement)!=0
318    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
319   ){
320     Parse *pToplevel = sqlite3ParseToplevel(pParse);
321     AutoincInfo *pInfo;
322     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
323 
324     /* Verify that the sqlite_sequence table exists and is an ordinary
325     ** rowid table with exactly two columns.
326     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
327     if( pSeqTab==0
328      || !HasRowid(pSeqTab)
329      || IsVirtual(pSeqTab)
330      || pSeqTab->nCol!=2
331     ){
332       pParse->nErr++;
333       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
334       return 0;
335     }
336 
337     pInfo = pToplevel->pAinc;
338     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
339     if( pInfo==0 ){
340       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
341       if( pInfo==0 ) return 0;
342       pInfo->pNext = pToplevel->pAinc;
343       pToplevel->pAinc = pInfo;
344       pInfo->pTab = pTab;
345       pInfo->iDb = iDb;
346       pToplevel->nMem++;                  /* Register to hold name of table */
347       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
348       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
349     }
350     memId = pInfo->regCtr;
351   }
352   return memId;
353 }
354 
355 /*
356 ** This routine generates code that will initialize all of the
357 ** register used by the autoincrement tracker.
358 */
359 void sqlite3AutoincrementBegin(Parse *pParse){
360   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
361   sqlite3 *db = pParse->db;  /* The database connection */
362   Db *pDb;                   /* Database only autoinc table */
363   int memId;                 /* Register holding max rowid */
364   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
365 
366   /* This routine is never called during trigger-generation.  It is
367   ** only called from the top-level */
368   assert( pParse->pTriggerTab==0 );
369   assert( sqlite3IsToplevel(pParse) );
370 
371   assert( v );   /* We failed long ago if this is not so */
372   for(p = pParse->pAinc; p; p = p->pNext){
373     static const int iLn = VDBE_OFFSET_LINENO(2);
374     static const VdbeOpList autoInc[] = {
375       /* 0  */ {OP_Null,    0,  0, 0},
376       /* 1  */ {OP_Rewind,  0, 10, 0},
377       /* 2  */ {OP_Column,  0,  0, 0},
378       /* 3  */ {OP_Ne,      0,  9, 0},
379       /* 4  */ {OP_Rowid,   0,  0, 0},
380       /* 5  */ {OP_Column,  0,  1, 0},
381       /* 6  */ {OP_AddImm,  0,  0, 0},
382       /* 7  */ {OP_Copy,    0,  0, 0},
383       /* 8  */ {OP_Goto,    0, 11, 0},
384       /* 9  */ {OP_Next,    0,  2, 0},
385       /* 10 */ {OP_Integer, 0,  0, 0},
386       /* 11 */ {OP_Close,   0,  0, 0}
387     };
388     VdbeOp *aOp;
389     pDb = &db->aDb[p->iDb];
390     memId = p->regCtr;
391     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
392     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
393     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
394     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
395     if( aOp==0 ) break;
396     aOp[0].p2 = memId;
397     aOp[0].p3 = memId+2;
398     aOp[2].p3 = memId;
399     aOp[3].p1 = memId-1;
400     aOp[3].p3 = memId;
401     aOp[3].p5 = SQLITE_JUMPIFNULL;
402     aOp[4].p2 = memId+1;
403     aOp[5].p3 = memId;
404     aOp[6].p1 = memId;
405     aOp[7].p2 = memId+2;
406     aOp[7].p1 = memId;
407     aOp[10].p2 = memId;
408     if( pParse->nTab==0 ) pParse->nTab = 1;
409   }
410 }
411 
412 /*
413 ** Update the maximum rowid for an autoincrement calculation.
414 **
415 ** This routine should be called when the regRowid register holds a
416 ** new rowid that is about to be inserted.  If that new rowid is
417 ** larger than the maximum rowid in the memId memory cell, then the
418 ** memory cell is updated.
419 */
420 static void autoIncStep(Parse *pParse, int memId, int regRowid){
421   if( memId>0 ){
422     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
423   }
424 }
425 
426 /*
427 ** This routine generates the code needed to write autoincrement
428 ** maximum rowid values back into the sqlite_sequence register.
429 ** Every statement that might do an INSERT into an autoincrement
430 ** table (either directly or through triggers) needs to call this
431 ** routine just before the "exit" code.
432 */
433 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
434   AutoincInfo *p;
435   Vdbe *v = pParse->pVdbe;
436   sqlite3 *db = pParse->db;
437 
438   assert( v );
439   for(p = pParse->pAinc; p; p = p->pNext){
440     static const int iLn = VDBE_OFFSET_LINENO(2);
441     static const VdbeOpList autoIncEnd[] = {
442       /* 0 */ {OP_NotNull,     0, 2, 0},
443       /* 1 */ {OP_NewRowid,    0, 0, 0},
444       /* 2 */ {OP_MakeRecord,  0, 2, 0},
445       /* 3 */ {OP_Insert,      0, 0, 0},
446       /* 4 */ {OP_Close,       0, 0, 0}
447     };
448     VdbeOp *aOp;
449     Db *pDb = &db->aDb[p->iDb];
450     int iRec;
451     int memId = p->regCtr;
452 
453     iRec = sqlite3GetTempReg(pParse);
454     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
455     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
456     VdbeCoverage(v);
457     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
458     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
459     if( aOp==0 ) break;
460     aOp[0].p1 = memId+1;
461     aOp[1].p2 = memId+1;
462     aOp[2].p1 = memId-1;
463     aOp[2].p3 = iRec;
464     aOp[3].p2 = iRec;
465     aOp[3].p3 = memId+1;
466     aOp[3].p5 = OPFLAG_APPEND;
467     sqlite3ReleaseTempReg(pParse, iRec);
468   }
469 }
470 void sqlite3AutoincrementEnd(Parse *pParse){
471   if( pParse->pAinc ) autoIncrementEnd(pParse);
472 }
473 #else
474 /*
475 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
476 ** above are all no-ops
477 */
478 # define autoIncBegin(A,B,C) (0)
479 # define autoIncStep(A,B,C)
480 #endif /* SQLITE_OMIT_AUTOINCREMENT */
481 
482 
483 /* Forward declaration */
484 static int xferOptimization(
485   Parse *pParse,        /* Parser context */
486   Table *pDest,         /* The table we are inserting into */
487   Select *pSelect,      /* A SELECT statement to use as the data source */
488   int onError,          /* How to handle constraint errors */
489   int iDbDest           /* The database of pDest */
490 );
491 
492 /*
493 ** This routine is called to handle SQL of the following forms:
494 **
495 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
496 **    insert into TABLE (IDLIST) select
497 **    insert into TABLE (IDLIST) default values
498 **
499 ** The IDLIST following the table name is always optional.  If omitted,
500 ** then a list of all (non-hidden) columns for the table is substituted.
501 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
502 ** is omitted.
503 **
504 ** For the pSelect parameter holds the values to be inserted for the
505 ** first two forms shown above.  A VALUES clause is really just short-hand
506 ** for a SELECT statement that omits the FROM clause and everything else
507 ** that follows.  If the pSelect parameter is NULL, that means that the
508 ** DEFAULT VALUES form of the INSERT statement is intended.
509 **
510 ** The code generated follows one of four templates.  For a simple
511 ** insert with data coming from a single-row VALUES clause, the code executes
512 ** once straight down through.  Pseudo-code follows (we call this
513 ** the "1st template"):
514 **
515 **         open write cursor to <table> and its indices
516 **         put VALUES clause expressions into registers
517 **         write the resulting record into <table>
518 **         cleanup
519 **
520 ** The three remaining templates assume the statement is of the form
521 **
522 **   INSERT INTO <table> SELECT ...
523 **
524 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
525 ** in other words if the SELECT pulls all columns from a single table
526 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
527 ** if <table2> and <table1> are distinct tables but have identical
528 ** schemas, including all the same indices, then a special optimization
529 ** is invoked that copies raw records from <table2> over to <table1>.
530 ** See the xferOptimization() function for the implementation of this
531 ** template.  This is the 2nd template.
532 **
533 **         open a write cursor to <table>
534 **         open read cursor on <table2>
535 **         transfer all records in <table2> over to <table>
536 **         close cursors
537 **         foreach index on <table>
538 **           open a write cursor on the <table> index
539 **           open a read cursor on the corresponding <table2> index
540 **           transfer all records from the read to the write cursors
541 **           close cursors
542 **         end foreach
543 **
544 ** The 3rd template is for when the second template does not apply
545 ** and the SELECT clause does not read from <table> at any time.
546 ** The generated code follows this template:
547 **
548 **         X <- A
549 **         goto B
550 **      A: setup for the SELECT
551 **         loop over the rows in the SELECT
552 **           load values into registers R..R+n
553 **           yield X
554 **         end loop
555 **         cleanup after the SELECT
556 **         end-coroutine X
557 **      B: open write cursor to <table> and its indices
558 **      C: yield X, at EOF goto D
559 **         insert the select result into <table> from R..R+n
560 **         goto C
561 **      D: cleanup
562 **
563 ** The 4th template is used if the insert statement takes its
564 ** values from a SELECT but the data is being inserted into a table
565 ** that is also read as part of the SELECT.  In the third form,
566 ** we have to use an intermediate table to store the results of
567 ** the select.  The template is like this:
568 **
569 **         X <- A
570 **         goto B
571 **      A: setup for the SELECT
572 **         loop over the tables in the SELECT
573 **           load value into register R..R+n
574 **           yield X
575 **         end loop
576 **         cleanup after the SELECT
577 **         end co-routine R
578 **      B: open temp table
579 **      L: yield X, at EOF goto M
580 **         insert row from R..R+n into temp table
581 **         goto L
582 **      M: open write cursor to <table> and its indices
583 **         rewind temp table
584 **      C: loop over rows of intermediate table
585 **           transfer values form intermediate table into <table>
586 **         end loop
587 **      D: cleanup
588 */
589 void sqlite3Insert(
590   Parse *pParse,        /* Parser context */
591   SrcList *pTabList,    /* Name of table into which we are inserting */
592   Select *pSelect,      /* A SELECT statement to use as the data source */
593   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
594   int onError,          /* How to handle constraint errors */
595   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
596 ){
597   sqlite3 *db;          /* The main database structure */
598   Table *pTab;          /* The table to insert into.  aka TABLE */
599   int i, j;             /* Loop counters */
600   Vdbe *v;              /* Generate code into this virtual machine */
601   Index *pIdx;          /* For looping over indices of the table */
602   int nColumn;          /* Number of columns in the data */
603   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
604   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
605   int iIdxCur = 0;      /* First index cursor */
606   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
607   int endOfLoop;        /* Label for the end of the insertion loop */
608   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
609   int addrInsTop = 0;   /* Jump to label "D" */
610   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
611   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
612   int iDb;              /* Index of database holding TABLE */
613   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
614   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
615   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
616   u8 bIdListInOrder;    /* True if IDLIST is in table order */
617   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
618   int iRegStore;        /* Register in which to store next column */
619 
620   /* Register allocations */
621   int regFromSelect = 0;/* Base register for data coming from SELECT */
622   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
623   int regRowCount = 0;  /* Memory cell used for the row counter */
624   int regIns;           /* Block of regs holding rowid+data being inserted */
625   int regRowid;         /* registers holding insert rowid */
626   int regData;          /* register holding first column to insert */
627   int *aRegIdx = 0;     /* One register allocated to each index */
628 
629 #ifndef SQLITE_OMIT_TRIGGER
630   int isView;                 /* True if attempting to insert into a view */
631   Trigger *pTrigger;          /* List of triggers on pTab, if required */
632   int tmask;                  /* Mask of trigger times */
633 #endif
634 
635   db = pParse->db;
636   if( pParse->nErr || db->mallocFailed ){
637     goto insert_cleanup;
638   }
639   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
640 
641   /* If the Select object is really just a simple VALUES() list with a
642   ** single row (the common case) then keep that one row of values
643   ** and discard the other (unused) parts of the pSelect object
644   */
645   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
646     pList = pSelect->pEList;
647     pSelect->pEList = 0;
648     sqlite3SelectDelete(db, pSelect);
649     pSelect = 0;
650   }
651 
652   /* Locate the table into which we will be inserting new information.
653   */
654   assert( pTabList->nSrc==1 );
655   pTab = sqlite3SrcListLookup(pParse, pTabList);
656   if( pTab==0 ){
657     goto insert_cleanup;
658   }
659   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
660   assert( iDb<db->nDb );
661   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
662                        db->aDb[iDb].zDbSName) ){
663     goto insert_cleanup;
664   }
665   withoutRowid = !HasRowid(pTab);
666 
667   /* Figure out if we have any triggers and if the table being
668   ** inserted into is a view
669   */
670 #ifndef SQLITE_OMIT_TRIGGER
671   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
672   isView = pTab->pSelect!=0;
673 #else
674 # define pTrigger 0
675 # define tmask 0
676 # define isView 0
677 #endif
678 #ifdef SQLITE_OMIT_VIEW
679 # undef isView
680 # define isView 0
681 #endif
682   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
683 
684   /* If pTab is really a view, make sure it has been initialized.
685   ** ViewGetColumnNames() is a no-op if pTab is not a view.
686   */
687   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
688     goto insert_cleanup;
689   }
690 
691   /* Cannot insert into a read-only table.
692   */
693   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
694     goto insert_cleanup;
695   }
696 
697   /* Allocate a VDBE
698   */
699   v = sqlite3GetVdbe(pParse);
700   if( v==0 ) goto insert_cleanup;
701   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
702   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
703 
704 #ifndef SQLITE_OMIT_XFER_OPT
705   /* If the statement is of the form
706   **
707   **       INSERT INTO <table1> SELECT * FROM <table2>;
708   **
709   ** Then special optimizations can be applied that make the transfer
710   ** very fast and which reduce fragmentation of indices.
711   **
712   ** This is the 2nd template.
713   */
714   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
715     assert( !pTrigger );
716     assert( pList==0 );
717     goto insert_end;
718   }
719 #endif /* SQLITE_OMIT_XFER_OPT */
720 
721   /* If this is an AUTOINCREMENT table, look up the sequence number in the
722   ** sqlite_sequence table and store it in memory cell regAutoinc.
723   */
724   regAutoinc = autoIncBegin(pParse, iDb, pTab);
725 
726   /* Allocate a block registers to hold the rowid and the values
727   ** for all columns of the new row.
728   */
729   regRowid = regIns = pParse->nMem+1;
730   pParse->nMem += pTab->nCol + 1;
731   if( IsVirtual(pTab) ){
732     regRowid++;
733     pParse->nMem++;
734   }
735   regData = regRowid+1;
736 
737   /* If the INSERT statement included an IDLIST term, then make sure
738   ** all elements of the IDLIST really are columns of the table and
739   ** remember the column indices.
740   **
741   ** If the table has an INTEGER PRIMARY KEY column and that column
742   ** is named in the IDLIST, then record in the ipkColumn variable
743   ** the index into IDLIST of the primary key column.  ipkColumn is
744   ** the index of the primary key as it appears in IDLIST, not as
745   ** is appears in the original table.  (The index of the INTEGER
746   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
747   ** loop, if ipkColumn==(-1), that means that integer primary key
748   ** is unspecified, and hence the table is either WITHOUT ROWID or
749   ** it will automatically generated an integer primary key.
750   **
751   ** bIdListInOrder is true if the columns in IDLIST are in storage
752   ** order.  This enables an optimization that avoids shuffling the
753   ** columns into storage order.  False negatives are harmless,
754   ** but false positives will cause database corruption.
755   */
756   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
757   if( pColumn ){
758     for(i=0; i<pColumn->nId; i++){
759       pColumn->a[i].idx = -1;
760     }
761     for(i=0; i<pColumn->nId; i++){
762       for(j=0; j<pTab->nCol; j++){
763         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
764           pColumn->a[i].idx = j;
765           if( i!=j ) bIdListInOrder = 0;
766           if( j==pTab->iPKey ){
767             ipkColumn = i;  assert( !withoutRowid );
768           }
769 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
770           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
771             sqlite3ErrorMsg(pParse,
772                "cannot INSERT into generated column \"%s\"",
773                pTab->aCol[j].zName);
774             goto insert_cleanup;
775           }
776 #endif
777           break;
778         }
779       }
780       if( j>=pTab->nCol ){
781         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
782           ipkColumn = i;
783           bIdListInOrder = 0;
784         }else{
785           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
786               pTabList, 0, pColumn->a[i].zName);
787           pParse->checkSchema = 1;
788           goto insert_cleanup;
789         }
790       }
791     }
792   }
793 
794   /* Figure out how many columns of data are supplied.  If the data
795   ** is coming from a SELECT statement, then generate a co-routine that
796   ** produces a single row of the SELECT on each invocation.  The
797   ** co-routine is the common header to the 3rd and 4th templates.
798   */
799   if( pSelect ){
800     /* Data is coming from a SELECT or from a multi-row VALUES clause.
801     ** Generate a co-routine to run the SELECT. */
802     int regYield;       /* Register holding co-routine entry-point */
803     int addrTop;        /* Top of the co-routine */
804     int rc;             /* Result code */
805 
806     regYield = ++pParse->nMem;
807     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
808     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
809     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
810     dest.iSdst = bIdListInOrder ? regData : 0;
811     dest.nSdst = pTab->nCol;
812     rc = sqlite3Select(pParse, pSelect, &dest);
813     regFromSelect = dest.iSdst;
814     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
815     sqlite3VdbeEndCoroutine(v, regYield);
816     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
817     assert( pSelect->pEList );
818     nColumn = pSelect->pEList->nExpr;
819 
820     /* Set useTempTable to TRUE if the result of the SELECT statement
821     ** should be written into a temporary table (template 4).  Set to
822     ** FALSE if each output row of the SELECT can be written directly into
823     ** the destination table (template 3).
824     **
825     ** A temp table must be used if the table being updated is also one
826     ** of the tables being read by the SELECT statement.  Also use a
827     ** temp table in the case of row triggers.
828     */
829     if( pTrigger || readsTable(pParse, iDb, pTab) ){
830       useTempTable = 1;
831     }
832 
833     if( useTempTable ){
834       /* Invoke the coroutine to extract information from the SELECT
835       ** and add it to a transient table srcTab.  The code generated
836       ** here is from the 4th template:
837       **
838       **      B: open temp table
839       **      L: yield X, goto M at EOF
840       **         insert row from R..R+n into temp table
841       **         goto L
842       **      M: ...
843       */
844       int regRec;          /* Register to hold packed record */
845       int regTempRowid;    /* Register to hold temp table ROWID */
846       int addrL;           /* Label "L" */
847 
848       srcTab = pParse->nTab++;
849       regRec = sqlite3GetTempReg(pParse);
850       regTempRowid = sqlite3GetTempReg(pParse);
851       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
852       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
853       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
854       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
855       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
856       sqlite3VdbeGoto(v, addrL);
857       sqlite3VdbeJumpHere(v, addrL);
858       sqlite3ReleaseTempReg(pParse, regRec);
859       sqlite3ReleaseTempReg(pParse, regTempRowid);
860     }
861   }else{
862     /* This is the case if the data for the INSERT is coming from a
863     ** single-row VALUES clause
864     */
865     NameContext sNC;
866     memset(&sNC, 0, sizeof(sNC));
867     sNC.pParse = pParse;
868     srcTab = -1;
869     assert( useTempTable==0 );
870     if( pList ){
871       nColumn = pList->nExpr;
872       if( sqlite3ResolveExprListNames(&sNC, pList) ){
873         goto insert_cleanup;
874       }
875     }else{
876       nColumn = 0;
877     }
878   }
879 
880   /* If there is no IDLIST term but the table has an integer primary
881   ** key, the set the ipkColumn variable to the integer primary key
882   ** column index in the original table definition.
883   */
884   if( pColumn==0 && nColumn>0 ){
885     ipkColumn = pTab->iPKey;
886 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
887     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
888       testcase( pTab->tabFlags & TF_HasVirtual );
889       testcase( pTab->tabFlags & TF_HasStored );
890       for(i=ipkColumn-1; i>=0; i--){
891         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
892           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
893           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
894           ipkColumn--;
895         }
896       }
897     }
898 #endif
899   }
900 
901   /* Make sure the number of columns in the source data matches the number
902   ** of columns to be inserted into the table.
903   */
904   for(i=0; i<pTab->nCol; i++){
905     if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
906   }
907   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
908     sqlite3ErrorMsg(pParse,
909        "table %S has %d columns but %d values were supplied",
910        pTabList, 0, pTab->nCol-nHidden, nColumn);
911     goto insert_cleanup;
912   }
913   if( pColumn!=0 && nColumn!=pColumn->nId ){
914     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
915     goto insert_cleanup;
916   }
917 
918   /* Initialize the count of rows to be inserted
919   */
920   if( (db->flags & SQLITE_CountRows)!=0
921    && !pParse->nested
922    && !pParse->pTriggerTab
923   ){
924     regRowCount = ++pParse->nMem;
925     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
926   }
927 
928   /* If this is not a view, open the table and and all indices */
929   if( !isView ){
930     int nIdx;
931     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
932                                       &iDataCur, &iIdxCur);
933     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
934     if( aRegIdx==0 ){
935       goto insert_cleanup;
936     }
937     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
938       assert( pIdx );
939       aRegIdx[i] = ++pParse->nMem;
940       pParse->nMem += pIdx->nColumn;
941     }
942     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
943   }
944 #ifndef SQLITE_OMIT_UPSERT
945   if( pUpsert ){
946     if( IsVirtual(pTab) ){
947       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
948               pTab->zName);
949       goto insert_cleanup;
950     }
951     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
952       goto insert_cleanup;
953     }
954     pTabList->a[0].iCursor = iDataCur;
955     pUpsert->pUpsertSrc = pTabList;
956     pUpsert->regData = regData;
957     pUpsert->iDataCur = iDataCur;
958     pUpsert->iIdxCur = iIdxCur;
959     if( pUpsert->pUpsertTarget ){
960       sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
961     }
962   }
963 #endif
964 
965 
966   /* This is the top of the main insertion loop */
967   if( useTempTable ){
968     /* This block codes the top of loop only.  The complete loop is the
969     ** following pseudocode (template 4):
970     **
971     **         rewind temp table, if empty goto D
972     **      C: loop over rows of intermediate table
973     **           transfer values form intermediate table into <table>
974     **         end loop
975     **      D: ...
976     */
977     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
978     addrCont = sqlite3VdbeCurrentAddr(v);
979   }else if( pSelect ){
980     /* This block codes the top of loop only.  The complete loop is the
981     ** following pseudocode (template 3):
982     **
983     **      C: yield X, at EOF goto D
984     **         insert the select result into <table> from R..R+n
985     **         goto C
986     **      D: ...
987     */
988     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
989     VdbeCoverage(v);
990     if( ipkColumn>=0 ){
991       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
992       ** SELECT, go ahead and copy the value into the rowid slot now, so that
993       ** the value does not get overwritten by a NULL at tag-20191021-002. */
994       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
995     }
996   }
997 
998   /* Compute data for ordinary columns of the new entry.  Values
999   ** are written in storage order into registers starting with regData.
1000   ** Only ordinary columns are computed in this loop. The rowid
1001   ** (if there is one) is computed later and generated columns are
1002   ** computed after the rowid since they might depend on the value
1003   ** of the rowid.
1004   */
1005   nHidden = 0;
1006   iRegStore = regData;  assert( regData==regRowid+1 );
1007   for(i=0; i<pTab->nCol; i++, iRegStore++){
1008     int k;
1009     u32 colFlags;
1010     assert( i>=nHidden );
1011     if( i==pTab->iPKey ){
1012       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1013       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1014       ** using excess space.  The file format definition requires this extra
1015       ** NULL - we cannot optimize further by skipping the column completely */
1016       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1017       continue;
1018     }
1019     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1020       nHidden++;
1021       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1022         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1023         ** iRegStore by one slot to compensate for the iRegStore++ in the
1024         ** outer for() loop */
1025         iRegStore--;
1026         continue;
1027       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1028         /* Stored columns are computed later.  But if there are BEFORE
1029         ** triggers, the slots used for stored columns will be OP_Copy-ed
1030         ** to a second block of registers, so the register needs to be
1031         ** initialized to NULL to avoid an uninitialized register read */
1032         if( tmask & TRIGGER_BEFORE ){
1033           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1034         }
1035         continue;
1036       }else if( pColumn==0 ){
1037         /* Hidden columns that are not explicitly named in the INSERT
1038         ** get there default value */
1039         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1040         continue;
1041       }
1042     }
1043     if( pColumn ){
1044       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1045       if( j>=pColumn->nId ){
1046         /* A column not named in the insert column list gets its
1047         ** default value */
1048         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1049         continue;
1050       }
1051       k = j;
1052     }else if( nColumn==0 ){
1053       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1054       sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1055       continue;
1056     }else{
1057       k = i - nHidden;
1058     }
1059 
1060     if( useTempTable ){
1061       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1062     }else if( pSelect ){
1063       if( regFromSelect!=regData ){
1064         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1065       }
1066     }else{
1067       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1068     }
1069   }
1070 
1071 
1072   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1073   */
1074   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1075   if( tmask & TRIGGER_BEFORE ){
1076     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1077 
1078     /* build the NEW.* reference row.  Note that if there is an INTEGER
1079     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1080     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1081     ** we do not know what the unique ID will be (because the insert has
1082     ** not happened yet) so we substitute a rowid of -1
1083     */
1084     if( ipkColumn<0 ){
1085       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1086     }else{
1087       int addr1;
1088       assert( !withoutRowid );
1089       if( useTempTable ){
1090         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1091       }else{
1092         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1093         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1094       }
1095       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1096       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1097       sqlite3VdbeJumpHere(v, addr1);
1098       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1099     }
1100 
1101     /* Cannot have triggers on a virtual table. If it were possible,
1102     ** this block would have to account for hidden column.
1103     */
1104     assert( !IsVirtual(pTab) );
1105 
1106     /* Copy the new data already generated. */
1107     assert( pTab->nNVCol>0 );
1108     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1109 
1110 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1111     /* Compute the new value for generated columns after all other
1112     ** columns have already been computed.  This must be done after
1113     ** computing the ROWID in case one of the generated columns
1114     ** refers to the ROWID. */
1115     if( pTab->tabFlags & TF_HasGenerated ){
1116       testcase( pTab->tabFlags & TF_HasVirtual );
1117       testcase( pTab->tabFlags & TF_HasStored );
1118       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1119     }
1120 #endif
1121 
1122     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1123     ** do not attempt any conversions before assembling the record.
1124     ** If this is a real table, attempt conversions as required by the
1125     ** table column affinities.
1126     */
1127     if( !isView ){
1128       sqlite3TableAffinity(v, pTab, regCols+1);
1129     }
1130 
1131     /* Fire BEFORE or INSTEAD OF triggers */
1132     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1133         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1134 
1135     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1136   }
1137 
1138   if( !isView ){
1139     if( IsVirtual(pTab) ){
1140       /* The row that the VUpdate opcode will delete: none */
1141       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1142     }
1143     if( ipkColumn>=0 ){
1144       /* Compute the new rowid */
1145       if( useTempTable ){
1146         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1147       }else if( pSelect ){
1148         /* Rowid already initialized at tag-20191021-001 */
1149       }else{
1150         Expr *pIpk = pList->a[ipkColumn].pExpr;
1151         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1152           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1153           appendFlag = 1;
1154         }else{
1155           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1156         }
1157       }
1158       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1159       ** to generate a unique primary key value.
1160       */
1161       if( !appendFlag ){
1162         int addr1;
1163         if( !IsVirtual(pTab) ){
1164           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1165           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1166           sqlite3VdbeJumpHere(v, addr1);
1167         }else{
1168           addr1 = sqlite3VdbeCurrentAddr(v);
1169           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1170         }
1171         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1172       }
1173     }else if( IsVirtual(pTab) || withoutRowid ){
1174       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1175     }else{
1176       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1177       appendFlag = 1;
1178     }
1179     autoIncStep(pParse, regAutoinc, regRowid);
1180 
1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1182     /* Compute the new value for generated columns after all other
1183     ** columns have already been computed.  This must be done after
1184     ** computing the ROWID in case one of the generated columns
1185     ** refers to the ROWID. */
1186     if( pTab->tabFlags & TF_HasGenerated ){
1187       testcase( pTab->tabFlags & TF_HasVirtual );
1188       testcase( pTab->tabFlags & TF_HasStored );
1189       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1190     }
1191 #endif
1192 
1193     /* Generate code to check constraints and generate index keys and
1194     ** do the insertion.
1195     */
1196 #ifndef SQLITE_OMIT_VIRTUALTABLE
1197     if( IsVirtual(pTab) ){
1198       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1199       sqlite3VtabMakeWritable(pParse, pTab);
1200       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1201       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1202       sqlite3MayAbort(pParse);
1203     }else
1204 #endif
1205     {
1206       int isReplace;    /* Set to true if constraints may cause a replace */
1207       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1208       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1209           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1210       );
1211       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1212 
1213       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1214       ** constraints or (b) there are no triggers and this table is not a
1215       ** parent table in a foreign key constraint. It is safe to set the
1216       ** flag in the second case as if any REPLACE constraint is hit, an
1217       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1218       ** cursor that is disturbed. And these instructions both clear the
1219       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1220       ** functionality.  */
1221       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1222       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1223           regIns, aRegIdx, 0, appendFlag, bUseSeek
1224       );
1225     }
1226   }
1227 
1228   /* Update the count of rows that are inserted
1229   */
1230   if( regRowCount ){
1231     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1232   }
1233 
1234   if( pTrigger ){
1235     /* Code AFTER triggers */
1236     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1237         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1238   }
1239 
1240   /* The bottom of the main insertion loop, if the data source
1241   ** is a SELECT statement.
1242   */
1243   sqlite3VdbeResolveLabel(v, endOfLoop);
1244   if( useTempTable ){
1245     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1246     sqlite3VdbeJumpHere(v, addrInsTop);
1247     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1248   }else if( pSelect ){
1249     sqlite3VdbeGoto(v, addrCont);
1250     sqlite3VdbeJumpHere(v, addrInsTop);
1251   }
1252 
1253 insert_end:
1254   /* Update the sqlite_sequence table by storing the content of the
1255   ** maximum rowid counter values recorded while inserting into
1256   ** autoincrement tables.
1257   */
1258   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1259     sqlite3AutoincrementEnd(pParse);
1260   }
1261 
1262   /*
1263   ** Return the number of rows inserted. If this routine is
1264   ** generating code because of a call to sqlite3NestedParse(), do not
1265   ** invoke the callback function.
1266   */
1267   if( regRowCount ){
1268     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1269     sqlite3VdbeSetNumCols(v, 1);
1270     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1271   }
1272 
1273 insert_cleanup:
1274   sqlite3SrcListDelete(db, pTabList);
1275   sqlite3ExprListDelete(db, pList);
1276   sqlite3UpsertDelete(db, pUpsert);
1277   sqlite3SelectDelete(db, pSelect);
1278   sqlite3IdListDelete(db, pColumn);
1279   sqlite3DbFree(db, aRegIdx);
1280 }
1281 
1282 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1283 ** they may interfere with compilation of other functions in this file
1284 ** (or in another file, if this file becomes part of the amalgamation).  */
1285 #ifdef isView
1286  #undef isView
1287 #endif
1288 #ifdef pTrigger
1289  #undef pTrigger
1290 #endif
1291 #ifdef tmask
1292  #undef tmask
1293 #endif
1294 
1295 /*
1296 ** Meanings of bits in of pWalker->eCode for
1297 ** sqlite3ExprReferencesUpdatedColumn()
1298 */
1299 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1300 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1301 
1302 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1303 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1304 ** expression node references any of the
1305 ** columns that are being modifed by an UPDATE statement.
1306 */
1307 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1308   if( pExpr->op==TK_COLUMN ){
1309     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1310     if( pExpr->iColumn>=0 ){
1311       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1312         pWalker->eCode |= CKCNSTRNT_COLUMN;
1313       }
1314     }else{
1315       pWalker->eCode |= CKCNSTRNT_ROWID;
1316     }
1317   }
1318   return WRC_Continue;
1319 }
1320 
1321 /*
1322 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1323 ** only columns that are modified by the UPDATE are those for which
1324 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1325 **
1326 ** Return true if CHECK constraint pExpr uses any of the
1327 ** changing columns (or the rowid if it is changing).  In other words,
1328 ** return true if this CHECK constraint must be validated for
1329 ** the new row in the UPDATE statement.
1330 **
1331 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1332 ** The operation of this routine is the same - return true if an only if
1333 ** the expression uses one or more of columns identified by the second and
1334 ** third arguments.
1335 */
1336 int sqlite3ExprReferencesUpdatedColumn(
1337   Expr *pExpr,    /* The expression to be checked */
1338   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1339   int chngRowid   /* True if UPDATE changes the rowid */
1340 ){
1341   Walker w;
1342   memset(&w, 0, sizeof(w));
1343   w.eCode = 0;
1344   w.xExprCallback = checkConstraintExprNode;
1345   w.u.aiCol = aiChng;
1346   sqlite3WalkExpr(&w, pExpr);
1347   if( !chngRowid ){
1348     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1349     w.eCode &= ~CKCNSTRNT_ROWID;
1350   }
1351   testcase( w.eCode==0 );
1352   testcase( w.eCode==CKCNSTRNT_COLUMN );
1353   testcase( w.eCode==CKCNSTRNT_ROWID );
1354   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1355   return w.eCode!=0;
1356 }
1357 
1358 /*
1359 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1360 ** on table pTab.
1361 **
1362 ** The regNewData parameter is the first register in a range that contains
1363 ** the data to be inserted or the data after the update.  There will be
1364 ** pTab->nCol+1 registers in this range.  The first register (the one
1365 ** that regNewData points to) will contain the new rowid, or NULL in the
1366 ** case of a WITHOUT ROWID table.  The second register in the range will
1367 ** contain the content of the first table column.  The third register will
1368 ** contain the content of the second table column.  And so forth.
1369 **
1370 ** The regOldData parameter is similar to regNewData except that it contains
1371 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1372 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1373 ** checking regOldData for zero.
1374 **
1375 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1376 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1377 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1378 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1379 **
1380 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1381 ** was explicitly specified as part of the INSERT statement.  If pkChng
1382 ** is zero, it means that the either rowid is computed automatically or
1383 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1384 ** pkChng will only be true if the INSERT statement provides an integer
1385 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1386 **
1387 ** The code generated by this routine will store new index entries into
1388 ** registers identified by aRegIdx[].  No index entry is created for
1389 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1390 ** the same as the order of indices on the linked list of indices
1391 ** at pTab->pIndex.
1392 **
1393 ** (2019-05-07) The generated code also creates a new record for the
1394 ** main table, if pTab is a rowid table, and stores that record in the
1395 ** register identified by aRegIdx[nIdx] - in other words in the first
1396 ** entry of aRegIdx[] past the last index.  It is important that the
1397 ** record be generated during constraint checks to avoid affinity changes
1398 ** to the register content that occur after constraint checks but before
1399 ** the new record is inserted.
1400 **
1401 ** The caller must have already opened writeable cursors on the main
1402 ** table and all applicable indices (that is to say, all indices for which
1403 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1404 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1405 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1406 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1407 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1408 **
1409 ** This routine also generates code to check constraints.  NOT NULL,
1410 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1411 ** then the appropriate action is performed.  There are five possible
1412 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1413 **
1414 **  Constraint type  Action       What Happens
1415 **  ---------------  ----------   ----------------------------------------
1416 **  any              ROLLBACK     The current transaction is rolled back and
1417 **                                sqlite3_step() returns immediately with a
1418 **                                return code of SQLITE_CONSTRAINT.
1419 **
1420 **  any              ABORT        Back out changes from the current command
1421 **                                only (do not do a complete rollback) then
1422 **                                cause sqlite3_step() to return immediately
1423 **                                with SQLITE_CONSTRAINT.
1424 **
1425 **  any              FAIL         Sqlite3_step() returns immediately with a
1426 **                                return code of SQLITE_CONSTRAINT.  The
1427 **                                transaction is not rolled back and any
1428 **                                changes to prior rows are retained.
1429 **
1430 **  any              IGNORE       The attempt in insert or update the current
1431 **                                row is skipped, without throwing an error.
1432 **                                Processing continues with the next row.
1433 **                                (There is an immediate jump to ignoreDest.)
1434 **
1435 **  NOT NULL         REPLACE      The NULL value is replace by the default
1436 **                                value for that column.  If the default value
1437 **                                is NULL, the action is the same as ABORT.
1438 **
1439 **  UNIQUE           REPLACE      The other row that conflicts with the row
1440 **                                being inserted is removed.
1441 **
1442 **  CHECK            REPLACE      Illegal.  The results in an exception.
1443 **
1444 ** Which action to take is determined by the overrideError parameter.
1445 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1446 ** is used.  Or if pParse->onError==OE_Default then the onError value
1447 ** for the constraint is used.
1448 */
1449 void sqlite3GenerateConstraintChecks(
1450   Parse *pParse,       /* The parser context */
1451   Table *pTab,         /* The table being inserted or updated */
1452   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1453   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1454   int iIdxCur,         /* First index cursor */
1455   int regNewData,      /* First register in a range holding values to insert */
1456   int regOldData,      /* Previous content.  0 for INSERTs */
1457   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1458   u8 overrideError,    /* Override onError to this if not OE_Default */
1459   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1460   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1461   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1462   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1463 ){
1464   Vdbe *v;             /* VDBE under constrution */
1465   Index *pIdx;         /* Pointer to one of the indices */
1466   Index *pPk = 0;      /* The PRIMARY KEY index */
1467   sqlite3 *db;         /* Database connection */
1468   int i;               /* loop counter */
1469   int ix;              /* Index loop counter */
1470   int nCol;            /* Number of columns */
1471   int onError;         /* Conflict resolution strategy */
1472   int addr1;           /* Address of jump instruction */
1473   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1474   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1475   Index *pUpIdx = 0;   /* Index to which to apply the upsert */
1476   u8 isUpdate;         /* True if this is an UPDATE operation */
1477   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1478   int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */
1479   int upsertJump = 0;    /* Address of Goto that jumps into upsert subroutine */
1480   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1481   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1482   /* Variables associated with retesting uniqueness constraints after
1483   ** replace triggers fire have run */
1484   int regTrigCnt;       /* Register used to count replace trigger invocations */
1485   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1486   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1487   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1488   int nReplaceTrig = 0; /* Number of replace triggers coded */
1489 
1490   isUpdate = regOldData!=0;
1491   db = pParse->db;
1492   v = sqlite3GetVdbe(pParse);
1493   assert( v!=0 );
1494   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1495   nCol = pTab->nCol;
1496 
1497   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1498   ** normal rowid tables.  nPkField is the number of key fields in the
1499   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1500   ** number of fields in the true primary key of the table. */
1501   if( HasRowid(pTab) ){
1502     pPk = 0;
1503     nPkField = 1;
1504   }else{
1505     pPk = sqlite3PrimaryKeyIndex(pTab);
1506     nPkField = pPk->nKeyCol;
1507   }
1508 
1509   /* Record that this module has started */
1510   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1511                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1512 
1513   /* Test all NOT NULL constraints.
1514   */
1515   if( pTab->tabFlags & TF_HasNotNull ){
1516     for(i=0; i<nCol; i++){
1517       int iReg;
1518       onError = pTab->aCol[i].notNull;
1519       if( onError==OE_None ) continue; /* No NOT NULL on this column */
1520       if( i==pTab->iPKey ){
1521         continue;        /* ROWID is never NULL */
1522       }
1523       if( aiChng && aiChng[i]<0 ){
1524         /* Don't bother checking for NOT NULL on columns that do not change */
1525         continue;
1526       }
1527       if( overrideError!=OE_Default ){
1528         onError = overrideError;
1529       }else if( onError==OE_Default ){
1530         onError = OE_Abort;
1531       }
1532       if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1533         onError = OE_Abort;
1534       }
1535       assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1536           || onError==OE_Ignore || onError==OE_Replace );
1537       addr1 = 0;
1538       testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1539       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
1540       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
1541       iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1542       switch( onError ){
1543         case OE_Replace: {
1544           assert( onError==OE_Replace );
1545           addr1 = sqlite3VdbeMakeLabel(pParse);
1546           sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1);
1547             VdbeCoverage(v);
1548           if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ){
1549             sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1550             sqlite3VdbeAddOp2(v, OP_NotNull, iReg, addr1);
1551               VdbeCoverage(v);
1552           }
1553           onError = OE_Abort;
1554           /* Fall through into the OE_Abort case to generate code that runs
1555           ** if both the input and the default value are NULL */
1556         }
1557         case OE_Abort:
1558           sqlite3MayAbort(pParse);
1559           /* Fall through */
1560         case OE_Rollback:
1561         case OE_Fail: {
1562           char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1563                                       pTab->aCol[i].zName);
1564           sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1565                             onError, iReg);
1566           sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1567           sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1568           VdbeCoverage(v);
1569           if( addr1 ) sqlite3VdbeResolveLabel(v, addr1);
1570           break;
1571         }
1572         default: {
1573           assert( onError==OE_Ignore );
1574           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1575           VdbeCoverage(v);
1576           break;
1577         }
1578       }
1579     }
1580   }
1581 
1582   /* Test all CHECK constraints
1583   */
1584 #ifndef SQLITE_OMIT_CHECK
1585   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1586     ExprList *pCheck = pTab->pCheck;
1587     pParse->iSelfTab = -(regNewData+1);
1588     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1589     for(i=0; i<pCheck->nExpr; i++){
1590       int allOk;
1591       Expr *pExpr = pCheck->a[i].pExpr;
1592       if( aiChng
1593        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1594       ){
1595         /* The check constraints do not reference any of the columns being
1596         ** updated so there is no point it verifying the check constraint */
1597         continue;
1598       }
1599       allOk = sqlite3VdbeMakeLabel(pParse);
1600       sqlite3VdbeVerifyAbortable(v, onError);
1601       sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1602       if( onError==OE_Ignore ){
1603         sqlite3VdbeGoto(v, ignoreDest);
1604       }else{
1605         char *zName = pCheck->a[i].zName;
1606         if( zName==0 ) zName = pTab->zName;
1607         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1608         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1609                               onError, zName, P4_TRANSIENT,
1610                               P5_ConstraintCheck);
1611       }
1612       sqlite3VdbeResolveLabel(v, allOk);
1613     }
1614     pParse->iSelfTab = 0;
1615   }
1616 #endif /* !defined(SQLITE_OMIT_CHECK) */
1617 
1618   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1619   ** order:
1620   **
1621   **   (1)  OE_Update
1622   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1623   **   (3)  OE_Replace
1624   **
1625   ** OE_Fail and OE_Ignore must happen before any changes are made.
1626   ** OE_Update guarantees that only a single row will change, so it
1627   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1628   ** could happen in any order, but they are grouped up front for
1629   ** convenience.
1630   **
1631   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1632   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1633   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1634   ** constraint before any others, so it had to be moved.
1635   **
1636   ** Constraint checking code is generated in this order:
1637   **   (A)  The rowid constraint
1638   **   (B)  Unique index constraints that do not have OE_Replace as their
1639   **        default conflict resolution strategy
1640   **   (C)  Unique index that do use OE_Replace by default.
1641   **
1642   ** The ordering of (2) and (3) is accomplished by making sure the linked
1643   ** list of indexes attached to a table puts all OE_Replace indexes last
1644   ** in the list.  See sqlite3CreateIndex() for where that happens.
1645   */
1646 
1647   if( pUpsert ){
1648     if( pUpsert->pUpsertTarget==0 ){
1649       /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1650       ** Make all unique constraint resolution be OE_Ignore */
1651       assert( pUpsert->pUpsertSet==0 );
1652       overrideError = OE_Ignore;
1653       pUpsert = 0;
1654     }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1655       /* If the constraint-target uniqueness check must be run first.
1656       ** Jump to that uniqueness check now */
1657       upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1658       VdbeComment((v, "UPSERT constraint goes first"));
1659     }
1660   }
1661 
1662   /* Determine if it is possible that triggers (either explicitly coded
1663   ** triggers or FK resolution actions) might run as a result of deletes
1664   ** that happen when OE_Replace conflict resolution occurs. (Call these
1665   ** "replace triggers".)  If any replace triggers run, we will need to
1666   ** recheck all of the uniqueness constraints after they have all run.
1667   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1668   **
1669   ** If replace triggers are a possibility, then
1670   **
1671   **   (1) Allocate register regTrigCnt and initialize it to zero.
1672   **       That register will count the number of replace triggers that
1673   **       fire.  Constraint recheck only occurs if the number is positive.
1674   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1675   **   (3) Initialize addrRecheck and lblRecheckOk
1676   **
1677   ** The uniqueness rechecking code will create a series of tests to run
1678   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1679   ** used to link together these tests which are separated from each other
1680   ** in the generate bytecode.
1681   */
1682   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1683     /* There are not DELETE triggers nor FK constraints.  No constraint
1684     ** rechecks are needed. */
1685     pTrigger = 0;
1686     regTrigCnt = 0;
1687   }else{
1688     if( db->flags&SQLITE_RecTriggers ){
1689       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1690       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1691     }else{
1692       pTrigger = 0;
1693       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1694     }
1695     if( regTrigCnt ){
1696       /* Replace triggers might exist.  Allocate the counter and
1697       ** initialize it to zero. */
1698       regTrigCnt = ++pParse->nMem;
1699       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1700       VdbeComment((v, "trigger count"));
1701       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1702       addrRecheck = lblRecheckOk;
1703     }
1704   }
1705 
1706   /* If rowid is changing, make sure the new rowid does not previously
1707   ** exist in the table.
1708   */
1709   if( pkChng && pPk==0 ){
1710     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1711 
1712     /* Figure out what action to take in case of a rowid collision */
1713     onError = pTab->keyConf;
1714     if( overrideError!=OE_Default ){
1715       onError = overrideError;
1716     }else if( onError==OE_Default ){
1717       onError = OE_Abort;
1718     }
1719 
1720     /* figure out whether or not upsert applies in this case */
1721     if( pUpsert && pUpsert->pUpsertIdx==0 ){
1722       if( pUpsert->pUpsertSet==0 ){
1723         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1724       }else{
1725         onError = OE_Update;  /* DO UPDATE */
1726       }
1727     }
1728 
1729     /* If the response to a rowid conflict is REPLACE but the response
1730     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1731     ** to defer the running of the rowid conflict checking until after
1732     ** the UNIQUE constraints have run.
1733     */
1734     if( onError==OE_Replace      /* IPK rule is REPLACE */
1735      && onError!=overrideError   /* Rules for other contraints are different */
1736      && pTab->pIndex             /* There exist other constraints */
1737     ){
1738       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1739       VdbeComment((v, "defer IPK REPLACE until last"));
1740     }
1741 
1742     if( isUpdate ){
1743       /* pkChng!=0 does not mean that the rowid has changed, only that
1744       ** it might have changed.  Skip the conflict logic below if the rowid
1745       ** is unchanged. */
1746       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1747       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1748       VdbeCoverage(v);
1749     }
1750 
1751     /* Check to see if the new rowid already exists in the table.  Skip
1752     ** the following conflict logic if it does not. */
1753     VdbeNoopComment((v, "uniqueness check for ROWID"));
1754     sqlite3VdbeVerifyAbortable(v, onError);
1755     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1756     VdbeCoverage(v);
1757 
1758     switch( onError ){
1759       default: {
1760         onError = OE_Abort;
1761         /* Fall thru into the next case */
1762       }
1763       case OE_Rollback:
1764       case OE_Abort:
1765       case OE_Fail: {
1766         testcase( onError==OE_Rollback );
1767         testcase( onError==OE_Abort );
1768         testcase( onError==OE_Fail );
1769         sqlite3RowidConstraint(pParse, onError, pTab);
1770         break;
1771       }
1772       case OE_Replace: {
1773         /* If there are DELETE triggers on this table and the
1774         ** recursive-triggers flag is set, call GenerateRowDelete() to
1775         ** remove the conflicting row from the table. This will fire
1776         ** the triggers and remove both the table and index b-tree entries.
1777         **
1778         ** Otherwise, if there are no triggers or the recursive-triggers
1779         ** flag is not set, but the table has one or more indexes, call
1780         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1781         ** only. The table b-tree entry will be replaced by the new entry
1782         ** when it is inserted.
1783         **
1784         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1785         ** also invoke MultiWrite() to indicate that this VDBE may require
1786         ** statement rollback (if the statement is aborted after the delete
1787         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1788         ** but being more selective here allows statements like:
1789         **
1790         **   REPLACE INTO t(rowid) VALUES($newrowid)
1791         **
1792         ** to run without a statement journal if there are no indexes on the
1793         ** table.
1794         */
1795         if( regTrigCnt ){
1796           sqlite3MultiWrite(pParse);
1797           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1798                                    regNewData, 1, 0, OE_Replace, 1, -1);
1799           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
1800           nReplaceTrig++;
1801         }else{
1802 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1803           assert( HasRowid(pTab) );
1804           /* This OP_Delete opcode fires the pre-update-hook only. It does
1805           ** not modify the b-tree. It is more efficient to let the coming
1806           ** OP_Insert replace the existing entry than it is to delete the
1807           ** existing entry and then insert a new one. */
1808           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1809           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1810 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1811           if( pTab->pIndex ){
1812             sqlite3MultiWrite(pParse);
1813             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1814           }
1815         }
1816         seenReplace = 1;
1817         break;
1818       }
1819 #ifndef SQLITE_OMIT_UPSERT
1820       case OE_Update: {
1821         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1822         /* Fall through */
1823       }
1824 #endif
1825       case OE_Ignore: {
1826         testcase( onError==OE_Ignore );
1827         sqlite3VdbeGoto(v, ignoreDest);
1828         break;
1829       }
1830     }
1831     sqlite3VdbeResolveLabel(v, addrRowidOk);
1832     if( ipkTop ){
1833       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1834       sqlite3VdbeJumpHere(v, ipkTop-1);
1835     }
1836   }
1837 
1838   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1839   ** index and making sure that duplicate entries do not already exist.
1840   ** Compute the revised record entries for indices as we go.
1841   **
1842   ** This loop also handles the case of the PRIMARY KEY index for a
1843   ** WITHOUT ROWID table.
1844   */
1845   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1846     int regIdx;          /* Range of registers hold conent for pIdx */
1847     int regR;            /* Range of registers holding conflicting PK */
1848     int iThisCur;        /* Cursor for this UNIQUE index */
1849     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1850     int addrConflictCk;  /* First opcode in the conflict check logic */
1851 
1852     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1853     if( pUpIdx==pIdx ){
1854       addrUniqueOk = upsertJump+1;
1855       upsertBypass = sqlite3VdbeGoto(v, 0);
1856       VdbeComment((v, "Skip upsert subroutine"));
1857       sqlite3VdbeJumpHere(v, upsertJump);
1858     }else{
1859       addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
1860     }
1861     if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1862       sqlite3TableAffinity(v, pTab, regNewData+1);
1863       bAffinityDone = 1;
1864     }
1865     VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
1866     iThisCur = iIdxCur+ix;
1867 
1868 
1869     /* Skip partial indices for which the WHERE clause is not true */
1870     if( pIdx->pPartIdxWhere ){
1871       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1872       pParse->iSelfTab = -(regNewData+1);
1873       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1874                             SQLITE_JUMPIFNULL);
1875       pParse->iSelfTab = 0;
1876     }
1877 
1878     /* Create a record for this index entry as it should appear after
1879     ** the insert or update.  Store that record in the aRegIdx[ix] register
1880     */
1881     regIdx = aRegIdx[ix]+1;
1882     for(i=0; i<pIdx->nColumn; i++){
1883       int iField = pIdx->aiColumn[i];
1884       int x;
1885       if( iField==XN_EXPR ){
1886         pParse->iSelfTab = -(regNewData+1);
1887         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1888         pParse->iSelfTab = 0;
1889         VdbeComment((v, "%s column %d", pIdx->zName, i));
1890       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
1891         x = regNewData;
1892         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
1893         VdbeComment((v, "rowid"));
1894       }else{
1895         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
1896         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
1897         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1898         VdbeComment((v, "%s", pTab->aCol[iField].zName));
1899       }
1900     }
1901     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1902     VdbeComment((v, "for %s", pIdx->zName));
1903 #ifdef SQLITE_ENABLE_NULL_TRIM
1904     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
1905       sqlite3SetMakeRecordP5(v, pIdx->pTable);
1906     }
1907 #endif
1908 
1909     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1910     ** of a WITHOUT ROWID table and there has been no change the
1911     ** primary key, then no collision is possible.  The collision detection
1912     ** logic below can all be skipped. */
1913     if( isUpdate && pPk==pIdx && pkChng==0 ){
1914       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1915       continue;
1916     }
1917 
1918     /* Find out what action to take in case there is a uniqueness conflict */
1919     onError = pIdx->onError;
1920     if( onError==OE_None ){
1921       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1922       continue;  /* pIdx is not a UNIQUE index */
1923     }
1924     if( overrideError!=OE_Default ){
1925       onError = overrideError;
1926     }else if( onError==OE_Default ){
1927       onError = OE_Abort;
1928     }
1929 
1930     /* Figure out if the upsert clause applies to this index */
1931     if( pUpIdx==pIdx ){
1932       if( pUpsert->pUpsertSet==0 ){
1933         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1934       }else{
1935         onError = OE_Update;  /* DO UPDATE */
1936       }
1937     }
1938 
1939     /* Collision detection may be omitted if all of the following are true:
1940     **   (1) The conflict resolution algorithm is REPLACE
1941     **   (2) The table is a WITHOUT ROWID table
1942     **   (3) There are no secondary indexes on the table
1943     **   (4) No delete triggers need to be fired if there is a conflict
1944     **   (5) No FK constraint counters need to be updated if a conflict occurs.
1945     **
1946     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
1947     ** must be explicitly deleted in order to ensure any pre-update hook
1948     ** is invoked.  */
1949 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
1950     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
1951      && pPk==pIdx                                   /* Condition 2 */
1952      && onError==OE_Replace                         /* Condition 1 */
1953      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
1954           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1955      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
1956          (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1957     ){
1958       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1959       continue;
1960     }
1961 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
1962 
1963     /* Check to see if the new index entry will be unique */
1964     sqlite3VdbeVerifyAbortable(v, onError);
1965     addrConflictCk =
1966       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1967                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1968 
1969     /* Generate code to handle collisions */
1970     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1971     if( isUpdate || onError==OE_Replace ){
1972       if( HasRowid(pTab) ){
1973         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1974         /* Conflict only if the rowid of the existing index entry
1975         ** is different from old-rowid */
1976         if( isUpdate ){
1977           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1978           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1979           VdbeCoverage(v);
1980         }
1981       }else{
1982         int x;
1983         /* Extract the PRIMARY KEY from the end of the index entry and
1984         ** store it in registers regR..regR+nPk-1 */
1985         if( pIdx!=pPk ){
1986           for(i=0; i<pPk->nKeyCol; i++){
1987             assert( pPk->aiColumn[i]>=0 );
1988             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
1989             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1990             VdbeComment((v, "%s.%s", pTab->zName,
1991                          pTab->aCol[pPk->aiColumn[i]].zName));
1992           }
1993         }
1994         if( isUpdate ){
1995           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1996           ** table, only conflict if the new PRIMARY KEY values are actually
1997           ** different from the old.
1998           **
1999           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2000           ** of the matched index row are different from the original PRIMARY
2001           ** KEY values of this row before the update.  */
2002           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2003           int op = OP_Ne;
2004           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2005 
2006           for(i=0; i<pPk->nKeyCol; i++){
2007             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2008             x = pPk->aiColumn[i];
2009             assert( x>=0 );
2010             if( i==(pPk->nKeyCol-1) ){
2011               addrJump = addrUniqueOk;
2012               op = OP_Eq;
2013             }
2014             x = sqlite3TableColumnToStorage(pTab, x);
2015             sqlite3VdbeAddOp4(v, op,
2016                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2017             );
2018             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2019             VdbeCoverageIf(v, op==OP_Eq);
2020             VdbeCoverageIf(v, op==OP_Ne);
2021           }
2022         }
2023       }
2024     }
2025 
2026     /* Generate code that executes if the new index entry is not unique */
2027     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2028         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2029     switch( onError ){
2030       case OE_Rollback:
2031       case OE_Abort:
2032       case OE_Fail: {
2033         testcase( onError==OE_Rollback );
2034         testcase( onError==OE_Abort );
2035         testcase( onError==OE_Fail );
2036         sqlite3UniqueConstraint(pParse, onError, pIdx);
2037         break;
2038       }
2039 #ifndef SQLITE_OMIT_UPSERT
2040       case OE_Update: {
2041         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2042         /* Fall through */
2043       }
2044 #endif
2045       case OE_Ignore: {
2046         testcase( onError==OE_Ignore );
2047         sqlite3VdbeGoto(v, ignoreDest);
2048         break;
2049       }
2050       default: {
2051         int nConflictCk;   /* Number of opcodes in conflict check logic */
2052 
2053         assert( onError==OE_Replace );
2054         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2055         assert( nConflictCk>0 );
2056         testcase( nConflictCk>1 );
2057         if( regTrigCnt ){
2058           sqlite3MultiWrite(pParse);
2059           nReplaceTrig++;
2060         }
2061         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2062             regR, nPkField, 0, OE_Replace,
2063             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2064         if( regTrigCnt ){
2065           int addrBypass;  /* Jump destination to bypass recheck logic */
2066 
2067           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2068           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2069           VdbeComment((v, "bypass recheck"));
2070 
2071           /* Here we insert code that will be invoked after all constraint
2072           ** checks have run, if and only if one or more replace triggers
2073           ** fired. */
2074           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2075           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2076           if( pIdx->pPartIdxWhere ){
2077             /* Bypass the recheck if this partial index is not defined
2078             ** for the current row */
2079             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2080             VdbeCoverage(v);
2081           }
2082           /* Copy the constraint check code from above, except change
2083           ** the constraint-ok jump destination to be the address of
2084           ** the next retest block */
2085           while( nConflictCk>0 ){
2086             VdbeOp x;    /* Conflict check opcode to copy */
2087             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2088             ** Hence, make a complete copy of the opcode, rather than using
2089             ** a pointer to the opcode. */
2090             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2091             if( x.opcode!=OP_IdxRowid ){
2092               int p2;      /* New P2 value for copied conflict check opcode */
2093               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2094                 p2 = lblRecheckOk;
2095               }else{
2096                 p2 = x.p2;
2097               }
2098               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, x.p4.z, x.p4type);
2099               sqlite3VdbeChangeP5(v, x.p5);
2100               VdbeCoverageIf(v, p2!=x.p2);
2101             }
2102             nConflictCk--;
2103             addrConflictCk++;
2104           }
2105           /* If the retest fails, issue an abort */
2106           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2107 
2108           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2109         }
2110         seenReplace = 1;
2111         break;
2112       }
2113     }
2114     if( pUpIdx==pIdx ){
2115       sqlite3VdbeGoto(v, upsertJump+1);
2116       sqlite3VdbeJumpHere(v, upsertBypass);
2117     }else{
2118       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2119     }
2120     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2121   }
2122 
2123   /* If the IPK constraint is a REPLACE, run it last */
2124   if( ipkTop ){
2125     sqlite3VdbeGoto(v, ipkTop);
2126     VdbeComment((v, "Do IPK REPLACE"));
2127     sqlite3VdbeJumpHere(v, ipkBottom);
2128   }
2129 
2130   /* Recheck all uniqueness constraints after replace triggers have run */
2131   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2132   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2133   if( nReplaceTrig ){
2134     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2135     if( !pPk ){
2136       if( isUpdate ){
2137         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2138         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2139         VdbeCoverage(v);
2140       }
2141       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2142       VdbeCoverage(v);
2143       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2144     }else{
2145       sqlite3VdbeGoto(v, addrRecheck);
2146     }
2147     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2148   }
2149 
2150   /* Generate the table record */
2151   if( HasRowid(pTab) ){
2152     int regRec = aRegIdx[ix];
2153     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2154     sqlite3SetMakeRecordP5(v, pTab);
2155     if( !bAffinityDone ){
2156       sqlite3TableAffinity(v, pTab, 0);
2157     }
2158   }
2159 
2160   *pbMayReplace = seenReplace;
2161   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2162 }
2163 
2164 #ifdef SQLITE_ENABLE_NULL_TRIM
2165 /*
2166 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2167 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2168 **
2169 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2170 */
2171 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2172   u16 i;
2173 
2174   /* Records with omitted columns are only allowed for schema format
2175   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2176   if( pTab->pSchema->file_format<2 ) return;
2177 
2178   for(i=pTab->nCol-1; i>0; i--){
2179     if( pTab->aCol[i].pDflt!=0 ) break;
2180     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2181   }
2182   sqlite3VdbeChangeP5(v, i+1);
2183 }
2184 #endif
2185 
2186 /*
2187 ** This routine generates code to finish the INSERT or UPDATE operation
2188 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2189 ** A consecutive range of registers starting at regNewData contains the
2190 ** rowid and the content to be inserted.
2191 **
2192 ** The arguments to this routine should be the same as the first six
2193 ** arguments to sqlite3GenerateConstraintChecks.
2194 */
2195 void sqlite3CompleteInsertion(
2196   Parse *pParse,      /* The parser context */
2197   Table *pTab,        /* the table into which we are inserting */
2198   int iDataCur,       /* Cursor of the canonical data source */
2199   int iIdxCur,        /* First index cursor */
2200   int regNewData,     /* Range of content */
2201   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2202   int update_flags,   /* True for UPDATE, False for INSERT */
2203   int appendBias,     /* True if this is likely to be an append */
2204   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2205 ){
2206   Vdbe *v;            /* Prepared statements under construction */
2207   Index *pIdx;        /* An index being inserted or updated */
2208   u8 pik_flags;       /* flag values passed to the btree insert */
2209   int i;              /* Loop counter */
2210 
2211   assert( update_flags==0
2212        || update_flags==OPFLAG_ISUPDATE
2213        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2214   );
2215 
2216   v = sqlite3GetVdbe(pParse);
2217   assert( v!=0 );
2218   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
2219   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2220     if( aRegIdx[i]==0 ) continue;
2221     if( pIdx->pPartIdxWhere ){
2222       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2223       VdbeCoverage(v);
2224     }
2225     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2226     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2227       assert( pParse->nested==0 );
2228       pik_flags |= OPFLAG_NCHANGE;
2229       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2230 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2231       if( update_flags==0 ){
2232         int r = sqlite3GetTempReg(pParse);
2233         sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2234         sqlite3VdbeAddOp4(v, OP_Insert,
2235             iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
2236         );
2237         sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2238         sqlite3ReleaseTempReg(pParse, r);
2239       }
2240 #endif
2241     }
2242     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2243                          aRegIdx[i]+1,
2244                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2245     sqlite3VdbeChangeP5(v, pik_flags);
2246   }
2247   if( !HasRowid(pTab) ) return;
2248   if( pParse->nested ){
2249     pik_flags = 0;
2250   }else{
2251     pik_flags = OPFLAG_NCHANGE;
2252     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2253   }
2254   if( appendBias ){
2255     pik_flags |= OPFLAG_APPEND;
2256   }
2257   if( useSeekResult ){
2258     pik_flags |= OPFLAG_USESEEKRESULT;
2259   }
2260   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2261   if( !pParse->nested ){
2262     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2263   }
2264   sqlite3VdbeChangeP5(v, pik_flags);
2265 }
2266 
2267 /*
2268 ** Allocate cursors for the pTab table and all its indices and generate
2269 ** code to open and initialized those cursors.
2270 **
2271 ** The cursor for the object that contains the complete data (normally
2272 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2273 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2274 ** returned in *piIdxCur.  The number of indices is returned.
2275 **
2276 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2277 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2278 ** If iBase is negative, then allocate the next available cursor.
2279 **
2280 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2281 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2282 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2283 ** pTab->pIndex list.
2284 **
2285 ** If pTab is a virtual table, then this routine is a no-op and the
2286 ** *piDataCur and *piIdxCur values are left uninitialized.
2287 */
2288 int sqlite3OpenTableAndIndices(
2289   Parse *pParse,   /* Parsing context */
2290   Table *pTab,     /* Table to be opened */
2291   int op,          /* OP_OpenRead or OP_OpenWrite */
2292   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2293   int iBase,       /* Use this for the table cursor, if there is one */
2294   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2295   int *piDataCur,  /* Write the database source cursor number here */
2296   int *piIdxCur    /* Write the first index cursor number here */
2297 ){
2298   int i;
2299   int iDb;
2300   int iDataCur;
2301   Index *pIdx;
2302   Vdbe *v;
2303 
2304   assert( op==OP_OpenRead || op==OP_OpenWrite );
2305   assert( op==OP_OpenWrite || p5==0 );
2306   if( IsVirtual(pTab) ){
2307     /* This routine is a no-op for virtual tables. Leave the output
2308     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2309     ** can detect if they are used by mistake in the caller. */
2310     return 0;
2311   }
2312   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2313   v = sqlite3GetVdbe(pParse);
2314   assert( v!=0 );
2315   if( iBase<0 ) iBase = pParse->nTab;
2316   iDataCur = iBase++;
2317   if( piDataCur ) *piDataCur = iDataCur;
2318   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2319     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2320   }else{
2321     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2322   }
2323   if( piIdxCur ) *piIdxCur = iBase;
2324   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2325     int iIdxCur = iBase++;
2326     assert( pIdx->pSchema==pTab->pSchema );
2327     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2328       if( piDataCur ) *piDataCur = iIdxCur;
2329       p5 = 0;
2330     }
2331     if( aToOpen==0 || aToOpen[i+1] ){
2332       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2333       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2334       sqlite3VdbeChangeP5(v, p5);
2335       VdbeComment((v, "%s", pIdx->zName));
2336     }
2337   }
2338   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2339   return i;
2340 }
2341 
2342 
2343 #ifdef SQLITE_TEST
2344 /*
2345 ** The following global variable is incremented whenever the
2346 ** transfer optimization is used.  This is used for testing
2347 ** purposes only - to make sure the transfer optimization really
2348 ** is happening when it is supposed to.
2349 */
2350 int sqlite3_xferopt_count;
2351 #endif /* SQLITE_TEST */
2352 
2353 
2354 #ifndef SQLITE_OMIT_XFER_OPT
2355 /*
2356 ** Check to see if index pSrc is compatible as a source of data
2357 ** for index pDest in an insert transfer optimization.  The rules
2358 ** for a compatible index:
2359 **
2360 **    *   The index is over the same set of columns
2361 **    *   The same DESC and ASC markings occurs on all columns
2362 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2363 **    *   The same collating sequence on each column
2364 **    *   The index has the exact same WHERE clause
2365 */
2366 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2367   int i;
2368   assert( pDest && pSrc );
2369   assert( pDest->pTable!=pSrc->pTable );
2370   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2371     return 0;   /* Different number of columns */
2372   }
2373   if( pDest->onError!=pSrc->onError ){
2374     return 0;   /* Different conflict resolution strategies */
2375   }
2376   for(i=0; i<pSrc->nKeyCol; i++){
2377     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2378       return 0;   /* Different columns indexed */
2379     }
2380     if( pSrc->aiColumn[i]==XN_EXPR ){
2381       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2382       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2383                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2384         return 0;   /* Different expressions in the index */
2385       }
2386     }
2387     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2388       return 0;   /* Different sort orders */
2389     }
2390     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2391       return 0;   /* Different collating sequences */
2392     }
2393   }
2394   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2395     return 0;     /* Different WHERE clauses */
2396   }
2397 
2398   /* If no test above fails then the indices must be compatible */
2399   return 1;
2400 }
2401 
2402 /*
2403 ** Attempt the transfer optimization on INSERTs of the form
2404 **
2405 **     INSERT INTO tab1 SELECT * FROM tab2;
2406 **
2407 ** The xfer optimization transfers raw records from tab2 over to tab1.
2408 ** Columns are not decoded and reassembled, which greatly improves
2409 ** performance.  Raw index records are transferred in the same way.
2410 **
2411 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2412 ** There are lots of rules for determining compatibility - see comments
2413 ** embedded in the code for details.
2414 **
2415 ** This routine returns TRUE if the optimization is guaranteed to be used.
2416 ** Sometimes the xfer optimization will only work if the destination table
2417 ** is empty - a factor that can only be determined at run-time.  In that
2418 ** case, this routine generates code for the xfer optimization but also
2419 ** does a test to see if the destination table is empty and jumps over the
2420 ** xfer optimization code if the test fails.  In that case, this routine
2421 ** returns FALSE so that the caller will know to go ahead and generate
2422 ** an unoptimized transfer.  This routine also returns FALSE if there
2423 ** is no chance that the xfer optimization can be applied.
2424 **
2425 ** This optimization is particularly useful at making VACUUM run faster.
2426 */
2427 static int xferOptimization(
2428   Parse *pParse,        /* Parser context */
2429   Table *pDest,         /* The table we are inserting into */
2430   Select *pSelect,      /* A SELECT statement to use as the data source */
2431   int onError,          /* How to handle constraint errors */
2432   int iDbDest           /* The database of pDest */
2433 ){
2434   sqlite3 *db = pParse->db;
2435   ExprList *pEList;                /* The result set of the SELECT */
2436   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2437   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2438   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
2439   int i;                           /* Loop counter */
2440   int iDbSrc;                      /* The database of pSrc */
2441   int iSrc, iDest;                 /* Cursors from source and destination */
2442   int addr1, addr2;                /* Loop addresses */
2443   int emptyDestTest = 0;           /* Address of test for empty pDest */
2444   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2445   Vdbe *v;                         /* The VDBE we are building */
2446   int regAutoinc;                  /* Memory register used by AUTOINC */
2447   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2448   int regData, regRowid;           /* Registers holding data and rowid */
2449 
2450   if( pSelect==0 ){
2451     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2452   }
2453   if( pParse->pWith || pSelect->pWith ){
2454     /* Do not attempt to process this query if there are an WITH clauses
2455     ** attached to it. Proceeding may generate a false "no such table: xxx"
2456     ** error if pSelect reads from a CTE named "xxx".  */
2457     return 0;
2458   }
2459   if( sqlite3TriggerList(pParse, pDest) ){
2460     return 0;   /* tab1 must not have triggers */
2461   }
2462 #ifndef SQLITE_OMIT_VIRTUALTABLE
2463   if( IsVirtual(pDest) ){
2464     return 0;   /* tab1 must not be a virtual table */
2465   }
2466 #endif
2467   if( onError==OE_Default ){
2468     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2469     if( onError==OE_Default ) onError = OE_Abort;
2470   }
2471   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2472   if( pSelect->pSrc->nSrc!=1 ){
2473     return 0;   /* FROM clause must have exactly one term */
2474   }
2475   if( pSelect->pSrc->a[0].pSelect ){
2476     return 0;   /* FROM clause cannot contain a subquery */
2477   }
2478   if( pSelect->pWhere ){
2479     return 0;   /* SELECT may not have a WHERE clause */
2480   }
2481   if( pSelect->pOrderBy ){
2482     return 0;   /* SELECT may not have an ORDER BY clause */
2483   }
2484   /* Do not need to test for a HAVING clause.  If HAVING is present but
2485   ** there is no ORDER BY, we will get an error. */
2486   if( pSelect->pGroupBy ){
2487     return 0;   /* SELECT may not have a GROUP BY clause */
2488   }
2489   if( pSelect->pLimit ){
2490     return 0;   /* SELECT may not have a LIMIT clause */
2491   }
2492   if( pSelect->pPrior ){
2493     return 0;   /* SELECT may not be a compound query */
2494   }
2495   if( pSelect->selFlags & SF_Distinct ){
2496     return 0;   /* SELECT may not be DISTINCT */
2497   }
2498   pEList = pSelect->pEList;
2499   assert( pEList!=0 );
2500   if( pEList->nExpr!=1 ){
2501     return 0;   /* The result set must have exactly one column */
2502   }
2503   assert( pEList->a[0].pExpr );
2504   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2505     return 0;   /* The result set must be the special operator "*" */
2506   }
2507 
2508   /* At this point we have established that the statement is of the
2509   ** correct syntactic form to participate in this optimization.  Now
2510   ** we have to check the semantics.
2511   */
2512   pItem = pSelect->pSrc->a;
2513   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2514   if( pSrc==0 ){
2515     return 0;   /* FROM clause does not contain a real table */
2516   }
2517   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2518     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */
2519     return 0;   /* tab1 and tab2 may not be the same table */
2520   }
2521   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2522     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2523   }
2524 #ifndef SQLITE_OMIT_VIRTUALTABLE
2525   if( IsVirtual(pSrc) ){
2526     return 0;   /* tab2 must not be a virtual table */
2527   }
2528 #endif
2529   if( pSrc->pSelect ){
2530     return 0;   /* tab2 may not be a view */
2531   }
2532   if( pDest->nCol!=pSrc->nCol ){
2533     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2534   }
2535   if( pDest->iPKey!=pSrc->iPKey ){
2536     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2537   }
2538   for(i=0; i<pDest->nCol; i++){
2539     Column *pDestCol = &pDest->aCol[i];
2540     Column *pSrcCol = &pSrc->aCol[i];
2541 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2542     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2543      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2544     ){
2545       return 0;    /* Neither table may have __hidden__ columns */
2546     }
2547 #endif
2548 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2549     /* Even if tables t1 and t2 have identical schemas, if they contain
2550     ** generated columns, then this statement is semantically incorrect:
2551     **
2552     **     INSERT INTO t2 SELECT * FROM t1;
2553     **
2554     ** The reason is that generated column values are returned by the
2555     ** the SELECT statement on the right but the INSERT statement on the
2556     ** left wants them to be omitted.
2557     **
2558     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2559     ** to do a bulk transfer all of the content from t1 over to t2.
2560     **
2561     ** We could, in theory, disable this (except for internal use by the
2562     ** VACUUM command where it is actually needed).  But why do that?  It
2563     ** seems harmless enough, and provides a useful service.
2564     */
2565     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2566         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2567       return 0;    /* Both columns have the same generated-column type */
2568     }
2569     /* But the transfer is only allowed if both the source and destination
2570     ** tables have the exact same expressions for generated columns.
2571     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2572     */
2573     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2574       if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){
2575         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2576         testcase( pDestCol->colFlags & COLFLAG_STORED );
2577         return 0;  /* Different generator expressions */
2578       }
2579     }
2580 #endif
2581     if( pDestCol->affinity!=pSrcCol->affinity ){
2582       return 0;    /* Affinity must be the same on all columns */
2583     }
2584     if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2585       return 0;    /* Collating sequence must be the same on all columns */
2586     }
2587     if( pDestCol->notNull && !pSrcCol->notNull ){
2588       return 0;    /* tab2 must be NOT NULL if tab1 is */
2589     }
2590     /* Default values for second and subsequent columns need to match. */
2591     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2592       assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2593       assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2594       if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2595        || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2596                                        pSrcCol->pDflt->u.zToken)!=0)
2597       ){
2598         return 0;    /* Default values must be the same for all columns */
2599       }
2600     }
2601   }
2602   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2603     if( IsUniqueIndex(pDestIdx) ){
2604       destHasUniqueIdx = 1;
2605     }
2606     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2607       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2608     }
2609     if( pSrcIdx==0 ){
2610       return 0;    /* pDestIdx has no corresponding index in pSrc */
2611     }
2612     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2613          && sqlite3FaultSim(411)==SQLITE_OK ){
2614       /* The sqlite3FaultSim() call allows this corruption test to be
2615       ** bypassed during testing, in order to exercise other corruption tests
2616       ** further downstream. */
2617       return 0;   /* Corrupt schema - two indexes on the same btree */
2618     }
2619   }
2620 #ifndef SQLITE_OMIT_CHECK
2621   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2622     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2623   }
2624 #endif
2625 #ifndef SQLITE_OMIT_FOREIGN_KEY
2626   /* Disallow the transfer optimization if the destination table constains
2627   ** any foreign key constraints.  This is more restrictive than necessary.
2628   ** But the main beneficiary of the transfer optimization is the VACUUM
2629   ** command, and the VACUUM command disables foreign key constraints.  So
2630   ** the extra complication to make this rule less restrictive is probably
2631   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2632   */
2633   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2634     return 0;
2635   }
2636 #endif
2637   if( (db->flags & SQLITE_CountRows)!=0 ){
2638     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2639   }
2640 
2641   /* If we get this far, it means that the xfer optimization is at
2642   ** least a possibility, though it might only work if the destination
2643   ** table (tab1) is initially empty.
2644   */
2645 #ifdef SQLITE_TEST
2646   sqlite3_xferopt_count++;
2647 #endif
2648   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2649   v = sqlite3GetVdbe(pParse);
2650   sqlite3CodeVerifySchema(pParse, iDbSrc);
2651   iSrc = pParse->nTab++;
2652   iDest = pParse->nTab++;
2653   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2654   regData = sqlite3GetTempReg(pParse);
2655   regRowid = sqlite3GetTempReg(pParse);
2656   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2657   assert( HasRowid(pDest) || destHasUniqueIdx );
2658   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2659       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2660    || destHasUniqueIdx                              /* (2) */
2661    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2662   )){
2663     /* In some circumstances, we are able to run the xfer optimization
2664     ** only if the destination table is initially empty. Unless the
2665     ** DBFLAG_Vacuum flag is set, this block generates code to make
2666     ** that determination. If DBFLAG_Vacuum is set, then the destination
2667     ** table is always empty.
2668     **
2669     ** Conditions under which the destination must be empty:
2670     **
2671     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2672     **     (If the destination is not initially empty, the rowid fields
2673     **     of index entries might need to change.)
2674     **
2675     ** (2) The destination has a unique index.  (The xfer optimization
2676     **     is unable to test uniqueness.)
2677     **
2678     ** (3) onError is something other than OE_Abort and OE_Rollback.
2679     */
2680     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2681     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2682     sqlite3VdbeJumpHere(v, addr1);
2683   }
2684   if( HasRowid(pSrc) ){
2685     u8 insFlags;
2686     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2687     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2688     if( pDest->iPKey>=0 ){
2689       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2690       sqlite3VdbeVerifyAbortable(v, onError);
2691       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2692       VdbeCoverage(v);
2693       sqlite3RowidConstraint(pParse, onError, pDest);
2694       sqlite3VdbeJumpHere(v, addr2);
2695       autoIncStep(pParse, regAutoinc, regRowid);
2696     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2697       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2698     }else{
2699       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2700       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2701     }
2702     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2703     if( db->mDbFlags & DBFLAG_Vacuum ){
2704       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2705       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2706                            OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2707     }else{
2708       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2709     }
2710     sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2711                       (char*)pDest, P4_TABLE);
2712     sqlite3VdbeChangeP5(v, insFlags);
2713     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2714     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2715     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2716   }else{
2717     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2718     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2719   }
2720   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2721     u8 idxInsFlags = 0;
2722     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2723       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2724     }
2725     assert( pSrcIdx );
2726     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2727     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2728     VdbeComment((v, "%s", pSrcIdx->zName));
2729     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2730     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2731     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2732     VdbeComment((v, "%s", pDestIdx->zName));
2733     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2734     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2735     if( db->mDbFlags & DBFLAG_Vacuum ){
2736       /* This INSERT command is part of a VACUUM operation, which guarantees
2737       ** that the destination table is empty. If all indexed columns use
2738       ** collation sequence BINARY, then it can also be assumed that the
2739       ** index will be populated by inserting keys in strictly sorted
2740       ** order. In this case, instead of seeking within the b-tree as part
2741       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2742       ** OP_IdxInsert to seek to the point within the b-tree where each key
2743       ** should be inserted. This is faster.
2744       **
2745       ** If any of the indexed columns use a collation sequence other than
2746       ** BINARY, this optimization is disabled. This is because the user
2747       ** might change the definition of a collation sequence and then run
2748       ** a VACUUM command. In that case keys may not be written in strictly
2749       ** sorted order.  */
2750       for(i=0; i<pSrcIdx->nColumn; i++){
2751         const char *zColl = pSrcIdx->azColl[i];
2752         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2753       }
2754       if( i==pSrcIdx->nColumn ){
2755         idxInsFlags = OPFLAG_USESEEKRESULT;
2756         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2757       }
2758     }
2759     if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2760       idxInsFlags |= OPFLAG_NCHANGE;
2761     }
2762     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2763     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2764     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2765     sqlite3VdbeJumpHere(v, addr1);
2766     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2767     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2768   }
2769   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2770   sqlite3ReleaseTempReg(pParse, regRowid);
2771   sqlite3ReleaseTempReg(pParse, regData);
2772   if( emptyDestTest ){
2773     sqlite3AutoincrementEnd(pParse);
2774     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2775     sqlite3VdbeJumpHere(v, emptyDestTest);
2776     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2777     return 0;
2778   }else{
2779     return 1;
2780   }
2781 }
2782 #endif /* SQLITE_OMIT_XFER_OPT */
2783