xref: /sqlite-3.40.0/src/insert.c (revision a6f46e99)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.193 2007/11/23 15:02:19 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P3 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 */
32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
33   if( !pIdx->zColAff ){
34     /* The first time a column affinity string for a particular index is
35     ** required, it is allocated and populated here. It is then stored as
36     ** a member of the Index structure for subsequent use.
37     **
38     ** The column affinity string will eventually be deleted by
39     ** sqliteDeleteIndex() when the Index structure itself is cleaned
40     ** up.
41     */
42     int n;
43     Table *pTab = pIdx->pTable;
44     sqlite3 *db = sqlite3VdbeDb(v);
45     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
46     if( !pIdx->zColAff ){
47       return;
48     }
49     for(n=0; n<pIdx->nColumn; n++){
50       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
51     }
52     pIdx->zColAff[pIdx->nColumn] = '\0';
53   }
54 
55   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
56 }
57 
58 /*
59 ** Set P3 of the most recently inserted opcode to a column affinity
60 ** string for table pTab. A column affinity string has one character
61 ** for each column indexed by the index, according to the affinity of the
62 ** column:
63 **
64 **  Character      Column affinity
65 **  ------------------------------
66 **  'a'            TEXT
67 **  'b'            NONE
68 **  'c'            NUMERIC
69 **  'd'            INTEGER
70 **  'e'            REAL
71 */
72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
73   /* The first time a column affinity string for a particular table
74   ** is required, it is allocated and populated here. It is then
75   ** stored as a member of the Table structure for subsequent use.
76   **
77   ** The column affinity string will eventually be deleted by
78   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
79   */
80   if( !pTab->zColAff ){
81     char *zColAff;
82     int i;
83     sqlite3 *db = sqlite3VdbeDb(v);
84 
85     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
86     if( !zColAff ){
87       return;
88     }
89 
90     for(i=0; i<pTab->nCol; i++){
91       zColAff[i] = pTab->aCol[i].affinity;
92     }
93     zColAff[pTab->nCol] = '\0';
94 
95     pTab->zColAff = zColAff;
96   }
97 
98   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
99 }
100 
101 /*
102 ** Return non-zero if the table pTab in database iDb or any of its indices
103 ** have been opened at any point in the VDBE program beginning at location
104 ** iStartAddr throught the end of the program.  This is used to see if
105 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
106 ** run without using temporary table for the results of the SELECT.
107 */
108 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
109   int i;
110   int iEnd = sqlite3VdbeCurrentAddr(v);
111   for(i=iStartAddr; i<iEnd; i++){
112     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
113     if( pOp->opcode==OP_OpenRead ){
114       VdbeOp *pPrior = &pOp[-1];
115       int tnum = pOp->p2;
116       assert( i>iStartAddr );
117       assert( pPrior->opcode==OP_Integer );
118       if( pPrior->p1==iDb ){
119         Index *pIndex;
120         if( tnum==pTab->tnum ){
121           return 1;
122         }
123         for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
124           if( tnum==pIndex->tnum ){
125             return 1;
126           }
127         }
128       }
129     }
130     if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){
131       assert( pOp->p3!=0 );
132       assert( pOp->p3type==P3_VTAB );
133       return 1;
134     }
135   }
136   return 0;
137 }
138 
139 #ifndef SQLITE_OMIT_AUTOINCREMENT
140 /*
141 ** Write out code to initialize the autoincrement logic.  This code
142 ** looks up the current autoincrement value in the sqlite_sequence
143 ** table and stores that value in a memory cell.  Code generated by
144 ** autoIncStep() will keep that memory cell holding the largest
145 ** rowid value.  Code generated by autoIncEnd() will write the new
146 ** largest value of the counter back into the sqlite_sequence table.
147 **
148 ** This routine returns the index of the mem[] cell that contains
149 ** the maximum rowid counter.
150 **
151 ** Two memory cells are allocated.  The next memory cell after the
152 ** one returned holds the rowid in sqlite_sequence where we will
153 ** write back the revised maximum rowid.
154 */
155 static int autoIncBegin(
156   Parse *pParse,      /* Parsing context */
157   int iDb,            /* Index of the database holding pTab */
158   Table *pTab         /* The table we are writing to */
159 ){
160   int memId = 0;
161   if( pTab->autoInc ){
162     Vdbe *v = pParse->pVdbe;
163     Db *pDb = &pParse->db->aDb[iDb];
164     int iCur = pParse->nTab;
165     int addr;
166     assert( v );
167     addr = sqlite3VdbeCurrentAddr(v);
168     memId = pParse->nMem+1;
169     pParse->nMem += 2;
170     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
171     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
172     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
173     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
174     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
175     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
176     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
177     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
178     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
179     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
180     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
181     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
182   }
183   return memId;
184 }
185 
186 /*
187 ** Update the maximum rowid for an autoincrement calculation.
188 **
189 ** This routine should be called when the top of the stack holds a
190 ** new rowid that is about to be inserted.  If that new rowid is
191 ** larger than the maximum rowid in the memId memory cell, then the
192 ** memory cell is updated.  The stack is unchanged.
193 */
194 static void autoIncStep(Parse *pParse, int memId){
195   if( memId>0 ){
196     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
197   }
198 }
199 
200 /*
201 ** After doing one or more inserts, the maximum rowid is stored
202 ** in mem[memId].  Generate code to write this value back into the
203 ** the sqlite_sequence table.
204 */
205 static void autoIncEnd(
206   Parse *pParse,     /* The parsing context */
207   int iDb,           /* Index of the database holding pTab */
208   Table *pTab,       /* Table we are inserting into */
209   int memId          /* Memory cell holding the maximum rowid */
210 ){
211   if( pTab->autoInc ){
212     int iCur = pParse->nTab;
213     Vdbe *v = pParse->pVdbe;
214     Db *pDb = &pParse->db->aDb[iDb];
215     int addr;
216     assert( v );
217     addr = sqlite3VdbeCurrentAddr(v);
218     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
219     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
220     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
221     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
222     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
223     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
224     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
225     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
226     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
227     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
228   }
229 }
230 #else
231 /*
232 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
233 ** above are all no-ops
234 */
235 # define autoIncBegin(A,B,C) (0)
236 # define autoIncStep(A,B)
237 # define autoIncEnd(A,B,C,D)
238 #endif /* SQLITE_OMIT_AUTOINCREMENT */
239 
240 
241 /* Forward declaration */
242 static int xferOptimization(
243   Parse *pParse,        /* Parser context */
244   Table *pDest,         /* The table we are inserting into */
245   Select *pSelect,      /* A SELECT statement to use as the data source */
246   int onError,          /* How to handle constraint errors */
247   int iDbDest           /* The database of pDest */
248 );
249 
250 /*
251 ** This routine is call to handle SQL of the following forms:
252 **
253 **    insert into TABLE (IDLIST) values(EXPRLIST)
254 **    insert into TABLE (IDLIST) select
255 **
256 ** The IDLIST following the table name is always optional.  If omitted,
257 ** then a list of all columns for the table is substituted.  The IDLIST
258 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
259 **
260 ** The pList parameter holds EXPRLIST in the first form of the INSERT
261 ** statement above, and pSelect is NULL.  For the second form, pList is
262 ** NULL and pSelect is a pointer to the select statement used to generate
263 ** data for the insert.
264 **
265 ** The code generated follows one of four templates.  For a simple
266 ** select with data coming from a VALUES clause, the code executes
267 ** once straight down through.  The template looks like this:
268 **
269 **         open write cursor to <table> and its indices
270 **         puts VALUES clause expressions onto the stack
271 **         write the resulting record into <table>
272 **         cleanup
273 **
274 ** The three remaining templates assume the statement is of the form
275 **
276 **   INSERT INTO <table> SELECT ...
277 **
278 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
279 ** in other words if the SELECT pulls all columns from a single table
280 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
281 ** if <table2> and <table1> are distinct tables but have identical
282 ** schemas, including all the same indices, then a special optimization
283 ** is invoked that copies raw records from <table2> over to <table1>.
284 ** See the xferOptimization() function for the implementation of this
285 ** template.  This is the second template.
286 **
287 **         open a write cursor to <table>
288 **         open read cursor on <table2>
289 **         transfer all records in <table2> over to <table>
290 **         close cursors
291 **         foreach index on <table>
292 **           open a write cursor on the <table> index
293 **           open a read cursor on the corresponding <table2> index
294 **           transfer all records from the read to the write cursors
295 **           close cursors
296 **         end foreach
297 **
298 ** The third template is for when the second template does not apply
299 ** and the SELECT clause does not read from <table> at any time.
300 ** The generated code follows this template:
301 **
302 **         goto B
303 **      A: setup for the SELECT
304 **         loop over the rows in the SELECT
305 **           gosub C
306 **         end loop
307 **         cleanup after the SELECT
308 **         goto D
309 **      B: open write cursor to <table> and its indices
310 **         goto A
311 **      C: insert the select result into <table>
312 **         return
313 **      D: cleanup
314 **
315 ** The fourth template is used if the insert statement takes its
316 ** values from a SELECT but the data is being inserted into a table
317 ** that is also read as part of the SELECT.  In the third form,
318 ** we have to use a intermediate table to store the results of
319 ** the select.  The template is like this:
320 **
321 **         goto B
322 **      A: setup for the SELECT
323 **         loop over the tables in the SELECT
324 **           gosub C
325 **         end loop
326 **         cleanup after the SELECT
327 **         goto D
328 **      C: insert the select result into the intermediate table
329 **         return
330 **      B: open a cursor to an intermediate table
331 **         goto A
332 **      D: open write cursor to <table> and its indices
333 **         loop over the intermediate table
334 **           transfer values form intermediate table into <table>
335 **         end the loop
336 **         cleanup
337 */
338 void sqlite3Insert(
339   Parse *pParse,        /* Parser context */
340   SrcList *pTabList,    /* Name of table into which we are inserting */
341   ExprList *pList,      /* List of values to be inserted */
342   Select *pSelect,      /* A SELECT statement to use as the data source */
343   IdList *pColumn,      /* Column names corresponding to IDLIST. */
344   int onError           /* How to handle constraint errors */
345 ){
346   Table *pTab;          /* The table to insert into */
347   char *zTab;           /* Name of the table into which we are inserting */
348   const char *zDb;      /* Name of the database holding this table */
349   int i, j, idx;        /* Loop counters */
350   Vdbe *v;              /* Generate code into this virtual machine */
351   Index *pIdx;          /* For looping over indices of the table */
352   int nColumn;          /* Number of columns in the data */
353   int base = 0;         /* VDBE Cursor number for pTab */
354   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
355   sqlite3 *db;          /* The main database structure */
356   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
357   int endOfLoop;        /* Label for the end of the insertion loop */
358   int useTempTable = 0; /* Store SELECT results in intermediate table */
359   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
360   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
361   int iCleanup = 0;     /* Address of the cleanup code */
362   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
363   int iCntMem = 0;      /* Memory cell used for the row counter */
364   int newIdx = -1;      /* Cursor for the NEW table */
365   Db *pDb;              /* The database containing table being inserted into */
366   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
367   int appendFlag = 0;   /* True if the insert is likely to be an append */
368   int iDb;
369 
370   int nHidden = 0;
371 
372 #ifndef SQLITE_OMIT_TRIGGER
373   int isView;                 /* True if attempting to insert into a view */
374   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
375 #endif
376 
377   db = pParse->db;
378   if( pParse->nErr || db->mallocFailed ){
379     goto insert_cleanup;
380   }
381 
382   /* Locate the table into which we will be inserting new information.
383   */
384   assert( pTabList->nSrc==1 );
385   zTab = pTabList->a[0].zName;
386   if( zTab==0 ) goto insert_cleanup;
387   pTab = sqlite3SrcListLookup(pParse, pTabList);
388   if( pTab==0 ){
389     goto insert_cleanup;
390   }
391   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
392   assert( iDb<db->nDb );
393   pDb = &db->aDb[iDb];
394   zDb = pDb->zName;
395   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
396     goto insert_cleanup;
397   }
398 
399   /* Figure out if we have any triggers and if the table being
400   ** inserted into is a view
401   */
402 #ifndef SQLITE_OMIT_TRIGGER
403   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
404   isView = pTab->pSelect!=0;
405 #else
406 # define triggers_exist 0
407 # define isView 0
408 #endif
409 #ifdef SQLITE_OMIT_VIEW
410 # undef isView
411 # define isView 0
412 #endif
413 
414   /* Ensure that:
415   *  (a) the table is not read-only,
416   *  (b) that if it is a view then ON INSERT triggers exist
417   */
418   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
419     goto insert_cleanup;
420   }
421   assert( pTab!=0 );
422 
423   /* If pTab is really a view, make sure it has been initialized.
424   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
425   ** module table).
426   */
427   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
428     goto insert_cleanup;
429   }
430 
431   /* Allocate a VDBE
432   */
433   v = sqlite3GetVdbe(pParse);
434   if( v==0 ) goto insert_cleanup;
435   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
436   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
437 
438   /* if there are row triggers, allocate a temp table for new.* references. */
439   if( triggers_exist ){
440     newIdx = pParse->nTab++;
441   }
442 
443 #ifndef SQLITE_OMIT_XFER_OPT
444   /* If the statement is of the form
445   **
446   **       INSERT INTO <table1> SELECT * FROM <table2>;
447   **
448   ** Then special optimizations can be applied that make the transfer
449   ** very fast and which reduce fragmentation of indices.
450   */
451   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
452     assert( !triggers_exist );
453     assert( pList==0 );
454     goto insert_cleanup;
455   }
456 #endif /* SQLITE_OMIT_XFER_OPT */
457 
458   /* If this is an AUTOINCREMENT table, look up the sequence number in the
459   ** sqlite_sequence table and store it in memory cell counterMem.  Also
460   ** remember the rowid of the sqlite_sequence table entry in memory cell
461   ** counterRowid.
462   */
463   counterMem = autoIncBegin(pParse, iDb, pTab);
464 
465   /* Figure out how many columns of data are supplied.  If the data
466   ** is coming from a SELECT statement, then this step also generates
467   ** all the code to implement the SELECT statement and invoke a subroutine
468   ** to process each row of the result. (Template 2.) If the SELECT
469   ** statement uses the the table that is being inserted into, then the
470   ** subroutine is also coded here.  That subroutine stores the SELECT
471   ** results in a temporary table. (Template 3.)
472   */
473   if( pSelect ){
474     /* Data is coming from a SELECT.  Generate code to implement that SELECT
475     */
476     int rc, iInitCode;
477     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
478     iSelectLoop = sqlite3VdbeCurrentAddr(v);
479     iInsertBlock = sqlite3VdbeMakeLabel(v);
480 
481     /* Resolve the expressions in the SELECT statement and execute it. */
482     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
483     if( rc || pParse->nErr || db->mallocFailed ){
484       goto insert_cleanup;
485     }
486 
487     iCleanup = sqlite3VdbeMakeLabel(v);
488     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
489     assert( pSelect->pEList );
490     nColumn = pSelect->pEList->nExpr;
491 
492     /* Set useTempTable to TRUE if the result of the SELECT statement
493     ** should be written into a temporary table.  Set to FALSE if each
494     ** row of the SELECT can be written directly into the result table.
495     **
496     ** A temp table must be used if the table being updated is also one
497     ** of the tables being read by the SELECT statement.  Also use a
498     ** temp table in the case of row triggers.
499     */
500     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
501       useTempTable = 1;
502     }
503 
504     if( useTempTable ){
505       /* Generate the subroutine that SELECT calls to process each row of
506       ** the result.  Store the result in a temporary table
507       */
508       srcTab = pParse->nTab++;
509       sqlite3VdbeResolveLabel(v, iInsertBlock);
510       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
511       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
512       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
513       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
514       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
515 
516       /* The following code runs first because the GOTO at the very top
517       ** of the program jumps to it.  Create the temporary table, then jump
518       ** back up and execute the SELECT code above.
519       */
520       sqlite3VdbeJumpHere(v, iInitCode);
521       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
522       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
523       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
524       sqlite3VdbeResolveLabel(v, iCleanup);
525     }else{
526       sqlite3VdbeJumpHere(v, iInitCode);
527     }
528   }else{
529     /* This is the case if the data for the INSERT is coming from a VALUES
530     ** clause
531     */
532     NameContext sNC;
533     memset(&sNC, 0, sizeof(sNC));
534     sNC.pParse = pParse;
535     srcTab = -1;
536     assert( useTempTable==0 );
537     nColumn = pList ? pList->nExpr : 0;
538     for(i=0; i<nColumn; i++){
539       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
540         goto insert_cleanup;
541       }
542     }
543   }
544 
545   /* Make sure the number of columns in the source data matches the number
546   ** of columns to be inserted into the table.
547   */
548   if( IsVirtual(pTab) ){
549     for(i=0; i<pTab->nCol; i++){
550       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
551     }
552   }
553   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
554     sqlite3ErrorMsg(pParse,
555        "table %S has %d columns but %d values were supplied",
556        pTabList, 0, pTab->nCol, nColumn);
557     goto insert_cleanup;
558   }
559   if( pColumn!=0 && nColumn!=pColumn->nId ){
560     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
561     goto insert_cleanup;
562   }
563 
564   /* If the INSERT statement included an IDLIST term, then make sure
565   ** all elements of the IDLIST really are columns of the table and
566   ** remember the column indices.
567   **
568   ** If the table has an INTEGER PRIMARY KEY column and that column
569   ** is named in the IDLIST, then record in the keyColumn variable
570   ** the index into IDLIST of the primary key column.  keyColumn is
571   ** the index of the primary key as it appears in IDLIST, not as
572   ** is appears in the original table.  (The index of the primary
573   ** key in the original table is pTab->iPKey.)
574   */
575   if( pColumn ){
576     for(i=0; i<pColumn->nId; i++){
577       pColumn->a[i].idx = -1;
578     }
579     for(i=0; i<pColumn->nId; i++){
580       for(j=0; j<pTab->nCol; j++){
581         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
582           pColumn->a[i].idx = j;
583           if( j==pTab->iPKey ){
584             keyColumn = i;
585           }
586           break;
587         }
588       }
589       if( j>=pTab->nCol ){
590         if( sqlite3IsRowid(pColumn->a[i].zName) ){
591           keyColumn = i;
592         }else{
593           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
594               pTabList, 0, pColumn->a[i].zName);
595           pParse->nErr++;
596           goto insert_cleanup;
597         }
598       }
599     }
600   }
601 
602   /* If there is no IDLIST term but the table has an integer primary
603   ** key, the set the keyColumn variable to the primary key column index
604   ** in the original table definition.
605   */
606   if( pColumn==0 && nColumn>0 ){
607     keyColumn = pTab->iPKey;
608   }
609 
610   /* Open the temp table for FOR EACH ROW triggers
611   */
612   if( triggers_exist ){
613     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
614     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
615   }
616 
617   /* Initialize the count of rows to be inserted
618   */
619   if( db->flags & SQLITE_CountRows ){
620     iCntMem = pParse->nMem++;
621     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
622   }
623 
624   /* Open tables and indices if there are no row triggers */
625   if( !triggers_exist ){
626     base = pParse->nTab;
627     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
628   }
629 
630   /* If the data source is a temporary table, then we have to create
631   ** a loop because there might be multiple rows of data.  If the data
632   ** source is a subroutine call from the SELECT statement, then we need
633   ** to launch the SELECT statement processing.
634   */
635   if( useTempTable ){
636     iBreak = sqlite3VdbeMakeLabel(v);
637     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
638     iCont = sqlite3VdbeCurrentAddr(v);
639   }else if( pSelect ){
640     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
641     sqlite3VdbeResolveLabel(v, iInsertBlock);
642   }
643 
644   /* Run the BEFORE and INSTEAD OF triggers, if there are any
645   */
646   endOfLoop = sqlite3VdbeMakeLabel(v);
647   if( triggers_exist & TRIGGER_BEFORE ){
648 
649     /* build the NEW.* reference row.  Note that if there is an INTEGER
650     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
651     ** translated into a unique ID for the row.  But on a BEFORE trigger,
652     ** we do not know what the unique ID will be (because the insert has
653     ** not happened yet) so we substitute a rowid of -1
654     */
655     if( keyColumn<0 ){
656       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
657     }else if( useTempTable ){
658       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
659     }else{
660       assert( pSelect==0 );  /* Otherwise useTempTable is true */
661       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
662       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
663       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
664       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
665       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
666     }
667 
668     /* Cannot have triggers on a virtual table. If it were possible,
669     ** this block would have to account for hidden column.
670     */
671     assert(!IsVirtual(pTab));
672 
673     /* Create the new column data
674     */
675     for(i=0; i<pTab->nCol; i++){
676       if( pColumn==0 ){
677         j = i;
678       }else{
679         for(j=0; j<pColumn->nId; j++){
680           if( pColumn->a[j].idx==i ) break;
681         }
682       }
683       if( pColumn && j>=pColumn->nId ){
684         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
685       }else if( useTempTable ){
686         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
687       }else{
688         assert( pSelect==0 ); /* Otherwise useTempTable is true */
689         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
690       }
691     }
692     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
693 
694     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
695     ** do not attempt any conversions before assembling the record.
696     ** If this is a real table, attempt conversions as required by the
697     ** table column affinities.
698     */
699     if( !isView ){
700       sqlite3TableAffinityStr(v, pTab);
701     }
702     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
703 
704     /* Fire BEFORE or INSTEAD OF triggers */
705     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
706         newIdx, -1, onError, endOfLoop) ){
707       goto insert_cleanup;
708     }
709   }
710 
711   /* If any triggers exists, the opening of tables and indices is deferred
712   ** until now.
713   */
714   if( triggers_exist && !isView ){
715     base = pParse->nTab;
716     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
717   }
718 
719   /* Push the record number for the new entry onto the stack.  The
720   ** record number is a randomly generate integer created by NewRowid
721   ** except when the table has an INTEGER PRIMARY KEY column, in which
722   ** case the record number is the same as that column.
723   */
724   if( !isView ){
725     if( IsVirtual(pTab) ){
726       /* The row that the VUpdate opcode will delete:  none */
727       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
728     }
729     if( keyColumn>=0 ){
730       if( useTempTable ){
731         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
732       }else if( pSelect ){
733         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
734       }else{
735         VdbeOp *pOp;
736         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
737         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
738         if( pOp && pOp->opcode==OP_Null ){
739           appendFlag = 1;
740           pOp->opcode = OP_NewRowid;
741           pOp->p1 = base;
742           pOp->p2 = counterMem;
743         }
744       }
745       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
746       ** to generate a unique primary key value.
747       */
748       if( !appendFlag ){
749         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
750         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
751         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
752         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
753       }
754     }else if( IsVirtual(pTab) ){
755       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
756     }else{
757       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
758       appendFlag = 1;
759     }
760     autoIncStep(pParse, counterMem);
761 
762     /* Push onto the stack, data for all columns of the new entry, beginning
763     ** with the first column.
764     */
765     nHidden = 0;
766     for(i=0; i<pTab->nCol; i++){
767       if( i==pTab->iPKey ){
768         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
769         ** Whenever this column is read, the record number will be substituted
770         ** in its place.  So will fill this column with a NULL to avoid
771         ** taking up data space with information that will never be used. */
772         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
773         continue;
774       }
775       if( pColumn==0 ){
776         if( IsHiddenColumn(&pTab->aCol[i]) ){
777           assert( IsVirtual(pTab) );
778           j = -1;
779           nHidden++;
780         }else{
781           j = i - nHidden;
782         }
783       }else{
784         for(j=0; j<pColumn->nId; j++){
785           if( pColumn->a[j].idx==i ) break;
786         }
787       }
788       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
789         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
790       }else if( useTempTable ){
791         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
792       }else if( pSelect ){
793         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
794       }else{
795         sqlite3ExprCode(pParse, pList->a[j].pExpr);
796       }
797     }
798 
799     /* Generate code to check constraints and generate index keys and
800     ** do the insertion.
801     */
802 #ifndef SQLITE_OMIT_VIRTUALTABLE
803     if( IsVirtual(pTab) ){
804       pParse->pVirtualLock = pTab;
805       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
806                      (const char*)pTab->pVtab, P3_VTAB);
807     }else
808 #endif
809     {
810       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
811                                      0, onError, endOfLoop);
812       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
813                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
814                             appendFlag);
815     }
816   }
817 
818   /* Update the count of rows that are inserted
819   */
820   if( (db->flags & SQLITE_CountRows)!=0 ){
821     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
822   }
823 
824   if( triggers_exist ){
825     /* Close all tables opened */
826     if( !isView ){
827       sqlite3VdbeAddOp(v, OP_Close, base, 0);
828       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
829         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
830       }
831     }
832 
833     /* Code AFTER triggers */
834     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
835           newIdx, -1, onError, endOfLoop) ){
836       goto insert_cleanup;
837     }
838   }
839 
840   /* The bottom of the loop, if the data source is a SELECT statement
841   */
842   sqlite3VdbeResolveLabel(v, endOfLoop);
843   if( useTempTable ){
844     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
845     sqlite3VdbeResolveLabel(v, iBreak);
846     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
847   }else if( pSelect ){
848     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
849     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
850     sqlite3VdbeResolveLabel(v, iCleanup);
851   }
852 
853   if( !triggers_exist && !IsVirtual(pTab) ){
854     /* Close all tables opened */
855     sqlite3VdbeAddOp(v, OP_Close, base, 0);
856     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
857       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
858     }
859   }
860 
861   /* Update the sqlite_sequence table by storing the content of the
862   ** counter value in memory counterMem back into the sqlite_sequence
863   ** table.
864   */
865   autoIncEnd(pParse, iDb, pTab, counterMem);
866 
867   /*
868   ** Return the number of rows inserted. If this routine is
869   ** generating code because of a call to sqlite3NestedParse(), do not
870   ** invoke the callback function.
871   */
872   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
873     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
874     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
875     sqlite3VdbeSetNumCols(v, 1);
876     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
877   }
878 
879 insert_cleanup:
880   sqlite3SrcListDelete(pTabList);
881   sqlite3ExprListDelete(pList);
882   sqlite3SelectDelete(pSelect);
883   sqlite3IdListDelete(pColumn);
884 }
885 
886 /*
887 ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
888 **
889 ** When this routine is called, the stack contains (from bottom to top)
890 ** the following values:
891 **
892 **    1.  The rowid of the row to be updated before the update.  This
893 **        value is omitted unless we are doing an UPDATE that involves a
894 **        change to the record number.
895 **
896 **    2.  The rowid of the row after the update.
897 **
898 **    3.  The data in the first column of the entry after the update.
899 **
900 **    i.  Data from middle columns...
901 **
902 **    N.  The data in the last column of the entry after the update.
903 **
904 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
905 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
906 ** INSERTs and rowidChng is true if the record number is being changed.
907 **
908 ** The code generated by this routine pushes additional entries onto
909 ** the stack which are the keys for new index entries for the new record.
910 ** The order of index keys is the same as the order of the indices on
911 ** the pTable->pIndex list.  A key is only created for index i if
912 ** aIdxUsed!=0 and aIdxUsed[i]!=0.
913 **
914 ** This routine also generates code to check constraints.  NOT NULL,
915 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
916 ** then the appropriate action is performed.  There are five possible
917 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
918 **
919 **  Constraint type  Action       What Happens
920 **  ---------------  ----------   ----------------------------------------
921 **  any              ROLLBACK     The current transaction is rolled back and
922 **                                sqlite3_exec() returns immediately with a
923 **                                return code of SQLITE_CONSTRAINT.
924 **
925 **  any              ABORT        Back out changes from the current command
926 **                                only (do not do a complete rollback) then
927 **                                cause sqlite3_exec() to return immediately
928 **                                with SQLITE_CONSTRAINT.
929 **
930 **  any              FAIL         Sqlite_exec() returns immediately with a
931 **                                return code of SQLITE_CONSTRAINT.  The
932 **                                transaction is not rolled back and any
933 **                                prior changes are retained.
934 **
935 **  any              IGNORE       The record number and data is popped from
936 **                                the stack and there is an immediate jump
937 **                                to label ignoreDest.
938 **
939 **  NOT NULL         REPLACE      The NULL value is replace by the default
940 **                                value for that column.  If the default value
941 **                                is NULL, the action is the same as ABORT.
942 **
943 **  UNIQUE           REPLACE      The other row that conflicts with the row
944 **                                being inserted is removed.
945 **
946 **  CHECK            REPLACE      Illegal.  The results in an exception.
947 **
948 ** Which action to take is determined by the overrideError parameter.
949 ** Or if overrideError==OE_Default, then the pParse->onError parameter
950 ** is used.  Or if pParse->onError==OE_Default then the onError value
951 ** for the constraint is used.
952 **
953 ** The calling routine must open a read/write cursor for pTab with
954 ** cursor number "base".  All indices of pTab must also have open
955 ** read/write cursors with cursor number base+i for the i-th cursor.
956 ** Except, if there is no possibility of a REPLACE action then
957 ** cursors do not need to be open for indices where aIdxUsed[i]==0.
958 **
959 ** If the isUpdate flag is true, it means that the "base" cursor is
960 ** initially pointing to an entry that is being updated.  The isUpdate
961 ** flag causes extra code to be generated so that the "base" cursor
962 ** is still pointing at the same entry after the routine returns.
963 ** Without the isUpdate flag, the "base" cursor might be moved.
964 */
965 void sqlite3GenerateConstraintChecks(
966   Parse *pParse,      /* The parser context */
967   Table *pTab,        /* the table into which we are inserting */
968   int base,           /* Index of a read/write cursor pointing at pTab */
969   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
970   int rowidChng,      /* True if the record number will change */
971   int isUpdate,       /* True for UPDATE, False for INSERT */
972   int overrideError,  /* Override onError to this if not OE_Default */
973   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
974 ){
975   int i;
976   Vdbe *v;
977   int nCol;
978   int onError;
979   int addr;
980   int extra;
981   int iCur;
982   Index *pIdx;
983   int seenReplace = 0;
984   int jumpInst1=0, jumpInst2;
985   int hasTwoRowids = (isUpdate && rowidChng);
986 
987   v = sqlite3GetVdbe(pParse);
988   assert( v!=0 );
989   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
990   nCol = pTab->nCol;
991 
992   /* Test all NOT NULL constraints.
993   */
994   for(i=0; i<nCol; i++){
995     if( i==pTab->iPKey ){
996       continue;
997     }
998     onError = pTab->aCol[i].notNull;
999     if( onError==OE_None ) continue;
1000     if( overrideError!=OE_Default ){
1001       onError = overrideError;
1002     }else if( onError==OE_Default ){
1003       onError = OE_Abort;
1004     }
1005     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1006       onError = OE_Abort;
1007     }
1008     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
1009     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
1010     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1011         || onError==OE_Ignore || onError==OE_Replace );
1012     switch( onError ){
1013       case OE_Rollback:
1014       case OE_Abort:
1015       case OE_Fail: {
1016         char *zMsg = 0;
1017         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1018         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
1019                         " may not be NULL", (char*)0);
1020         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
1021         break;
1022       }
1023       case OE_Ignore: {
1024         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1025         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1026         break;
1027       }
1028       case OE_Replace: {
1029         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
1030         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
1031         break;
1032       }
1033     }
1034     sqlite3VdbeJumpHere(v, addr);
1035   }
1036 
1037   /* Test all CHECK constraints
1038   */
1039 #ifndef SQLITE_OMIT_CHECK
1040   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1041     int allOk = sqlite3VdbeMakeLabel(v);
1042     assert( pParse->ckOffset==0 );
1043     pParse->ckOffset = nCol;
1044     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
1045     assert( pParse->ckOffset==nCol );
1046     pParse->ckOffset = 0;
1047     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1048     if( onError==OE_Ignore ){
1049       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1050       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1051     }else{
1052       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1053     }
1054     sqlite3VdbeResolveLabel(v, allOk);
1055   }
1056 #endif /* !defined(SQLITE_OMIT_CHECK) */
1057 
1058   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1059   ** of the new record does not previously exist.  Except, if this
1060   ** is an UPDATE and the primary key is not changing, that is OK.
1061   */
1062   if( rowidChng ){
1063     onError = pTab->keyConf;
1064     if( overrideError!=OE_Default ){
1065       onError = overrideError;
1066     }else if( onError==OE_Default ){
1067       onError = OE_Abort;
1068     }
1069 
1070     if( isUpdate ){
1071       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1072       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1073       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
1074     }
1075     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
1076     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
1077     switch( onError ){
1078       default: {
1079         onError = OE_Abort;
1080         /* Fall thru into the next case */
1081       }
1082       case OE_Rollback:
1083       case OE_Abort:
1084       case OE_Fail: {
1085         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1086                          "PRIMARY KEY must be unique", P3_STATIC);
1087         break;
1088       }
1089       case OE_Replace: {
1090         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
1091         if( isUpdate ){
1092           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
1093           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1094         }
1095         seenReplace = 1;
1096         break;
1097       }
1098       case OE_Ignore: {
1099         assert( seenReplace==0 );
1100         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1101         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1102         break;
1103       }
1104     }
1105     sqlite3VdbeJumpHere(v, jumpInst2);
1106     if( isUpdate ){
1107       sqlite3VdbeJumpHere(v, jumpInst1);
1108       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1109       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1110     }
1111   }
1112 
1113   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1114   ** index and making sure that duplicate entries do not already exist.
1115   ** Add the new records to the indices as we go.
1116   */
1117   extra = -1;
1118   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1119     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
1120     extra++;
1121 
1122     /* Create a key for accessing the index entry */
1123     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
1124     for(i=0; i<pIdx->nColumn; i++){
1125       int idx = pIdx->aiColumn[i];
1126       if( idx==pTab->iPKey ){
1127         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
1128       }else{
1129         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
1130       }
1131     }
1132     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
1133     sqlite3IndexAffinityStr(v, pIdx);
1134 
1135     /* Find out what action to take in case there is an indexing conflict */
1136     onError = pIdx->onError;
1137     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1138     if( overrideError!=OE_Default ){
1139       onError = overrideError;
1140     }else if( onError==OE_Default ){
1141       onError = OE_Abort;
1142     }
1143     if( seenReplace ){
1144       if( onError==OE_Ignore ) onError = OE_Replace;
1145       else if( onError==OE_Fail ) onError = OE_Abort;
1146     }
1147 
1148 
1149     /* Check to see if the new index entry will be unique */
1150     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
1151     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
1152 
1153     /* Generate code that executes if the new index entry is not unique */
1154     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1155         || onError==OE_Ignore || onError==OE_Replace );
1156     switch( onError ){
1157       case OE_Rollback:
1158       case OE_Abort:
1159       case OE_Fail: {
1160         int j, n1, n2;
1161         char zErrMsg[200];
1162         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1163                          pIdx->nColumn>1 ? "columns " : "column ");
1164         n1 = strlen(zErrMsg);
1165         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1166           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1167           n2 = strlen(zCol);
1168           if( j>0 ){
1169             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1170             n1 += 2;
1171           }
1172           if( n1+n2>sizeof(zErrMsg)-30 ){
1173             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1174             n1 += 3;
1175             break;
1176           }else{
1177             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1178             n1 += n2;
1179           }
1180         }
1181         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1182             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1183         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
1184         break;
1185       }
1186       case OE_Ignore: {
1187         assert( seenReplace==0 );
1188         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
1189         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1190         break;
1191       }
1192       case OE_Replace: {
1193         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
1194         if( isUpdate ){
1195           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
1196           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1197         }
1198         seenReplace = 1;
1199         break;
1200       }
1201     }
1202 #if NULL_DISTINCT_FOR_UNIQUE
1203     sqlite3VdbeJumpHere(v, jumpInst1);
1204 #endif
1205     sqlite3VdbeJumpHere(v, jumpInst2);
1206   }
1207 }
1208 
1209 /*
1210 ** This routine generates code to finish the INSERT or UPDATE operation
1211 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1212 ** The stack must contain keys for all active indices followed by data
1213 ** and the rowid for the new entry.  This routine creates the new
1214 ** entries in all indices and in the main table.
1215 **
1216 ** The arguments to this routine should be the same as the first six
1217 ** arguments to sqlite3GenerateConstraintChecks.
1218 */
1219 void sqlite3CompleteInsertion(
1220   Parse *pParse,      /* The parser context */
1221   Table *pTab,        /* the table into which we are inserting */
1222   int base,           /* Index of a read/write cursor pointing at pTab */
1223   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
1224   int rowidChng,      /* True if the record number will change */
1225   int isUpdate,       /* True for UPDATE, False for INSERT */
1226   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1227   int appendBias      /* True if this is likely to be an append */
1228 ){
1229   int i;
1230   Vdbe *v;
1231   int nIdx;
1232   Index *pIdx;
1233   int pik_flags;
1234 
1235   v = sqlite3GetVdbe(pParse);
1236   assert( v!=0 );
1237   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1238   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1239   for(i=nIdx-1; i>=0; i--){
1240     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
1241     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
1242   }
1243   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
1244   sqlite3TableAffinityStr(v, pTab);
1245 #ifndef SQLITE_OMIT_TRIGGER
1246   if( newIdx>=0 ){
1247     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1248     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1249     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
1250   }
1251 #endif
1252   if( pParse->nested ){
1253     pik_flags = 0;
1254   }else{
1255     pik_flags = OPFLAG_NCHANGE;
1256     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1257   }
1258   if( appendBias ){
1259     pik_flags |= OPFLAG_APPEND;
1260   }
1261   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
1262   if( !pParse->nested ){
1263     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
1264   }
1265 
1266   if( isUpdate && rowidChng ){
1267     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1268   }
1269 }
1270 
1271 /*
1272 ** Generate code that will open cursors for a table and for all
1273 ** indices of that table.  The "base" parameter is the cursor number used
1274 ** for the table.  Indices are opened on subsequent cursors.
1275 */
1276 void sqlite3OpenTableAndIndices(
1277   Parse *pParse,   /* Parsing context */
1278   Table *pTab,     /* Table to be opened */
1279   int base,        /* Cursor number assigned to the table */
1280   int op           /* OP_OpenRead or OP_OpenWrite */
1281 ){
1282   int i;
1283   int iDb;
1284   Index *pIdx;
1285   Vdbe *v;
1286 
1287   if( IsVirtual(pTab) ) return;
1288   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1289   v = sqlite3GetVdbe(pParse);
1290   assert( v!=0 );
1291   sqlite3OpenTable(pParse, base, iDb, pTab, op);
1292   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1293     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1294     assert( pIdx->pSchema==pTab->pSchema );
1295     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
1296     VdbeComment((v, "# %s", pIdx->zName));
1297     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
1298   }
1299   if( pParse->nTab<=base+i ){
1300     pParse->nTab = base+i;
1301   }
1302 }
1303 
1304 
1305 #ifdef SQLITE_TEST
1306 /*
1307 ** The following global variable is incremented whenever the
1308 ** transfer optimization is used.  This is used for testing
1309 ** purposes only - to make sure the transfer optimization really
1310 ** is happening when it is suppose to.
1311 */
1312 int sqlite3_xferopt_count;
1313 #endif /* SQLITE_TEST */
1314 
1315 
1316 #ifndef SQLITE_OMIT_XFER_OPT
1317 /*
1318 ** Check to collation names to see if they are compatible.
1319 */
1320 static int xferCompatibleCollation(const char *z1, const char *z2){
1321   if( z1==0 ){
1322     return z2==0;
1323   }
1324   if( z2==0 ){
1325     return 0;
1326   }
1327   return sqlite3StrICmp(z1, z2)==0;
1328 }
1329 
1330 
1331 /*
1332 ** Check to see if index pSrc is compatible as a source of data
1333 ** for index pDest in an insert transfer optimization.  The rules
1334 ** for a compatible index:
1335 **
1336 **    *   The index is over the same set of columns
1337 **    *   The same DESC and ASC markings occurs on all columns
1338 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1339 **    *   The same collating sequence on each column
1340 */
1341 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1342   int i;
1343   assert( pDest && pSrc );
1344   assert( pDest->pTable!=pSrc->pTable );
1345   if( pDest->nColumn!=pSrc->nColumn ){
1346     return 0;   /* Different number of columns */
1347   }
1348   if( pDest->onError!=pSrc->onError ){
1349     return 0;   /* Different conflict resolution strategies */
1350   }
1351   for(i=0; i<pSrc->nColumn; i++){
1352     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1353       return 0;   /* Different columns indexed */
1354     }
1355     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1356       return 0;   /* Different sort orders */
1357     }
1358     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1359       return 0;   /* Different sort orders */
1360     }
1361   }
1362 
1363   /* If no test above fails then the indices must be compatible */
1364   return 1;
1365 }
1366 
1367 /*
1368 ** Attempt the transfer optimization on INSERTs of the form
1369 **
1370 **     INSERT INTO tab1 SELECT * FROM tab2;
1371 **
1372 ** This optimization is only attempted if
1373 **
1374 **    (1)  tab1 and tab2 have identical schemas including all the
1375 **         same indices and constraints
1376 **
1377 **    (2)  tab1 and tab2 are different tables
1378 **
1379 **    (3)  There must be no triggers on tab1
1380 **
1381 **    (4)  The result set of the SELECT statement is "*"
1382 **
1383 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1384 **         or LIMIT clause.
1385 **
1386 **    (6)  The SELECT statement is a simple (not a compound) select that
1387 **         contains only tab2 in its FROM clause
1388 **
1389 ** This method for implementing the INSERT transfers raw records from
1390 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1391 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1392 ** the resulting tab1 has much less fragmentation.
1393 **
1394 ** This routine returns TRUE if the optimization is attempted.  If any
1395 ** of the conditions above fail so that the optimization should not
1396 ** be attempted, then this routine returns FALSE.
1397 */
1398 static int xferOptimization(
1399   Parse *pParse,        /* Parser context */
1400   Table *pDest,         /* The table we are inserting into */
1401   Select *pSelect,      /* A SELECT statement to use as the data source */
1402   int onError,          /* How to handle constraint errors */
1403   int iDbDest           /* The database of pDest */
1404 ){
1405   ExprList *pEList;                /* The result set of the SELECT */
1406   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1407   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1408   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1409   int i;                           /* Loop counter */
1410   int iDbSrc;                      /* The database of pSrc */
1411   int iSrc, iDest;                 /* Cursors from source and destination */
1412   int addr1, addr2;                /* Loop addresses */
1413   int emptyDestTest;               /* Address of test for empty pDest */
1414   int emptySrcTest;                /* Address of test for empty pSrc */
1415   Vdbe *v;                         /* The VDBE we are building */
1416   KeyInfo *pKey;                   /* Key information for an index */
1417   int counterMem;                  /* Memory register used by AUTOINC */
1418   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1419 
1420   if( pSelect==0 ){
1421     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1422   }
1423   if( pDest->pTrigger ){
1424     return 0;   /* tab1 must not have triggers */
1425   }
1426 #ifndef SQLITE_OMIT_VIRTUALTABLE
1427   if( pDest->isVirtual ){
1428     return 0;   /* tab1 must not be a virtual table */
1429   }
1430 #endif
1431   if( onError==OE_Default ){
1432     onError = OE_Abort;
1433   }
1434   if( onError!=OE_Abort && onError!=OE_Rollback ){
1435     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1436   }
1437   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1438   if( pSelect->pSrc->nSrc!=1 ){
1439     return 0;   /* FROM clause must have exactly one term */
1440   }
1441   if( pSelect->pSrc->a[0].pSelect ){
1442     return 0;   /* FROM clause cannot contain a subquery */
1443   }
1444   if( pSelect->pWhere ){
1445     return 0;   /* SELECT may not have a WHERE clause */
1446   }
1447   if( pSelect->pOrderBy ){
1448     return 0;   /* SELECT may not have an ORDER BY clause */
1449   }
1450   /* Do not need to test for a HAVING clause.  If HAVING is present but
1451   ** there is no ORDER BY, we will get an error. */
1452   if( pSelect->pGroupBy ){
1453     return 0;   /* SELECT may not have a GROUP BY clause */
1454   }
1455   if( pSelect->pLimit ){
1456     return 0;   /* SELECT may not have a LIMIT clause */
1457   }
1458   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1459   if( pSelect->pPrior ){
1460     return 0;   /* SELECT may not be a compound query */
1461   }
1462   if( pSelect->isDistinct ){
1463     return 0;   /* SELECT may not be DISTINCT */
1464   }
1465   pEList = pSelect->pEList;
1466   assert( pEList!=0 );
1467   if( pEList->nExpr!=1 ){
1468     return 0;   /* The result set must have exactly one column */
1469   }
1470   assert( pEList->a[0].pExpr );
1471   if( pEList->a[0].pExpr->op!=TK_ALL ){
1472     return 0;   /* The result set must be the special operator "*" */
1473   }
1474 
1475   /* At this point we have established that the statement is of the
1476   ** correct syntactic form to participate in this optimization.  Now
1477   ** we have to check the semantics.
1478   */
1479   pItem = pSelect->pSrc->a;
1480   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
1481   if( pSrc==0 ){
1482     return 0;   /* FROM clause does not contain a real table */
1483   }
1484   if( pSrc==pDest ){
1485     return 0;   /* tab1 and tab2 may not be the same table */
1486   }
1487 #ifndef SQLITE_OMIT_VIRTUALTABLE
1488   if( pSrc->isVirtual ){
1489     return 0;   /* tab2 must not be a virtual table */
1490   }
1491 #endif
1492   if( pSrc->pSelect ){
1493     return 0;   /* tab2 may not be a view */
1494   }
1495   if( pDest->nCol!=pSrc->nCol ){
1496     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1497   }
1498   if( pDest->iPKey!=pSrc->iPKey ){
1499     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1500   }
1501   for(i=0; i<pDest->nCol; i++){
1502     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1503       return 0;    /* Affinity must be the same on all columns */
1504     }
1505     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1506       return 0;    /* Collating sequence must be the same on all columns */
1507     }
1508     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1509       return 0;    /* tab2 must be NOT NULL if tab1 is */
1510     }
1511   }
1512   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1513     if( pDestIdx->onError!=OE_None ){
1514       destHasUniqueIdx = 1;
1515     }
1516     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1517       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1518     }
1519     if( pSrcIdx==0 ){
1520       return 0;    /* pDestIdx has no corresponding index in pSrc */
1521     }
1522   }
1523 #ifndef SQLITE_OMIT_CHECK
1524   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1525     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1526   }
1527 #endif
1528 
1529   /* If we get this far, it means either:
1530   **
1531   **    *   We can always do the transfer if the table contains an
1532   **        an integer primary key
1533   **
1534   **    *   We can conditionally do the transfer if the destination
1535   **        table is empty.
1536   */
1537 #ifdef SQLITE_TEST
1538   sqlite3_xferopt_count++;
1539 #endif
1540   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1541   v = sqlite3GetVdbe(pParse);
1542   sqlite3CodeVerifySchema(pParse, iDbSrc);
1543   iSrc = pParse->nTab++;
1544   iDest = pParse->nTab++;
1545   counterMem = autoIncBegin(pParse, iDbDest, pDest);
1546   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1547   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1548     /* If tables do not have an INTEGER PRIMARY KEY and there
1549     ** are indices to be copied and the destination is not empty,
1550     ** we have to disallow the transfer optimization because the
1551     ** the rowids might change which will mess up indexing.
1552     **
1553     ** Or if the destination has a UNIQUE index and is not empty,
1554     ** we also disallow the transfer optimization because we cannot
1555     ** insure that all entries in the union of DEST and SRC will be
1556     ** unique.
1557     */
1558     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
1559     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1560     sqlite3VdbeJumpHere(v, addr1);
1561   }else{
1562     emptyDestTest = 0;
1563   }
1564   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1565   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1566   if( pDest->iPKey>=0 ){
1567     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1568     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1569     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
1570     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1571                       "PRIMARY KEY must be unique", P3_STATIC);
1572     sqlite3VdbeJumpHere(v, addr2);
1573     autoIncStep(pParse, counterMem);
1574   }else if( pDest->pIndex==0 ){
1575     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
1576   }else{
1577     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1578     assert( pDest->autoInc==0 );
1579   }
1580   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
1581   sqlite3VdbeOp3(v, OP_Insert, iDest,
1582                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
1583                     pDest->zName, 0);
1584   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
1585   autoIncEnd(pParse, iDbDest, pDest, counterMem);
1586   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1587     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1588       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1589     }
1590     assert( pSrcIdx );
1591     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1592     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1593     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
1594     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1595     VdbeComment((v, "# %s", pSrcIdx->zName));
1596     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
1597                    (char*)pKey, P3_KEYINFO_HANDOFF);
1598     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
1599     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1600     VdbeComment((v, "# %s", pDestIdx->zName));
1601     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
1602                    (char*)pKey, P3_KEYINFO_HANDOFF);
1603     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1604     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
1605     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
1606     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
1607     sqlite3VdbeJumpHere(v, addr1);
1608   }
1609   sqlite3VdbeJumpHere(v, emptySrcTest);
1610   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1611   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1612   if( emptyDestTest ){
1613     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
1614     sqlite3VdbeJumpHere(v, emptyDestTest);
1615     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1616     return 0;
1617   }else{
1618     return 1;
1619   }
1620 }
1621 #endif /* SQLITE_OMIT_XFER_OPT */
1622