1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Compute the affinity string for table pTab, if it has not already been 114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 115 ** 116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 118 ** for register iReg and following. Or if affinities exists and iReg==0, 119 ** then just set the P4 operand of the previous opcode (which should be 120 ** an OP_MakeRecord) to the affinity string. 121 ** 122 ** A column affinity string has one character per column: 123 ** 124 ** Character Column affinity 125 ** ------------------------------ 126 ** 'A' BLOB 127 ** 'B' TEXT 128 ** 'C' NUMERIC 129 ** 'D' INTEGER 130 ** 'E' REAL 131 */ 132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 133 int i, j; 134 char *zColAff = pTab->zColAff; 135 if( zColAff==0 ){ 136 sqlite3 *db = sqlite3VdbeDb(v); 137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 138 if( !zColAff ){ 139 sqlite3OomFault(db); 140 return; 141 } 142 143 for(i=j=0; i<pTab->nCol; i++){ 144 assert( pTab->aCol[i].affinity!=0 ); 145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 146 zColAff[j++] = pTab->aCol[i].affinity; 147 } 148 } 149 do{ 150 zColAff[j--] = 0; 151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 152 pTab->zColAff = zColAff; 153 } 154 assert( zColAff!=0 ); 155 i = sqlite3Strlen30NN(zColAff); 156 if( i ){ 157 if( iReg ){ 158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 159 }else{ 160 sqlite3VdbeChangeP4(v, -1, zColAff, i); 161 } 162 } 163 } 164 165 /* 166 ** Return non-zero if the table pTab in database iDb or any of its indices 167 ** have been opened at any point in the VDBE program. This is used to see if 168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 169 ** run without using a temporary table for the results of the SELECT. 170 */ 171 static int readsTable(Parse *p, int iDb, Table *pTab){ 172 Vdbe *v = sqlite3GetVdbe(p); 173 int i; 174 int iEnd = sqlite3VdbeCurrentAddr(v); 175 #ifndef SQLITE_OMIT_VIRTUALTABLE 176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 177 #endif 178 179 for(i=1; i<iEnd; i++){ 180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 181 assert( pOp!=0 ); 182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 183 Index *pIndex; 184 Pgno tnum = pOp->p2; 185 if( tnum==pTab->tnum ){ 186 return 1; 187 } 188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 189 if( tnum==pIndex->tnum ){ 190 return 1; 191 } 192 } 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 196 assert( pOp->p4.pVtab!=0 ); 197 assert( pOp->p4type==P4_VTAB ); 198 return 1; 199 } 200 #endif 201 } 202 return 0; 203 } 204 205 /* This walker callback will compute the union of colFlags flags for all 206 ** referenced columns in a CHECK constraint or generated column expression. 207 */ 208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 210 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 212 } 213 return WRC_Continue; 214 } 215 216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 217 /* 218 ** All regular columns for table pTab have been puts into registers 219 ** starting with iRegStore. The registers that correspond to STORED 220 ** or VIRTUAL columns have not yet been initialized. This routine goes 221 ** back and computes the values for those columns based on the previously 222 ** computed normal columns. 223 */ 224 void sqlite3ComputeGeneratedColumns( 225 Parse *pParse, /* Parsing context */ 226 int iRegStore, /* Register holding the first column */ 227 Table *pTab /* The table */ 228 ){ 229 int i; 230 Walker w; 231 Column *pRedo; 232 int eProgress; 233 VdbeOp *pOp; 234 235 assert( pTab->tabFlags & TF_HasGenerated ); 236 testcase( pTab->tabFlags & TF_HasVirtual ); 237 testcase( pTab->tabFlags & TF_HasStored ); 238 239 /* Before computing generated columns, first go through and make sure 240 ** that appropriate affinity has been applied to the regular columns 241 */ 242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 243 if( (pTab->tabFlags & TF_HasStored)!=0 244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 245 ){ 246 /* Change the OP_Affinity argument to '@' (NONE) for all stored 247 ** columns. '@' is the no-op affinity and those columns have not 248 ** yet been computed. */ 249 int ii, jj; 250 char *zP4 = pOp->p4.z; 251 assert( zP4!=0 ); 252 assert( pOp->p4type==P4_DYNAMIC ); 253 for(ii=jj=0; zP4[jj]; ii++){ 254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 255 continue; 256 } 257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 258 zP4[jj] = SQLITE_AFF_NONE; 259 } 260 jj++; 261 } 262 } 263 264 /* Because there can be multiple generated columns that refer to one another, 265 ** this is a two-pass algorithm. On the first pass, mark all generated 266 ** columns as "not available". 267 */ 268 for(i=0; i<pTab->nCol; i++){ 269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 273 } 274 } 275 276 w.u.pTab = pTab; 277 w.xExprCallback = exprColumnFlagUnion; 278 w.xSelectCallback = 0; 279 w.xSelectCallback2 = 0; 280 281 /* On the second pass, compute the value of each NOT-AVAILABLE column. 282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 284 ** they are needed. 285 */ 286 pParse->iSelfTab = -iRegStore; 287 do{ 288 eProgress = 0; 289 pRedo = 0; 290 for(i=0; i<pTab->nCol; i++){ 291 Column *pCol = pTab->aCol + i; 292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 293 int x; 294 pCol->colFlags |= COLFLAG_BUSY; 295 w.eCode = 0; 296 sqlite3WalkExpr(&w, pCol->pDflt); 297 pCol->colFlags &= ~COLFLAG_BUSY; 298 if( w.eCode & COLFLAG_NOTAVAIL ){ 299 pRedo = pCol; 300 continue; 301 } 302 eProgress = 1; 303 assert( pCol->colFlags & COLFLAG_GENERATED ); 304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 305 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 306 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 307 } 308 } 309 }while( pRedo && eProgress ); 310 if( pRedo ){ 311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 312 } 313 pParse->iSelfTab = 0; 314 } 315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 316 317 318 #ifndef SQLITE_OMIT_AUTOINCREMENT 319 /* 320 ** Locate or create an AutoincInfo structure associated with table pTab 321 ** which is in database iDb. Return the register number for the register 322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 323 ** table. (Also return zero when doing a VACUUM since we do not want to 324 ** update the AUTOINCREMENT counters during a VACUUM.) 325 ** 326 ** There is at most one AutoincInfo structure per table even if the 327 ** same table is autoincremented multiple times due to inserts within 328 ** triggers. A new AutoincInfo structure is created if this is the 329 ** first use of table pTab. On 2nd and subsequent uses, the original 330 ** AutoincInfo structure is used. 331 ** 332 ** Four consecutive registers are allocated: 333 ** 334 ** (1) The name of the pTab table. 335 ** (2) The maximum ROWID of pTab. 336 ** (3) The rowid in sqlite_sequence of pTab 337 ** (4) The original value of the max ROWID in pTab, or NULL if none 338 ** 339 ** The 2nd register is the one that is returned. That is all the 340 ** insert routine needs to know about. 341 */ 342 static int autoIncBegin( 343 Parse *pParse, /* Parsing context */ 344 int iDb, /* Index of the database holding pTab */ 345 Table *pTab /* The table we are writing to */ 346 ){ 347 int memId = 0; /* Register holding maximum rowid */ 348 assert( pParse->db->aDb[iDb].pSchema!=0 ); 349 if( (pTab->tabFlags & TF_Autoincrement)!=0 350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 351 ){ 352 Parse *pToplevel = sqlite3ParseToplevel(pParse); 353 AutoincInfo *pInfo; 354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 355 356 /* Verify that the sqlite_sequence table exists and is an ordinary 357 ** rowid table with exactly two columns. 358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 359 if( pSeqTab==0 360 || !HasRowid(pSeqTab) 361 || IsVirtual(pSeqTab) 362 || pSeqTab->nCol!=2 363 ){ 364 pParse->nErr++; 365 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 366 return 0; 367 } 368 369 pInfo = pToplevel->pAinc; 370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 371 if( pInfo==0 ){ 372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 373 if( pInfo==0 ) return 0; 374 pInfo->pNext = pToplevel->pAinc; 375 pToplevel->pAinc = pInfo; 376 pInfo->pTab = pTab; 377 pInfo->iDb = iDb; 378 pToplevel->nMem++; /* Register to hold name of table */ 379 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 380 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 381 } 382 memId = pInfo->regCtr; 383 } 384 return memId; 385 } 386 387 /* 388 ** This routine generates code that will initialize all of the 389 ** register used by the autoincrement tracker. 390 */ 391 void sqlite3AutoincrementBegin(Parse *pParse){ 392 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 393 sqlite3 *db = pParse->db; /* The database connection */ 394 Db *pDb; /* Database only autoinc table */ 395 int memId; /* Register holding max rowid */ 396 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 397 398 /* This routine is never called during trigger-generation. It is 399 ** only called from the top-level */ 400 assert( pParse->pTriggerTab==0 ); 401 assert( sqlite3IsToplevel(pParse) ); 402 403 assert( v ); /* We failed long ago if this is not so */ 404 for(p = pParse->pAinc; p; p = p->pNext){ 405 static const int iLn = VDBE_OFFSET_LINENO(2); 406 static const VdbeOpList autoInc[] = { 407 /* 0 */ {OP_Null, 0, 0, 0}, 408 /* 1 */ {OP_Rewind, 0, 10, 0}, 409 /* 2 */ {OP_Column, 0, 0, 0}, 410 /* 3 */ {OP_Ne, 0, 9, 0}, 411 /* 4 */ {OP_Rowid, 0, 0, 0}, 412 /* 5 */ {OP_Column, 0, 1, 0}, 413 /* 6 */ {OP_AddImm, 0, 0, 0}, 414 /* 7 */ {OP_Copy, 0, 0, 0}, 415 /* 8 */ {OP_Goto, 0, 11, 0}, 416 /* 9 */ {OP_Next, 0, 2, 0}, 417 /* 10 */ {OP_Integer, 0, 0, 0}, 418 /* 11 */ {OP_Close, 0, 0, 0} 419 }; 420 VdbeOp *aOp; 421 pDb = &db->aDb[p->iDb]; 422 memId = p->regCtr; 423 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 424 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 425 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 426 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 427 if( aOp==0 ) break; 428 aOp[0].p2 = memId; 429 aOp[0].p3 = memId+2; 430 aOp[2].p3 = memId; 431 aOp[3].p1 = memId-1; 432 aOp[3].p3 = memId; 433 aOp[3].p5 = SQLITE_JUMPIFNULL; 434 aOp[4].p2 = memId+1; 435 aOp[5].p3 = memId; 436 aOp[6].p1 = memId; 437 aOp[7].p2 = memId+2; 438 aOp[7].p1 = memId; 439 aOp[10].p2 = memId; 440 if( pParse->nTab==0 ) pParse->nTab = 1; 441 } 442 } 443 444 /* 445 ** Update the maximum rowid for an autoincrement calculation. 446 ** 447 ** This routine should be called when the regRowid register holds a 448 ** new rowid that is about to be inserted. If that new rowid is 449 ** larger than the maximum rowid in the memId memory cell, then the 450 ** memory cell is updated. 451 */ 452 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 453 if( memId>0 ){ 454 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 455 } 456 } 457 458 /* 459 ** This routine generates the code needed to write autoincrement 460 ** maximum rowid values back into the sqlite_sequence register. 461 ** Every statement that might do an INSERT into an autoincrement 462 ** table (either directly or through triggers) needs to call this 463 ** routine just before the "exit" code. 464 */ 465 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 466 AutoincInfo *p; 467 Vdbe *v = pParse->pVdbe; 468 sqlite3 *db = pParse->db; 469 470 assert( v ); 471 for(p = pParse->pAinc; p; p = p->pNext){ 472 static const int iLn = VDBE_OFFSET_LINENO(2); 473 static const VdbeOpList autoIncEnd[] = { 474 /* 0 */ {OP_NotNull, 0, 2, 0}, 475 /* 1 */ {OP_NewRowid, 0, 0, 0}, 476 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 477 /* 3 */ {OP_Insert, 0, 0, 0}, 478 /* 4 */ {OP_Close, 0, 0, 0} 479 }; 480 VdbeOp *aOp; 481 Db *pDb = &db->aDb[p->iDb]; 482 int iRec; 483 int memId = p->regCtr; 484 485 iRec = sqlite3GetTempReg(pParse); 486 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 487 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 488 VdbeCoverage(v); 489 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 490 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 491 if( aOp==0 ) break; 492 aOp[0].p1 = memId+1; 493 aOp[1].p2 = memId+1; 494 aOp[2].p1 = memId-1; 495 aOp[2].p3 = iRec; 496 aOp[3].p2 = iRec; 497 aOp[3].p3 = memId+1; 498 aOp[3].p5 = OPFLAG_APPEND; 499 sqlite3ReleaseTempReg(pParse, iRec); 500 } 501 } 502 void sqlite3AutoincrementEnd(Parse *pParse){ 503 if( pParse->pAinc ) autoIncrementEnd(pParse); 504 } 505 #else 506 /* 507 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 508 ** above are all no-ops 509 */ 510 # define autoIncBegin(A,B,C) (0) 511 # define autoIncStep(A,B,C) 512 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 513 514 515 /* Forward declaration */ 516 static int xferOptimization( 517 Parse *pParse, /* Parser context */ 518 Table *pDest, /* The table we are inserting into */ 519 Select *pSelect, /* A SELECT statement to use as the data source */ 520 int onError, /* How to handle constraint errors */ 521 int iDbDest /* The database of pDest */ 522 ); 523 524 /* 525 ** This routine is called to handle SQL of the following forms: 526 ** 527 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 528 ** insert into TABLE (IDLIST) select 529 ** insert into TABLE (IDLIST) default values 530 ** 531 ** The IDLIST following the table name is always optional. If omitted, 532 ** then a list of all (non-hidden) columns for the table is substituted. 533 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 534 ** is omitted. 535 ** 536 ** For the pSelect parameter holds the values to be inserted for the 537 ** first two forms shown above. A VALUES clause is really just short-hand 538 ** for a SELECT statement that omits the FROM clause and everything else 539 ** that follows. If the pSelect parameter is NULL, that means that the 540 ** DEFAULT VALUES form of the INSERT statement is intended. 541 ** 542 ** The code generated follows one of four templates. For a simple 543 ** insert with data coming from a single-row VALUES clause, the code executes 544 ** once straight down through. Pseudo-code follows (we call this 545 ** the "1st template"): 546 ** 547 ** open write cursor to <table> and its indices 548 ** put VALUES clause expressions into registers 549 ** write the resulting record into <table> 550 ** cleanup 551 ** 552 ** The three remaining templates assume the statement is of the form 553 ** 554 ** INSERT INTO <table> SELECT ... 555 ** 556 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 557 ** in other words if the SELECT pulls all columns from a single table 558 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 559 ** if <table2> and <table1> are distinct tables but have identical 560 ** schemas, including all the same indices, then a special optimization 561 ** is invoked that copies raw records from <table2> over to <table1>. 562 ** See the xferOptimization() function for the implementation of this 563 ** template. This is the 2nd template. 564 ** 565 ** open a write cursor to <table> 566 ** open read cursor on <table2> 567 ** transfer all records in <table2> over to <table> 568 ** close cursors 569 ** foreach index on <table> 570 ** open a write cursor on the <table> index 571 ** open a read cursor on the corresponding <table2> index 572 ** transfer all records from the read to the write cursors 573 ** close cursors 574 ** end foreach 575 ** 576 ** The 3rd template is for when the second template does not apply 577 ** and the SELECT clause does not read from <table> at any time. 578 ** The generated code follows this template: 579 ** 580 ** X <- A 581 ** goto B 582 ** A: setup for the SELECT 583 ** loop over the rows in the SELECT 584 ** load values into registers R..R+n 585 ** yield X 586 ** end loop 587 ** cleanup after the SELECT 588 ** end-coroutine X 589 ** B: open write cursor to <table> and its indices 590 ** C: yield X, at EOF goto D 591 ** insert the select result into <table> from R..R+n 592 ** goto C 593 ** D: cleanup 594 ** 595 ** The 4th template is used if the insert statement takes its 596 ** values from a SELECT but the data is being inserted into a table 597 ** that is also read as part of the SELECT. In the third form, 598 ** we have to use an intermediate table to store the results of 599 ** the select. The template is like this: 600 ** 601 ** X <- A 602 ** goto B 603 ** A: setup for the SELECT 604 ** loop over the tables in the SELECT 605 ** load value into register R..R+n 606 ** yield X 607 ** end loop 608 ** cleanup after the SELECT 609 ** end co-routine R 610 ** B: open temp table 611 ** L: yield X, at EOF goto M 612 ** insert row from R..R+n into temp table 613 ** goto L 614 ** M: open write cursor to <table> and its indices 615 ** rewind temp table 616 ** C: loop over rows of intermediate table 617 ** transfer values form intermediate table into <table> 618 ** end loop 619 ** D: cleanup 620 */ 621 void sqlite3Insert( 622 Parse *pParse, /* Parser context */ 623 SrcList *pTabList, /* Name of table into which we are inserting */ 624 Select *pSelect, /* A SELECT statement to use as the data source */ 625 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 626 int onError, /* How to handle constraint errors */ 627 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 628 ){ 629 sqlite3 *db; /* The main database structure */ 630 Table *pTab; /* The table to insert into. aka TABLE */ 631 int i, j; /* Loop counters */ 632 Vdbe *v; /* Generate code into this virtual machine */ 633 Index *pIdx; /* For looping over indices of the table */ 634 int nColumn; /* Number of columns in the data */ 635 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 636 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 637 int iIdxCur = 0; /* First index cursor */ 638 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 639 int endOfLoop; /* Label for the end of the insertion loop */ 640 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 641 int addrInsTop = 0; /* Jump to label "D" */ 642 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 643 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 644 int iDb; /* Index of database holding TABLE */ 645 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 646 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 647 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 648 u8 bIdListInOrder; /* True if IDLIST is in table order */ 649 ExprList *pList = 0; /* List of VALUES() to be inserted */ 650 int iRegStore; /* Register in which to store next column */ 651 652 /* Register allocations */ 653 int regFromSelect = 0;/* Base register for data coming from SELECT */ 654 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 655 int regRowCount = 0; /* Memory cell used for the row counter */ 656 int regIns; /* Block of regs holding rowid+data being inserted */ 657 int regRowid; /* registers holding insert rowid */ 658 int regData; /* register holding first column to insert */ 659 int *aRegIdx = 0; /* One register allocated to each index */ 660 661 #ifndef SQLITE_OMIT_TRIGGER 662 int isView; /* True if attempting to insert into a view */ 663 Trigger *pTrigger; /* List of triggers on pTab, if required */ 664 int tmask; /* Mask of trigger times */ 665 #endif 666 667 db = pParse->db; 668 if( pParse->nErr || db->mallocFailed ){ 669 goto insert_cleanup; 670 } 671 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 672 673 /* If the Select object is really just a simple VALUES() list with a 674 ** single row (the common case) then keep that one row of values 675 ** and discard the other (unused) parts of the pSelect object 676 */ 677 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 678 pList = pSelect->pEList; 679 pSelect->pEList = 0; 680 sqlite3SelectDelete(db, pSelect); 681 pSelect = 0; 682 } 683 684 /* Locate the table into which we will be inserting new information. 685 */ 686 assert( pTabList->nSrc==1 ); 687 pTab = sqlite3SrcListLookup(pParse, pTabList); 688 if( pTab==0 ){ 689 goto insert_cleanup; 690 } 691 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 692 assert( iDb<db->nDb ); 693 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 694 db->aDb[iDb].zDbSName) ){ 695 goto insert_cleanup; 696 } 697 withoutRowid = !HasRowid(pTab); 698 699 /* Figure out if we have any triggers and if the table being 700 ** inserted into is a view 701 */ 702 #ifndef SQLITE_OMIT_TRIGGER 703 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 704 isView = pTab->pSelect!=0; 705 #else 706 # define pTrigger 0 707 # define tmask 0 708 # define isView 0 709 #endif 710 #ifdef SQLITE_OMIT_VIEW 711 # undef isView 712 # define isView 0 713 #endif 714 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 715 716 /* If pTab is really a view, make sure it has been initialized. 717 ** ViewGetColumnNames() is a no-op if pTab is not a view. 718 */ 719 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 720 goto insert_cleanup; 721 } 722 723 /* Cannot insert into a read-only table. 724 */ 725 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 726 goto insert_cleanup; 727 } 728 729 /* Allocate a VDBE 730 */ 731 v = sqlite3GetVdbe(pParse); 732 if( v==0 ) goto insert_cleanup; 733 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 734 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 735 736 #ifndef SQLITE_OMIT_XFER_OPT 737 /* If the statement is of the form 738 ** 739 ** INSERT INTO <table1> SELECT * FROM <table2>; 740 ** 741 ** Then special optimizations can be applied that make the transfer 742 ** very fast and which reduce fragmentation of indices. 743 ** 744 ** This is the 2nd template. 745 */ 746 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 747 assert( !pTrigger ); 748 assert( pList==0 ); 749 goto insert_end; 750 } 751 #endif /* SQLITE_OMIT_XFER_OPT */ 752 753 /* If this is an AUTOINCREMENT table, look up the sequence number in the 754 ** sqlite_sequence table and store it in memory cell regAutoinc. 755 */ 756 regAutoinc = autoIncBegin(pParse, iDb, pTab); 757 758 /* Allocate a block registers to hold the rowid and the values 759 ** for all columns of the new row. 760 */ 761 regRowid = regIns = pParse->nMem+1; 762 pParse->nMem += pTab->nCol + 1; 763 if( IsVirtual(pTab) ){ 764 regRowid++; 765 pParse->nMem++; 766 } 767 regData = regRowid+1; 768 769 /* If the INSERT statement included an IDLIST term, then make sure 770 ** all elements of the IDLIST really are columns of the table and 771 ** remember the column indices. 772 ** 773 ** If the table has an INTEGER PRIMARY KEY column and that column 774 ** is named in the IDLIST, then record in the ipkColumn variable 775 ** the index into IDLIST of the primary key column. ipkColumn is 776 ** the index of the primary key as it appears in IDLIST, not as 777 ** is appears in the original table. (The index of the INTEGER 778 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 779 ** loop, if ipkColumn==(-1), that means that integer primary key 780 ** is unspecified, and hence the table is either WITHOUT ROWID or 781 ** it will automatically generated an integer primary key. 782 ** 783 ** bIdListInOrder is true if the columns in IDLIST are in storage 784 ** order. This enables an optimization that avoids shuffling the 785 ** columns into storage order. False negatives are harmless, 786 ** but false positives will cause database corruption. 787 */ 788 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 789 if( pColumn ){ 790 for(i=0; i<pColumn->nId; i++){ 791 pColumn->a[i].idx = -1; 792 } 793 for(i=0; i<pColumn->nId; i++){ 794 for(j=0; j<pTab->nCol; j++){ 795 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 796 pColumn->a[i].idx = j; 797 if( i!=j ) bIdListInOrder = 0; 798 if( j==pTab->iPKey ){ 799 ipkColumn = i; assert( !withoutRowid ); 800 } 801 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 802 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 803 sqlite3ErrorMsg(pParse, 804 "cannot INSERT into generated column \"%s\"", 805 pTab->aCol[j].zName); 806 goto insert_cleanup; 807 } 808 #endif 809 break; 810 } 811 } 812 if( j>=pTab->nCol ){ 813 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 814 ipkColumn = i; 815 bIdListInOrder = 0; 816 }else{ 817 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 818 pTabList, 0, pColumn->a[i].zName); 819 pParse->checkSchema = 1; 820 goto insert_cleanup; 821 } 822 } 823 } 824 } 825 826 /* Figure out how many columns of data are supplied. If the data 827 ** is coming from a SELECT statement, then generate a co-routine that 828 ** produces a single row of the SELECT on each invocation. The 829 ** co-routine is the common header to the 3rd and 4th templates. 830 */ 831 if( pSelect ){ 832 /* Data is coming from a SELECT or from a multi-row VALUES clause. 833 ** Generate a co-routine to run the SELECT. */ 834 int regYield; /* Register holding co-routine entry-point */ 835 int addrTop; /* Top of the co-routine */ 836 int rc; /* Result code */ 837 838 regYield = ++pParse->nMem; 839 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 840 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 841 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 842 dest.iSdst = bIdListInOrder ? regData : 0; 843 dest.nSdst = pTab->nCol; 844 rc = sqlite3Select(pParse, pSelect, &dest); 845 regFromSelect = dest.iSdst; 846 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 847 sqlite3VdbeEndCoroutine(v, regYield); 848 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 849 assert( pSelect->pEList ); 850 nColumn = pSelect->pEList->nExpr; 851 852 /* Set useTempTable to TRUE if the result of the SELECT statement 853 ** should be written into a temporary table (template 4). Set to 854 ** FALSE if each output row of the SELECT can be written directly into 855 ** the destination table (template 3). 856 ** 857 ** A temp table must be used if the table being updated is also one 858 ** of the tables being read by the SELECT statement. Also use a 859 ** temp table in the case of row triggers. 860 */ 861 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 862 useTempTable = 1; 863 } 864 865 if( useTempTable ){ 866 /* Invoke the coroutine to extract information from the SELECT 867 ** and add it to a transient table srcTab. The code generated 868 ** here is from the 4th template: 869 ** 870 ** B: open temp table 871 ** L: yield X, goto M at EOF 872 ** insert row from R..R+n into temp table 873 ** goto L 874 ** M: ... 875 */ 876 int regRec; /* Register to hold packed record */ 877 int regTempRowid; /* Register to hold temp table ROWID */ 878 int addrL; /* Label "L" */ 879 880 srcTab = pParse->nTab++; 881 regRec = sqlite3GetTempReg(pParse); 882 regTempRowid = sqlite3GetTempReg(pParse); 883 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 884 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 886 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 887 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 888 sqlite3VdbeGoto(v, addrL); 889 sqlite3VdbeJumpHere(v, addrL); 890 sqlite3ReleaseTempReg(pParse, regRec); 891 sqlite3ReleaseTempReg(pParse, regTempRowid); 892 } 893 }else{ 894 /* This is the case if the data for the INSERT is coming from a 895 ** single-row VALUES clause 896 */ 897 NameContext sNC; 898 memset(&sNC, 0, sizeof(sNC)); 899 sNC.pParse = pParse; 900 srcTab = -1; 901 assert( useTempTable==0 ); 902 if( pList ){ 903 nColumn = pList->nExpr; 904 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 905 goto insert_cleanup; 906 } 907 }else{ 908 nColumn = 0; 909 } 910 } 911 912 /* If there is no IDLIST term but the table has an integer primary 913 ** key, the set the ipkColumn variable to the integer primary key 914 ** column index in the original table definition. 915 */ 916 if( pColumn==0 && nColumn>0 ){ 917 ipkColumn = pTab->iPKey; 918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 919 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 920 testcase( pTab->tabFlags & TF_HasVirtual ); 921 testcase( pTab->tabFlags & TF_HasStored ); 922 for(i=ipkColumn-1; i>=0; i--){ 923 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 924 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 925 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 926 ipkColumn--; 927 } 928 } 929 } 930 #endif 931 } 932 933 /* Make sure the number of columns in the source data matches the number 934 ** of columns to be inserted into the table. 935 */ 936 for(i=0; i<pTab->nCol; i++){ 937 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 938 } 939 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 940 sqlite3ErrorMsg(pParse, 941 "table %S has %d columns but %d values were supplied", 942 pTabList, 0, pTab->nCol-nHidden, nColumn); 943 goto insert_cleanup; 944 } 945 if( pColumn!=0 && nColumn!=pColumn->nId ){ 946 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 947 goto insert_cleanup; 948 } 949 950 /* Initialize the count of rows to be inserted 951 */ 952 if( (db->flags & SQLITE_CountRows)!=0 953 && !pParse->nested 954 && !pParse->pTriggerTab 955 ){ 956 regRowCount = ++pParse->nMem; 957 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 958 } 959 960 /* If this is not a view, open the table and and all indices */ 961 if( !isView ){ 962 int nIdx; 963 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 964 &iDataCur, &iIdxCur); 965 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 966 if( aRegIdx==0 ){ 967 goto insert_cleanup; 968 } 969 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 970 assert( pIdx ); 971 aRegIdx[i] = ++pParse->nMem; 972 pParse->nMem += pIdx->nColumn; 973 } 974 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 975 } 976 #ifndef SQLITE_OMIT_UPSERT 977 if( pUpsert ){ 978 if( IsVirtual(pTab) ){ 979 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 980 pTab->zName); 981 goto insert_cleanup; 982 } 983 if( pTab->pSelect ){ 984 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 985 goto insert_cleanup; 986 } 987 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 988 goto insert_cleanup; 989 } 990 pTabList->a[0].iCursor = iDataCur; 991 pUpsert->pUpsertSrc = pTabList; 992 pUpsert->regData = regData; 993 pUpsert->iDataCur = iDataCur; 994 pUpsert->iIdxCur = iIdxCur; 995 if( pUpsert->pUpsertTarget ){ 996 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 997 } 998 } 999 #endif 1000 1001 1002 /* This is the top of the main insertion loop */ 1003 if( useTempTable ){ 1004 /* This block codes the top of loop only. The complete loop is the 1005 ** following pseudocode (template 4): 1006 ** 1007 ** rewind temp table, if empty goto D 1008 ** C: loop over rows of intermediate table 1009 ** transfer values form intermediate table into <table> 1010 ** end loop 1011 ** D: ... 1012 */ 1013 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1014 addrCont = sqlite3VdbeCurrentAddr(v); 1015 }else if( pSelect ){ 1016 /* This block codes the top of loop only. The complete loop is the 1017 ** following pseudocode (template 3): 1018 ** 1019 ** C: yield X, at EOF goto D 1020 ** insert the select result into <table> from R..R+n 1021 ** goto C 1022 ** D: ... 1023 */ 1024 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1025 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1026 VdbeCoverage(v); 1027 if( ipkColumn>=0 ){ 1028 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1029 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1030 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1031 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1032 } 1033 } 1034 1035 /* Compute data for ordinary columns of the new entry. Values 1036 ** are written in storage order into registers starting with regData. 1037 ** Only ordinary columns are computed in this loop. The rowid 1038 ** (if there is one) is computed later and generated columns are 1039 ** computed after the rowid since they might depend on the value 1040 ** of the rowid. 1041 */ 1042 nHidden = 0; 1043 iRegStore = regData; assert( regData==regRowid+1 ); 1044 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1045 int k; 1046 u32 colFlags; 1047 assert( i>=nHidden ); 1048 if( i==pTab->iPKey ){ 1049 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1050 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1051 ** using excess space. The file format definition requires this extra 1052 ** NULL - we cannot optimize further by skipping the column completely */ 1053 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1054 continue; 1055 } 1056 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1057 nHidden++; 1058 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1059 /* Virtual columns do not participate in OP_MakeRecord. So back up 1060 ** iRegStore by one slot to compensate for the iRegStore++ in the 1061 ** outer for() loop */ 1062 iRegStore--; 1063 continue; 1064 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1065 /* Stored columns are computed later. But if there are BEFORE 1066 ** triggers, the slots used for stored columns will be OP_Copy-ed 1067 ** to a second block of registers, so the register needs to be 1068 ** initialized to NULL to avoid an uninitialized register read */ 1069 if( tmask & TRIGGER_BEFORE ){ 1070 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1071 } 1072 continue; 1073 }else if( pColumn==0 ){ 1074 /* Hidden columns that are not explicitly named in the INSERT 1075 ** get there default value */ 1076 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1077 continue; 1078 } 1079 } 1080 if( pColumn ){ 1081 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1082 if( j>=pColumn->nId ){ 1083 /* A column not named in the insert column list gets its 1084 ** default value */ 1085 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1086 continue; 1087 } 1088 k = j; 1089 }else if( nColumn==0 ){ 1090 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1091 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1092 continue; 1093 }else{ 1094 k = i - nHidden; 1095 } 1096 1097 if( useTempTable ){ 1098 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1099 }else if( pSelect ){ 1100 if( regFromSelect!=regData ){ 1101 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1102 } 1103 }else{ 1104 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1105 } 1106 } 1107 1108 1109 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1110 */ 1111 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1112 if( tmask & TRIGGER_BEFORE ){ 1113 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1114 1115 /* build the NEW.* reference row. Note that if there is an INTEGER 1116 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1117 ** translated into a unique ID for the row. But on a BEFORE trigger, 1118 ** we do not know what the unique ID will be (because the insert has 1119 ** not happened yet) so we substitute a rowid of -1 1120 */ 1121 if( ipkColumn<0 ){ 1122 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1123 }else{ 1124 int addr1; 1125 assert( !withoutRowid ); 1126 if( useTempTable ){ 1127 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1128 }else{ 1129 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1130 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1131 } 1132 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1133 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1134 sqlite3VdbeJumpHere(v, addr1); 1135 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1136 } 1137 1138 /* Cannot have triggers on a virtual table. If it were possible, 1139 ** this block would have to account for hidden column. 1140 */ 1141 assert( !IsVirtual(pTab) ); 1142 1143 /* Copy the new data already generated. */ 1144 assert( pTab->nNVCol>0 ); 1145 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1146 1147 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1148 /* Compute the new value for generated columns after all other 1149 ** columns have already been computed. This must be done after 1150 ** computing the ROWID in case one of the generated columns 1151 ** refers to the ROWID. */ 1152 if( pTab->tabFlags & TF_HasGenerated ){ 1153 testcase( pTab->tabFlags & TF_HasVirtual ); 1154 testcase( pTab->tabFlags & TF_HasStored ); 1155 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1156 } 1157 #endif 1158 1159 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1160 ** do not attempt any conversions before assembling the record. 1161 ** If this is a real table, attempt conversions as required by the 1162 ** table column affinities. 1163 */ 1164 if( !isView ){ 1165 sqlite3TableAffinity(v, pTab, regCols+1); 1166 } 1167 1168 /* Fire BEFORE or INSTEAD OF triggers */ 1169 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1170 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1171 1172 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1173 } 1174 1175 if( !isView ){ 1176 if( IsVirtual(pTab) ){ 1177 /* The row that the VUpdate opcode will delete: none */ 1178 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1179 } 1180 if( ipkColumn>=0 ){ 1181 /* Compute the new rowid */ 1182 if( useTempTable ){ 1183 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1184 }else if( pSelect ){ 1185 /* Rowid already initialized at tag-20191021-001 */ 1186 }else{ 1187 Expr *pIpk = pList->a[ipkColumn].pExpr; 1188 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1189 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1190 appendFlag = 1; 1191 }else{ 1192 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1193 } 1194 } 1195 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1196 ** to generate a unique primary key value. 1197 */ 1198 if( !appendFlag ){ 1199 int addr1; 1200 if( !IsVirtual(pTab) ){ 1201 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1202 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1203 sqlite3VdbeJumpHere(v, addr1); 1204 }else{ 1205 addr1 = sqlite3VdbeCurrentAddr(v); 1206 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1207 } 1208 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1209 } 1210 }else if( IsVirtual(pTab) || withoutRowid ){ 1211 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1212 }else{ 1213 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1214 appendFlag = 1; 1215 } 1216 autoIncStep(pParse, regAutoinc, regRowid); 1217 1218 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1219 /* Compute the new value for generated columns after all other 1220 ** columns have already been computed. This must be done after 1221 ** computing the ROWID in case one of the generated columns 1222 ** is derived from the INTEGER PRIMARY KEY. */ 1223 if( pTab->tabFlags & TF_HasGenerated ){ 1224 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1225 } 1226 #endif 1227 1228 /* Generate code to check constraints and generate index keys and 1229 ** do the insertion. 1230 */ 1231 #ifndef SQLITE_OMIT_VIRTUALTABLE 1232 if( IsVirtual(pTab) ){ 1233 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1234 sqlite3VtabMakeWritable(pParse, pTab); 1235 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1236 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1237 sqlite3MayAbort(pParse); 1238 }else 1239 #endif 1240 { 1241 int isReplace; /* Set to true if constraints may cause a replace */ 1242 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1243 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1244 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1245 ); 1246 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1247 1248 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1249 ** constraints or (b) there are no triggers and this table is not a 1250 ** parent table in a foreign key constraint. It is safe to set the 1251 ** flag in the second case as if any REPLACE constraint is hit, an 1252 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1253 ** cursor that is disturbed. And these instructions both clear the 1254 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1255 ** functionality. */ 1256 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1257 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1258 regIns, aRegIdx, 0, appendFlag, bUseSeek 1259 ); 1260 } 1261 } 1262 1263 /* Update the count of rows that are inserted 1264 */ 1265 if( regRowCount ){ 1266 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1267 } 1268 1269 if( pTrigger ){ 1270 /* Code AFTER triggers */ 1271 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1272 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1273 } 1274 1275 /* The bottom of the main insertion loop, if the data source 1276 ** is a SELECT statement. 1277 */ 1278 sqlite3VdbeResolveLabel(v, endOfLoop); 1279 if( useTempTable ){ 1280 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1281 sqlite3VdbeJumpHere(v, addrInsTop); 1282 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1283 }else if( pSelect ){ 1284 sqlite3VdbeGoto(v, addrCont); 1285 #ifdef SQLITE_DEBUG 1286 /* If we are jumping back to an OP_Yield that is preceded by an 1287 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1288 ** OP_ReleaseReg will be included in the loop. */ 1289 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1290 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1291 sqlite3VdbeChangeP5(v, 1); 1292 } 1293 #endif 1294 sqlite3VdbeJumpHere(v, addrInsTop); 1295 } 1296 1297 insert_end: 1298 /* Update the sqlite_sequence table by storing the content of the 1299 ** maximum rowid counter values recorded while inserting into 1300 ** autoincrement tables. 1301 */ 1302 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1303 sqlite3AutoincrementEnd(pParse); 1304 } 1305 1306 /* 1307 ** Return the number of rows inserted. If this routine is 1308 ** generating code because of a call to sqlite3NestedParse(), do not 1309 ** invoke the callback function. 1310 */ 1311 if( regRowCount ){ 1312 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1313 sqlite3VdbeSetNumCols(v, 1); 1314 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1315 } 1316 1317 insert_cleanup: 1318 sqlite3SrcListDelete(db, pTabList); 1319 sqlite3ExprListDelete(db, pList); 1320 sqlite3UpsertDelete(db, pUpsert); 1321 sqlite3SelectDelete(db, pSelect); 1322 sqlite3IdListDelete(db, pColumn); 1323 sqlite3DbFree(db, aRegIdx); 1324 } 1325 1326 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1327 ** they may interfere with compilation of other functions in this file 1328 ** (or in another file, if this file becomes part of the amalgamation). */ 1329 #ifdef isView 1330 #undef isView 1331 #endif 1332 #ifdef pTrigger 1333 #undef pTrigger 1334 #endif 1335 #ifdef tmask 1336 #undef tmask 1337 #endif 1338 1339 /* 1340 ** Meanings of bits in of pWalker->eCode for 1341 ** sqlite3ExprReferencesUpdatedColumn() 1342 */ 1343 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1344 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1345 1346 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1347 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1348 ** expression node references any of the 1349 ** columns that are being modifed by an UPDATE statement. 1350 */ 1351 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1352 if( pExpr->op==TK_COLUMN ){ 1353 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1354 if( pExpr->iColumn>=0 ){ 1355 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1356 pWalker->eCode |= CKCNSTRNT_COLUMN; 1357 } 1358 }else{ 1359 pWalker->eCode |= CKCNSTRNT_ROWID; 1360 } 1361 } 1362 return WRC_Continue; 1363 } 1364 1365 /* 1366 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1367 ** only columns that are modified by the UPDATE are those for which 1368 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1369 ** 1370 ** Return true if CHECK constraint pExpr uses any of the 1371 ** changing columns (or the rowid if it is changing). In other words, 1372 ** return true if this CHECK constraint must be validated for 1373 ** the new row in the UPDATE statement. 1374 ** 1375 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1376 ** The operation of this routine is the same - return true if an only if 1377 ** the expression uses one or more of columns identified by the second and 1378 ** third arguments. 1379 */ 1380 int sqlite3ExprReferencesUpdatedColumn( 1381 Expr *pExpr, /* The expression to be checked */ 1382 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1383 int chngRowid /* True if UPDATE changes the rowid */ 1384 ){ 1385 Walker w; 1386 memset(&w, 0, sizeof(w)); 1387 w.eCode = 0; 1388 w.xExprCallback = checkConstraintExprNode; 1389 w.u.aiCol = aiChng; 1390 sqlite3WalkExpr(&w, pExpr); 1391 if( !chngRowid ){ 1392 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1393 w.eCode &= ~CKCNSTRNT_ROWID; 1394 } 1395 testcase( w.eCode==0 ); 1396 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1397 testcase( w.eCode==CKCNSTRNT_ROWID ); 1398 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1399 return w.eCode!=0; 1400 } 1401 1402 /* 1403 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1404 ** on table pTab. 1405 ** 1406 ** The regNewData parameter is the first register in a range that contains 1407 ** the data to be inserted or the data after the update. There will be 1408 ** pTab->nCol+1 registers in this range. The first register (the one 1409 ** that regNewData points to) will contain the new rowid, or NULL in the 1410 ** case of a WITHOUT ROWID table. The second register in the range will 1411 ** contain the content of the first table column. The third register will 1412 ** contain the content of the second table column. And so forth. 1413 ** 1414 ** The regOldData parameter is similar to regNewData except that it contains 1415 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1416 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1417 ** checking regOldData for zero. 1418 ** 1419 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1420 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1421 ** might be modified by the UPDATE. If pkChng is false, then the key of 1422 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1423 ** 1424 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1425 ** was explicitly specified as part of the INSERT statement. If pkChng 1426 ** is zero, it means that the either rowid is computed automatically or 1427 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1428 ** pkChng will only be true if the INSERT statement provides an integer 1429 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1430 ** 1431 ** The code generated by this routine will store new index entries into 1432 ** registers identified by aRegIdx[]. No index entry is created for 1433 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1434 ** the same as the order of indices on the linked list of indices 1435 ** at pTab->pIndex. 1436 ** 1437 ** (2019-05-07) The generated code also creates a new record for the 1438 ** main table, if pTab is a rowid table, and stores that record in the 1439 ** register identified by aRegIdx[nIdx] - in other words in the first 1440 ** entry of aRegIdx[] past the last index. It is important that the 1441 ** record be generated during constraint checks to avoid affinity changes 1442 ** to the register content that occur after constraint checks but before 1443 ** the new record is inserted. 1444 ** 1445 ** The caller must have already opened writeable cursors on the main 1446 ** table and all applicable indices (that is to say, all indices for which 1447 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1448 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1449 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1450 ** for the first index in the pTab->pIndex list. Cursors for other indices 1451 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1452 ** 1453 ** This routine also generates code to check constraints. NOT NULL, 1454 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1455 ** then the appropriate action is performed. There are five possible 1456 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1457 ** 1458 ** Constraint type Action What Happens 1459 ** --------------- ---------- ---------------------------------------- 1460 ** any ROLLBACK The current transaction is rolled back and 1461 ** sqlite3_step() returns immediately with a 1462 ** return code of SQLITE_CONSTRAINT. 1463 ** 1464 ** any ABORT Back out changes from the current command 1465 ** only (do not do a complete rollback) then 1466 ** cause sqlite3_step() to return immediately 1467 ** with SQLITE_CONSTRAINT. 1468 ** 1469 ** any FAIL Sqlite3_step() returns immediately with a 1470 ** return code of SQLITE_CONSTRAINT. The 1471 ** transaction is not rolled back and any 1472 ** changes to prior rows are retained. 1473 ** 1474 ** any IGNORE The attempt in insert or update the current 1475 ** row is skipped, without throwing an error. 1476 ** Processing continues with the next row. 1477 ** (There is an immediate jump to ignoreDest.) 1478 ** 1479 ** NOT NULL REPLACE The NULL value is replace by the default 1480 ** value for that column. If the default value 1481 ** is NULL, the action is the same as ABORT. 1482 ** 1483 ** UNIQUE REPLACE The other row that conflicts with the row 1484 ** being inserted is removed. 1485 ** 1486 ** CHECK REPLACE Illegal. The results in an exception. 1487 ** 1488 ** Which action to take is determined by the overrideError parameter. 1489 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1490 ** is used. Or if pParse->onError==OE_Default then the onError value 1491 ** for the constraint is used. 1492 */ 1493 void sqlite3GenerateConstraintChecks( 1494 Parse *pParse, /* The parser context */ 1495 Table *pTab, /* The table being inserted or updated */ 1496 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1497 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1498 int iIdxCur, /* First index cursor */ 1499 int regNewData, /* First register in a range holding values to insert */ 1500 int regOldData, /* Previous content. 0 for INSERTs */ 1501 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1502 u8 overrideError, /* Override onError to this if not OE_Default */ 1503 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1504 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1505 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1506 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1507 ){ 1508 Vdbe *v; /* VDBE under constrution */ 1509 Index *pIdx; /* Pointer to one of the indices */ 1510 Index *pPk = 0; /* The PRIMARY KEY index */ 1511 sqlite3 *db; /* Database connection */ 1512 int i; /* loop counter */ 1513 int ix; /* Index loop counter */ 1514 int nCol; /* Number of columns */ 1515 int onError; /* Conflict resolution strategy */ 1516 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1517 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1518 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1519 u8 isUpdate; /* True if this is an UPDATE operation */ 1520 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1521 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1522 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1523 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1524 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1525 /* Variables associated with retesting uniqueness constraints after 1526 ** replace triggers fire have run */ 1527 int regTrigCnt; /* Register used to count replace trigger invocations */ 1528 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1529 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1530 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1531 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1532 1533 isUpdate = regOldData!=0; 1534 db = pParse->db; 1535 v = pParse->pVdbe; 1536 assert( v!=0 ); 1537 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1538 nCol = pTab->nCol; 1539 1540 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1541 ** normal rowid tables. nPkField is the number of key fields in the 1542 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1543 ** number of fields in the true primary key of the table. */ 1544 if( HasRowid(pTab) ){ 1545 pPk = 0; 1546 nPkField = 1; 1547 }else{ 1548 pPk = sqlite3PrimaryKeyIndex(pTab); 1549 nPkField = pPk->nKeyCol; 1550 } 1551 1552 /* Record that this module has started */ 1553 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1554 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1555 1556 /* Test all NOT NULL constraints. 1557 */ 1558 if( pTab->tabFlags & TF_HasNotNull ){ 1559 int b2ndPass = 0; /* True if currently running 2nd pass */ 1560 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1561 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1562 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1563 for(i=0; i<nCol; i++){ 1564 int iReg; /* Register holding column value */ 1565 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1566 int isGenerated; /* non-zero if column is generated */ 1567 onError = pCol->notNull; 1568 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1569 if( i==pTab->iPKey ){ 1570 continue; /* ROWID is never NULL */ 1571 } 1572 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1573 if( isGenerated && !b2ndPass ){ 1574 nGenerated++; 1575 continue; /* Generated columns processed on 2nd pass */ 1576 } 1577 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1578 /* Do not check NOT NULL on columns that do not change */ 1579 continue; 1580 } 1581 if( overrideError!=OE_Default ){ 1582 onError = overrideError; 1583 }else if( onError==OE_Default ){ 1584 onError = OE_Abort; 1585 } 1586 if( onError==OE_Replace ){ 1587 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1588 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1589 ){ 1590 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1591 testcase( pCol->colFlags & COLFLAG_STORED ); 1592 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1593 onError = OE_Abort; 1594 }else{ 1595 assert( !isGenerated ); 1596 } 1597 }else if( b2ndPass && !isGenerated ){ 1598 continue; 1599 } 1600 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1601 || onError==OE_Ignore || onError==OE_Replace ); 1602 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1603 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1604 switch( onError ){ 1605 case OE_Replace: { 1606 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1607 VdbeCoverage(v); 1608 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1609 nSeenReplace++; 1610 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg); 1611 sqlite3VdbeJumpHere(v, addr1); 1612 break; 1613 } 1614 case OE_Abort: 1615 sqlite3MayAbort(pParse); 1616 /* no break */ deliberate_fall_through 1617 case OE_Rollback: 1618 case OE_Fail: { 1619 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1620 pCol->zName); 1621 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1622 onError, iReg); 1623 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1624 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1625 VdbeCoverage(v); 1626 break; 1627 } 1628 default: { 1629 assert( onError==OE_Ignore ); 1630 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1631 VdbeCoverage(v); 1632 break; 1633 } 1634 } /* end switch(onError) */ 1635 } /* end loop i over columns */ 1636 if( nGenerated==0 && nSeenReplace==0 ){ 1637 /* If there are no generated columns with NOT NULL constraints 1638 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1639 ** pass is sufficient */ 1640 break; 1641 } 1642 if( b2ndPass ) break; /* Never need more than 2 passes */ 1643 b2ndPass = 1; 1644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1645 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1646 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1647 ** first pass, recomputed values for all generated columns, as 1648 ** those values might depend on columns affected by the REPLACE. 1649 */ 1650 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1651 } 1652 #endif 1653 } /* end of 2-pass loop */ 1654 } /* end if( has-not-null-constraints ) */ 1655 1656 /* Test all CHECK constraints 1657 */ 1658 #ifndef SQLITE_OMIT_CHECK 1659 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1660 ExprList *pCheck = pTab->pCheck; 1661 pParse->iSelfTab = -(regNewData+1); 1662 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1663 for(i=0; i<pCheck->nExpr; i++){ 1664 int allOk; 1665 Expr *pCopy; 1666 Expr *pExpr = pCheck->a[i].pExpr; 1667 if( aiChng 1668 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1669 ){ 1670 /* The check constraints do not reference any of the columns being 1671 ** updated so there is no point it verifying the check constraint */ 1672 continue; 1673 } 1674 if( bAffinityDone==0 ){ 1675 sqlite3TableAffinity(v, pTab, regNewData+1); 1676 bAffinityDone = 1; 1677 } 1678 allOk = sqlite3VdbeMakeLabel(pParse); 1679 sqlite3VdbeVerifyAbortable(v, onError); 1680 pCopy = sqlite3ExprDup(db, pExpr, 0); 1681 if( !db->mallocFailed ){ 1682 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1683 } 1684 sqlite3ExprDelete(db, pCopy); 1685 if( onError==OE_Ignore ){ 1686 sqlite3VdbeGoto(v, ignoreDest); 1687 }else{ 1688 char *zName = pCheck->a[i].zEName; 1689 assert( zName!=0 || pParse->db->mallocFailed ); 1690 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1691 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1692 onError, zName, P4_TRANSIENT, 1693 P5_ConstraintCheck); 1694 } 1695 sqlite3VdbeResolveLabel(v, allOk); 1696 } 1697 pParse->iSelfTab = 0; 1698 } 1699 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1700 1701 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1702 ** order: 1703 ** 1704 ** (1) OE_Update 1705 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1706 ** (3) OE_Replace 1707 ** 1708 ** OE_Fail and OE_Ignore must happen before any changes are made. 1709 ** OE_Update guarantees that only a single row will change, so it 1710 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1711 ** could happen in any order, but they are grouped up front for 1712 ** convenience. 1713 ** 1714 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1715 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1716 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1717 ** constraint before any others, so it had to be moved. 1718 ** 1719 ** Constraint checking code is generated in this order: 1720 ** (A) The rowid constraint 1721 ** (B) Unique index constraints that do not have OE_Replace as their 1722 ** default conflict resolution strategy 1723 ** (C) Unique index that do use OE_Replace by default. 1724 ** 1725 ** The ordering of (2) and (3) is accomplished by making sure the linked 1726 ** list of indexes attached to a table puts all OE_Replace indexes last 1727 ** in the list. See sqlite3CreateIndex() for where that happens. 1728 */ 1729 1730 if( pUpsert ){ 1731 if( pUpsert->pUpsertTarget==0 ){ 1732 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1733 ** Make all unique constraint resolution be OE_Ignore */ 1734 assert( pUpsert->pUpsertSet==0 ); 1735 overrideError = OE_Ignore; 1736 pUpsert = 0; 1737 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1738 /* If the constraint-target uniqueness check must be run first. 1739 ** Jump to that uniqueness check now */ 1740 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1741 VdbeComment((v, "UPSERT constraint goes first")); 1742 } 1743 } 1744 1745 /* Determine if it is possible that triggers (either explicitly coded 1746 ** triggers or FK resolution actions) might run as a result of deletes 1747 ** that happen when OE_Replace conflict resolution occurs. (Call these 1748 ** "replace triggers".) If any replace triggers run, we will need to 1749 ** recheck all of the uniqueness constraints after they have all run. 1750 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1751 ** 1752 ** If replace triggers are a possibility, then 1753 ** 1754 ** (1) Allocate register regTrigCnt and initialize it to zero. 1755 ** That register will count the number of replace triggers that 1756 ** fire. Constraint recheck only occurs if the number is positive. 1757 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1758 ** (3) Initialize addrRecheck and lblRecheckOk 1759 ** 1760 ** The uniqueness rechecking code will create a series of tests to run 1761 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1762 ** used to link together these tests which are separated from each other 1763 ** in the generate bytecode. 1764 */ 1765 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1766 /* There are not DELETE triggers nor FK constraints. No constraint 1767 ** rechecks are needed. */ 1768 pTrigger = 0; 1769 regTrigCnt = 0; 1770 }else{ 1771 if( db->flags&SQLITE_RecTriggers ){ 1772 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1773 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1774 }else{ 1775 pTrigger = 0; 1776 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1777 } 1778 if( regTrigCnt ){ 1779 /* Replace triggers might exist. Allocate the counter and 1780 ** initialize it to zero. */ 1781 regTrigCnt = ++pParse->nMem; 1782 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1783 VdbeComment((v, "trigger count")); 1784 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1785 addrRecheck = lblRecheckOk; 1786 } 1787 } 1788 1789 /* If rowid is changing, make sure the new rowid does not previously 1790 ** exist in the table. 1791 */ 1792 if( pkChng && pPk==0 ){ 1793 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1794 1795 /* Figure out what action to take in case of a rowid collision */ 1796 onError = pTab->keyConf; 1797 if( overrideError!=OE_Default ){ 1798 onError = overrideError; 1799 }else if( onError==OE_Default ){ 1800 onError = OE_Abort; 1801 } 1802 1803 /* figure out whether or not upsert applies in this case */ 1804 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1805 if( pUpsert->pUpsertSet==0 ){ 1806 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1807 }else{ 1808 onError = OE_Update; /* DO UPDATE */ 1809 } 1810 } 1811 1812 /* If the response to a rowid conflict is REPLACE but the response 1813 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1814 ** to defer the running of the rowid conflict checking until after 1815 ** the UNIQUE constraints have run. 1816 */ 1817 if( onError==OE_Replace /* IPK rule is REPLACE */ 1818 && onError!=overrideError /* Rules for other contraints are different */ 1819 && pTab->pIndex /* There exist other constraints */ 1820 ){ 1821 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1822 VdbeComment((v, "defer IPK REPLACE until last")); 1823 } 1824 1825 if( isUpdate ){ 1826 /* pkChng!=0 does not mean that the rowid has changed, only that 1827 ** it might have changed. Skip the conflict logic below if the rowid 1828 ** is unchanged. */ 1829 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1830 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1831 VdbeCoverage(v); 1832 } 1833 1834 /* Check to see if the new rowid already exists in the table. Skip 1835 ** the following conflict logic if it does not. */ 1836 VdbeNoopComment((v, "uniqueness check for ROWID")); 1837 sqlite3VdbeVerifyAbortable(v, onError); 1838 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1839 VdbeCoverage(v); 1840 1841 switch( onError ){ 1842 default: { 1843 onError = OE_Abort; 1844 /* no break */ deliberate_fall_through 1845 } 1846 case OE_Rollback: 1847 case OE_Abort: 1848 case OE_Fail: { 1849 testcase( onError==OE_Rollback ); 1850 testcase( onError==OE_Abort ); 1851 testcase( onError==OE_Fail ); 1852 sqlite3RowidConstraint(pParse, onError, pTab); 1853 break; 1854 } 1855 case OE_Replace: { 1856 /* If there are DELETE triggers on this table and the 1857 ** recursive-triggers flag is set, call GenerateRowDelete() to 1858 ** remove the conflicting row from the table. This will fire 1859 ** the triggers and remove both the table and index b-tree entries. 1860 ** 1861 ** Otherwise, if there are no triggers or the recursive-triggers 1862 ** flag is not set, but the table has one or more indexes, call 1863 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1864 ** only. The table b-tree entry will be replaced by the new entry 1865 ** when it is inserted. 1866 ** 1867 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1868 ** also invoke MultiWrite() to indicate that this VDBE may require 1869 ** statement rollback (if the statement is aborted after the delete 1870 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1871 ** but being more selective here allows statements like: 1872 ** 1873 ** REPLACE INTO t(rowid) VALUES($newrowid) 1874 ** 1875 ** to run without a statement journal if there are no indexes on the 1876 ** table. 1877 */ 1878 if( regTrigCnt ){ 1879 sqlite3MultiWrite(pParse); 1880 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1881 regNewData, 1, 0, OE_Replace, 1, -1); 1882 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 1883 nReplaceTrig++; 1884 }else{ 1885 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1886 assert( HasRowid(pTab) ); 1887 /* This OP_Delete opcode fires the pre-update-hook only. It does 1888 ** not modify the b-tree. It is more efficient to let the coming 1889 ** OP_Insert replace the existing entry than it is to delete the 1890 ** existing entry and then insert a new one. */ 1891 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1892 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1894 if( pTab->pIndex ){ 1895 sqlite3MultiWrite(pParse); 1896 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1897 } 1898 } 1899 seenReplace = 1; 1900 break; 1901 } 1902 #ifndef SQLITE_OMIT_UPSERT 1903 case OE_Update: { 1904 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1905 /* no break */ deliberate_fall_through 1906 } 1907 #endif 1908 case OE_Ignore: { 1909 testcase( onError==OE_Ignore ); 1910 sqlite3VdbeGoto(v, ignoreDest); 1911 break; 1912 } 1913 } 1914 sqlite3VdbeResolveLabel(v, addrRowidOk); 1915 if( ipkTop ){ 1916 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1917 sqlite3VdbeJumpHere(v, ipkTop-1); 1918 } 1919 } 1920 1921 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1922 ** index and making sure that duplicate entries do not already exist. 1923 ** Compute the revised record entries for indices as we go. 1924 ** 1925 ** This loop also handles the case of the PRIMARY KEY index for a 1926 ** WITHOUT ROWID table. 1927 */ 1928 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1929 int regIdx; /* Range of registers hold conent for pIdx */ 1930 int regR; /* Range of registers holding conflicting PK */ 1931 int iThisCur; /* Cursor for this UNIQUE index */ 1932 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1933 int addrConflictCk; /* First opcode in the conflict check logic */ 1934 1935 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1936 if( pUpIdx==pIdx ){ 1937 addrUniqueOk = upsertJump+1; 1938 upsertBypass = sqlite3VdbeGoto(v, 0); 1939 VdbeComment((v, "Skip upsert subroutine")); 1940 sqlite3VdbeJumpHere(v, upsertJump); 1941 }else{ 1942 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1943 } 1944 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1945 sqlite3TableAffinity(v, pTab, regNewData+1); 1946 bAffinityDone = 1; 1947 } 1948 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 1949 iThisCur = iIdxCur+ix; 1950 1951 1952 /* Skip partial indices for which the WHERE clause is not true */ 1953 if( pIdx->pPartIdxWhere ){ 1954 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1955 pParse->iSelfTab = -(regNewData+1); 1956 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1957 SQLITE_JUMPIFNULL); 1958 pParse->iSelfTab = 0; 1959 } 1960 1961 /* Create a record for this index entry as it should appear after 1962 ** the insert or update. Store that record in the aRegIdx[ix] register 1963 */ 1964 regIdx = aRegIdx[ix]+1; 1965 for(i=0; i<pIdx->nColumn; i++){ 1966 int iField = pIdx->aiColumn[i]; 1967 int x; 1968 if( iField==XN_EXPR ){ 1969 pParse->iSelfTab = -(regNewData+1); 1970 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1971 pParse->iSelfTab = 0; 1972 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1973 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 1974 x = regNewData; 1975 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 1976 VdbeComment((v, "rowid")); 1977 }else{ 1978 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 1979 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 1980 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 1981 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 1982 } 1983 } 1984 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1985 VdbeComment((v, "for %s", pIdx->zName)); 1986 #ifdef SQLITE_ENABLE_NULL_TRIM 1987 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1988 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1989 } 1990 #endif 1991 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 1992 1993 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1994 ** of a WITHOUT ROWID table and there has been no change the 1995 ** primary key, then no collision is possible. The collision detection 1996 ** logic below can all be skipped. */ 1997 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1998 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1999 continue; 2000 } 2001 2002 /* Find out what action to take in case there is a uniqueness conflict */ 2003 onError = pIdx->onError; 2004 if( onError==OE_None ){ 2005 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2006 continue; /* pIdx is not a UNIQUE index */ 2007 } 2008 if( overrideError!=OE_Default ){ 2009 onError = overrideError; 2010 }else if( onError==OE_Default ){ 2011 onError = OE_Abort; 2012 } 2013 2014 /* Figure out if the upsert clause applies to this index */ 2015 if( pUpIdx==pIdx ){ 2016 if( pUpsert->pUpsertSet==0 ){ 2017 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2018 }else{ 2019 onError = OE_Update; /* DO UPDATE */ 2020 } 2021 } 2022 2023 /* Collision detection may be omitted if all of the following are true: 2024 ** (1) The conflict resolution algorithm is REPLACE 2025 ** (2) The table is a WITHOUT ROWID table 2026 ** (3) There are no secondary indexes on the table 2027 ** (4) No delete triggers need to be fired if there is a conflict 2028 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2029 ** 2030 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2031 ** must be explicitly deleted in order to ensure any pre-update hook 2032 ** is invoked. */ 2033 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2034 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2035 && pPk==pIdx /* Condition 2 */ 2036 && onError==OE_Replace /* Condition 1 */ 2037 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2038 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2039 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2040 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 2041 ){ 2042 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2043 continue; 2044 } 2045 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2046 2047 /* Check to see if the new index entry will be unique */ 2048 sqlite3VdbeVerifyAbortable(v, onError); 2049 addrConflictCk = 2050 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2051 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2052 2053 /* Generate code to handle collisions */ 2054 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2055 if( isUpdate || onError==OE_Replace ){ 2056 if( HasRowid(pTab) ){ 2057 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2058 /* Conflict only if the rowid of the existing index entry 2059 ** is different from old-rowid */ 2060 if( isUpdate ){ 2061 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2062 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2063 VdbeCoverage(v); 2064 } 2065 }else{ 2066 int x; 2067 /* Extract the PRIMARY KEY from the end of the index entry and 2068 ** store it in registers regR..regR+nPk-1 */ 2069 if( pIdx!=pPk ){ 2070 for(i=0; i<pPk->nKeyCol; i++){ 2071 assert( pPk->aiColumn[i]>=0 ); 2072 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2073 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2074 VdbeComment((v, "%s.%s", pTab->zName, 2075 pTab->aCol[pPk->aiColumn[i]].zName)); 2076 } 2077 } 2078 if( isUpdate ){ 2079 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2080 ** table, only conflict if the new PRIMARY KEY values are actually 2081 ** different from the old. 2082 ** 2083 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2084 ** of the matched index row are different from the original PRIMARY 2085 ** KEY values of this row before the update. */ 2086 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2087 int op = OP_Ne; 2088 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2089 2090 for(i=0; i<pPk->nKeyCol; i++){ 2091 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2092 x = pPk->aiColumn[i]; 2093 assert( x>=0 ); 2094 if( i==(pPk->nKeyCol-1) ){ 2095 addrJump = addrUniqueOk; 2096 op = OP_Eq; 2097 } 2098 x = sqlite3TableColumnToStorage(pTab, x); 2099 sqlite3VdbeAddOp4(v, op, 2100 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2101 ); 2102 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2103 VdbeCoverageIf(v, op==OP_Eq); 2104 VdbeCoverageIf(v, op==OP_Ne); 2105 } 2106 } 2107 } 2108 } 2109 2110 /* Generate code that executes if the new index entry is not unique */ 2111 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2112 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2113 switch( onError ){ 2114 case OE_Rollback: 2115 case OE_Abort: 2116 case OE_Fail: { 2117 testcase( onError==OE_Rollback ); 2118 testcase( onError==OE_Abort ); 2119 testcase( onError==OE_Fail ); 2120 sqlite3UniqueConstraint(pParse, onError, pIdx); 2121 break; 2122 } 2123 #ifndef SQLITE_OMIT_UPSERT 2124 case OE_Update: { 2125 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2126 /* no break */ deliberate_fall_through 2127 } 2128 #endif 2129 case OE_Ignore: { 2130 testcase( onError==OE_Ignore ); 2131 sqlite3VdbeGoto(v, ignoreDest); 2132 break; 2133 } 2134 default: { 2135 int nConflictCk; /* Number of opcodes in conflict check logic */ 2136 2137 assert( onError==OE_Replace ); 2138 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2139 assert( nConflictCk>0 ); 2140 testcase( nConflictCk>1 ); 2141 if( regTrigCnt ){ 2142 sqlite3MultiWrite(pParse); 2143 nReplaceTrig++; 2144 } 2145 if( pTrigger && isUpdate ){ 2146 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2147 } 2148 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2149 regR, nPkField, 0, OE_Replace, 2150 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2151 if( pTrigger && isUpdate ){ 2152 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2153 } 2154 if( regTrigCnt ){ 2155 int addrBypass; /* Jump destination to bypass recheck logic */ 2156 2157 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2158 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2159 VdbeComment((v, "bypass recheck")); 2160 2161 /* Here we insert code that will be invoked after all constraint 2162 ** checks have run, if and only if one or more replace triggers 2163 ** fired. */ 2164 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2165 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2166 if( pIdx->pPartIdxWhere ){ 2167 /* Bypass the recheck if this partial index is not defined 2168 ** for the current row */ 2169 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2170 VdbeCoverage(v); 2171 } 2172 /* Copy the constraint check code from above, except change 2173 ** the constraint-ok jump destination to be the address of 2174 ** the next retest block */ 2175 while( nConflictCk>0 ){ 2176 VdbeOp x; /* Conflict check opcode to copy */ 2177 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2178 ** Hence, make a complete copy of the opcode, rather than using 2179 ** a pointer to the opcode. */ 2180 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2181 if( x.opcode!=OP_IdxRowid ){ 2182 int p2; /* New P2 value for copied conflict check opcode */ 2183 const char *zP4; 2184 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2185 p2 = lblRecheckOk; 2186 }else{ 2187 p2 = x.p2; 2188 } 2189 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2190 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2191 sqlite3VdbeChangeP5(v, x.p5); 2192 VdbeCoverageIf(v, p2!=x.p2); 2193 } 2194 nConflictCk--; 2195 addrConflictCk++; 2196 } 2197 /* If the retest fails, issue an abort */ 2198 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2199 2200 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2201 } 2202 seenReplace = 1; 2203 break; 2204 } 2205 } 2206 if( pUpIdx==pIdx ){ 2207 sqlite3VdbeGoto(v, upsertJump+1); 2208 sqlite3VdbeJumpHere(v, upsertBypass); 2209 }else{ 2210 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2211 } 2212 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2213 } 2214 2215 /* If the IPK constraint is a REPLACE, run it last */ 2216 if( ipkTop ){ 2217 sqlite3VdbeGoto(v, ipkTop); 2218 VdbeComment((v, "Do IPK REPLACE")); 2219 sqlite3VdbeJumpHere(v, ipkBottom); 2220 } 2221 2222 /* Recheck all uniqueness constraints after replace triggers have run */ 2223 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2224 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2225 if( nReplaceTrig ){ 2226 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2227 if( !pPk ){ 2228 if( isUpdate ){ 2229 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2230 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2231 VdbeCoverage(v); 2232 } 2233 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2234 VdbeCoverage(v); 2235 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2236 }else{ 2237 sqlite3VdbeGoto(v, addrRecheck); 2238 } 2239 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2240 } 2241 2242 /* Generate the table record */ 2243 if( HasRowid(pTab) ){ 2244 int regRec = aRegIdx[ix]; 2245 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2246 sqlite3SetMakeRecordP5(v, pTab); 2247 if( !bAffinityDone ){ 2248 sqlite3TableAffinity(v, pTab, 0); 2249 } 2250 } 2251 2252 *pbMayReplace = seenReplace; 2253 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2254 } 2255 2256 #ifdef SQLITE_ENABLE_NULL_TRIM 2257 /* 2258 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2259 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2260 ** 2261 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2262 */ 2263 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2264 u16 i; 2265 2266 /* Records with omitted columns are only allowed for schema format 2267 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2268 if( pTab->pSchema->file_format<2 ) return; 2269 2270 for(i=pTab->nCol-1; i>0; i--){ 2271 if( pTab->aCol[i].pDflt!=0 ) break; 2272 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2273 } 2274 sqlite3VdbeChangeP5(v, i+1); 2275 } 2276 #endif 2277 2278 /* 2279 ** This routine generates code to finish the INSERT or UPDATE operation 2280 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2281 ** A consecutive range of registers starting at regNewData contains the 2282 ** rowid and the content to be inserted. 2283 ** 2284 ** The arguments to this routine should be the same as the first six 2285 ** arguments to sqlite3GenerateConstraintChecks. 2286 */ 2287 void sqlite3CompleteInsertion( 2288 Parse *pParse, /* The parser context */ 2289 Table *pTab, /* the table into which we are inserting */ 2290 int iDataCur, /* Cursor of the canonical data source */ 2291 int iIdxCur, /* First index cursor */ 2292 int regNewData, /* Range of content */ 2293 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2294 int update_flags, /* True for UPDATE, False for INSERT */ 2295 int appendBias, /* True if this is likely to be an append */ 2296 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2297 ){ 2298 Vdbe *v; /* Prepared statements under construction */ 2299 Index *pIdx; /* An index being inserted or updated */ 2300 u8 pik_flags; /* flag values passed to the btree insert */ 2301 int i; /* Loop counter */ 2302 2303 assert( update_flags==0 2304 || update_flags==OPFLAG_ISUPDATE 2305 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2306 ); 2307 2308 v = pParse->pVdbe; 2309 assert( v!=0 ); 2310 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2311 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2312 /* All REPLACE indexes are at the end of the list */ 2313 assert( pIdx->onError!=OE_Replace 2314 || pIdx->pNext==0 2315 || pIdx->pNext->onError==OE_Replace ); 2316 if( aRegIdx[i]==0 ) continue; 2317 if( pIdx->pPartIdxWhere ){ 2318 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2319 VdbeCoverage(v); 2320 } 2321 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2322 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2323 assert( pParse->nested==0 ); 2324 pik_flags |= OPFLAG_NCHANGE; 2325 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2326 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2327 if( update_flags==0 ){ 2328 int r = sqlite3GetTempReg(pParse); 2329 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2330 sqlite3VdbeAddOp4(v, OP_Insert, 2331 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2332 ); 2333 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2334 sqlite3ReleaseTempReg(pParse, r); 2335 } 2336 #endif 2337 } 2338 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2339 aRegIdx[i]+1, 2340 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2341 sqlite3VdbeChangeP5(v, pik_flags); 2342 } 2343 if( !HasRowid(pTab) ) return; 2344 if( pParse->nested ){ 2345 pik_flags = 0; 2346 }else{ 2347 pik_flags = OPFLAG_NCHANGE; 2348 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2349 } 2350 if( appendBias ){ 2351 pik_flags |= OPFLAG_APPEND; 2352 } 2353 if( useSeekResult ){ 2354 pik_flags |= OPFLAG_USESEEKRESULT; 2355 } 2356 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2357 if( !pParse->nested ){ 2358 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2359 } 2360 sqlite3VdbeChangeP5(v, pik_flags); 2361 } 2362 2363 /* 2364 ** Allocate cursors for the pTab table and all its indices and generate 2365 ** code to open and initialized those cursors. 2366 ** 2367 ** The cursor for the object that contains the complete data (normally 2368 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2369 ** ROWID table) is returned in *piDataCur. The first index cursor is 2370 ** returned in *piIdxCur. The number of indices is returned. 2371 ** 2372 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2373 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2374 ** If iBase is negative, then allocate the next available cursor. 2375 ** 2376 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2377 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2378 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2379 ** pTab->pIndex list. 2380 ** 2381 ** If pTab is a virtual table, then this routine is a no-op and the 2382 ** *piDataCur and *piIdxCur values are left uninitialized. 2383 */ 2384 int sqlite3OpenTableAndIndices( 2385 Parse *pParse, /* Parsing context */ 2386 Table *pTab, /* Table to be opened */ 2387 int op, /* OP_OpenRead or OP_OpenWrite */ 2388 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2389 int iBase, /* Use this for the table cursor, if there is one */ 2390 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2391 int *piDataCur, /* Write the database source cursor number here */ 2392 int *piIdxCur /* Write the first index cursor number here */ 2393 ){ 2394 int i; 2395 int iDb; 2396 int iDataCur; 2397 Index *pIdx; 2398 Vdbe *v; 2399 2400 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2401 assert( op==OP_OpenWrite || p5==0 ); 2402 if( IsVirtual(pTab) ){ 2403 /* This routine is a no-op for virtual tables. Leave the output 2404 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2405 ** can detect if they are used by mistake in the caller. */ 2406 return 0; 2407 } 2408 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2409 v = pParse->pVdbe; 2410 assert( v!=0 ); 2411 if( iBase<0 ) iBase = pParse->nTab; 2412 iDataCur = iBase++; 2413 if( piDataCur ) *piDataCur = iDataCur; 2414 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2415 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2416 }else{ 2417 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2418 } 2419 if( piIdxCur ) *piIdxCur = iBase; 2420 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2421 int iIdxCur = iBase++; 2422 assert( pIdx->pSchema==pTab->pSchema ); 2423 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2424 if( piDataCur ) *piDataCur = iIdxCur; 2425 p5 = 0; 2426 } 2427 if( aToOpen==0 || aToOpen[i+1] ){ 2428 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2429 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2430 sqlite3VdbeChangeP5(v, p5); 2431 VdbeComment((v, "%s", pIdx->zName)); 2432 } 2433 } 2434 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2435 return i; 2436 } 2437 2438 2439 #ifdef SQLITE_TEST 2440 /* 2441 ** The following global variable is incremented whenever the 2442 ** transfer optimization is used. This is used for testing 2443 ** purposes only - to make sure the transfer optimization really 2444 ** is happening when it is supposed to. 2445 */ 2446 int sqlite3_xferopt_count; 2447 #endif /* SQLITE_TEST */ 2448 2449 2450 #ifndef SQLITE_OMIT_XFER_OPT 2451 /* 2452 ** Check to see if index pSrc is compatible as a source of data 2453 ** for index pDest in an insert transfer optimization. The rules 2454 ** for a compatible index: 2455 ** 2456 ** * The index is over the same set of columns 2457 ** * The same DESC and ASC markings occurs on all columns 2458 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2459 ** * The same collating sequence on each column 2460 ** * The index has the exact same WHERE clause 2461 */ 2462 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2463 int i; 2464 assert( pDest && pSrc ); 2465 assert( pDest->pTable!=pSrc->pTable ); 2466 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2467 return 0; /* Different number of columns */ 2468 } 2469 if( pDest->onError!=pSrc->onError ){ 2470 return 0; /* Different conflict resolution strategies */ 2471 } 2472 for(i=0; i<pSrc->nKeyCol; i++){ 2473 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2474 return 0; /* Different columns indexed */ 2475 } 2476 if( pSrc->aiColumn[i]==XN_EXPR ){ 2477 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2478 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2479 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2480 return 0; /* Different expressions in the index */ 2481 } 2482 } 2483 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2484 return 0; /* Different sort orders */ 2485 } 2486 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2487 return 0; /* Different collating sequences */ 2488 } 2489 } 2490 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2491 return 0; /* Different WHERE clauses */ 2492 } 2493 2494 /* If no test above fails then the indices must be compatible */ 2495 return 1; 2496 } 2497 2498 /* 2499 ** Attempt the transfer optimization on INSERTs of the form 2500 ** 2501 ** INSERT INTO tab1 SELECT * FROM tab2; 2502 ** 2503 ** The xfer optimization transfers raw records from tab2 over to tab1. 2504 ** Columns are not decoded and reassembled, which greatly improves 2505 ** performance. Raw index records are transferred in the same way. 2506 ** 2507 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2508 ** There are lots of rules for determining compatibility - see comments 2509 ** embedded in the code for details. 2510 ** 2511 ** This routine returns TRUE if the optimization is guaranteed to be used. 2512 ** Sometimes the xfer optimization will only work if the destination table 2513 ** is empty - a factor that can only be determined at run-time. In that 2514 ** case, this routine generates code for the xfer optimization but also 2515 ** does a test to see if the destination table is empty and jumps over the 2516 ** xfer optimization code if the test fails. In that case, this routine 2517 ** returns FALSE so that the caller will know to go ahead and generate 2518 ** an unoptimized transfer. This routine also returns FALSE if there 2519 ** is no chance that the xfer optimization can be applied. 2520 ** 2521 ** This optimization is particularly useful at making VACUUM run faster. 2522 */ 2523 static int xferOptimization( 2524 Parse *pParse, /* Parser context */ 2525 Table *pDest, /* The table we are inserting into */ 2526 Select *pSelect, /* A SELECT statement to use as the data source */ 2527 int onError, /* How to handle constraint errors */ 2528 int iDbDest /* The database of pDest */ 2529 ){ 2530 sqlite3 *db = pParse->db; 2531 ExprList *pEList; /* The result set of the SELECT */ 2532 Table *pSrc; /* The table in the FROM clause of SELECT */ 2533 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2534 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2535 int i; /* Loop counter */ 2536 int iDbSrc; /* The database of pSrc */ 2537 int iSrc, iDest; /* Cursors from source and destination */ 2538 int addr1, addr2; /* Loop addresses */ 2539 int emptyDestTest = 0; /* Address of test for empty pDest */ 2540 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2541 Vdbe *v; /* The VDBE we are building */ 2542 int regAutoinc; /* Memory register used by AUTOINC */ 2543 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2544 int regData, regRowid; /* Registers holding data and rowid */ 2545 2546 if( pSelect==0 ){ 2547 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2548 } 2549 if( pParse->pWith || pSelect->pWith ){ 2550 /* Do not attempt to process this query if there are an WITH clauses 2551 ** attached to it. Proceeding may generate a false "no such table: xxx" 2552 ** error if pSelect reads from a CTE named "xxx". */ 2553 return 0; 2554 } 2555 if( sqlite3TriggerList(pParse, pDest) ){ 2556 return 0; /* tab1 must not have triggers */ 2557 } 2558 #ifndef SQLITE_OMIT_VIRTUALTABLE 2559 if( IsVirtual(pDest) ){ 2560 return 0; /* tab1 must not be a virtual table */ 2561 } 2562 #endif 2563 if( onError==OE_Default ){ 2564 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2565 if( onError==OE_Default ) onError = OE_Abort; 2566 } 2567 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2568 if( pSelect->pSrc->nSrc!=1 ){ 2569 return 0; /* FROM clause must have exactly one term */ 2570 } 2571 if( pSelect->pSrc->a[0].pSelect ){ 2572 return 0; /* FROM clause cannot contain a subquery */ 2573 } 2574 if( pSelect->pWhere ){ 2575 return 0; /* SELECT may not have a WHERE clause */ 2576 } 2577 if( pSelect->pOrderBy ){ 2578 return 0; /* SELECT may not have an ORDER BY clause */ 2579 } 2580 /* Do not need to test for a HAVING clause. If HAVING is present but 2581 ** there is no ORDER BY, we will get an error. */ 2582 if( pSelect->pGroupBy ){ 2583 return 0; /* SELECT may not have a GROUP BY clause */ 2584 } 2585 if( pSelect->pLimit ){ 2586 return 0; /* SELECT may not have a LIMIT clause */ 2587 } 2588 if( pSelect->pPrior ){ 2589 return 0; /* SELECT may not be a compound query */ 2590 } 2591 if( pSelect->selFlags & SF_Distinct ){ 2592 return 0; /* SELECT may not be DISTINCT */ 2593 } 2594 pEList = pSelect->pEList; 2595 assert( pEList!=0 ); 2596 if( pEList->nExpr!=1 ){ 2597 return 0; /* The result set must have exactly one column */ 2598 } 2599 assert( pEList->a[0].pExpr ); 2600 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2601 return 0; /* The result set must be the special operator "*" */ 2602 } 2603 2604 /* At this point we have established that the statement is of the 2605 ** correct syntactic form to participate in this optimization. Now 2606 ** we have to check the semantics. 2607 */ 2608 pItem = pSelect->pSrc->a; 2609 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2610 if( pSrc==0 ){ 2611 return 0; /* FROM clause does not contain a real table */ 2612 } 2613 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2614 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2615 return 0; /* tab1 and tab2 may not be the same table */ 2616 } 2617 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2618 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2619 } 2620 #ifndef SQLITE_OMIT_VIRTUALTABLE 2621 if( IsVirtual(pSrc) ){ 2622 return 0; /* tab2 must not be a virtual table */ 2623 } 2624 #endif 2625 if( pSrc->pSelect ){ 2626 return 0; /* tab2 may not be a view */ 2627 } 2628 if( pDest->nCol!=pSrc->nCol ){ 2629 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2630 } 2631 if( pDest->iPKey!=pSrc->iPKey ){ 2632 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2633 } 2634 for(i=0; i<pDest->nCol; i++){ 2635 Column *pDestCol = &pDest->aCol[i]; 2636 Column *pSrcCol = &pSrc->aCol[i]; 2637 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2638 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2639 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2640 ){ 2641 return 0; /* Neither table may have __hidden__ columns */ 2642 } 2643 #endif 2644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2645 /* Even if tables t1 and t2 have identical schemas, if they contain 2646 ** generated columns, then this statement is semantically incorrect: 2647 ** 2648 ** INSERT INTO t2 SELECT * FROM t1; 2649 ** 2650 ** The reason is that generated column values are returned by the 2651 ** the SELECT statement on the right but the INSERT statement on the 2652 ** left wants them to be omitted. 2653 ** 2654 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2655 ** to do a bulk transfer all of the content from t1 over to t2. 2656 ** 2657 ** We could, in theory, disable this (except for internal use by the 2658 ** VACUUM command where it is actually needed). But why do that? It 2659 ** seems harmless enough, and provides a useful service. 2660 */ 2661 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2662 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2663 return 0; /* Both columns have the same generated-column type */ 2664 } 2665 /* But the transfer is only allowed if both the source and destination 2666 ** tables have the exact same expressions for generated columns. 2667 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2668 */ 2669 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2670 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2671 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2672 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2673 return 0; /* Different generator expressions */ 2674 } 2675 } 2676 #endif 2677 if( pDestCol->affinity!=pSrcCol->affinity ){ 2678 return 0; /* Affinity must be the same on all columns */ 2679 } 2680 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2681 return 0; /* Collating sequence must be the same on all columns */ 2682 } 2683 if( pDestCol->notNull && !pSrcCol->notNull ){ 2684 return 0; /* tab2 must be NOT NULL if tab1 is */ 2685 } 2686 /* Default values for second and subsequent columns need to match. */ 2687 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2688 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2689 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2690 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2691 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2692 pSrcCol->pDflt->u.zToken)!=0) 2693 ){ 2694 return 0; /* Default values must be the same for all columns */ 2695 } 2696 } 2697 } 2698 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2699 if( IsUniqueIndex(pDestIdx) ){ 2700 destHasUniqueIdx = 1; 2701 } 2702 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2703 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2704 } 2705 if( pSrcIdx==0 ){ 2706 return 0; /* pDestIdx has no corresponding index in pSrc */ 2707 } 2708 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2709 && sqlite3FaultSim(411)==SQLITE_OK ){ 2710 /* The sqlite3FaultSim() call allows this corruption test to be 2711 ** bypassed during testing, in order to exercise other corruption tests 2712 ** further downstream. */ 2713 return 0; /* Corrupt schema - two indexes on the same btree */ 2714 } 2715 } 2716 #ifndef SQLITE_OMIT_CHECK 2717 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2718 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2719 } 2720 #endif 2721 #ifndef SQLITE_OMIT_FOREIGN_KEY 2722 /* Disallow the transfer optimization if the destination table constains 2723 ** any foreign key constraints. This is more restrictive than necessary. 2724 ** But the main beneficiary of the transfer optimization is the VACUUM 2725 ** command, and the VACUUM command disables foreign key constraints. So 2726 ** the extra complication to make this rule less restrictive is probably 2727 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2728 */ 2729 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2730 return 0; 2731 } 2732 #endif 2733 if( (db->flags & SQLITE_CountRows)!=0 ){ 2734 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2735 } 2736 2737 /* If we get this far, it means that the xfer optimization is at 2738 ** least a possibility, though it might only work if the destination 2739 ** table (tab1) is initially empty. 2740 */ 2741 #ifdef SQLITE_TEST 2742 sqlite3_xferopt_count++; 2743 #endif 2744 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2745 v = sqlite3GetVdbe(pParse); 2746 sqlite3CodeVerifySchema(pParse, iDbSrc); 2747 iSrc = pParse->nTab++; 2748 iDest = pParse->nTab++; 2749 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2750 regData = sqlite3GetTempReg(pParse); 2751 regRowid = sqlite3GetTempReg(pParse); 2752 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2753 assert( HasRowid(pDest) || destHasUniqueIdx ); 2754 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2755 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2756 || destHasUniqueIdx /* (2) */ 2757 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2758 )){ 2759 /* In some circumstances, we are able to run the xfer optimization 2760 ** only if the destination table is initially empty. Unless the 2761 ** DBFLAG_Vacuum flag is set, this block generates code to make 2762 ** that determination. If DBFLAG_Vacuum is set, then the destination 2763 ** table is always empty. 2764 ** 2765 ** Conditions under which the destination must be empty: 2766 ** 2767 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2768 ** (If the destination is not initially empty, the rowid fields 2769 ** of index entries might need to change.) 2770 ** 2771 ** (2) The destination has a unique index. (The xfer optimization 2772 ** is unable to test uniqueness.) 2773 ** 2774 ** (3) onError is something other than OE_Abort and OE_Rollback. 2775 */ 2776 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2777 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2778 sqlite3VdbeJumpHere(v, addr1); 2779 } 2780 if( HasRowid(pSrc) ){ 2781 u8 insFlags; 2782 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2783 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2784 if( pDest->iPKey>=0 ){ 2785 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2786 sqlite3VdbeVerifyAbortable(v, onError); 2787 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2788 VdbeCoverage(v); 2789 sqlite3RowidConstraint(pParse, onError, pDest); 2790 sqlite3VdbeJumpHere(v, addr2); 2791 autoIncStep(pParse, regAutoinc, regRowid); 2792 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2793 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2794 }else{ 2795 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2796 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2797 } 2798 if( db->mDbFlags & DBFLAG_Vacuum ){ 2799 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2800 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2801 }else{ 2802 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2803 } 2804 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2805 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2806 (char*)pDest, P4_TABLE); 2807 sqlite3VdbeChangeP5(v, insFlags); 2808 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2809 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2810 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2811 }else{ 2812 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2813 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2814 } 2815 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2816 u8 idxInsFlags = 0; 2817 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2818 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2819 } 2820 assert( pSrcIdx ); 2821 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2822 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2823 VdbeComment((v, "%s", pSrcIdx->zName)); 2824 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2825 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2826 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2827 VdbeComment((v, "%s", pDestIdx->zName)); 2828 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2829 if( db->mDbFlags & DBFLAG_Vacuum ){ 2830 /* This INSERT command is part of a VACUUM operation, which guarantees 2831 ** that the destination table is empty. If all indexed columns use 2832 ** collation sequence BINARY, then it can also be assumed that the 2833 ** index will be populated by inserting keys in strictly sorted 2834 ** order. In this case, instead of seeking within the b-tree as part 2835 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2836 ** OP_IdxInsert to seek to the point within the b-tree where each key 2837 ** should be inserted. This is faster. 2838 ** 2839 ** If any of the indexed columns use a collation sequence other than 2840 ** BINARY, this optimization is disabled. This is because the user 2841 ** might change the definition of a collation sequence and then run 2842 ** a VACUUM command. In that case keys may not be written in strictly 2843 ** sorted order. */ 2844 for(i=0; i<pSrcIdx->nColumn; i++){ 2845 const char *zColl = pSrcIdx->azColl[i]; 2846 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2847 } 2848 if( i==pSrcIdx->nColumn ){ 2849 idxInsFlags = OPFLAG_USESEEKRESULT; 2850 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2851 } 2852 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2853 idxInsFlags |= OPFLAG_NCHANGE; 2854 } 2855 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2856 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2857 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2858 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2859 sqlite3VdbeJumpHere(v, addr1); 2860 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2861 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2862 } 2863 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2864 sqlite3ReleaseTempReg(pParse, regRowid); 2865 sqlite3ReleaseTempReg(pParse, regData); 2866 if( emptyDestTest ){ 2867 sqlite3AutoincrementEnd(pParse); 2868 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2869 sqlite3VdbeJumpHere(v, emptyDestTest); 2870 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2871 return 0; 2872 }else{ 2873 return 1; 2874 } 2875 } 2876 #endif /* SQLITE_OMIT_XFER_OPT */ 2877