1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.193 2007/11/23 15:02:19 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Set P3 of the most recently inserted opcode to a column affinity 21 ** string for index pIdx. A column affinity string has one character 22 ** for each column in the table, according to the affinity of the column: 23 ** 24 ** Character Column affinity 25 ** ------------------------------ 26 ** 'a' TEXT 27 ** 'b' NONE 28 ** 'c' NUMERIC 29 ** 'd' INTEGER 30 ** 'e' REAL 31 */ 32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 33 if( !pIdx->zColAff ){ 34 /* The first time a column affinity string for a particular index is 35 ** required, it is allocated and populated here. It is then stored as 36 ** a member of the Index structure for subsequent use. 37 ** 38 ** The column affinity string will eventually be deleted by 39 ** sqliteDeleteIndex() when the Index structure itself is cleaned 40 ** up. 41 */ 42 int n; 43 Table *pTab = pIdx->pTable; 44 sqlite3 *db = sqlite3VdbeDb(v); 45 pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1); 46 if( !pIdx->zColAff ){ 47 return; 48 } 49 for(n=0; n<pIdx->nColumn; n++){ 50 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 51 } 52 pIdx->zColAff[pIdx->nColumn] = '\0'; 53 } 54 55 sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); 56 } 57 58 /* 59 ** Set P3 of the most recently inserted opcode to a column affinity 60 ** string for table pTab. A column affinity string has one character 61 ** for each column indexed by the index, according to the affinity of the 62 ** column: 63 ** 64 ** Character Column affinity 65 ** ------------------------------ 66 ** 'a' TEXT 67 ** 'b' NONE 68 ** 'c' NUMERIC 69 ** 'd' INTEGER 70 ** 'e' REAL 71 */ 72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 73 /* The first time a column affinity string for a particular table 74 ** is required, it is allocated and populated here. It is then 75 ** stored as a member of the Table structure for subsequent use. 76 ** 77 ** The column affinity string will eventually be deleted by 78 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 79 */ 80 if( !pTab->zColAff ){ 81 char *zColAff; 82 int i; 83 sqlite3 *db = sqlite3VdbeDb(v); 84 85 zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1); 86 if( !zColAff ){ 87 return; 88 } 89 90 for(i=0; i<pTab->nCol; i++){ 91 zColAff[i] = pTab->aCol[i].affinity; 92 } 93 zColAff[pTab->nCol] = '\0'; 94 95 pTab->zColAff = zColAff; 96 } 97 98 sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); 99 } 100 101 /* 102 ** Return non-zero if the table pTab in database iDb or any of its indices 103 ** have been opened at any point in the VDBE program beginning at location 104 ** iStartAddr throught the end of the program. This is used to see if 105 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 106 ** run without using temporary table for the results of the SELECT. 107 */ 108 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ 109 int i; 110 int iEnd = sqlite3VdbeCurrentAddr(v); 111 for(i=iStartAddr; i<iEnd; i++){ 112 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 113 if( pOp->opcode==OP_OpenRead ){ 114 VdbeOp *pPrior = &pOp[-1]; 115 int tnum = pOp->p2; 116 assert( i>iStartAddr ); 117 assert( pPrior->opcode==OP_Integer ); 118 if( pPrior->p1==iDb ){ 119 Index *pIndex; 120 if( tnum==pTab->tnum ){ 121 return 1; 122 } 123 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 124 if( tnum==pIndex->tnum ){ 125 return 1; 126 } 127 } 128 } 129 } 130 if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){ 131 assert( pOp->p3!=0 ); 132 assert( pOp->p3type==P3_VTAB ); 133 return 1; 134 } 135 } 136 return 0; 137 } 138 139 #ifndef SQLITE_OMIT_AUTOINCREMENT 140 /* 141 ** Write out code to initialize the autoincrement logic. This code 142 ** looks up the current autoincrement value in the sqlite_sequence 143 ** table and stores that value in a memory cell. Code generated by 144 ** autoIncStep() will keep that memory cell holding the largest 145 ** rowid value. Code generated by autoIncEnd() will write the new 146 ** largest value of the counter back into the sqlite_sequence table. 147 ** 148 ** This routine returns the index of the mem[] cell that contains 149 ** the maximum rowid counter. 150 ** 151 ** Two memory cells are allocated. The next memory cell after the 152 ** one returned holds the rowid in sqlite_sequence where we will 153 ** write back the revised maximum rowid. 154 */ 155 static int autoIncBegin( 156 Parse *pParse, /* Parsing context */ 157 int iDb, /* Index of the database holding pTab */ 158 Table *pTab /* The table we are writing to */ 159 ){ 160 int memId = 0; 161 if( pTab->autoInc ){ 162 Vdbe *v = pParse->pVdbe; 163 Db *pDb = &pParse->db->aDb[iDb]; 164 int iCur = pParse->nTab; 165 int addr; 166 assert( v ); 167 addr = sqlite3VdbeCurrentAddr(v); 168 memId = pParse->nMem+1; 169 pParse->nMem += 2; 170 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 171 sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13); 172 sqlite3VdbeAddOp(v, OP_Column, iCur, 0); 173 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 174 sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12); 175 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 176 sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1); 177 sqlite3VdbeAddOp(v, OP_Column, iCur, 1); 178 sqlite3VdbeAddOp(v, OP_MemStore, memId, 1); 179 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13); 180 sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4); 181 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 182 } 183 return memId; 184 } 185 186 /* 187 ** Update the maximum rowid for an autoincrement calculation. 188 ** 189 ** This routine should be called when the top of the stack holds a 190 ** new rowid that is about to be inserted. If that new rowid is 191 ** larger than the maximum rowid in the memId memory cell, then the 192 ** memory cell is updated. The stack is unchanged. 193 */ 194 static void autoIncStep(Parse *pParse, int memId){ 195 if( memId>0 ){ 196 sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0); 197 } 198 } 199 200 /* 201 ** After doing one or more inserts, the maximum rowid is stored 202 ** in mem[memId]. Generate code to write this value back into the 203 ** the sqlite_sequence table. 204 */ 205 static void autoIncEnd( 206 Parse *pParse, /* The parsing context */ 207 int iDb, /* Index of the database holding pTab */ 208 Table *pTab, /* Table we are inserting into */ 209 int memId /* Memory cell holding the maximum rowid */ 210 ){ 211 if( pTab->autoInc ){ 212 int iCur = pParse->nTab; 213 Vdbe *v = pParse->pVdbe; 214 Db *pDb = &pParse->db->aDb[iDb]; 215 int addr; 216 assert( v ); 217 addr = sqlite3VdbeCurrentAddr(v); 218 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 219 sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0); 220 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7); 221 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 222 sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); 223 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 224 sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0); 225 sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); 226 sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND); 227 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 228 } 229 } 230 #else 231 /* 232 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 233 ** above are all no-ops 234 */ 235 # define autoIncBegin(A,B,C) (0) 236 # define autoIncStep(A,B) 237 # define autoIncEnd(A,B,C,D) 238 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 239 240 241 /* Forward declaration */ 242 static int xferOptimization( 243 Parse *pParse, /* Parser context */ 244 Table *pDest, /* The table we are inserting into */ 245 Select *pSelect, /* A SELECT statement to use as the data source */ 246 int onError, /* How to handle constraint errors */ 247 int iDbDest /* The database of pDest */ 248 ); 249 250 /* 251 ** This routine is call to handle SQL of the following forms: 252 ** 253 ** insert into TABLE (IDLIST) values(EXPRLIST) 254 ** insert into TABLE (IDLIST) select 255 ** 256 ** The IDLIST following the table name is always optional. If omitted, 257 ** then a list of all columns for the table is substituted. The IDLIST 258 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 259 ** 260 ** The pList parameter holds EXPRLIST in the first form of the INSERT 261 ** statement above, and pSelect is NULL. For the second form, pList is 262 ** NULL and pSelect is a pointer to the select statement used to generate 263 ** data for the insert. 264 ** 265 ** The code generated follows one of four templates. For a simple 266 ** select with data coming from a VALUES clause, the code executes 267 ** once straight down through. The template looks like this: 268 ** 269 ** open write cursor to <table> and its indices 270 ** puts VALUES clause expressions onto the stack 271 ** write the resulting record into <table> 272 ** cleanup 273 ** 274 ** The three remaining templates assume the statement is of the form 275 ** 276 ** INSERT INTO <table> SELECT ... 277 ** 278 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 279 ** in other words if the SELECT pulls all columns from a single table 280 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 281 ** if <table2> and <table1> are distinct tables but have identical 282 ** schemas, including all the same indices, then a special optimization 283 ** is invoked that copies raw records from <table2> over to <table1>. 284 ** See the xferOptimization() function for the implementation of this 285 ** template. This is the second template. 286 ** 287 ** open a write cursor to <table> 288 ** open read cursor on <table2> 289 ** transfer all records in <table2> over to <table> 290 ** close cursors 291 ** foreach index on <table> 292 ** open a write cursor on the <table> index 293 ** open a read cursor on the corresponding <table2> index 294 ** transfer all records from the read to the write cursors 295 ** close cursors 296 ** end foreach 297 ** 298 ** The third template is for when the second template does not apply 299 ** and the SELECT clause does not read from <table> at any time. 300 ** The generated code follows this template: 301 ** 302 ** goto B 303 ** A: setup for the SELECT 304 ** loop over the rows in the SELECT 305 ** gosub C 306 ** end loop 307 ** cleanup after the SELECT 308 ** goto D 309 ** B: open write cursor to <table> and its indices 310 ** goto A 311 ** C: insert the select result into <table> 312 ** return 313 ** D: cleanup 314 ** 315 ** The fourth template is used if the insert statement takes its 316 ** values from a SELECT but the data is being inserted into a table 317 ** that is also read as part of the SELECT. In the third form, 318 ** we have to use a intermediate table to store the results of 319 ** the select. The template is like this: 320 ** 321 ** goto B 322 ** A: setup for the SELECT 323 ** loop over the tables in the SELECT 324 ** gosub C 325 ** end loop 326 ** cleanup after the SELECT 327 ** goto D 328 ** C: insert the select result into the intermediate table 329 ** return 330 ** B: open a cursor to an intermediate table 331 ** goto A 332 ** D: open write cursor to <table> and its indices 333 ** loop over the intermediate table 334 ** transfer values form intermediate table into <table> 335 ** end the loop 336 ** cleanup 337 */ 338 void sqlite3Insert( 339 Parse *pParse, /* Parser context */ 340 SrcList *pTabList, /* Name of table into which we are inserting */ 341 ExprList *pList, /* List of values to be inserted */ 342 Select *pSelect, /* A SELECT statement to use as the data source */ 343 IdList *pColumn, /* Column names corresponding to IDLIST. */ 344 int onError /* How to handle constraint errors */ 345 ){ 346 Table *pTab; /* The table to insert into */ 347 char *zTab; /* Name of the table into which we are inserting */ 348 const char *zDb; /* Name of the database holding this table */ 349 int i, j, idx; /* Loop counters */ 350 Vdbe *v; /* Generate code into this virtual machine */ 351 Index *pIdx; /* For looping over indices of the table */ 352 int nColumn; /* Number of columns in the data */ 353 int base = 0; /* VDBE Cursor number for pTab */ 354 int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ 355 sqlite3 *db; /* The main database structure */ 356 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 357 int endOfLoop; /* Label for the end of the insertion loop */ 358 int useTempTable = 0; /* Store SELECT results in intermediate table */ 359 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 360 int iSelectLoop = 0; /* Address of code that implements the SELECT */ 361 int iCleanup = 0; /* Address of the cleanup code */ 362 int iInsertBlock = 0; /* Address of the subroutine used to insert data */ 363 int iCntMem = 0; /* Memory cell used for the row counter */ 364 int newIdx = -1; /* Cursor for the NEW table */ 365 Db *pDb; /* The database containing table being inserted into */ 366 int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ 367 int appendFlag = 0; /* True if the insert is likely to be an append */ 368 int iDb; 369 370 int nHidden = 0; 371 372 #ifndef SQLITE_OMIT_TRIGGER 373 int isView; /* True if attempting to insert into a view */ 374 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ 375 #endif 376 377 db = pParse->db; 378 if( pParse->nErr || db->mallocFailed ){ 379 goto insert_cleanup; 380 } 381 382 /* Locate the table into which we will be inserting new information. 383 */ 384 assert( pTabList->nSrc==1 ); 385 zTab = pTabList->a[0].zName; 386 if( zTab==0 ) goto insert_cleanup; 387 pTab = sqlite3SrcListLookup(pParse, pTabList); 388 if( pTab==0 ){ 389 goto insert_cleanup; 390 } 391 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 392 assert( iDb<db->nDb ); 393 pDb = &db->aDb[iDb]; 394 zDb = pDb->zName; 395 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 396 goto insert_cleanup; 397 } 398 399 /* Figure out if we have any triggers and if the table being 400 ** inserted into is a view 401 */ 402 #ifndef SQLITE_OMIT_TRIGGER 403 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); 404 isView = pTab->pSelect!=0; 405 #else 406 # define triggers_exist 0 407 # define isView 0 408 #endif 409 #ifdef SQLITE_OMIT_VIEW 410 # undef isView 411 # define isView 0 412 #endif 413 414 /* Ensure that: 415 * (a) the table is not read-only, 416 * (b) that if it is a view then ON INSERT triggers exist 417 */ 418 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ 419 goto insert_cleanup; 420 } 421 assert( pTab!=0 ); 422 423 /* If pTab is really a view, make sure it has been initialized. 424 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 425 ** module table). 426 */ 427 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 428 goto insert_cleanup; 429 } 430 431 /* Allocate a VDBE 432 */ 433 v = sqlite3GetVdbe(pParse); 434 if( v==0 ) goto insert_cleanup; 435 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 436 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); 437 438 /* if there are row triggers, allocate a temp table for new.* references. */ 439 if( triggers_exist ){ 440 newIdx = pParse->nTab++; 441 } 442 443 #ifndef SQLITE_OMIT_XFER_OPT 444 /* If the statement is of the form 445 ** 446 ** INSERT INTO <table1> SELECT * FROM <table2>; 447 ** 448 ** Then special optimizations can be applied that make the transfer 449 ** very fast and which reduce fragmentation of indices. 450 */ 451 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 452 assert( !triggers_exist ); 453 assert( pList==0 ); 454 goto insert_cleanup; 455 } 456 #endif /* SQLITE_OMIT_XFER_OPT */ 457 458 /* If this is an AUTOINCREMENT table, look up the sequence number in the 459 ** sqlite_sequence table and store it in memory cell counterMem. Also 460 ** remember the rowid of the sqlite_sequence table entry in memory cell 461 ** counterRowid. 462 */ 463 counterMem = autoIncBegin(pParse, iDb, pTab); 464 465 /* Figure out how many columns of data are supplied. If the data 466 ** is coming from a SELECT statement, then this step also generates 467 ** all the code to implement the SELECT statement and invoke a subroutine 468 ** to process each row of the result. (Template 2.) If the SELECT 469 ** statement uses the the table that is being inserted into, then the 470 ** subroutine is also coded here. That subroutine stores the SELECT 471 ** results in a temporary table. (Template 3.) 472 */ 473 if( pSelect ){ 474 /* Data is coming from a SELECT. Generate code to implement that SELECT 475 */ 476 int rc, iInitCode; 477 iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 478 iSelectLoop = sqlite3VdbeCurrentAddr(v); 479 iInsertBlock = sqlite3VdbeMakeLabel(v); 480 481 /* Resolve the expressions in the SELECT statement and execute it. */ 482 rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); 483 if( rc || pParse->nErr || db->mallocFailed ){ 484 goto insert_cleanup; 485 } 486 487 iCleanup = sqlite3VdbeMakeLabel(v); 488 sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); 489 assert( pSelect->pEList ); 490 nColumn = pSelect->pEList->nExpr; 491 492 /* Set useTempTable to TRUE if the result of the SELECT statement 493 ** should be written into a temporary table. Set to FALSE if each 494 ** row of the SELECT can be written directly into the result table. 495 ** 496 ** A temp table must be used if the table being updated is also one 497 ** of the tables being read by the SELECT statement. Also use a 498 ** temp table in the case of row triggers. 499 */ 500 if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){ 501 useTempTable = 1; 502 } 503 504 if( useTempTable ){ 505 /* Generate the subroutine that SELECT calls to process each row of 506 ** the result. Store the result in a temporary table 507 */ 508 srcTab = pParse->nTab++; 509 sqlite3VdbeResolveLabel(v, iInsertBlock); 510 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 511 sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); 512 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 513 sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND); 514 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 515 516 /* The following code runs first because the GOTO at the very top 517 ** of the program jumps to it. Create the temporary table, then jump 518 ** back up and execute the SELECT code above. 519 */ 520 sqlite3VdbeJumpHere(v, iInitCode); 521 sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0); 522 sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); 523 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 524 sqlite3VdbeResolveLabel(v, iCleanup); 525 }else{ 526 sqlite3VdbeJumpHere(v, iInitCode); 527 } 528 }else{ 529 /* This is the case if the data for the INSERT is coming from a VALUES 530 ** clause 531 */ 532 NameContext sNC; 533 memset(&sNC, 0, sizeof(sNC)); 534 sNC.pParse = pParse; 535 srcTab = -1; 536 assert( useTempTable==0 ); 537 nColumn = pList ? pList->nExpr : 0; 538 for(i=0; i<nColumn; i++){ 539 if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ 540 goto insert_cleanup; 541 } 542 } 543 } 544 545 /* Make sure the number of columns in the source data matches the number 546 ** of columns to be inserted into the table. 547 */ 548 if( IsVirtual(pTab) ){ 549 for(i=0; i<pTab->nCol; i++){ 550 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 551 } 552 } 553 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 554 sqlite3ErrorMsg(pParse, 555 "table %S has %d columns but %d values were supplied", 556 pTabList, 0, pTab->nCol, nColumn); 557 goto insert_cleanup; 558 } 559 if( pColumn!=0 && nColumn!=pColumn->nId ){ 560 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 561 goto insert_cleanup; 562 } 563 564 /* If the INSERT statement included an IDLIST term, then make sure 565 ** all elements of the IDLIST really are columns of the table and 566 ** remember the column indices. 567 ** 568 ** If the table has an INTEGER PRIMARY KEY column and that column 569 ** is named in the IDLIST, then record in the keyColumn variable 570 ** the index into IDLIST of the primary key column. keyColumn is 571 ** the index of the primary key as it appears in IDLIST, not as 572 ** is appears in the original table. (The index of the primary 573 ** key in the original table is pTab->iPKey.) 574 */ 575 if( pColumn ){ 576 for(i=0; i<pColumn->nId; i++){ 577 pColumn->a[i].idx = -1; 578 } 579 for(i=0; i<pColumn->nId; i++){ 580 for(j=0; j<pTab->nCol; j++){ 581 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 582 pColumn->a[i].idx = j; 583 if( j==pTab->iPKey ){ 584 keyColumn = i; 585 } 586 break; 587 } 588 } 589 if( j>=pTab->nCol ){ 590 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 591 keyColumn = i; 592 }else{ 593 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 594 pTabList, 0, pColumn->a[i].zName); 595 pParse->nErr++; 596 goto insert_cleanup; 597 } 598 } 599 } 600 } 601 602 /* If there is no IDLIST term but the table has an integer primary 603 ** key, the set the keyColumn variable to the primary key column index 604 ** in the original table definition. 605 */ 606 if( pColumn==0 && nColumn>0 ){ 607 keyColumn = pTab->iPKey; 608 } 609 610 /* Open the temp table for FOR EACH ROW triggers 611 */ 612 if( triggers_exist ){ 613 sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); 614 sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); 615 } 616 617 /* Initialize the count of rows to be inserted 618 */ 619 if( db->flags & SQLITE_CountRows ){ 620 iCntMem = pParse->nMem++; 621 sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem); 622 } 623 624 /* Open tables and indices if there are no row triggers */ 625 if( !triggers_exist ){ 626 base = pParse->nTab; 627 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 628 } 629 630 /* If the data source is a temporary table, then we have to create 631 ** a loop because there might be multiple rows of data. If the data 632 ** source is a subroutine call from the SELECT statement, then we need 633 ** to launch the SELECT statement processing. 634 */ 635 if( useTempTable ){ 636 iBreak = sqlite3VdbeMakeLabel(v); 637 sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); 638 iCont = sqlite3VdbeCurrentAddr(v); 639 }else if( pSelect ){ 640 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 641 sqlite3VdbeResolveLabel(v, iInsertBlock); 642 } 643 644 /* Run the BEFORE and INSTEAD OF triggers, if there are any 645 */ 646 endOfLoop = sqlite3VdbeMakeLabel(v); 647 if( triggers_exist & TRIGGER_BEFORE ){ 648 649 /* build the NEW.* reference row. Note that if there is an INTEGER 650 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 651 ** translated into a unique ID for the row. But on a BEFORE trigger, 652 ** we do not know what the unique ID will be (because the insert has 653 ** not happened yet) so we substitute a rowid of -1 654 */ 655 if( keyColumn<0 ){ 656 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 657 }else if( useTempTable ){ 658 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 659 }else{ 660 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 661 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 662 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 663 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 664 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 665 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 666 } 667 668 /* Cannot have triggers on a virtual table. If it were possible, 669 ** this block would have to account for hidden column. 670 */ 671 assert(!IsVirtual(pTab)); 672 673 /* Create the new column data 674 */ 675 for(i=0; i<pTab->nCol; i++){ 676 if( pColumn==0 ){ 677 j = i; 678 }else{ 679 for(j=0; j<pColumn->nId; j++){ 680 if( pColumn->a[j].idx==i ) break; 681 } 682 } 683 if( pColumn && j>=pColumn->nId ){ 684 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 685 }else if( useTempTable ){ 686 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 687 }else{ 688 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 689 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); 690 } 691 } 692 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 693 694 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 695 ** do not attempt any conversions before assembling the record. 696 ** If this is a real table, attempt conversions as required by the 697 ** table column affinities. 698 */ 699 if( !isView ){ 700 sqlite3TableAffinityStr(v, pTab); 701 } 702 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 703 704 /* Fire BEFORE or INSTEAD OF triggers */ 705 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 706 newIdx, -1, onError, endOfLoop) ){ 707 goto insert_cleanup; 708 } 709 } 710 711 /* If any triggers exists, the opening of tables and indices is deferred 712 ** until now. 713 */ 714 if( triggers_exist && !isView ){ 715 base = pParse->nTab; 716 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 717 } 718 719 /* Push the record number for the new entry onto the stack. The 720 ** record number is a randomly generate integer created by NewRowid 721 ** except when the table has an INTEGER PRIMARY KEY column, in which 722 ** case the record number is the same as that column. 723 */ 724 if( !isView ){ 725 if( IsVirtual(pTab) ){ 726 /* The row that the VUpdate opcode will delete: none */ 727 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 728 } 729 if( keyColumn>=0 ){ 730 if( useTempTable ){ 731 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 732 }else if( pSelect ){ 733 sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); 734 }else{ 735 VdbeOp *pOp; 736 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 737 pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); 738 if( pOp && pOp->opcode==OP_Null ){ 739 appendFlag = 1; 740 pOp->opcode = OP_NewRowid; 741 pOp->p1 = base; 742 pOp->p2 = counterMem; 743 } 744 } 745 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 746 ** to generate a unique primary key value. 747 */ 748 if( !appendFlag ){ 749 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 750 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 751 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 752 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 753 } 754 }else if( IsVirtual(pTab) ){ 755 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 756 }else{ 757 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 758 appendFlag = 1; 759 } 760 autoIncStep(pParse, counterMem); 761 762 /* Push onto the stack, data for all columns of the new entry, beginning 763 ** with the first column. 764 */ 765 nHidden = 0; 766 for(i=0; i<pTab->nCol; i++){ 767 if( i==pTab->iPKey ){ 768 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 769 ** Whenever this column is read, the record number will be substituted 770 ** in its place. So will fill this column with a NULL to avoid 771 ** taking up data space with information that will never be used. */ 772 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 773 continue; 774 } 775 if( pColumn==0 ){ 776 if( IsHiddenColumn(&pTab->aCol[i]) ){ 777 assert( IsVirtual(pTab) ); 778 j = -1; 779 nHidden++; 780 }else{ 781 j = i - nHidden; 782 } 783 }else{ 784 for(j=0; j<pColumn->nId; j++){ 785 if( pColumn->a[j].idx==i ) break; 786 } 787 } 788 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 789 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 790 }else if( useTempTable ){ 791 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 792 }else if( pSelect ){ 793 sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1); 794 }else{ 795 sqlite3ExprCode(pParse, pList->a[j].pExpr); 796 } 797 } 798 799 /* Generate code to check constraints and generate index keys and 800 ** do the insertion. 801 */ 802 #ifndef SQLITE_OMIT_VIRTUALTABLE 803 if( IsVirtual(pTab) ){ 804 pParse->pVirtualLock = pTab; 805 sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2, 806 (const char*)pTab->pVtab, P3_VTAB); 807 }else 808 #endif 809 { 810 sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 811 0, onError, endOfLoop); 812 sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, 813 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, 814 appendFlag); 815 } 816 } 817 818 /* Update the count of rows that are inserted 819 */ 820 if( (db->flags & SQLITE_CountRows)!=0 ){ 821 sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem); 822 } 823 824 if( triggers_exist ){ 825 /* Close all tables opened */ 826 if( !isView ){ 827 sqlite3VdbeAddOp(v, OP_Close, base, 0); 828 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 829 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 830 } 831 } 832 833 /* Code AFTER triggers */ 834 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, 835 newIdx, -1, onError, endOfLoop) ){ 836 goto insert_cleanup; 837 } 838 } 839 840 /* The bottom of the loop, if the data source is a SELECT statement 841 */ 842 sqlite3VdbeResolveLabel(v, endOfLoop); 843 if( useTempTable ){ 844 sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); 845 sqlite3VdbeResolveLabel(v, iBreak); 846 sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); 847 }else if( pSelect ){ 848 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 849 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 850 sqlite3VdbeResolveLabel(v, iCleanup); 851 } 852 853 if( !triggers_exist && !IsVirtual(pTab) ){ 854 /* Close all tables opened */ 855 sqlite3VdbeAddOp(v, OP_Close, base, 0); 856 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 857 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 858 } 859 } 860 861 /* Update the sqlite_sequence table by storing the content of the 862 ** counter value in memory counterMem back into the sqlite_sequence 863 ** table. 864 */ 865 autoIncEnd(pParse, iDb, pTab, counterMem); 866 867 /* 868 ** Return the number of rows inserted. If this routine is 869 ** generating code because of a call to sqlite3NestedParse(), do not 870 ** invoke the callback function. 871 */ 872 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 873 sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); 874 sqlite3VdbeAddOp(v, OP_Callback, 1, 0); 875 sqlite3VdbeSetNumCols(v, 1); 876 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC); 877 } 878 879 insert_cleanup: 880 sqlite3SrcListDelete(pTabList); 881 sqlite3ExprListDelete(pList); 882 sqlite3SelectDelete(pSelect); 883 sqlite3IdListDelete(pColumn); 884 } 885 886 /* 887 ** Generate code to do a constraint check prior to an INSERT or an UPDATE. 888 ** 889 ** When this routine is called, the stack contains (from bottom to top) 890 ** the following values: 891 ** 892 ** 1. The rowid of the row to be updated before the update. This 893 ** value is omitted unless we are doing an UPDATE that involves a 894 ** change to the record number. 895 ** 896 ** 2. The rowid of the row after the update. 897 ** 898 ** 3. The data in the first column of the entry after the update. 899 ** 900 ** i. Data from middle columns... 901 ** 902 ** N. The data in the last column of the entry after the update. 903 ** 904 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 905 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 906 ** INSERTs and rowidChng is true if the record number is being changed. 907 ** 908 ** The code generated by this routine pushes additional entries onto 909 ** the stack which are the keys for new index entries for the new record. 910 ** The order of index keys is the same as the order of the indices on 911 ** the pTable->pIndex list. A key is only created for index i if 912 ** aIdxUsed!=0 and aIdxUsed[i]!=0. 913 ** 914 ** This routine also generates code to check constraints. NOT NULL, 915 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 916 ** then the appropriate action is performed. There are five possible 917 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 918 ** 919 ** Constraint type Action What Happens 920 ** --------------- ---------- ---------------------------------------- 921 ** any ROLLBACK The current transaction is rolled back and 922 ** sqlite3_exec() returns immediately with a 923 ** return code of SQLITE_CONSTRAINT. 924 ** 925 ** any ABORT Back out changes from the current command 926 ** only (do not do a complete rollback) then 927 ** cause sqlite3_exec() to return immediately 928 ** with SQLITE_CONSTRAINT. 929 ** 930 ** any FAIL Sqlite_exec() returns immediately with a 931 ** return code of SQLITE_CONSTRAINT. The 932 ** transaction is not rolled back and any 933 ** prior changes are retained. 934 ** 935 ** any IGNORE The record number and data is popped from 936 ** the stack and there is an immediate jump 937 ** to label ignoreDest. 938 ** 939 ** NOT NULL REPLACE The NULL value is replace by the default 940 ** value for that column. If the default value 941 ** is NULL, the action is the same as ABORT. 942 ** 943 ** UNIQUE REPLACE The other row that conflicts with the row 944 ** being inserted is removed. 945 ** 946 ** CHECK REPLACE Illegal. The results in an exception. 947 ** 948 ** Which action to take is determined by the overrideError parameter. 949 ** Or if overrideError==OE_Default, then the pParse->onError parameter 950 ** is used. Or if pParse->onError==OE_Default then the onError value 951 ** for the constraint is used. 952 ** 953 ** The calling routine must open a read/write cursor for pTab with 954 ** cursor number "base". All indices of pTab must also have open 955 ** read/write cursors with cursor number base+i for the i-th cursor. 956 ** Except, if there is no possibility of a REPLACE action then 957 ** cursors do not need to be open for indices where aIdxUsed[i]==0. 958 ** 959 ** If the isUpdate flag is true, it means that the "base" cursor is 960 ** initially pointing to an entry that is being updated. The isUpdate 961 ** flag causes extra code to be generated so that the "base" cursor 962 ** is still pointing at the same entry after the routine returns. 963 ** Without the isUpdate flag, the "base" cursor might be moved. 964 */ 965 void sqlite3GenerateConstraintChecks( 966 Parse *pParse, /* The parser context */ 967 Table *pTab, /* the table into which we are inserting */ 968 int base, /* Index of a read/write cursor pointing at pTab */ 969 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 970 int rowidChng, /* True if the record number will change */ 971 int isUpdate, /* True for UPDATE, False for INSERT */ 972 int overrideError, /* Override onError to this if not OE_Default */ 973 int ignoreDest /* Jump to this label on an OE_Ignore resolution */ 974 ){ 975 int i; 976 Vdbe *v; 977 int nCol; 978 int onError; 979 int addr; 980 int extra; 981 int iCur; 982 Index *pIdx; 983 int seenReplace = 0; 984 int jumpInst1=0, jumpInst2; 985 int hasTwoRowids = (isUpdate && rowidChng); 986 987 v = sqlite3GetVdbe(pParse); 988 assert( v!=0 ); 989 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 990 nCol = pTab->nCol; 991 992 /* Test all NOT NULL constraints. 993 */ 994 for(i=0; i<nCol; i++){ 995 if( i==pTab->iPKey ){ 996 continue; 997 } 998 onError = pTab->aCol[i].notNull; 999 if( onError==OE_None ) continue; 1000 if( overrideError!=OE_Default ){ 1001 onError = overrideError; 1002 }else if( onError==OE_Default ){ 1003 onError = OE_Abort; 1004 } 1005 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1006 onError = OE_Abort; 1007 } 1008 sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); 1009 addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); 1010 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1011 || onError==OE_Ignore || onError==OE_Replace ); 1012 switch( onError ){ 1013 case OE_Rollback: 1014 case OE_Abort: 1015 case OE_Fail: { 1016 char *zMsg = 0; 1017 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1018 sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, 1019 " may not be NULL", (char*)0); 1020 sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); 1021 break; 1022 } 1023 case OE_Ignore: { 1024 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1025 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1026 break; 1027 } 1028 case OE_Replace: { 1029 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 1030 sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); 1031 break; 1032 } 1033 } 1034 sqlite3VdbeJumpHere(v, addr); 1035 } 1036 1037 /* Test all CHECK constraints 1038 */ 1039 #ifndef SQLITE_OMIT_CHECK 1040 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1041 int allOk = sqlite3VdbeMakeLabel(v); 1042 assert( pParse->ckOffset==0 ); 1043 pParse->ckOffset = nCol; 1044 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1); 1045 assert( pParse->ckOffset==nCol ); 1046 pParse->ckOffset = 0; 1047 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1048 if( onError==OE_Ignore ){ 1049 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1050 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1051 }else{ 1052 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1053 } 1054 sqlite3VdbeResolveLabel(v, allOk); 1055 } 1056 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1057 1058 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1059 ** of the new record does not previously exist. Except, if this 1060 ** is an UPDATE and the primary key is not changing, that is OK. 1061 */ 1062 if( rowidChng ){ 1063 onError = pTab->keyConf; 1064 if( overrideError!=OE_Default ){ 1065 onError = overrideError; 1066 }else if( onError==OE_Default ){ 1067 onError = OE_Abort; 1068 } 1069 1070 if( isUpdate ){ 1071 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1072 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1073 jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); 1074 } 1075 sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); 1076 jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); 1077 switch( onError ){ 1078 default: { 1079 onError = OE_Abort; 1080 /* Fall thru into the next case */ 1081 } 1082 case OE_Rollback: 1083 case OE_Abort: 1084 case OE_Fail: { 1085 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1086 "PRIMARY KEY must be unique", P3_STATIC); 1087 break; 1088 } 1089 case OE_Replace: { 1090 sqlite3GenerateRowIndexDelete(v, pTab, base, 0); 1091 if( isUpdate ){ 1092 sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); 1093 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1094 } 1095 seenReplace = 1; 1096 break; 1097 } 1098 case OE_Ignore: { 1099 assert( seenReplace==0 ); 1100 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1101 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1102 break; 1103 } 1104 } 1105 sqlite3VdbeJumpHere(v, jumpInst2); 1106 if( isUpdate ){ 1107 sqlite3VdbeJumpHere(v, jumpInst1); 1108 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1109 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1110 } 1111 } 1112 1113 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1114 ** index and making sure that duplicate entries do not already exist. 1115 ** Add the new records to the indices as we go. 1116 */ 1117 extra = -1; 1118 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1119 if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ 1120 extra++; 1121 1122 /* Create a key for accessing the index entry */ 1123 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); 1124 for(i=0; i<pIdx->nColumn; i++){ 1125 int idx = pIdx->aiColumn[i]; 1126 if( idx==pTab->iPKey ){ 1127 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); 1128 }else{ 1129 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); 1130 } 1131 } 1132 jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); 1133 sqlite3IndexAffinityStr(v, pIdx); 1134 1135 /* Find out what action to take in case there is an indexing conflict */ 1136 onError = pIdx->onError; 1137 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ 1138 if( overrideError!=OE_Default ){ 1139 onError = overrideError; 1140 }else if( onError==OE_Default ){ 1141 onError = OE_Abort; 1142 } 1143 if( seenReplace ){ 1144 if( onError==OE_Ignore ) onError = OE_Replace; 1145 else if( onError==OE_Fail ) onError = OE_Abort; 1146 } 1147 1148 1149 /* Check to see if the new index entry will be unique */ 1150 sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); 1151 jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); 1152 1153 /* Generate code that executes if the new index entry is not unique */ 1154 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1155 || onError==OE_Ignore || onError==OE_Replace ); 1156 switch( onError ){ 1157 case OE_Rollback: 1158 case OE_Abort: 1159 case OE_Fail: { 1160 int j, n1, n2; 1161 char zErrMsg[200]; 1162 sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, 1163 pIdx->nColumn>1 ? "columns " : "column "); 1164 n1 = strlen(zErrMsg); 1165 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ 1166 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1167 n2 = strlen(zCol); 1168 if( j>0 ){ 1169 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); 1170 n1 += 2; 1171 } 1172 if( n1+n2>sizeof(zErrMsg)-30 ){ 1173 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); 1174 n1 += 3; 1175 break; 1176 }else{ 1177 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); 1178 n1 += n2; 1179 } 1180 } 1181 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 1182 pIdx->nColumn>1 ? " are not unique" : " is not unique"); 1183 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); 1184 break; 1185 } 1186 case OE_Ignore: { 1187 assert( seenReplace==0 ); 1188 sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); 1189 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1190 break; 1191 } 1192 case OE_Replace: { 1193 sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); 1194 if( isUpdate ){ 1195 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); 1196 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1197 } 1198 seenReplace = 1; 1199 break; 1200 } 1201 } 1202 #if NULL_DISTINCT_FOR_UNIQUE 1203 sqlite3VdbeJumpHere(v, jumpInst1); 1204 #endif 1205 sqlite3VdbeJumpHere(v, jumpInst2); 1206 } 1207 } 1208 1209 /* 1210 ** This routine generates code to finish the INSERT or UPDATE operation 1211 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1212 ** The stack must contain keys for all active indices followed by data 1213 ** and the rowid for the new entry. This routine creates the new 1214 ** entries in all indices and in the main table. 1215 ** 1216 ** The arguments to this routine should be the same as the first six 1217 ** arguments to sqlite3GenerateConstraintChecks. 1218 */ 1219 void sqlite3CompleteInsertion( 1220 Parse *pParse, /* The parser context */ 1221 Table *pTab, /* the table into which we are inserting */ 1222 int base, /* Index of a read/write cursor pointing at pTab */ 1223 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 1224 int rowidChng, /* True if the record number will change */ 1225 int isUpdate, /* True for UPDATE, False for INSERT */ 1226 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1227 int appendBias /* True if this is likely to be an append */ 1228 ){ 1229 int i; 1230 Vdbe *v; 1231 int nIdx; 1232 Index *pIdx; 1233 int pik_flags; 1234 1235 v = sqlite3GetVdbe(pParse); 1236 assert( v!=0 ); 1237 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1238 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1239 for(i=nIdx-1; i>=0; i--){ 1240 if( aIdxUsed && aIdxUsed[i]==0 ) continue; 1241 sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); 1242 } 1243 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 1244 sqlite3TableAffinityStr(v, pTab); 1245 #ifndef SQLITE_OMIT_TRIGGER 1246 if( newIdx>=0 ){ 1247 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1248 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1249 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 1250 } 1251 #endif 1252 if( pParse->nested ){ 1253 pik_flags = 0; 1254 }else{ 1255 pik_flags = OPFLAG_NCHANGE; 1256 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1257 } 1258 if( appendBias ){ 1259 pik_flags |= OPFLAG_APPEND; 1260 } 1261 sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); 1262 if( !pParse->nested ){ 1263 sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); 1264 } 1265 1266 if( isUpdate && rowidChng ){ 1267 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1268 } 1269 } 1270 1271 /* 1272 ** Generate code that will open cursors for a table and for all 1273 ** indices of that table. The "base" parameter is the cursor number used 1274 ** for the table. Indices are opened on subsequent cursors. 1275 */ 1276 void sqlite3OpenTableAndIndices( 1277 Parse *pParse, /* Parsing context */ 1278 Table *pTab, /* Table to be opened */ 1279 int base, /* Cursor number assigned to the table */ 1280 int op /* OP_OpenRead or OP_OpenWrite */ 1281 ){ 1282 int i; 1283 int iDb; 1284 Index *pIdx; 1285 Vdbe *v; 1286 1287 if( IsVirtual(pTab) ) return; 1288 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1289 v = sqlite3GetVdbe(pParse); 1290 assert( v!=0 ); 1291 sqlite3OpenTable(pParse, base, iDb, pTab, op); 1292 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1293 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1294 assert( pIdx->pSchema==pTab->pSchema ); 1295 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1296 VdbeComment((v, "# %s", pIdx->zName)); 1297 sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF); 1298 } 1299 if( pParse->nTab<=base+i ){ 1300 pParse->nTab = base+i; 1301 } 1302 } 1303 1304 1305 #ifdef SQLITE_TEST 1306 /* 1307 ** The following global variable is incremented whenever the 1308 ** transfer optimization is used. This is used for testing 1309 ** purposes only - to make sure the transfer optimization really 1310 ** is happening when it is suppose to. 1311 */ 1312 int sqlite3_xferopt_count; 1313 #endif /* SQLITE_TEST */ 1314 1315 1316 #ifndef SQLITE_OMIT_XFER_OPT 1317 /* 1318 ** Check to collation names to see if they are compatible. 1319 */ 1320 static int xferCompatibleCollation(const char *z1, const char *z2){ 1321 if( z1==0 ){ 1322 return z2==0; 1323 } 1324 if( z2==0 ){ 1325 return 0; 1326 } 1327 return sqlite3StrICmp(z1, z2)==0; 1328 } 1329 1330 1331 /* 1332 ** Check to see if index pSrc is compatible as a source of data 1333 ** for index pDest in an insert transfer optimization. The rules 1334 ** for a compatible index: 1335 ** 1336 ** * The index is over the same set of columns 1337 ** * The same DESC and ASC markings occurs on all columns 1338 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1339 ** * The same collating sequence on each column 1340 */ 1341 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1342 int i; 1343 assert( pDest && pSrc ); 1344 assert( pDest->pTable!=pSrc->pTable ); 1345 if( pDest->nColumn!=pSrc->nColumn ){ 1346 return 0; /* Different number of columns */ 1347 } 1348 if( pDest->onError!=pSrc->onError ){ 1349 return 0; /* Different conflict resolution strategies */ 1350 } 1351 for(i=0; i<pSrc->nColumn; i++){ 1352 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1353 return 0; /* Different columns indexed */ 1354 } 1355 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1356 return 0; /* Different sort orders */ 1357 } 1358 if( pSrc->azColl[i]!=pDest->azColl[i] ){ 1359 return 0; /* Different sort orders */ 1360 } 1361 } 1362 1363 /* If no test above fails then the indices must be compatible */ 1364 return 1; 1365 } 1366 1367 /* 1368 ** Attempt the transfer optimization on INSERTs of the form 1369 ** 1370 ** INSERT INTO tab1 SELECT * FROM tab2; 1371 ** 1372 ** This optimization is only attempted if 1373 ** 1374 ** (1) tab1 and tab2 have identical schemas including all the 1375 ** same indices and constraints 1376 ** 1377 ** (2) tab1 and tab2 are different tables 1378 ** 1379 ** (3) There must be no triggers on tab1 1380 ** 1381 ** (4) The result set of the SELECT statement is "*" 1382 ** 1383 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1384 ** or LIMIT clause. 1385 ** 1386 ** (6) The SELECT statement is a simple (not a compound) select that 1387 ** contains only tab2 in its FROM clause 1388 ** 1389 ** This method for implementing the INSERT transfers raw records from 1390 ** tab2 over to tab1. The columns are not decoded. Raw records from 1391 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1392 ** the resulting tab1 has much less fragmentation. 1393 ** 1394 ** This routine returns TRUE if the optimization is attempted. If any 1395 ** of the conditions above fail so that the optimization should not 1396 ** be attempted, then this routine returns FALSE. 1397 */ 1398 static int xferOptimization( 1399 Parse *pParse, /* Parser context */ 1400 Table *pDest, /* The table we are inserting into */ 1401 Select *pSelect, /* A SELECT statement to use as the data source */ 1402 int onError, /* How to handle constraint errors */ 1403 int iDbDest /* The database of pDest */ 1404 ){ 1405 ExprList *pEList; /* The result set of the SELECT */ 1406 Table *pSrc; /* The table in the FROM clause of SELECT */ 1407 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1408 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1409 int i; /* Loop counter */ 1410 int iDbSrc; /* The database of pSrc */ 1411 int iSrc, iDest; /* Cursors from source and destination */ 1412 int addr1, addr2; /* Loop addresses */ 1413 int emptyDestTest; /* Address of test for empty pDest */ 1414 int emptySrcTest; /* Address of test for empty pSrc */ 1415 Vdbe *v; /* The VDBE we are building */ 1416 KeyInfo *pKey; /* Key information for an index */ 1417 int counterMem; /* Memory register used by AUTOINC */ 1418 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1419 1420 if( pSelect==0 ){ 1421 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1422 } 1423 if( pDest->pTrigger ){ 1424 return 0; /* tab1 must not have triggers */ 1425 } 1426 #ifndef SQLITE_OMIT_VIRTUALTABLE 1427 if( pDest->isVirtual ){ 1428 return 0; /* tab1 must not be a virtual table */ 1429 } 1430 #endif 1431 if( onError==OE_Default ){ 1432 onError = OE_Abort; 1433 } 1434 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1435 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1436 } 1437 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1438 if( pSelect->pSrc->nSrc!=1 ){ 1439 return 0; /* FROM clause must have exactly one term */ 1440 } 1441 if( pSelect->pSrc->a[0].pSelect ){ 1442 return 0; /* FROM clause cannot contain a subquery */ 1443 } 1444 if( pSelect->pWhere ){ 1445 return 0; /* SELECT may not have a WHERE clause */ 1446 } 1447 if( pSelect->pOrderBy ){ 1448 return 0; /* SELECT may not have an ORDER BY clause */ 1449 } 1450 /* Do not need to test for a HAVING clause. If HAVING is present but 1451 ** there is no ORDER BY, we will get an error. */ 1452 if( pSelect->pGroupBy ){ 1453 return 0; /* SELECT may not have a GROUP BY clause */ 1454 } 1455 if( pSelect->pLimit ){ 1456 return 0; /* SELECT may not have a LIMIT clause */ 1457 } 1458 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1459 if( pSelect->pPrior ){ 1460 return 0; /* SELECT may not be a compound query */ 1461 } 1462 if( pSelect->isDistinct ){ 1463 return 0; /* SELECT may not be DISTINCT */ 1464 } 1465 pEList = pSelect->pEList; 1466 assert( pEList!=0 ); 1467 if( pEList->nExpr!=1 ){ 1468 return 0; /* The result set must have exactly one column */ 1469 } 1470 assert( pEList->a[0].pExpr ); 1471 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1472 return 0; /* The result set must be the special operator "*" */ 1473 } 1474 1475 /* At this point we have established that the statement is of the 1476 ** correct syntactic form to participate in this optimization. Now 1477 ** we have to check the semantics. 1478 */ 1479 pItem = pSelect->pSrc->a; 1480 pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase); 1481 if( pSrc==0 ){ 1482 return 0; /* FROM clause does not contain a real table */ 1483 } 1484 if( pSrc==pDest ){ 1485 return 0; /* tab1 and tab2 may not be the same table */ 1486 } 1487 #ifndef SQLITE_OMIT_VIRTUALTABLE 1488 if( pSrc->isVirtual ){ 1489 return 0; /* tab2 must not be a virtual table */ 1490 } 1491 #endif 1492 if( pSrc->pSelect ){ 1493 return 0; /* tab2 may not be a view */ 1494 } 1495 if( pDest->nCol!=pSrc->nCol ){ 1496 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1497 } 1498 if( pDest->iPKey!=pSrc->iPKey ){ 1499 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1500 } 1501 for(i=0; i<pDest->nCol; i++){ 1502 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1503 return 0; /* Affinity must be the same on all columns */ 1504 } 1505 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1506 return 0; /* Collating sequence must be the same on all columns */ 1507 } 1508 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1509 return 0; /* tab2 must be NOT NULL if tab1 is */ 1510 } 1511 } 1512 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1513 if( pDestIdx->onError!=OE_None ){ 1514 destHasUniqueIdx = 1; 1515 } 1516 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1517 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1518 } 1519 if( pSrcIdx==0 ){ 1520 return 0; /* pDestIdx has no corresponding index in pSrc */ 1521 } 1522 } 1523 #ifndef SQLITE_OMIT_CHECK 1524 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1525 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1526 } 1527 #endif 1528 1529 /* If we get this far, it means either: 1530 ** 1531 ** * We can always do the transfer if the table contains an 1532 ** an integer primary key 1533 ** 1534 ** * We can conditionally do the transfer if the destination 1535 ** table is empty. 1536 */ 1537 #ifdef SQLITE_TEST 1538 sqlite3_xferopt_count++; 1539 #endif 1540 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1541 v = sqlite3GetVdbe(pParse); 1542 sqlite3CodeVerifySchema(pParse, iDbSrc); 1543 iSrc = pParse->nTab++; 1544 iDest = pParse->nTab++; 1545 counterMem = autoIncBegin(pParse, iDbDest, pDest); 1546 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1547 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1548 /* If tables do not have an INTEGER PRIMARY KEY and there 1549 ** are indices to be copied and the destination is not empty, 1550 ** we have to disallow the transfer optimization because the 1551 ** the rowids might change which will mess up indexing. 1552 ** 1553 ** Or if the destination has a UNIQUE index and is not empty, 1554 ** we also disallow the transfer optimization because we cannot 1555 ** insure that all entries in the union of DEST and SRC will be 1556 ** unique. 1557 */ 1558 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0); 1559 emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1560 sqlite3VdbeJumpHere(v, addr1); 1561 }else{ 1562 emptyDestTest = 0; 1563 } 1564 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1565 emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1566 if( pDest->iPKey>=0 ){ 1567 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1568 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1569 addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0); 1570 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1571 "PRIMARY KEY must be unique", P3_STATIC); 1572 sqlite3VdbeJumpHere(v, addr2); 1573 autoIncStep(pParse, counterMem); 1574 }else if( pDest->pIndex==0 ){ 1575 addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0); 1576 }else{ 1577 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1578 assert( pDest->autoInc==0 ); 1579 } 1580 sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0); 1581 sqlite3VdbeOp3(v, OP_Insert, iDest, 1582 OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND, 1583 pDest->zName, 0); 1584 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1); 1585 autoIncEnd(pParse, iDbDest, pDest, counterMem); 1586 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1587 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1588 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1589 } 1590 assert( pSrcIdx ); 1591 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1592 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1593 sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0); 1594 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1595 VdbeComment((v, "# %s", pSrcIdx->zName)); 1596 sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 1597 (char*)pKey, P3_KEYINFO_HANDOFF); 1598 sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0); 1599 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1600 VdbeComment((v, "# %s", pDestIdx->zName)); 1601 sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 1602 (char*)pKey, P3_KEYINFO_HANDOFF); 1603 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1604 sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0); 1605 sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1); 1606 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1); 1607 sqlite3VdbeJumpHere(v, addr1); 1608 } 1609 sqlite3VdbeJumpHere(v, emptySrcTest); 1610 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1611 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1612 if( emptyDestTest ){ 1613 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0); 1614 sqlite3VdbeJumpHere(v, emptyDestTest); 1615 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1616 return 0; 1617 }else{ 1618 return 1; 1619 } 1620 } 1621 #endif /* SQLITE_OMIT_XFER_OPT */ 1622