1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 286 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 287 ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 } 305 306 /* Because there can be multiple generated columns that refer to one another, 307 ** this is a two-pass algorithm. On the first pass, mark all generated 308 ** columns as "not available". 309 */ 310 for(i=0; i<pTab->nCol; i++){ 311 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 312 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 313 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 314 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 315 } 316 } 317 318 w.u.pTab = pTab; 319 w.xExprCallback = exprColumnFlagUnion; 320 w.xSelectCallback = 0; 321 w.xSelectCallback2 = 0; 322 323 /* On the second pass, compute the value of each NOT-AVAILABLE column. 324 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 325 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 326 ** they are needed. 327 */ 328 pParse->iSelfTab = -iRegStore; 329 do{ 330 eProgress = 0; 331 pRedo = 0; 332 for(i=0; i<pTab->nCol; i++){ 333 Column *pCol = pTab->aCol + i; 334 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 335 int x; 336 pCol->colFlags |= COLFLAG_BUSY; 337 w.eCode = 0; 338 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 339 pCol->colFlags &= ~COLFLAG_BUSY; 340 if( w.eCode & COLFLAG_NOTAVAIL ){ 341 pRedo = pCol; 342 continue; 343 } 344 eProgress = 1; 345 assert( pCol->colFlags & COLFLAG_GENERATED ); 346 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 347 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 348 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 349 } 350 } 351 }while( pRedo && eProgress ); 352 if( pRedo ){ 353 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 354 } 355 pParse->iSelfTab = 0; 356 } 357 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 358 359 360 #ifndef SQLITE_OMIT_AUTOINCREMENT 361 /* 362 ** Locate or create an AutoincInfo structure associated with table pTab 363 ** which is in database iDb. Return the register number for the register 364 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 365 ** table. (Also return zero when doing a VACUUM since we do not want to 366 ** update the AUTOINCREMENT counters during a VACUUM.) 367 ** 368 ** There is at most one AutoincInfo structure per table even if the 369 ** same table is autoincremented multiple times due to inserts within 370 ** triggers. A new AutoincInfo structure is created if this is the 371 ** first use of table pTab. On 2nd and subsequent uses, the original 372 ** AutoincInfo structure is used. 373 ** 374 ** Four consecutive registers are allocated: 375 ** 376 ** (1) The name of the pTab table. 377 ** (2) The maximum ROWID of pTab. 378 ** (3) The rowid in sqlite_sequence of pTab 379 ** (4) The original value of the max ROWID in pTab, or NULL if none 380 ** 381 ** The 2nd register is the one that is returned. That is all the 382 ** insert routine needs to know about. 383 */ 384 static int autoIncBegin( 385 Parse *pParse, /* Parsing context */ 386 int iDb, /* Index of the database holding pTab */ 387 Table *pTab /* The table we are writing to */ 388 ){ 389 int memId = 0; /* Register holding maximum rowid */ 390 assert( pParse->db->aDb[iDb].pSchema!=0 ); 391 if( (pTab->tabFlags & TF_Autoincrement)!=0 392 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 393 ){ 394 Parse *pToplevel = sqlite3ParseToplevel(pParse); 395 AutoincInfo *pInfo; 396 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 397 398 /* Verify that the sqlite_sequence table exists and is an ordinary 399 ** rowid table with exactly two columns. 400 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 401 if( pSeqTab==0 402 || !HasRowid(pSeqTab) 403 || NEVER(IsVirtual(pSeqTab)) 404 || pSeqTab->nCol!=2 405 ){ 406 pParse->nErr++; 407 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 408 return 0; 409 } 410 411 pInfo = pToplevel->pAinc; 412 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 413 if( pInfo==0 ){ 414 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 415 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 416 testcase( pParse->earlyCleanup ); 417 if( pParse->db->mallocFailed ) return 0; 418 pInfo->pNext = pToplevel->pAinc; 419 pToplevel->pAinc = pInfo; 420 pInfo->pTab = pTab; 421 pInfo->iDb = iDb; 422 pToplevel->nMem++; /* Register to hold name of table */ 423 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 424 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 425 } 426 memId = pInfo->regCtr; 427 } 428 return memId; 429 } 430 431 /* 432 ** This routine generates code that will initialize all of the 433 ** register used by the autoincrement tracker. 434 */ 435 void sqlite3AutoincrementBegin(Parse *pParse){ 436 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 437 sqlite3 *db = pParse->db; /* The database connection */ 438 Db *pDb; /* Database only autoinc table */ 439 int memId; /* Register holding max rowid */ 440 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 441 442 /* This routine is never called during trigger-generation. It is 443 ** only called from the top-level */ 444 assert( pParse->pTriggerTab==0 ); 445 assert( sqlite3IsToplevel(pParse) ); 446 447 assert( v ); /* We failed long ago if this is not so */ 448 for(p = pParse->pAinc; p; p = p->pNext){ 449 static const int iLn = VDBE_OFFSET_LINENO(2); 450 static const VdbeOpList autoInc[] = { 451 /* 0 */ {OP_Null, 0, 0, 0}, 452 /* 1 */ {OP_Rewind, 0, 10, 0}, 453 /* 2 */ {OP_Column, 0, 0, 0}, 454 /* 3 */ {OP_Ne, 0, 9, 0}, 455 /* 4 */ {OP_Rowid, 0, 0, 0}, 456 /* 5 */ {OP_Column, 0, 1, 0}, 457 /* 6 */ {OP_AddImm, 0, 0, 0}, 458 /* 7 */ {OP_Copy, 0, 0, 0}, 459 /* 8 */ {OP_Goto, 0, 11, 0}, 460 /* 9 */ {OP_Next, 0, 2, 0}, 461 /* 10 */ {OP_Integer, 0, 0, 0}, 462 /* 11 */ {OP_Close, 0, 0, 0} 463 }; 464 VdbeOp *aOp; 465 pDb = &db->aDb[p->iDb]; 466 memId = p->regCtr; 467 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 468 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 469 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 470 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 471 if( aOp==0 ) break; 472 aOp[0].p2 = memId; 473 aOp[0].p3 = memId+2; 474 aOp[2].p3 = memId; 475 aOp[3].p1 = memId-1; 476 aOp[3].p3 = memId; 477 aOp[3].p5 = SQLITE_JUMPIFNULL; 478 aOp[4].p2 = memId+1; 479 aOp[5].p3 = memId; 480 aOp[6].p1 = memId; 481 aOp[7].p2 = memId+2; 482 aOp[7].p1 = memId; 483 aOp[10].p2 = memId; 484 if( pParse->nTab==0 ) pParse->nTab = 1; 485 } 486 } 487 488 /* 489 ** Update the maximum rowid for an autoincrement calculation. 490 ** 491 ** This routine should be called when the regRowid register holds a 492 ** new rowid that is about to be inserted. If that new rowid is 493 ** larger than the maximum rowid in the memId memory cell, then the 494 ** memory cell is updated. 495 */ 496 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 497 if( memId>0 ){ 498 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 499 } 500 } 501 502 /* 503 ** This routine generates the code needed to write autoincrement 504 ** maximum rowid values back into the sqlite_sequence register. 505 ** Every statement that might do an INSERT into an autoincrement 506 ** table (either directly or through triggers) needs to call this 507 ** routine just before the "exit" code. 508 */ 509 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 510 AutoincInfo *p; 511 Vdbe *v = pParse->pVdbe; 512 sqlite3 *db = pParse->db; 513 514 assert( v ); 515 for(p = pParse->pAinc; p; p = p->pNext){ 516 static const int iLn = VDBE_OFFSET_LINENO(2); 517 static const VdbeOpList autoIncEnd[] = { 518 /* 0 */ {OP_NotNull, 0, 2, 0}, 519 /* 1 */ {OP_NewRowid, 0, 0, 0}, 520 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 521 /* 3 */ {OP_Insert, 0, 0, 0}, 522 /* 4 */ {OP_Close, 0, 0, 0} 523 }; 524 VdbeOp *aOp; 525 Db *pDb = &db->aDb[p->iDb]; 526 int iRec; 527 int memId = p->regCtr; 528 529 iRec = sqlite3GetTempReg(pParse); 530 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 531 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 532 VdbeCoverage(v); 533 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 534 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 535 if( aOp==0 ) break; 536 aOp[0].p1 = memId+1; 537 aOp[1].p2 = memId+1; 538 aOp[2].p1 = memId-1; 539 aOp[2].p3 = iRec; 540 aOp[3].p2 = iRec; 541 aOp[3].p3 = memId+1; 542 aOp[3].p5 = OPFLAG_APPEND; 543 sqlite3ReleaseTempReg(pParse, iRec); 544 } 545 } 546 void sqlite3AutoincrementEnd(Parse *pParse){ 547 if( pParse->pAinc ) autoIncrementEnd(pParse); 548 } 549 #else 550 /* 551 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 552 ** above are all no-ops 553 */ 554 # define autoIncBegin(A,B,C) (0) 555 # define autoIncStep(A,B,C) 556 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 557 558 559 /* Forward declaration */ 560 static int xferOptimization( 561 Parse *pParse, /* Parser context */ 562 Table *pDest, /* The table we are inserting into */ 563 Select *pSelect, /* A SELECT statement to use as the data source */ 564 int onError, /* How to handle constraint errors */ 565 int iDbDest /* The database of pDest */ 566 ); 567 568 /* 569 ** This routine is called to handle SQL of the following forms: 570 ** 571 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 572 ** insert into TABLE (IDLIST) select 573 ** insert into TABLE (IDLIST) default values 574 ** 575 ** The IDLIST following the table name is always optional. If omitted, 576 ** then a list of all (non-hidden) columns for the table is substituted. 577 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 578 ** is omitted. 579 ** 580 ** For the pSelect parameter holds the values to be inserted for the 581 ** first two forms shown above. A VALUES clause is really just short-hand 582 ** for a SELECT statement that omits the FROM clause and everything else 583 ** that follows. If the pSelect parameter is NULL, that means that the 584 ** DEFAULT VALUES form of the INSERT statement is intended. 585 ** 586 ** The code generated follows one of four templates. For a simple 587 ** insert with data coming from a single-row VALUES clause, the code executes 588 ** once straight down through. Pseudo-code follows (we call this 589 ** the "1st template"): 590 ** 591 ** open write cursor to <table> and its indices 592 ** put VALUES clause expressions into registers 593 ** write the resulting record into <table> 594 ** cleanup 595 ** 596 ** The three remaining templates assume the statement is of the form 597 ** 598 ** INSERT INTO <table> SELECT ... 599 ** 600 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 601 ** in other words if the SELECT pulls all columns from a single table 602 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 603 ** if <table2> and <table1> are distinct tables but have identical 604 ** schemas, including all the same indices, then a special optimization 605 ** is invoked that copies raw records from <table2> over to <table1>. 606 ** See the xferOptimization() function for the implementation of this 607 ** template. This is the 2nd template. 608 ** 609 ** open a write cursor to <table> 610 ** open read cursor on <table2> 611 ** transfer all records in <table2> over to <table> 612 ** close cursors 613 ** foreach index on <table> 614 ** open a write cursor on the <table> index 615 ** open a read cursor on the corresponding <table2> index 616 ** transfer all records from the read to the write cursors 617 ** close cursors 618 ** end foreach 619 ** 620 ** The 3rd template is for when the second template does not apply 621 ** and the SELECT clause does not read from <table> at any time. 622 ** The generated code follows this template: 623 ** 624 ** X <- A 625 ** goto B 626 ** A: setup for the SELECT 627 ** loop over the rows in the SELECT 628 ** load values into registers R..R+n 629 ** yield X 630 ** end loop 631 ** cleanup after the SELECT 632 ** end-coroutine X 633 ** B: open write cursor to <table> and its indices 634 ** C: yield X, at EOF goto D 635 ** insert the select result into <table> from R..R+n 636 ** goto C 637 ** D: cleanup 638 ** 639 ** The 4th template is used if the insert statement takes its 640 ** values from a SELECT but the data is being inserted into a table 641 ** that is also read as part of the SELECT. In the third form, 642 ** we have to use an intermediate table to store the results of 643 ** the select. The template is like this: 644 ** 645 ** X <- A 646 ** goto B 647 ** A: setup for the SELECT 648 ** loop over the tables in the SELECT 649 ** load value into register R..R+n 650 ** yield X 651 ** end loop 652 ** cleanup after the SELECT 653 ** end co-routine R 654 ** B: open temp table 655 ** L: yield X, at EOF goto M 656 ** insert row from R..R+n into temp table 657 ** goto L 658 ** M: open write cursor to <table> and its indices 659 ** rewind temp table 660 ** C: loop over rows of intermediate table 661 ** transfer values form intermediate table into <table> 662 ** end loop 663 ** D: cleanup 664 */ 665 void sqlite3Insert( 666 Parse *pParse, /* Parser context */ 667 SrcList *pTabList, /* Name of table into which we are inserting */ 668 Select *pSelect, /* A SELECT statement to use as the data source */ 669 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 670 int onError, /* How to handle constraint errors */ 671 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 672 ){ 673 sqlite3 *db; /* The main database structure */ 674 Table *pTab; /* The table to insert into. aka TABLE */ 675 int i, j; /* Loop counters */ 676 Vdbe *v; /* Generate code into this virtual machine */ 677 Index *pIdx; /* For looping over indices of the table */ 678 int nColumn; /* Number of columns in the data */ 679 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 680 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 681 int iIdxCur = 0; /* First index cursor */ 682 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 683 int endOfLoop; /* Label for the end of the insertion loop */ 684 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 685 int addrInsTop = 0; /* Jump to label "D" */ 686 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 687 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 688 int iDb; /* Index of database holding TABLE */ 689 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 690 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 691 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 692 u8 bIdListInOrder; /* True if IDLIST is in table order */ 693 ExprList *pList = 0; /* List of VALUES() to be inserted */ 694 int iRegStore; /* Register in which to store next column */ 695 696 /* Register allocations */ 697 int regFromSelect = 0;/* Base register for data coming from SELECT */ 698 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 699 int regRowCount = 0; /* Memory cell used for the row counter */ 700 int regIns; /* Block of regs holding rowid+data being inserted */ 701 int regRowid; /* registers holding insert rowid */ 702 int regData; /* register holding first column to insert */ 703 int *aRegIdx = 0; /* One register allocated to each index */ 704 705 #ifndef SQLITE_OMIT_TRIGGER 706 int isView; /* True if attempting to insert into a view */ 707 Trigger *pTrigger; /* List of triggers on pTab, if required */ 708 int tmask; /* Mask of trigger times */ 709 #endif 710 711 db = pParse->db; 712 if( pParse->nErr || db->mallocFailed ){ 713 goto insert_cleanup; 714 } 715 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 716 717 /* If the Select object is really just a simple VALUES() list with a 718 ** single row (the common case) then keep that one row of values 719 ** and discard the other (unused) parts of the pSelect object 720 */ 721 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 722 pList = pSelect->pEList; 723 pSelect->pEList = 0; 724 sqlite3SelectDelete(db, pSelect); 725 pSelect = 0; 726 } 727 728 /* Locate the table into which we will be inserting new information. 729 */ 730 assert( pTabList->nSrc==1 ); 731 pTab = sqlite3SrcListLookup(pParse, pTabList); 732 if( pTab==0 ){ 733 goto insert_cleanup; 734 } 735 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 736 assert( iDb<db->nDb ); 737 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 738 db->aDb[iDb].zDbSName) ){ 739 goto insert_cleanup; 740 } 741 withoutRowid = !HasRowid(pTab); 742 743 /* Figure out if we have any triggers and if the table being 744 ** inserted into is a view 745 */ 746 #ifndef SQLITE_OMIT_TRIGGER 747 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 748 isView = IsView(pTab); 749 #else 750 # define pTrigger 0 751 # define tmask 0 752 # define isView 0 753 #endif 754 #ifdef SQLITE_OMIT_VIEW 755 # undef isView 756 # define isView 0 757 #endif 758 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 759 760 /* If pTab is really a view, make sure it has been initialized. 761 ** ViewGetColumnNames() is a no-op if pTab is not a view. 762 */ 763 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 764 goto insert_cleanup; 765 } 766 767 /* Cannot insert into a read-only table. 768 */ 769 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 770 goto insert_cleanup; 771 } 772 773 /* Allocate a VDBE 774 */ 775 v = sqlite3GetVdbe(pParse); 776 if( v==0 ) goto insert_cleanup; 777 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 778 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 779 780 #ifndef SQLITE_OMIT_XFER_OPT 781 /* If the statement is of the form 782 ** 783 ** INSERT INTO <table1> SELECT * FROM <table2>; 784 ** 785 ** Then special optimizations can be applied that make the transfer 786 ** very fast and which reduce fragmentation of indices. 787 ** 788 ** This is the 2nd template. 789 */ 790 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 791 assert( !pTrigger ); 792 assert( pList==0 ); 793 goto insert_end; 794 } 795 #endif /* SQLITE_OMIT_XFER_OPT */ 796 797 /* If this is an AUTOINCREMENT table, look up the sequence number in the 798 ** sqlite_sequence table and store it in memory cell regAutoinc. 799 */ 800 regAutoinc = autoIncBegin(pParse, iDb, pTab); 801 802 /* Allocate a block registers to hold the rowid and the values 803 ** for all columns of the new row. 804 */ 805 regRowid = regIns = pParse->nMem+1; 806 pParse->nMem += pTab->nCol + 1; 807 if( IsVirtual(pTab) ){ 808 regRowid++; 809 pParse->nMem++; 810 } 811 regData = regRowid+1; 812 813 /* If the INSERT statement included an IDLIST term, then make sure 814 ** all elements of the IDLIST really are columns of the table and 815 ** remember the column indices. 816 ** 817 ** If the table has an INTEGER PRIMARY KEY column and that column 818 ** is named in the IDLIST, then record in the ipkColumn variable 819 ** the index into IDLIST of the primary key column. ipkColumn is 820 ** the index of the primary key as it appears in IDLIST, not as 821 ** is appears in the original table. (The index of the INTEGER 822 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 823 ** loop, if ipkColumn==(-1), that means that integer primary key 824 ** is unspecified, and hence the table is either WITHOUT ROWID or 825 ** it will automatically generated an integer primary key. 826 ** 827 ** bIdListInOrder is true if the columns in IDLIST are in storage 828 ** order. This enables an optimization that avoids shuffling the 829 ** columns into storage order. False negatives are harmless, 830 ** but false positives will cause database corruption. 831 */ 832 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 833 if( pColumn ){ 834 for(i=0; i<pColumn->nId; i++){ 835 pColumn->a[i].idx = -1; 836 } 837 for(i=0; i<pColumn->nId; i++){ 838 for(j=0; j<pTab->nCol; j++){ 839 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 840 pColumn->a[i].idx = j; 841 if( i!=j ) bIdListInOrder = 0; 842 if( j==pTab->iPKey ){ 843 ipkColumn = i; assert( !withoutRowid ); 844 } 845 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 846 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 847 sqlite3ErrorMsg(pParse, 848 "cannot INSERT into generated column \"%s\"", 849 pTab->aCol[j].zCnName); 850 goto insert_cleanup; 851 } 852 #endif 853 break; 854 } 855 } 856 if( j>=pTab->nCol ){ 857 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 858 ipkColumn = i; 859 bIdListInOrder = 0; 860 }else{ 861 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 862 pTabList->a, pColumn->a[i].zName); 863 pParse->checkSchema = 1; 864 goto insert_cleanup; 865 } 866 } 867 } 868 } 869 870 /* Figure out how many columns of data are supplied. If the data 871 ** is coming from a SELECT statement, then generate a co-routine that 872 ** produces a single row of the SELECT on each invocation. The 873 ** co-routine is the common header to the 3rd and 4th templates. 874 */ 875 if( pSelect ){ 876 /* Data is coming from a SELECT or from a multi-row VALUES clause. 877 ** Generate a co-routine to run the SELECT. */ 878 int regYield; /* Register holding co-routine entry-point */ 879 int addrTop; /* Top of the co-routine */ 880 int rc; /* Result code */ 881 882 regYield = ++pParse->nMem; 883 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 884 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 885 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 886 dest.iSdst = bIdListInOrder ? regData : 0; 887 dest.nSdst = pTab->nCol; 888 rc = sqlite3Select(pParse, pSelect, &dest); 889 regFromSelect = dest.iSdst; 890 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 891 sqlite3VdbeEndCoroutine(v, regYield); 892 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 893 assert( pSelect->pEList ); 894 nColumn = pSelect->pEList->nExpr; 895 896 /* Set useTempTable to TRUE if the result of the SELECT statement 897 ** should be written into a temporary table (template 4). Set to 898 ** FALSE if each output row of the SELECT can be written directly into 899 ** the destination table (template 3). 900 ** 901 ** A temp table must be used if the table being updated is also one 902 ** of the tables being read by the SELECT statement. Also use a 903 ** temp table in the case of row triggers. 904 */ 905 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 906 useTempTable = 1; 907 } 908 909 if( useTempTable ){ 910 /* Invoke the coroutine to extract information from the SELECT 911 ** and add it to a transient table srcTab. The code generated 912 ** here is from the 4th template: 913 ** 914 ** B: open temp table 915 ** L: yield X, goto M at EOF 916 ** insert row from R..R+n into temp table 917 ** goto L 918 ** M: ... 919 */ 920 int regRec; /* Register to hold packed record */ 921 int regTempRowid; /* Register to hold temp table ROWID */ 922 int addrL; /* Label "L" */ 923 924 srcTab = pParse->nTab++; 925 regRec = sqlite3GetTempReg(pParse); 926 regTempRowid = sqlite3GetTempReg(pParse); 927 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 928 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 929 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 930 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 931 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 932 sqlite3VdbeGoto(v, addrL); 933 sqlite3VdbeJumpHere(v, addrL); 934 sqlite3ReleaseTempReg(pParse, regRec); 935 sqlite3ReleaseTempReg(pParse, regTempRowid); 936 } 937 }else{ 938 /* This is the case if the data for the INSERT is coming from a 939 ** single-row VALUES clause 940 */ 941 NameContext sNC; 942 memset(&sNC, 0, sizeof(sNC)); 943 sNC.pParse = pParse; 944 srcTab = -1; 945 assert( useTempTable==0 ); 946 if( pList ){ 947 nColumn = pList->nExpr; 948 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 949 goto insert_cleanup; 950 } 951 }else{ 952 nColumn = 0; 953 } 954 } 955 956 /* If there is no IDLIST term but the table has an integer primary 957 ** key, the set the ipkColumn variable to the integer primary key 958 ** column index in the original table definition. 959 */ 960 if( pColumn==0 && nColumn>0 ){ 961 ipkColumn = pTab->iPKey; 962 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 963 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 964 testcase( pTab->tabFlags & TF_HasVirtual ); 965 testcase( pTab->tabFlags & TF_HasStored ); 966 for(i=ipkColumn-1; i>=0; i--){ 967 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 968 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 969 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 970 ipkColumn--; 971 } 972 } 973 } 974 #endif 975 976 /* Make sure the number of columns in the source data matches the number 977 ** of columns to be inserted into the table. 978 */ 979 assert( TF_HasHidden==COLFLAG_HIDDEN ); 980 assert( TF_HasGenerated==COLFLAG_GENERATED ); 981 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 982 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 983 for(i=0; i<pTab->nCol; i++){ 984 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 985 } 986 } 987 if( nColumn!=(pTab->nCol-nHidden) ){ 988 sqlite3ErrorMsg(pParse, 989 "table %S has %d columns but %d values were supplied", 990 pTabList->a, pTab->nCol-nHidden, nColumn); 991 goto insert_cleanup; 992 } 993 } 994 if( pColumn!=0 && nColumn!=pColumn->nId ){ 995 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 996 goto insert_cleanup; 997 } 998 999 /* Initialize the count of rows to be inserted 1000 */ 1001 if( (db->flags & SQLITE_CountRows)!=0 1002 && !pParse->nested 1003 && !pParse->pTriggerTab 1004 && !pParse->bReturning 1005 ){ 1006 regRowCount = ++pParse->nMem; 1007 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1008 } 1009 1010 /* If this is not a view, open the table and and all indices */ 1011 if( !isView ){ 1012 int nIdx; 1013 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1014 &iDataCur, &iIdxCur); 1015 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1016 if( aRegIdx==0 ){ 1017 goto insert_cleanup; 1018 } 1019 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1020 assert( pIdx ); 1021 aRegIdx[i] = ++pParse->nMem; 1022 pParse->nMem += pIdx->nColumn; 1023 } 1024 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1025 } 1026 #ifndef SQLITE_OMIT_UPSERT 1027 if( pUpsert ){ 1028 Upsert *pNx; 1029 if( IsVirtual(pTab) ){ 1030 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1031 pTab->zName); 1032 goto insert_cleanup; 1033 } 1034 if( IsView(pTab) ){ 1035 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1036 goto insert_cleanup; 1037 } 1038 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1039 goto insert_cleanup; 1040 } 1041 pTabList->a[0].iCursor = iDataCur; 1042 pNx = pUpsert; 1043 do{ 1044 pNx->pUpsertSrc = pTabList; 1045 pNx->regData = regData; 1046 pNx->iDataCur = iDataCur; 1047 pNx->iIdxCur = iIdxCur; 1048 if( pNx->pUpsertTarget ){ 1049 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1050 goto insert_cleanup; 1051 } 1052 } 1053 pNx = pNx->pNextUpsert; 1054 }while( pNx!=0 ); 1055 } 1056 #endif 1057 1058 1059 /* This is the top of the main insertion loop */ 1060 if( useTempTable ){ 1061 /* This block codes the top of loop only. The complete loop is the 1062 ** following pseudocode (template 4): 1063 ** 1064 ** rewind temp table, if empty goto D 1065 ** C: loop over rows of intermediate table 1066 ** transfer values form intermediate table into <table> 1067 ** end loop 1068 ** D: ... 1069 */ 1070 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1071 addrCont = sqlite3VdbeCurrentAddr(v); 1072 }else if( pSelect ){ 1073 /* This block codes the top of loop only. The complete loop is the 1074 ** following pseudocode (template 3): 1075 ** 1076 ** C: yield X, at EOF goto D 1077 ** insert the select result into <table> from R..R+n 1078 ** goto C 1079 ** D: ... 1080 */ 1081 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1082 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1083 VdbeCoverage(v); 1084 if( ipkColumn>=0 ){ 1085 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1086 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1087 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1088 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1089 } 1090 } 1091 1092 /* Compute data for ordinary columns of the new entry. Values 1093 ** are written in storage order into registers starting with regData. 1094 ** Only ordinary columns are computed in this loop. The rowid 1095 ** (if there is one) is computed later and generated columns are 1096 ** computed after the rowid since they might depend on the value 1097 ** of the rowid. 1098 */ 1099 nHidden = 0; 1100 iRegStore = regData; assert( regData==regRowid+1 ); 1101 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1102 int k; 1103 u32 colFlags; 1104 assert( i>=nHidden ); 1105 if( i==pTab->iPKey ){ 1106 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1107 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1108 ** using excess space. The file format definition requires this extra 1109 ** NULL - we cannot optimize further by skipping the column completely */ 1110 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1111 continue; 1112 } 1113 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1114 nHidden++; 1115 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1116 /* Virtual columns do not participate in OP_MakeRecord. So back up 1117 ** iRegStore by one slot to compensate for the iRegStore++ in the 1118 ** outer for() loop */ 1119 iRegStore--; 1120 continue; 1121 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1122 /* Stored columns are computed later. But if there are BEFORE 1123 ** triggers, the slots used for stored columns will be OP_Copy-ed 1124 ** to a second block of registers, so the register needs to be 1125 ** initialized to NULL to avoid an uninitialized register read */ 1126 if( tmask & TRIGGER_BEFORE ){ 1127 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1128 } 1129 continue; 1130 }else if( pColumn==0 ){ 1131 /* Hidden columns that are not explicitly named in the INSERT 1132 ** get there default value */ 1133 sqlite3ExprCodeFactorable(pParse, 1134 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1135 iRegStore); 1136 continue; 1137 } 1138 } 1139 if( pColumn ){ 1140 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1141 if( j>=pColumn->nId ){ 1142 /* A column not named in the insert column list gets its 1143 ** default value */ 1144 sqlite3ExprCodeFactorable(pParse, 1145 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1146 iRegStore); 1147 continue; 1148 } 1149 k = j; 1150 }else if( nColumn==0 ){ 1151 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1152 sqlite3ExprCodeFactorable(pParse, 1153 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1154 iRegStore); 1155 continue; 1156 }else{ 1157 k = i - nHidden; 1158 } 1159 1160 if( useTempTable ){ 1161 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1162 }else if( pSelect ){ 1163 if( regFromSelect!=regData ){ 1164 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1165 } 1166 }else{ 1167 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1168 } 1169 } 1170 1171 1172 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1173 */ 1174 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1175 if( tmask & TRIGGER_BEFORE ){ 1176 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1177 1178 /* build the NEW.* reference row. Note that if there is an INTEGER 1179 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1180 ** translated into a unique ID for the row. But on a BEFORE trigger, 1181 ** we do not know what the unique ID will be (because the insert has 1182 ** not happened yet) so we substitute a rowid of -1 1183 */ 1184 if( ipkColumn<0 ){ 1185 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1186 }else{ 1187 int addr1; 1188 assert( !withoutRowid ); 1189 if( useTempTable ){ 1190 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1191 }else{ 1192 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1193 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1194 } 1195 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1196 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1197 sqlite3VdbeJumpHere(v, addr1); 1198 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1199 } 1200 1201 /* Copy the new data already generated. */ 1202 assert( pTab->nNVCol>0 ); 1203 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1204 1205 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1206 /* Compute the new value for generated columns after all other 1207 ** columns have already been computed. This must be done after 1208 ** computing the ROWID in case one of the generated columns 1209 ** refers to the ROWID. */ 1210 if( pTab->tabFlags & TF_HasGenerated ){ 1211 testcase( pTab->tabFlags & TF_HasVirtual ); 1212 testcase( pTab->tabFlags & TF_HasStored ); 1213 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1214 } 1215 #endif 1216 1217 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1218 ** do not attempt any conversions before assembling the record. 1219 ** If this is a real table, attempt conversions as required by the 1220 ** table column affinities. 1221 */ 1222 if( !isView ){ 1223 sqlite3TableAffinity(v, pTab, regCols+1); 1224 } 1225 1226 /* Fire BEFORE or INSTEAD OF triggers */ 1227 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1228 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1229 1230 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1231 } 1232 1233 if( !isView ){ 1234 if( IsVirtual(pTab) ){ 1235 /* The row that the VUpdate opcode will delete: none */ 1236 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1237 } 1238 if( ipkColumn>=0 ){ 1239 /* Compute the new rowid */ 1240 if( useTempTable ){ 1241 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1242 }else if( pSelect ){ 1243 /* Rowid already initialized at tag-20191021-001 */ 1244 }else{ 1245 Expr *pIpk = pList->a[ipkColumn].pExpr; 1246 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1247 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1248 appendFlag = 1; 1249 }else{ 1250 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1251 } 1252 } 1253 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1254 ** to generate a unique primary key value. 1255 */ 1256 if( !appendFlag ){ 1257 int addr1; 1258 if( !IsVirtual(pTab) ){ 1259 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1260 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1261 sqlite3VdbeJumpHere(v, addr1); 1262 }else{ 1263 addr1 = sqlite3VdbeCurrentAddr(v); 1264 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1265 } 1266 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1267 } 1268 }else if( IsVirtual(pTab) || withoutRowid ){ 1269 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1270 }else{ 1271 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1272 appendFlag = 1; 1273 } 1274 autoIncStep(pParse, regAutoinc, regRowid); 1275 1276 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1277 /* Compute the new value for generated columns after all other 1278 ** columns have already been computed. This must be done after 1279 ** computing the ROWID in case one of the generated columns 1280 ** is derived from the INTEGER PRIMARY KEY. */ 1281 if( pTab->tabFlags & TF_HasGenerated ){ 1282 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1283 } 1284 #endif 1285 1286 /* Generate code to check constraints and generate index keys and 1287 ** do the insertion. 1288 */ 1289 #ifndef SQLITE_OMIT_VIRTUALTABLE 1290 if( IsVirtual(pTab) ){ 1291 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1292 sqlite3VtabMakeWritable(pParse, pTab); 1293 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1294 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1295 sqlite3MayAbort(pParse); 1296 }else 1297 #endif 1298 { 1299 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1300 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1301 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1302 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1303 ); 1304 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1305 1306 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1307 ** constraints or (b) there are no triggers and this table is not a 1308 ** parent table in a foreign key constraint. It is safe to set the 1309 ** flag in the second case as if any REPLACE constraint is hit, an 1310 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1311 ** cursor that is disturbed. And these instructions both clear the 1312 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1313 ** functionality. */ 1314 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1315 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1316 regIns, aRegIdx, 0, appendFlag, bUseSeek 1317 ); 1318 } 1319 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1320 }else if( pParse->bReturning ){ 1321 /* If there is a RETURNING clause, populate the rowid register with 1322 ** constant value -1, in case one or more of the returned expressions 1323 ** refer to the "rowid" of the view. */ 1324 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1325 #endif 1326 } 1327 1328 /* Update the count of rows that are inserted 1329 */ 1330 if( regRowCount ){ 1331 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1332 } 1333 1334 if( pTrigger ){ 1335 /* Code AFTER triggers */ 1336 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1337 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1338 } 1339 1340 /* The bottom of the main insertion loop, if the data source 1341 ** is a SELECT statement. 1342 */ 1343 sqlite3VdbeResolveLabel(v, endOfLoop); 1344 if( useTempTable ){ 1345 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1346 sqlite3VdbeJumpHere(v, addrInsTop); 1347 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1348 }else if( pSelect ){ 1349 sqlite3VdbeGoto(v, addrCont); 1350 #ifdef SQLITE_DEBUG 1351 /* If we are jumping back to an OP_Yield that is preceded by an 1352 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1353 ** OP_ReleaseReg will be included in the loop. */ 1354 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1355 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1356 sqlite3VdbeChangeP5(v, 1); 1357 } 1358 #endif 1359 sqlite3VdbeJumpHere(v, addrInsTop); 1360 } 1361 1362 #ifndef SQLITE_OMIT_XFER_OPT 1363 insert_end: 1364 #endif /* SQLITE_OMIT_XFER_OPT */ 1365 /* Update the sqlite_sequence table by storing the content of the 1366 ** maximum rowid counter values recorded while inserting into 1367 ** autoincrement tables. 1368 */ 1369 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1370 sqlite3AutoincrementEnd(pParse); 1371 } 1372 1373 /* 1374 ** Return the number of rows inserted. If this routine is 1375 ** generating code because of a call to sqlite3NestedParse(), do not 1376 ** invoke the callback function. 1377 */ 1378 if( regRowCount ){ 1379 sqlite3VdbeAddOp2(v, OP_ChngCntRow, regRowCount, 1); 1380 sqlite3VdbeSetNumCols(v, 1); 1381 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1382 } 1383 1384 insert_cleanup: 1385 sqlite3SrcListDelete(db, pTabList); 1386 sqlite3ExprListDelete(db, pList); 1387 sqlite3UpsertDelete(db, pUpsert); 1388 sqlite3SelectDelete(db, pSelect); 1389 sqlite3IdListDelete(db, pColumn); 1390 sqlite3DbFree(db, aRegIdx); 1391 } 1392 1393 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1394 ** they may interfere with compilation of other functions in this file 1395 ** (or in another file, if this file becomes part of the amalgamation). */ 1396 #ifdef isView 1397 #undef isView 1398 #endif 1399 #ifdef pTrigger 1400 #undef pTrigger 1401 #endif 1402 #ifdef tmask 1403 #undef tmask 1404 #endif 1405 1406 /* 1407 ** Meanings of bits in of pWalker->eCode for 1408 ** sqlite3ExprReferencesUpdatedColumn() 1409 */ 1410 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1411 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1412 1413 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1414 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1415 ** expression node references any of the 1416 ** columns that are being modifed by an UPDATE statement. 1417 */ 1418 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1419 if( pExpr->op==TK_COLUMN ){ 1420 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1421 if( pExpr->iColumn>=0 ){ 1422 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1423 pWalker->eCode |= CKCNSTRNT_COLUMN; 1424 } 1425 }else{ 1426 pWalker->eCode |= CKCNSTRNT_ROWID; 1427 } 1428 } 1429 return WRC_Continue; 1430 } 1431 1432 /* 1433 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1434 ** only columns that are modified by the UPDATE are those for which 1435 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1436 ** 1437 ** Return true if CHECK constraint pExpr uses any of the 1438 ** changing columns (or the rowid if it is changing). In other words, 1439 ** return true if this CHECK constraint must be validated for 1440 ** the new row in the UPDATE statement. 1441 ** 1442 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1443 ** The operation of this routine is the same - return true if an only if 1444 ** the expression uses one or more of columns identified by the second and 1445 ** third arguments. 1446 */ 1447 int sqlite3ExprReferencesUpdatedColumn( 1448 Expr *pExpr, /* The expression to be checked */ 1449 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1450 int chngRowid /* True if UPDATE changes the rowid */ 1451 ){ 1452 Walker w; 1453 memset(&w, 0, sizeof(w)); 1454 w.eCode = 0; 1455 w.xExprCallback = checkConstraintExprNode; 1456 w.u.aiCol = aiChng; 1457 sqlite3WalkExpr(&w, pExpr); 1458 if( !chngRowid ){ 1459 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1460 w.eCode &= ~CKCNSTRNT_ROWID; 1461 } 1462 testcase( w.eCode==0 ); 1463 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1464 testcase( w.eCode==CKCNSTRNT_ROWID ); 1465 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1466 return w.eCode!=0; 1467 } 1468 1469 /* 1470 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1471 ** the indexes of a table in the order provided in the Table->pIndex list. 1472 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1473 ** the indexes in a different order. The following data structures accomplish 1474 ** this. 1475 ** 1476 ** The IndexIterator object is used to walk through all of the indexes 1477 ** of a table in either Index.pNext order, or in some other order established 1478 ** by an array of IndexListTerm objects. 1479 */ 1480 typedef struct IndexListTerm IndexListTerm; 1481 typedef struct IndexIterator IndexIterator; 1482 struct IndexIterator { 1483 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1484 int i; /* Index of the current item from the list */ 1485 union { 1486 struct { /* Use this object for eType==0: A Index.pNext list */ 1487 Index *pIdx; /* The current Index */ 1488 } lx; 1489 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1490 int nIdx; /* Size of the array */ 1491 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1492 } ax; 1493 } u; 1494 }; 1495 1496 /* When IndexIterator.eType==1, then each index is an array of instances 1497 ** of the following object 1498 */ 1499 struct IndexListTerm { 1500 Index *p; /* The index */ 1501 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1502 }; 1503 1504 /* Return the first index on the list */ 1505 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1506 assert( pIter->i==0 ); 1507 if( pIter->eType ){ 1508 *pIx = pIter->u.ax.aIdx[0].ix; 1509 return pIter->u.ax.aIdx[0].p; 1510 }else{ 1511 *pIx = 0; 1512 return pIter->u.lx.pIdx; 1513 } 1514 } 1515 1516 /* Return the next index from the list. Return NULL when out of indexes */ 1517 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1518 if( pIter->eType ){ 1519 int i = ++pIter->i; 1520 if( i>=pIter->u.ax.nIdx ){ 1521 *pIx = i; 1522 return 0; 1523 } 1524 *pIx = pIter->u.ax.aIdx[i].ix; 1525 return pIter->u.ax.aIdx[i].p; 1526 }else{ 1527 ++(*pIx); 1528 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1529 return pIter->u.lx.pIdx; 1530 } 1531 } 1532 1533 /* 1534 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1535 ** on table pTab. 1536 ** 1537 ** The regNewData parameter is the first register in a range that contains 1538 ** the data to be inserted or the data after the update. There will be 1539 ** pTab->nCol+1 registers in this range. The first register (the one 1540 ** that regNewData points to) will contain the new rowid, or NULL in the 1541 ** case of a WITHOUT ROWID table. The second register in the range will 1542 ** contain the content of the first table column. The third register will 1543 ** contain the content of the second table column. And so forth. 1544 ** 1545 ** The regOldData parameter is similar to regNewData except that it contains 1546 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1547 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1548 ** checking regOldData for zero. 1549 ** 1550 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1551 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1552 ** might be modified by the UPDATE. If pkChng is false, then the key of 1553 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1554 ** 1555 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1556 ** was explicitly specified as part of the INSERT statement. If pkChng 1557 ** is zero, it means that the either rowid is computed automatically or 1558 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1559 ** pkChng will only be true if the INSERT statement provides an integer 1560 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1561 ** 1562 ** The code generated by this routine will store new index entries into 1563 ** registers identified by aRegIdx[]. No index entry is created for 1564 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1565 ** the same as the order of indices on the linked list of indices 1566 ** at pTab->pIndex. 1567 ** 1568 ** (2019-05-07) The generated code also creates a new record for the 1569 ** main table, if pTab is a rowid table, and stores that record in the 1570 ** register identified by aRegIdx[nIdx] - in other words in the first 1571 ** entry of aRegIdx[] past the last index. It is important that the 1572 ** record be generated during constraint checks to avoid affinity changes 1573 ** to the register content that occur after constraint checks but before 1574 ** the new record is inserted. 1575 ** 1576 ** The caller must have already opened writeable cursors on the main 1577 ** table and all applicable indices (that is to say, all indices for which 1578 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1579 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1580 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1581 ** for the first index in the pTab->pIndex list. Cursors for other indices 1582 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1583 ** 1584 ** This routine also generates code to check constraints. NOT NULL, 1585 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1586 ** then the appropriate action is performed. There are five possible 1587 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1588 ** 1589 ** Constraint type Action What Happens 1590 ** --------------- ---------- ---------------------------------------- 1591 ** any ROLLBACK The current transaction is rolled back and 1592 ** sqlite3_step() returns immediately with a 1593 ** return code of SQLITE_CONSTRAINT. 1594 ** 1595 ** any ABORT Back out changes from the current command 1596 ** only (do not do a complete rollback) then 1597 ** cause sqlite3_step() to return immediately 1598 ** with SQLITE_CONSTRAINT. 1599 ** 1600 ** any FAIL Sqlite3_step() returns immediately with a 1601 ** return code of SQLITE_CONSTRAINT. The 1602 ** transaction is not rolled back and any 1603 ** changes to prior rows are retained. 1604 ** 1605 ** any IGNORE The attempt in insert or update the current 1606 ** row is skipped, without throwing an error. 1607 ** Processing continues with the next row. 1608 ** (There is an immediate jump to ignoreDest.) 1609 ** 1610 ** NOT NULL REPLACE The NULL value is replace by the default 1611 ** value for that column. If the default value 1612 ** is NULL, the action is the same as ABORT. 1613 ** 1614 ** UNIQUE REPLACE The other row that conflicts with the row 1615 ** being inserted is removed. 1616 ** 1617 ** CHECK REPLACE Illegal. The results in an exception. 1618 ** 1619 ** Which action to take is determined by the overrideError parameter. 1620 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1621 ** is used. Or if pParse->onError==OE_Default then the onError value 1622 ** for the constraint is used. 1623 */ 1624 void sqlite3GenerateConstraintChecks( 1625 Parse *pParse, /* The parser context */ 1626 Table *pTab, /* The table being inserted or updated */ 1627 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1628 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1629 int iIdxCur, /* First index cursor */ 1630 int regNewData, /* First register in a range holding values to insert */ 1631 int regOldData, /* Previous content. 0 for INSERTs */ 1632 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1633 u8 overrideError, /* Override onError to this if not OE_Default */ 1634 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1635 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1636 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1637 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1638 ){ 1639 Vdbe *v; /* VDBE under constrution */ 1640 Index *pIdx; /* Pointer to one of the indices */ 1641 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1642 sqlite3 *db; /* Database connection */ 1643 int i; /* loop counter */ 1644 int ix; /* Index loop counter */ 1645 int nCol; /* Number of columns */ 1646 int onError; /* Conflict resolution strategy */ 1647 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1648 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1649 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1650 u8 isUpdate; /* True if this is an UPDATE operation */ 1651 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1652 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1653 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1654 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1655 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1656 /* Variables associated with retesting uniqueness constraints after 1657 ** replace triggers fire have run */ 1658 int regTrigCnt; /* Register used to count replace trigger invocations */ 1659 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1660 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1661 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1662 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1663 IndexIterator sIdxIter; /* Index iterator */ 1664 1665 isUpdate = regOldData!=0; 1666 db = pParse->db; 1667 v = pParse->pVdbe; 1668 assert( v!=0 ); 1669 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1670 nCol = pTab->nCol; 1671 1672 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1673 ** normal rowid tables. nPkField is the number of key fields in the 1674 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1675 ** number of fields in the true primary key of the table. */ 1676 if( HasRowid(pTab) ){ 1677 pPk = 0; 1678 nPkField = 1; 1679 }else{ 1680 pPk = sqlite3PrimaryKeyIndex(pTab); 1681 nPkField = pPk->nKeyCol; 1682 } 1683 1684 /* Record that this module has started */ 1685 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1686 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1687 1688 /* Test all NOT NULL constraints. 1689 */ 1690 if( pTab->tabFlags & TF_HasNotNull ){ 1691 int b2ndPass = 0; /* True if currently running 2nd pass */ 1692 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1693 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1694 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1695 for(i=0; i<nCol; i++){ 1696 int iReg; /* Register holding column value */ 1697 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1698 int isGenerated; /* non-zero if column is generated */ 1699 onError = pCol->notNull; 1700 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1701 if( i==pTab->iPKey ){ 1702 continue; /* ROWID is never NULL */ 1703 } 1704 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1705 if( isGenerated && !b2ndPass ){ 1706 nGenerated++; 1707 continue; /* Generated columns processed on 2nd pass */ 1708 } 1709 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1710 /* Do not check NOT NULL on columns that do not change */ 1711 continue; 1712 } 1713 if( overrideError!=OE_Default ){ 1714 onError = overrideError; 1715 }else if( onError==OE_Default ){ 1716 onError = OE_Abort; 1717 } 1718 if( onError==OE_Replace ){ 1719 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1720 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1721 ){ 1722 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1723 testcase( pCol->colFlags & COLFLAG_STORED ); 1724 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1725 onError = OE_Abort; 1726 }else{ 1727 assert( !isGenerated ); 1728 } 1729 }else if( b2ndPass && !isGenerated ){ 1730 continue; 1731 } 1732 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1733 || onError==OE_Ignore || onError==OE_Replace ); 1734 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1735 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1736 switch( onError ){ 1737 case OE_Replace: { 1738 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1739 VdbeCoverage(v); 1740 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1741 nSeenReplace++; 1742 sqlite3ExprCodeCopy(pParse, 1743 sqlite3ColumnExpr(pTab, pCol), iReg); 1744 sqlite3VdbeJumpHere(v, addr1); 1745 break; 1746 } 1747 case OE_Abort: 1748 sqlite3MayAbort(pParse); 1749 /* no break */ deliberate_fall_through 1750 case OE_Rollback: 1751 case OE_Fail: { 1752 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1753 pCol->zCnName); 1754 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1755 onError, iReg); 1756 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1757 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1758 VdbeCoverage(v); 1759 break; 1760 } 1761 default: { 1762 assert( onError==OE_Ignore ); 1763 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1764 VdbeCoverage(v); 1765 break; 1766 } 1767 } /* end switch(onError) */ 1768 } /* end loop i over columns */ 1769 if( nGenerated==0 && nSeenReplace==0 ){ 1770 /* If there are no generated columns with NOT NULL constraints 1771 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1772 ** pass is sufficient */ 1773 break; 1774 } 1775 if( b2ndPass ) break; /* Never need more than 2 passes */ 1776 b2ndPass = 1; 1777 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1778 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1779 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1780 ** first pass, recomputed values for all generated columns, as 1781 ** those values might depend on columns affected by the REPLACE. 1782 */ 1783 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1784 } 1785 #endif 1786 } /* end of 2-pass loop */ 1787 } /* end if( has-not-null-constraints ) */ 1788 1789 /* Test all CHECK constraints 1790 */ 1791 #ifndef SQLITE_OMIT_CHECK 1792 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1793 ExprList *pCheck = pTab->pCheck; 1794 pParse->iSelfTab = -(regNewData+1); 1795 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1796 for(i=0; i<pCheck->nExpr; i++){ 1797 int allOk; 1798 Expr *pCopy; 1799 Expr *pExpr = pCheck->a[i].pExpr; 1800 if( aiChng 1801 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1802 ){ 1803 /* The check constraints do not reference any of the columns being 1804 ** updated so there is no point it verifying the check constraint */ 1805 continue; 1806 } 1807 if( bAffinityDone==0 ){ 1808 sqlite3TableAffinity(v, pTab, regNewData+1); 1809 bAffinityDone = 1; 1810 } 1811 allOk = sqlite3VdbeMakeLabel(pParse); 1812 sqlite3VdbeVerifyAbortable(v, onError); 1813 pCopy = sqlite3ExprDup(db, pExpr, 0); 1814 if( !db->mallocFailed ){ 1815 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1816 } 1817 sqlite3ExprDelete(db, pCopy); 1818 if( onError==OE_Ignore ){ 1819 sqlite3VdbeGoto(v, ignoreDest); 1820 }else{ 1821 char *zName = pCheck->a[i].zEName; 1822 assert( zName!=0 || pParse->db->mallocFailed ); 1823 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1824 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1825 onError, zName, P4_TRANSIENT, 1826 P5_ConstraintCheck); 1827 } 1828 sqlite3VdbeResolveLabel(v, allOk); 1829 } 1830 pParse->iSelfTab = 0; 1831 } 1832 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1833 1834 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1835 ** order: 1836 ** 1837 ** (1) OE_Update 1838 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1839 ** (3) OE_Replace 1840 ** 1841 ** OE_Fail and OE_Ignore must happen before any changes are made. 1842 ** OE_Update guarantees that only a single row will change, so it 1843 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1844 ** could happen in any order, but they are grouped up front for 1845 ** convenience. 1846 ** 1847 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1848 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1849 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1850 ** constraint before any others, so it had to be moved. 1851 ** 1852 ** Constraint checking code is generated in this order: 1853 ** (A) The rowid constraint 1854 ** (B) Unique index constraints that do not have OE_Replace as their 1855 ** default conflict resolution strategy 1856 ** (C) Unique index that do use OE_Replace by default. 1857 ** 1858 ** The ordering of (2) and (3) is accomplished by making sure the linked 1859 ** list of indexes attached to a table puts all OE_Replace indexes last 1860 ** in the list. See sqlite3CreateIndex() for where that happens. 1861 */ 1862 sIdxIter.eType = 0; 1863 sIdxIter.i = 0; 1864 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1865 sIdxIter.u.lx.pIdx = pTab->pIndex; 1866 if( pUpsert ){ 1867 if( pUpsert->pUpsertTarget==0 ){ 1868 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1869 assert( pUpsert->pNextUpsert==0 ); 1870 if( pUpsert->isDoUpdate==0 ){ 1871 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1872 ** Make all unique constraint resolution be OE_Ignore */ 1873 overrideError = OE_Ignore; 1874 pUpsert = 0; 1875 }else{ 1876 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1877 overrideError = OE_Update; 1878 } 1879 }else if( pTab->pIndex!=0 ){ 1880 /* Otherwise, we'll need to run the IndexListTerm array version of the 1881 ** iterator to ensure that all of the ON CONFLICT conditions are 1882 ** checked first and in order. */ 1883 int nIdx, jj; 1884 u64 nByte; 1885 Upsert *pTerm; 1886 u8 *bUsed; 1887 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1888 assert( aRegIdx[nIdx]>0 ); 1889 } 1890 sIdxIter.eType = 1; 1891 sIdxIter.u.ax.nIdx = nIdx; 1892 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1893 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1894 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1895 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1896 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1897 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1898 if( pTerm->pUpsertTarget==0 ) break; 1899 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1900 jj = 0; 1901 pIdx = pTab->pIndex; 1902 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1903 pIdx = pIdx->pNext; 1904 jj++; 1905 } 1906 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1907 bUsed[jj] = 1; 1908 sIdxIter.u.ax.aIdx[i].p = pIdx; 1909 sIdxIter.u.ax.aIdx[i].ix = jj; 1910 i++; 1911 } 1912 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1913 if( bUsed[jj] ) continue; 1914 sIdxIter.u.ax.aIdx[i].p = pIdx; 1915 sIdxIter.u.ax.aIdx[i].ix = jj; 1916 i++; 1917 } 1918 assert( i==nIdx ); 1919 } 1920 } 1921 1922 /* Determine if it is possible that triggers (either explicitly coded 1923 ** triggers or FK resolution actions) might run as a result of deletes 1924 ** that happen when OE_Replace conflict resolution occurs. (Call these 1925 ** "replace triggers".) If any replace triggers run, we will need to 1926 ** recheck all of the uniqueness constraints after they have all run. 1927 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1928 ** 1929 ** If replace triggers are a possibility, then 1930 ** 1931 ** (1) Allocate register regTrigCnt and initialize it to zero. 1932 ** That register will count the number of replace triggers that 1933 ** fire. Constraint recheck only occurs if the number is positive. 1934 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1935 ** (3) Initialize addrRecheck and lblRecheckOk 1936 ** 1937 ** The uniqueness rechecking code will create a series of tests to run 1938 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1939 ** used to link together these tests which are separated from each other 1940 ** in the generate bytecode. 1941 */ 1942 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1943 /* There are not DELETE triggers nor FK constraints. No constraint 1944 ** rechecks are needed. */ 1945 pTrigger = 0; 1946 regTrigCnt = 0; 1947 }else{ 1948 if( db->flags&SQLITE_RecTriggers ){ 1949 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1950 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1951 }else{ 1952 pTrigger = 0; 1953 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1954 } 1955 if( regTrigCnt ){ 1956 /* Replace triggers might exist. Allocate the counter and 1957 ** initialize it to zero. */ 1958 regTrigCnt = ++pParse->nMem; 1959 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1960 VdbeComment((v, "trigger count")); 1961 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1962 addrRecheck = lblRecheckOk; 1963 } 1964 } 1965 1966 /* If rowid is changing, make sure the new rowid does not previously 1967 ** exist in the table. 1968 */ 1969 if( pkChng && pPk==0 ){ 1970 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1971 1972 /* Figure out what action to take in case of a rowid collision */ 1973 onError = pTab->keyConf; 1974 if( overrideError!=OE_Default ){ 1975 onError = overrideError; 1976 }else if( onError==OE_Default ){ 1977 onError = OE_Abort; 1978 } 1979 1980 /* figure out whether or not upsert applies in this case */ 1981 if( pUpsert ){ 1982 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1983 if( pUpsertClause!=0 ){ 1984 if( pUpsertClause->isDoUpdate==0 ){ 1985 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1986 }else{ 1987 onError = OE_Update; /* DO UPDATE */ 1988 } 1989 } 1990 if( pUpsertClause!=pUpsert ){ 1991 /* The first ON CONFLICT clause has a conflict target other than 1992 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1993 ** and then come back here and deal with the IPK afterwards */ 1994 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1995 } 1996 } 1997 1998 /* If the response to a rowid conflict is REPLACE but the response 1999 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2000 ** to defer the running of the rowid conflict checking until after 2001 ** the UNIQUE constraints have run. 2002 */ 2003 if( onError==OE_Replace /* IPK rule is REPLACE */ 2004 && onError!=overrideError /* Rules for other constraints are different */ 2005 && pTab->pIndex /* There exist other constraints */ 2006 ){ 2007 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2008 VdbeComment((v, "defer IPK REPLACE until last")); 2009 } 2010 2011 if( isUpdate ){ 2012 /* pkChng!=0 does not mean that the rowid has changed, only that 2013 ** it might have changed. Skip the conflict logic below if the rowid 2014 ** is unchanged. */ 2015 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2016 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2017 VdbeCoverage(v); 2018 } 2019 2020 /* Check to see if the new rowid already exists in the table. Skip 2021 ** the following conflict logic if it does not. */ 2022 VdbeNoopComment((v, "uniqueness check for ROWID")); 2023 sqlite3VdbeVerifyAbortable(v, onError); 2024 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2025 VdbeCoverage(v); 2026 2027 switch( onError ){ 2028 default: { 2029 onError = OE_Abort; 2030 /* no break */ deliberate_fall_through 2031 } 2032 case OE_Rollback: 2033 case OE_Abort: 2034 case OE_Fail: { 2035 testcase( onError==OE_Rollback ); 2036 testcase( onError==OE_Abort ); 2037 testcase( onError==OE_Fail ); 2038 sqlite3RowidConstraint(pParse, onError, pTab); 2039 break; 2040 } 2041 case OE_Replace: { 2042 /* If there are DELETE triggers on this table and the 2043 ** recursive-triggers flag is set, call GenerateRowDelete() to 2044 ** remove the conflicting row from the table. This will fire 2045 ** the triggers and remove both the table and index b-tree entries. 2046 ** 2047 ** Otherwise, if there are no triggers or the recursive-triggers 2048 ** flag is not set, but the table has one or more indexes, call 2049 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2050 ** only. The table b-tree entry will be replaced by the new entry 2051 ** when it is inserted. 2052 ** 2053 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2054 ** also invoke MultiWrite() to indicate that this VDBE may require 2055 ** statement rollback (if the statement is aborted after the delete 2056 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2057 ** but being more selective here allows statements like: 2058 ** 2059 ** REPLACE INTO t(rowid) VALUES($newrowid) 2060 ** 2061 ** to run without a statement journal if there are no indexes on the 2062 ** table. 2063 */ 2064 if( regTrigCnt ){ 2065 sqlite3MultiWrite(pParse); 2066 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2067 regNewData, 1, 0, OE_Replace, 1, -1); 2068 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2069 nReplaceTrig++; 2070 }else{ 2071 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2072 assert( HasRowid(pTab) ); 2073 /* This OP_Delete opcode fires the pre-update-hook only. It does 2074 ** not modify the b-tree. It is more efficient to let the coming 2075 ** OP_Insert replace the existing entry than it is to delete the 2076 ** existing entry and then insert a new one. */ 2077 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2078 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2079 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2080 if( pTab->pIndex ){ 2081 sqlite3MultiWrite(pParse); 2082 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2083 } 2084 } 2085 seenReplace = 1; 2086 break; 2087 } 2088 #ifndef SQLITE_OMIT_UPSERT 2089 case OE_Update: { 2090 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2091 /* no break */ deliberate_fall_through 2092 } 2093 #endif 2094 case OE_Ignore: { 2095 testcase( onError==OE_Ignore ); 2096 sqlite3VdbeGoto(v, ignoreDest); 2097 break; 2098 } 2099 } 2100 sqlite3VdbeResolveLabel(v, addrRowidOk); 2101 if( pUpsert && pUpsertClause!=pUpsert ){ 2102 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2103 }else if( ipkTop ){ 2104 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2105 sqlite3VdbeJumpHere(v, ipkTop-1); 2106 } 2107 } 2108 2109 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2110 ** index and making sure that duplicate entries do not already exist. 2111 ** Compute the revised record entries for indices as we go. 2112 ** 2113 ** This loop also handles the case of the PRIMARY KEY index for a 2114 ** WITHOUT ROWID table. 2115 */ 2116 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2117 pIdx; 2118 pIdx = indexIteratorNext(&sIdxIter, &ix) 2119 ){ 2120 int regIdx; /* Range of registers hold conent for pIdx */ 2121 int regR; /* Range of registers holding conflicting PK */ 2122 int iThisCur; /* Cursor for this UNIQUE index */ 2123 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2124 int addrConflictCk; /* First opcode in the conflict check logic */ 2125 2126 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2127 if( pUpsert ){ 2128 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2129 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2130 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2131 } 2132 } 2133 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2134 if( bAffinityDone==0 ){ 2135 sqlite3TableAffinity(v, pTab, regNewData+1); 2136 bAffinityDone = 1; 2137 } 2138 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2139 iThisCur = iIdxCur+ix; 2140 2141 2142 /* Skip partial indices for which the WHERE clause is not true */ 2143 if( pIdx->pPartIdxWhere ){ 2144 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2145 pParse->iSelfTab = -(regNewData+1); 2146 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2147 SQLITE_JUMPIFNULL); 2148 pParse->iSelfTab = 0; 2149 } 2150 2151 /* Create a record for this index entry as it should appear after 2152 ** the insert or update. Store that record in the aRegIdx[ix] register 2153 */ 2154 regIdx = aRegIdx[ix]+1; 2155 for(i=0; i<pIdx->nColumn; i++){ 2156 int iField = pIdx->aiColumn[i]; 2157 int x; 2158 if( iField==XN_EXPR ){ 2159 pParse->iSelfTab = -(regNewData+1); 2160 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2161 pParse->iSelfTab = 0; 2162 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2163 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2164 x = regNewData; 2165 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2166 VdbeComment((v, "rowid")); 2167 }else{ 2168 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2169 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2170 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2171 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2172 } 2173 } 2174 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2175 VdbeComment((v, "for %s", pIdx->zName)); 2176 #ifdef SQLITE_ENABLE_NULL_TRIM 2177 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2178 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2179 } 2180 #endif 2181 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2182 2183 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2184 ** of a WITHOUT ROWID table and there has been no change the 2185 ** primary key, then no collision is possible. The collision detection 2186 ** logic below can all be skipped. */ 2187 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2188 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2189 continue; 2190 } 2191 2192 /* Find out what action to take in case there is a uniqueness conflict */ 2193 onError = pIdx->onError; 2194 if( onError==OE_None ){ 2195 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2196 continue; /* pIdx is not a UNIQUE index */ 2197 } 2198 if( overrideError!=OE_Default ){ 2199 onError = overrideError; 2200 }else if( onError==OE_Default ){ 2201 onError = OE_Abort; 2202 } 2203 2204 /* Figure out if the upsert clause applies to this index */ 2205 if( pUpsertClause ){ 2206 if( pUpsertClause->isDoUpdate==0 ){ 2207 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2208 }else{ 2209 onError = OE_Update; /* DO UPDATE */ 2210 } 2211 } 2212 2213 /* Collision detection may be omitted if all of the following are true: 2214 ** (1) The conflict resolution algorithm is REPLACE 2215 ** (2) The table is a WITHOUT ROWID table 2216 ** (3) There are no secondary indexes on the table 2217 ** (4) No delete triggers need to be fired if there is a conflict 2218 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2219 ** 2220 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2221 ** must be explicitly deleted in order to ensure any pre-update hook 2222 ** is invoked. */ 2223 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2224 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2225 && pPk==pIdx /* Condition 2 */ 2226 && onError==OE_Replace /* Condition 1 */ 2227 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2228 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2229 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2230 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2231 ){ 2232 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2233 continue; 2234 } 2235 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2236 2237 /* Check to see if the new index entry will be unique */ 2238 sqlite3VdbeVerifyAbortable(v, onError); 2239 addrConflictCk = 2240 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2241 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2242 2243 /* Generate code to handle collisions */ 2244 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2245 if( isUpdate || onError==OE_Replace ){ 2246 if( HasRowid(pTab) ){ 2247 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2248 /* Conflict only if the rowid of the existing index entry 2249 ** is different from old-rowid */ 2250 if( isUpdate ){ 2251 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2252 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2253 VdbeCoverage(v); 2254 } 2255 }else{ 2256 int x; 2257 /* Extract the PRIMARY KEY from the end of the index entry and 2258 ** store it in registers regR..regR+nPk-1 */ 2259 if( pIdx!=pPk ){ 2260 for(i=0; i<pPk->nKeyCol; i++){ 2261 assert( pPk->aiColumn[i]>=0 ); 2262 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2263 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2264 VdbeComment((v, "%s.%s", pTab->zName, 2265 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2266 } 2267 } 2268 if( isUpdate ){ 2269 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2270 ** table, only conflict if the new PRIMARY KEY values are actually 2271 ** different from the old. 2272 ** 2273 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2274 ** of the matched index row are different from the original PRIMARY 2275 ** KEY values of this row before the update. */ 2276 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2277 int op = OP_Ne; 2278 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2279 2280 for(i=0; i<pPk->nKeyCol; i++){ 2281 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2282 x = pPk->aiColumn[i]; 2283 assert( x>=0 ); 2284 if( i==(pPk->nKeyCol-1) ){ 2285 addrJump = addrUniqueOk; 2286 op = OP_Eq; 2287 } 2288 x = sqlite3TableColumnToStorage(pTab, x); 2289 sqlite3VdbeAddOp4(v, op, 2290 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2291 ); 2292 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2293 VdbeCoverageIf(v, op==OP_Eq); 2294 VdbeCoverageIf(v, op==OP_Ne); 2295 } 2296 } 2297 } 2298 } 2299 2300 /* Generate code that executes if the new index entry is not unique */ 2301 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2302 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2303 switch( onError ){ 2304 case OE_Rollback: 2305 case OE_Abort: 2306 case OE_Fail: { 2307 testcase( onError==OE_Rollback ); 2308 testcase( onError==OE_Abort ); 2309 testcase( onError==OE_Fail ); 2310 sqlite3UniqueConstraint(pParse, onError, pIdx); 2311 break; 2312 } 2313 #ifndef SQLITE_OMIT_UPSERT 2314 case OE_Update: { 2315 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2316 /* no break */ deliberate_fall_through 2317 } 2318 #endif 2319 case OE_Ignore: { 2320 testcase( onError==OE_Ignore ); 2321 sqlite3VdbeGoto(v, ignoreDest); 2322 break; 2323 } 2324 default: { 2325 int nConflictCk; /* Number of opcodes in conflict check logic */ 2326 2327 assert( onError==OE_Replace ); 2328 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2329 assert( nConflictCk>0 ); 2330 testcase( nConflictCk>1 ); 2331 if( regTrigCnt ){ 2332 sqlite3MultiWrite(pParse); 2333 nReplaceTrig++; 2334 } 2335 if( pTrigger && isUpdate ){ 2336 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2337 } 2338 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2339 regR, nPkField, 0, OE_Replace, 2340 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2341 if( pTrigger && isUpdate ){ 2342 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2343 } 2344 if( regTrigCnt ){ 2345 int addrBypass; /* Jump destination to bypass recheck logic */ 2346 2347 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2348 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2349 VdbeComment((v, "bypass recheck")); 2350 2351 /* Here we insert code that will be invoked after all constraint 2352 ** checks have run, if and only if one or more replace triggers 2353 ** fired. */ 2354 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2355 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2356 if( pIdx->pPartIdxWhere ){ 2357 /* Bypass the recheck if this partial index is not defined 2358 ** for the current row */ 2359 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2360 VdbeCoverage(v); 2361 } 2362 /* Copy the constraint check code from above, except change 2363 ** the constraint-ok jump destination to be the address of 2364 ** the next retest block */ 2365 while( nConflictCk>0 ){ 2366 VdbeOp x; /* Conflict check opcode to copy */ 2367 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2368 ** Hence, make a complete copy of the opcode, rather than using 2369 ** a pointer to the opcode. */ 2370 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2371 if( x.opcode!=OP_IdxRowid ){ 2372 int p2; /* New P2 value for copied conflict check opcode */ 2373 const char *zP4; 2374 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2375 p2 = lblRecheckOk; 2376 }else{ 2377 p2 = x.p2; 2378 } 2379 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2380 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2381 sqlite3VdbeChangeP5(v, x.p5); 2382 VdbeCoverageIf(v, p2!=x.p2); 2383 } 2384 nConflictCk--; 2385 addrConflictCk++; 2386 } 2387 /* If the retest fails, issue an abort */ 2388 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2389 2390 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2391 } 2392 seenReplace = 1; 2393 break; 2394 } 2395 } 2396 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2397 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2398 if( pUpsertClause 2399 && upsertIpkReturn 2400 && sqlite3UpsertNextIsIPK(pUpsertClause) 2401 ){ 2402 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2403 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2404 upsertIpkReturn = 0; 2405 } 2406 } 2407 2408 /* If the IPK constraint is a REPLACE, run it last */ 2409 if( ipkTop ){ 2410 sqlite3VdbeGoto(v, ipkTop); 2411 VdbeComment((v, "Do IPK REPLACE")); 2412 sqlite3VdbeJumpHere(v, ipkBottom); 2413 } 2414 2415 /* Recheck all uniqueness constraints after replace triggers have run */ 2416 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2417 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2418 if( nReplaceTrig ){ 2419 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2420 if( !pPk ){ 2421 if( isUpdate ){ 2422 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2423 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2424 VdbeCoverage(v); 2425 } 2426 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2427 VdbeCoverage(v); 2428 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2429 }else{ 2430 sqlite3VdbeGoto(v, addrRecheck); 2431 } 2432 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2433 } 2434 2435 /* Generate the table record */ 2436 if( HasRowid(pTab) ){ 2437 int regRec = aRegIdx[ix]; 2438 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2439 sqlite3SetMakeRecordP5(v, pTab); 2440 if( !bAffinityDone ){ 2441 sqlite3TableAffinity(v, pTab, 0); 2442 } 2443 } 2444 2445 *pbMayReplace = seenReplace; 2446 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2447 } 2448 2449 #ifdef SQLITE_ENABLE_NULL_TRIM 2450 /* 2451 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2452 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2453 ** 2454 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2455 */ 2456 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2457 u16 i; 2458 2459 /* Records with omitted columns are only allowed for schema format 2460 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2461 if( pTab->pSchema->file_format<2 ) return; 2462 2463 for(i=pTab->nCol-1; i>0; i--){ 2464 if( pTab->aCol[i].iDflt!=0 ) break; 2465 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2466 } 2467 sqlite3VdbeChangeP5(v, i+1); 2468 } 2469 #endif 2470 2471 /* 2472 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2473 ** number is iCur, and register regData contains the new record for the 2474 ** PK index. This function adds code to invoke the pre-update hook, 2475 ** if one is registered. 2476 */ 2477 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2478 static void codeWithoutRowidPreupdate( 2479 Parse *pParse, /* Parse context */ 2480 Table *pTab, /* Table being updated */ 2481 int iCur, /* Cursor number for table */ 2482 int regData /* Data containing new record */ 2483 ){ 2484 Vdbe *v = pParse->pVdbe; 2485 int r = sqlite3GetTempReg(pParse); 2486 assert( !HasRowid(pTab) ); 2487 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2488 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2489 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2490 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2491 sqlite3ReleaseTempReg(pParse, r); 2492 } 2493 #else 2494 # define codeWithoutRowidPreupdate(a,b,c,d) 2495 #endif 2496 2497 /* 2498 ** This routine generates code to finish the INSERT or UPDATE operation 2499 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2500 ** A consecutive range of registers starting at regNewData contains the 2501 ** rowid and the content to be inserted. 2502 ** 2503 ** The arguments to this routine should be the same as the first six 2504 ** arguments to sqlite3GenerateConstraintChecks. 2505 */ 2506 void sqlite3CompleteInsertion( 2507 Parse *pParse, /* The parser context */ 2508 Table *pTab, /* the table into which we are inserting */ 2509 int iDataCur, /* Cursor of the canonical data source */ 2510 int iIdxCur, /* First index cursor */ 2511 int regNewData, /* Range of content */ 2512 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2513 int update_flags, /* True for UPDATE, False for INSERT */ 2514 int appendBias, /* True if this is likely to be an append */ 2515 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2516 ){ 2517 Vdbe *v; /* Prepared statements under construction */ 2518 Index *pIdx; /* An index being inserted or updated */ 2519 u8 pik_flags; /* flag values passed to the btree insert */ 2520 int i; /* Loop counter */ 2521 2522 assert( update_flags==0 2523 || update_flags==OPFLAG_ISUPDATE 2524 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2525 ); 2526 2527 v = pParse->pVdbe; 2528 assert( v!=0 ); 2529 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2530 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2531 /* All REPLACE indexes are at the end of the list */ 2532 assert( pIdx->onError!=OE_Replace 2533 || pIdx->pNext==0 2534 || pIdx->pNext->onError==OE_Replace ); 2535 if( aRegIdx[i]==0 ) continue; 2536 if( pIdx->pPartIdxWhere ){ 2537 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2538 VdbeCoverage(v); 2539 } 2540 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2541 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2542 assert( pParse->nested==0 ); 2543 pik_flags |= OPFLAG_NCHANGE; 2544 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2545 if( update_flags==0 ){ 2546 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2547 } 2548 } 2549 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2550 aRegIdx[i]+1, 2551 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2552 sqlite3VdbeChangeP5(v, pik_flags); 2553 } 2554 if( !HasRowid(pTab) ) return; 2555 if( pParse->nested ){ 2556 pik_flags = 0; 2557 }else{ 2558 pik_flags = OPFLAG_NCHANGE; 2559 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2560 } 2561 if( appendBias ){ 2562 pik_flags |= OPFLAG_APPEND; 2563 } 2564 if( useSeekResult ){ 2565 pik_flags |= OPFLAG_USESEEKRESULT; 2566 } 2567 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2568 if( !pParse->nested ){ 2569 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2570 } 2571 sqlite3VdbeChangeP5(v, pik_flags); 2572 } 2573 2574 /* 2575 ** Allocate cursors for the pTab table and all its indices and generate 2576 ** code to open and initialized those cursors. 2577 ** 2578 ** The cursor for the object that contains the complete data (normally 2579 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2580 ** ROWID table) is returned in *piDataCur. The first index cursor is 2581 ** returned in *piIdxCur. The number of indices is returned. 2582 ** 2583 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2584 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2585 ** If iBase is negative, then allocate the next available cursor. 2586 ** 2587 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2588 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2589 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2590 ** pTab->pIndex list. 2591 ** 2592 ** If pTab is a virtual table, then this routine is a no-op and the 2593 ** *piDataCur and *piIdxCur values are left uninitialized. 2594 */ 2595 int sqlite3OpenTableAndIndices( 2596 Parse *pParse, /* Parsing context */ 2597 Table *pTab, /* Table to be opened */ 2598 int op, /* OP_OpenRead or OP_OpenWrite */ 2599 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2600 int iBase, /* Use this for the table cursor, if there is one */ 2601 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2602 int *piDataCur, /* Write the database source cursor number here */ 2603 int *piIdxCur /* Write the first index cursor number here */ 2604 ){ 2605 int i; 2606 int iDb; 2607 int iDataCur; 2608 Index *pIdx; 2609 Vdbe *v; 2610 2611 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2612 assert( op==OP_OpenWrite || p5==0 ); 2613 if( IsVirtual(pTab) ){ 2614 /* This routine is a no-op for virtual tables. Leave the output 2615 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2616 ** can detect if they are used by mistake in the caller. */ 2617 return 0; 2618 } 2619 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2620 v = pParse->pVdbe; 2621 assert( v!=0 ); 2622 if( iBase<0 ) iBase = pParse->nTab; 2623 iDataCur = iBase++; 2624 if( piDataCur ) *piDataCur = iDataCur; 2625 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2626 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2627 }else{ 2628 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2629 } 2630 if( piIdxCur ) *piIdxCur = iBase; 2631 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2632 int iIdxCur = iBase++; 2633 assert( pIdx->pSchema==pTab->pSchema ); 2634 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2635 if( piDataCur ) *piDataCur = iIdxCur; 2636 p5 = 0; 2637 } 2638 if( aToOpen==0 || aToOpen[i+1] ){ 2639 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2640 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2641 sqlite3VdbeChangeP5(v, p5); 2642 VdbeComment((v, "%s", pIdx->zName)); 2643 } 2644 } 2645 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2646 return i; 2647 } 2648 2649 2650 #ifdef SQLITE_TEST 2651 /* 2652 ** The following global variable is incremented whenever the 2653 ** transfer optimization is used. This is used for testing 2654 ** purposes only - to make sure the transfer optimization really 2655 ** is happening when it is supposed to. 2656 */ 2657 int sqlite3_xferopt_count; 2658 #endif /* SQLITE_TEST */ 2659 2660 2661 #ifndef SQLITE_OMIT_XFER_OPT 2662 /* 2663 ** Check to see if index pSrc is compatible as a source of data 2664 ** for index pDest in an insert transfer optimization. The rules 2665 ** for a compatible index: 2666 ** 2667 ** * The index is over the same set of columns 2668 ** * The same DESC and ASC markings occurs on all columns 2669 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2670 ** * The same collating sequence on each column 2671 ** * The index has the exact same WHERE clause 2672 */ 2673 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2674 int i; 2675 assert( pDest && pSrc ); 2676 assert( pDest->pTable!=pSrc->pTable ); 2677 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2678 return 0; /* Different number of columns */ 2679 } 2680 if( pDest->onError!=pSrc->onError ){ 2681 return 0; /* Different conflict resolution strategies */ 2682 } 2683 for(i=0; i<pSrc->nKeyCol; i++){ 2684 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2685 return 0; /* Different columns indexed */ 2686 } 2687 if( pSrc->aiColumn[i]==XN_EXPR ){ 2688 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2689 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2690 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2691 return 0; /* Different expressions in the index */ 2692 } 2693 } 2694 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2695 return 0; /* Different sort orders */ 2696 } 2697 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2698 return 0; /* Different collating sequences */ 2699 } 2700 } 2701 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2702 return 0; /* Different WHERE clauses */ 2703 } 2704 2705 /* If no test above fails then the indices must be compatible */ 2706 return 1; 2707 } 2708 2709 /* 2710 ** Attempt the transfer optimization on INSERTs of the form 2711 ** 2712 ** INSERT INTO tab1 SELECT * FROM tab2; 2713 ** 2714 ** The xfer optimization transfers raw records from tab2 over to tab1. 2715 ** Columns are not decoded and reassembled, which greatly improves 2716 ** performance. Raw index records are transferred in the same way. 2717 ** 2718 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2719 ** There are lots of rules for determining compatibility - see comments 2720 ** embedded in the code for details. 2721 ** 2722 ** This routine returns TRUE if the optimization is guaranteed to be used. 2723 ** Sometimes the xfer optimization will only work if the destination table 2724 ** is empty - a factor that can only be determined at run-time. In that 2725 ** case, this routine generates code for the xfer optimization but also 2726 ** does a test to see if the destination table is empty and jumps over the 2727 ** xfer optimization code if the test fails. In that case, this routine 2728 ** returns FALSE so that the caller will know to go ahead and generate 2729 ** an unoptimized transfer. This routine also returns FALSE if there 2730 ** is no chance that the xfer optimization can be applied. 2731 ** 2732 ** This optimization is particularly useful at making VACUUM run faster. 2733 */ 2734 static int xferOptimization( 2735 Parse *pParse, /* Parser context */ 2736 Table *pDest, /* The table we are inserting into */ 2737 Select *pSelect, /* A SELECT statement to use as the data source */ 2738 int onError, /* How to handle constraint errors */ 2739 int iDbDest /* The database of pDest */ 2740 ){ 2741 sqlite3 *db = pParse->db; 2742 ExprList *pEList; /* The result set of the SELECT */ 2743 Table *pSrc; /* The table in the FROM clause of SELECT */ 2744 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2745 SrcItem *pItem; /* An element of pSelect->pSrc */ 2746 int i; /* Loop counter */ 2747 int iDbSrc; /* The database of pSrc */ 2748 int iSrc, iDest; /* Cursors from source and destination */ 2749 int addr1, addr2; /* Loop addresses */ 2750 int emptyDestTest = 0; /* Address of test for empty pDest */ 2751 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2752 Vdbe *v; /* The VDBE we are building */ 2753 int regAutoinc; /* Memory register used by AUTOINC */ 2754 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2755 int regData, regRowid; /* Registers holding data and rowid */ 2756 2757 if( pSelect==0 ){ 2758 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2759 } 2760 if( pParse->pWith || pSelect->pWith ){ 2761 /* Do not attempt to process this query if there are an WITH clauses 2762 ** attached to it. Proceeding may generate a false "no such table: xxx" 2763 ** error if pSelect reads from a CTE named "xxx". */ 2764 return 0; 2765 } 2766 if( sqlite3TriggerList(pParse, pDest) ){ 2767 return 0; /* tab1 must not have triggers */ 2768 } 2769 #ifndef SQLITE_OMIT_VIRTUALTABLE 2770 if( IsVirtual(pDest) ){ 2771 return 0; /* tab1 must not be a virtual table */ 2772 } 2773 #endif 2774 if( onError==OE_Default ){ 2775 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2776 if( onError==OE_Default ) onError = OE_Abort; 2777 } 2778 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2779 if( pSelect->pSrc->nSrc!=1 ){ 2780 return 0; /* FROM clause must have exactly one term */ 2781 } 2782 if( pSelect->pSrc->a[0].pSelect ){ 2783 return 0; /* FROM clause cannot contain a subquery */ 2784 } 2785 if( pSelect->pWhere ){ 2786 return 0; /* SELECT may not have a WHERE clause */ 2787 } 2788 if( pSelect->pOrderBy ){ 2789 return 0; /* SELECT may not have an ORDER BY clause */ 2790 } 2791 /* Do not need to test for a HAVING clause. If HAVING is present but 2792 ** there is no ORDER BY, we will get an error. */ 2793 if( pSelect->pGroupBy ){ 2794 return 0; /* SELECT may not have a GROUP BY clause */ 2795 } 2796 if( pSelect->pLimit ){ 2797 return 0; /* SELECT may not have a LIMIT clause */ 2798 } 2799 if( pSelect->pPrior ){ 2800 return 0; /* SELECT may not be a compound query */ 2801 } 2802 if( pSelect->selFlags & SF_Distinct ){ 2803 return 0; /* SELECT may not be DISTINCT */ 2804 } 2805 pEList = pSelect->pEList; 2806 assert( pEList!=0 ); 2807 if( pEList->nExpr!=1 ){ 2808 return 0; /* The result set must have exactly one column */ 2809 } 2810 assert( pEList->a[0].pExpr ); 2811 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2812 return 0; /* The result set must be the special operator "*" */ 2813 } 2814 2815 /* At this point we have established that the statement is of the 2816 ** correct syntactic form to participate in this optimization. Now 2817 ** we have to check the semantics. 2818 */ 2819 pItem = pSelect->pSrc->a; 2820 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2821 if( pSrc==0 ){ 2822 return 0; /* FROM clause does not contain a real table */ 2823 } 2824 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2825 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2826 return 0; /* tab1 and tab2 may not be the same table */ 2827 } 2828 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2829 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2830 } 2831 if( !IsOrdinaryTable(pSrc) ){ 2832 return 0; /* tab2 may not be a view or virtual table */ 2833 } 2834 if( pDest->nCol!=pSrc->nCol ){ 2835 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2836 } 2837 if( pDest->iPKey!=pSrc->iPKey ){ 2838 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2839 } 2840 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2841 return 0; /* Cannot feed from a non-strict into a strict table */ 2842 } 2843 for(i=0; i<pDest->nCol; i++){ 2844 Column *pDestCol = &pDest->aCol[i]; 2845 Column *pSrcCol = &pSrc->aCol[i]; 2846 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2847 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2848 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2849 ){ 2850 return 0; /* Neither table may have __hidden__ columns */ 2851 } 2852 #endif 2853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2854 /* Even if tables t1 and t2 have identical schemas, if they contain 2855 ** generated columns, then this statement is semantically incorrect: 2856 ** 2857 ** INSERT INTO t2 SELECT * FROM t1; 2858 ** 2859 ** The reason is that generated column values are returned by the 2860 ** the SELECT statement on the right but the INSERT statement on the 2861 ** left wants them to be omitted. 2862 ** 2863 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2864 ** to do a bulk transfer all of the content from t1 over to t2. 2865 ** 2866 ** We could, in theory, disable this (except for internal use by the 2867 ** VACUUM command where it is actually needed). But why do that? It 2868 ** seems harmless enough, and provides a useful service. 2869 */ 2870 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2871 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2872 return 0; /* Both columns have the same generated-column type */ 2873 } 2874 /* But the transfer is only allowed if both the source and destination 2875 ** tables have the exact same expressions for generated columns. 2876 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2877 */ 2878 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2879 if( sqlite3ExprCompare(0, 2880 sqlite3ColumnExpr(pSrc, pSrcCol), 2881 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2882 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2883 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2884 return 0; /* Different generator expressions */ 2885 } 2886 } 2887 #endif 2888 if( pDestCol->affinity!=pSrcCol->affinity ){ 2889 return 0; /* Affinity must be the same on all columns */ 2890 } 2891 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2892 sqlite3ColumnColl(pSrcCol))!=0 ){ 2893 return 0; /* Collating sequence must be the same on all columns */ 2894 } 2895 if( pDestCol->notNull && !pSrcCol->notNull ){ 2896 return 0; /* tab2 must be NOT NULL if tab1 is */ 2897 } 2898 /* Default values for second and subsequent columns need to match. */ 2899 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2900 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2901 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2902 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2903 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2904 if( (pDestExpr==0)!=(pSrcExpr==0) 2905 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2906 pSrcExpr->u.zToken)!=0) 2907 ){ 2908 return 0; /* Default values must be the same for all columns */ 2909 } 2910 } 2911 } 2912 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2913 if( IsUniqueIndex(pDestIdx) ){ 2914 destHasUniqueIdx = 1; 2915 } 2916 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2917 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2918 } 2919 if( pSrcIdx==0 ){ 2920 return 0; /* pDestIdx has no corresponding index in pSrc */ 2921 } 2922 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2923 && sqlite3FaultSim(411)==SQLITE_OK ){ 2924 /* The sqlite3FaultSim() call allows this corruption test to be 2925 ** bypassed during testing, in order to exercise other corruption tests 2926 ** further downstream. */ 2927 return 0; /* Corrupt schema - two indexes on the same btree */ 2928 } 2929 } 2930 #ifndef SQLITE_OMIT_CHECK 2931 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2932 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2933 } 2934 #endif 2935 #ifndef SQLITE_OMIT_FOREIGN_KEY 2936 /* Disallow the transfer optimization if the destination table constains 2937 ** any foreign key constraints. This is more restrictive than necessary. 2938 ** But the main beneficiary of the transfer optimization is the VACUUM 2939 ** command, and the VACUUM command disables foreign key constraints. So 2940 ** the extra complication to make this rule less restrictive is probably 2941 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2942 */ 2943 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2944 return 0; 2945 } 2946 #endif 2947 if( (db->flags & SQLITE_CountRows)!=0 ){ 2948 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2949 } 2950 2951 /* If we get this far, it means that the xfer optimization is at 2952 ** least a possibility, though it might only work if the destination 2953 ** table (tab1) is initially empty. 2954 */ 2955 #ifdef SQLITE_TEST 2956 sqlite3_xferopt_count++; 2957 #endif 2958 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2959 v = sqlite3GetVdbe(pParse); 2960 sqlite3CodeVerifySchema(pParse, iDbSrc); 2961 iSrc = pParse->nTab++; 2962 iDest = pParse->nTab++; 2963 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2964 regData = sqlite3GetTempReg(pParse); 2965 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2966 regRowid = sqlite3GetTempReg(pParse); 2967 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2968 assert( HasRowid(pDest) || destHasUniqueIdx ); 2969 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2970 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2971 || destHasUniqueIdx /* (2) */ 2972 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2973 )){ 2974 /* In some circumstances, we are able to run the xfer optimization 2975 ** only if the destination table is initially empty. Unless the 2976 ** DBFLAG_Vacuum flag is set, this block generates code to make 2977 ** that determination. If DBFLAG_Vacuum is set, then the destination 2978 ** table is always empty. 2979 ** 2980 ** Conditions under which the destination must be empty: 2981 ** 2982 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2983 ** (If the destination is not initially empty, the rowid fields 2984 ** of index entries might need to change.) 2985 ** 2986 ** (2) The destination has a unique index. (The xfer optimization 2987 ** is unable to test uniqueness.) 2988 ** 2989 ** (3) onError is something other than OE_Abort and OE_Rollback. 2990 */ 2991 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2992 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2993 sqlite3VdbeJumpHere(v, addr1); 2994 } 2995 if( HasRowid(pSrc) ){ 2996 u8 insFlags; 2997 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2998 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2999 if( pDest->iPKey>=0 ){ 3000 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3001 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3002 sqlite3VdbeVerifyAbortable(v, onError); 3003 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3004 VdbeCoverage(v); 3005 sqlite3RowidConstraint(pParse, onError, pDest); 3006 sqlite3VdbeJumpHere(v, addr2); 3007 } 3008 autoIncStep(pParse, regAutoinc, regRowid); 3009 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3010 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3011 }else{ 3012 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3013 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3014 } 3015 3016 if( db->mDbFlags & DBFLAG_Vacuum ){ 3017 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3018 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3019 }else{ 3020 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3021 } 3022 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3023 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3024 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3025 insFlags &= ~OPFLAG_PREFORMAT; 3026 }else 3027 #endif 3028 { 3029 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3030 } 3031 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3032 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3033 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3034 } 3035 sqlite3VdbeChangeP5(v, insFlags); 3036 3037 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3038 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3039 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3040 }else{ 3041 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3042 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3043 } 3044 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3045 u8 idxInsFlags = 0; 3046 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3047 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3048 } 3049 assert( pSrcIdx ); 3050 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3051 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3052 VdbeComment((v, "%s", pSrcIdx->zName)); 3053 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3054 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3055 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3056 VdbeComment((v, "%s", pDestIdx->zName)); 3057 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3058 if( db->mDbFlags & DBFLAG_Vacuum ){ 3059 /* This INSERT command is part of a VACUUM operation, which guarantees 3060 ** that the destination table is empty. If all indexed columns use 3061 ** collation sequence BINARY, then it can also be assumed that the 3062 ** index will be populated by inserting keys in strictly sorted 3063 ** order. In this case, instead of seeking within the b-tree as part 3064 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3065 ** OP_IdxInsert to seek to the point within the b-tree where each key 3066 ** should be inserted. This is faster. 3067 ** 3068 ** If any of the indexed columns use a collation sequence other than 3069 ** BINARY, this optimization is disabled. This is because the user 3070 ** might change the definition of a collation sequence and then run 3071 ** a VACUUM command. In that case keys may not be written in strictly 3072 ** sorted order. */ 3073 for(i=0; i<pSrcIdx->nColumn; i++){ 3074 const char *zColl = pSrcIdx->azColl[i]; 3075 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3076 } 3077 if( i==pSrcIdx->nColumn ){ 3078 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3079 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3080 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3081 } 3082 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3083 idxInsFlags |= OPFLAG_NCHANGE; 3084 } 3085 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3086 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3087 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3088 && !HasRowid(pDest) 3089 && IsPrimaryKeyIndex(pDestIdx) 3090 ){ 3091 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3092 } 3093 } 3094 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3095 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3096 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3097 sqlite3VdbeJumpHere(v, addr1); 3098 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3099 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3100 } 3101 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3102 sqlite3ReleaseTempReg(pParse, regRowid); 3103 sqlite3ReleaseTempReg(pParse, regData); 3104 if( emptyDestTest ){ 3105 sqlite3AutoincrementEnd(pParse); 3106 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3107 sqlite3VdbeJumpHere(v, emptyDestTest); 3108 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3109 return 0; 3110 }else{ 3111 return 1; 3112 } 3113 } 3114 #endif /* SQLITE_OMIT_XFER_OPT */ 3115