xref: /sqlite-3.40.0/src/insert.c (revision b565bee6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0
286    && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity
287   ){
288     /* Change the OP_Affinity argument to '@' (NONE) for all stored
289     ** columns.  '@' is the no-op affinity and those columns have not
290     ** yet been computed. */
291     int ii, jj;
292     char *zP4 = pOp->p4.z;
293     assert( zP4!=0 );
294     assert( pOp->p4type==P4_DYNAMIC );
295     for(ii=jj=0; zP4[jj]; ii++){
296       if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297         continue;
298       }
299       if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300         zP4[jj] = SQLITE_AFF_NONE;
301       }
302       jj++;
303     }
304   }
305 
306   /* Because there can be multiple generated columns that refer to one another,
307   ** this is a two-pass algorithm.  On the first pass, mark all generated
308   ** columns as "not available".
309   */
310   for(i=0; i<pTab->nCol; i++){
311     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
312       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
313       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
314       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
315     }
316   }
317 
318   w.u.pTab = pTab;
319   w.xExprCallback = exprColumnFlagUnion;
320   w.xSelectCallback = 0;
321   w.xSelectCallback2 = 0;
322 
323   /* On the second pass, compute the value of each NOT-AVAILABLE column.
324   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
325   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
326   ** they are needed.
327   */
328   pParse->iSelfTab = -iRegStore;
329   do{
330     eProgress = 0;
331     pRedo = 0;
332     for(i=0; i<pTab->nCol; i++){
333       Column *pCol = pTab->aCol + i;
334       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
335         int x;
336         pCol->colFlags |= COLFLAG_BUSY;
337         w.eCode = 0;
338         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
339         pCol->colFlags &= ~COLFLAG_BUSY;
340         if( w.eCode & COLFLAG_NOTAVAIL ){
341           pRedo = pCol;
342           continue;
343         }
344         eProgress = 1;
345         assert( pCol->colFlags & COLFLAG_GENERATED );
346         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
347         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
348         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
349       }
350     }
351   }while( pRedo && eProgress );
352   if( pRedo ){
353     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
354   }
355   pParse->iSelfTab = 0;
356 }
357 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
358 
359 
360 #ifndef SQLITE_OMIT_AUTOINCREMENT
361 /*
362 ** Locate or create an AutoincInfo structure associated with table pTab
363 ** which is in database iDb.  Return the register number for the register
364 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
365 ** table.  (Also return zero when doing a VACUUM since we do not want to
366 ** update the AUTOINCREMENT counters during a VACUUM.)
367 **
368 ** There is at most one AutoincInfo structure per table even if the
369 ** same table is autoincremented multiple times due to inserts within
370 ** triggers.  A new AutoincInfo structure is created if this is the
371 ** first use of table pTab.  On 2nd and subsequent uses, the original
372 ** AutoincInfo structure is used.
373 **
374 ** Four consecutive registers are allocated:
375 **
376 **   (1)  The name of the pTab table.
377 **   (2)  The maximum ROWID of pTab.
378 **   (3)  The rowid in sqlite_sequence of pTab
379 **   (4)  The original value of the max ROWID in pTab, or NULL if none
380 **
381 ** The 2nd register is the one that is returned.  That is all the
382 ** insert routine needs to know about.
383 */
384 static int autoIncBegin(
385   Parse *pParse,      /* Parsing context */
386   int iDb,            /* Index of the database holding pTab */
387   Table *pTab         /* The table we are writing to */
388 ){
389   int memId = 0;      /* Register holding maximum rowid */
390   assert( pParse->db->aDb[iDb].pSchema!=0 );
391   if( (pTab->tabFlags & TF_Autoincrement)!=0
392    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
393   ){
394     Parse *pToplevel = sqlite3ParseToplevel(pParse);
395     AutoincInfo *pInfo;
396     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
397 
398     /* Verify that the sqlite_sequence table exists and is an ordinary
399     ** rowid table with exactly two columns.
400     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
401     if( pSeqTab==0
402      || !HasRowid(pSeqTab)
403      || NEVER(IsVirtual(pSeqTab))
404      || pSeqTab->nCol!=2
405     ){
406       pParse->nErr++;
407       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
408       return 0;
409     }
410 
411     pInfo = pToplevel->pAinc;
412     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
413     if( pInfo==0 ){
414       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
415       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
416       testcase( pParse->earlyCleanup );
417       if( pParse->db->mallocFailed ) return 0;
418       pInfo->pNext = pToplevel->pAinc;
419       pToplevel->pAinc = pInfo;
420       pInfo->pTab = pTab;
421       pInfo->iDb = iDb;
422       pToplevel->nMem++;                  /* Register to hold name of table */
423       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
424       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
425     }
426     memId = pInfo->regCtr;
427   }
428   return memId;
429 }
430 
431 /*
432 ** This routine generates code that will initialize all of the
433 ** register used by the autoincrement tracker.
434 */
435 void sqlite3AutoincrementBegin(Parse *pParse){
436   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
437   sqlite3 *db = pParse->db;  /* The database connection */
438   Db *pDb;                   /* Database only autoinc table */
439   int memId;                 /* Register holding max rowid */
440   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
441 
442   /* This routine is never called during trigger-generation.  It is
443   ** only called from the top-level */
444   assert( pParse->pTriggerTab==0 );
445   assert( sqlite3IsToplevel(pParse) );
446 
447   assert( v );   /* We failed long ago if this is not so */
448   for(p = pParse->pAinc; p; p = p->pNext){
449     static const int iLn = VDBE_OFFSET_LINENO(2);
450     static const VdbeOpList autoInc[] = {
451       /* 0  */ {OP_Null,    0,  0, 0},
452       /* 1  */ {OP_Rewind,  0, 10, 0},
453       /* 2  */ {OP_Column,  0,  0, 0},
454       /* 3  */ {OP_Ne,      0,  9, 0},
455       /* 4  */ {OP_Rowid,   0,  0, 0},
456       /* 5  */ {OP_Column,  0,  1, 0},
457       /* 6  */ {OP_AddImm,  0,  0, 0},
458       /* 7  */ {OP_Copy,    0,  0, 0},
459       /* 8  */ {OP_Goto,    0, 11, 0},
460       /* 9  */ {OP_Next,    0,  2, 0},
461       /* 10 */ {OP_Integer, 0,  0, 0},
462       /* 11 */ {OP_Close,   0,  0, 0}
463     };
464     VdbeOp *aOp;
465     pDb = &db->aDb[p->iDb];
466     memId = p->regCtr;
467     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
468     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
469     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
470     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
471     if( aOp==0 ) break;
472     aOp[0].p2 = memId;
473     aOp[0].p3 = memId+2;
474     aOp[2].p3 = memId;
475     aOp[3].p1 = memId-1;
476     aOp[3].p3 = memId;
477     aOp[3].p5 = SQLITE_JUMPIFNULL;
478     aOp[4].p2 = memId+1;
479     aOp[5].p3 = memId;
480     aOp[6].p1 = memId;
481     aOp[7].p2 = memId+2;
482     aOp[7].p1 = memId;
483     aOp[10].p2 = memId;
484     if( pParse->nTab==0 ) pParse->nTab = 1;
485   }
486 }
487 
488 /*
489 ** Update the maximum rowid for an autoincrement calculation.
490 **
491 ** This routine should be called when the regRowid register holds a
492 ** new rowid that is about to be inserted.  If that new rowid is
493 ** larger than the maximum rowid in the memId memory cell, then the
494 ** memory cell is updated.
495 */
496 static void autoIncStep(Parse *pParse, int memId, int regRowid){
497   if( memId>0 ){
498     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
499   }
500 }
501 
502 /*
503 ** This routine generates the code needed to write autoincrement
504 ** maximum rowid values back into the sqlite_sequence register.
505 ** Every statement that might do an INSERT into an autoincrement
506 ** table (either directly or through triggers) needs to call this
507 ** routine just before the "exit" code.
508 */
509 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
510   AutoincInfo *p;
511   Vdbe *v = pParse->pVdbe;
512   sqlite3 *db = pParse->db;
513 
514   assert( v );
515   for(p = pParse->pAinc; p; p = p->pNext){
516     static const int iLn = VDBE_OFFSET_LINENO(2);
517     static const VdbeOpList autoIncEnd[] = {
518       /* 0 */ {OP_NotNull,     0, 2, 0},
519       /* 1 */ {OP_NewRowid,    0, 0, 0},
520       /* 2 */ {OP_MakeRecord,  0, 2, 0},
521       /* 3 */ {OP_Insert,      0, 0, 0},
522       /* 4 */ {OP_Close,       0, 0, 0}
523     };
524     VdbeOp *aOp;
525     Db *pDb = &db->aDb[p->iDb];
526     int iRec;
527     int memId = p->regCtr;
528 
529     iRec = sqlite3GetTempReg(pParse);
530     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
531     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
532     VdbeCoverage(v);
533     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
534     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
535     if( aOp==0 ) break;
536     aOp[0].p1 = memId+1;
537     aOp[1].p2 = memId+1;
538     aOp[2].p1 = memId-1;
539     aOp[2].p3 = iRec;
540     aOp[3].p2 = iRec;
541     aOp[3].p3 = memId+1;
542     aOp[3].p5 = OPFLAG_APPEND;
543     sqlite3ReleaseTempReg(pParse, iRec);
544   }
545 }
546 void sqlite3AutoincrementEnd(Parse *pParse){
547   if( pParse->pAinc ) autoIncrementEnd(pParse);
548 }
549 #else
550 /*
551 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
552 ** above are all no-ops
553 */
554 # define autoIncBegin(A,B,C) (0)
555 # define autoIncStep(A,B,C)
556 #endif /* SQLITE_OMIT_AUTOINCREMENT */
557 
558 
559 /* Forward declaration */
560 static int xferOptimization(
561   Parse *pParse,        /* Parser context */
562   Table *pDest,         /* The table we are inserting into */
563   Select *pSelect,      /* A SELECT statement to use as the data source */
564   int onError,          /* How to handle constraint errors */
565   int iDbDest           /* The database of pDest */
566 );
567 
568 /*
569 ** This routine is called to handle SQL of the following forms:
570 **
571 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
572 **    insert into TABLE (IDLIST) select
573 **    insert into TABLE (IDLIST) default values
574 **
575 ** The IDLIST following the table name is always optional.  If omitted,
576 ** then a list of all (non-hidden) columns for the table is substituted.
577 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
578 ** is omitted.
579 **
580 ** For the pSelect parameter holds the values to be inserted for the
581 ** first two forms shown above.  A VALUES clause is really just short-hand
582 ** for a SELECT statement that omits the FROM clause and everything else
583 ** that follows.  If the pSelect parameter is NULL, that means that the
584 ** DEFAULT VALUES form of the INSERT statement is intended.
585 **
586 ** The code generated follows one of four templates.  For a simple
587 ** insert with data coming from a single-row VALUES clause, the code executes
588 ** once straight down through.  Pseudo-code follows (we call this
589 ** the "1st template"):
590 **
591 **         open write cursor to <table> and its indices
592 **         put VALUES clause expressions into registers
593 **         write the resulting record into <table>
594 **         cleanup
595 **
596 ** The three remaining templates assume the statement is of the form
597 **
598 **   INSERT INTO <table> SELECT ...
599 **
600 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
601 ** in other words if the SELECT pulls all columns from a single table
602 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
603 ** if <table2> and <table1> are distinct tables but have identical
604 ** schemas, including all the same indices, then a special optimization
605 ** is invoked that copies raw records from <table2> over to <table1>.
606 ** See the xferOptimization() function for the implementation of this
607 ** template.  This is the 2nd template.
608 **
609 **         open a write cursor to <table>
610 **         open read cursor on <table2>
611 **         transfer all records in <table2> over to <table>
612 **         close cursors
613 **         foreach index on <table>
614 **           open a write cursor on the <table> index
615 **           open a read cursor on the corresponding <table2> index
616 **           transfer all records from the read to the write cursors
617 **           close cursors
618 **         end foreach
619 **
620 ** The 3rd template is for when the second template does not apply
621 ** and the SELECT clause does not read from <table> at any time.
622 ** The generated code follows this template:
623 **
624 **         X <- A
625 **         goto B
626 **      A: setup for the SELECT
627 **         loop over the rows in the SELECT
628 **           load values into registers R..R+n
629 **           yield X
630 **         end loop
631 **         cleanup after the SELECT
632 **         end-coroutine X
633 **      B: open write cursor to <table> and its indices
634 **      C: yield X, at EOF goto D
635 **         insert the select result into <table> from R..R+n
636 **         goto C
637 **      D: cleanup
638 **
639 ** The 4th template is used if the insert statement takes its
640 ** values from a SELECT but the data is being inserted into a table
641 ** that is also read as part of the SELECT.  In the third form,
642 ** we have to use an intermediate table to store the results of
643 ** the select.  The template is like this:
644 **
645 **         X <- A
646 **         goto B
647 **      A: setup for the SELECT
648 **         loop over the tables in the SELECT
649 **           load value into register R..R+n
650 **           yield X
651 **         end loop
652 **         cleanup after the SELECT
653 **         end co-routine R
654 **      B: open temp table
655 **      L: yield X, at EOF goto M
656 **         insert row from R..R+n into temp table
657 **         goto L
658 **      M: open write cursor to <table> and its indices
659 **         rewind temp table
660 **      C: loop over rows of intermediate table
661 **           transfer values form intermediate table into <table>
662 **         end loop
663 **      D: cleanup
664 */
665 void sqlite3Insert(
666   Parse *pParse,        /* Parser context */
667   SrcList *pTabList,    /* Name of table into which we are inserting */
668   Select *pSelect,      /* A SELECT statement to use as the data source */
669   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
670   int onError,          /* How to handle constraint errors */
671   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
672 ){
673   sqlite3 *db;          /* The main database structure */
674   Table *pTab;          /* The table to insert into.  aka TABLE */
675   int i, j;             /* Loop counters */
676   Vdbe *v;              /* Generate code into this virtual machine */
677   Index *pIdx;          /* For looping over indices of the table */
678   int nColumn;          /* Number of columns in the data */
679   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
680   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
681   int iIdxCur = 0;      /* First index cursor */
682   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
683   int endOfLoop;        /* Label for the end of the insertion loop */
684   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
685   int addrInsTop = 0;   /* Jump to label "D" */
686   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
687   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
688   int iDb;              /* Index of database holding TABLE */
689   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
690   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
691   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
692   u8 bIdListInOrder;    /* True if IDLIST is in table order */
693   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
694   int iRegStore;        /* Register in which to store next column */
695 
696   /* Register allocations */
697   int regFromSelect = 0;/* Base register for data coming from SELECT */
698   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
699   int regRowCount = 0;  /* Memory cell used for the row counter */
700   int regIns;           /* Block of regs holding rowid+data being inserted */
701   int regRowid;         /* registers holding insert rowid */
702   int regData;          /* register holding first column to insert */
703   int *aRegIdx = 0;     /* One register allocated to each index */
704 
705 #ifndef SQLITE_OMIT_TRIGGER
706   int isView;                 /* True if attempting to insert into a view */
707   Trigger *pTrigger;          /* List of triggers on pTab, if required */
708   int tmask;                  /* Mask of trigger times */
709 #endif
710 
711   db = pParse->db;
712   if( pParse->nErr || db->mallocFailed ){
713     goto insert_cleanup;
714   }
715   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
716 
717   /* If the Select object is really just a simple VALUES() list with a
718   ** single row (the common case) then keep that one row of values
719   ** and discard the other (unused) parts of the pSelect object
720   */
721   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
722     pList = pSelect->pEList;
723     pSelect->pEList = 0;
724     sqlite3SelectDelete(db, pSelect);
725     pSelect = 0;
726   }
727 
728   /* Locate the table into which we will be inserting new information.
729   */
730   assert( pTabList->nSrc==1 );
731   pTab = sqlite3SrcListLookup(pParse, pTabList);
732   if( pTab==0 ){
733     goto insert_cleanup;
734   }
735   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
736   assert( iDb<db->nDb );
737   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
738                        db->aDb[iDb].zDbSName) ){
739     goto insert_cleanup;
740   }
741   withoutRowid = !HasRowid(pTab);
742 
743   /* Figure out if we have any triggers and if the table being
744   ** inserted into is a view
745   */
746 #ifndef SQLITE_OMIT_TRIGGER
747   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
748   isView = IsView(pTab);
749 #else
750 # define pTrigger 0
751 # define tmask 0
752 # define isView 0
753 #endif
754 #ifdef SQLITE_OMIT_VIEW
755 # undef isView
756 # define isView 0
757 #endif
758   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
759 
760   /* If pTab is really a view, make sure it has been initialized.
761   ** ViewGetColumnNames() is a no-op if pTab is not a view.
762   */
763   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
764     goto insert_cleanup;
765   }
766 
767   /* Cannot insert into a read-only table.
768   */
769   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
770     goto insert_cleanup;
771   }
772 
773   /* Allocate a VDBE
774   */
775   v = sqlite3GetVdbe(pParse);
776   if( v==0 ) goto insert_cleanup;
777   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
778   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
779 
780 #ifndef SQLITE_OMIT_XFER_OPT
781   /* If the statement is of the form
782   **
783   **       INSERT INTO <table1> SELECT * FROM <table2>;
784   **
785   ** Then special optimizations can be applied that make the transfer
786   ** very fast and which reduce fragmentation of indices.
787   **
788   ** This is the 2nd template.
789   */
790   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
791     assert( !pTrigger );
792     assert( pList==0 );
793     goto insert_end;
794   }
795 #endif /* SQLITE_OMIT_XFER_OPT */
796 
797   /* If this is an AUTOINCREMENT table, look up the sequence number in the
798   ** sqlite_sequence table and store it in memory cell regAutoinc.
799   */
800   regAutoinc = autoIncBegin(pParse, iDb, pTab);
801 
802   /* Allocate a block registers to hold the rowid and the values
803   ** for all columns of the new row.
804   */
805   regRowid = regIns = pParse->nMem+1;
806   pParse->nMem += pTab->nCol + 1;
807   if( IsVirtual(pTab) ){
808     regRowid++;
809     pParse->nMem++;
810   }
811   regData = regRowid+1;
812 
813   /* If the INSERT statement included an IDLIST term, then make sure
814   ** all elements of the IDLIST really are columns of the table and
815   ** remember the column indices.
816   **
817   ** If the table has an INTEGER PRIMARY KEY column and that column
818   ** is named in the IDLIST, then record in the ipkColumn variable
819   ** the index into IDLIST of the primary key column.  ipkColumn is
820   ** the index of the primary key as it appears in IDLIST, not as
821   ** is appears in the original table.  (The index of the INTEGER
822   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
823   ** loop, if ipkColumn==(-1), that means that integer primary key
824   ** is unspecified, and hence the table is either WITHOUT ROWID or
825   ** it will automatically generated an integer primary key.
826   **
827   ** bIdListInOrder is true if the columns in IDLIST are in storage
828   ** order.  This enables an optimization that avoids shuffling the
829   ** columns into storage order.  False negatives are harmless,
830   ** but false positives will cause database corruption.
831   */
832   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
833   if( pColumn ){
834     for(i=0; i<pColumn->nId; i++){
835       pColumn->a[i].idx = -1;
836     }
837     for(i=0; i<pColumn->nId; i++){
838       for(j=0; j<pTab->nCol; j++){
839         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
840           pColumn->a[i].idx = j;
841           if( i!=j ) bIdListInOrder = 0;
842           if( j==pTab->iPKey ){
843             ipkColumn = i;  assert( !withoutRowid );
844           }
845 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
846           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
847             sqlite3ErrorMsg(pParse,
848                "cannot INSERT into generated column \"%s\"",
849                pTab->aCol[j].zCnName);
850             goto insert_cleanup;
851           }
852 #endif
853           break;
854         }
855       }
856       if( j>=pTab->nCol ){
857         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
858           ipkColumn = i;
859           bIdListInOrder = 0;
860         }else{
861           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
862               pTabList->a, pColumn->a[i].zName);
863           pParse->checkSchema = 1;
864           goto insert_cleanup;
865         }
866       }
867     }
868   }
869 
870   /* Figure out how many columns of data are supplied.  If the data
871   ** is coming from a SELECT statement, then generate a co-routine that
872   ** produces a single row of the SELECT on each invocation.  The
873   ** co-routine is the common header to the 3rd and 4th templates.
874   */
875   if( pSelect ){
876     /* Data is coming from a SELECT or from a multi-row VALUES clause.
877     ** Generate a co-routine to run the SELECT. */
878     int regYield;       /* Register holding co-routine entry-point */
879     int addrTop;        /* Top of the co-routine */
880     int rc;             /* Result code */
881 
882     regYield = ++pParse->nMem;
883     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
884     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
885     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
886     dest.iSdst = bIdListInOrder ? regData : 0;
887     dest.nSdst = pTab->nCol;
888     rc = sqlite3Select(pParse, pSelect, &dest);
889     regFromSelect = dest.iSdst;
890     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
891     sqlite3VdbeEndCoroutine(v, regYield);
892     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
893     assert( pSelect->pEList );
894     nColumn = pSelect->pEList->nExpr;
895 
896     /* Set useTempTable to TRUE if the result of the SELECT statement
897     ** should be written into a temporary table (template 4).  Set to
898     ** FALSE if each output row of the SELECT can be written directly into
899     ** the destination table (template 3).
900     **
901     ** A temp table must be used if the table being updated is also one
902     ** of the tables being read by the SELECT statement.  Also use a
903     ** temp table in the case of row triggers.
904     */
905     if( pTrigger || readsTable(pParse, iDb, pTab) ){
906       useTempTable = 1;
907     }
908 
909     if( useTempTable ){
910       /* Invoke the coroutine to extract information from the SELECT
911       ** and add it to a transient table srcTab.  The code generated
912       ** here is from the 4th template:
913       **
914       **      B: open temp table
915       **      L: yield X, goto M at EOF
916       **         insert row from R..R+n into temp table
917       **         goto L
918       **      M: ...
919       */
920       int regRec;          /* Register to hold packed record */
921       int regTempRowid;    /* Register to hold temp table ROWID */
922       int addrL;           /* Label "L" */
923 
924       srcTab = pParse->nTab++;
925       regRec = sqlite3GetTempReg(pParse);
926       regTempRowid = sqlite3GetTempReg(pParse);
927       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
928       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
929       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
930       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
931       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
932       sqlite3VdbeGoto(v, addrL);
933       sqlite3VdbeJumpHere(v, addrL);
934       sqlite3ReleaseTempReg(pParse, regRec);
935       sqlite3ReleaseTempReg(pParse, regTempRowid);
936     }
937   }else{
938     /* This is the case if the data for the INSERT is coming from a
939     ** single-row VALUES clause
940     */
941     NameContext sNC;
942     memset(&sNC, 0, sizeof(sNC));
943     sNC.pParse = pParse;
944     srcTab = -1;
945     assert( useTempTable==0 );
946     if( pList ){
947       nColumn = pList->nExpr;
948       if( sqlite3ResolveExprListNames(&sNC, pList) ){
949         goto insert_cleanup;
950       }
951     }else{
952       nColumn = 0;
953     }
954   }
955 
956   /* If there is no IDLIST term but the table has an integer primary
957   ** key, the set the ipkColumn variable to the integer primary key
958   ** column index in the original table definition.
959   */
960   if( pColumn==0 && nColumn>0 ){
961     ipkColumn = pTab->iPKey;
962 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
963     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
964       testcase( pTab->tabFlags & TF_HasVirtual );
965       testcase( pTab->tabFlags & TF_HasStored );
966       for(i=ipkColumn-1; i>=0; i--){
967         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
968           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
969           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
970           ipkColumn--;
971         }
972       }
973     }
974 #endif
975 
976     /* Make sure the number of columns in the source data matches the number
977     ** of columns to be inserted into the table.
978     */
979     assert( TF_HasHidden==COLFLAG_HIDDEN );
980     assert( TF_HasGenerated==COLFLAG_GENERATED );
981     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
982     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
983       for(i=0; i<pTab->nCol; i++){
984         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
985       }
986     }
987     if( nColumn!=(pTab->nCol-nHidden) ){
988       sqlite3ErrorMsg(pParse,
989          "table %S has %d columns but %d values were supplied",
990          pTabList->a, pTab->nCol-nHidden, nColumn);
991      goto insert_cleanup;
992     }
993   }
994   if( pColumn!=0 && nColumn!=pColumn->nId ){
995     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
996     goto insert_cleanup;
997   }
998 
999   /* Initialize the count of rows to be inserted
1000   */
1001   if( (db->flags & SQLITE_CountRows)!=0
1002    && !pParse->nested
1003    && !pParse->pTriggerTab
1004    && !pParse->bReturning
1005   ){
1006     regRowCount = ++pParse->nMem;
1007     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1008   }
1009 
1010   /* If this is not a view, open the table and and all indices */
1011   if( !isView ){
1012     int nIdx;
1013     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1014                                       &iDataCur, &iIdxCur);
1015     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1016     if( aRegIdx==0 ){
1017       goto insert_cleanup;
1018     }
1019     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1020       assert( pIdx );
1021       aRegIdx[i] = ++pParse->nMem;
1022       pParse->nMem += pIdx->nColumn;
1023     }
1024     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1025   }
1026 #ifndef SQLITE_OMIT_UPSERT
1027   if( pUpsert ){
1028     Upsert *pNx;
1029     if( IsVirtual(pTab) ){
1030       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1031               pTab->zName);
1032       goto insert_cleanup;
1033     }
1034     if( IsView(pTab) ){
1035       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1036       goto insert_cleanup;
1037     }
1038     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1039       goto insert_cleanup;
1040     }
1041     pTabList->a[0].iCursor = iDataCur;
1042     pNx = pUpsert;
1043     do{
1044       pNx->pUpsertSrc = pTabList;
1045       pNx->regData = regData;
1046       pNx->iDataCur = iDataCur;
1047       pNx->iIdxCur = iIdxCur;
1048       if( pNx->pUpsertTarget ){
1049         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1050           goto insert_cleanup;
1051         }
1052       }
1053       pNx = pNx->pNextUpsert;
1054     }while( pNx!=0 );
1055   }
1056 #endif
1057 
1058 
1059   /* This is the top of the main insertion loop */
1060   if( useTempTable ){
1061     /* This block codes the top of loop only.  The complete loop is the
1062     ** following pseudocode (template 4):
1063     **
1064     **         rewind temp table, if empty goto D
1065     **      C: loop over rows of intermediate table
1066     **           transfer values form intermediate table into <table>
1067     **         end loop
1068     **      D: ...
1069     */
1070     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1071     addrCont = sqlite3VdbeCurrentAddr(v);
1072   }else if( pSelect ){
1073     /* This block codes the top of loop only.  The complete loop is the
1074     ** following pseudocode (template 3):
1075     **
1076     **      C: yield X, at EOF goto D
1077     **         insert the select result into <table> from R..R+n
1078     **         goto C
1079     **      D: ...
1080     */
1081     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1082     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1083     VdbeCoverage(v);
1084     if( ipkColumn>=0 ){
1085       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1086       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1087       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1088       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1089     }
1090   }
1091 
1092   /* Compute data for ordinary columns of the new entry.  Values
1093   ** are written in storage order into registers starting with regData.
1094   ** Only ordinary columns are computed in this loop. The rowid
1095   ** (if there is one) is computed later and generated columns are
1096   ** computed after the rowid since they might depend on the value
1097   ** of the rowid.
1098   */
1099   nHidden = 0;
1100   iRegStore = regData;  assert( regData==regRowid+1 );
1101   for(i=0; i<pTab->nCol; i++, iRegStore++){
1102     int k;
1103     u32 colFlags;
1104     assert( i>=nHidden );
1105     if( i==pTab->iPKey ){
1106       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1107       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1108       ** using excess space.  The file format definition requires this extra
1109       ** NULL - we cannot optimize further by skipping the column completely */
1110       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1111       continue;
1112     }
1113     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1114       nHidden++;
1115       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1116         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1117         ** iRegStore by one slot to compensate for the iRegStore++ in the
1118         ** outer for() loop */
1119         iRegStore--;
1120         continue;
1121       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1122         /* Stored columns are computed later.  But if there are BEFORE
1123         ** triggers, the slots used for stored columns will be OP_Copy-ed
1124         ** to a second block of registers, so the register needs to be
1125         ** initialized to NULL to avoid an uninitialized register read */
1126         if( tmask & TRIGGER_BEFORE ){
1127           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1128         }
1129         continue;
1130       }else if( pColumn==0 ){
1131         /* Hidden columns that are not explicitly named in the INSERT
1132         ** get there default value */
1133         sqlite3ExprCodeFactorable(pParse,
1134             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1135             iRegStore);
1136         continue;
1137       }
1138     }
1139     if( pColumn ){
1140       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1141       if( j>=pColumn->nId ){
1142         /* A column not named in the insert column list gets its
1143         ** default value */
1144         sqlite3ExprCodeFactorable(pParse,
1145             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1146             iRegStore);
1147         continue;
1148       }
1149       k = j;
1150     }else if( nColumn==0 ){
1151       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1152       sqlite3ExprCodeFactorable(pParse,
1153           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1154           iRegStore);
1155       continue;
1156     }else{
1157       k = i - nHidden;
1158     }
1159 
1160     if( useTempTable ){
1161       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1162     }else if( pSelect ){
1163       if( regFromSelect!=regData ){
1164         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1165       }
1166     }else{
1167       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1168     }
1169   }
1170 
1171 
1172   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1173   */
1174   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1175   if( tmask & TRIGGER_BEFORE ){
1176     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1177 
1178     /* build the NEW.* reference row.  Note that if there is an INTEGER
1179     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1180     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1181     ** we do not know what the unique ID will be (because the insert has
1182     ** not happened yet) so we substitute a rowid of -1
1183     */
1184     if( ipkColumn<0 ){
1185       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1186     }else{
1187       int addr1;
1188       assert( !withoutRowid );
1189       if( useTempTable ){
1190         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1191       }else{
1192         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1193         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1194       }
1195       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1196       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1197       sqlite3VdbeJumpHere(v, addr1);
1198       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1199     }
1200 
1201     /* Copy the new data already generated. */
1202     assert( pTab->nNVCol>0 );
1203     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1204 
1205 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1206     /* Compute the new value for generated columns after all other
1207     ** columns have already been computed.  This must be done after
1208     ** computing the ROWID in case one of the generated columns
1209     ** refers to the ROWID. */
1210     if( pTab->tabFlags & TF_HasGenerated ){
1211       testcase( pTab->tabFlags & TF_HasVirtual );
1212       testcase( pTab->tabFlags & TF_HasStored );
1213       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1214     }
1215 #endif
1216 
1217     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1218     ** do not attempt any conversions before assembling the record.
1219     ** If this is a real table, attempt conversions as required by the
1220     ** table column affinities.
1221     */
1222     if( !isView ){
1223       sqlite3TableAffinity(v, pTab, regCols+1);
1224     }
1225 
1226     /* Fire BEFORE or INSTEAD OF triggers */
1227     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1228         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1229 
1230     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1231   }
1232 
1233   if( !isView ){
1234     if( IsVirtual(pTab) ){
1235       /* The row that the VUpdate opcode will delete: none */
1236       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1237     }
1238     if( ipkColumn>=0 ){
1239       /* Compute the new rowid */
1240       if( useTempTable ){
1241         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1242       }else if( pSelect ){
1243         /* Rowid already initialized at tag-20191021-001 */
1244       }else{
1245         Expr *pIpk = pList->a[ipkColumn].pExpr;
1246         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1247           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1248           appendFlag = 1;
1249         }else{
1250           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1251         }
1252       }
1253       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1254       ** to generate a unique primary key value.
1255       */
1256       if( !appendFlag ){
1257         int addr1;
1258         if( !IsVirtual(pTab) ){
1259           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1260           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1261           sqlite3VdbeJumpHere(v, addr1);
1262         }else{
1263           addr1 = sqlite3VdbeCurrentAddr(v);
1264           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1265         }
1266         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1267       }
1268     }else if( IsVirtual(pTab) || withoutRowid ){
1269       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1270     }else{
1271       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1272       appendFlag = 1;
1273     }
1274     autoIncStep(pParse, regAutoinc, regRowid);
1275 
1276 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1277     /* Compute the new value for generated columns after all other
1278     ** columns have already been computed.  This must be done after
1279     ** computing the ROWID in case one of the generated columns
1280     ** is derived from the INTEGER PRIMARY KEY. */
1281     if( pTab->tabFlags & TF_HasGenerated ){
1282       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1283     }
1284 #endif
1285 
1286     /* Generate code to check constraints and generate index keys and
1287     ** do the insertion.
1288     */
1289 #ifndef SQLITE_OMIT_VIRTUALTABLE
1290     if( IsVirtual(pTab) ){
1291       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1292       sqlite3VtabMakeWritable(pParse, pTab);
1293       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1294       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1295       sqlite3MayAbort(pParse);
1296     }else
1297 #endif
1298     {
1299       int isReplace = 0;/* Set to true if constraints may cause a replace */
1300       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1301       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1302           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1303       );
1304       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1305 
1306       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1307       ** constraints or (b) there are no triggers and this table is not a
1308       ** parent table in a foreign key constraint. It is safe to set the
1309       ** flag in the second case as if any REPLACE constraint is hit, an
1310       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1311       ** cursor that is disturbed. And these instructions both clear the
1312       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1313       ** functionality.  */
1314       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1315       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1316           regIns, aRegIdx, 0, appendFlag, bUseSeek
1317       );
1318     }
1319 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1320   }else if( pParse->bReturning ){
1321     /* If there is a RETURNING clause, populate the rowid register with
1322     ** constant value -1, in case one or more of the returned expressions
1323     ** refer to the "rowid" of the view.  */
1324     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1325 #endif
1326   }
1327 
1328   /* Update the count of rows that are inserted
1329   */
1330   if( regRowCount ){
1331     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1332   }
1333 
1334   if( pTrigger ){
1335     /* Code AFTER triggers */
1336     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1337         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1338   }
1339 
1340   /* The bottom of the main insertion loop, if the data source
1341   ** is a SELECT statement.
1342   */
1343   sqlite3VdbeResolveLabel(v, endOfLoop);
1344   if( useTempTable ){
1345     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1346     sqlite3VdbeJumpHere(v, addrInsTop);
1347     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1348   }else if( pSelect ){
1349     sqlite3VdbeGoto(v, addrCont);
1350 #ifdef SQLITE_DEBUG
1351     /* If we are jumping back to an OP_Yield that is preceded by an
1352     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1353     ** OP_ReleaseReg will be included in the loop. */
1354     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1355       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1356       sqlite3VdbeChangeP5(v, 1);
1357     }
1358 #endif
1359     sqlite3VdbeJumpHere(v, addrInsTop);
1360   }
1361 
1362 #ifndef SQLITE_OMIT_XFER_OPT
1363 insert_end:
1364 #endif /* SQLITE_OMIT_XFER_OPT */
1365   /* Update the sqlite_sequence table by storing the content of the
1366   ** maximum rowid counter values recorded while inserting into
1367   ** autoincrement tables.
1368   */
1369   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1370     sqlite3AutoincrementEnd(pParse);
1371   }
1372 
1373   /*
1374   ** Return the number of rows inserted. If this routine is
1375   ** generating code because of a call to sqlite3NestedParse(), do not
1376   ** invoke the callback function.
1377   */
1378   if( regRowCount ){
1379     sqlite3VdbeAddOp2(v, OP_ChngCntRow, regRowCount, 1);
1380     sqlite3VdbeSetNumCols(v, 1);
1381     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1382   }
1383 
1384 insert_cleanup:
1385   sqlite3SrcListDelete(db, pTabList);
1386   sqlite3ExprListDelete(db, pList);
1387   sqlite3UpsertDelete(db, pUpsert);
1388   sqlite3SelectDelete(db, pSelect);
1389   sqlite3IdListDelete(db, pColumn);
1390   sqlite3DbFree(db, aRegIdx);
1391 }
1392 
1393 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1394 ** they may interfere with compilation of other functions in this file
1395 ** (or in another file, if this file becomes part of the amalgamation).  */
1396 #ifdef isView
1397  #undef isView
1398 #endif
1399 #ifdef pTrigger
1400  #undef pTrigger
1401 #endif
1402 #ifdef tmask
1403  #undef tmask
1404 #endif
1405 
1406 /*
1407 ** Meanings of bits in of pWalker->eCode for
1408 ** sqlite3ExprReferencesUpdatedColumn()
1409 */
1410 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1411 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1412 
1413 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1414 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1415 ** expression node references any of the
1416 ** columns that are being modifed by an UPDATE statement.
1417 */
1418 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1419   if( pExpr->op==TK_COLUMN ){
1420     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1421     if( pExpr->iColumn>=0 ){
1422       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1423         pWalker->eCode |= CKCNSTRNT_COLUMN;
1424       }
1425     }else{
1426       pWalker->eCode |= CKCNSTRNT_ROWID;
1427     }
1428   }
1429   return WRC_Continue;
1430 }
1431 
1432 /*
1433 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1434 ** only columns that are modified by the UPDATE are those for which
1435 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1436 **
1437 ** Return true if CHECK constraint pExpr uses any of the
1438 ** changing columns (or the rowid if it is changing).  In other words,
1439 ** return true if this CHECK constraint must be validated for
1440 ** the new row in the UPDATE statement.
1441 **
1442 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1443 ** The operation of this routine is the same - return true if an only if
1444 ** the expression uses one or more of columns identified by the second and
1445 ** third arguments.
1446 */
1447 int sqlite3ExprReferencesUpdatedColumn(
1448   Expr *pExpr,    /* The expression to be checked */
1449   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1450   int chngRowid   /* True if UPDATE changes the rowid */
1451 ){
1452   Walker w;
1453   memset(&w, 0, sizeof(w));
1454   w.eCode = 0;
1455   w.xExprCallback = checkConstraintExprNode;
1456   w.u.aiCol = aiChng;
1457   sqlite3WalkExpr(&w, pExpr);
1458   if( !chngRowid ){
1459     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1460     w.eCode &= ~CKCNSTRNT_ROWID;
1461   }
1462   testcase( w.eCode==0 );
1463   testcase( w.eCode==CKCNSTRNT_COLUMN );
1464   testcase( w.eCode==CKCNSTRNT_ROWID );
1465   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1466   return w.eCode!=0;
1467 }
1468 
1469 /*
1470 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1471 ** the indexes of a table in the order provided in the Table->pIndex list.
1472 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1473 ** the indexes in a different order.  The following data structures accomplish
1474 ** this.
1475 **
1476 ** The IndexIterator object is used to walk through all of the indexes
1477 ** of a table in either Index.pNext order, or in some other order established
1478 ** by an array of IndexListTerm objects.
1479 */
1480 typedef struct IndexListTerm IndexListTerm;
1481 typedef struct IndexIterator IndexIterator;
1482 struct IndexIterator {
1483   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1484   int i;        /* Index of the current item from the list */
1485   union {
1486     struct {    /* Use this object for eType==0: A Index.pNext list */
1487       Index *pIdx;   /* The current Index */
1488     } lx;
1489     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1490       int nIdx;               /* Size of the array */
1491       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1492     } ax;
1493   } u;
1494 };
1495 
1496 /* When IndexIterator.eType==1, then each index is an array of instances
1497 ** of the following object
1498 */
1499 struct IndexListTerm {
1500   Index *p;  /* The index */
1501   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1502 };
1503 
1504 /* Return the first index on the list */
1505 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1506   assert( pIter->i==0 );
1507   if( pIter->eType ){
1508     *pIx = pIter->u.ax.aIdx[0].ix;
1509     return pIter->u.ax.aIdx[0].p;
1510   }else{
1511     *pIx = 0;
1512     return pIter->u.lx.pIdx;
1513   }
1514 }
1515 
1516 /* Return the next index from the list.  Return NULL when out of indexes */
1517 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1518   if( pIter->eType ){
1519     int i = ++pIter->i;
1520     if( i>=pIter->u.ax.nIdx ){
1521       *pIx = i;
1522       return 0;
1523     }
1524     *pIx = pIter->u.ax.aIdx[i].ix;
1525     return pIter->u.ax.aIdx[i].p;
1526   }else{
1527     ++(*pIx);
1528     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1529     return pIter->u.lx.pIdx;
1530   }
1531 }
1532 
1533 /*
1534 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1535 ** on table pTab.
1536 **
1537 ** The regNewData parameter is the first register in a range that contains
1538 ** the data to be inserted or the data after the update.  There will be
1539 ** pTab->nCol+1 registers in this range.  The first register (the one
1540 ** that regNewData points to) will contain the new rowid, or NULL in the
1541 ** case of a WITHOUT ROWID table.  The second register in the range will
1542 ** contain the content of the first table column.  The third register will
1543 ** contain the content of the second table column.  And so forth.
1544 **
1545 ** The regOldData parameter is similar to regNewData except that it contains
1546 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1547 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1548 ** checking regOldData for zero.
1549 **
1550 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1551 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1552 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1553 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1554 **
1555 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1556 ** was explicitly specified as part of the INSERT statement.  If pkChng
1557 ** is zero, it means that the either rowid is computed automatically or
1558 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1559 ** pkChng will only be true if the INSERT statement provides an integer
1560 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1561 **
1562 ** The code generated by this routine will store new index entries into
1563 ** registers identified by aRegIdx[].  No index entry is created for
1564 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1565 ** the same as the order of indices on the linked list of indices
1566 ** at pTab->pIndex.
1567 **
1568 ** (2019-05-07) The generated code also creates a new record for the
1569 ** main table, if pTab is a rowid table, and stores that record in the
1570 ** register identified by aRegIdx[nIdx] - in other words in the first
1571 ** entry of aRegIdx[] past the last index.  It is important that the
1572 ** record be generated during constraint checks to avoid affinity changes
1573 ** to the register content that occur after constraint checks but before
1574 ** the new record is inserted.
1575 **
1576 ** The caller must have already opened writeable cursors on the main
1577 ** table and all applicable indices (that is to say, all indices for which
1578 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1579 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1580 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1581 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1582 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1583 **
1584 ** This routine also generates code to check constraints.  NOT NULL,
1585 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1586 ** then the appropriate action is performed.  There are five possible
1587 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1588 **
1589 **  Constraint type  Action       What Happens
1590 **  ---------------  ----------   ----------------------------------------
1591 **  any              ROLLBACK     The current transaction is rolled back and
1592 **                                sqlite3_step() returns immediately with a
1593 **                                return code of SQLITE_CONSTRAINT.
1594 **
1595 **  any              ABORT        Back out changes from the current command
1596 **                                only (do not do a complete rollback) then
1597 **                                cause sqlite3_step() to return immediately
1598 **                                with SQLITE_CONSTRAINT.
1599 **
1600 **  any              FAIL         Sqlite3_step() returns immediately with a
1601 **                                return code of SQLITE_CONSTRAINT.  The
1602 **                                transaction is not rolled back and any
1603 **                                changes to prior rows are retained.
1604 **
1605 **  any              IGNORE       The attempt in insert or update the current
1606 **                                row is skipped, without throwing an error.
1607 **                                Processing continues with the next row.
1608 **                                (There is an immediate jump to ignoreDest.)
1609 **
1610 **  NOT NULL         REPLACE      The NULL value is replace by the default
1611 **                                value for that column.  If the default value
1612 **                                is NULL, the action is the same as ABORT.
1613 **
1614 **  UNIQUE           REPLACE      The other row that conflicts with the row
1615 **                                being inserted is removed.
1616 **
1617 **  CHECK            REPLACE      Illegal.  The results in an exception.
1618 **
1619 ** Which action to take is determined by the overrideError parameter.
1620 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1621 ** is used.  Or if pParse->onError==OE_Default then the onError value
1622 ** for the constraint is used.
1623 */
1624 void sqlite3GenerateConstraintChecks(
1625   Parse *pParse,       /* The parser context */
1626   Table *pTab,         /* The table being inserted or updated */
1627   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1628   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1629   int iIdxCur,         /* First index cursor */
1630   int regNewData,      /* First register in a range holding values to insert */
1631   int regOldData,      /* Previous content.  0 for INSERTs */
1632   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1633   u8 overrideError,    /* Override onError to this if not OE_Default */
1634   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1635   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1636   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1637   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1638 ){
1639   Vdbe *v;             /* VDBE under constrution */
1640   Index *pIdx;         /* Pointer to one of the indices */
1641   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1642   sqlite3 *db;         /* Database connection */
1643   int i;               /* loop counter */
1644   int ix;              /* Index loop counter */
1645   int nCol;            /* Number of columns */
1646   int onError;         /* Conflict resolution strategy */
1647   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1648   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1649   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1650   u8 isUpdate;           /* True if this is an UPDATE operation */
1651   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1652   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1653   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1654   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1655   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1656   /* Variables associated with retesting uniqueness constraints after
1657   ** replace triggers fire have run */
1658   int regTrigCnt;       /* Register used to count replace trigger invocations */
1659   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1660   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1661   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1662   int nReplaceTrig = 0; /* Number of replace triggers coded */
1663   IndexIterator sIdxIter;  /* Index iterator */
1664 
1665   isUpdate = regOldData!=0;
1666   db = pParse->db;
1667   v = pParse->pVdbe;
1668   assert( v!=0 );
1669   assert( !IsView(pTab) );  /* This table is not a VIEW */
1670   nCol = pTab->nCol;
1671 
1672   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1673   ** normal rowid tables.  nPkField is the number of key fields in the
1674   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1675   ** number of fields in the true primary key of the table. */
1676   if( HasRowid(pTab) ){
1677     pPk = 0;
1678     nPkField = 1;
1679   }else{
1680     pPk = sqlite3PrimaryKeyIndex(pTab);
1681     nPkField = pPk->nKeyCol;
1682   }
1683 
1684   /* Record that this module has started */
1685   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1686                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1687 
1688   /* Test all NOT NULL constraints.
1689   */
1690   if( pTab->tabFlags & TF_HasNotNull ){
1691     int b2ndPass = 0;         /* True if currently running 2nd pass */
1692     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1693     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1694     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1695       for(i=0; i<nCol; i++){
1696         int iReg;                        /* Register holding column value */
1697         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1698         int isGenerated;                 /* non-zero if column is generated */
1699         onError = pCol->notNull;
1700         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1701         if( i==pTab->iPKey ){
1702           continue;        /* ROWID is never NULL */
1703         }
1704         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1705         if( isGenerated && !b2ndPass ){
1706           nGenerated++;
1707           continue;        /* Generated columns processed on 2nd pass */
1708         }
1709         if( aiChng && aiChng[i]<0 && !isGenerated ){
1710           /* Do not check NOT NULL on columns that do not change */
1711           continue;
1712         }
1713         if( overrideError!=OE_Default ){
1714           onError = overrideError;
1715         }else if( onError==OE_Default ){
1716           onError = OE_Abort;
1717         }
1718         if( onError==OE_Replace ){
1719           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1720            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1721           ){
1722             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1723             testcase( pCol->colFlags & COLFLAG_STORED );
1724             testcase( pCol->colFlags & COLFLAG_GENERATED );
1725             onError = OE_Abort;
1726           }else{
1727             assert( !isGenerated );
1728           }
1729         }else if( b2ndPass && !isGenerated ){
1730           continue;
1731         }
1732         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1733             || onError==OE_Ignore || onError==OE_Replace );
1734         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1735         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1736         switch( onError ){
1737           case OE_Replace: {
1738             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1739             VdbeCoverage(v);
1740             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1741             nSeenReplace++;
1742             sqlite3ExprCodeCopy(pParse,
1743                sqlite3ColumnExpr(pTab, pCol), iReg);
1744             sqlite3VdbeJumpHere(v, addr1);
1745             break;
1746           }
1747           case OE_Abort:
1748             sqlite3MayAbort(pParse);
1749             /* no break */ deliberate_fall_through
1750           case OE_Rollback:
1751           case OE_Fail: {
1752             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1753                                         pCol->zCnName);
1754             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1755                               onError, iReg);
1756             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1757             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1758             VdbeCoverage(v);
1759             break;
1760           }
1761           default: {
1762             assert( onError==OE_Ignore );
1763             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1764             VdbeCoverage(v);
1765             break;
1766           }
1767         } /* end switch(onError) */
1768       } /* end loop i over columns */
1769       if( nGenerated==0 && nSeenReplace==0 ){
1770         /* If there are no generated columns with NOT NULL constraints
1771         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1772         ** pass is sufficient */
1773         break;
1774       }
1775       if( b2ndPass ) break;  /* Never need more than 2 passes */
1776       b2ndPass = 1;
1777 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1778       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1779         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1780         ** first pass, recomputed values for all generated columns, as
1781         ** those values might depend on columns affected by the REPLACE.
1782         */
1783         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1784       }
1785 #endif
1786     } /* end of 2-pass loop */
1787   } /* end if( has-not-null-constraints ) */
1788 
1789   /* Test all CHECK constraints
1790   */
1791 #ifndef SQLITE_OMIT_CHECK
1792   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1793     ExprList *pCheck = pTab->pCheck;
1794     pParse->iSelfTab = -(regNewData+1);
1795     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1796     for(i=0; i<pCheck->nExpr; i++){
1797       int allOk;
1798       Expr *pCopy;
1799       Expr *pExpr = pCheck->a[i].pExpr;
1800       if( aiChng
1801        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1802       ){
1803         /* The check constraints do not reference any of the columns being
1804         ** updated so there is no point it verifying the check constraint */
1805         continue;
1806       }
1807       if( bAffinityDone==0 ){
1808         sqlite3TableAffinity(v, pTab, regNewData+1);
1809         bAffinityDone = 1;
1810       }
1811       allOk = sqlite3VdbeMakeLabel(pParse);
1812       sqlite3VdbeVerifyAbortable(v, onError);
1813       pCopy = sqlite3ExprDup(db, pExpr, 0);
1814       if( !db->mallocFailed ){
1815         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1816       }
1817       sqlite3ExprDelete(db, pCopy);
1818       if( onError==OE_Ignore ){
1819         sqlite3VdbeGoto(v, ignoreDest);
1820       }else{
1821         char *zName = pCheck->a[i].zEName;
1822         assert( zName!=0 || pParse->db->mallocFailed );
1823         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1824         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1825                               onError, zName, P4_TRANSIENT,
1826                               P5_ConstraintCheck);
1827       }
1828       sqlite3VdbeResolveLabel(v, allOk);
1829     }
1830     pParse->iSelfTab = 0;
1831   }
1832 #endif /* !defined(SQLITE_OMIT_CHECK) */
1833 
1834   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1835   ** order:
1836   **
1837   **   (1)  OE_Update
1838   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1839   **   (3)  OE_Replace
1840   **
1841   ** OE_Fail and OE_Ignore must happen before any changes are made.
1842   ** OE_Update guarantees that only a single row will change, so it
1843   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1844   ** could happen in any order, but they are grouped up front for
1845   ** convenience.
1846   **
1847   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1848   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1849   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1850   ** constraint before any others, so it had to be moved.
1851   **
1852   ** Constraint checking code is generated in this order:
1853   **   (A)  The rowid constraint
1854   **   (B)  Unique index constraints that do not have OE_Replace as their
1855   **        default conflict resolution strategy
1856   **   (C)  Unique index that do use OE_Replace by default.
1857   **
1858   ** The ordering of (2) and (3) is accomplished by making sure the linked
1859   ** list of indexes attached to a table puts all OE_Replace indexes last
1860   ** in the list.  See sqlite3CreateIndex() for where that happens.
1861   */
1862   sIdxIter.eType = 0;
1863   sIdxIter.i = 0;
1864   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1865   sIdxIter.u.lx.pIdx = pTab->pIndex;
1866   if( pUpsert ){
1867     if( pUpsert->pUpsertTarget==0 ){
1868       /* There is just on ON CONFLICT clause and it has no constraint-target */
1869       assert( pUpsert->pNextUpsert==0 );
1870       if( pUpsert->isDoUpdate==0 ){
1871         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1872         ** Make all unique constraint resolution be OE_Ignore */
1873         overrideError = OE_Ignore;
1874         pUpsert = 0;
1875       }else{
1876         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1877         overrideError = OE_Update;
1878       }
1879     }else if( pTab->pIndex!=0 ){
1880       /* Otherwise, we'll need to run the IndexListTerm array version of the
1881       ** iterator to ensure that all of the ON CONFLICT conditions are
1882       ** checked first and in order. */
1883       int nIdx, jj;
1884       u64 nByte;
1885       Upsert *pTerm;
1886       u8 *bUsed;
1887       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1888          assert( aRegIdx[nIdx]>0 );
1889       }
1890       sIdxIter.eType = 1;
1891       sIdxIter.u.ax.nIdx = nIdx;
1892       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1893       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1894       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1895       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1896       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1897       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1898         if( pTerm->pUpsertTarget==0 ) break;
1899         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1900         jj = 0;
1901         pIdx = pTab->pIndex;
1902         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1903            pIdx = pIdx->pNext;
1904            jj++;
1905         }
1906         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1907         bUsed[jj] = 1;
1908         sIdxIter.u.ax.aIdx[i].p = pIdx;
1909         sIdxIter.u.ax.aIdx[i].ix = jj;
1910         i++;
1911       }
1912       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1913         if( bUsed[jj] ) continue;
1914         sIdxIter.u.ax.aIdx[i].p = pIdx;
1915         sIdxIter.u.ax.aIdx[i].ix = jj;
1916         i++;
1917       }
1918       assert( i==nIdx );
1919     }
1920   }
1921 
1922   /* Determine if it is possible that triggers (either explicitly coded
1923   ** triggers or FK resolution actions) might run as a result of deletes
1924   ** that happen when OE_Replace conflict resolution occurs. (Call these
1925   ** "replace triggers".)  If any replace triggers run, we will need to
1926   ** recheck all of the uniqueness constraints after they have all run.
1927   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1928   **
1929   ** If replace triggers are a possibility, then
1930   **
1931   **   (1) Allocate register regTrigCnt and initialize it to zero.
1932   **       That register will count the number of replace triggers that
1933   **       fire.  Constraint recheck only occurs if the number is positive.
1934   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1935   **   (3) Initialize addrRecheck and lblRecheckOk
1936   **
1937   ** The uniqueness rechecking code will create a series of tests to run
1938   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1939   ** used to link together these tests which are separated from each other
1940   ** in the generate bytecode.
1941   */
1942   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1943     /* There are not DELETE triggers nor FK constraints.  No constraint
1944     ** rechecks are needed. */
1945     pTrigger = 0;
1946     regTrigCnt = 0;
1947   }else{
1948     if( db->flags&SQLITE_RecTriggers ){
1949       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1950       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1951     }else{
1952       pTrigger = 0;
1953       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1954     }
1955     if( regTrigCnt ){
1956       /* Replace triggers might exist.  Allocate the counter and
1957       ** initialize it to zero. */
1958       regTrigCnt = ++pParse->nMem;
1959       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1960       VdbeComment((v, "trigger count"));
1961       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1962       addrRecheck = lblRecheckOk;
1963     }
1964   }
1965 
1966   /* If rowid is changing, make sure the new rowid does not previously
1967   ** exist in the table.
1968   */
1969   if( pkChng && pPk==0 ){
1970     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1971 
1972     /* Figure out what action to take in case of a rowid collision */
1973     onError = pTab->keyConf;
1974     if( overrideError!=OE_Default ){
1975       onError = overrideError;
1976     }else if( onError==OE_Default ){
1977       onError = OE_Abort;
1978     }
1979 
1980     /* figure out whether or not upsert applies in this case */
1981     if( pUpsert ){
1982       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1983       if( pUpsertClause!=0 ){
1984         if( pUpsertClause->isDoUpdate==0 ){
1985           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1986         }else{
1987           onError = OE_Update;  /* DO UPDATE */
1988         }
1989       }
1990       if( pUpsertClause!=pUpsert ){
1991         /* The first ON CONFLICT clause has a conflict target other than
1992         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
1993         ** and then come back here and deal with the IPK afterwards */
1994         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
1995       }
1996     }
1997 
1998     /* If the response to a rowid conflict is REPLACE but the response
1999     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2000     ** to defer the running of the rowid conflict checking until after
2001     ** the UNIQUE constraints have run.
2002     */
2003     if( onError==OE_Replace      /* IPK rule is REPLACE */
2004      && onError!=overrideError   /* Rules for other constraints are different */
2005      && pTab->pIndex             /* There exist other constraints */
2006     ){
2007       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2008       VdbeComment((v, "defer IPK REPLACE until last"));
2009     }
2010 
2011     if( isUpdate ){
2012       /* pkChng!=0 does not mean that the rowid has changed, only that
2013       ** it might have changed.  Skip the conflict logic below if the rowid
2014       ** is unchanged. */
2015       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2016       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2017       VdbeCoverage(v);
2018     }
2019 
2020     /* Check to see if the new rowid already exists in the table.  Skip
2021     ** the following conflict logic if it does not. */
2022     VdbeNoopComment((v, "uniqueness check for ROWID"));
2023     sqlite3VdbeVerifyAbortable(v, onError);
2024     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2025     VdbeCoverage(v);
2026 
2027     switch( onError ){
2028       default: {
2029         onError = OE_Abort;
2030         /* no break */ deliberate_fall_through
2031       }
2032       case OE_Rollback:
2033       case OE_Abort:
2034       case OE_Fail: {
2035         testcase( onError==OE_Rollback );
2036         testcase( onError==OE_Abort );
2037         testcase( onError==OE_Fail );
2038         sqlite3RowidConstraint(pParse, onError, pTab);
2039         break;
2040       }
2041       case OE_Replace: {
2042         /* If there are DELETE triggers on this table and the
2043         ** recursive-triggers flag is set, call GenerateRowDelete() to
2044         ** remove the conflicting row from the table. This will fire
2045         ** the triggers and remove both the table and index b-tree entries.
2046         **
2047         ** Otherwise, if there are no triggers or the recursive-triggers
2048         ** flag is not set, but the table has one or more indexes, call
2049         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2050         ** only. The table b-tree entry will be replaced by the new entry
2051         ** when it is inserted.
2052         **
2053         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2054         ** also invoke MultiWrite() to indicate that this VDBE may require
2055         ** statement rollback (if the statement is aborted after the delete
2056         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2057         ** but being more selective here allows statements like:
2058         **
2059         **   REPLACE INTO t(rowid) VALUES($newrowid)
2060         **
2061         ** to run without a statement journal if there are no indexes on the
2062         ** table.
2063         */
2064         if( regTrigCnt ){
2065           sqlite3MultiWrite(pParse);
2066           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2067                                    regNewData, 1, 0, OE_Replace, 1, -1);
2068           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2069           nReplaceTrig++;
2070         }else{
2071 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2072           assert( HasRowid(pTab) );
2073           /* This OP_Delete opcode fires the pre-update-hook only. It does
2074           ** not modify the b-tree. It is more efficient to let the coming
2075           ** OP_Insert replace the existing entry than it is to delete the
2076           ** existing entry and then insert a new one. */
2077           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2078           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2079 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2080           if( pTab->pIndex ){
2081             sqlite3MultiWrite(pParse);
2082             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2083           }
2084         }
2085         seenReplace = 1;
2086         break;
2087       }
2088 #ifndef SQLITE_OMIT_UPSERT
2089       case OE_Update: {
2090         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2091         /* no break */ deliberate_fall_through
2092       }
2093 #endif
2094       case OE_Ignore: {
2095         testcase( onError==OE_Ignore );
2096         sqlite3VdbeGoto(v, ignoreDest);
2097         break;
2098       }
2099     }
2100     sqlite3VdbeResolveLabel(v, addrRowidOk);
2101     if( pUpsert && pUpsertClause!=pUpsert ){
2102       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2103     }else if( ipkTop ){
2104       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2105       sqlite3VdbeJumpHere(v, ipkTop-1);
2106     }
2107   }
2108 
2109   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2110   ** index and making sure that duplicate entries do not already exist.
2111   ** Compute the revised record entries for indices as we go.
2112   **
2113   ** This loop also handles the case of the PRIMARY KEY index for a
2114   ** WITHOUT ROWID table.
2115   */
2116   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2117       pIdx;
2118       pIdx = indexIteratorNext(&sIdxIter, &ix)
2119   ){
2120     int regIdx;          /* Range of registers hold conent for pIdx */
2121     int regR;            /* Range of registers holding conflicting PK */
2122     int iThisCur;        /* Cursor for this UNIQUE index */
2123     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2124     int addrConflictCk;  /* First opcode in the conflict check logic */
2125 
2126     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2127     if( pUpsert ){
2128       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2129       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2130         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2131       }
2132     }
2133     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2134     if( bAffinityDone==0 ){
2135       sqlite3TableAffinity(v, pTab, regNewData+1);
2136       bAffinityDone = 1;
2137     }
2138     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2139     iThisCur = iIdxCur+ix;
2140 
2141 
2142     /* Skip partial indices for which the WHERE clause is not true */
2143     if( pIdx->pPartIdxWhere ){
2144       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2145       pParse->iSelfTab = -(regNewData+1);
2146       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2147                             SQLITE_JUMPIFNULL);
2148       pParse->iSelfTab = 0;
2149     }
2150 
2151     /* Create a record for this index entry as it should appear after
2152     ** the insert or update.  Store that record in the aRegIdx[ix] register
2153     */
2154     regIdx = aRegIdx[ix]+1;
2155     for(i=0; i<pIdx->nColumn; i++){
2156       int iField = pIdx->aiColumn[i];
2157       int x;
2158       if( iField==XN_EXPR ){
2159         pParse->iSelfTab = -(regNewData+1);
2160         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2161         pParse->iSelfTab = 0;
2162         VdbeComment((v, "%s column %d", pIdx->zName, i));
2163       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2164         x = regNewData;
2165         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2166         VdbeComment((v, "rowid"));
2167       }else{
2168         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2169         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2170         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2171         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2172       }
2173     }
2174     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2175     VdbeComment((v, "for %s", pIdx->zName));
2176 #ifdef SQLITE_ENABLE_NULL_TRIM
2177     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2178       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2179     }
2180 #endif
2181     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2182 
2183     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2184     ** of a WITHOUT ROWID table and there has been no change the
2185     ** primary key, then no collision is possible.  The collision detection
2186     ** logic below can all be skipped. */
2187     if( isUpdate && pPk==pIdx && pkChng==0 ){
2188       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2189       continue;
2190     }
2191 
2192     /* Find out what action to take in case there is a uniqueness conflict */
2193     onError = pIdx->onError;
2194     if( onError==OE_None ){
2195       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2196       continue;  /* pIdx is not a UNIQUE index */
2197     }
2198     if( overrideError!=OE_Default ){
2199       onError = overrideError;
2200     }else if( onError==OE_Default ){
2201       onError = OE_Abort;
2202     }
2203 
2204     /* Figure out if the upsert clause applies to this index */
2205     if( pUpsertClause ){
2206       if( pUpsertClause->isDoUpdate==0 ){
2207         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2208       }else{
2209         onError = OE_Update;  /* DO UPDATE */
2210       }
2211     }
2212 
2213     /* Collision detection may be omitted if all of the following are true:
2214     **   (1) The conflict resolution algorithm is REPLACE
2215     **   (2) The table is a WITHOUT ROWID table
2216     **   (3) There are no secondary indexes on the table
2217     **   (4) No delete triggers need to be fired if there is a conflict
2218     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2219     **
2220     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2221     ** must be explicitly deleted in order to ensure any pre-update hook
2222     ** is invoked.  */
2223 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2224     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2225      && pPk==pIdx                                   /* Condition 2 */
2226      && onError==OE_Replace                         /* Condition 1 */
2227      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2228           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2229      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2230          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2231     ){
2232       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2233       continue;
2234     }
2235 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2236 
2237     /* Check to see if the new index entry will be unique */
2238     sqlite3VdbeVerifyAbortable(v, onError);
2239     addrConflictCk =
2240       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2241                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2242 
2243     /* Generate code to handle collisions */
2244     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2245     if( isUpdate || onError==OE_Replace ){
2246       if( HasRowid(pTab) ){
2247         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2248         /* Conflict only if the rowid of the existing index entry
2249         ** is different from old-rowid */
2250         if( isUpdate ){
2251           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2252           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2253           VdbeCoverage(v);
2254         }
2255       }else{
2256         int x;
2257         /* Extract the PRIMARY KEY from the end of the index entry and
2258         ** store it in registers regR..regR+nPk-1 */
2259         if( pIdx!=pPk ){
2260           for(i=0; i<pPk->nKeyCol; i++){
2261             assert( pPk->aiColumn[i]>=0 );
2262             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2263             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2264             VdbeComment((v, "%s.%s", pTab->zName,
2265                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2266           }
2267         }
2268         if( isUpdate ){
2269           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2270           ** table, only conflict if the new PRIMARY KEY values are actually
2271           ** different from the old.
2272           **
2273           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2274           ** of the matched index row are different from the original PRIMARY
2275           ** KEY values of this row before the update.  */
2276           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2277           int op = OP_Ne;
2278           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2279 
2280           for(i=0; i<pPk->nKeyCol; i++){
2281             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2282             x = pPk->aiColumn[i];
2283             assert( x>=0 );
2284             if( i==(pPk->nKeyCol-1) ){
2285               addrJump = addrUniqueOk;
2286               op = OP_Eq;
2287             }
2288             x = sqlite3TableColumnToStorage(pTab, x);
2289             sqlite3VdbeAddOp4(v, op,
2290                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2291             );
2292             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2293             VdbeCoverageIf(v, op==OP_Eq);
2294             VdbeCoverageIf(v, op==OP_Ne);
2295           }
2296         }
2297       }
2298     }
2299 
2300     /* Generate code that executes if the new index entry is not unique */
2301     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2302         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2303     switch( onError ){
2304       case OE_Rollback:
2305       case OE_Abort:
2306       case OE_Fail: {
2307         testcase( onError==OE_Rollback );
2308         testcase( onError==OE_Abort );
2309         testcase( onError==OE_Fail );
2310         sqlite3UniqueConstraint(pParse, onError, pIdx);
2311         break;
2312       }
2313 #ifndef SQLITE_OMIT_UPSERT
2314       case OE_Update: {
2315         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2316         /* no break */ deliberate_fall_through
2317       }
2318 #endif
2319       case OE_Ignore: {
2320         testcase( onError==OE_Ignore );
2321         sqlite3VdbeGoto(v, ignoreDest);
2322         break;
2323       }
2324       default: {
2325         int nConflictCk;   /* Number of opcodes in conflict check logic */
2326 
2327         assert( onError==OE_Replace );
2328         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2329         assert( nConflictCk>0 );
2330         testcase( nConflictCk>1 );
2331         if( regTrigCnt ){
2332           sqlite3MultiWrite(pParse);
2333           nReplaceTrig++;
2334         }
2335         if( pTrigger && isUpdate ){
2336           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2337         }
2338         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2339             regR, nPkField, 0, OE_Replace,
2340             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2341         if( pTrigger && isUpdate ){
2342           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2343         }
2344         if( regTrigCnt ){
2345           int addrBypass;  /* Jump destination to bypass recheck logic */
2346 
2347           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2348           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2349           VdbeComment((v, "bypass recheck"));
2350 
2351           /* Here we insert code that will be invoked after all constraint
2352           ** checks have run, if and only if one or more replace triggers
2353           ** fired. */
2354           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2355           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2356           if( pIdx->pPartIdxWhere ){
2357             /* Bypass the recheck if this partial index is not defined
2358             ** for the current row */
2359             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2360             VdbeCoverage(v);
2361           }
2362           /* Copy the constraint check code from above, except change
2363           ** the constraint-ok jump destination to be the address of
2364           ** the next retest block */
2365           while( nConflictCk>0 ){
2366             VdbeOp x;    /* Conflict check opcode to copy */
2367             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2368             ** Hence, make a complete copy of the opcode, rather than using
2369             ** a pointer to the opcode. */
2370             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2371             if( x.opcode!=OP_IdxRowid ){
2372               int p2;      /* New P2 value for copied conflict check opcode */
2373               const char *zP4;
2374               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2375                 p2 = lblRecheckOk;
2376               }else{
2377                 p2 = x.p2;
2378               }
2379               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2380               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2381               sqlite3VdbeChangeP5(v, x.p5);
2382               VdbeCoverageIf(v, p2!=x.p2);
2383             }
2384             nConflictCk--;
2385             addrConflictCk++;
2386           }
2387           /* If the retest fails, issue an abort */
2388           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2389 
2390           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2391         }
2392         seenReplace = 1;
2393         break;
2394       }
2395     }
2396     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2397     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2398     if( pUpsertClause
2399      && upsertIpkReturn
2400      && sqlite3UpsertNextIsIPK(pUpsertClause)
2401     ){
2402       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2403       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2404       upsertIpkReturn = 0;
2405     }
2406   }
2407 
2408   /* If the IPK constraint is a REPLACE, run it last */
2409   if( ipkTop ){
2410     sqlite3VdbeGoto(v, ipkTop);
2411     VdbeComment((v, "Do IPK REPLACE"));
2412     sqlite3VdbeJumpHere(v, ipkBottom);
2413   }
2414 
2415   /* Recheck all uniqueness constraints after replace triggers have run */
2416   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2417   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2418   if( nReplaceTrig ){
2419     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2420     if( !pPk ){
2421       if( isUpdate ){
2422         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2423         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2424         VdbeCoverage(v);
2425       }
2426       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2427       VdbeCoverage(v);
2428       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2429     }else{
2430       sqlite3VdbeGoto(v, addrRecheck);
2431     }
2432     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2433   }
2434 
2435   /* Generate the table record */
2436   if( HasRowid(pTab) ){
2437     int regRec = aRegIdx[ix];
2438     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2439     sqlite3SetMakeRecordP5(v, pTab);
2440     if( !bAffinityDone ){
2441       sqlite3TableAffinity(v, pTab, 0);
2442     }
2443   }
2444 
2445   *pbMayReplace = seenReplace;
2446   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2447 }
2448 
2449 #ifdef SQLITE_ENABLE_NULL_TRIM
2450 /*
2451 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2452 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2453 **
2454 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2455 */
2456 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2457   u16 i;
2458 
2459   /* Records with omitted columns are only allowed for schema format
2460   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2461   if( pTab->pSchema->file_format<2 ) return;
2462 
2463   for(i=pTab->nCol-1; i>0; i--){
2464     if( pTab->aCol[i].iDflt!=0 ) break;
2465     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2466   }
2467   sqlite3VdbeChangeP5(v, i+1);
2468 }
2469 #endif
2470 
2471 /*
2472 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2473 ** number is iCur, and register regData contains the new record for the
2474 ** PK index. This function adds code to invoke the pre-update hook,
2475 ** if one is registered.
2476 */
2477 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2478 static void codeWithoutRowidPreupdate(
2479   Parse *pParse,                  /* Parse context */
2480   Table *pTab,                    /* Table being updated */
2481   int iCur,                       /* Cursor number for table */
2482   int regData                     /* Data containing new record */
2483 ){
2484   Vdbe *v = pParse->pVdbe;
2485   int r = sqlite3GetTempReg(pParse);
2486   assert( !HasRowid(pTab) );
2487   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2488   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2489   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2490   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2491   sqlite3ReleaseTempReg(pParse, r);
2492 }
2493 #else
2494 # define codeWithoutRowidPreupdate(a,b,c,d)
2495 #endif
2496 
2497 /*
2498 ** This routine generates code to finish the INSERT or UPDATE operation
2499 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2500 ** A consecutive range of registers starting at regNewData contains the
2501 ** rowid and the content to be inserted.
2502 **
2503 ** The arguments to this routine should be the same as the first six
2504 ** arguments to sqlite3GenerateConstraintChecks.
2505 */
2506 void sqlite3CompleteInsertion(
2507   Parse *pParse,      /* The parser context */
2508   Table *pTab,        /* the table into which we are inserting */
2509   int iDataCur,       /* Cursor of the canonical data source */
2510   int iIdxCur,        /* First index cursor */
2511   int regNewData,     /* Range of content */
2512   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2513   int update_flags,   /* True for UPDATE, False for INSERT */
2514   int appendBias,     /* True if this is likely to be an append */
2515   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2516 ){
2517   Vdbe *v;            /* Prepared statements under construction */
2518   Index *pIdx;        /* An index being inserted or updated */
2519   u8 pik_flags;       /* flag values passed to the btree insert */
2520   int i;              /* Loop counter */
2521 
2522   assert( update_flags==0
2523        || update_flags==OPFLAG_ISUPDATE
2524        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2525   );
2526 
2527   v = pParse->pVdbe;
2528   assert( v!=0 );
2529   assert( !IsView(pTab) );  /* This table is not a VIEW */
2530   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2531     /* All REPLACE indexes are at the end of the list */
2532     assert( pIdx->onError!=OE_Replace
2533          || pIdx->pNext==0
2534          || pIdx->pNext->onError==OE_Replace );
2535     if( aRegIdx[i]==0 ) continue;
2536     if( pIdx->pPartIdxWhere ){
2537       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2538       VdbeCoverage(v);
2539     }
2540     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2541     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2542       assert( pParse->nested==0 );
2543       pik_flags |= OPFLAG_NCHANGE;
2544       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2545       if( update_flags==0 ){
2546         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2547       }
2548     }
2549     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2550                          aRegIdx[i]+1,
2551                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2552     sqlite3VdbeChangeP5(v, pik_flags);
2553   }
2554   if( !HasRowid(pTab) ) return;
2555   if( pParse->nested ){
2556     pik_flags = 0;
2557   }else{
2558     pik_flags = OPFLAG_NCHANGE;
2559     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2560   }
2561   if( appendBias ){
2562     pik_flags |= OPFLAG_APPEND;
2563   }
2564   if( useSeekResult ){
2565     pik_flags |= OPFLAG_USESEEKRESULT;
2566   }
2567   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2568   if( !pParse->nested ){
2569     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2570   }
2571   sqlite3VdbeChangeP5(v, pik_flags);
2572 }
2573 
2574 /*
2575 ** Allocate cursors for the pTab table and all its indices and generate
2576 ** code to open and initialized those cursors.
2577 **
2578 ** The cursor for the object that contains the complete data (normally
2579 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2580 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2581 ** returned in *piIdxCur.  The number of indices is returned.
2582 **
2583 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2584 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2585 ** If iBase is negative, then allocate the next available cursor.
2586 **
2587 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2588 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2589 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2590 ** pTab->pIndex list.
2591 **
2592 ** If pTab is a virtual table, then this routine is a no-op and the
2593 ** *piDataCur and *piIdxCur values are left uninitialized.
2594 */
2595 int sqlite3OpenTableAndIndices(
2596   Parse *pParse,   /* Parsing context */
2597   Table *pTab,     /* Table to be opened */
2598   int op,          /* OP_OpenRead or OP_OpenWrite */
2599   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2600   int iBase,       /* Use this for the table cursor, if there is one */
2601   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2602   int *piDataCur,  /* Write the database source cursor number here */
2603   int *piIdxCur    /* Write the first index cursor number here */
2604 ){
2605   int i;
2606   int iDb;
2607   int iDataCur;
2608   Index *pIdx;
2609   Vdbe *v;
2610 
2611   assert( op==OP_OpenRead || op==OP_OpenWrite );
2612   assert( op==OP_OpenWrite || p5==0 );
2613   if( IsVirtual(pTab) ){
2614     /* This routine is a no-op for virtual tables. Leave the output
2615     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2616     ** can detect if they are used by mistake in the caller. */
2617     return 0;
2618   }
2619   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2620   v = pParse->pVdbe;
2621   assert( v!=0 );
2622   if( iBase<0 ) iBase = pParse->nTab;
2623   iDataCur = iBase++;
2624   if( piDataCur ) *piDataCur = iDataCur;
2625   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2626     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2627   }else{
2628     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2629   }
2630   if( piIdxCur ) *piIdxCur = iBase;
2631   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2632     int iIdxCur = iBase++;
2633     assert( pIdx->pSchema==pTab->pSchema );
2634     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2635       if( piDataCur ) *piDataCur = iIdxCur;
2636       p5 = 0;
2637     }
2638     if( aToOpen==0 || aToOpen[i+1] ){
2639       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2640       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2641       sqlite3VdbeChangeP5(v, p5);
2642       VdbeComment((v, "%s", pIdx->zName));
2643     }
2644   }
2645   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2646   return i;
2647 }
2648 
2649 
2650 #ifdef SQLITE_TEST
2651 /*
2652 ** The following global variable is incremented whenever the
2653 ** transfer optimization is used.  This is used for testing
2654 ** purposes only - to make sure the transfer optimization really
2655 ** is happening when it is supposed to.
2656 */
2657 int sqlite3_xferopt_count;
2658 #endif /* SQLITE_TEST */
2659 
2660 
2661 #ifndef SQLITE_OMIT_XFER_OPT
2662 /*
2663 ** Check to see if index pSrc is compatible as a source of data
2664 ** for index pDest in an insert transfer optimization.  The rules
2665 ** for a compatible index:
2666 **
2667 **    *   The index is over the same set of columns
2668 **    *   The same DESC and ASC markings occurs on all columns
2669 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2670 **    *   The same collating sequence on each column
2671 **    *   The index has the exact same WHERE clause
2672 */
2673 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2674   int i;
2675   assert( pDest && pSrc );
2676   assert( pDest->pTable!=pSrc->pTable );
2677   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2678     return 0;   /* Different number of columns */
2679   }
2680   if( pDest->onError!=pSrc->onError ){
2681     return 0;   /* Different conflict resolution strategies */
2682   }
2683   for(i=0; i<pSrc->nKeyCol; i++){
2684     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2685       return 0;   /* Different columns indexed */
2686     }
2687     if( pSrc->aiColumn[i]==XN_EXPR ){
2688       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2689       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2690                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2691         return 0;   /* Different expressions in the index */
2692       }
2693     }
2694     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2695       return 0;   /* Different sort orders */
2696     }
2697     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2698       return 0;   /* Different collating sequences */
2699     }
2700   }
2701   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2702     return 0;     /* Different WHERE clauses */
2703   }
2704 
2705   /* If no test above fails then the indices must be compatible */
2706   return 1;
2707 }
2708 
2709 /*
2710 ** Attempt the transfer optimization on INSERTs of the form
2711 **
2712 **     INSERT INTO tab1 SELECT * FROM tab2;
2713 **
2714 ** The xfer optimization transfers raw records from tab2 over to tab1.
2715 ** Columns are not decoded and reassembled, which greatly improves
2716 ** performance.  Raw index records are transferred in the same way.
2717 **
2718 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2719 ** There are lots of rules for determining compatibility - see comments
2720 ** embedded in the code for details.
2721 **
2722 ** This routine returns TRUE if the optimization is guaranteed to be used.
2723 ** Sometimes the xfer optimization will only work if the destination table
2724 ** is empty - a factor that can only be determined at run-time.  In that
2725 ** case, this routine generates code for the xfer optimization but also
2726 ** does a test to see if the destination table is empty and jumps over the
2727 ** xfer optimization code if the test fails.  In that case, this routine
2728 ** returns FALSE so that the caller will know to go ahead and generate
2729 ** an unoptimized transfer.  This routine also returns FALSE if there
2730 ** is no chance that the xfer optimization can be applied.
2731 **
2732 ** This optimization is particularly useful at making VACUUM run faster.
2733 */
2734 static int xferOptimization(
2735   Parse *pParse,        /* Parser context */
2736   Table *pDest,         /* The table we are inserting into */
2737   Select *pSelect,      /* A SELECT statement to use as the data source */
2738   int onError,          /* How to handle constraint errors */
2739   int iDbDest           /* The database of pDest */
2740 ){
2741   sqlite3 *db = pParse->db;
2742   ExprList *pEList;                /* The result set of the SELECT */
2743   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2744   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2745   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2746   int i;                           /* Loop counter */
2747   int iDbSrc;                      /* The database of pSrc */
2748   int iSrc, iDest;                 /* Cursors from source and destination */
2749   int addr1, addr2;                /* Loop addresses */
2750   int emptyDestTest = 0;           /* Address of test for empty pDest */
2751   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2752   Vdbe *v;                         /* The VDBE we are building */
2753   int regAutoinc;                  /* Memory register used by AUTOINC */
2754   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2755   int regData, regRowid;           /* Registers holding data and rowid */
2756 
2757   if( pSelect==0 ){
2758     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2759   }
2760   if( pParse->pWith || pSelect->pWith ){
2761     /* Do not attempt to process this query if there are an WITH clauses
2762     ** attached to it. Proceeding may generate a false "no such table: xxx"
2763     ** error if pSelect reads from a CTE named "xxx".  */
2764     return 0;
2765   }
2766   if( sqlite3TriggerList(pParse, pDest) ){
2767     return 0;   /* tab1 must not have triggers */
2768   }
2769 #ifndef SQLITE_OMIT_VIRTUALTABLE
2770   if( IsVirtual(pDest) ){
2771     return 0;   /* tab1 must not be a virtual table */
2772   }
2773 #endif
2774   if( onError==OE_Default ){
2775     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2776     if( onError==OE_Default ) onError = OE_Abort;
2777   }
2778   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2779   if( pSelect->pSrc->nSrc!=1 ){
2780     return 0;   /* FROM clause must have exactly one term */
2781   }
2782   if( pSelect->pSrc->a[0].pSelect ){
2783     return 0;   /* FROM clause cannot contain a subquery */
2784   }
2785   if( pSelect->pWhere ){
2786     return 0;   /* SELECT may not have a WHERE clause */
2787   }
2788   if( pSelect->pOrderBy ){
2789     return 0;   /* SELECT may not have an ORDER BY clause */
2790   }
2791   /* Do not need to test for a HAVING clause.  If HAVING is present but
2792   ** there is no ORDER BY, we will get an error. */
2793   if( pSelect->pGroupBy ){
2794     return 0;   /* SELECT may not have a GROUP BY clause */
2795   }
2796   if( pSelect->pLimit ){
2797     return 0;   /* SELECT may not have a LIMIT clause */
2798   }
2799   if( pSelect->pPrior ){
2800     return 0;   /* SELECT may not be a compound query */
2801   }
2802   if( pSelect->selFlags & SF_Distinct ){
2803     return 0;   /* SELECT may not be DISTINCT */
2804   }
2805   pEList = pSelect->pEList;
2806   assert( pEList!=0 );
2807   if( pEList->nExpr!=1 ){
2808     return 0;   /* The result set must have exactly one column */
2809   }
2810   assert( pEList->a[0].pExpr );
2811   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2812     return 0;   /* The result set must be the special operator "*" */
2813   }
2814 
2815   /* At this point we have established that the statement is of the
2816   ** correct syntactic form to participate in this optimization.  Now
2817   ** we have to check the semantics.
2818   */
2819   pItem = pSelect->pSrc->a;
2820   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2821   if( pSrc==0 ){
2822     return 0;   /* FROM clause does not contain a real table */
2823   }
2824   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2825     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2826     return 0;   /* tab1 and tab2 may not be the same table */
2827   }
2828   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2829     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2830   }
2831   if( !IsOrdinaryTable(pSrc) ){
2832     return 0;   /* tab2 may not be a view or virtual table */
2833   }
2834   if( pDest->nCol!=pSrc->nCol ){
2835     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2836   }
2837   if( pDest->iPKey!=pSrc->iPKey ){
2838     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2839   }
2840   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2841     return 0;   /* Cannot feed from a non-strict into a strict table */
2842   }
2843   for(i=0; i<pDest->nCol; i++){
2844     Column *pDestCol = &pDest->aCol[i];
2845     Column *pSrcCol = &pSrc->aCol[i];
2846 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2847     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2848      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2849     ){
2850       return 0;    /* Neither table may have __hidden__ columns */
2851     }
2852 #endif
2853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2854     /* Even if tables t1 and t2 have identical schemas, if they contain
2855     ** generated columns, then this statement is semantically incorrect:
2856     **
2857     **     INSERT INTO t2 SELECT * FROM t1;
2858     **
2859     ** The reason is that generated column values are returned by the
2860     ** the SELECT statement on the right but the INSERT statement on the
2861     ** left wants them to be omitted.
2862     **
2863     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2864     ** to do a bulk transfer all of the content from t1 over to t2.
2865     **
2866     ** We could, in theory, disable this (except for internal use by the
2867     ** VACUUM command where it is actually needed).  But why do that?  It
2868     ** seems harmless enough, and provides a useful service.
2869     */
2870     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2871         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2872       return 0;    /* Both columns have the same generated-column type */
2873     }
2874     /* But the transfer is only allowed if both the source and destination
2875     ** tables have the exact same expressions for generated columns.
2876     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2877     */
2878     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2879       if( sqlite3ExprCompare(0,
2880              sqlite3ColumnExpr(pSrc, pSrcCol),
2881              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2882         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2883         testcase( pDestCol->colFlags & COLFLAG_STORED );
2884         return 0;  /* Different generator expressions */
2885       }
2886     }
2887 #endif
2888     if( pDestCol->affinity!=pSrcCol->affinity ){
2889       return 0;    /* Affinity must be the same on all columns */
2890     }
2891     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2892                         sqlite3ColumnColl(pSrcCol))!=0 ){
2893       return 0;    /* Collating sequence must be the same on all columns */
2894     }
2895     if( pDestCol->notNull && !pSrcCol->notNull ){
2896       return 0;    /* tab2 must be NOT NULL if tab1 is */
2897     }
2898     /* Default values for second and subsequent columns need to match. */
2899     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2900       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2901       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2902       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2903       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2904       if( (pDestExpr==0)!=(pSrcExpr==0)
2905        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2906                                        pSrcExpr->u.zToken)!=0)
2907       ){
2908         return 0;    /* Default values must be the same for all columns */
2909       }
2910     }
2911   }
2912   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2913     if( IsUniqueIndex(pDestIdx) ){
2914       destHasUniqueIdx = 1;
2915     }
2916     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2917       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2918     }
2919     if( pSrcIdx==0 ){
2920       return 0;    /* pDestIdx has no corresponding index in pSrc */
2921     }
2922     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2923          && sqlite3FaultSim(411)==SQLITE_OK ){
2924       /* The sqlite3FaultSim() call allows this corruption test to be
2925       ** bypassed during testing, in order to exercise other corruption tests
2926       ** further downstream. */
2927       return 0;   /* Corrupt schema - two indexes on the same btree */
2928     }
2929   }
2930 #ifndef SQLITE_OMIT_CHECK
2931   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2932     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2933   }
2934 #endif
2935 #ifndef SQLITE_OMIT_FOREIGN_KEY
2936   /* Disallow the transfer optimization if the destination table constains
2937   ** any foreign key constraints.  This is more restrictive than necessary.
2938   ** But the main beneficiary of the transfer optimization is the VACUUM
2939   ** command, and the VACUUM command disables foreign key constraints.  So
2940   ** the extra complication to make this rule less restrictive is probably
2941   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2942   */
2943   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2944     return 0;
2945   }
2946 #endif
2947   if( (db->flags & SQLITE_CountRows)!=0 ){
2948     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2949   }
2950 
2951   /* If we get this far, it means that the xfer optimization is at
2952   ** least a possibility, though it might only work if the destination
2953   ** table (tab1) is initially empty.
2954   */
2955 #ifdef SQLITE_TEST
2956   sqlite3_xferopt_count++;
2957 #endif
2958   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2959   v = sqlite3GetVdbe(pParse);
2960   sqlite3CodeVerifySchema(pParse, iDbSrc);
2961   iSrc = pParse->nTab++;
2962   iDest = pParse->nTab++;
2963   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2964   regData = sqlite3GetTempReg(pParse);
2965   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2966   regRowid = sqlite3GetTempReg(pParse);
2967   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2968   assert( HasRowid(pDest) || destHasUniqueIdx );
2969   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2970       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2971    || destHasUniqueIdx                              /* (2) */
2972    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2973   )){
2974     /* In some circumstances, we are able to run the xfer optimization
2975     ** only if the destination table is initially empty. Unless the
2976     ** DBFLAG_Vacuum flag is set, this block generates code to make
2977     ** that determination. If DBFLAG_Vacuum is set, then the destination
2978     ** table is always empty.
2979     **
2980     ** Conditions under which the destination must be empty:
2981     **
2982     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2983     **     (If the destination is not initially empty, the rowid fields
2984     **     of index entries might need to change.)
2985     **
2986     ** (2) The destination has a unique index.  (The xfer optimization
2987     **     is unable to test uniqueness.)
2988     **
2989     ** (3) onError is something other than OE_Abort and OE_Rollback.
2990     */
2991     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2992     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2993     sqlite3VdbeJumpHere(v, addr1);
2994   }
2995   if( HasRowid(pSrc) ){
2996     u8 insFlags;
2997     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2998     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2999     if( pDest->iPKey>=0 ){
3000       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3001       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3002         sqlite3VdbeVerifyAbortable(v, onError);
3003         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3004         VdbeCoverage(v);
3005         sqlite3RowidConstraint(pParse, onError, pDest);
3006         sqlite3VdbeJumpHere(v, addr2);
3007       }
3008       autoIncStep(pParse, regAutoinc, regRowid);
3009     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3010       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3011     }else{
3012       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3013       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3014     }
3015 
3016     if( db->mDbFlags & DBFLAG_Vacuum ){
3017       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3018       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3019     }else{
3020       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3021     }
3022 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3023     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3024       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3025       insFlags &= ~OPFLAG_PREFORMAT;
3026     }else
3027 #endif
3028     {
3029       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3030     }
3031     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3032     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3033       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3034     }
3035     sqlite3VdbeChangeP5(v, insFlags);
3036 
3037     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3038     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3039     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3040   }else{
3041     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3042     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3043   }
3044   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3045     u8 idxInsFlags = 0;
3046     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3047       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3048     }
3049     assert( pSrcIdx );
3050     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3051     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3052     VdbeComment((v, "%s", pSrcIdx->zName));
3053     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3054     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3055     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3056     VdbeComment((v, "%s", pDestIdx->zName));
3057     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3058     if( db->mDbFlags & DBFLAG_Vacuum ){
3059       /* This INSERT command is part of a VACUUM operation, which guarantees
3060       ** that the destination table is empty. If all indexed columns use
3061       ** collation sequence BINARY, then it can also be assumed that the
3062       ** index will be populated by inserting keys in strictly sorted
3063       ** order. In this case, instead of seeking within the b-tree as part
3064       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3065       ** OP_IdxInsert to seek to the point within the b-tree where each key
3066       ** should be inserted. This is faster.
3067       **
3068       ** If any of the indexed columns use a collation sequence other than
3069       ** BINARY, this optimization is disabled. This is because the user
3070       ** might change the definition of a collation sequence and then run
3071       ** a VACUUM command. In that case keys may not be written in strictly
3072       ** sorted order.  */
3073       for(i=0; i<pSrcIdx->nColumn; i++){
3074         const char *zColl = pSrcIdx->azColl[i];
3075         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3076       }
3077       if( i==pSrcIdx->nColumn ){
3078         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3079         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3080         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3081       }
3082     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3083       idxInsFlags |= OPFLAG_NCHANGE;
3084     }
3085     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3086       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3087       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3088        && !HasRowid(pDest)
3089        && IsPrimaryKeyIndex(pDestIdx)
3090       ){
3091         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3092       }
3093     }
3094     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3095     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3096     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3097     sqlite3VdbeJumpHere(v, addr1);
3098     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3099     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3100   }
3101   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3102   sqlite3ReleaseTempReg(pParse, regRowid);
3103   sqlite3ReleaseTempReg(pParse, regData);
3104   if( emptyDestTest ){
3105     sqlite3AutoincrementEnd(pParse);
3106     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3107     sqlite3VdbeJumpHere(v, emptyDestTest);
3108     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3109     return 0;
3110   }else{
3111     return 1;
3112   }
3113 }
3114 #endif /* SQLITE_OMIT_XFER_OPT */
3115