xref: /sqlite-3.40.0/src/insert.c (revision a3fdec71)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum=pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'a'            TEXT
60 **  'b'            NONE
61 **  'c'            NUMERIC
62 **  'd'            INTEGER
63 **  'e'            REAL
64 **
65 ** An extra 'd' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     sqlite3 *db = sqlite3VdbeDb(v);
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       db->mallocFailed = 1;
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
93     }
94     pIdx->zColAff[n] = 0;
95   }
96 
97   return pIdx->zColAff;
98 }
99 
100 /*
101 ** Set P4 of the most recently inserted opcode to a column affinity
102 ** string for table pTab. A column affinity string has one character
103 ** for each column indexed by the index, according to the affinity of the
104 ** column:
105 **
106 **  Character      Column affinity
107 **  ------------------------------
108 **  'a'            TEXT
109 **  'b'            NONE
110 **  'c'            NUMERIC
111 **  'd'            INTEGER
112 **  'e'            REAL
113 */
114 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
115   /* The first time a column affinity string for a particular table
116   ** is required, it is allocated and populated here. It is then
117   ** stored as a member of the Table structure for subsequent use.
118   **
119   ** The column affinity string will eventually be deleted by
120   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
121   */
122   if( !pTab->zColAff ){
123     char *zColAff;
124     int i;
125     sqlite3 *db = sqlite3VdbeDb(v);
126 
127     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
128     if( !zColAff ){
129       db->mallocFailed = 1;
130       return;
131     }
132 
133     for(i=0; i<pTab->nCol; i++){
134       zColAff[i] = pTab->aCol[i].affinity;
135     }
136     zColAff[pTab->nCol] = '\0';
137 
138     pTab->zColAff = zColAff;
139   }
140 
141   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
142 }
143 
144 /*
145 ** Return non-zero if the table pTab in database iDb or any of its indices
146 ** have been opened at any point in the VDBE program beginning at location
147 ** iStartAddr throught the end of the program.  This is used to see if
148 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
149 ** run without using temporary table for the results of the SELECT.
150 */
151 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
152   Vdbe *v = sqlite3GetVdbe(p);
153   int i;
154   int iEnd = sqlite3VdbeCurrentAddr(v);
155 #ifndef SQLITE_OMIT_VIRTUALTABLE
156   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
157 #endif
158 
159   for(i=iStartAddr; i<iEnd; i++){
160     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
161     assert( pOp!=0 );
162     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
163       Index *pIndex;
164       int tnum = pOp->p2;
165       if( tnum==pTab->tnum ){
166         return 1;
167       }
168       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
169         if( tnum==pIndex->tnum ){
170           return 1;
171         }
172       }
173     }
174 #ifndef SQLITE_OMIT_VIRTUALTABLE
175     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
176       assert( pOp->p4.pVtab!=0 );
177       assert( pOp->p4type==P4_VTAB );
178       return 1;
179     }
180 #endif
181   }
182   return 0;
183 }
184 
185 #ifndef SQLITE_OMIT_AUTOINCREMENT
186 /*
187 ** Locate or create an AutoincInfo structure associated with table pTab
188 ** which is in database iDb.  Return the register number for the register
189 ** that holds the maximum rowid.
190 **
191 ** There is at most one AutoincInfo structure per table even if the
192 ** same table is autoincremented multiple times due to inserts within
193 ** triggers.  A new AutoincInfo structure is created if this is the
194 ** first use of table pTab.  On 2nd and subsequent uses, the original
195 ** AutoincInfo structure is used.
196 **
197 ** Three memory locations are allocated:
198 **
199 **   (1)  Register to hold the name of the pTab table.
200 **   (2)  Register to hold the maximum ROWID of pTab.
201 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
202 **
203 ** The 2nd register is the one that is returned.  That is all the
204 ** insert routine needs to know about.
205 */
206 static int autoIncBegin(
207   Parse *pParse,      /* Parsing context */
208   int iDb,            /* Index of the database holding pTab */
209   Table *pTab         /* The table we are writing to */
210 ){
211   int memId = 0;      /* Register holding maximum rowid */
212   if( pTab->tabFlags & TF_Autoincrement ){
213     Parse *pToplevel = sqlite3ParseToplevel(pParse);
214     AutoincInfo *pInfo;
215 
216     pInfo = pToplevel->pAinc;
217     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
218     if( pInfo==0 ){
219       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
220       if( pInfo==0 ) return 0;
221       pInfo->pNext = pToplevel->pAinc;
222       pToplevel->pAinc = pInfo;
223       pInfo->pTab = pTab;
224       pInfo->iDb = iDb;
225       pToplevel->nMem++;                  /* Register to hold name of table */
226       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
227       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
228     }
229     memId = pInfo->regCtr;
230   }
231   return memId;
232 }
233 
234 /*
235 ** This routine generates code that will initialize all of the
236 ** register used by the autoincrement tracker.
237 */
238 void sqlite3AutoincrementBegin(Parse *pParse){
239   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
240   sqlite3 *db = pParse->db;  /* The database connection */
241   Db *pDb;                   /* Database only autoinc table */
242   int memId;                 /* Register holding max rowid */
243   int addr;                  /* A VDBE address */
244   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
245 
246   /* This routine is never called during trigger-generation.  It is
247   ** only called from the top-level */
248   assert( pParse->pTriggerTab==0 );
249   assert( pParse==sqlite3ParseToplevel(pParse) );
250 
251   assert( v );   /* We failed long ago if this is not so */
252   for(p = pParse->pAinc; p; p = p->pNext){
253     pDb = &db->aDb[p->iDb];
254     memId = p->regCtr;
255     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
256     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
257     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
258     addr = sqlite3VdbeCurrentAddr(v);
259     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
260     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
261     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
262     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
263     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
264     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
265     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
266     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
267     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
268     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
269     sqlite3VdbeAddOp0(v, OP_Close);
270   }
271 }
272 
273 /*
274 ** Update the maximum rowid for an autoincrement calculation.
275 **
276 ** This routine should be called when the top of the stack holds a
277 ** new rowid that is about to be inserted.  If that new rowid is
278 ** larger than the maximum rowid in the memId memory cell, then the
279 ** memory cell is updated.  The stack is unchanged.
280 */
281 static void autoIncStep(Parse *pParse, int memId, int regRowid){
282   if( memId>0 ){
283     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
284   }
285 }
286 
287 /*
288 ** This routine generates the code needed to write autoincrement
289 ** maximum rowid values back into the sqlite_sequence register.
290 ** Every statement that might do an INSERT into an autoincrement
291 ** table (either directly or through triggers) needs to call this
292 ** routine just before the "exit" code.
293 */
294 void sqlite3AutoincrementEnd(Parse *pParse){
295   AutoincInfo *p;
296   Vdbe *v = pParse->pVdbe;
297   sqlite3 *db = pParse->db;
298 
299   assert( v );
300   for(p = pParse->pAinc; p; p = p->pNext){
301     Db *pDb = &db->aDb[p->iDb];
302     int j1, j2, j3, j4, j5;
303     int iRec;
304     int memId = p->regCtr;
305 
306     iRec = sqlite3GetTempReg(pParse);
307     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
308     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
309     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
310     j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
311     j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
312     j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
313     sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
314     sqlite3VdbeJumpHere(v, j2);
315     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
316     j5 = sqlite3VdbeAddOp0(v, OP_Goto);
317     sqlite3VdbeJumpHere(v, j4);
318     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
319     sqlite3VdbeJumpHere(v, j1);
320     sqlite3VdbeJumpHere(v, j5);
321     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
322     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
323     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
324     sqlite3VdbeAddOp0(v, OP_Close);
325     sqlite3ReleaseTempReg(pParse, iRec);
326   }
327 }
328 #else
329 /*
330 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
331 ** above are all no-ops
332 */
333 # define autoIncBegin(A,B,C) (0)
334 # define autoIncStep(A,B,C)
335 #endif /* SQLITE_OMIT_AUTOINCREMENT */
336 
337 
338 /*
339 ** Generate code for a co-routine that will evaluate a subquery one
340 ** row at a time.
341 **
342 ** The pSelect parameter is the subquery that the co-routine will evaluation.
343 ** Information about the location of co-routine and the registers it will use
344 ** is returned by filling in the pDest object.
345 **
346 ** Registers are allocated as follows:
347 **
348 **   pDest->iSDParm      The register holding the next entry-point of the
349 **                       co-routine.  Run the co-routine to its next breakpoint
350 **                       by calling "OP_Yield $X" where $X is pDest->iSDParm.
351 **
352 **   pDest->iSDParm+1    The register holding the "completed" flag for the
353 **                       co-routine. This register is 0 if the previous Yield
354 **                       generated a new result row, or 1 if the subquery
355 **                       has completed.  If the Yield is called again
356 **                       after this register becomes 1, then the VDBE will
357 **                       halt with an SQLITE_INTERNAL error.
358 **
359 **   pDest->iSdst        First result register.
360 **
361 **   pDest->nSdst        Number of result registers.
362 **
363 ** This routine handles all of the register allocation and fills in the
364 ** pDest structure appropriately.
365 **
366 ** Here is a schematic of the generated code assuming that X is the
367 ** co-routine entry-point register reg[pDest->iSDParm], that EOF is the
368 ** completed flag reg[pDest->iSDParm+1], and R and S are the range of
369 ** registers that hold the result set, reg[pDest->iSdst] through
370 ** reg[pDest->iSdst+pDest->nSdst-1]:
371 **
372 **         X <- A
373 **         EOF <- 0
374 **         goto B
375 **      A: setup for the SELECT
376 **         loop rows in the SELECT
377 **           load results into registers R..S
378 **           yield X
379 **         end loop
380 **         cleanup after the SELECT
381 **         EOF <- 1
382 **         yield X
383 **         halt-error
384 **      B:
385 **
386 ** To use this subroutine, the caller generates code as follows:
387 **
388 **         [ Co-routine generated by this subroutine, shown above ]
389 **      S: yield X
390 **         if EOF goto E
391 **         if skip this row, goto C
392 **         if terminate loop, goto E
393 **         deal with this row
394 **      C: goto S
395 **      E:
396 */
397 int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
398   int regYield;       /* Register holding co-routine entry-point */
399   int regEof;         /* Register holding co-routine completion flag */
400   int addrTop;        /* Top of the co-routine */
401   int j1;             /* Jump instruction */
402   int rc;             /* Result code */
403   Vdbe *v;            /* VDBE under construction */
404 
405   regYield = ++pParse->nMem;
406   regEof = ++pParse->nMem;
407   v = sqlite3GetVdbe(pParse);
408   addrTop = sqlite3VdbeCurrentAddr(v);
409   sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */
410   VdbeComment((v, "Co-routine entry point"));
411   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);           /* EOF <- 0 */
412   VdbeComment((v, "Co-routine completion flag"));
413   sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
414   j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
415   rc = sqlite3Select(pParse, pSelect, pDest);
416   assert( pParse->nErr==0 || rc );
417   if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
418   if( rc ) return rc;
419   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);            /* EOF <- 1 */
420   sqlite3VdbeAddOp1(v, OP_Yield, regYield);   /* yield X */
421   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
422   VdbeComment((v, "End of coroutine"));
423   sqlite3VdbeJumpHere(v, j1);                             /* label B: */
424   return rc;
425 }
426 
427 
428 
429 /* Forward declaration */
430 static int xferOptimization(
431   Parse *pParse,        /* Parser context */
432   Table *pDest,         /* The table we are inserting into */
433   Select *pSelect,      /* A SELECT statement to use as the data source */
434   int onError,          /* How to handle constraint errors */
435   int iDbDest           /* The database of pDest */
436 );
437 
438 /*
439 ** This routine is called to handle SQL of the following forms:
440 **
441 **    insert into TABLE (IDLIST) values(EXPRLIST)
442 **    insert into TABLE (IDLIST) select
443 **
444 ** The IDLIST following the table name is always optional.  If omitted,
445 ** then a list of all columns for the table is substituted.  The IDLIST
446 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
447 **
448 ** The pList parameter holds EXPRLIST in the first form of the INSERT
449 ** statement above, and pSelect is NULL.  For the second form, pList is
450 ** NULL and pSelect is a pointer to the select statement used to generate
451 ** data for the insert.
452 **
453 ** The code generated follows one of four templates.  For a simple
454 ** insert with data coming from a VALUES clause, the code executes
455 ** once straight down through.  Pseudo-code follows (we call this
456 ** the "1st template"):
457 **
458 **         open write cursor to <table> and its indices
459 **         put VALUES clause expressions into registers
460 **         write the resulting record into <table>
461 **         cleanup
462 **
463 ** The three remaining templates assume the statement is of the form
464 **
465 **   INSERT INTO <table> SELECT ...
466 **
467 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
468 ** in other words if the SELECT pulls all columns from a single table
469 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
470 ** if <table2> and <table1> are distinct tables but have identical
471 ** schemas, including all the same indices, then a special optimization
472 ** is invoked that copies raw records from <table2> over to <table1>.
473 ** See the xferOptimization() function for the implementation of this
474 ** template.  This is the 2nd template.
475 **
476 **         open a write cursor to <table>
477 **         open read cursor on <table2>
478 **         transfer all records in <table2> over to <table>
479 **         close cursors
480 **         foreach index on <table>
481 **           open a write cursor on the <table> index
482 **           open a read cursor on the corresponding <table2> index
483 **           transfer all records from the read to the write cursors
484 **           close cursors
485 **         end foreach
486 **
487 ** The 3rd template is for when the second template does not apply
488 ** and the SELECT clause does not read from <table> at any time.
489 ** The generated code follows this template:
490 **
491 **         EOF <- 0
492 **         X <- A
493 **         goto B
494 **      A: setup for the SELECT
495 **         loop over the rows in the SELECT
496 **           load values into registers R..R+n
497 **           yield X
498 **         end loop
499 **         cleanup after the SELECT
500 **         EOF <- 1
501 **         yield X
502 **         goto A
503 **      B: open write cursor to <table> and its indices
504 **      C: yield X
505 **         if EOF goto D
506 **         insert the select result into <table> from R..R+n
507 **         goto C
508 **      D: cleanup
509 **
510 ** The 4th template is used if the insert statement takes its
511 ** values from a SELECT but the data is being inserted into a table
512 ** that is also read as part of the SELECT.  In the third form,
513 ** we have to use a intermediate table to store the results of
514 ** the select.  The template is like this:
515 **
516 **         EOF <- 0
517 **         X <- A
518 **         goto B
519 **      A: setup for the SELECT
520 **         loop over the tables in the SELECT
521 **           load value into register R..R+n
522 **           yield X
523 **         end loop
524 **         cleanup after the SELECT
525 **         EOF <- 1
526 **         yield X
527 **         halt-error
528 **      B: open temp table
529 **      L: yield X
530 **         if EOF goto M
531 **         insert row from R..R+n into temp table
532 **         goto L
533 **      M: open write cursor to <table> and its indices
534 **         rewind temp table
535 **      C: loop over rows of intermediate table
536 **           transfer values form intermediate table into <table>
537 **         end loop
538 **      D: cleanup
539 */
540 void sqlite3Insert(
541   Parse *pParse,        /* Parser context */
542   SrcList *pTabList,    /* Name of table into which we are inserting */
543   Select *pSelect,      /* A SELECT statement to use as the data source */
544   IdList *pColumn,      /* Column names corresponding to IDLIST. */
545   int onError           /* How to handle constraint errors */
546 ){
547   sqlite3 *db;          /* The main database structure */
548   Table *pTab;          /* The table to insert into.  aka TABLE */
549   char *zTab;           /* Name of the table into which we are inserting */
550   const char *zDb;      /* Name of the database holding this table */
551   int i, j, idx;        /* Loop counters */
552   Vdbe *v;              /* Generate code into this virtual machine */
553   Index *pIdx;          /* For looping over indices of the table */
554   int nColumn;          /* Number of columns in the data */
555   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
556   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
557   int iIdxCur = 0;      /* First index cursor */
558   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
559   int endOfLoop;        /* Label for the end of the insertion loop */
560   int useTempTable = 0; /* Store SELECT results in intermediate table */
561   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
562   int addrInsTop = 0;   /* Jump to label "D" */
563   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
564   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
565   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
566   int iDb;              /* Index of database holding TABLE */
567   Db *pDb;              /* The database containing table being inserted into */
568   int appendFlag = 0;   /* True if the insert is likely to be an append */
569   int withoutRowid;     /* 0 for normal table.  1 for WITHOUT ROWID table */
570   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
571 
572   /* Register allocations */
573   int regFromSelect = 0;/* Base register for data coming from SELECT */
574   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
575   int regRowCount = 0;  /* Memory cell used for the row counter */
576   int regIns;           /* Block of regs holding rowid+data being inserted */
577   int regRowid;         /* registers holding insert rowid */
578   int regData;          /* register holding first column to insert */
579   int regEof = 0;       /* Register recording end of SELECT data */
580   int *aRegIdx = 0;     /* One register allocated to each index */
581 
582 #ifndef SQLITE_OMIT_TRIGGER
583   int isView;                 /* True if attempting to insert into a view */
584   Trigger *pTrigger;          /* List of triggers on pTab, if required */
585   int tmask;                  /* Mask of trigger times */
586 #endif
587 
588   db = pParse->db;
589   memset(&dest, 0, sizeof(dest));
590   if( pParse->nErr || db->mallocFailed ){
591     goto insert_cleanup;
592   }
593 
594   /* If the Select object is really just a simple VALUES() list with a
595   ** single row values (the common case) then keep that one row of values
596   ** and go ahead and discard the Select object
597   */
598   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
599     pList = pSelect->pEList;
600     pSelect->pEList = 0;
601     sqlite3SelectDelete(db, pSelect);
602     pSelect = 0;
603   }
604 
605   /* Locate the table into which we will be inserting new information.
606   */
607   assert( pTabList->nSrc==1 );
608   zTab = pTabList->a[0].zName;
609   if( NEVER(zTab==0) ) goto insert_cleanup;
610   pTab = sqlite3SrcListLookup(pParse, pTabList);
611   if( pTab==0 ){
612     goto insert_cleanup;
613   }
614   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
615   assert( iDb<db->nDb );
616   pDb = &db->aDb[iDb];
617   zDb = pDb->zName;
618   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
619     goto insert_cleanup;
620   }
621   withoutRowid = !HasRowid(pTab);
622 
623   /* Figure out if we have any triggers and if the table being
624   ** inserted into is a view
625   */
626 #ifndef SQLITE_OMIT_TRIGGER
627   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
628   isView = pTab->pSelect!=0;
629 #else
630 # define pTrigger 0
631 # define tmask 0
632 # define isView 0
633 #endif
634 #ifdef SQLITE_OMIT_VIEW
635 # undef isView
636 # define isView 0
637 #endif
638   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
639 
640   /* If pTab is really a view, make sure it has been initialized.
641   ** ViewGetColumnNames() is a no-op if pTab is not a view.
642   */
643   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
644     goto insert_cleanup;
645   }
646 
647   /* Cannot insert into a read-only table.
648   */
649   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
650     goto insert_cleanup;
651   }
652 
653   /* Allocate a VDBE
654   */
655   v = sqlite3GetVdbe(pParse);
656   if( v==0 ) goto insert_cleanup;
657   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
658   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
659 
660 #ifndef SQLITE_OMIT_XFER_OPT
661   /* If the statement is of the form
662   **
663   **       INSERT INTO <table1> SELECT * FROM <table2>;
664   **
665   ** Then special optimizations can be applied that make the transfer
666   ** very fast and which reduce fragmentation of indices.
667   **
668   ** This is the 2nd template.
669   */
670   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
671     assert( !pTrigger );
672     assert( pList==0 );
673     goto insert_end;
674   }
675 #endif /* SQLITE_OMIT_XFER_OPT */
676 
677   /* If this is an AUTOINCREMENT table, look up the sequence number in the
678   ** sqlite_sequence table and store it in memory cell regAutoinc.
679   */
680   regAutoinc = autoIncBegin(pParse, iDb, pTab);
681 
682   /* Figure out how many columns of data are supplied.  If the data
683   ** is coming from a SELECT statement, then generate a co-routine that
684   ** produces a single row of the SELECT on each invocation.  The
685   ** co-routine is the common header to the 3rd and 4th templates.
686   */
687   if( pSelect ){
688     /* Data is coming from a SELECT.  Generate a co-routine to run the SELECT */
689     int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest);
690     if( rc ) goto insert_cleanup;
691 
692     regEof = dest.iSDParm + 1;
693     regFromSelect = dest.iSdst;
694     assert( pSelect->pEList );
695     nColumn = pSelect->pEList->nExpr;
696     assert( dest.nSdst==nColumn );
697 
698     /* Set useTempTable to TRUE if the result of the SELECT statement
699     ** should be written into a temporary table (template 4).  Set to
700     ** FALSE if each output row of the SELECT can be written directly into
701     ** the destination table (template 3).
702     **
703     ** A temp table must be used if the table being updated is also one
704     ** of the tables being read by the SELECT statement.  Also use a
705     ** temp table in the case of row triggers.
706     */
707     if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
708       useTempTable = 1;
709     }
710 
711     if( useTempTable ){
712       /* Invoke the coroutine to extract information from the SELECT
713       ** and add it to a transient table srcTab.  The code generated
714       ** here is from the 4th template:
715       **
716       **      B: open temp table
717       **      L: yield X
718       **         if EOF goto M
719       **         insert row from R..R+n into temp table
720       **         goto L
721       **      M: ...
722       */
723       int regRec;          /* Register to hold packed record */
724       int regTempRowid;    /* Register to hold temp table ROWID */
725       int addrTop;         /* Label "L" */
726       int addrIf;          /* Address of jump to M */
727 
728       srcTab = pParse->nTab++;
729       regRec = sqlite3GetTempReg(pParse);
730       regTempRowid = sqlite3GetTempReg(pParse);
731       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
732       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
733       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
734       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
735       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
736       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
737       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
738       sqlite3VdbeJumpHere(v, addrIf);
739       sqlite3ReleaseTempReg(pParse, regRec);
740       sqlite3ReleaseTempReg(pParse, regTempRowid);
741     }
742   }else{
743     /* This is the case if the data for the INSERT is coming from a VALUES
744     ** clause
745     */
746     NameContext sNC;
747     memset(&sNC, 0, sizeof(sNC));
748     sNC.pParse = pParse;
749     srcTab = -1;
750     assert( useTempTable==0 );
751     nColumn = pList ? pList->nExpr : 0;
752     for(i=0; i<nColumn; i++){
753       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
754         goto insert_cleanup;
755       }
756     }
757   }
758 
759   /* Make sure the number of columns in the source data matches the number
760   ** of columns to be inserted into the table.
761   */
762   if( IsVirtual(pTab) ){
763     for(i=0; i<pTab->nCol; i++){
764       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
765     }
766   }
767   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
768     sqlite3ErrorMsg(pParse,
769        "table %S has %d columns but %d values were supplied",
770        pTabList, 0, pTab->nCol-nHidden, nColumn);
771     goto insert_cleanup;
772   }
773   if( pColumn!=0 && nColumn!=pColumn->nId ){
774     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
775     goto insert_cleanup;
776   }
777 
778   /* If the INSERT statement included an IDLIST term, then make sure
779   ** all elements of the IDLIST really are columns of the table and
780   ** remember the column indices.
781   **
782   ** If the table has an INTEGER PRIMARY KEY column and that column
783   ** is named in the IDLIST, then record in the ipkColumn variable
784   ** the index into IDLIST of the primary key column.  ipkColumn is
785   ** the index of the primary key as it appears in IDLIST, not as
786   ** is appears in the original table.  (The index of the INTEGER
787   ** PRIMARY KEY in the original table is pTab->iPKey.)
788   */
789   if( pColumn ){
790     for(i=0; i<pColumn->nId; i++){
791       pColumn->a[i].idx = -1;
792     }
793     for(i=0; i<pColumn->nId; i++){
794       for(j=0; j<pTab->nCol; j++){
795         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
796           pColumn->a[i].idx = j;
797           if( j==pTab->iPKey ){
798             ipkColumn = i;  assert( !withoutRowid );
799           }
800           break;
801         }
802       }
803       if( j>=pTab->nCol ){
804         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
805           ipkColumn = i;
806         }else{
807           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
808               pTabList, 0, pColumn->a[i].zName);
809           pParse->checkSchema = 1;
810           goto insert_cleanup;
811         }
812       }
813     }
814   }
815 
816   /* If there is no IDLIST term but the table has an integer primary
817   ** key, the set the ipkColumn variable to the integer primary key
818   ** column index in the original table definition.
819   */
820   if( pColumn==0 && nColumn>0 ){
821     ipkColumn = pTab->iPKey;
822   }
823 
824   /* Initialize the count of rows to be inserted
825   */
826   if( db->flags & SQLITE_CountRows ){
827     regRowCount = ++pParse->nMem;
828     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
829   }
830 
831   /* If this is not a view, open the table and and all indices */
832   if( !isView ){
833     int nIdx;
834     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
835                                       &iDataCur, &iIdxCur);
836     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
837     if( aRegIdx==0 ){
838       goto insert_cleanup;
839     }
840     for(i=0; i<nIdx; i++){
841       aRegIdx[i] = ++pParse->nMem;
842     }
843   }
844 
845   /* This is the top of the main insertion loop */
846   if( useTempTable ){
847     /* This block codes the top of loop only.  The complete loop is the
848     ** following pseudocode (template 4):
849     **
850     **         rewind temp table
851     **      C: loop over rows of intermediate table
852     **           transfer values form intermediate table into <table>
853     **         end loop
854     **      D: ...
855     */
856     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
857     addrCont = sqlite3VdbeCurrentAddr(v);
858   }else if( pSelect ){
859     /* This block codes the top of loop only.  The complete loop is the
860     ** following pseudocode (template 3):
861     **
862     **      C: yield X
863     **         if EOF goto D
864     **         insert the select result into <table> from R..R+n
865     **         goto C
866     **      D: ...
867     */
868     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
869     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
870   }
871 
872   /* Allocate registers for holding the rowid of the new row,
873   ** the content of the new row, and the assemblied row record.
874   */
875   regRowid = regIns = pParse->nMem+1;
876   pParse->nMem += pTab->nCol + 1;
877   if( IsVirtual(pTab) ){
878     regRowid++;
879     pParse->nMem++;
880   }
881   regData = regRowid+1;
882 
883   /* Run the BEFORE and INSTEAD OF triggers, if there are any
884   */
885   endOfLoop = sqlite3VdbeMakeLabel(v);
886   if( tmask & TRIGGER_BEFORE ){
887     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
888 
889     /* build the NEW.* reference row.  Note that if there is an INTEGER
890     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
891     ** translated into a unique ID for the row.  But on a BEFORE trigger,
892     ** we do not know what the unique ID will be (because the insert has
893     ** not happened yet) so we substitute a rowid of -1
894     */
895     if( ipkColumn<0 ){
896       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
897     }else{
898       int j1;
899       assert( !withoutRowid );
900       if( useTempTable ){
901         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
902       }else{
903         assert( pSelect==0 );  /* Otherwise useTempTable is true */
904         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
905       }
906       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
907       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
908       sqlite3VdbeJumpHere(v, j1);
909       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
910     }
911 
912     /* Cannot have triggers on a virtual table. If it were possible,
913     ** this block would have to account for hidden column.
914     */
915     assert( !IsVirtual(pTab) );
916 
917     /* Create the new column data
918     */
919     for(i=0; i<pTab->nCol; i++){
920       if( pColumn==0 ){
921         j = i;
922       }else{
923         for(j=0; j<pColumn->nId; j++){
924           if( pColumn->a[j].idx==i ) break;
925         }
926       }
927       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
928         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
929       }else if( useTempTable ){
930         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
931       }else{
932         assert( pSelect==0 ); /* Otherwise useTempTable is true */
933         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
934       }
935     }
936 
937     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
938     ** do not attempt any conversions before assembling the record.
939     ** If this is a real table, attempt conversions as required by the
940     ** table column affinities.
941     */
942     if( !isView ){
943       sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
944       sqlite3TableAffinityStr(v, pTab);
945     }
946 
947     /* Fire BEFORE or INSTEAD OF triggers */
948     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
949         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
950 
951     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
952   }
953 
954   /* Compute the content of the next row to insert into a range of
955   ** registers beginning at regIns.
956   */
957   if( !isView ){
958     if( IsVirtual(pTab) ){
959       /* The row that the VUpdate opcode will delete: none */
960       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
961     }
962     if( ipkColumn>=0 ){
963       if( useTempTable ){
964         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
965       }else if( pSelect ){
966         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid);
967       }else{
968         VdbeOp *pOp;
969         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
970         pOp = sqlite3VdbeGetOp(v, -1);
971         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
972           appendFlag = 1;
973           pOp->opcode = OP_NewRowid;
974           pOp->p1 = iDataCur;
975           pOp->p2 = regRowid;
976           pOp->p3 = regAutoinc;
977         }
978       }
979       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
980       ** to generate a unique primary key value.
981       */
982       if( !appendFlag ){
983         int j1;
984         if( !IsVirtual(pTab) ){
985           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
986           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
987           sqlite3VdbeJumpHere(v, j1);
988         }else{
989           j1 = sqlite3VdbeCurrentAddr(v);
990           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
991         }
992         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
993       }
994     }else if( IsVirtual(pTab) || withoutRowid ){
995       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
996     }else{
997       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
998       appendFlag = 1;
999     }
1000     autoIncStep(pParse, regAutoinc, regRowid);
1001 
1002     /* Compute data for all columns of the new entry, beginning
1003     ** with the first column.
1004     */
1005     nHidden = 0;
1006     for(i=0; i<pTab->nCol; i++){
1007       int iRegStore = regRowid+1+i;
1008       if( i==pTab->iPKey ){
1009         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
1010         ** Whenever this column is read, the rowid will be substituted
1011         ** in its place.  Hence, fill this column with a NULL to avoid
1012         ** taking up data space with information that will never be used. */
1013         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
1014         continue;
1015       }
1016       if( pColumn==0 ){
1017         if( IsHiddenColumn(&pTab->aCol[i]) ){
1018           assert( IsVirtual(pTab) );
1019           j = -1;
1020           nHidden++;
1021         }else{
1022           j = i - nHidden;
1023         }
1024       }else{
1025         for(j=0; j<pColumn->nId; j++){
1026           if( pColumn->a[j].idx==i ) break;
1027         }
1028       }
1029       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
1030         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
1031       }else if( useTempTable ){
1032         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1033       }else if( pSelect ){
1034         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1035       }else{
1036         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1037       }
1038     }
1039 
1040     /* Generate code to check constraints and generate index keys and
1041     ** do the insertion.
1042     */
1043 #ifndef SQLITE_OMIT_VIRTUALTABLE
1044     if( IsVirtual(pTab) ){
1045       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1046       sqlite3VtabMakeWritable(pParse, pTab);
1047       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1048       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1049       sqlite3MayAbort(pParse);
1050     }else
1051 #endif
1052     {
1053       int isReplace;    /* Set to true if constraints may cause a replace */
1054       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1055           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
1056       );
1057       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1058       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1059                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
1060     }
1061   }
1062 
1063   /* Update the count of rows that are inserted
1064   */
1065   if( (db->flags & SQLITE_CountRows)!=0 ){
1066     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1067   }
1068 
1069   if( pTrigger ){
1070     /* Code AFTER triggers */
1071     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1072         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1073   }
1074 
1075   /* The bottom of the main insertion loop, if the data source
1076   ** is a SELECT statement.
1077   */
1078   sqlite3VdbeResolveLabel(v, endOfLoop);
1079   if( useTempTable ){
1080     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
1081     sqlite3VdbeJumpHere(v, addrInsTop);
1082     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1083   }else if( pSelect ){
1084     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
1085     sqlite3VdbeJumpHere(v, addrInsTop);
1086   }
1087 
1088   if( !IsVirtual(pTab) && !isView ){
1089     /* Close all tables opened */
1090     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1091     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1092       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1093     }
1094   }
1095 
1096 insert_end:
1097   /* Update the sqlite_sequence table by storing the content of the
1098   ** maximum rowid counter values recorded while inserting into
1099   ** autoincrement tables.
1100   */
1101   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1102     sqlite3AutoincrementEnd(pParse);
1103   }
1104 
1105   /*
1106   ** Return the number of rows inserted. If this routine is
1107   ** generating code because of a call to sqlite3NestedParse(), do not
1108   ** invoke the callback function.
1109   */
1110   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1111     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1112     sqlite3VdbeSetNumCols(v, 1);
1113     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1114   }
1115 
1116 insert_cleanup:
1117   sqlite3SrcListDelete(db, pTabList);
1118   sqlite3ExprListDelete(db, pList);
1119   sqlite3SelectDelete(db, pSelect);
1120   sqlite3IdListDelete(db, pColumn);
1121   sqlite3DbFree(db, aRegIdx);
1122 }
1123 
1124 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1125 ** thely may interfere with compilation of other functions in this file
1126 ** (or in another file, if this file becomes part of the amalgamation).  */
1127 #ifdef isView
1128  #undef isView
1129 #endif
1130 #ifdef pTrigger
1131  #undef pTrigger
1132 #endif
1133 #ifdef tmask
1134  #undef tmask
1135 #endif
1136 
1137 /*
1138 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1139 ** on table pTab.
1140 **
1141 ** The regNewData parameter is the first register in a range that contains
1142 ** the data to be inserted or the data after the update.  There will be
1143 ** pTab->nCol+1 registers in this range.  The first register (the one
1144 ** that regNewData points to) will contain the new rowid, or NULL in the
1145 ** case of a WITHOUT ROWID table.  The second register in the range will
1146 ** contain the content of the first table column.  The third register will
1147 ** contain the content of the second table column.  And so forth.
1148 **
1149 ** The regOldData parameter is similar to regNewData except that it contains
1150 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1151 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1152 ** checking regOldData for zero.
1153 **
1154 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1155 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1156 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1157 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1158 **
1159 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1160 ** was explicitly specified as part of the INSERT statement.  If pkChng
1161 ** is zero, it means that the either rowid is computed automatically or
1162 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1163 ** pkChng will only be true if the INSERT statement provides an integer
1164 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1165 **
1166 ** The code generated by this routine will store new index entries into
1167 ** registers identified by aRegIdx[].  No index entry is created for
1168 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1169 ** the same as the order of indices on the linked list of indices
1170 ** at pTab->pIndex.
1171 **
1172 ** The caller must have already opened writeable cursors on the main
1173 ** table and all applicable indices (that is to say, all indices for which
1174 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1175 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1176 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1177 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1178 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1179 **
1180 ** This routine also generates code to check constraints.  NOT NULL,
1181 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1182 ** then the appropriate action is performed.  There are five possible
1183 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1184 **
1185 **  Constraint type  Action       What Happens
1186 **  ---------------  ----------   ----------------------------------------
1187 **  any              ROLLBACK     The current transaction is rolled back and
1188 **                                sqlite3_step() returns immediately with a
1189 **                                return code of SQLITE_CONSTRAINT.
1190 **
1191 **  any              ABORT        Back out changes from the current command
1192 **                                only (do not do a complete rollback) then
1193 **                                cause sqlite3_step() to return immediately
1194 **                                with SQLITE_CONSTRAINT.
1195 **
1196 **  any              FAIL         Sqlite3_step() returns immediately with a
1197 **                                return code of SQLITE_CONSTRAINT.  The
1198 **                                transaction is not rolled back and any
1199 **                                changes to prior rows are retained.
1200 **
1201 **  any              IGNORE       The attempt in insert or update the current
1202 **                                row is skipped, without throwing an error.
1203 **                                Processing continues with the next row.
1204 **                                (There is an immediate jump to ignoreDest.)
1205 **
1206 **  NOT NULL         REPLACE      The NULL value is replace by the default
1207 **                                value for that column.  If the default value
1208 **                                is NULL, the action is the same as ABORT.
1209 **
1210 **  UNIQUE           REPLACE      The other row that conflicts with the row
1211 **                                being inserted is removed.
1212 **
1213 **  CHECK            REPLACE      Illegal.  The results in an exception.
1214 **
1215 ** Which action to take is determined by the overrideError parameter.
1216 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1217 ** is used.  Or if pParse->onError==OE_Default then the onError value
1218 ** for the constraint is used.
1219 */
1220 void sqlite3GenerateConstraintChecks(
1221   Parse *pParse,       /* The parser context */
1222   Table *pTab,         /* The table being inserted or updated */
1223   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1224   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1225   int iIdxCur,         /* First index cursor */
1226   int regNewData,      /* First register in a range holding values to insert */
1227   int regOldData,      /* Previous content.  0 for INSERTs */
1228   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1229   u8 overrideError,    /* Override onError to this if not OE_Default */
1230   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1231   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
1232 ){
1233   Vdbe *v;             /* VDBE under constrution */
1234   Index *pIdx;         /* Pointer to one of the indices */
1235   Index *pPk = 0;      /* The PRIMARY KEY index */
1236   sqlite3 *db;         /* Database connection */
1237   int i;               /* loop counter */
1238   int ix;              /* Index loop counter */
1239   int nCol;            /* Number of columns */
1240   int onError;         /* Conflict resolution strategy */
1241   int j1;              /* Addresss of jump instruction */
1242   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1243   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1244   int ipkTop = 0;      /* Top of the rowid change constraint check */
1245   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
1246   u8 isUpdate;         /* True if this is an UPDATE operation */
1247   int regRowid = -1;   /* Register holding ROWID value */
1248 
1249   isUpdate = regOldData!=0;
1250   db = pParse->db;
1251   v = sqlite3GetVdbe(pParse);
1252   assert( v!=0 );
1253   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1254   nCol = pTab->nCol;
1255 
1256   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1257   ** normal rowid tables.  nPkField is the number of key fields in the
1258   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1259   ** number of fields in the true primary key of the table. */
1260   if( HasRowid(pTab) ){
1261     pPk = 0;
1262     nPkField = 1;
1263   }else{
1264     pPk = sqlite3PrimaryKeyIndex(pTab);
1265     nPkField = pPk->nKeyCol;
1266   }
1267 
1268   /* Record that this module has started */
1269   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1270                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1271 
1272   /* Test all NOT NULL constraints.
1273   */
1274   for(i=0; i<nCol; i++){
1275     if( i==pTab->iPKey ){
1276       continue;
1277     }
1278     onError = pTab->aCol[i].notNull;
1279     if( onError==OE_None ) continue;
1280     if( overrideError!=OE_Default ){
1281       onError = overrideError;
1282     }else if( onError==OE_Default ){
1283       onError = OE_Abort;
1284     }
1285     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1286       onError = OE_Abort;
1287     }
1288     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1289         || onError==OE_Ignore || onError==OE_Replace );
1290     switch( onError ){
1291       case OE_Abort:
1292         sqlite3MayAbort(pParse);
1293         /* Fall through */
1294       case OE_Rollback:
1295       case OE_Fail: {
1296         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1297                                     pTab->aCol[i].zName);
1298         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1299                           regNewData+1+i, zMsg, P4_DYNAMIC);
1300         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1301         break;
1302       }
1303       case OE_Ignore: {
1304         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1305         break;
1306       }
1307       default: {
1308         assert( onError==OE_Replace );
1309         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1310         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1311         sqlite3VdbeJumpHere(v, j1);
1312         break;
1313       }
1314     }
1315   }
1316 
1317   /* Test all CHECK constraints
1318   */
1319 #ifndef SQLITE_OMIT_CHECK
1320   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1321     ExprList *pCheck = pTab->pCheck;
1322     pParse->ckBase = regNewData+1;
1323     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1324     for(i=0; i<pCheck->nExpr; i++){
1325       int allOk = sqlite3VdbeMakeLabel(v);
1326       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1327       if( onError==OE_Ignore ){
1328         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1329       }else{
1330         char *zName = pCheck->a[i].zName;
1331         if( zName==0 ) zName = pTab->zName;
1332         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1333         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1334                               onError, zName, P4_TRANSIENT,
1335                               P5_ConstraintCheck);
1336       }
1337       sqlite3VdbeResolveLabel(v, allOk);
1338     }
1339   }
1340 #endif /* !defined(SQLITE_OMIT_CHECK) */
1341 
1342   /* If rowid is changing, make sure the new rowid does not previously
1343   ** exist in the table.
1344   */
1345   if( pkChng && pPk==0 ){
1346     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1347 
1348     /* Figure out what action to take in case of a rowid collision */
1349     onError = pTab->keyConf;
1350     if( overrideError!=OE_Default ){
1351       onError = overrideError;
1352     }else if( onError==OE_Default ){
1353       onError = OE_Abort;
1354     }
1355 
1356     if( isUpdate ){
1357       /* pkChng!=0 does not mean that the rowid has change, only that
1358       ** it might have changed.  Skip the conflict logic below if the rowid
1359       ** is unchanged. */
1360       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1361     }
1362 
1363     /* If the response to a rowid conflict is REPLACE but the response
1364     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1365     ** to defer the running of the rowid conflict checking until after
1366     ** the UNIQUE constraints have run.
1367     */
1368     if( onError==OE_Replace && overrideError!=OE_Replace ){
1369       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1370         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1371           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1372           break;
1373         }
1374       }
1375     }
1376 
1377     /* Check to see if the new rowid already exists in the table.  Skip
1378     ** the following conflict logic if it does not. */
1379     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1380 
1381     /* Generate code that deals with a rowid collision */
1382     switch( onError ){
1383       default: {
1384         onError = OE_Abort;
1385         /* Fall thru into the next case */
1386       }
1387       case OE_Rollback:
1388       case OE_Abort:
1389       case OE_Fail: {
1390         sqlite3RowidConstraint(pParse, onError, pTab);
1391         break;
1392       }
1393       case OE_Replace: {
1394         /* If there are DELETE triggers on this table and the
1395         ** recursive-triggers flag is set, call GenerateRowDelete() to
1396         ** remove the conflicting row from the table. This will fire
1397         ** the triggers and remove both the table and index b-tree entries.
1398         **
1399         ** Otherwise, if there are no triggers or the recursive-triggers
1400         ** flag is not set, but the table has one or more indexes, call
1401         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1402         ** only. The table b-tree entry will be replaced by the new entry
1403         ** when it is inserted.
1404         **
1405         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1406         ** also invoke MultiWrite() to indicate that this VDBE may require
1407         ** statement rollback (if the statement is aborted after the delete
1408         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1409         ** but being more selective here allows statements like:
1410         **
1411         **   REPLACE INTO t(rowid) VALUES($newrowid)
1412         **
1413         ** to run without a statement journal if there are no indexes on the
1414         ** table.
1415         */
1416         Trigger *pTrigger = 0;
1417         if( db->flags&SQLITE_RecTriggers ){
1418           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1419         }
1420         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1421           sqlite3MultiWrite(pParse);
1422           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1423                                    regNewData, 1, 0, OE_Replace, 1);
1424         }else if( pTab->pIndex ){
1425           sqlite3MultiWrite(pParse);
1426           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1427         }
1428         seenReplace = 1;
1429         break;
1430       }
1431       case OE_Ignore: {
1432         /*assert( seenReplace==0 );*/
1433         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1434         break;
1435       }
1436     }
1437     sqlite3VdbeResolveLabel(v, addrRowidOk);
1438     if( ipkTop ){
1439       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1440       sqlite3VdbeJumpHere(v, ipkTop);
1441     }
1442   }
1443 
1444   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1445   ** index and making sure that duplicate entries do not already exist.
1446   ** Compute the revised record entries for indices as we go.
1447   **
1448   ** This loop also handles the case of the PRIMARY KEY index for a
1449   ** WITHOUT ROWID table.
1450   */
1451   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1452     int regIdx;          /* Range of registers hold conent for pIdx */
1453     int regR;            /* Range of registers holding conflicting PK */
1454     int iThisCur;        /* Cursor for this UNIQUE index */
1455     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1456 
1457     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1458     iThisCur = iIdxCur+ix;
1459     addrUniqueOk = sqlite3VdbeMakeLabel(v);
1460 
1461     /* Skip partial indices for which the WHERE clause is not true */
1462     if( pIdx->pPartIdxWhere ){
1463       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1464       pParse->ckBase = regNewData+1;
1465       sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1466                          SQLITE_JUMPIFNULL);
1467       pParse->ckBase = 0;
1468     }
1469 
1470     /* Create a record for this index entry as it should appear after
1471     ** the insert or update.  Store that record in the aRegIdx[ix] register
1472     */
1473     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1474     for(i=0; i<pIdx->nColumn; i++){
1475       int iField = pIdx->aiColumn[i];
1476       int x;
1477       if( iField<0 || iField==pTab->iPKey ){
1478         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1479         x = regNewData;
1480         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
1481       }else{
1482         x = iField + regNewData + 1;
1483       }
1484       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1485       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1486     }
1487     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1488     sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
1489     VdbeComment((v, "for %s", pIdx->zName));
1490     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1491 
1492     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1493     ** of a WITHOUT ROWID table and there has been no change the
1494     ** primary key, then no collision is possible.  The collision detection
1495     ** logic below can all be skipped. */
1496     if( isUpdate && pPk==pIdx && pkChng==0 ){
1497       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1498       continue;
1499     }
1500 
1501     /* Find out what action to take in case there is a uniqueness conflict */
1502     onError = pIdx->onError;
1503     if( onError==OE_None ){
1504       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1505       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1506       continue;  /* pIdx is not a UNIQUE index */
1507     }
1508     if( overrideError!=OE_Default ){
1509       onError = overrideError;
1510     }else if( onError==OE_Default ){
1511       onError = OE_Abort;
1512     }
1513 
1514     /* Check to see if the new index entry will be unique */
1515     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1516                          regIdx, pIdx->nKeyCol);
1517 
1518     /* Generate code to handle collisions */
1519     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1520     if( isUpdate || onError==OE_Replace ){
1521       if( HasRowid(pTab) ){
1522         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1523         /* Conflict only if the rowid of the existing index entry
1524         ** is different from old-rowid */
1525         if( isUpdate ){
1526           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1527         }
1528       }else{
1529         int x;
1530         /* Extract the PRIMARY KEY from the end of the index entry and
1531         ** store it in registers regR..regR+nPk-1 */
1532         if( pIdx!=pPk ){
1533           for(i=0; i<pPk->nKeyCol; i++){
1534             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1535             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1536             VdbeComment((v, "%s.%s", pTab->zName,
1537                          pTab->aCol[pPk->aiColumn[i]].zName));
1538           }
1539         }
1540         if( isUpdate ){
1541           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1542           ** table, only conflict if the new PRIMARY KEY values are actually
1543           ** different from the old.
1544           **
1545           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1546           ** of the matched index row are different from the original PRIMARY
1547           ** KEY values of this row before the update.  */
1548           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1549           int op = OP_Ne;
1550           int regCmp = (pIdx->autoIndex==2 ? regIdx : regR);
1551 
1552           for(i=0; i<pPk->nKeyCol; i++){
1553             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1554             x = pPk->aiColumn[i];
1555             if( i==(pPk->nKeyCol-1) ){
1556               addrJump = addrUniqueOk;
1557               op = OP_Eq;
1558             }
1559             sqlite3VdbeAddOp4(v, op,
1560                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1561             );
1562           }
1563         }
1564       }
1565     }
1566 
1567     /* Generate code that executes if the new index entry is not unique */
1568     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1569         || onError==OE_Ignore || onError==OE_Replace );
1570     switch( onError ){
1571       case OE_Rollback:
1572       case OE_Abort:
1573       case OE_Fail: {
1574         sqlite3UniqueConstraint(pParse, onError, pIdx);
1575         break;
1576       }
1577       case OE_Ignore: {
1578         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1579         break;
1580       }
1581       default: {
1582         Trigger *pTrigger = 0;
1583         assert( onError==OE_Replace );
1584         sqlite3MultiWrite(pParse);
1585         if( db->flags&SQLITE_RecTriggers ){
1586           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1587         }
1588         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1589                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
1590         seenReplace = 1;
1591         break;
1592       }
1593     }
1594     sqlite3VdbeResolveLabel(v, addrUniqueOk);
1595     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1596     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1597   }
1598   if( ipkTop ){
1599     sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1600     sqlite3VdbeJumpHere(v, ipkBottom);
1601   }
1602 
1603   *pbMayReplace = seenReplace;
1604   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1605 }
1606 
1607 /*
1608 ** This routine generates code to finish the INSERT or UPDATE operation
1609 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1610 ** A consecutive range of registers starting at regNewData contains the
1611 ** rowid and the content to be inserted.
1612 **
1613 ** The arguments to this routine should be the same as the first six
1614 ** arguments to sqlite3GenerateConstraintChecks.
1615 */
1616 void sqlite3CompleteInsertion(
1617   Parse *pParse,      /* The parser context */
1618   Table *pTab,        /* the table into which we are inserting */
1619   int iDataCur,       /* Cursor of the canonical data source */
1620   int iIdxCur,        /* First index cursor */
1621   int regNewData,     /* Range of content */
1622   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1623   int isUpdate,       /* True for UPDATE, False for INSERT */
1624   int appendBias,     /* True if this is likely to be an append */
1625   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1626 ){
1627   Vdbe *v;            /* Prepared statements under construction */
1628   Index *pIdx;        /* An index being inserted or updated */
1629   u8 pik_flags;       /* flag values passed to the btree insert */
1630   int regData;        /* Content registers (after the rowid) */
1631   int regRec;         /* Register holding assemblied record for the table */
1632   int i;              /* Loop counter */
1633 
1634   v = sqlite3GetVdbe(pParse);
1635   assert( v!=0 );
1636   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1637   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1638     if( aRegIdx[i]==0 ) continue;
1639     if( pIdx->pPartIdxWhere ){
1640       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1641     }
1642     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1643     pik_flags = 0;
1644     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1645     if( pIdx->autoIndex==2 && !HasRowid(pTab) ){
1646       assert( pParse->nested==0 );
1647       pik_flags |= OPFLAG_NCHANGE;
1648     }
1649     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
1650   }
1651   if( !HasRowid(pTab) ) return;
1652   regData = regNewData + 1;
1653   regRec = sqlite3GetTempReg(pParse);
1654   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1655   sqlite3TableAffinityStr(v, pTab);
1656   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1657   if( pParse->nested ){
1658     pik_flags = 0;
1659   }else{
1660     pik_flags = OPFLAG_NCHANGE;
1661     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1662   }
1663   if( appendBias ){
1664     pik_flags |= OPFLAG_APPEND;
1665   }
1666   if( useSeekResult ){
1667     pik_flags |= OPFLAG_USESEEKRESULT;
1668   }
1669   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1670   if( !pParse->nested ){
1671     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1672   }
1673   sqlite3VdbeChangeP5(v, pik_flags);
1674 }
1675 
1676 /*
1677 ** Allocate cursors for the pTab table and all its indices and generate
1678 ** code to open and initialized those cursors.
1679 **
1680 ** The cursor for the object that contains the complete data (normally
1681 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1682 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1683 ** returned in *piIdxCur.  The number of indices is returned.
1684 **
1685 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1686 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1687 ** If iBase is negative, then allocate the next available cursor.
1688 **
1689 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1690 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1691 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1692 ** pTab->pIndex list.
1693 */
1694 int sqlite3OpenTableAndIndices(
1695   Parse *pParse,   /* Parsing context */
1696   Table *pTab,     /* Table to be opened */
1697   int op,          /* OP_OpenRead or OP_OpenWrite */
1698   int iBase,       /* Use this for the table cursor, if there is one */
1699   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1700   int *piDataCur,  /* Write the database source cursor number here */
1701   int *piIdxCur    /* Write the first index cursor number here */
1702 ){
1703   int i;
1704   int iDb;
1705   int iDataCur;
1706   Index *pIdx;
1707   Vdbe *v;
1708 
1709   assert( op==OP_OpenRead || op==OP_OpenWrite );
1710   if( IsVirtual(pTab) ){
1711     assert( aToOpen==0 );
1712     *piDataCur = 0;
1713     *piIdxCur = 1;
1714     return 0;
1715   }
1716   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1717   v = sqlite3GetVdbe(pParse);
1718   assert( v!=0 );
1719   if( iBase<0 ) iBase = pParse->nTab;
1720   iDataCur = iBase++;
1721   if( piDataCur ) *piDataCur = iDataCur;
1722   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1723     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1724   }else{
1725     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1726   }
1727   if( piIdxCur ) *piIdxCur = iBase;
1728   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1729     int iIdxCur = iBase++;
1730     assert( pIdx->pSchema==pTab->pSchema );
1731     if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){
1732       *piDataCur = iIdxCur;
1733     }
1734     if( aToOpen==0 || aToOpen[i+1] ){
1735       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1736       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1737       VdbeComment((v, "%s", pIdx->zName));
1738     }
1739   }
1740   if( iBase>pParse->nTab ) pParse->nTab = iBase;
1741   return i;
1742 }
1743 
1744 
1745 #ifdef SQLITE_TEST
1746 /*
1747 ** The following global variable is incremented whenever the
1748 ** transfer optimization is used.  This is used for testing
1749 ** purposes only - to make sure the transfer optimization really
1750 ** is happening when it is suppose to.
1751 */
1752 int sqlite3_xferopt_count;
1753 #endif /* SQLITE_TEST */
1754 
1755 
1756 #ifndef SQLITE_OMIT_XFER_OPT
1757 /*
1758 ** Check to collation names to see if they are compatible.
1759 */
1760 static int xferCompatibleCollation(const char *z1, const char *z2){
1761   if( z1==0 ){
1762     return z2==0;
1763   }
1764   if( z2==0 ){
1765     return 0;
1766   }
1767   return sqlite3StrICmp(z1, z2)==0;
1768 }
1769 
1770 
1771 /*
1772 ** Check to see if index pSrc is compatible as a source of data
1773 ** for index pDest in an insert transfer optimization.  The rules
1774 ** for a compatible index:
1775 **
1776 **    *   The index is over the same set of columns
1777 **    *   The same DESC and ASC markings occurs on all columns
1778 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1779 **    *   The same collating sequence on each column
1780 **    *   The index has the exact same WHERE clause
1781 */
1782 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1783   int i;
1784   assert( pDest && pSrc );
1785   assert( pDest->pTable!=pSrc->pTable );
1786   if( pDest->nKeyCol!=pSrc->nKeyCol ){
1787     return 0;   /* Different number of columns */
1788   }
1789   if( pDest->onError!=pSrc->onError ){
1790     return 0;   /* Different conflict resolution strategies */
1791   }
1792   for(i=0; i<pSrc->nKeyCol; i++){
1793     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1794       return 0;   /* Different columns indexed */
1795     }
1796     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1797       return 0;   /* Different sort orders */
1798     }
1799     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1800       return 0;   /* Different collating sequences */
1801     }
1802   }
1803   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1804     return 0;     /* Different WHERE clauses */
1805   }
1806 
1807   /* If no test above fails then the indices must be compatible */
1808   return 1;
1809 }
1810 
1811 /*
1812 ** Attempt the transfer optimization on INSERTs of the form
1813 **
1814 **     INSERT INTO tab1 SELECT * FROM tab2;
1815 **
1816 ** The xfer optimization transfers raw records from tab2 over to tab1.
1817 ** Columns are not decoded and reassemblied, which greatly improves
1818 ** performance.  Raw index records are transferred in the same way.
1819 **
1820 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1821 ** There are lots of rules for determining compatibility - see comments
1822 ** embedded in the code for details.
1823 **
1824 ** This routine returns TRUE if the optimization is guaranteed to be used.
1825 ** Sometimes the xfer optimization will only work if the destination table
1826 ** is empty - a factor that can only be determined at run-time.  In that
1827 ** case, this routine generates code for the xfer optimization but also
1828 ** does a test to see if the destination table is empty and jumps over the
1829 ** xfer optimization code if the test fails.  In that case, this routine
1830 ** returns FALSE so that the caller will know to go ahead and generate
1831 ** an unoptimized transfer.  This routine also returns FALSE if there
1832 ** is no chance that the xfer optimization can be applied.
1833 **
1834 ** This optimization is particularly useful at making VACUUM run faster.
1835 */
1836 static int xferOptimization(
1837   Parse *pParse,        /* Parser context */
1838   Table *pDest,         /* The table we are inserting into */
1839   Select *pSelect,      /* A SELECT statement to use as the data source */
1840   int onError,          /* How to handle constraint errors */
1841   int iDbDest           /* The database of pDest */
1842 ){
1843   ExprList *pEList;                /* The result set of the SELECT */
1844   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1845   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1846   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1847   int i;                           /* Loop counter */
1848   int iDbSrc;                      /* The database of pSrc */
1849   int iSrc, iDest;                 /* Cursors from source and destination */
1850   int addr1, addr2;                /* Loop addresses */
1851   int emptyDestTest = 0;           /* Address of test for empty pDest */
1852   int emptySrcTest = 0;            /* Address of test for empty pSrc */
1853   Vdbe *v;                         /* The VDBE we are building */
1854   int regAutoinc;                  /* Memory register used by AUTOINC */
1855   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1856   int regData, regRowid;           /* Registers holding data and rowid */
1857 
1858   if( pSelect==0 ){
1859     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1860   }
1861   if( pParse->pWith || pSelect->pWith ){
1862     /* Do not attempt to process this query if there are an WITH clauses
1863     ** attached to it. Proceeding may generate a false "no such table: xxx"
1864     ** error if pSelect reads from a CTE named "xxx".  */
1865     return 0;
1866   }
1867   if( sqlite3TriggerList(pParse, pDest) ){
1868     return 0;   /* tab1 must not have triggers */
1869   }
1870 #ifndef SQLITE_OMIT_VIRTUALTABLE
1871   if( pDest->tabFlags & TF_Virtual ){
1872     return 0;   /* tab1 must not be a virtual table */
1873   }
1874 #endif
1875   if( onError==OE_Default ){
1876     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1877     if( onError==OE_Default ) onError = OE_Abort;
1878   }
1879   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1880   if( pSelect->pSrc->nSrc!=1 ){
1881     return 0;   /* FROM clause must have exactly one term */
1882   }
1883   if( pSelect->pSrc->a[0].pSelect ){
1884     return 0;   /* FROM clause cannot contain a subquery */
1885   }
1886   if( pSelect->pWhere ){
1887     return 0;   /* SELECT may not have a WHERE clause */
1888   }
1889   if( pSelect->pOrderBy ){
1890     return 0;   /* SELECT may not have an ORDER BY clause */
1891   }
1892   /* Do not need to test for a HAVING clause.  If HAVING is present but
1893   ** there is no ORDER BY, we will get an error. */
1894   if( pSelect->pGroupBy ){
1895     return 0;   /* SELECT may not have a GROUP BY clause */
1896   }
1897   if( pSelect->pLimit ){
1898     return 0;   /* SELECT may not have a LIMIT clause */
1899   }
1900   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1901   if( pSelect->pPrior ){
1902     return 0;   /* SELECT may not be a compound query */
1903   }
1904   if( pSelect->selFlags & SF_Distinct ){
1905     return 0;   /* SELECT may not be DISTINCT */
1906   }
1907   pEList = pSelect->pEList;
1908   assert( pEList!=0 );
1909   if( pEList->nExpr!=1 ){
1910     return 0;   /* The result set must have exactly one column */
1911   }
1912   assert( pEList->a[0].pExpr );
1913   if( pEList->a[0].pExpr->op!=TK_ALL ){
1914     return 0;   /* The result set must be the special operator "*" */
1915   }
1916 
1917   /* At this point we have established that the statement is of the
1918   ** correct syntactic form to participate in this optimization.  Now
1919   ** we have to check the semantics.
1920   */
1921   pItem = pSelect->pSrc->a;
1922   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1923   if( pSrc==0 ){
1924     return 0;   /* FROM clause does not contain a real table */
1925   }
1926   if( pSrc==pDest ){
1927     return 0;   /* tab1 and tab2 may not be the same table */
1928   }
1929   if( HasRowid(pDest)!=HasRowid(pSrc) ){
1930     return 0;   /* source and destination must both be WITHOUT ROWID or not */
1931   }
1932 #ifndef SQLITE_OMIT_VIRTUALTABLE
1933   if( pSrc->tabFlags & TF_Virtual ){
1934     return 0;   /* tab2 must not be a virtual table */
1935   }
1936 #endif
1937   if( pSrc->pSelect ){
1938     return 0;   /* tab2 may not be a view */
1939   }
1940   if( pDest->nCol!=pSrc->nCol ){
1941     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1942   }
1943   if( pDest->iPKey!=pSrc->iPKey ){
1944     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1945   }
1946   for(i=0; i<pDest->nCol; i++){
1947     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1948       return 0;    /* Affinity must be the same on all columns */
1949     }
1950     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1951       return 0;    /* Collating sequence must be the same on all columns */
1952     }
1953     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1954       return 0;    /* tab2 must be NOT NULL if tab1 is */
1955     }
1956   }
1957   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1958     if( pDestIdx->onError!=OE_None ){
1959       destHasUniqueIdx = 1;
1960     }
1961     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1962       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1963     }
1964     if( pSrcIdx==0 ){
1965       return 0;    /* pDestIdx has no corresponding index in pSrc */
1966     }
1967   }
1968 #ifndef SQLITE_OMIT_CHECK
1969   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1970     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1971   }
1972 #endif
1973 #ifndef SQLITE_OMIT_FOREIGN_KEY
1974   /* Disallow the transfer optimization if the destination table constains
1975   ** any foreign key constraints.  This is more restrictive than necessary.
1976   ** But the main beneficiary of the transfer optimization is the VACUUM
1977   ** command, and the VACUUM command disables foreign key constraints.  So
1978   ** the extra complication to make this rule less restrictive is probably
1979   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1980   */
1981   if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1982     return 0;
1983   }
1984 #endif
1985   if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
1986     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
1987   }
1988 
1989   /* If we get this far, it means that the xfer optimization is at
1990   ** least a possibility, though it might only work if the destination
1991   ** table (tab1) is initially empty.
1992   */
1993 #ifdef SQLITE_TEST
1994   sqlite3_xferopt_count++;
1995 #endif
1996   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1997   v = sqlite3GetVdbe(pParse);
1998   sqlite3CodeVerifySchema(pParse, iDbSrc);
1999   iSrc = pParse->nTab++;
2000   iDest = pParse->nTab++;
2001   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2002   regData = sqlite3GetTempReg(pParse);
2003   regRowid = sqlite3GetTempReg(pParse);
2004   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2005   assert( HasRowid(pDest) || destHasUniqueIdx );
2006   if( (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2007    || destHasUniqueIdx                              /* (2) */
2008    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2009   ){
2010     /* In some circumstances, we are able to run the xfer optimization
2011     ** only if the destination table is initially empty.  This code makes
2012     ** that determination.  Conditions under which the destination must
2013     ** be empty:
2014     **
2015     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2016     **     (If the destination is not initially empty, the rowid fields
2017     **     of index entries might need to change.)
2018     **
2019     ** (2) The destination has a unique index.  (The xfer optimization
2020     **     is unable to test uniqueness.)
2021     **
2022     ** (3) onError is something other than OE_Abort and OE_Rollback.
2023     */
2024     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
2025     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
2026     sqlite3VdbeJumpHere(v, addr1);
2027   }
2028   if( HasRowid(pSrc) ){
2029     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2030     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
2031     if( pDest->iPKey>=0 ){
2032       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2033       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2034       sqlite3RowidConstraint(pParse, onError, pDest);
2035       sqlite3VdbeJumpHere(v, addr2);
2036       autoIncStep(pParse, regAutoinc, regRowid);
2037     }else if( pDest->pIndex==0 ){
2038       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2039     }else{
2040       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2041       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2042     }
2043     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
2044     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
2045     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
2046     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
2047     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
2048     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2049     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2050   }else{
2051     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2052     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2053   }
2054   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2055     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2056       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2057     }
2058     assert( pSrcIdx );
2059     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2060     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2061     VdbeComment((v, "%s", pSrcIdx->zName));
2062     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2063     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2064     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2065     VdbeComment((v, "%s", pDestIdx->zName));
2066     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
2067     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2068     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2069     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
2070     sqlite3VdbeJumpHere(v, addr1);
2071     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2072     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2073   }
2074   sqlite3VdbeJumpHere(v, emptySrcTest);
2075   sqlite3ReleaseTempReg(pParse, regRowid);
2076   sqlite3ReleaseTempReg(pParse, regData);
2077   if( emptyDestTest ){
2078     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2079     sqlite3VdbeJumpHere(v, emptyDestTest);
2080     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2081     return 0;
2082   }else{
2083     return 1;
2084   }
2085 }
2086 #endif /* SQLITE_OMIT_XFER_OPT */
2087