1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 char aff; 92 if( x>=0 ){ 93 aff = pTab->aCol[x].affinity; 94 }else if( x==XN_ROWID ){ 95 aff = SQLITE_AFF_INTEGER; 96 }else{ 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 } 101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 102 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 103 pIdx->zColAff[n] = aff; 104 } 105 pIdx->zColAff[n] = 0; 106 } 107 108 return pIdx->zColAff; 109 } 110 111 /* 112 ** Compute the affinity string for table pTab, if it has not already been 113 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 114 ** 115 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 116 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 117 ** for register iReg and following. Or if affinities exists and iReg==0, 118 ** then just set the P4 operand of the previous opcode (which should be 119 ** an OP_MakeRecord) to the affinity string. 120 ** 121 ** A column affinity string has one character per column: 122 ** 123 ** Character Column affinity 124 ** ------------------------------ 125 ** 'A' BLOB 126 ** 'B' TEXT 127 ** 'C' NUMERIC 128 ** 'D' INTEGER 129 ** 'E' REAL 130 */ 131 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 132 int i; 133 char *zColAff = pTab->zColAff; 134 if( zColAff==0 ){ 135 sqlite3 *db = sqlite3VdbeDb(v); 136 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 137 if( !zColAff ){ 138 sqlite3OomFault(db); 139 return; 140 } 141 142 for(i=0; i<pTab->nCol; i++){ 143 assert( pTab->aCol[i].affinity!=0 ); 144 zColAff[i] = pTab->aCol[i].affinity; 145 } 146 do{ 147 zColAff[i--] = 0; 148 }while( i>=0 && zColAff[i]<=SQLITE_AFF_BLOB ); 149 pTab->zColAff = zColAff; 150 } 151 assert( zColAff!=0 ); 152 i = sqlite3Strlen30NN(zColAff); 153 if( i ){ 154 if( iReg ){ 155 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 156 }else{ 157 sqlite3VdbeChangeP4(v, -1, zColAff, i); 158 } 159 } 160 } 161 162 /* 163 ** Return non-zero if the table pTab in database iDb or any of its indices 164 ** have been opened at any point in the VDBE program. This is used to see if 165 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 166 ** run without using a temporary table for the results of the SELECT. 167 */ 168 static int readsTable(Parse *p, int iDb, Table *pTab){ 169 Vdbe *v = sqlite3GetVdbe(p); 170 int i; 171 int iEnd = sqlite3VdbeCurrentAddr(v); 172 #ifndef SQLITE_OMIT_VIRTUALTABLE 173 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 174 #endif 175 176 for(i=1; i<iEnd; i++){ 177 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 178 assert( pOp!=0 ); 179 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 180 Index *pIndex; 181 int tnum = pOp->p2; 182 if( tnum==pTab->tnum ){ 183 return 1; 184 } 185 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 186 if( tnum==pIndex->tnum ){ 187 return 1; 188 } 189 } 190 } 191 #ifndef SQLITE_OMIT_VIRTUALTABLE 192 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 193 assert( pOp->p4.pVtab!=0 ); 194 assert( pOp->p4type==P4_VTAB ); 195 return 1; 196 } 197 #endif 198 } 199 return 0; 200 } 201 202 #ifndef SQLITE_OMIT_AUTOINCREMENT 203 /* 204 ** Locate or create an AutoincInfo structure associated with table pTab 205 ** which is in database iDb. Return the register number for the register 206 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 207 ** table. (Also return zero when doing a VACUUM since we do not want to 208 ** update the AUTOINCREMENT counters during a VACUUM.) 209 ** 210 ** There is at most one AutoincInfo structure per table even if the 211 ** same table is autoincremented multiple times due to inserts within 212 ** triggers. A new AutoincInfo structure is created if this is the 213 ** first use of table pTab. On 2nd and subsequent uses, the original 214 ** AutoincInfo structure is used. 215 ** 216 ** Four consecutive registers are allocated: 217 ** 218 ** (1) The name of the pTab table. 219 ** (2) The maximum ROWID of pTab. 220 ** (3) The rowid in sqlite_sequence of pTab 221 ** (4) The original value of the max ROWID in pTab, or NULL if none 222 ** 223 ** The 2nd register is the one that is returned. That is all the 224 ** insert routine needs to know about. 225 */ 226 static int autoIncBegin( 227 Parse *pParse, /* Parsing context */ 228 int iDb, /* Index of the database holding pTab */ 229 Table *pTab /* The table we are writing to */ 230 ){ 231 int memId = 0; /* Register holding maximum rowid */ 232 assert( pParse->db->aDb[iDb].pSchema!=0 ); 233 if( (pTab->tabFlags & TF_Autoincrement)!=0 234 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 235 ){ 236 Parse *pToplevel = sqlite3ParseToplevel(pParse); 237 AutoincInfo *pInfo; 238 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 239 240 /* Verify that the sqlite_sequence table exists and is an ordinary 241 ** rowid table with exactly two columns. 242 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 243 if( pSeqTab==0 244 || !HasRowid(pSeqTab) 245 || IsVirtual(pSeqTab) 246 || pSeqTab->nCol!=2 247 ){ 248 pParse->nErr++; 249 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 250 return 0; 251 } 252 253 pInfo = pToplevel->pAinc; 254 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 255 if( pInfo==0 ){ 256 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 257 if( pInfo==0 ) return 0; 258 pInfo->pNext = pToplevel->pAinc; 259 pToplevel->pAinc = pInfo; 260 pInfo->pTab = pTab; 261 pInfo->iDb = iDb; 262 pToplevel->nMem++; /* Register to hold name of table */ 263 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 264 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 265 } 266 memId = pInfo->regCtr; 267 } 268 return memId; 269 } 270 271 /* 272 ** This routine generates code that will initialize all of the 273 ** register used by the autoincrement tracker. 274 */ 275 void sqlite3AutoincrementBegin(Parse *pParse){ 276 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 277 sqlite3 *db = pParse->db; /* The database connection */ 278 Db *pDb; /* Database only autoinc table */ 279 int memId; /* Register holding max rowid */ 280 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 281 282 /* This routine is never called during trigger-generation. It is 283 ** only called from the top-level */ 284 assert( pParse->pTriggerTab==0 ); 285 assert( sqlite3IsToplevel(pParse) ); 286 287 assert( v ); /* We failed long ago if this is not so */ 288 for(p = pParse->pAinc; p; p = p->pNext){ 289 static const int iLn = VDBE_OFFSET_LINENO(2); 290 static const VdbeOpList autoInc[] = { 291 /* 0 */ {OP_Null, 0, 0, 0}, 292 /* 1 */ {OP_Rewind, 0, 10, 0}, 293 /* 2 */ {OP_Column, 0, 0, 0}, 294 /* 3 */ {OP_Ne, 0, 9, 0}, 295 /* 4 */ {OP_Rowid, 0, 0, 0}, 296 /* 5 */ {OP_Column, 0, 1, 0}, 297 /* 6 */ {OP_AddImm, 0, 0, 0}, 298 /* 7 */ {OP_Copy, 0, 0, 0}, 299 /* 8 */ {OP_Goto, 0, 11, 0}, 300 /* 9 */ {OP_Next, 0, 2, 0}, 301 /* 10 */ {OP_Integer, 0, 0, 0}, 302 /* 11 */ {OP_Close, 0, 0, 0} 303 }; 304 VdbeOp *aOp; 305 pDb = &db->aDb[p->iDb]; 306 memId = p->regCtr; 307 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 308 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 309 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 310 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 311 if( aOp==0 ) break; 312 aOp[0].p2 = memId; 313 aOp[0].p3 = memId+2; 314 aOp[2].p3 = memId; 315 aOp[3].p1 = memId-1; 316 aOp[3].p3 = memId; 317 aOp[3].p5 = SQLITE_JUMPIFNULL; 318 aOp[4].p2 = memId+1; 319 aOp[5].p3 = memId; 320 aOp[6].p1 = memId; 321 aOp[7].p2 = memId+2; 322 aOp[7].p1 = memId; 323 aOp[10].p2 = memId; 324 if( pParse->nTab==0 ) pParse->nTab = 1; 325 } 326 } 327 328 /* 329 ** Update the maximum rowid for an autoincrement calculation. 330 ** 331 ** This routine should be called when the regRowid register holds a 332 ** new rowid that is about to be inserted. If that new rowid is 333 ** larger than the maximum rowid in the memId memory cell, then the 334 ** memory cell is updated. 335 */ 336 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 337 if( memId>0 ){ 338 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 339 } 340 } 341 342 /* 343 ** This routine generates the code needed to write autoincrement 344 ** maximum rowid values back into the sqlite_sequence register. 345 ** Every statement that might do an INSERT into an autoincrement 346 ** table (either directly or through triggers) needs to call this 347 ** routine just before the "exit" code. 348 */ 349 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 350 AutoincInfo *p; 351 Vdbe *v = pParse->pVdbe; 352 sqlite3 *db = pParse->db; 353 354 assert( v ); 355 for(p = pParse->pAinc; p; p = p->pNext){ 356 static const int iLn = VDBE_OFFSET_LINENO(2); 357 static const VdbeOpList autoIncEnd[] = { 358 /* 0 */ {OP_NotNull, 0, 2, 0}, 359 /* 1 */ {OP_NewRowid, 0, 0, 0}, 360 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 361 /* 3 */ {OP_Insert, 0, 0, 0}, 362 /* 4 */ {OP_Close, 0, 0, 0} 363 }; 364 VdbeOp *aOp; 365 Db *pDb = &db->aDb[p->iDb]; 366 int iRec; 367 int memId = p->regCtr; 368 369 iRec = sqlite3GetTempReg(pParse); 370 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 371 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 372 VdbeCoverage(v); 373 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 374 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 375 if( aOp==0 ) break; 376 aOp[0].p1 = memId+1; 377 aOp[1].p2 = memId+1; 378 aOp[2].p1 = memId-1; 379 aOp[2].p3 = iRec; 380 aOp[3].p2 = iRec; 381 aOp[3].p3 = memId+1; 382 aOp[3].p5 = OPFLAG_APPEND; 383 sqlite3ReleaseTempReg(pParse, iRec); 384 } 385 } 386 void sqlite3AutoincrementEnd(Parse *pParse){ 387 if( pParse->pAinc ) autoIncrementEnd(pParse); 388 } 389 #else 390 /* 391 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 392 ** above are all no-ops 393 */ 394 # define autoIncBegin(A,B,C) (0) 395 # define autoIncStep(A,B,C) 396 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 397 398 399 /* Forward declaration */ 400 static int xferOptimization( 401 Parse *pParse, /* Parser context */ 402 Table *pDest, /* The table we are inserting into */ 403 Select *pSelect, /* A SELECT statement to use as the data source */ 404 int onError, /* How to handle constraint errors */ 405 int iDbDest /* The database of pDest */ 406 ); 407 408 /* 409 ** This routine is called to handle SQL of the following forms: 410 ** 411 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 412 ** insert into TABLE (IDLIST) select 413 ** insert into TABLE (IDLIST) default values 414 ** 415 ** The IDLIST following the table name is always optional. If omitted, 416 ** then a list of all (non-hidden) columns for the table is substituted. 417 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 418 ** is omitted. 419 ** 420 ** For the pSelect parameter holds the values to be inserted for the 421 ** first two forms shown above. A VALUES clause is really just short-hand 422 ** for a SELECT statement that omits the FROM clause and everything else 423 ** that follows. If the pSelect parameter is NULL, that means that the 424 ** DEFAULT VALUES form of the INSERT statement is intended. 425 ** 426 ** The code generated follows one of four templates. For a simple 427 ** insert with data coming from a single-row VALUES clause, the code executes 428 ** once straight down through. Pseudo-code follows (we call this 429 ** the "1st template"): 430 ** 431 ** open write cursor to <table> and its indices 432 ** put VALUES clause expressions into registers 433 ** write the resulting record into <table> 434 ** cleanup 435 ** 436 ** The three remaining templates assume the statement is of the form 437 ** 438 ** INSERT INTO <table> SELECT ... 439 ** 440 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 441 ** in other words if the SELECT pulls all columns from a single table 442 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 443 ** if <table2> and <table1> are distinct tables but have identical 444 ** schemas, including all the same indices, then a special optimization 445 ** is invoked that copies raw records from <table2> over to <table1>. 446 ** See the xferOptimization() function for the implementation of this 447 ** template. This is the 2nd template. 448 ** 449 ** open a write cursor to <table> 450 ** open read cursor on <table2> 451 ** transfer all records in <table2> over to <table> 452 ** close cursors 453 ** foreach index on <table> 454 ** open a write cursor on the <table> index 455 ** open a read cursor on the corresponding <table2> index 456 ** transfer all records from the read to the write cursors 457 ** close cursors 458 ** end foreach 459 ** 460 ** The 3rd template is for when the second template does not apply 461 ** and the SELECT clause does not read from <table> at any time. 462 ** The generated code follows this template: 463 ** 464 ** X <- A 465 ** goto B 466 ** A: setup for the SELECT 467 ** loop over the rows in the SELECT 468 ** load values into registers R..R+n 469 ** yield X 470 ** end loop 471 ** cleanup after the SELECT 472 ** end-coroutine X 473 ** B: open write cursor to <table> and its indices 474 ** C: yield X, at EOF goto D 475 ** insert the select result into <table> from R..R+n 476 ** goto C 477 ** D: cleanup 478 ** 479 ** The 4th template is used if the insert statement takes its 480 ** values from a SELECT but the data is being inserted into a table 481 ** that is also read as part of the SELECT. In the third form, 482 ** we have to use an intermediate table to store the results of 483 ** the select. The template is like this: 484 ** 485 ** X <- A 486 ** goto B 487 ** A: setup for the SELECT 488 ** loop over the tables in the SELECT 489 ** load value into register R..R+n 490 ** yield X 491 ** end loop 492 ** cleanup after the SELECT 493 ** end co-routine R 494 ** B: open temp table 495 ** L: yield X, at EOF goto M 496 ** insert row from R..R+n into temp table 497 ** goto L 498 ** M: open write cursor to <table> and its indices 499 ** rewind temp table 500 ** C: loop over rows of intermediate table 501 ** transfer values form intermediate table into <table> 502 ** end loop 503 ** D: cleanup 504 */ 505 void sqlite3Insert( 506 Parse *pParse, /* Parser context */ 507 SrcList *pTabList, /* Name of table into which we are inserting */ 508 Select *pSelect, /* A SELECT statement to use as the data source */ 509 IdList *pColumn, /* Column names corresponding to IDLIST. */ 510 int onError, /* How to handle constraint errors */ 511 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 512 ){ 513 sqlite3 *db; /* The main database structure */ 514 Table *pTab; /* The table to insert into. aka TABLE */ 515 int i, j; /* Loop counters */ 516 Vdbe *v; /* Generate code into this virtual machine */ 517 Index *pIdx; /* For looping over indices of the table */ 518 int nColumn; /* Number of columns in the data */ 519 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 520 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 521 int iIdxCur = 0; /* First index cursor */ 522 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 523 int endOfLoop; /* Label for the end of the insertion loop */ 524 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 525 int addrInsTop = 0; /* Jump to label "D" */ 526 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 527 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 528 int iDb; /* Index of database holding TABLE */ 529 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 530 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 531 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 532 u8 bIdListInOrder; /* True if IDLIST is in table order */ 533 ExprList *pList = 0; /* List of VALUES() to be inserted */ 534 535 /* Register allocations */ 536 int regFromSelect = 0;/* Base register for data coming from SELECT */ 537 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 538 int regRowCount = 0; /* Memory cell used for the row counter */ 539 int regIns; /* Block of regs holding rowid+data being inserted */ 540 int regRowid; /* registers holding insert rowid */ 541 int regData; /* register holding first column to insert */ 542 int *aRegIdx = 0; /* One register allocated to each index */ 543 544 #ifndef SQLITE_OMIT_TRIGGER 545 int isView; /* True if attempting to insert into a view */ 546 Trigger *pTrigger; /* List of triggers on pTab, if required */ 547 int tmask; /* Mask of trigger times */ 548 #endif 549 550 db = pParse->db; 551 if( pParse->nErr || db->mallocFailed ){ 552 goto insert_cleanup; 553 } 554 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 555 556 /* If the Select object is really just a simple VALUES() list with a 557 ** single row (the common case) then keep that one row of values 558 ** and discard the other (unused) parts of the pSelect object 559 */ 560 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 561 pList = pSelect->pEList; 562 pSelect->pEList = 0; 563 sqlite3SelectDelete(db, pSelect); 564 pSelect = 0; 565 } 566 567 /* Locate the table into which we will be inserting new information. 568 */ 569 assert( pTabList->nSrc==1 ); 570 pTab = sqlite3SrcListLookup(pParse, pTabList); 571 if( pTab==0 ){ 572 goto insert_cleanup; 573 } 574 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 575 assert( iDb<db->nDb ); 576 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 577 db->aDb[iDb].zDbSName) ){ 578 goto insert_cleanup; 579 } 580 withoutRowid = !HasRowid(pTab); 581 582 /* Figure out if we have any triggers and if the table being 583 ** inserted into is a view 584 */ 585 #ifndef SQLITE_OMIT_TRIGGER 586 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 587 isView = pTab->pSelect!=0; 588 #else 589 # define pTrigger 0 590 # define tmask 0 591 # define isView 0 592 #endif 593 #ifdef SQLITE_OMIT_VIEW 594 # undef isView 595 # define isView 0 596 #endif 597 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 598 599 /* If pTab is really a view, make sure it has been initialized. 600 ** ViewGetColumnNames() is a no-op if pTab is not a view. 601 */ 602 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 603 goto insert_cleanup; 604 } 605 606 /* Cannot insert into a read-only table. 607 */ 608 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 609 goto insert_cleanup; 610 } 611 612 /* Allocate a VDBE 613 */ 614 v = sqlite3GetVdbe(pParse); 615 if( v==0 ) goto insert_cleanup; 616 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 617 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 618 619 #ifndef SQLITE_OMIT_XFER_OPT 620 /* If the statement is of the form 621 ** 622 ** INSERT INTO <table1> SELECT * FROM <table2>; 623 ** 624 ** Then special optimizations can be applied that make the transfer 625 ** very fast and which reduce fragmentation of indices. 626 ** 627 ** This is the 2nd template. 628 */ 629 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 630 assert( !pTrigger ); 631 assert( pList==0 ); 632 goto insert_end; 633 } 634 #endif /* SQLITE_OMIT_XFER_OPT */ 635 636 /* If this is an AUTOINCREMENT table, look up the sequence number in the 637 ** sqlite_sequence table and store it in memory cell regAutoinc. 638 */ 639 regAutoinc = autoIncBegin(pParse, iDb, pTab); 640 641 /* Allocate registers for holding the rowid of the new row, 642 ** the content of the new row, and the assembled row record. 643 */ 644 regRowid = regIns = pParse->nMem+1; 645 pParse->nMem += pTab->nCol + 1; 646 if( IsVirtual(pTab) ){ 647 regRowid++; 648 pParse->nMem++; 649 } 650 regData = regRowid+1; 651 652 /* If the INSERT statement included an IDLIST term, then make sure 653 ** all elements of the IDLIST really are columns of the table and 654 ** remember the column indices. 655 ** 656 ** If the table has an INTEGER PRIMARY KEY column and that column 657 ** is named in the IDLIST, then record in the ipkColumn variable 658 ** the index into IDLIST of the primary key column. ipkColumn is 659 ** the index of the primary key as it appears in IDLIST, not as 660 ** is appears in the original table. (The index of the INTEGER 661 ** PRIMARY KEY in the original table is pTab->iPKey.) 662 */ 663 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 664 if( pColumn ){ 665 for(i=0; i<pColumn->nId; i++){ 666 pColumn->a[i].idx = -1; 667 } 668 for(i=0; i<pColumn->nId; i++){ 669 for(j=0; j<pTab->nCol; j++){ 670 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 671 pColumn->a[i].idx = j; 672 if( i!=j ) bIdListInOrder = 0; 673 if( j==pTab->iPKey ){ 674 ipkColumn = i; assert( !withoutRowid ); 675 } 676 break; 677 } 678 } 679 if( j>=pTab->nCol ){ 680 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 681 ipkColumn = i; 682 bIdListInOrder = 0; 683 }else{ 684 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 685 pTabList, 0, pColumn->a[i].zName); 686 pParse->checkSchema = 1; 687 goto insert_cleanup; 688 } 689 } 690 } 691 } 692 693 /* Figure out how many columns of data are supplied. If the data 694 ** is coming from a SELECT statement, then generate a co-routine that 695 ** produces a single row of the SELECT on each invocation. The 696 ** co-routine is the common header to the 3rd and 4th templates. 697 */ 698 if( pSelect ){ 699 /* Data is coming from a SELECT or from a multi-row VALUES clause. 700 ** Generate a co-routine to run the SELECT. */ 701 int regYield; /* Register holding co-routine entry-point */ 702 int addrTop; /* Top of the co-routine */ 703 int rc; /* Result code */ 704 705 regYield = ++pParse->nMem; 706 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 707 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 708 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 709 dest.iSdst = bIdListInOrder ? regData : 0; 710 dest.nSdst = pTab->nCol; 711 rc = sqlite3Select(pParse, pSelect, &dest); 712 regFromSelect = dest.iSdst; 713 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 714 sqlite3VdbeEndCoroutine(v, regYield); 715 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 716 assert( pSelect->pEList ); 717 nColumn = pSelect->pEList->nExpr; 718 719 /* Set useTempTable to TRUE if the result of the SELECT statement 720 ** should be written into a temporary table (template 4). Set to 721 ** FALSE if each output row of the SELECT can be written directly into 722 ** the destination table (template 3). 723 ** 724 ** A temp table must be used if the table being updated is also one 725 ** of the tables being read by the SELECT statement. Also use a 726 ** temp table in the case of row triggers. 727 */ 728 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 729 useTempTable = 1; 730 } 731 732 if( useTempTable ){ 733 /* Invoke the coroutine to extract information from the SELECT 734 ** and add it to a transient table srcTab. The code generated 735 ** here is from the 4th template: 736 ** 737 ** B: open temp table 738 ** L: yield X, goto M at EOF 739 ** insert row from R..R+n into temp table 740 ** goto L 741 ** M: ... 742 */ 743 int regRec; /* Register to hold packed record */ 744 int regTempRowid; /* Register to hold temp table ROWID */ 745 int addrL; /* Label "L" */ 746 747 srcTab = pParse->nTab++; 748 regRec = sqlite3GetTempReg(pParse); 749 regTempRowid = sqlite3GetTempReg(pParse); 750 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 751 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 752 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 753 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 754 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 755 sqlite3VdbeGoto(v, addrL); 756 sqlite3VdbeJumpHere(v, addrL); 757 sqlite3ReleaseTempReg(pParse, regRec); 758 sqlite3ReleaseTempReg(pParse, regTempRowid); 759 } 760 }else{ 761 /* This is the case if the data for the INSERT is coming from a 762 ** single-row VALUES clause 763 */ 764 NameContext sNC; 765 memset(&sNC, 0, sizeof(sNC)); 766 sNC.pParse = pParse; 767 srcTab = -1; 768 assert( useTempTable==0 ); 769 if( pList ){ 770 nColumn = pList->nExpr; 771 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 772 goto insert_cleanup; 773 } 774 }else{ 775 nColumn = 0; 776 } 777 } 778 779 /* If there is no IDLIST term but the table has an integer primary 780 ** key, the set the ipkColumn variable to the integer primary key 781 ** column index in the original table definition. 782 */ 783 if( pColumn==0 && nColumn>0 ){ 784 ipkColumn = pTab->iPKey; 785 } 786 787 /* Make sure the number of columns in the source data matches the number 788 ** of columns to be inserted into the table. 789 */ 790 for(i=0; i<pTab->nCol; i++){ 791 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 792 } 793 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 794 sqlite3ErrorMsg(pParse, 795 "table %S has %d columns but %d values were supplied", 796 pTabList, 0, pTab->nCol-nHidden, nColumn); 797 goto insert_cleanup; 798 } 799 if( pColumn!=0 && nColumn!=pColumn->nId ){ 800 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 801 goto insert_cleanup; 802 } 803 804 /* Initialize the count of rows to be inserted 805 */ 806 if( (db->flags & SQLITE_CountRows)!=0 807 && !pParse->nested 808 && !pParse->pTriggerTab 809 ){ 810 regRowCount = ++pParse->nMem; 811 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 812 } 813 814 /* If this is not a view, open the table and and all indices */ 815 if( !isView ){ 816 int nIdx; 817 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 818 &iDataCur, &iIdxCur); 819 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 820 if( aRegIdx==0 ){ 821 goto insert_cleanup; 822 } 823 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 824 assert( pIdx ); 825 aRegIdx[i] = ++pParse->nMem; 826 pParse->nMem += pIdx->nColumn; 827 } 828 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 829 } 830 #ifndef SQLITE_OMIT_UPSERT 831 if( pUpsert ){ 832 if( IsVirtual(pTab) ){ 833 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 834 pTab->zName); 835 goto insert_cleanup; 836 } 837 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 838 goto insert_cleanup; 839 } 840 pTabList->a[0].iCursor = iDataCur; 841 pUpsert->pUpsertSrc = pTabList; 842 pUpsert->regData = regData; 843 pUpsert->iDataCur = iDataCur; 844 pUpsert->iIdxCur = iIdxCur; 845 if( pUpsert->pUpsertTarget ){ 846 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 847 } 848 } 849 #endif 850 851 852 /* This is the top of the main insertion loop */ 853 if( useTempTable ){ 854 /* This block codes the top of loop only. The complete loop is the 855 ** following pseudocode (template 4): 856 ** 857 ** rewind temp table, if empty goto D 858 ** C: loop over rows of intermediate table 859 ** transfer values form intermediate table into <table> 860 ** end loop 861 ** D: ... 862 */ 863 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 864 addrCont = sqlite3VdbeCurrentAddr(v); 865 }else if( pSelect ){ 866 /* This block codes the top of loop only. The complete loop is the 867 ** following pseudocode (template 3): 868 ** 869 ** C: yield X, at EOF goto D 870 ** insert the select result into <table> from R..R+n 871 ** goto C 872 ** D: ... 873 */ 874 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 875 VdbeCoverage(v); 876 } 877 878 /* Run the BEFORE and INSTEAD OF triggers, if there are any 879 */ 880 endOfLoop = sqlite3VdbeMakeLabel(pParse); 881 if( tmask & TRIGGER_BEFORE ){ 882 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 883 884 /* build the NEW.* reference row. Note that if there is an INTEGER 885 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 886 ** translated into a unique ID for the row. But on a BEFORE trigger, 887 ** we do not know what the unique ID will be (because the insert has 888 ** not happened yet) so we substitute a rowid of -1 889 */ 890 if( ipkColumn<0 ){ 891 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 892 }else{ 893 int addr1; 894 assert( !withoutRowid ); 895 if( useTempTable ){ 896 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 897 }else{ 898 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 899 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 900 } 901 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 902 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 903 sqlite3VdbeJumpHere(v, addr1); 904 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 905 } 906 907 /* Cannot have triggers on a virtual table. If it were possible, 908 ** this block would have to account for hidden column. 909 */ 910 assert( !IsVirtual(pTab) ); 911 912 /* Create the new column data 913 */ 914 for(i=j=0; i<pTab->nCol; i++){ 915 if( pColumn ){ 916 for(j=0; j<pColumn->nId; j++){ 917 if( pColumn->a[j].idx==i ) break; 918 } 919 } 920 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 921 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 922 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 923 }else if( useTempTable ){ 924 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 925 }else{ 926 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 927 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 928 } 929 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 930 } 931 932 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 933 ** do not attempt any conversions before assembling the record. 934 ** If this is a real table, attempt conversions as required by the 935 ** table column affinities. 936 */ 937 if( !isView ){ 938 sqlite3TableAffinity(v, pTab, regCols+1); 939 } 940 941 /* Fire BEFORE or INSTEAD OF triggers */ 942 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 943 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 944 945 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 946 } 947 948 /* Compute the content of the next row to insert into a range of 949 ** registers beginning at regIns. 950 */ 951 if( !isView ){ 952 if( IsVirtual(pTab) ){ 953 /* The row that the VUpdate opcode will delete: none */ 954 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 955 } 956 if( ipkColumn>=0 ){ 957 if( useTempTable ){ 958 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 959 }else if( pSelect ){ 960 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 961 }else{ 962 Expr *pIpk = pList->a[ipkColumn].pExpr; 963 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 964 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 965 appendFlag = 1; 966 }else{ 967 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 968 } 969 } 970 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 971 ** to generate a unique primary key value. 972 */ 973 if( !appendFlag ){ 974 int addr1; 975 if( !IsVirtual(pTab) ){ 976 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 977 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 978 sqlite3VdbeJumpHere(v, addr1); 979 }else{ 980 addr1 = sqlite3VdbeCurrentAddr(v); 981 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 982 } 983 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 984 } 985 }else if( IsVirtual(pTab) || withoutRowid ){ 986 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 987 }else{ 988 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 989 appendFlag = 1; 990 } 991 autoIncStep(pParse, regAutoinc, regRowid); 992 993 /* Compute data for all columns of the new entry, beginning 994 ** with the first column. 995 */ 996 nHidden = 0; 997 for(i=0; i<pTab->nCol; i++){ 998 int iRegStore = regRowid+1+i; 999 if( i==pTab->iPKey ){ 1000 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 1001 ** Whenever this column is read, the rowid will be substituted 1002 ** in its place. Hence, fill this column with a NULL to avoid 1003 ** taking up data space with information that will never be used. 1004 ** As there may be shallow copies of this value, make it a soft-NULL */ 1005 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1006 continue; 1007 } 1008 if( pColumn==0 ){ 1009 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1010 j = -1; 1011 nHidden++; 1012 }else{ 1013 j = i - nHidden; 1014 } 1015 }else{ 1016 for(j=0; j<pColumn->nId; j++){ 1017 if( pColumn->a[j].idx==i ) break; 1018 } 1019 } 1020 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1021 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1022 }else if( useTempTable ){ 1023 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1024 }else if( pSelect ){ 1025 if( regFromSelect!=regData ){ 1026 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1027 } 1028 }else{ 1029 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1030 } 1031 } 1032 1033 /* Generate code to check constraints and generate index keys and 1034 ** do the insertion. 1035 */ 1036 #ifndef SQLITE_OMIT_VIRTUALTABLE 1037 if( IsVirtual(pTab) ){ 1038 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1039 sqlite3VtabMakeWritable(pParse, pTab); 1040 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1041 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1042 sqlite3MayAbort(pParse); 1043 }else 1044 #endif 1045 { 1046 int isReplace; /* Set to true if constraints may cause a replace */ 1047 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1048 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1049 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1050 ); 1051 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1052 1053 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1054 ** constraints or (b) there are no triggers and this table is not a 1055 ** parent table in a foreign key constraint. It is safe to set the 1056 ** flag in the second case as if any REPLACE constraint is hit, an 1057 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1058 ** cursor that is disturbed. And these instructions both clear the 1059 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1060 ** functionality. */ 1061 bUseSeek = (isReplace==0 || (pTrigger==0 && 1062 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1063 )); 1064 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1065 regIns, aRegIdx, 0, appendFlag, bUseSeek 1066 ); 1067 } 1068 } 1069 1070 /* Update the count of rows that are inserted 1071 */ 1072 if( regRowCount ){ 1073 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1074 } 1075 1076 if( pTrigger ){ 1077 /* Code AFTER triggers */ 1078 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1079 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1080 } 1081 1082 /* The bottom of the main insertion loop, if the data source 1083 ** is a SELECT statement. 1084 */ 1085 sqlite3VdbeResolveLabel(v, endOfLoop); 1086 if( useTempTable ){ 1087 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1088 sqlite3VdbeJumpHere(v, addrInsTop); 1089 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1090 }else if( pSelect ){ 1091 sqlite3VdbeGoto(v, addrCont); 1092 sqlite3VdbeJumpHere(v, addrInsTop); 1093 } 1094 1095 insert_end: 1096 /* Update the sqlite_sequence table by storing the content of the 1097 ** maximum rowid counter values recorded while inserting into 1098 ** autoincrement tables. 1099 */ 1100 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1101 sqlite3AutoincrementEnd(pParse); 1102 } 1103 1104 /* 1105 ** Return the number of rows inserted. If this routine is 1106 ** generating code because of a call to sqlite3NestedParse(), do not 1107 ** invoke the callback function. 1108 */ 1109 if( regRowCount ){ 1110 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1111 sqlite3VdbeSetNumCols(v, 1); 1112 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1113 } 1114 1115 insert_cleanup: 1116 sqlite3SrcListDelete(db, pTabList); 1117 sqlite3ExprListDelete(db, pList); 1118 sqlite3UpsertDelete(db, pUpsert); 1119 sqlite3SelectDelete(db, pSelect); 1120 sqlite3IdListDelete(db, pColumn); 1121 sqlite3DbFree(db, aRegIdx); 1122 } 1123 1124 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1125 ** they may interfere with compilation of other functions in this file 1126 ** (or in another file, if this file becomes part of the amalgamation). */ 1127 #ifdef isView 1128 #undef isView 1129 #endif 1130 #ifdef pTrigger 1131 #undef pTrigger 1132 #endif 1133 #ifdef tmask 1134 #undef tmask 1135 #endif 1136 1137 /* 1138 ** Meanings of bits in of pWalker->eCode for 1139 ** sqlite3ExprReferencesUpdatedColumn() 1140 */ 1141 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1142 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1143 1144 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1145 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1146 ** expression node references any of the 1147 ** columns that are being modifed by an UPDATE statement. 1148 */ 1149 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1150 if( pExpr->op==TK_COLUMN ){ 1151 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1152 if( pExpr->iColumn>=0 ){ 1153 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1154 pWalker->eCode |= CKCNSTRNT_COLUMN; 1155 } 1156 }else{ 1157 pWalker->eCode |= CKCNSTRNT_ROWID; 1158 } 1159 } 1160 return WRC_Continue; 1161 } 1162 1163 /* 1164 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1165 ** only columns that are modified by the UPDATE are those for which 1166 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1167 ** 1168 ** Return true if CHECK constraint pExpr uses any of the 1169 ** changing columns (or the rowid if it is changing). In other words, 1170 ** return true if this CHECK constraint must be validated for 1171 ** the new row in the UPDATE statement. 1172 ** 1173 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1174 ** The operation of this routine is the same - return true if an only if 1175 ** the expression uses one or more of columns identified by the second and 1176 ** third arguments. 1177 */ 1178 int sqlite3ExprReferencesUpdatedColumn( 1179 Expr *pExpr, /* The expression to be checked */ 1180 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1181 int chngRowid /* True if UPDATE changes the rowid */ 1182 ){ 1183 Walker w; 1184 memset(&w, 0, sizeof(w)); 1185 w.eCode = 0; 1186 w.xExprCallback = checkConstraintExprNode; 1187 w.u.aiCol = aiChng; 1188 sqlite3WalkExpr(&w, pExpr); 1189 if( !chngRowid ){ 1190 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1191 w.eCode &= ~CKCNSTRNT_ROWID; 1192 } 1193 testcase( w.eCode==0 ); 1194 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1195 testcase( w.eCode==CKCNSTRNT_ROWID ); 1196 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1197 return w.eCode!=0; 1198 } 1199 1200 /* 1201 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1202 ** on table pTab. 1203 ** 1204 ** The regNewData parameter is the first register in a range that contains 1205 ** the data to be inserted or the data after the update. There will be 1206 ** pTab->nCol+1 registers in this range. The first register (the one 1207 ** that regNewData points to) will contain the new rowid, or NULL in the 1208 ** case of a WITHOUT ROWID table. The second register in the range will 1209 ** contain the content of the first table column. The third register will 1210 ** contain the content of the second table column. And so forth. 1211 ** 1212 ** The regOldData parameter is similar to regNewData except that it contains 1213 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1214 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1215 ** checking regOldData for zero. 1216 ** 1217 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1218 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1219 ** might be modified by the UPDATE. If pkChng is false, then the key of 1220 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1221 ** 1222 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1223 ** was explicitly specified as part of the INSERT statement. If pkChng 1224 ** is zero, it means that the either rowid is computed automatically or 1225 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1226 ** pkChng will only be true if the INSERT statement provides an integer 1227 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1228 ** 1229 ** The code generated by this routine will store new index entries into 1230 ** registers identified by aRegIdx[]. No index entry is created for 1231 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1232 ** the same as the order of indices on the linked list of indices 1233 ** at pTab->pIndex. 1234 ** 1235 ** (2019-05-07) The generated code also creates a new record for the 1236 ** main table, if pTab is a rowid table, and stores that record in the 1237 ** register identified by aRegIdx[nIdx] - in other words in the first 1238 ** entry of aRegIdx[] past the last index. It is important that the 1239 ** record be generated during constraint checks to avoid affinity changes 1240 ** to the register content that occur after constraint checks but before 1241 ** the new record is inserted. 1242 ** 1243 ** The caller must have already opened writeable cursors on the main 1244 ** table and all applicable indices (that is to say, all indices for which 1245 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1246 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1247 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1248 ** for the first index in the pTab->pIndex list. Cursors for other indices 1249 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1250 ** 1251 ** This routine also generates code to check constraints. NOT NULL, 1252 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1253 ** then the appropriate action is performed. There are five possible 1254 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1255 ** 1256 ** Constraint type Action What Happens 1257 ** --------------- ---------- ---------------------------------------- 1258 ** any ROLLBACK The current transaction is rolled back and 1259 ** sqlite3_step() returns immediately with a 1260 ** return code of SQLITE_CONSTRAINT. 1261 ** 1262 ** any ABORT Back out changes from the current command 1263 ** only (do not do a complete rollback) then 1264 ** cause sqlite3_step() to return immediately 1265 ** with SQLITE_CONSTRAINT. 1266 ** 1267 ** any FAIL Sqlite3_step() returns immediately with a 1268 ** return code of SQLITE_CONSTRAINT. The 1269 ** transaction is not rolled back and any 1270 ** changes to prior rows are retained. 1271 ** 1272 ** any IGNORE The attempt in insert or update the current 1273 ** row is skipped, without throwing an error. 1274 ** Processing continues with the next row. 1275 ** (There is an immediate jump to ignoreDest.) 1276 ** 1277 ** NOT NULL REPLACE The NULL value is replace by the default 1278 ** value for that column. If the default value 1279 ** is NULL, the action is the same as ABORT. 1280 ** 1281 ** UNIQUE REPLACE The other row that conflicts with the row 1282 ** being inserted is removed. 1283 ** 1284 ** CHECK REPLACE Illegal. The results in an exception. 1285 ** 1286 ** Which action to take is determined by the overrideError parameter. 1287 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1288 ** is used. Or if pParse->onError==OE_Default then the onError value 1289 ** for the constraint is used. 1290 */ 1291 void sqlite3GenerateConstraintChecks( 1292 Parse *pParse, /* The parser context */ 1293 Table *pTab, /* The table being inserted or updated */ 1294 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1295 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1296 int iIdxCur, /* First index cursor */ 1297 int regNewData, /* First register in a range holding values to insert */ 1298 int regOldData, /* Previous content. 0 for INSERTs */ 1299 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1300 u8 overrideError, /* Override onError to this if not OE_Default */ 1301 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1302 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1303 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1304 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1305 ){ 1306 Vdbe *v; /* VDBE under constrution */ 1307 Index *pIdx; /* Pointer to one of the indices */ 1308 Index *pPk = 0; /* The PRIMARY KEY index */ 1309 sqlite3 *db; /* Database connection */ 1310 int i; /* loop counter */ 1311 int ix; /* Index loop counter */ 1312 int nCol; /* Number of columns */ 1313 int onError; /* Conflict resolution strategy */ 1314 int addr1; /* Address of jump instruction */ 1315 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1316 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1317 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1318 u8 isUpdate; /* True if this is an UPDATE operation */ 1319 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1320 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1321 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1322 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1323 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1324 1325 isUpdate = regOldData!=0; 1326 db = pParse->db; 1327 v = sqlite3GetVdbe(pParse); 1328 assert( v!=0 ); 1329 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1330 nCol = pTab->nCol; 1331 1332 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1333 ** normal rowid tables. nPkField is the number of key fields in the 1334 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1335 ** number of fields in the true primary key of the table. */ 1336 if( HasRowid(pTab) ){ 1337 pPk = 0; 1338 nPkField = 1; 1339 }else{ 1340 pPk = sqlite3PrimaryKeyIndex(pTab); 1341 nPkField = pPk->nKeyCol; 1342 } 1343 1344 /* Record that this module has started */ 1345 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1346 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1347 1348 /* Test all NOT NULL constraints. 1349 */ 1350 for(i=0; i<nCol; i++){ 1351 if( i==pTab->iPKey ){ 1352 continue; /* ROWID is never NULL */ 1353 } 1354 if( aiChng && aiChng[i]<0 ){ 1355 /* Don't bother checking for NOT NULL on columns that do not change */ 1356 continue; 1357 } 1358 onError = pTab->aCol[i].notNull; 1359 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1360 if( overrideError!=OE_Default ){ 1361 onError = overrideError; 1362 }else if( onError==OE_Default ){ 1363 onError = OE_Abort; 1364 } 1365 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1366 onError = OE_Abort; 1367 } 1368 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1369 || onError==OE_Ignore || onError==OE_Replace ); 1370 addr1 = 0; 1371 switch( onError ){ 1372 case OE_Replace: { 1373 assert( onError==OE_Replace ); 1374 addr1 = sqlite3VdbeMakeLabel(pParse); 1375 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1376 VdbeCoverage(v); 1377 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1378 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1379 VdbeCoverage(v); 1380 onError = OE_Abort; 1381 /* Fall through into the OE_Abort case to generate code that runs 1382 ** if both the input and the default value are NULL */ 1383 } 1384 case OE_Abort: 1385 sqlite3MayAbort(pParse); 1386 /* Fall through */ 1387 case OE_Rollback: 1388 case OE_Fail: { 1389 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1390 pTab->aCol[i].zName); 1391 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1392 regNewData+1+i); 1393 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1394 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1395 VdbeCoverage(v); 1396 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1397 break; 1398 } 1399 default: { 1400 assert( onError==OE_Ignore ); 1401 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1402 VdbeCoverage(v); 1403 break; 1404 } 1405 } 1406 } 1407 1408 /* Test all CHECK constraints 1409 */ 1410 #ifndef SQLITE_OMIT_CHECK 1411 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1412 ExprList *pCheck = pTab->pCheck; 1413 pParse->iSelfTab = -(regNewData+1); 1414 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1415 for(i=0; i<pCheck->nExpr; i++){ 1416 int allOk; 1417 Expr *pExpr = pCheck->a[i].pExpr; 1418 if( aiChng 1419 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1420 ){ 1421 /* The check constraints do not reference any of the columns being 1422 ** updated so there is no point it verifying the check constraint */ 1423 continue; 1424 } 1425 allOk = sqlite3VdbeMakeLabel(pParse); 1426 sqlite3VdbeVerifyAbortable(v, onError); 1427 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1428 if( onError==OE_Ignore ){ 1429 sqlite3VdbeGoto(v, ignoreDest); 1430 }else{ 1431 char *zName = pCheck->a[i].zName; 1432 if( zName==0 ) zName = pTab->zName; 1433 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1434 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1435 onError, zName, P4_TRANSIENT, 1436 P5_ConstraintCheck); 1437 } 1438 sqlite3VdbeResolveLabel(v, allOk); 1439 } 1440 pParse->iSelfTab = 0; 1441 } 1442 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1443 1444 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1445 ** order: 1446 ** 1447 ** (1) OE_Update 1448 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1449 ** (3) OE_Replace 1450 ** 1451 ** OE_Fail and OE_Ignore must happen before any changes are made. 1452 ** OE_Update guarantees that only a single row will change, so it 1453 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1454 ** could happen in any order, but they are grouped up front for 1455 ** convenience. 1456 ** 1457 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1458 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1459 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1460 ** constraint before any others, so it had to be moved. 1461 ** 1462 ** Constraint checking code is generated in this order: 1463 ** (A) The rowid constraint 1464 ** (B) Unique index constraints that do not have OE_Replace as their 1465 ** default conflict resolution strategy 1466 ** (C) Unique index that do use OE_Replace by default. 1467 ** 1468 ** The ordering of (2) and (3) is accomplished by making sure the linked 1469 ** list of indexes attached to a table puts all OE_Replace indexes last 1470 ** in the list. See sqlite3CreateIndex() for where that happens. 1471 */ 1472 1473 if( pUpsert ){ 1474 if( pUpsert->pUpsertTarget==0 ){ 1475 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1476 ** Make all unique constraint resolution be OE_Ignore */ 1477 assert( pUpsert->pUpsertSet==0 ); 1478 overrideError = OE_Ignore; 1479 pUpsert = 0; 1480 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1481 /* If the constraint-target uniqueness check must be run first. 1482 ** Jump to that uniqueness check now */ 1483 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1484 VdbeComment((v, "UPSERT constraint goes first")); 1485 } 1486 } 1487 1488 /* If rowid is changing, make sure the new rowid does not previously 1489 ** exist in the table. 1490 */ 1491 if( pkChng && pPk==0 ){ 1492 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1493 1494 /* Figure out what action to take in case of a rowid collision */ 1495 onError = pTab->keyConf; 1496 if( overrideError!=OE_Default ){ 1497 onError = overrideError; 1498 }else if( onError==OE_Default ){ 1499 onError = OE_Abort; 1500 } 1501 1502 /* figure out whether or not upsert applies in this case */ 1503 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1504 if( pUpsert->pUpsertSet==0 ){ 1505 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1506 }else{ 1507 onError = OE_Update; /* DO UPDATE */ 1508 } 1509 } 1510 1511 /* If the response to a rowid conflict is REPLACE but the response 1512 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1513 ** to defer the running of the rowid conflict checking until after 1514 ** the UNIQUE constraints have run. 1515 */ 1516 if( onError==OE_Replace /* IPK rule is REPLACE */ 1517 && onError!=overrideError /* Rules for other contraints are different */ 1518 && pTab->pIndex /* There exist other constraints */ 1519 ){ 1520 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1521 VdbeComment((v, "defer IPK REPLACE until last")); 1522 } 1523 1524 if( isUpdate ){ 1525 /* pkChng!=0 does not mean that the rowid has changed, only that 1526 ** it might have changed. Skip the conflict logic below if the rowid 1527 ** is unchanged. */ 1528 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1529 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1530 VdbeCoverage(v); 1531 } 1532 1533 /* Check to see if the new rowid already exists in the table. Skip 1534 ** the following conflict logic if it does not. */ 1535 VdbeNoopComment((v, "uniqueness check for ROWID")); 1536 sqlite3VdbeVerifyAbortable(v, onError); 1537 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1538 VdbeCoverage(v); 1539 1540 switch( onError ){ 1541 default: { 1542 onError = OE_Abort; 1543 /* Fall thru into the next case */ 1544 } 1545 case OE_Rollback: 1546 case OE_Abort: 1547 case OE_Fail: { 1548 testcase( onError==OE_Rollback ); 1549 testcase( onError==OE_Abort ); 1550 testcase( onError==OE_Fail ); 1551 sqlite3RowidConstraint(pParse, onError, pTab); 1552 break; 1553 } 1554 case OE_Replace: { 1555 /* If there are DELETE triggers on this table and the 1556 ** recursive-triggers flag is set, call GenerateRowDelete() to 1557 ** remove the conflicting row from the table. This will fire 1558 ** the triggers and remove both the table and index b-tree entries. 1559 ** 1560 ** Otherwise, if there are no triggers or the recursive-triggers 1561 ** flag is not set, but the table has one or more indexes, call 1562 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1563 ** only. The table b-tree entry will be replaced by the new entry 1564 ** when it is inserted. 1565 ** 1566 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1567 ** also invoke MultiWrite() to indicate that this VDBE may require 1568 ** statement rollback (if the statement is aborted after the delete 1569 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1570 ** but being more selective here allows statements like: 1571 ** 1572 ** REPLACE INTO t(rowid) VALUES($newrowid) 1573 ** 1574 ** to run without a statement journal if there are no indexes on the 1575 ** table. 1576 */ 1577 Trigger *pTrigger = 0; 1578 if( db->flags&SQLITE_RecTriggers ){ 1579 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1580 } 1581 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1582 sqlite3MultiWrite(pParse); 1583 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1584 regNewData, 1, 0, OE_Replace, 1, -1); 1585 }else{ 1586 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1587 assert( HasRowid(pTab) ); 1588 /* This OP_Delete opcode fires the pre-update-hook only. It does 1589 ** not modify the b-tree. It is more efficient to let the coming 1590 ** OP_Insert replace the existing entry than it is to delete the 1591 ** existing entry and then insert a new one. */ 1592 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1593 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1594 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1595 if( pTab->pIndex ){ 1596 sqlite3MultiWrite(pParse); 1597 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1598 } 1599 } 1600 seenReplace = 1; 1601 break; 1602 } 1603 #ifndef SQLITE_OMIT_UPSERT 1604 case OE_Update: { 1605 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1606 /* Fall through */ 1607 } 1608 #endif 1609 case OE_Ignore: { 1610 testcase( onError==OE_Ignore ); 1611 sqlite3VdbeGoto(v, ignoreDest); 1612 break; 1613 } 1614 } 1615 sqlite3VdbeResolveLabel(v, addrRowidOk); 1616 if( ipkTop ){ 1617 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1618 sqlite3VdbeJumpHere(v, ipkTop-1); 1619 } 1620 } 1621 1622 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1623 ** index and making sure that duplicate entries do not already exist. 1624 ** Compute the revised record entries for indices as we go. 1625 ** 1626 ** This loop also handles the case of the PRIMARY KEY index for a 1627 ** WITHOUT ROWID table. 1628 */ 1629 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1630 int regIdx; /* Range of registers hold conent for pIdx */ 1631 int regR; /* Range of registers holding conflicting PK */ 1632 int iThisCur; /* Cursor for this UNIQUE index */ 1633 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1634 1635 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1636 if( pUpIdx==pIdx ){ 1637 addrUniqueOk = upsertJump+1; 1638 upsertBypass = sqlite3VdbeGoto(v, 0); 1639 VdbeComment((v, "Skip upsert subroutine")); 1640 sqlite3VdbeJumpHere(v, upsertJump); 1641 }else{ 1642 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1643 } 1644 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1645 sqlite3TableAffinity(v, pTab, regNewData+1); 1646 bAffinityDone = 1; 1647 } 1648 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1649 iThisCur = iIdxCur+ix; 1650 1651 1652 /* Skip partial indices for which the WHERE clause is not true */ 1653 if( pIdx->pPartIdxWhere ){ 1654 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1655 pParse->iSelfTab = -(regNewData+1); 1656 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1657 SQLITE_JUMPIFNULL); 1658 pParse->iSelfTab = 0; 1659 } 1660 1661 /* Create a record for this index entry as it should appear after 1662 ** the insert or update. Store that record in the aRegIdx[ix] register 1663 */ 1664 regIdx = aRegIdx[ix]+1; 1665 for(i=0; i<pIdx->nColumn; i++){ 1666 int iField = pIdx->aiColumn[i]; 1667 int x; 1668 if( iField==XN_EXPR ){ 1669 pParse->iSelfTab = -(regNewData+1); 1670 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1671 pParse->iSelfTab = 0; 1672 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1673 }else{ 1674 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1675 x = regNewData; 1676 }else{ 1677 x = iField + regNewData + 1; 1678 } 1679 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1680 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1681 } 1682 } 1683 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1684 VdbeComment((v, "for %s", pIdx->zName)); 1685 #ifdef SQLITE_ENABLE_NULL_TRIM 1686 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1687 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1688 } 1689 #endif 1690 1691 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1692 ** of a WITHOUT ROWID table and there has been no change the 1693 ** primary key, then no collision is possible. The collision detection 1694 ** logic below can all be skipped. */ 1695 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1696 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1697 continue; 1698 } 1699 1700 /* Find out what action to take in case there is a uniqueness conflict */ 1701 onError = pIdx->onError; 1702 if( onError==OE_None ){ 1703 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1704 continue; /* pIdx is not a UNIQUE index */ 1705 } 1706 if( overrideError!=OE_Default ){ 1707 onError = overrideError; 1708 }else if( onError==OE_Default ){ 1709 onError = OE_Abort; 1710 } 1711 1712 /* Figure out if the upsert clause applies to this index */ 1713 if( pUpIdx==pIdx ){ 1714 if( pUpsert->pUpsertSet==0 ){ 1715 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1716 }else{ 1717 onError = OE_Update; /* DO UPDATE */ 1718 } 1719 } 1720 1721 /* Collision detection may be omitted if all of the following are true: 1722 ** (1) The conflict resolution algorithm is REPLACE 1723 ** (2) The table is a WITHOUT ROWID table 1724 ** (3) There are no secondary indexes on the table 1725 ** (4) No delete triggers need to be fired if there is a conflict 1726 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1727 ** 1728 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 1729 ** must be explicitly deleted in order to ensure any pre-update hook 1730 ** is invoked. */ 1731 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 1732 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1733 && pPk==pIdx /* Condition 2 */ 1734 && onError==OE_Replace /* Condition 1 */ 1735 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1736 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1737 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1738 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1739 ){ 1740 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1741 continue; 1742 } 1743 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 1744 1745 /* Check to see if the new index entry will be unique */ 1746 sqlite3VdbeVerifyAbortable(v, onError); 1747 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1748 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1749 1750 /* Generate code to handle collisions */ 1751 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1752 if( isUpdate || onError==OE_Replace ){ 1753 if( HasRowid(pTab) ){ 1754 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1755 /* Conflict only if the rowid of the existing index entry 1756 ** is different from old-rowid */ 1757 if( isUpdate ){ 1758 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1759 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1760 VdbeCoverage(v); 1761 } 1762 }else{ 1763 int x; 1764 /* Extract the PRIMARY KEY from the end of the index entry and 1765 ** store it in registers regR..regR+nPk-1 */ 1766 if( pIdx!=pPk ){ 1767 for(i=0; i<pPk->nKeyCol; i++){ 1768 assert( pPk->aiColumn[i]>=0 ); 1769 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1770 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1771 VdbeComment((v, "%s.%s", pTab->zName, 1772 pTab->aCol[pPk->aiColumn[i]].zName)); 1773 } 1774 } 1775 if( isUpdate ){ 1776 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1777 ** table, only conflict if the new PRIMARY KEY values are actually 1778 ** different from the old. 1779 ** 1780 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1781 ** of the matched index row are different from the original PRIMARY 1782 ** KEY values of this row before the update. */ 1783 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1784 int op = OP_Ne; 1785 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1786 1787 for(i=0; i<pPk->nKeyCol; i++){ 1788 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1789 x = pPk->aiColumn[i]; 1790 assert( x>=0 ); 1791 if( i==(pPk->nKeyCol-1) ){ 1792 addrJump = addrUniqueOk; 1793 op = OP_Eq; 1794 } 1795 sqlite3VdbeAddOp4(v, op, 1796 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1797 ); 1798 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1799 VdbeCoverageIf(v, op==OP_Eq); 1800 VdbeCoverageIf(v, op==OP_Ne); 1801 } 1802 } 1803 } 1804 } 1805 1806 /* Generate code that executes if the new index entry is not unique */ 1807 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1808 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1809 switch( onError ){ 1810 case OE_Rollback: 1811 case OE_Abort: 1812 case OE_Fail: { 1813 testcase( onError==OE_Rollback ); 1814 testcase( onError==OE_Abort ); 1815 testcase( onError==OE_Fail ); 1816 sqlite3UniqueConstraint(pParse, onError, pIdx); 1817 break; 1818 } 1819 #ifndef SQLITE_OMIT_UPSERT 1820 case OE_Update: { 1821 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1822 /* Fall through */ 1823 } 1824 #endif 1825 case OE_Ignore: { 1826 testcase( onError==OE_Ignore ); 1827 sqlite3VdbeGoto(v, ignoreDest); 1828 break; 1829 } 1830 default: { 1831 Trigger *pTrigger = 0; 1832 assert( onError==OE_Replace ); 1833 if( db->flags&SQLITE_RecTriggers ){ 1834 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1835 } 1836 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1837 sqlite3MultiWrite(pParse); 1838 } 1839 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1840 regR, nPkField, 0, OE_Replace, 1841 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1842 seenReplace = 1; 1843 break; 1844 } 1845 } 1846 if( pUpIdx==pIdx ){ 1847 sqlite3VdbeGoto(v, upsertJump+1); 1848 sqlite3VdbeJumpHere(v, upsertBypass); 1849 }else{ 1850 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1851 } 1852 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1853 } 1854 1855 /* If the IPK constraint is a REPLACE, run it last */ 1856 if( ipkTop ){ 1857 sqlite3VdbeGoto(v, ipkTop); 1858 VdbeComment((v, "Do IPK REPLACE")); 1859 sqlite3VdbeJumpHere(v, ipkBottom); 1860 } 1861 1862 /* Generate the table record */ 1863 if( HasRowid(pTab) ){ 1864 int regRec = aRegIdx[ix]; 1865 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nCol, regRec); 1866 sqlite3SetMakeRecordP5(v, pTab); 1867 if( !bAffinityDone ){ 1868 sqlite3TableAffinity(v, pTab, 0); 1869 } 1870 } 1871 1872 *pbMayReplace = seenReplace; 1873 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1874 } 1875 1876 #ifdef SQLITE_ENABLE_NULL_TRIM 1877 /* 1878 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1879 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1880 ** 1881 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1882 */ 1883 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1884 u16 i; 1885 1886 /* Records with omitted columns are only allowed for schema format 1887 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1888 if( pTab->pSchema->file_format<2 ) return; 1889 1890 for(i=pTab->nCol-1; i>0; i--){ 1891 if( pTab->aCol[i].pDflt!=0 ) break; 1892 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1893 } 1894 sqlite3VdbeChangeP5(v, i+1); 1895 } 1896 #endif 1897 1898 /* 1899 ** This routine generates code to finish the INSERT or UPDATE operation 1900 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1901 ** A consecutive range of registers starting at regNewData contains the 1902 ** rowid and the content to be inserted. 1903 ** 1904 ** The arguments to this routine should be the same as the first six 1905 ** arguments to sqlite3GenerateConstraintChecks. 1906 */ 1907 void sqlite3CompleteInsertion( 1908 Parse *pParse, /* The parser context */ 1909 Table *pTab, /* the table into which we are inserting */ 1910 int iDataCur, /* Cursor of the canonical data source */ 1911 int iIdxCur, /* First index cursor */ 1912 int regNewData, /* Range of content */ 1913 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1914 int update_flags, /* True for UPDATE, False for INSERT */ 1915 int appendBias, /* True if this is likely to be an append */ 1916 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1917 ){ 1918 Vdbe *v; /* Prepared statements under construction */ 1919 Index *pIdx; /* An index being inserted or updated */ 1920 u8 pik_flags; /* flag values passed to the btree insert */ 1921 int i; /* Loop counter */ 1922 1923 assert( update_flags==0 1924 || update_flags==OPFLAG_ISUPDATE 1925 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1926 ); 1927 1928 v = sqlite3GetVdbe(pParse); 1929 assert( v!=0 ); 1930 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1931 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1932 if( aRegIdx[i]==0 ) continue; 1933 if( pIdx->pPartIdxWhere ){ 1934 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1935 VdbeCoverage(v); 1936 } 1937 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1938 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1939 assert( pParse->nested==0 ); 1940 pik_flags |= OPFLAG_NCHANGE; 1941 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1942 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1943 if( update_flags==0 ){ 1944 int r = sqlite3GetTempReg(pParse); 1945 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 1946 sqlite3VdbeAddOp4(v, OP_Insert, 1947 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 1948 ); 1949 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1950 sqlite3ReleaseTempReg(pParse, r); 1951 } 1952 #endif 1953 } 1954 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1955 aRegIdx[i]+1, 1956 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1957 sqlite3VdbeChangeP5(v, pik_flags); 1958 } 1959 if( !HasRowid(pTab) ) return; 1960 if( pParse->nested ){ 1961 pik_flags = 0; 1962 }else{ 1963 pik_flags = OPFLAG_NCHANGE; 1964 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1965 } 1966 if( appendBias ){ 1967 pik_flags |= OPFLAG_APPEND; 1968 } 1969 if( useSeekResult ){ 1970 pik_flags |= OPFLAG_USESEEKRESULT; 1971 } 1972 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 1973 if( !pParse->nested ){ 1974 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1975 } 1976 sqlite3VdbeChangeP5(v, pik_flags); 1977 } 1978 1979 /* 1980 ** Allocate cursors for the pTab table and all its indices and generate 1981 ** code to open and initialized those cursors. 1982 ** 1983 ** The cursor for the object that contains the complete data (normally 1984 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1985 ** ROWID table) is returned in *piDataCur. The first index cursor is 1986 ** returned in *piIdxCur. The number of indices is returned. 1987 ** 1988 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1989 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1990 ** If iBase is negative, then allocate the next available cursor. 1991 ** 1992 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1993 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1994 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1995 ** pTab->pIndex list. 1996 ** 1997 ** If pTab is a virtual table, then this routine is a no-op and the 1998 ** *piDataCur and *piIdxCur values are left uninitialized. 1999 */ 2000 int sqlite3OpenTableAndIndices( 2001 Parse *pParse, /* Parsing context */ 2002 Table *pTab, /* Table to be opened */ 2003 int op, /* OP_OpenRead or OP_OpenWrite */ 2004 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2005 int iBase, /* Use this for the table cursor, if there is one */ 2006 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2007 int *piDataCur, /* Write the database source cursor number here */ 2008 int *piIdxCur /* Write the first index cursor number here */ 2009 ){ 2010 int i; 2011 int iDb; 2012 int iDataCur; 2013 Index *pIdx; 2014 Vdbe *v; 2015 2016 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2017 assert( op==OP_OpenWrite || p5==0 ); 2018 if( IsVirtual(pTab) ){ 2019 /* This routine is a no-op for virtual tables. Leave the output 2020 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2021 ** can detect if they are used by mistake in the caller. */ 2022 return 0; 2023 } 2024 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2025 v = sqlite3GetVdbe(pParse); 2026 assert( v!=0 ); 2027 if( iBase<0 ) iBase = pParse->nTab; 2028 iDataCur = iBase++; 2029 if( piDataCur ) *piDataCur = iDataCur; 2030 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2031 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2032 }else{ 2033 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2034 } 2035 if( piIdxCur ) *piIdxCur = iBase; 2036 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2037 int iIdxCur = iBase++; 2038 assert( pIdx->pSchema==pTab->pSchema ); 2039 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2040 if( piDataCur ) *piDataCur = iIdxCur; 2041 p5 = 0; 2042 } 2043 if( aToOpen==0 || aToOpen[i+1] ){ 2044 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2045 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2046 sqlite3VdbeChangeP5(v, p5); 2047 VdbeComment((v, "%s", pIdx->zName)); 2048 } 2049 } 2050 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2051 return i; 2052 } 2053 2054 2055 #ifdef SQLITE_TEST 2056 /* 2057 ** The following global variable is incremented whenever the 2058 ** transfer optimization is used. This is used for testing 2059 ** purposes only - to make sure the transfer optimization really 2060 ** is happening when it is supposed to. 2061 */ 2062 int sqlite3_xferopt_count; 2063 #endif /* SQLITE_TEST */ 2064 2065 2066 #ifndef SQLITE_OMIT_XFER_OPT 2067 /* 2068 ** Check to see if index pSrc is compatible as a source of data 2069 ** for index pDest in an insert transfer optimization. The rules 2070 ** for a compatible index: 2071 ** 2072 ** * The index is over the same set of columns 2073 ** * The same DESC and ASC markings occurs on all columns 2074 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2075 ** * The same collating sequence on each column 2076 ** * The index has the exact same WHERE clause 2077 */ 2078 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2079 int i; 2080 assert( pDest && pSrc ); 2081 assert( pDest->pTable!=pSrc->pTable ); 2082 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2083 return 0; /* Different number of columns */ 2084 } 2085 if( pDest->onError!=pSrc->onError ){ 2086 return 0; /* Different conflict resolution strategies */ 2087 } 2088 for(i=0; i<pSrc->nKeyCol; i++){ 2089 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2090 return 0; /* Different columns indexed */ 2091 } 2092 if( pSrc->aiColumn[i]==XN_EXPR ){ 2093 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2094 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2095 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2096 return 0; /* Different expressions in the index */ 2097 } 2098 } 2099 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2100 return 0; /* Different sort orders */ 2101 } 2102 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2103 return 0; /* Different collating sequences */ 2104 } 2105 } 2106 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2107 return 0; /* Different WHERE clauses */ 2108 } 2109 2110 /* If no test above fails then the indices must be compatible */ 2111 return 1; 2112 } 2113 2114 /* 2115 ** Attempt the transfer optimization on INSERTs of the form 2116 ** 2117 ** INSERT INTO tab1 SELECT * FROM tab2; 2118 ** 2119 ** The xfer optimization transfers raw records from tab2 over to tab1. 2120 ** Columns are not decoded and reassembled, which greatly improves 2121 ** performance. Raw index records are transferred in the same way. 2122 ** 2123 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2124 ** There are lots of rules for determining compatibility - see comments 2125 ** embedded in the code for details. 2126 ** 2127 ** This routine returns TRUE if the optimization is guaranteed to be used. 2128 ** Sometimes the xfer optimization will only work if the destination table 2129 ** is empty - a factor that can only be determined at run-time. In that 2130 ** case, this routine generates code for the xfer optimization but also 2131 ** does a test to see if the destination table is empty and jumps over the 2132 ** xfer optimization code if the test fails. In that case, this routine 2133 ** returns FALSE so that the caller will know to go ahead and generate 2134 ** an unoptimized transfer. This routine also returns FALSE if there 2135 ** is no chance that the xfer optimization can be applied. 2136 ** 2137 ** This optimization is particularly useful at making VACUUM run faster. 2138 */ 2139 static int xferOptimization( 2140 Parse *pParse, /* Parser context */ 2141 Table *pDest, /* The table we are inserting into */ 2142 Select *pSelect, /* A SELECT statement to use as the data source */ 2143 int onError, /* How to handle constraint errors */ 2144 int iDbDest /* The database of pDest */ 2145 ){ 2146 sqlite3 *db = pParse->db; 2147 ExprList *pEList; /* The result set of the SELECT */ 2148 Table *pSrc; /* The table in the FROM clause of SELECT */ 2149 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2150 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2151 int i; /* Loop counter */ 2152 int iDbSrc; /* The database of pSrc */ 2153 int iSrc, iDest; /* Cursors from source and destination */ 2154 int addr1, addr2; /* Loop addresses */ 2155 int emptyDestTest = 0; /* Address of test for empty pDest */ 2156 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2157 Vdbe *v; /* The VDBE we are building */ 2158 int regAutoinc; /* Memory register used by AUTOINC */ 2159 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2160 int regData, regRowid; /* Registers holding data and rowid */ 2161 2162 if( pSelect==0 ){ 2163 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2164 } 2165 if( pParse->pWith || pSelect->pWith ){ 2166 /* Do not attempt to process this query if there are an WITH clauses 2167 ** attached to it. Proceeding may generate a false "no such table: xxx" 2168 ** error if pSelect reads from a CTE named "xxx". */ 2169 return 0; 2170 } 2171 if( sqlite3TriggerList(pParse, pDest) ){ 2172 return 0; /* tab1 must not have triggers */ 2173 } 2174 #ifndef SQLITE_OMIT_VIRTUALTABLE 2175 if( IsVirtual(pDest) ){ 2176 return 0; /* tab1 must not be a virtual table */ 2177 } 2178 #endif 2179 if( onError==OE_Default ){ 2180 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2181 if( onError==OE_Default ) onError = OE_Abort; 2182 } 2183 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2184 if( pSelect->pSrc->nSrc!=1 ){ 2185 return 0; /* FROM clause must have exactly one term */ 2186 } 2187 if( pSelect->pSrc->a[0].pSelect ){ 2188 return 0; /* FROM clause cannot contain a subquery */ 2189 } 2190 if( pSelect->pWhere ){ 2191 return 0; /* SELECT may not have a WHERE clause */ 2192 } 2193 if( pSelect->pOrderBy ){ 2194 return 0; /* SELECT may not have an ORDER BY clause */ 2195 } 2196 /* Do not need to test for a HAVING clause. If HAVING is present but 2197 ** there is no ORDER BY, we will get an error. */ 2198 if( pSelect->pGroupBy ){ 2199 return 0; /* SELECT may not have a GROUP BY clause */ 2200 } 2201 if( pSelect->pLimit ){ 2202 return 0; /* SELECT may not have a LIMIT clause */ 2203 } 2204 if( pSelect->pPrior ){ 2205 return 0; /* SELECT may not be a compound query */ 2206 } 2207 if( pSelect->selFlags & SF_Distinct ){ 2208 return 0; /* SELECT may not be DISTINCT */ 2209 } 2210 pEList = pSelect->pEList; 2211 assert( pEList!=0 ); 2212 if( pEList->nExpr!=1 ){ 2213 return 0; /* The result set must have exactly one column */ 2214 } 2215 assert( pEList->a[0].pExpr ); 2216 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2217 return 0; /* The result set must be the special operator "*" */ 2218 } 2219 2220 /* At this point we have established that the statement is of the 2221 ** correct syntactic form to participate in this optimization. Now 2222 ** we have to check the semantics. 2223 */ 2224 pItem = pSelect->pSrc->a; 2225 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2226 if( pSrc==0 ){ 2227 return 0; /* FROM clause does not contain a real table */ 2228 } 2229 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2230 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */ 2231 return 0; /* tab1 and tab2 may not be the same table */ 2232 } 2233 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2234 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2235 } 2236 #ifndef SQLITE_OMIT_VIRTUALTABLE 2237 if( IsVirtual(pSrc) ){ 2238 return 0; /* tab2 must not be a virtual table */ 2239 } 2240 #endif 2241 if( pSrc->pSelect ){ 2242 return 0; /* tab2 may not be a view */ 2243 } 2244 if( pDest->nCol!=pSrc->nCol ){ 2245 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2246 } 2247 if( pDest->iPKey!=pSrc->iPKey ){ 2248 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2249 } 2250 for(i=0; i<pDest->nCol; i++){ 2251 Column *pDestCol = &pDest->aCol[i]; 2252 Column *pSrcCol = &pSrc->aCol[i]; 2253 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2254 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2255 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2256 ){ 2257 return 0; /* Neither table may have __hidden__ columns */ 2258 } 2259 #endif 2260 if( pDestCol->affinity!=pSrcCol->affinity ){ 2261 return 0; /* Affinity must be the same on all columns */ 2262 } 2263 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2264 return 0; /* Collating sequence must be the same on all columns */ 2265 } 2266 if( pDestCol->notNull && !pSrcCol->notNull ){ 2267 return 0; /* tab2 must be NOT NULL if tab1 is */ 2268 } 2269 /* Default values for second and subsequent columns need to match. */ 2270 if( i>0 ){ 2271 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2272 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2273 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2274 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2275 pSrcCol->pDflt->u.zToken)!=0) 2276 ){ 2277 return 0; /* Default values must be the same for all columns */ 2278 } 2279 } 2280 } 2281 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2282 if( IsUniqueIndex(pDestIdx) ){ 2283 destHasUniqueIdx = 1; 2284 } 2285 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2286 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2287 } 2288 if( pSrcIdx==0 ){ 2289 return 0; /* pDestIdx has no corresponding index in pSrc */ 2290 } 2291 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2292 && sqlite3FaultSim(411)==SQLITE_OK ){ 2293 /* The sqlite3FaultSim() call allows this corruption test to be 2294 ** bypassed during testing, in order to exercise other corruption tests 2295 ** further downstream. */ 2296 return 0; /* Corrupt schema - two indexes on the same btree */ 2297 } 2298 } 2299 #ifndef SQLITE_OMIT_CHECK 2300 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2301 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2302 } 2303 #endif 2304 #ifndef SQLITE_OMIT_FOREIGN_KEY 2305 /* Disallow the transfer optimization if the destination table constains 2306 ** any foreign key constraints. This is more restrictive than necessary. 2307 ** But the main beneficiary of the transfer optimization is the VACUUM 2308 ** command, and the VACUUM command disables foreign key constraints. So 2309 ** the extra complication to make this rule less restrictive is probably 2310 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2311 */ 2312 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2313 return 0; 2314 } 2315 #endif 2316 if( (db->flags & SQLITE_CountRows)!=0 ){ 2317 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2318 } 2319 2320 /* If we get this far, it means that the xfer optimization is at 2321 ** least a possibility, though it might only work if the destination 2322 ** table (tab1) is initially empty. 2323 */ 2324 #ifdef SQLITE_TEST 2325 sqlite3_xferopt_count++; 2326 #endif 2327 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2328 v = sqlite3GetVdbe(pParse); 2329 sqlite3CodeVerifySchema(pParse, iDbSrc); 2330 iSrc = pParse->nTab++; 2331 iDest = pParse->nTab++; 2332 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2333 regData = sqlite3GetTempReg(pParse); 2334 regRowid = sqlite3GetTempReg(pParse); 2335 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2336 assert( HasRowid(pDest) || destHasUniqueIdx ); 2337 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2338 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2339 || destHasUniqueIdx /* (2) */ 2340 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2341 )){ 2342 /* In some circumstances, we are able to run the xfer optimization 2343 ** only if the destination table is initially empty. Unless the 2344 ** DBFLAG_Vacuum flag is set, this block generates code to make 2345 ** that determination. If DBFLAG_Vacuum is set, then the destination 2346 ** table is always empty. 2347 ** 2348 ** Conditions under which the destination must be empty: 2349 ** 2350 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2351 ** (If the destination is not initially empty, the rowid fields 2352 ** of index entries might need to change.) 2353 ** 2354 ** (2) The destination has a unique index. (The xfer optimization 2355 ** is unable to test uniqueness.) 2356 ** 2357 ** (3) onError is something other than OE_Abort and OE_Rollback. 2358 */ 2359 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2360 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2361 sqlite3VdbeJumpHere(v, addr1); 2362 } 2363 if( HasRowid(pSrc) ){ 2364 u8 insFlags; 2365 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2366 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2367 if( pDest->iPKey>=0 ){ 2368 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2369 sqlite3VdbeVerifyAbortable(v, onError); 2370 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2371 VdbeCoverage(v); 2372 sqlite3RowidConstraint(pParse, onError, pDest); 2373 sqlite3VdbeJumpHere(v, addr2); 2374 autoIncStep(pParse, regAutoinc, regRowid); 2375 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2376 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2377 }else{ 2378 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2379 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2380 } 2381 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2382 if( db->mDbFlags & DBFLAG_Vacuum ){ 2383 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2384 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2385 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2386 }else{ 2387 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2388 } 2389 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2390 (char*)pDest, P4_TABLE); 2391 sqlite3VdbeChangeP5(v, insFlags); 2392 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2393 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2394 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2395 }else{ 2396 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2397 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2398 } 2399 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2400 u8 idxInsFlags = 0; 2401 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2402 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2403 } 2404 assert( pSrcIdx ); 2405 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2406 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2407 VdbeComment((v, "%s", pSrcIdx->zName)); 2408 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2409 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2410 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2411 VdbeComment((v, "%s", pDestIdx->zName)); 2412 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2413 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2414 if( db->mDbFlags & DBFLAG_Vacuum ){ 2415 /* This INSERT command is part of a VACUUM operation, which guarantees 2416 ** that the destination table is empty. If all indexed columns use 2417 ** collation sequence BINARY, then it can also be assumed that the 2418 ** index will be populated by inserting keys in strictly sorted 2419 ** order. In this case, instead of seeking within the b-tree as part 2420 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2421 ** OP_IdxInsert to seek to the point within the b-tree where each key 2422 ** should be inserted. This is faster. 2423 ** 2424 ** If any of the indexed columns use a collation sequence other than 2425 ** BINARY, this optimization is disabled. This is because the user 2426 ** might change the definition of a collation sequence and then run 2427 ** a VACUUM command. In that case keys may not be written in strictly 2428 ** sorted order. */ 2429 for(i=0; i<pSrcIdx->nColumn; i++){ 2430 const char *zColl = pSrcIdx->azColl[i]; 2431 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2432 } 2433 if( i==pSrcIdx->nColumn ){ 2434 idxInsFlags = OPFLAG_USESEEKRESULT; 2435 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2436 } 2437 } 2438 if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2439 idxInsFlags |= OPFLAG_NCHANGE; 2440 } 2441 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2442 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2443 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2444 sqlite3VdbeJumpHere(v, addr1); 2445 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2446 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2447 } 2448 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2449 sqlite3ReleaseTempReg(pParse, regRowid); 2450 sqlite3ReleaseTempReg(pParse, regData); 2451 if( emptyDestTest ){ 2452 sqlite3AutoincrementEnd(pParse); 2453 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2454 sqlite3VdbeJumpHere(v, emptyDestTest); 2455 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2456 return 0; 2457 }else{ 2458 return 1; 2459 } 2460 } 2461 #endif /* SQLITE_OMIT_XFER_OPT */ 2462