xref: /sqlite-3.40.0/src/insert.c (revision b43be55e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum=pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            NONE
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     sqlite3 *db = sqlite3VdbeDb(v);
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       db->mallocFailed = 1;
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
93     }
94     pIdx->zColAff[n] = 0;
95   }
96 
97   return pIdx->zColAff;
98 }
99 
100 /*
101 ** Compute the affinity string for table pTab, if it has not already been
102 ** computed.  As an optimization, omit trailing SQLITE_AFF_NONE affinities.
103 **
104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
106 ** for register iReg and following.  Or if affinities exists and iReg==0,
107 ** then just set the P4 operand of the previous opcode (which should  be
108 ** an OP_MakeRecord) to the affinity string.
109 **
110 ** A column affinity string has one character per column:
111 **
112 **  Character      Column affinity
113 **  ------------------------------
114 **  'A'            NONE
115 **  'B'            TEXT
116 **  'C'            NUMERIC
117 **  'D'            INTEGER
118 **  'E'            REAL
119 */
120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
121   int i;
122   char *zColAff = pTab->zColAff;
123   if( zColAff==0 ){
124     sqlite3 *db = sqlite3VdbeDb(v);
125     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
126     if( !zColAff ){
127       db->mallocFailed = 1;
128       return;
129     }
130 
131     for(i=0; i<pTab->nCol; i++){
132       zColAff[i] = pTab->aCol[i].affinity;
133     }
134     do{
135       zColAff[i--] = 0;
136     }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE );
137     pTab->zColAff = zColAff;
138   }
139   i = sqlite3Strlen30(zColAff);
140   if( i ){
141     if( iReg ){
142       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
143     }else{
144       sqlite3VdbeChangeP4(v, -1, zColAff, i);
145     }
146   }
147 }
148 
149 /*
150 ** Return non-zero if the table pTab in database iDb or any of its indices
151 ** have been opened at any point in the VDBE program. This is used to see if
152 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
153 ** run without using a temporary table for the results of the SELECT.
154 */
155 static int readsTable(Parse *p, int iDb, Table *pTab){
156   Vdbe *v = sqlite3GetVdbe(p);
157   int i;
158   int iEnd = sqlite3VdbeCurrentAddr(v);
159 #ifndef SQLITE_OMIT_VIRTUALTABLE
160   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
161 #endif
162 
163   for(i=1; i<iEnd; i++){
164     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
165     assert( pOp!=0 );
166     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
167       Index *pIndex;
168       int tnum = pOp->p2;
169       if( tnum==pTab->tnum ){
170         return 1;
171       }
172       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
173         if( tnum==pIndex->tnum ){
174           return 1;
175         }
176       }
177     }
178 #ifndef SQLITE_OMIT_VIRTUALTABLE
179     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
180       assert( pOp->p4.pVtab!=0 );
181       assert( pOp->p4type==P4_VTAB );
182       return 1;
183     }
184 #endif
185   }
186   return 0;
187 }
188 
189 #ifndef SQLITE_OMIT_AUTOINCREMENT
190 /*
191 ** Locate or create an AutoincInfo structure associated with table pTab
192 ** which is in database iDb.  Return the register number for the register
193 ** that holds the maximum rowid.
194 **
195 ** There is at most one AutoincInfo structure per table even if the
196 ** same table is autoincremented multiple times due to inserts within
197 ** triggers.  A new AutoincInfo structure is created if this is the
198 ** first use of table pTab.  On 2nd and subsequent uses, the original
199 ** AutoincInfo structure is used.
200 **
201 ** Three memory locations are allocated:
202 **
203 **   (1)  Register to hold the name of the pTab table.
204 **   (2)  Register to hold the maximum ROWID of pTab.
205 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
206 **
207 ** The 2nd register is the one that is returned.  That is all the
208 ** insert routine needs to know about.
209 */
210 static int autoIncBegin(
211   Parse *pParse,      /* Parsing context */
212   int iDb,            /* Index of the database holding pTab */
213   Table *pTab         /* The table we are writing to */
214 ){
215   int memId = 0;      /* Register holding maximum rowid */
216   if( pTab->tabFlags & TF_Autoincrement ){
217     Parse *pToplevel = sqlite3ParseToplevel(pParse);
218     AutoincInfo *pInfo;
219 
220     pInfo = pToplevel->pAinc;
221     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
222     if( pInfo==0 ){
223       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
224       if( pInfo==0 ) return 0;
225       pInfo->pNext = pToplevel->pAinc;
226       pToplevel->pAinc = pInfo;
227       pInfo->pTab = pTab;
228       pInfo->iDb = iDb;
229       pToplevel->nMem++;                  /* Register to hold name of table */
230       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
231       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
232     }
233     memId = pInfo->regCtr;
234   }
235   return memId;
236 }
237 
238 /*
239 ** This routine generates code that will initialize all of the
240 ** register used by the autoincrement tracker.
241 */
242 void sqlite3AutoincrementBegin(Parse *pParse){
243   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
244   sqlite3 *db = pParse->db;  /* The database connection */
245   Db *pDb;                   /* Database only autoinc table */
246   int memId;                 /* Register holding max rowid */
247   int addr;                  /* A VDBE address */
248   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
249 
250   /* This routine is never called during trigger-generation.  It is
251   ** only called from the top-level */
252   assert( pParse->pTriggerTab==0 );
253   assert( pParse==sqlite3ParseToplevel(pParse) );
254 
255   assert( v );   /* We failed long ago if this is not so */
256   for(p = pParse->pAinc; p; p = p->pNext){
257     pDb = &db->aDb[p->iDb];
258     memId = p->regCtr;
259     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
260     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
261     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
262     addr = sqlite3VdbeCurrentAddr(v);
263     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
264     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
265     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
266     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
267     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
268     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
269     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
270     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
271     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
272     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
273     sqlite3VdbeAddOp0(v, OP_Close);
274   }
275 }
276 
277 /*
278 ** Update the maximum rowid for an autoincrement calculation.
279 **
280 ** This routine should be called when the top of the stack holds a
281 ** new rowid that is about to be inserted.  If that new rowid is
282 ** larger than the maximum rowid in the memId memory cell, then the
283 ** memory cell is updated.  The stack is unchanged.
284 */
285 static void autoIncStep(Parse *pParse, int memId, int regRowid){
286   if( memId>0 ){
287     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
288   }
289 }
290 
291 /*
292 ** This routine generates the code needed to write autoincrement
293 ** maximum rowid values back into the sqlite_sequence register.
294 ** Every statement that might do an INSERT into an autoincrement
295 ** table (either directly or through triggers) needs to call this
296 ** routine just before the "exit" code.
297 */
298 void sqlite3AutoincrementEnd(Parse *pParse){
299   AutoincInfo *p;
300   Vdbe *v = pParse->pVdbe;
301   sqlite3 *db = pParse->db;
302 
303   assert( v );
304   for(p = pParse->pAinc; p; p = p->pNext){
305     Db *pDb = &db->aDb[p->iDb];
306     int j1;
307     int iRec;
308     int memId = p->regCtr;
309 
310     iRec = sqlite3GetTempReg(pParse);
311     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
312     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
313     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
314     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
315     sqlite3VdbeJumpHere(v, j1);
316     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
317     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
318     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
319     sqlite3VdbeAddOp0(v, OP_Close);
320     sqlite3ReleaseTempReg(pParse, iRec);
321   }
322 }
323 #else
324 /*
325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
326 ** above are all no-ops
327 */
328 # define autoIncBegin(A,B,C) (0)
329 # define autoIncStep(A,B,C)
330 #endif /* SQLITE_OMIT_AUTOINCREMENT */
331 
332 
333 /* Forward declaration */
334 static int xferOptimization(
335   Parse *pParse,        /* Parser context */
336   Table *pDest,         /* The table we are inserting into */
337   Select *pSelect,      /* A SELECT statement to use as the data source */
338   int onError,          /* How to handle constraint errors */
339   int iDbDest           /* The database of pDest */
340 );
341 
342 /*
343 ** This routine is called to handle SQL of the following forms:
344 **
345 **    insert into TABLE (IDLIST) values(EXPRLIST)
346 **    insert into TABLE (IDLIST) select
347 **
348 ** The IDLIST following the table name is always optional.  If omitted,
349 ** then a list of all columns for the table is substituted.  The IDLIST
350 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
351 **
352 ** The pList parameter holds EXPRLIST in the first form of the INSERT
353 ** statement above, and pSelect is NULL.  For the second form, pList is
354 ** NULL and pSelect is a pointer to the select statement used to generate
355 ** data for the insert.
356 **
357 ** The code generated follows one of four templates.  For a simple
358 ** insert with data coming from a VALUES clause, the code executes
359 ** once straight down through.  Pseudo-code follows (we call this
360 ** the "1st template"):
361 **
362 **         open write cursor to <table> and its indices
363 **         put VALUES clause expressions into registers
364 **         write the resulting record into <table>
365 **         cleanup
366 **
367 ** The three remaining templates assume the statement is of the form
368 **
369 **   INSERT INTO <table> SELECT ...
370 **
371 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
372 ** in other words if the SELECT pulls all columns from a single table
373 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
374 ** if <table2> and <table1> are distinct tables but have identical
375 ** schemas, including all the same indices, then a special optimization
376 ** is invoked that copies raw records from <table2> over to <table1>.
377 ** See the xferOptimization() function for the implementation of this
378 ** template.  This is the 2nd template.
379 **
380 **         open a write cursor to <table>
381 **         open read cursor on <table2>
382 **         transfer all records in <table2> over to <table>
383 **         close cursors
384 **         foreach index on <table>
385 **           open a write cursor on the <table> index
386 **           open a read cursor on the corresponding <table2> index
387 **           transfer all records from the read to the write cursors
388 **           close cursors
389 **         end foreach
390 **
391 ** The 3rd template is for when the second template does not apply
392 ** and the SELECT clause does not read from <table> at any time.
393 ** The generated code follows this template:
394 **
395 **         X <- A
396 **         goto B
397 **      A: setup for the SELECT
398 **         loop over the rows in the SELECT
399 **           load values into registers R..R+n
400 **           yield X
401 **         end loop
402 **         cleanup after the SELECT
403 **         end-coroutine X
404 **      B: open write cursor to <table> and its indices
405 **      C: yield X, at EOF goto D
406 **         insert the select result into <table> from R..R+n
407 **         goto C
408 **      D: cleanup
409 **
410 ** The 4th template is used if the insert statement takes its
411 ** values from a SELECT but the data is being inserted into a table
412 ** that is also read as part of the SELECT.  In the third form,
413 ** we have to use an intermediate table to store the results of
414 ** the select.  The template is like this:
415 **
416 **         X <- A
417 **         goto B
418 **      A: setup for the SELECT
419 **         loop over the tables in the SELECT
420 **           load value into register R..R+n
421 **           yield X
422 **         end loop
423 **         cleanup after the SELECT
424 **         end co-routine R
425 **      B: open temp table
426 **      L: yield X, at EOF goto M
427 **         insert row from R..R+n into temp table
428 **         goto L
429 **      M: open write cursor to <table> and its indices
430 **         rewind temp table
431 **      C: loop over rows of intermediate table
432 **           transfer values form intermediate table into <table>
433 **         end loop
434 **      D: cleanup
435 */
436 void sqlite3Insert(
437   Parse *pParse,        /* Parser context */
438   SrcList *pTabList,    /* Name of table into which we are inserting */
439   Select *pSelect,      /* A SELECT statement to use as the data source */
440   IdList *pColumn,      /* Column names corresponding to IDLIST. */
441   int onError           /* How to handle constraint errors */
442 ){
443   sqlite3 *db;          /* The main database structure */
444   Table *pTab;          /* The table to insert into.  aka TABLE */
445   char *zTab;           /* Name of the table into which we are inserting */
446   const char *zDb;      /* Name of the database holding this table */
447   int i, j, idx;        /* Loop counters */
448   Vdbe *v;              /* Generate code into this virtual machine */
449   Index *pIdx;          /* For looping over indices of the table */
450   int nColumn;          /* Number of columns in the data */
451   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
452   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
453   int iIdxCur = 0;      /* First index cursor */
454   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
455   int endOfLoop;        /* Label for the end of the insertion loop */
456   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
457   int addrInsTop = 0;   /* Jump to label "D" */
458   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
459   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
460   int iDb;              /* Index of database holding TABLE */
461   Db *pDb;              /* The database containing table being inserted into */
462   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
463   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
464   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
465   u8 bIdListInOrder = 1; /* True if IDLIST is in table order */
466   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
467 
468   /* Register allocations */
469   int regFromSelect = 0;/* Base register for data coming from SELECT */
470   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
471   int regRowCount = 0;  /* Memory cell used for the row counter */
472   int regIns;           /* Block of regs holding rowid+data being inserted */
473   int regRowid;         /* registers holding insert rowid */
474   int regData;          /* register holding first column to insert */
475   int *aRegIdx = 0;     /* One register allocated to each index */
476 
477 #ifndef SQLITE_OMIT_TRIGGER
478   int isView;                 /* True if attempting to insert into a view */
479   Trigger *pTrigger;          /* List of triggers on pTab, if required */
480   int tmask;                  /* Mask of trigger times */
481 #endif
482 
483   db = pParse->db;
484   memset(&dest, 0, sizeof(dest));
485   if( pParse->nErr || db->mallocFailed ){
486     goto insert_cleanup;
487   }
488 
489   /* If the Select object is really just a simple VALUES() list with a
490   ** single row values (the common case) then keep that one row of values
491   ** and go ahead and discard the Select object
492   */
493   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
494     pList = pSelect->pEList;
495     pSelect->pEList = 0;
496     sqlite3SelectDelete(db, pSelect);
497     pSelect = 0;
498   }
499 
500   /* Locate the table into which we will be inserting new information.
501   */
502   assert( pTabList->nSrc==1 );
503   zTab = pTabList->a[0].zName;
504   if( NEVER(zTab==0) ) goto insert_cleanup;
505   pTab = sqlite3SrcListLookup(pParse, pTabList);
506   if( pTab==0 ){
507     goto insert_cleanup;
508   }
509   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
510   assert( iDb<db->nDb );
511   pDb = &db->aDb[iDb];
512   zDb = pDb->zName;
513   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
514     goto insert_cleanup;
515   }
516   withoutRowid = !HasRowid(pTab);
517 
518   /* Figure out if we have any triggers and if the table being
519   ** inserted into is a view
520   */
521 #ifndef SQLITE_OMIT_TRIGGER
522   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
523   isView = pTab->pSelect!=0;
524 #else
525 # define pTrigger 0
526 # define tmask 0
527 # define isView 0
528 #endif
529 #ifdef SQLITE_OMIT_VIEW
530 # undef isView
531 # define isView 0
532 #endif
533   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
534 
535   /* If pTab is really a view, make sure it has been initialized.
536   ** ViewGetColumnNames() is a no-op if pTab is not a view.
537   */
538   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
539     goto insert_cleanup;
540   }
541 
542   /* Cannot insert into a read-only table.
543   */
544   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
545     goto insert_cleanup;
546   }
547 
548   /* Allocate a VDBE
549   */
550   v = sqlite3GetVdbe(pParse);
551   if( v==0 ) goto insert_cleanup;
552   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
553   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
554 
555 #ifndef SQLITE_OMIT_XFER_OPT
556   /* If the statement is of the form
557   **
558   **       INSERT INTO <table1> SELECT * FROM <table2>;
559   **
560   ** Then special optimizations can be applied that make the transfer
561   ** very fast and which reduce fragmentation of indices.
562   **
563   ** This is the 2nd template.
564   */
565   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
566     assert( !pTrigger );
567     assert( pList==0 );
568     goto insert_end;
569   }
570 #endif /* SQLITE_OMIT_XFER_OPT */
571 
572   /* If this is an AUTOINCREMENT table, look up the sequence number in the
573   ** sqlite_sequence table and store it in memory cell regAutoinc.
574   */
575   regAutoinc = autoIncBegin(pParse, iDb, pTab);
576 
577   /* Allocate registers for holding the rowid of the new row,
578   ** the content of the new row, and the assembled row record.
579   */
580   regRowid = regIns = pParse->nMem+1;
581   pParse->nMem += pTab->nCol + 1;
582   if( IsVirtual(pTab) ){
583     regRowid++;
584     pParse->nMem++;
585   }
586   regData = regRowid+1;
587 
588   /* If the INSERT statement included an IDLIST term, then make sure
589   ** all elements of the IDLIST really are columns of the table and
590   ** remember the column indices.
591   **
592   ** If the table has an INTEGER PRIMARY KEY column and that column
593   ** is named in the IDLIST, then record in the ipkColumn variable
594   ** the index into IDLIST of the primary key column.  ipkColumn is
595   ** the index of the primary key as it appears in IDLIST, not as
596   ** is appears in the original table.  (The index of the INTEGER
597   ** PRIMARY KEY in the original table is pTab->iPKey.)
598   */
599   if( pColumn ){
600     for(i=0; i<pColumn->nId; i++){
601       pColumn->a[i].idx = -1;
602     }
603     for(i=0; i<pColumn->nId; i++){
604       for(j=0; j<pTab->nCol; j++){
605         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
606           pColumn->a[i].idx = j;
607           if( i!=j ) bIdListInOrder = 0;
608           if( j==pTab->iPKey ){
609             ipkColumn = i;  assert( !withoutRowid );
610           }
611           break;
612         }
613       }
614       if( j>=pTab->nCol ){
615         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
616           ipkColumn = i;
617           bIdListInOrder = 0;
618         }else{
619           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
620               pTabList, 0, pColumn->a[i].zName);
621           pParse->checkSchema = 1;
622           goto insert_cleanup;
623         }
624       }
625     }
626   }
627 
628   /* Figure out how many columns of data are supplied.  If the data
629   ** is coming from a SELECT statement, then generate a co-routine that
630   ** produces a single row of the SELECT on each invocation.  The
631   ** co-routine is the common header to the 3rd and 4th templates.
632   */
633   if( pSelect ){
634     /* Data is coming from a SELECT.  Generate a co-routine to run the SELECT */
635     int regYield;       /* Register holding co-routine entry-point */
636     int addrTop;        /* Top of the co-routine */
637     int rc;             /* Result code */
638 
639     regYield = ++pParse->nMem;
640     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
641     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
642     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
643     dest.iSdst = bIdListInOrder ? regData : 0;
644     dest.nSdst = pTab->nCol;
645     rc = sqlite3Select(pParse, pSelect, &dest);
646     regFromSelect = dest.iSdst;
647     assert( pParse->nErr==0 || rc );
648     if( rc || db->mallocFailed ) goto insert_cleanup;
649     sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
650     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
651     assert( pSelect->pEList );
652     nColumn = pSelect->pEList->nExpr;
653 
654     /* Set useTempTable to TRUE if the result of the SELECT statement
655     ** should be written into a temporary table (template 4).  Set to
656     ** FALSE if each output row of the SELECT can be written directly into
657     ** the destination table (template 3).
658     **
659     ** A temp table must be used if the table being updated is also one
660     ** of the tables being read by the SELECT statement.  Also use a
661     ** temp table in the case of row triggers.
662     */
663     if( pTrigger || readsTable(pParse, iDb, pTab) ){
664       useTempTable = 1;
665     }
666 
667     if( useTempTable ){
668       /* Invoke the coroutine to extract information from the SELECT
669       ** and add it to a transient table srcTab.  The code generated
670       ** here is from the 4th template:
671       **
672       **      B: open temp table
673       **      L: yield X, goto M at EOF
674       **         insert row from R..R+n into temp table
675       **         goto L
676       **      M: ...
677       */
678       int regRec;          /* Register to hold packed record */
679       int regTempRowid;    /* Register to hold temp table ROWID */
680       int addrL;           /* Label "L" */
681 
682       srcTab = pParse->nTab++;
683       regRec = sqlite3GetTempReg(pParse);
684       regTempRowid = sqlite3GetTempReg(pParse);
685       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
686       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
687       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
688       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
689       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
690       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
691       sqlite3VdbeJumpHere(v, addrL);
692       sqlite3ReleaseTempReg(pParse, regRec);
693       sqlite3ReleaseTempReg(pParse, regTempRowid);
694     }
695   }else{
696     /* This is the case if the data for the INSERT is coming from a VALUES
697     ** clause
698     */
699     NameContext sNC;
700     memset(&sNC, 0, sizeof(sNC));
701     sNC.pParse = pParse;
702     srcTab = -1;
703     assert( useTempTable==0 );
704     nColumn = pList ? pList->nExpr : 0;
705     for(i=0; i<nColumn; i++){
706       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
707         goto insert_cleanup;
708       }
709     }
710   }
711 
712   /* If there is no IDLIST term but the table has an integer primary
713   ** key, the set the ipkColumn variable to the integer primary key
714   ** column index in the original table definition.
715   */
716   if( pColumn==0 && nColumn>0 ){
717     ipkColumn = pTab->iPKey;
718   }
719 
720   /* Make sure the number of columns in the source data matches the number
721   ** of columns to be inserted into the table.
722   */
723   if( IsVirtual(pTab) ){
724     for(i=0; i<pTab->nCol; i++){
725       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
726     }
727   }
728   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
729     sqlite3ErrorMsg(pParse,
730        "table %S has %d columns but %d values were supplied",
731        pTabList, 0, pTab->nCol-nHidden, nColumn);
732     goto insert_cleanup;
733   }
734   if( pColumn!=0 && nColumn!=pColumn->nId ){
735     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
736     goto insert_cleanup;
737   }
738 
739   /* Initialize the count of rows to be inserted
740   */
741   if( db->flags & SQLITE_CountRows ){
742     regRowCount = ++pParse->nMem;
743     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
744   }
745 
746   /* If this is not a view, open the table and and all indices */
747   if( !isView ){
748     int nIdx;
749     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
750                                       &iDataCur, &iIdxCur);
751     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
752     if( aRegIdx==0 ){
753       goto insert_cleanup;
754     }
755     for(i=0; i<nIdx; i++){
756       aRegIdx[i] = ++pParse->nMem;
757     }
758   }
759 
760   /* This is the top of the main insertion loop */
761   if( useTempTable ){
762     /* This block codes the top of loop only.  The complete loop is the
763     ** following pseudocode (template 4):
764     **
765     **         rewind temp table, if empty goto D
766     **      C: loop over rows of intermediate table
767     **           transfer values form intermediate table into <table>
768     **         end loop
769     **      D: ...
770     */
771     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
772     addrCont = sqlite3VdbeCurrentAddr(v);
773   }else if( pSelect ){
774     /* This block codes the top of loop only.  The complete loop is the
775     ** following pseudocode (template 3):
776     **
777     **      C: yield X, at EOF goto D
778     **         insert the select result into <table> from R..R+n
779     **         goto C
780     **      D: ...
781     */
782     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
783     VdbeCoverage(v);
784   }
785 
786   /* Run the BEFORE and INSTEAD OF triggers, if there are any
787   */
788   endOfLoop = sqlite3VdbeMakeLabel(v);
789   if( tmask & TRIGGER_BEFORE ){
790     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
791 
792     /* build the NEW.* reference row.  Note that if there is an INTEGER
793     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
794     ** translated into a unique ID for the row.  But on a BEFORE trigger,
795     ** we do not know what the unique ID will be (because the insert has
796     ** not happened yet) so we substitute a rowid of -1
797     */
798     if( ipkColumn<0 ){
799       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
800     }else{
801       int j1;
802       assert( !withoutRowid );
803       if( useTempTable ){
804         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
805       }else{
806         assert( pSelect==0 );  /* Otherwise useTempTable is true */
807         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
808       }
809       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
810       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
811       sqlite3VdbeJumpHere(v, j1);
812       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
813     }
814 
815     /* Cannot have triggers on a virtual table. If it were possible,
816     ** this block would have to account for hidden column.
817     */
818     assert( !IsVirtual(pTab) );
819 
820     /* Create the new column data
821     */
822     for(i=0; i<pTab->nCol; i++){
823       if( pColumn==0 ){
824         j = i;
825       }else{
826         for(j=0; j<pColumn->nId; j++){
827           if( pColumn->a[j].idx==i ) break;
828         }
829       }
830       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
831         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
832       }else if( useTempTable ){
833         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
834       }else{
835         assert( pSelect==0 ); /* Otherwise useTempTable is true */
836         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
837       }
838     }
839 
840     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
841     ** do not attempt any conversions before assembling the record.
842     ** If this is a real table, attempt conversions as required by the
843     ** table column affinities.
844     */
845     if( !isView ){
846       sqlite3TableAffinity(v, pTab, regCols+1);
847     }
848 
849     /* Fire BEFORE or INSTEAD OF triggers */
850     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
851         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
852 
853     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
854   }
855 
856   /* Compute the content of the next row to insert into a range of
857   ** registers beginning at regIns.
858   */
859   if( !isView ){
860     if( IsVirtual(pTab) ){
861       /* The row that the VUpdate opcode will delete: none */
862       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
863     }
864     if( ipkColumn>=0 ){
865       if( useTempTable ){
866         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
867       }else if( pSelect ){
868         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
869       }else{
870         VdbeOp *pOp;
871         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
872         pOp = sqlite3VdbeGetOp(v, -1);
873         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
874           appendFlag = 1;
875           pOp->opcode = OP_NewRowid;
876           pOp->p1 = iDataCur;
877           pOp->p2 = regRowid;
878           pOp->p3 = regAutoinc;
879         }
880       }
881       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
882       ** to generate a unique primary key value.
883       */
884       if( !appendFlag ){
885         int j1;
886         if( !IsVirtual(pTab) ){
887           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
888           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
889           sqlite3VdbeJumpHere(v, j1);
890         }else{
891           j1 = sqlite3VdbeCurrentAddr(v);
892           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
893         }
894         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
895       }
896     }else if( IsVirtual(pTab) || withoutRowid ){
897       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
898     }else{
899       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
900       appendFlag = 1;
901     }
902     autoIncStep(pParse, regAutoinc, regRowid);
903 
904     /* Compute data for all columns of the new entry, beginning
905     ** with the first column.
906     */
907     nHidden = 0;
908     for(i=0; i<pTab->nCol; i++){
909       int iRegStore = regRowid+1+i;
910       if( i==pTab->iPKey ){
911         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
912         ** Whenever this column is read, the rowid will be substituted
913         ** in its place.  Hence, fill this column with a NULL to avoid
914         ** taking up data space with information that will never be used.
915         ** As there may be shallow copies of this value, make it a soft-NULL */
916         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
917         continue;
918       }
919       if( pColumn==0 ){
920         if( IsHiddenColumn(&pTab->aCol[i]) ){
921           assert( IsVirtual(pTab) );
922           j = -1;
923           nHidden++;
924         }else{
925           j = i - nHidden;
926         }
927       }else{
928         for(j=0; j<pColumn->nId; j++){
929           if( pColumn->a[j].idx==i ) break;
930         }
931       }
932       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
933         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
934       }else if( useTempTable ){
935         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
936       }else if( pSelect ){
937         if( regFromSelect!=regData ){
938           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
939         }
940       }else{
941         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
942       }
943     }
944 
945     /* Generate code to check constraints and generate index keys and
946     ** do the insertion.
947     */
948 #ifndef SQLITE_OMIT_VIRTUALTABLE
949     if( IsVirtual(pTab) ){
950       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
951       sqlite3VtabMakeWritable(pParse, pTab);
952       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
953       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
954       sqlite3MayAbort(pParse);
955     }else
956 #endif
957     {
958       int isReplace;    /* Set to true if constraints may cause a replace */
959       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
960           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
961       );
962       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
963       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
964                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
965     }
966   }
967 
968   /* Update the count of rows that are inserted
969   */
970   if( (db->flags & SQLITE_CountRows)!=0 ){
971     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
972   }
973 
974   if( pTrigger ){
975     /* Code AFTER triggers */
976     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
977         pTab, regData-2-pTab->nCol, onError, endOfLoop);
978   }
979 
980   /* The bottom of the main insertion loop, if the data source
981   ** is a SELECT statement.
982   */
983   sqlite3VdbeResolveLabel(v, endOfLoop);
984   if( useTempTable ){
985     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
986     sqlite3VdbeJumpHere(v, addrInsTop);
987     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
988   }else if( pSelect ){
989     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
990     sqlite3VdbeJumpHere(v, addrInsTop);
991   }
992 
993   if( !IsVirtual(pTab) && !isView ){
994     /* Close all tables opened */
995     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
996     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
997       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
998     }
999   }
1000 
1001 insert_end:
1002   /* Update the sqlite_sequence table by storing the content of the
1003   ** maximum rowid counter values recorded while inserting into
1004   ** autoincrement tables.
1005   */
1006   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1007     sqlite3AutoincrementEnd(pParse);
1008   }
1009 
1010   /*
1011   ** Return the number of rows inserted. If this routine is
1012   ** generating code because of a call to sqlite3NestedParse(), do not
1013   ** invoke the callback function.
1014   */
1015   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1016     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1017     sqlite3VdbeSetNumCols(v, 1);
1018     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1019   }
1020 
1021 insert_cleanup:
1022   sqlite3SrcListDelete(db, pTabList);
1023   sqlite3ExprListDelete(db, pList);
1024   sqlite3SelectDelete(db, pSelect);
1025   sqlite3IdListDelete(db, pColumn);
1026   sqlite3DbFree(db, aRegIdx);
1027 }
1028 
1029 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1030 ** they may interfere with compilation of other functions in this file
1031 ** (or in another file, if this file becomes part of the amalgamation).  */
1032 #ifdef isView
1033  #undef isView
1034 #endif
1035 #ifdef pTrigger
1036  #undef pTrigger
1037 #endif
1038 #ifdef tmask
1039  #undef tmask
1040 #endif
1041 
1042 /*
1043 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1044 ** on table pTab.
1045 **
1046 ** The regNewData parameter is the first register in a range that contains
1047 ** the data to be inserted or the data after the update.  There will be
1048 ** pTab->nCol+1 registers in this range.  The first register (the one
1049 ** that regNewData points to) will contain the new rowid, or NULL in the
1050 ** case of a WITHOUT ROWID table.  The second register in the range will
1051 ** contain the content of the first table column.  The third register will
1052 ** contain the content of the second table column.  And so forth.
1053 **
1054 ** The regOldData parameter is similar to regNewData except that it contains
1055 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1056 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1057 ** checking regOldData for zero.
1058 **
1059 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1060 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1061 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1062 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1063 **
1064 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1065 ** was explicitly specified as part of the INSERT statement.  If pkChng
1066 ** is zero, it means that the either rowid is computed automatically or
1067 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1068 ** pkChng will only be true if the INSERT statement provides an integer
1069 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1070 **
1071 ** The code generated by this routine will store new index entries into
1072 ** registers identified by aRegIdx[].  No index entry is created for
1073 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1074 ** the same as the order of indices on the linked list of indices
1075 ** at pTab->pIndex.
1076 **
1077 ** The caller must have already opened writeable cursors on the main
1078 ** table and all applicable indices (that is to say, all indices for which
1079 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1080 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1081 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1082 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1083 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1084 **
1085 ** This routine also generates code to check constraints.  NOT NULL,
1086 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1087 ** then the appropriate action is performed.  There are five possible
1088 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1089 **
1090 **  Constraint type  Action       What Happens
1091 **  ---------------  ----------   ----------------------------------------
1092 **  any              ROLLBACK     The current transaction is rolled back and
1093 **                                sqlite3_step() returns immediately with a
1094 **                                return code of SQLITE_CONSTRAINT.
1095 **
1096 **  any              ABORT        Back out changes from the current command
1097 **                                only (do not do a complete rollback) then
1098 **                                cause sqlite3_step() to return immediately
1099 **                                with SQLITE_CONSTRAINT.
1100 **
1101 **  any              FAIL         Sqlite3_step() returns immediately with a
1102 **                                return code of SQLITE_CONSTRAINT.  The
1103 **                                transaction is not rolled back and any
1104 **                                changes to prior rows are retained.
1105 **
1106 **  any              IGNORE       The attempt in insert or update the current
1107 **                                row is skipped, without throwing an error.
1108 **                                Processing continues with the next row.
1109 **                                (There is an immediate jump to ignoreDest.)
1110 **
1111 **  NOT NULL         REPLACE      The NULL value is replace by the default
1112 **                                value for that column.  If the default value
1113 **                                is NULL, the action is the same as ABORT.
1114 **
1115 **  UNIQUE           REPLACE      The other row that conflicts with the row
1116 **                                being inserted is removed.
1117 **
1118 **  CHECK            REPLACE      Illegal.  The results in an exception.
1119 **
1120 ** Which action to take is determined by the overrideError parameter.
1121 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1122 ** is used.  Or if pParse->onError==OE_Default then the onError value
1123 ** for the constraint is used.
1124 */
1125 void sqlite3GenerateConstraintChecks(
1126   Parse *pParse,       /* The parser context */
1127   Table *pTab,         /* The table being inserted or updated */
1128   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1129   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1130   int iIdxCur,         /* First index cursor */
1131   int regNewData,      /* First register in a range holding values to insert */
1132   int regOldData,      /* Previous content.  0 for INSERTs */
1133   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1134   u8 overrideError,    /* Override onError to this if not OE_Default */
1135   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1136   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
1137 ){
1138   Vdbe *v;             /* VDBE under constrution */
1139   Index *pIdx;         /* Pointer to one of the indices */
1140   Index *pPk = 0;      /* The PRIMARY KEY index */
1141   sqlite3 *db;         /* Database connection */
1142   int i;               /* loop counter */
1143   int ix;              /* Index loop counter */
1144   int nCol;            /* Number of columns */
1145   int onError;         /* Conflict resolution strategy */
1146   int j1;              /* Address of jump instruction */
1147   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1148   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1149   int ipkTop = 0;      /* Top of the rowid change constraint check */
1150   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
1151   u8 isUpdate;         /* True if this is an UPDATE operation */
1152   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1153   int regRowid = -1;   /* Register holding ROWID value */
1154 
1155   isUpdate = regOldData!=0;
1156   db = pParse->db;
1157   v = sqlite3GetVdbe(pParse);
1158   assert( v!=0 );
1159   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1160   nCol = pTab->nCol;
1161 
1162   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1163   ** normal rowid tables.  nPkField is the number of key fields in the
1164   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1165   ** number of fields in the true primary key of the table. */
1166   if( HasRowid(pTab) ){
1167     pPk = 0;
1168     nPkField = 1;
1169   }else{
1170     pPk = sqlite3PrimaryKeyIndex(pTab);
1171     nPkField = pPk->nKeyCol;
1172   }
1173 
1174   /* Record that this module has started */
1175   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1176                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1177 
1178   /* Test all NOT NULL constraints.
1179   */
1180   for(i=0; i<nCol; i++){
1181     if( i==pTab->iPKey ){
1182       continue;
1183     }
1184     onError = pTab->aCol[i].notNull;
1185     if( onError==OE_None ) continue;
1186     if( overrideError!=OE_Default ){
1187       onError = overrideError;
1188     }else if( onError==OE_Default ){
1189       onError = OE_Abort;
1190     }
1191     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1192       onError = OE_Abort;
1193     }
1194     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1195         || onError==OE_Ignore || onError==OE_Replace );
1196     switch( onError ){
1197       case OE_Abort:
1198         sqlite3MayAbort(pParse);
1199         /* Fall through */
1200       case OE_Rollback:
1201       case OE_Fail: {
1202         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1203                                     pTab->aCol[i].zName);
1204         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1205                           regNewData+1+i, zMsg, P4_DYNAMIC);
1206         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1207         VdbeCoverage(v);
1208         break;
1209       }
1210       case OE_Ignore: {
1211         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1212         VdbeCoverage(v);
1213         break;
1214       }
1215       default: {
1216         assert( onError==OE_Replace );
1217         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
1218         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1219         sqlite3VdbeJumpHere(v, j1);
1220         break;
1221       }
1222     }
1223   }
1224 
1225   /* Test all CHECK constraints
1226   */
1227 #ifndef SQLITE_OMIT_CHECK
1228   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1229     ExprList *pCheck = pTab->pCheck;
1230     pParse->ckBase = regNewData+1;
1231     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1232     for(i=0; i<pCheck->nExpr; i++){
1233       int allOk = sqlite3VdbeMakeLabel(v);
1234       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1235       if( onError==OE_Ignore ){
1236         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1237       }else{
1238         char *zName = pCheck->a[i].zName;
1239         if( zName==0 ) zName = pTab->zName;
1240         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1241         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1242                               onError, zName, P4_TRANSIENT,
1243                               P5_ConstraintCheck);
1244       }
1245       sqlite3VdbeResolveLabel(v, allOk);
1246     }
1247   }
1248 #endif /* !defined(SQLITE_OMIT_CHECK) */
1249 
1250   /* If rowid is changing, make sure the new rowid does not previously
1251   ** exist in the table.
1252   */
1253   if( pkChng && pPk==0 ){
1254     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1255 
1256     /* Figure out what action to take in case of a rowid collision */
1257     onError = pTab->keyConf;
1258     if( overrideError!=OE_Default ){
1259       onError = overrideError;
1260     }else if( onError==OE_Default ){
1261       onError = OE_Abort;
1262     }
1263 
1264     if( isUpdate ){
1265       /* pkChng!=0 does not mean that the rowid has change, only that
1266       ** it might have changed.  Skip the conflict logic below if the rowid
1267       ** is unchanged. */
1268       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1269       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1270       VdbeCoverage(v);
1271     }
1272 
1273     /* If the response to a rowid conflict is REPLACE but the response
1274     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1275     ** to defer the running of the rowid conflict checking until after
1276     ** the UNIQUE constraints have run.
1277     */
1278     if( onError==OE_Replace && overrideError!=OE_Replace ){
1279       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1280         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1281           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1282           break;
1283         }
1284       }
1285     }
1286 
1287     /* Check to see if the new rowid already exists in the table.  Skip
1288     ** the following conflict logic if it does not. */
1289     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1290     VdbeCoverage(v);
1291 
1292     /* Generate code that deals with a rowid collision */
1293     switch( onError ){
1294       default: {
1295         onError = OE_Abort;
1296         /* Fall thru into the next case */
1297       }
1298       case OE_Rollback:
1299       case OE_Abort:
1300       case OE_Fail: {
1301         sqlite3RowidConstraint(pParse, onError, pTab);
1302         break;
1303       }
1304       case OE_Replace: {
1305         /* If there are DELETE triggers on this table and the
1306         ** recursive-triggers flag is set, call GenerateRowDelete() to
1307         ** remove the conflicting row from the table. This will fire
1308         ** the triggers and remove both the table and index b-tree entries.
1309         **
1310         ** Otherwise, if there are no triggers or the recursive-triggers
1311         ** flag is not set, but the table has one or more indexes, call
1312         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1313         ** only. The table b-tree entry will be replaced by the new entry
1314         ** when it is inserted.
1315         **
1316         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1317         ** also invoke MultiWrite() to indicate that this VDBE may require
1318         ** statement rollback (if the statement is aborted after the delete
1319         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1320         ** but being more selective here allows statements like:
1321         **
1322         **   REPLACE INTO t(rowid) VALUES($newrowid)
1323         **
1324         ** to run without a statement journal if there are no indexes on the
1325         ** table.
1326         */
1327         Trigger *pTrigger = 0;
1328         if( db->flags&SQLITE_RecTriggers ){
1329           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1330         }
1331         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1332           sqlite3MultiWrite(pParse);
1333           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1334                                    regNewData, 1, 0, OE_Replace, 1);
1335         }else if( pTab->pIndex ){
1336           sqlite3MultiWrite(pParse);
1337           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1338         }
1339         seenReplace = 1;
1340         break;
1341       }
1342       case OE_Ignore: {
1343         /*assert( seenReplace==0 );*/
1344         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1345         break;
1346       }
1347     }
1348     sqlite3VdbeResolveLabel(v, addrRowidOk);
1349     if( ipkTop ){
1350       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1351       sqlite3VdbeJumpHere(v, ipkTop);
1352     }
1353   }
1354 
1355   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1356   ** index and making sure that duplicate entries do not already exist.
1357   ** Compute the revised record entries for indices as we go.
1358   **
1359   ** This loop also handles the case of the PRIMARY KEY index for a
1360   ** WITHOUT ROWID table.
1361   */
1362   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1363     int regIdx;          /* Range of registers hold conent for pIdx */
1364     int regR;            /* Range of registers holding conflicting PK */
1365     int iThisCur;        /* Cursor for this UNIQUE index */
1366     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1367 
1368     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1369     if( bAffinityDone==0 ){
1370       sqlite3TableAffinity(v, pTab, regNewData+1);
1371       bAffinityDone = 1;
1372     }
1373     iThisCur = iIdxCur+ix;
1374     addrUniqueOk = sqlite3VdbeMakeLabel(v);
1375 
1376     /* Skip partial indices for which the WHERE clause is not true */
1377     if( pIdx->pPartIdxWhere ){
1378       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1379       pParse->ckBase = regNewData+1;
1380       sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1381                          SQLITE_JUMPIFNULL);
1382       pParse->ckBase = 0;
1383     }
1384 
1385     /* Create a record for this index entry as it should appear after
1386     ** the insert or update.  Store that record in the aRegIdx[ix] register
1387     */
1388     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1389     for(i=0; i<pIdx->nColumn; i++){
1390       int iField = pIdx->aiColumn[i];
1391       int x;
1392       if( iField<0 || iField==pTab->iPKey ){
1393         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1394         x = regNewData;
1395         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
1396       }else{
1397         x = iField + regNewData + 1;
1398       }
1399       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1400       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1401     }
1402     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1403     VdbeComment((v, "for %s", pIdx->zName));
1404     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1405 
1406     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1407     ** of a WITHOUT ROWID table and there has been no change the
1408     ** primary key, then no collision is possible.  The collision detection
1409     ** logic below can all be skipped. */
1410     if( isUpdate && pPk==pIdx && pkChng==0 ){
1411       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1412       continue;
1413     }
1414 
1415     /* Find out what action to take in case there is a uniqueness conflict */
1416     onError = pIdx->onError;
1417     if( onError==OE_None ){
1418       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1419       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1420       continue;  /* pIdx is not a UNIQUE index */
1421     }
1422     if( overrideError!=OE_Default ){
1423       onError = overrideError;
1424     }else if( onError==OE_Default ){
1425       onError = OE_Abort;
1426     }
1427 
1428     /* Check to see if the new index entry will be unique */
1429     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1430                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1431 
1432     /* Generate code to handle collisions */
1433     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1434     if( isUpdate || onError==OE_Replace ){
1435       if( HasRowid(pTab) ){
1436         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1437         /* Conflict only if the rowid of the existing index entry
1438         ** is different from old-rowid */
1439         if( isUpdate ){
1440           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1441           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1442           VdbeCoverage(v);
1443         }
1444       }else{
1445         int x;
1446         /* Extract the PRIMARY KEY from the end of the index entry and
1447         ** store it in registers regR..regR+nPk-1 */
1448         if( pIdx!=pPk ){
1449           for(i=0; i<pPk->nKeyCol; i++){
1450             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1451             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1452             VdbeComment((v, "%s.%s", pTab->zName,
1453                          pTab->aCol[pPk->aiColumn[i]].zName));
1454           }
1455         }
1456         if( isUpdate ){
1457           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1458           ** table, only conflict if the new PRIMARY KEY values are actually
1459           ** different from the old.
1460           **
1461           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1462           ** of the matched index row are different from the original PRIMARY
1463           ** KEY values of this row before the update.  */
1464           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1465           int op = OP_Ne;
1466           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1467 
1468           for(i=0; i<pPk->nKeyCol; i++){
1469             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1470             x = pPk->aiColumn[i];
1471             if( i==(pPk->nKeyCol-1) ){
1472               addrJump = addrUniqueOk;
1473               op = OP_Eq;
1474             }
1475             sqlite3VdbeAddOp4(v, op,
1476                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1477             );
1478             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1479             VdbeCoverageIf(v, op==OP_Eq);
1480             VdbeCoverageIf(v, op==OP_Ne);
1481           }
1482         }
1483       }
1484     }
1485 
1486     /* Generate code that executes if the new index entry is not unique */
1487     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1488         || onError==OE_Ignore || onError==OE_Replace );
1489     switch( onError ){
1490       case OE_Rollback:
1491       case OE_Abort:
1492       case OE_Fail: {
1493         sqlite3UniqueConstraint(pParse, onError, pIdx);
1494         break;
1495       }
1496       case OE_Ignore: {
1497         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1498         break;
1499       }
1500       default: {
1501         Trigger *pTrigger = 0;
1502         assert( onError==OE_Replace );
1503         sqlite3MultiWrite(pParse);
1504         if( db->flags&SQLITE_RecTriggers ){
1505           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1506         }
1507         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1508                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
1509         seenReplace = 1;
1510         break;
1511       }
1512     }
1513     sqlite3VdbeResolveLabel(v, addrUniqueOk);
1514     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1515     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1516   }
1517   if( ipkTop ){
1518     sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1519     sqlite3VdbeJumpHere(v, ipkBottom);
1520   }
1521 
1522   *pbMayReplace = seenReplace;
1523   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1524 }
1525 
1526 /*
1527 ** This routine generates code to finish the INSERT or UPDATE operation
1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1529 ** A consecutive range of registers starting at regNewData contains the
1530 ** rowid and the content to be inserted.
1531 **
1532 ** The arguments to this routine should be the same as the first six
1533 ** arguments to sqlite3GenerateConstraintChecks.
1534 */
1535 void sqlite3CompleteInsertion(
1536   Parse *pParse,      /* The parser context */
1537   Table *pTab,        /* the table into which we are inserting */
1538   int iDataCur,       /* Cursor of the canonical data source */
1539   int iIdxCur,        /* First index cursor */
1540   int regNewData,     /* Range of content */
1541   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1542   int isUpdate,       /* True for UPDATE, False for INSERT */
1543   int appendBias,     /* True if this is likely to be an append */
1544   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1545 ){
1546   Vdbe *v;            /* Prepared statements under construction */
1547   Index *pIdx;        /* An index being inserted or updated */
1548   u8 pik_flags;       /* flag values passed to the btree insert */
1549   int regData;        /* Content registers (after the rowid) */
1550   int regRec;         /* Register holding assembled record for the table */
1551   int i;              /* Loop counter */
1552   u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1553 
1554   v = sqlite3GetVdbe(pParse);
1555   assert( v!=0 );
1556   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1557   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1558     if( aRegIdx[i]==0 ) continue;
1559     bAffinityDone = 1;
1560     if( pIdx->pPartIdxWhere ){
1561       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1562       VdbeCoverage(v);
1563     }
1564     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1565     pik_flags = 0;
1566     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1567     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1568       assert( pParse->nested==0 );
1569       pik_flags |= OPFLAG_NCHANGE;
1570     }
1571     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
1572   }
1573   if( !HasRowid(pTab) ) return;
1574   regData = regNewData + 1;
1575   regRec = sqlite3GetTempReg(pParse);
1576   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1577   if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1578   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1579   if( pParse->nested ){
1580     pik_flags = 0;
1581   }else{
1582     pik_flags = OPFLAG_NCHANGE;
1583     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1584   }
1585   if( appendBias ){
1586     pik_flags |= OPFLAG_APPEND;
1587   }
1588   if( useSeekResult ){
1589     pik_flags |= OPFLAG_USESEEKRESULT;
1590   }
1591   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1592   if( !pParse->nested ){
1593     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1594   }
1595   sqlite3VdbeChangeP5(v, pik_flags);
1596 }
1597 
1598 /*
1599 ** Allocate cursors for the pTab table and all its indices and generate
1600 ** code to open and initialized those cursors.
1601 **
1602 ** The cursor for the object that contains the complete data (normally
1603 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1604 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1605 ** returned in *piIdxCur.  The number of indices is returned.
1606 **
1607 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1608 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1609 ** If iBase is negative, then allocate the next available cursor.
1610 **
1611 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1612 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1614 ** pTab->pIndex list.
1615 **
1616 ** If pTab is a virtual table, then this routine is a no-op and the
1617 ** *piDataCur and *piIdxCur values are left uninitialized.
1618 */
1619 int sqlite3OpenTableAndIndices(
1620   Parse *pParse,   /* Parsing context */
1621   Table *pTab,     /* Table to be opened */
1622   int op,          /* OP_OpenRead or OP_OpenWrite */
1623   int iBase,       /* Use this for the table cursor, if there is one */
1624   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1625   int *piDataCur,  /* Write the database source cursor number here */
1626   int *piIdxCur    /* Write the first index cursor number here */
1627 ){
1628   int i;
1629   int iDb;
1630   int iDataCur;
1631   Index *pIdx;
1632   Vdbe *v;
1633 
1634   assert( op==OP_OpenRead || op==OP_OpenWrite );
1635   if( IsVirtual(pTab) ){
1636     /* This routine is a no-op for virtual tables. Leave the output
1637     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1638     ** can detect if they are used by mistake in the caller. */
1639     return 0;
1640   }
1641   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1642   v = sqlite3GetVdbe(pParse);
1643   assert( v!=0 );
1644   if( iBase<0 ) iBase = pParse->nTab;
1645   iDataCur = iBase++;
1646   if( piDataCur ) *piDataCur = iDataCur;
1647   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1648     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1649   }else{
1650     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1651   }
1652   if( piIdxCur ) *piIdxCur = iBase;
1653   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1654     int iIdxCur = iBase++;
1655     assert( pIdx->pSchema==pTab->pSchema );
1656     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
1657       *piDataCur = iIdxCur;
1658     }
1659     if( aToOpen==0 || aToOpen[i+1] ){
1660       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1661       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1662       VdbeComment((v, "%s", pIdx->zName));
1663     }
1664   }
1665   if( iBase>pParse->nTab ) pParse->nTab = iBase;
1666   return i;
1667 }
1668 
1669 
1670 #ifdef SQLITE_TEST
1671 /*
1672 ** The following global variable is incremented whenever the
1673 ** transfer optimization is used.  This is used for testing
1674 ** purposes only - to make sure the transfer optimization really
1675 ** is happening when it is supposed to.
1676 */
1677 int sqlite3_xferopt_count;
1678 #endif /* SQLITE_TEST */
1679 
1680 
1681 #ifndef SQLITE_OMIT_XFER_OPT
1682 /*
1683 ** Check to collation names to see if they are compatible.
1684 */
1685 static int xferCompatibleCollation(const char *z1, const char *z2){
1686   if( z1==0 ){
1687     return z2==0;
1688   }
1689   if( z2==0 ){
1690     return 0;
1691   }
1692   return sqlite3StrICmp(z1, z2)==0;
1693 }
1694 
1695 
1696 /*
1697 ** Check to see if index pSrc is compatible as a source of data
1698 ** for index pDest in an insert transfer optimization.  The rules
1699 ** for a compatible index:
1700 **
1701 **    *   The index is over the same set of columns
1702 **    *   The same DESC and ASC markings occurs on all columns
1703 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1704 **    *   The same collating sequence on each column
1705 **    *   The index has the exact same WHERE clause
1706 */
1707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1708   int i;
1709   assert( pDest && pSrc );
1710   assert( pDest->pTable!=pSrc->pTable );
1711   if( pDest->nKeyCol!=pSrc->nKeyCol ){
1712     return 0;   /* Different number of columns */
1713   }
1714   if( pDest->onError!=pSrc->onError ){
1715     return 0;   /* Different conflict resolution strategies */
1716   }
1717   for(i=0; i<pSrc->nKeyCol; i++){
1718     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1719       return 0;   /* Different columns indexed */
1720     }
1721     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1722       return 0;   /* Different sort orders */
1723     }
1724     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1725       return 0;   /* Different collating sequences */
1726     }
1727   }
1728   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1729     return 0;     /* Different WHERE clauses */
1730   }
1731 
1732   /* If no test above fails then the indices must be compatible */
1733   return 1;
1734 }
1735 
1736 /*
1737 ** Attempt the transfer optimization on INSERTs of the form
1738 **
1739 **     INSERT INTO tab1 SELECT * FROM tab2;
1740 **
1741 ** The xfer optimization transfers raw records from tab2 over to tab1.
1742 ** Columns are not decoded and reassembled, which greatly improves
1743 ** performance.  Raw index records are transferred in the same way.
1744 **
1745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1746 ** There are lots of rules for determining compatibility - see comments
1747 ** embedded in the code for details.
1748 **
1749 ** This routine returns TRUE if the optimization is guaranteed to be used.
1750 ** Sometimes the xfer optimization will only work if the destination table
1751 ** is empty - a factor that can only be determined at run-time.  In that
1752 ** case, this routine generates code for the xfer optimization but also
1753 ** does a test to see if the destination table is empty and jumps over the
1754 ** xfer optimization code if the test fails.  In that case, this routine
1755 ** returns FALSE so that the caller will know to go ahead and generate
1756 ** an unoptimized transfer.  This routine also returns FALSE if there
1757 ** is no chance that the xfer optimization can be applied.
1758 **
1759 ** This optimization is particularly useful at making VACUUM run faster.
1760 */
1761 static int xferOptimization(
1762   Parse *pParse,        /* Parser context */
1763   Table *pDest,         /* The table we are inserting into */
1764   Select *pSelect,      /* A SELECT statement to use as the data source */
1765   int onError,          /* How to handle constraint errors */
1766   int iDbDest           /* The database of pDest */
1767 ){
1768   ExprList *pEList;                /* The result set of the SELECT */
1769   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1770   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1771   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1772   int i;                           /* Loop counter */
1773   int iDbSrc;                      /* The database of pSrc */
1774   int iSrc, iDest;                 /* Cursors from source and destination */
1775   int addr1, addr2;                /* Loop addresses */
1776   int emptyDestTest = 0;           /* Address of test for empty pDest */
1777   int emptySrcTest = 0;            /* Address of test for empty pSrc */
1778   Vdbe *v;                         /* The VDBE we are building */
1779   int regAutoinc;                  /* Memory register used by AUTOINC */
1780   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1781   int regData, regRowid;           /* Registers holding data and rowid */
1782 
1783   if( pSelect==0 ){
1784     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1785   }
1786   if( pParse->pWith || pSelect->pWith ){
1787     /* Do not attempt to process this query if there are an WITH clauses
1788     ** attached to it. Proceeding may generate a false "no such table: xxx"
1789     ** error if pSelect reads from a CTE named "xxx".  */
1790     return 0;
1791   }
1792   if( sqlite3TriggerList(pParse, pDest) ){
1793     return 0;   /* tab1 must not have triggers */
1794   }
1795 #ifndef SQLITE_OMIT_VIRTUALTABLE
1796   if( pDest->tabFlags & TF_Virtual ){
1797     return 0;   /* tab1 must not be a virtual table */
1798   }
1799 #endif
1800   if( onError==OE_Default ){
1801     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1802     if( onError==OE_Default ) onError = OE_Abort;
1803   }
1804   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1805   if( pSelect->pSrc->nSrc!=1 ){
1806     return 0;   /* FROM clause must have exactly one term */
1807   }
1808   if( pSelect->pSrc->a[0].pSelect ){
1809     return 0;   /* FROM clause cannot contain a subquery */
1810   }
1811   if( pSelect->pWhere ){
1812     return 0;   /* SELECT may not have a WHERE clause */
1813   }
1814   if( pSelect->pOrderBy ){
1815     return 0;   /* SELECT may not have an ORDER BY clause */
1816   }
1817   /* Do not need to test for a HAVING clause.  If HAVING is present but
1818   ** there is no ORDER BY, we will get an error. */
1819   if( pSelect->pGroupBy ){
1820     return 0;   /* SELECT may not have a GROUP BY clause */
1821   }
1822   if( pSelect->pLimit ){
1823     return 0;   /* SELECT may not have a LIMIT clause */
1824   }
1825   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1826   if( pSelect->pPrior ){
1827     return 0;   /* SELECT may not be a compound query */
1828   }
1829   if( pSelect->selFlags & SF_Distinct ){
1830     return 0;   /* SELECT may not be DISTINCT */
1831   }
1832   pEList = pSelect->pEList;
1833   assert( pEList!=0 );
1834   if( pEList->nExpr!=1 ){
1835     return 0;   /* The result set must have exactly one column */
1836   }
1837   assert( pEList->a[0].pExpr );
1838   if( pEList->a[0].pExpr->op!=TK_ALL ){
1839     return 0;   /* The result set must be the special operator "*" */
1840   }
1841 
1842   /* At this point we have established that the statement is of the
1843   ** correct syntactic form to participate in this optimization.  Now
1844   ** we have to check the semantics.
1845   */
1846   pItem = pSelect->pSrc->a;
1847   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1848   if( pSrc==0 ){
1849     return 0;   /* FROM clause does not contain a real table */
1850   }
1851   if( pSrc==pDest ){
1852     return 0;   /* tab1 and tab2 may not be the same table */
1853   }
1854   if( HasRowid(pDest)!=HasRowid(pSrc) ){
1855     return 0;   /* source and destination must both be WITHOUT ROWID or not */
1856   }
1857 #ifndef SQLITE_OMIT_VIRTUALTABLE
1858   if( pSrc->tabFlags & TF_Virtual ){
1859     return 0;   /* tab2 must not be a virtual table */
1860   }
1861 #endif
1862   if( pSrc->pSelect ){
1863     return 0;   /* tab2 may not be a view */
1864   }
1865   if( pDest->nCol!=pSrc->nCol ){
1866     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1867   }
1868   if( pDest->iPKey!=pSrc->iPKey ){
1869     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1870   }
1871   for(i=0; i<pDest->nCol; i++){
1872     Column *pDestCol = &pDest->aCol[i];
1873     Column *pSrcCol = &pSrc->aCol[i];
1874     if( pDestCol->affinity!=pSrcCol->affinity ){
1875       return 0;    /* Affinity must be the same on all columns */
1876     }
1877     if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
1878       return 0;    /* Collating sequence must be the same on all columns */
1879     }
1880     if( pDestCol->notNull && !pSrcCol->notNull ){
1881       return 0;    /* tab2 must be NOT NULL if tab1 is */
1882     }
1883     /* Default values for second and subsequent columns need to match. */
1884     if( i>0
1885      && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
1886          || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
1887     ){
1888       return 0;    /* Default values must be the same for all columns */
1889     }
1890   }
1891   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1892     if( IsUniqueIndex(pDestIdx) ){
1893       destHasUniqueIdx = 1;
1894     }
1895     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1896       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1897     }
1898     if( pSrcIdx==0 ){
1899       return 0;    /* pDestIdx has no corresponding index in pSrc */
1900     }
1901   }
1902 #ifndef SQLITE_OMIT_CHECK
1903   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1904     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1905   }
1906 #endif
1907 #ifndef SQLITE_OMIT_FOREIGN_KEY
1908   /* Disallow the transfer optimization if the destination table constains
1909   ** any foreign key constraints.  This is more restrictive than necessary.
1910   ** But the main beneficiary of the transfer optimization is the VACUUM
1911   ** command, and the VACUUM command disables foreign key constraints.  So
1912   ** the extra complication to make this rule less restrictive is probably
1913   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1914   */
1915   if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1916     return 0;
1917   }
1918 #endif
1919   if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
1920     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
1921   }
1922 
1923   /* If we get this far, it means that the xfer optimization is at
1924   ** least a possibility, though it might only work if the destination
1925   ** table (tab1) is initially empty.
1926   */
1927 #ifdef SQLITE_TEST
1928   sqlite3_xferopt_count++;
1929 #endif
1930   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1931   v = sqlite3GetVdbe(pParse);
1932   sqlite3CodeVerifySchema(pParse, iDbSrc);
1933   iSrc = pParse->nTab++;
1934   iDest = pParse->nTab++;
1935   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1936   regData = sqlite3GetTempReg(pParse);
1937   regRowid = sqlite3GetTempReg(pParse);
1938   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1939   assert( HasRowid(pDest) || destHasUniqueIdx );
1940   if( (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
1941    || destHasUniqueIdx                              /* (2) */
1942    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
1943   ){
1944     /* In some circumstances, we are able to run the xfer optimization
1945     ** only if the destination table is initially empty.  This code makes
1946     ** that determination.  Conditions under which the destination must
1947     ** be empty:
1948     **
1949     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1950     **     (If the destination is not initially empty, the rowid fields
1951     **     of index entries might need to change.)
1952     **
1953     ** (2) The destination has a unique index.  (The xfer optimization
1954     **     is unable to test uniqueness.)
1955     **
1956     ** (3) onError is something other than OE_Abort and OE_Rollback.
1957     */
1958     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
1959     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1960     sqlite3VdbeJumpHere(v, addr1);
1961   }
1962   if( HasRowid(pSrc) ){
1963     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1964     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
1965     if( pDest->iPKey>=0 ){
1966       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1967       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1968       VdbeCoverage(v);
1969       sqlite3RowidConstraint(pParse, onError, pDest);
1970       sqlite3VdbeJumpHere(v, addr2);
1971       autoIncStep(pParse, regAutoinc, regRowid);
1972     }else if( pDest->pIndex==0 ){
1973       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1974     }else{
1975       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1976       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1977     }
1978     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1979     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1980     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1981     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1982     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
1983     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1984     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1985   }else{
1986     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
1987     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
1988   }
1989   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1990     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
1991       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1992     }
1993     assert( pSrcIdx );
1994     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
1995     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
1996     VdbeComment((v, "%s", pSrcIdx->zName));
1997     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
1998     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
1999     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2000     VdbeComment((v, "%s", pDestIdx->zName));
2001     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2002     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2003     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2004     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2005     sqlite3VdbeJumpHere(v, addr1);
2006     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2007     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2008   }
2009   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2010   sqlite3ReleaseTempReg(pParse, regRowid);
2011   sqlite3ReleaseTempReg(pParse, regData);
2012   if( emptyDestTest ){
2013     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2014     sqlite3VdbeJumpHere(v, emptyDestTest);
2015     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2016     return 0;
2017   }else{
2018     return 1;
2019   }
2020 }
2021 #endif /* SQLITE_OMIT_XFER_OPT */
2022