1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum=pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'a' TEXT 60 ** 'b' NONE 61 ** 'c' NUMERIC 62 ** 'd' INTEGER 63 ** 'e' REAL 64 ** 65 ** An extra 'd' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 sqlite3 *db = sqlite3VdbeDb(v); 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 db->mallocFailed = 1; 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; 93 } 94 pIdx->zColAff[n] = 0; 95 } 96 97 return pIdx->zColAff; 98 } 99 100 /* 101 ** Set P4 of the most recently inserted opcode to a column affinity 102 ** string for table pTab. A column affinity string has one character 103 ** for each column indexed by the index, according to the affinity of the 104 ** column: 105 ** 106 ** Character Column affinity 107 ** ------------------------------ 108 ** 'a' TEXT 109 ** 'b' NONE 110 ** 'c' NUMERIC 111 ** 'd' INTEGER 112 ** 'e' REAL 113 */ 114 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 115 /* The first time a column affinity string for a particular table 116 ** is required, it is allocated and populated here. It is then 117 ** stored as a member of the Table structure for subsequent use. 118 ** 119 ** The column affinity string will eventually be deleted by 120 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 121 */ 122 if( !pTab->zColAff ){ 123 char *zColAff; 124 int i; 125 sqlite3 *db = sqlite3VdbeDb(v); 126 127 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 128 if( !zColAff ){ 129 db->mallocFailed = 1; 130 return; 131 } 132 133 for(i=0; i<pTab->nCol; i++){ 134 zColAff[i] = pTab->aCol[i].affinity; 135 } 136 zColAff[pTab->nCol] = '\0'; 137 138 pTab->zColAff = zColAff; 139 } 140 141 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); 142 } 143 144 /* 145 ** Return non-zero if the table pTab in database iDb or any of its indices 146 ** have been opened at any point in the VDBE program beginning at location 147 ** iStartAddr throught the end of the program. This is used to see if 148 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 149 ** run without using temporary table for the results of the SELECT. 150 */ 151 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 152 Vdbe *v = sqlite3GetVdbe(p); 153 int i; 154 int iEnd = sqlite3VdbeCurrentAddr(v); 155 #ifndef SQLITE_OMIT_VIRTUALTABLE 156 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 157 #endif 158 159 for(i=iStartAddr; i<iEnd; i++){ 160 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 161 assert( pOp!=0 ); 162 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 163 Index *pIndex; 164 int tnum = pOp->p2; 165 if( tnum==pTab->tnum ){ 166 return 1; 167 } 168 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 169 if( tnum==pIndex->tnum ){ 170 return 1; 171 } 172 } 173 } 174 #ifndef SQLITE_OMIT_VIRTUALTABLE 175 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 176 assert( pOp->p4.pVtab!=0 ); 177 assert( pOp->p4type==P4_VTAB ); 178 return 1; 179 } 180 #endif 181 } 182 return 0; 183 } 184 185 #ifndef SQLITE_OMIT_AUTOINCREMENT 186 /* 187 ** Locate or create an AutoincInfo structure associated with table pTab 188 ** which is in database iDb. Return the register number for the register 189 ** that holds the maximum rowid. 190 ** 191 ** There is at most one AutoincInfo structure per table even if the 192 ** same table is autoincremented multiple times due to inserts within 193 ** triggers. A new AutoincInfo structure is created if this is the 194 ** first use of table pTab. On 2nd and subsequent uses, the original 195 ** AutoincInfo structure is used. 196 ** 197 ** Three memory locations are allocated: 198 ** 199 ** (1) Register to hold the name of the pTab table. 200 ** (2) Register to hold the maximum ROWID of pTab. 201 ** (3) Register to hold the rowid in sqlite_sequence of pTab 202 ** 203 ** The 2nd register is the one that is returned. That is all the 204 ** insert routine needs to know about. 205 */ 206 static int autoIncBegin( 207 Parse *pParse, /* Parsing context */ 208 int iDb, /* Index of the database holding pTab */ 209 Table *pTab /* The table we are writing to */ 210 ){ 211 int memId = 0; /* Register holding maximum rowid */ 212 if( pTab->tabFlags & TF_Autoincrement ){ 213 Parse *pToplevel = sqlite3ParseToplevel(pParse); 214 AutoincInfo *pInfo; 215 216 pInfo = pToplevel->pAinc; 217 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 218 if( pInfo==0 ){ 219 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 220 if( pInfo==0 ) return 0; 221 pInfo->pNext = pToplevel->pAinc; 222 pToplevel->pAinc = pInfo; 223 pInfo->pTab = pTab; 224 pInfo->iDb = iDb; 225 pToplevel->nMem++; /* Register to hold name of table */ 226 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 227 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 228 } 229 memId = pInfo->regCtr; 230 } 231 return memId; 232 } 233 234 /* 235 ** This routine generates code that will initialize all of the 236 ** register used by the autoincrement tracker. 237 */ 238 void sqlite3AutoincrementBegin(Parse *pParse){ 239 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 240 sqlite3 *db = pParse->db; /* The database connection */ 241 Db *pDb; /* Database only autoinc table */ 242 int memId; /* Register holding max rowid */ 243 int addr; /* A VDBE address */ 244 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 245 246 /* This routine is never called during trigger-generation. It is 247 ** only called from the top-level */ 248 assert( pParse->pTriggerTab==0 ); 249 assert( pParse==sqlite3ParseToplevel(pParse) ); 250 251 assert( v ); /* We failed long ago if this is not so */ 252 for(p = pParse->pAinc; p; p = p->pNext){ 253 pDb = &db->aDb[p->iDb]; 254 memId = p->regCtr; 255 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 256 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 257 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); 258 addr = sqlite3VdbeCurrentAddr(v); 259 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 260 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 261 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 262 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 263 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 264 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 265 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 266 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 267 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 268 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 269 sqlite3VdbeAddOp0(v, OP_Close); 270 } 271 } 272 273 /* 274 ** Update the maximum rowid for an autoincrement calculation. 275 ** 276 ** This routine should be called when the top of the stack holds a 277 ** new rowid that is about to be inserted. If that new rowid is 278 ** larger than the maximum rowid in the memId memory cell, then the 279 ** memory cell is updated. The stack is unchanged. 280 */ 281 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 282 if( memId>0 ){ 283 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 284 } 285 } 286 287 /* 288 ** This routine generates the code needed to write autoincrement 289 ** maximum rowid values back into the sqlite_sequence register. 290 ** Every statement that might do an INSERT into an autoincrement 291 ** table (either directly or through triggers) needs to call this 292 ** routine just before the "exit" code. 293 */ 294 void sqlite3AutoincrementEnd(Parse *pParse){ 295 AutoincInfo *p; 296 Vdbe *v = pParse->pVdbe; 297 sqlite3 *db = pParse->db; 298 299 assert( v ); 300 for(p = pParse->pAinc; p; p = p->pNext){ 301 Db *pDb = &db->aDb[p->iDb]; 302 int j1, j2, j3, j4, j5; 303 int iRec; 304 int memId = p->regCtr; 305 306 iRec = sqlite3GetTempReg(pParse); 307 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 308 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 309 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 310 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 311 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 312 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 313 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 314 sqlite3VdbeJumpHere(v, j2); 315 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 316 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 317 sqlite3VdbeJumpHere(v, j4); 318 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 319 sqlite3VdbeJumpHere(v, j1); 320 sqlite3VdbeJumpHere(v, j5); 321 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 322 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 323 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 324 sqlite3VdbeAddOp0(v, OP_Close); 325 sqlite3ReleaseTempReg(pParse, iRec); 326 } 327 } 328 #else 329 /* 330 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 331 ** above are all no-ops 332 */ 333 # define autoIncBegin(A,B,C) (0) 334 # define autoIncStep(A,B,C) 335 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 336 337 338 /* 339 ** Generate code for a co-routine that will evaluate a subquery one 340 ** row at a time. 341 ** 342 ** The pSelect parameter is the subquery that the co-routine will evaluation. 343 ** Information about the location of co-routine and the registers it will use 344 ** is returned by filling in the pDest object. 345 ** 346 ** Registers are allocated as follows: 347 ** 348 ** pDest->iSDParm The register holding the next entry-point of the 349 ** co-routine. Run the co-routine to its next breakpoint 350 ** by calling "OP_Yield $X" where $X is pDest->iSDParm. 351 ** 352 ** pDest->iSDParm+1 The register holding the "completed" flag for the 353 ** co-routine. This register is 0 if the previous Yield 354 ** generated a new result row, or 1 if the subquery 355 ** has completed. If the Yield is called again 356 ** after this register becomes 1, then the VDBE will 357 ** halt with an SQLITE_INTERNAL error. 358 ** 359 ** pDest->iSdst First result register. 360 ** 361 ** pDest->nSdst Number of result registers. 362 ** 363 ** This routine handles all of the register allocation and fills in the 364 ** pDest structure appropriately. 365 ** 366 ** Here is a schematic of the generated code assuming that X is the 367 ** co-routine entry-point register reg[pDest->iSDParm], that EOF is the 368 ** completed flag reg[pDest->iSDParm+1], and R and S are the range of 369 ** registers that hold the result set, reg[pDest->iSdst] through 370 ** reg[pDest->iSdst+pDest->nSdst-1]: 371 ** 372 ** X <- A 373 ** EOF <- 0 374 ** goto B 375 ** A: setup for the SELECT 376 ** loop rows in the SELECT 377 ** load results into registers R..S 378 ** yield X 379 ** end loop 380 ** cleanup after the SELECT 381 ** EOF <- 1 382 ** yield X 383 ** halt-error 384 ** B: 385 ** 386 ** To use this subroutine, the caller generates code as follows: 387 ** 388 ** [ Co-routine generated by this subroutine, shown above ] 389 ** S: yield X 390 ** if EOF goto E 391 ** if skip this row, goto C 392 ** if terminate loop, goto E 393 ** deal with this row 394 ** C: goto S 395 ** E: 396 */ 397 int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){ 398 int regYield; /* Register holding co-routine entry-point */ 399 int regEof; /* Register holding co-routine completion flag */ 400 int addrTop; /* Top of the co-routine */ 401 int j1; /* Jump instruction */ 402 int rc; /* Result code */ 403 Vdbe *v; /* VDBE under construction */ 404 405 regYield = ++pParse->nMem; 406 regEof = ++pParse->nMem; 407 v = sqlite3GetVdbe(pParse); 408 addrTop = sqlite3VdbeCurrentAddr(v); 409 sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */ 410 VdbeComment((v, "Co-routine entry point")); 411 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 412 VdbeComment((v, "Co-routine completion flag")); 413 sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield); 414 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 415 rc = sqlite3Select(pParse, pSelect, pDest); 416 assert( pParse->nErr==0 || rc ); 417 if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM; 418 if( rc ) return rc; 419 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ 420 sqlite3VdbeAddOp1(v, OP_Yield, regYield); /* yield X */ 421 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); 422 VdbeComment((v, "End of coroutine")); 423 sqlite3VdbeJumpHere(v, j1); /* label B: */ 424 return rc; 425 } 426 427 428 429 /* Forward declaration */ 430 static int xferOptimization( 431 Parse *pParse, /* Parser context */ 432 Table *pDest, /* The table we are inserting into */ 433 Select *pSelect, /* A SELECT statement to use as the data source */ 434 int onError, /* How to handle constraint errors */ 435 int iDbDest /* The database of pDest */ 436 ); 437 438 /* 439 ** This routine is called to handle SQL of the following forms: 440 ** 441 ** insert into TABLE (IDLIST) values(EXPRLIST) 442 ** insert into TABLE (IDLIST) select 443 ** 444 ** The IDLIST following the table name is always optional. If omitted, 445 ** then a list of all columns for the table is substituted. The IDLIST 446 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 447 ** 448 ** The pList parameter holds EXPRLIST in the first form of the INSERT 449 ** statement above, and pSelect is NULL. For the second form, pList is 450 ** NULL and pSelect is a pointer to the select statement used to generate 451 ** data for the insert. 452 ** 453 ** The code generated follows one of four templates. For a simple 454 ** insert with data coming from a VALUES clause, the code executes 455 ** once straight down through. Pseudo-code follows (we call this 456 ** the "1st template"): 457 ** 458 ** open write cursor to <table> and its indices 459 ** put VALUES clause expressions into registers 460 ** write the resulting record into <table> 461 ** cleanup 462 ** 463 ** The three remaining templates assume the statement is of the form 464 ** 465 ** INSERT INTO <table> SELECT ... 466 ** 467 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 468 ** in other words if the SELECT pulls all columns from a single table 469 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 470 ** if <table2> and <table1> are distinct tables but have identical 471 ** schemas, including all the same indices, then a special optimization 472 ** is invoked that copies raw records from <table2> over to <table1>. 473 ** See the xferOptimization() function for the implementation of this 474 ** template. This is the 2nd template. 475 ** 476 ** open a write cursor to <table> 477 ** open read cursor on <table2> 478 ** transfer all records in <table2> over to <table> 479 ** close cursors 480 ** foreach index on <table> 481 ** open a write cursor on the <table> index 482 ** open a read cursor on the corresponding <table2> index 483 ** transfer all records from the read to the write cursors 484 ** close cursors 485 ** end foreach 486 ** 487 ** The 3rd template is for when the second template does not apply 488 ** and the SELECT clause does not read from <table> at any time. 489 ** The generated code follows this template: 490 ** 491 ** EOF <- 0 492 ** X <- A 493 ** goto B 494 ** A: setup for the SELECT 495 ** loop over the rows in the SELECT 496 ** load values into registers R..R+n 497 ** yield X 498 ** end loop 499 ** cleanup after the SELECT 500 ** EOF <- 1 501 ** yield X 502 ** goto A 503 ** B: open write cursor to <table> and its indices 504 ** C: yield X 505 ** if EOF goto D 506 ** insert the select result into <table> from R..R+n 507 ** goto C 508 ** D: cleanup 509 ** 510 ** The 4th template is used if the insert statement takes its 511 ** values from a SELECT but the data is being inserted into a table 512 ** that is also read as part of the SELECT. In the third form, 513 ** we have to use a intermediate table to store the results of 514 ** the select. The template is like this: 515 ** 516 ** EOF <- 0 517 ** X <- A 518 ** goto B 519 ** A: setup for the SELECT 520 ** loop over the tables in the SELECT 521 ** load value into register R..R+n 522 ** yield X 523 ** end loop 524 ** cleanup after the SELECT 525 ** EOF <- 1 526 ** yield X 527 ** halt-error 528 ** B: open temp table 529 ** L: yield X 530 ** if EOF goto M 531 ** insert row from R..R+n into temp table 532 ** goto L 533 ** M: open write cursor to <table> and its indices 534 ** rewind temp table 535 ** C: loop over rows of intermediate table 536 ** transfer values form intermediate table into <table> 537 ** end loop 538 ** D: cleanup 539 */ 540 void sqlite3Insert( 541 Parse *pParse, /* Parser context */ 542 SrcList *pTabList, /* Name of table into which we are inserting */ 543 Select *pSelect, /* A SELECT statement to use as the data source */ 544 IdList *pColumn, /* Column names corresponding to IDLIST. */ 545 int onError /* How to handle constraint errors */ 546 ){ 547 sqlite3 *db; /* The main database structure */ 548 Table *pTab; /* The table to insert into. aka TABLE */ 549 char *zTab; /* Name of the table into which we are inserting */ 550 const char *zDb; /* Name of the database holding this table */ 551 int i, j, idx; /* Loop counters */ 552 Vdbe *v; /* Generate code into this virtual machine */ 553 Index *pIdx; /* For looping over indices of the table */ 554 int nColumn; /* Number of columns in the data */ 555 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 556 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 557 int iIdxCur = 0; /* First index cursor */ 558 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 559 int endOfLoop; /* Label for the end of the insertion loop */ 560 int useTempTable = 0; /* Store SELECT results in intermediate table */ 561 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 562 int addrInsTop = 0; /* Jump to label "D" */ 563 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 564 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 565 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 566 int iDb; /* Index of database holding TABLE */ 567 Db *pDb; /* The database containing table being inserted into */ 568 int appendFlag = 0; /* True if the insert is likely to be an append */ 569 int withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 570 ExprList *pList = 0; /* List of VALUES() to be inserted */ 571 572 /* Register allocations */ 573 int regFromSelect = 0;/* Base register for data coming from SELECT */ 574 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 575 int regRowCount = 0; /* Memory cell used for the row counter */ 576 int regIns; /* Block of regs holding rowid+data being inserted */ 577 int regRowid; /* registers holding insert rowid */ 578 int regData; /* register holding first column to insert */ 579 int regEof = 0; /* Register recording end of SELECT data */ 580 int *aRegIdx = 0; /* One register allocated to each index */ 581 582 #ifndef SQLITE_OMIT_TRIGGER 583 int isView; /* True if attempting to insert into a view */ 584 Trigger *pTrigger; /* List of triggers on pTab, if required */ 585 int tmask; /* Mask of trigger times */ 586 #endif 587 588 db = pParse->db; 589 memset(&dest, 0, sizeof(dest)); 590 if( pParse->nErr || db->mallocFailed ){ 591 goto insert_cleanup; 592 } 593 594 /* If the Select object is really just a simple VALUES() list with a 595 ** single row values (the common case) then keep that one row of values 596 ** and go ahead and discard the Select object 597 */ 598 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 599 pList = pSelect->pEList; 600 pSelect->pEList = 0; 601 sqlite3SelectDelete(db, pSelect); 602 pSelect = 0; 603 } 604 605 /* Locate the table into which we will be inserting new information. 606 */ 607 assert( pTabList->nSrc==1 ); 608 zTab = pTabList->a[0].zName; 609 if( NEVER(zTab==0) ) goto insert_cleanup; 610 pTab = sqlite3SrcListLookup(pParse, pTabList); 611 if( pTab==0 ){ 612 goto insert_cleanup; 613 } 614 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 615 assert( iDb<db->nDb ); 616 pDb = &db->aDb[iDb]; 617 zDb = pDb->zName; 618 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 619 goto insert_cleanup; 620 } 621 withoutRowid = !HasRowid(pTab); 622 623 /* Figure out if we have any triggers and if the table being 624 ** inserted into is a view 625 */ 626 #ifndef SQLITE_OMIT_TRIGGER 627 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 628 isView = pTab->pSelect!=0; 629 #else 630 # define pTrigger 0 631 # define tmask 0 632 # define isView 0 633 #endif 634 #ifdef SQLITE_OMIT_VIEW 635 # undef isView 636 # define isView 0 637 #endif 638 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 639 640 /* If pTab is really a view, make sure it has been initialized. 641 ** ViewGetColumnNames() is a no-op if pTab is not a view. 642 */ 643 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 644 goto insert_cleanup; 645 } 646 647 /* Cannot insert into a read-only table. 648 */ 649 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 650 goto insert_cleanup; 651 } 652 653 /* Allocate a VDBE 654 */ 655 v = sqlite3GetVdbe(pParse); 656 if( v==0 ) goto insert_cleanup; 657 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 658 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 659 660 #ifndef SQLITE_OMIT_XFER_OPT 661 /* If the statement is of the form 662 ** 663 ** INSERT INTO <table1> SELECT * FROM <table2>; 664 ** 665 ** Then special optimizations can be applied that make the transfer 666 ** very fast and which reduce fragmentation of indices. 667 ** 668 ** This is the 2nd template. 669 */ 670 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 671 assert( !pTrigger ); 672 assert( pList==0 ); 673 goto insert_end; 674 } 675 #endif /* SQLITE_OMIT_XFER_OPT */ 676 677 /* If this is an AUTOINCREMENT table, look up the sequence number in the 678 ** sqlite_sequence table and store it in memory cell regAutoinc. 679 */ 680 regAutoinc = autoIncBegin(pParse, iDb, pTab); 681 682 /* Figure out how many columns of data are supplied. If the data 683 ** is coming from a SELECT statement, then generate a co-routine that 684 ** produces a single row of the SELECT on each invocation. The 685 ** co-routine is the common header to the 3rd and 4th templates. 686 */ 687 if( pSelect ){ 688 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ 689 int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest); 690 if( rc ) goto insert_cleanup; 691 692 regEof = dest.iSDParm + 1; 693 regFromSelect = dest.iSdst; 694 assert( pSelect->pEList ); 695 nColumn = pSelect->pEList->nExpr; 696 assert( dest.nSdst==nColumn ); 697 698 /* Set useTempTable to TRUE if the result of the SELECT statement 699 ** should be written into a temporary table (template 4). Set to 700 ** FALSE if each output row of the SELECT can be written directly into 701 ** the destination table (template 3). 702 ** 703 ** A temp table must be used if the table being updated is also one 704 ** of the tables being read by the SELECT statement. Also use a 705 ** temp table in the case of row triggers. 706 */ 707 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 708 useTempTable = 1; 709 } 710 711 if( useTempTable ){ 712 /* Invoke the coroutine to extract information from the SELECT 713 ** and add it to a transient table srcTab. The code generated 714 ** here is from the 4th template: 715 ** 716 ** B: open temp table 717 ** L: yield X 718 ** if EOF goto M 719 ** insert row from R..R+n into temp table 720 ** goto L 721 ** M: ... 722 */ 723 int regRec; /* Register to hold packed record */ 724 int regTempRowid; /* Register to hold temp table ROWID */ 725 int addrTop; /* Label "L" */ 726 int addrIf; /* Address of jump to M */ 727 728 srcTab = pParse->nTab++; 729 regRec = sqlite3GetTempReg(pParse); 730 regTempRowid = sqlite3GetTempReg(pParse); 731 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 732 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 733 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); 734 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 735 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 736 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 737 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 738 sqlite3VdbeJumpHere(v, addrIf); 739 sqlite3ReleaseTempReg(pParse, regRec); 740 sqlite3ReleaseTempReg(pParse, regTempRowid); 741 } 742 }else{ 743 /* This is the case if the data for the INSERT is coming from a VALUES 744 ** clause 745 */ 746 NameContext sNC; 747 memset(&sNC, 0, sizeof(sNC)); 748 sNC.pParse = pParse; 749 srcTab = -1; 750 assert( useTempTable==0 ); 751 nColumn = pList ? pList->nExpr : 0; 752 for(i=0; i<nColumn; i++){ 753 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 754 goto insert_cleanup; 755 } 756 } 757 } 758 759 /* Make sure the number of columns in the source data matches the number 760 ** of columns to be inserted into the table. 761 */ 762 if( IsVirtual(pTab) ){ 763 for(i=0; i<pTab->nCol; i++){ 764 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 765 } 766 } 767 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 768 sqlite3ErrorMsg(pParse, 769 "table %S has %d columns but %d values were supplied", 770 pTabList, 0, pTab->nCol-nHidden, nColumn); 771 goto insert_cleanup; 772 } 773 if( pColumn!=0 && nColumn!=pColumn->nId ){ 774 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 775 goto insert_cleanup; 776 } 777 778 /* If the INSERT statement included an IDLIST term, then make sure 779 ** all elements of the IDLIST really are columns of the table and 780 ** remember the column indices. 781 ** 782 ** If the table has an INTEGER PRIMARY KEY column and that column 783 ** is named in the IDLIST, then record in the ipkColumn variable 784 ** the index into IDLIST of the primary key column. ipkColumn is 785 ** the index of the primary key as it appears in IDLIST, not as 786 ** is appears in the original table. (The index of the INTEGER 787 ** PRIMARY KEY in the original table is pTab->iPKey.) 788 */ 789 if( pColumn ){ 790 for(i=0; i<pColumn->nId; i++){ 791 pColumn->a[i].idx = -1; 792 } 793 for(i=0; i<pColumn->nId; i++){ 794 for(j=0; j<pTab->nCol; j++){ 795 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 796 pColumn->a[i].idx = j; 797 if( j==pTab->iPKey ){ 798 ipkColumn = i; assert( !withoutRowid ); 799 } 800 break; 801 } 802 } 803 if( j>=pTab->nCol ){ 804 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 805 ipkColumn = i; 806 }else{ 807 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 808 pTabList, 0, pColumn->a[i].zName); 809 pParse->checkSchema = 1; 810 goto insert_cleanup; 811 } 812 } 813 } 814 } 815 816 /* If there is no IDLIST term but the table has an integer primary 817 ** key, the set the ipkColumn variable to the integer primary key 818 ** column index in the original table definition. 819 */ 820 if( pColumn==0 && nColumn>0 ){ 821 ipkColumn = pTab->iPKey; 822 } 823 824 /* Initialize the count of rows to be inserted 825 */ 826 if( db->flags & SQLITE_CountRows ){ 827 regRowCount = ++pParse->nMem; 828 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 829 } 830 831 /* If this is not a view, open the table and and all indices */ 832 if( !isView ){ 833 int nIdx; 834 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, 835 &iDataCur, &iIdxCur); 836 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 837 if( aRegIdx==0 ){ 838 goto insert_cleanup; 839 } 840 for(i=0; i<nIdx; i++){ 841 aRegIdx[i] = ++pParse->nMem; 842 } 843 } 844 845 /* This is the top of the main insertion loop */ 846 if( useTempTable ){ 847 /* This block codes the top of loop only. The complete loop is the 848 ** following pseudocode (template 4): 849 ** 850 ** rewind temp table 851 ** C: loop over rows of intermediate table 852 ** transfer values form intermediate table into <table> 853 ** end loop 854 ** D: ... 855 */ 856 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 857 addrCont = sqlite3VdbeCurrentAddr(v); 858 }else if( pSelect ){ 859 /* This block codes the top of loop only. The complete loop is the 860 ** following pseudocode (template 3): 861 ** 862 ** C: yield X 863 ** if EOF goto D 864 ** insert the select result into <table> from R..R+n 865 ** goto C 866 ** D: ... 867 */ 868 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 869 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 870 } 871 872 /* Allocate registers for holding the rowid of the new row, 873 ** the content of the new row, and the assemblied row record. 874 */ 875 regRowid = regIns = pParse->nMem+1; 876 pParse->nMem += pTab->nCol + 1; 877 if( IsVirtual(pTab) ){ 878 regRowid++; 879 pParse->nMem++; 880 } 881 regData = regRowid+1; 882 883 /* Run the BEFORE and INSTEAD OF triggers, if there are any 884 */ 885 endOfLoop = sqlite3VdbeMakeLabel(v); 886 if( tmask & TRIGGER_BEFORE ){ 887 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 888 889 /* build the NEW.* reference row. Note that if there is an INTEGER 890 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 891 ** translated into a unique ID for the row. But on a BEFORE trigger, 892 ** we do not know what the unique ID will be (because the insert has 893 ** not happened yet) so we substitute a rowid of -1 894 */ 895 if( ipkColumn<0 ){ 896 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 897 }else{ 898 int j1; 899 assert( !withoutRowid ); 900 if( useTempTable ){ 901 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 902 }else{ 903 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 904 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 905 } 906 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); 907 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 908 sqlite3VdbeJumpHere(v, j1); 909 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); 910 } 911 912 /* Cannot have triggers on a virtual table. If it were possible, 913 ** this block would have to account for hidden column. 914 */ 915 assert( !IsVirtual(pTab) ); 916 917 /* Create the new column data 918 */ 919 for(i=0; i<pTab->nCol; i++){ 920 if( pColumn==0 ){ 921 j = i; 922 }else{ 923 for(j=0; j<pColumn->nId; j++){ 924 if( pColumn->a[j].idx==i ) break; 925 } 926 } 927 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ 928 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 929 }else if( useTempTable ){ 930 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 931 }else{ 932 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 933 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 934 } 935 } 936 937 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 938 ** do not attempt any conversions before assembling the record. 939 ** If this is a real table, attempt conversions as required by the 940 ** table column affinities. 941 */ 942 if( !isView ){ 943 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); 944 sqlite3TableAffinityStr(v, pTab); 945 } 946 947 /* Fire BEFORE or INSTEAD OF triggers */ 948 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 949 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 950 951 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 952 } 953 954 /* Compute the content of the next row to insert into a range of 955 ** registers beginning at regIns. 956 */ 957 if( !isView ){ 958 if( IsVirtual(pTab) ){ 959 /* The row that the VUpdate opcode will delete: none */ 960 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 961 } 962 if( ipkColumn>=0 ){ 963 if( useTempTable ){ 964 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 965 }else if( pSelect ){ 966 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid); 967 }else{ 968 VdbeOp *pOp; 969 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 970 pOp = sqlite3VdbeGetOp(v, -1); 971 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 972 appendFlag = 1; 973 pOp->opcode = OP_NewRowid; 974 pOp->p1 = iDataCur; 975 pOp->p2 = regRowid; 976 pOp->p3 = regAutoinc; 977 } 978 } 979 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 980 ** to generate a unique primary key value. 981 */ 982 if( !appendFlag ){ 983 int j1; 984 if( !IsVirtual(pTab) ){ 985 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 986 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 987 sqlite3VdbeJumpHere(v, j1); 988 }else{ 989 j1 = sqlite3VdbeCurrentAddr(v); 990 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 991 } 992 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 993 } 994 }else if( IsVirtual(pTab) || withoutRowid ){ 995 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 996 }else{ 997 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 998 appendFlag = 1; 999 } 1000 autoIncStep(pParse, regAutoinc, regRowid); 1001 1002 /* Compute data for all columns of the new entry, beginning 1003 ** with the first column. 1004 */ 1005 nHidden = 0; 1006 for(i=0; i<pTab->nCol; i++){ 1007 int iRegStore = regRowid+1+i; 1008 if( i==pTab->iPKey ){ 1009 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 1010 ** Whenever this column is read, the rowid will be substituted 1011 ** in its place. Hence, fill this column with a NULL to avoid 1012 ** taking up data space with information that will never be used. */ 1013 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 1014 continue; 1015 } 1016 if( pColumn==0 ){ 1017 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1018 assert( IsVirtual(pTab) ); 1019 j = -1; 1020 nHidden++; 1021 }else{ 1022 j = i - nHidden; 1023 } 1024 }else{ 1025 for(j=0; j<pColumn->nId; j++){ 1026 if( pColumn->a[j].idx==i ) break; 1027 } 1028 } 1029 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1030 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 1031 }else if( useTempTable ){ 1032 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1033 }else if( pSelect ){ 1034 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1035 }else{ 1036 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1037 } 1038 } 1039 1040 /* Generate code to check constraints and generate index keys and 1041 ** do the insertion. 1042 */ 1043 #ifndef SQLITE_OMIT_VIRTUALTABLE 1044 if( IsVirtual(pTab) ){ 1045 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1046 sqlite3VtabMakeWritable(pParse, pTab); 1047 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1048 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1049 sqlite3MayAbort(pParse); 1050 }else 1051 #endif 1052 { 1053 int isReplace; /* Set to true if constraints may cause a replace */ 1054 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1055 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace 1056 ); 1057 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1058 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1059 regIns, aRegIdx, 0, appendFlag, isReplace==0); 1060 } 1061 } 1062 1063 /* Update the count of rows that are inserted 1064 */ 1065 if( (db->flags & SQLITE_CountRows)!=0 ){ 1066 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1067 } 1068 1069 if( pTrigger ){ 1070 /* Code AFTER triggers */ 1071 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1072 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1073 } 1074 1075 /* The bottom of the main insertion loop, if the data source 1076 ** is a SELECT statement. 1077 */ 1078 sqlite3VdbeResolveLabel(v, endOfLoop); 1079 if( useTempTable ){ 1080 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1081 sqlite3VdbeJumpHere(v, addrInsTop); 1082 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1083 }else if( pSelect ){ 1084 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1085 sqlite3VdbeJumpHere(v, addrInsTop); 1086 } 1087 1088 if( !IsVirtual(pTab) && !isView ){ 1089 /* Close all tables opened */ 1090 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); 1091 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1092 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); 1093 } 1094 } 1095 1096 insert_end: 1097 /* Update the sqlite_sequence table by storing the content of the 1098 ** maximum rowid counter values recorded while inserting into 1099 ** autoincrement tables. 1100 */ 1101 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1102 sqlite3AutoincrementEnd(pParse); 1103 } 1104 1105 /* 1106 ** Return the number of rows inserted. If this routine is 1107 ** generating code because of a call to sqlite3NestedParse(), do not 1108 ** invoke the callback function. 1109 */ 1110 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1111 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1112 sqlite3VdbeSetNumCols(v, 1); 1113 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1114 } 1115 1116 insert_cleanup: 1117 sqlite3SrcListDelete(db, pTabList); 1118 sqlite3ExprListDelete(db, pList); 1119 sqlite3SelectDelete(db, pSelect); 1120 sqlite3IdListDelete(db, pColumn); 1121 sqlite3DbFree(db, aRegIdx); 1122 } 1123 1124 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1125 ** thely may interfere with compilation of other functions in this file 1126 ** (or in another file, if this file becomes part of the amalgamation). */ 1127 #ifdef isView 1128 #undef isView 1129 #endif 1130 #ifdef pTrigger 1131 #undef pTrigger 1132 #endif 1133 #ifdef tmask 1134 #undef tmask 1135 #endif 1136 1137 /* 1138 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1139 ** on table pTab. 1140 ** 1141 ** The regNewData parameter is the first register in a range that contains 1142 ** the data to be inserted or the data after the update. There will be 1143 ** pTab->nCol+1 registers in this range. The first register (the one 1144 ** that regNewData points to) will contain the new rowid, or NULL in the 1145 ** case of a WITHOUT ROWID table. The second register in the range will 1146 ** contain the content of the first table column. The third register will 1147 ** contain the content of the second table column. And so forth. 1148 ** 1149 ** The regOldData parameter is similar to regNewData except that it contains 1150 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1151 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1152 ** checking regOldData for zero. 1153 ** 1154 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1155 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1156 ** might be modified by the UPDATE. If pkChng is false, then the key of 1157 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1158 ** 1159 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1160 ** was explicitly specified as part of the INSERT statement. If pkChng 1161 ** is zero, it means that the either rowid is computed automatically or 1162 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1163 ** pkChng will only be true if the INSERT statement provides an integer 1164 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1165 ** 1166 ** The code generated by this routine will store new index entries into 1167 ** registers identified by aRegIdx[]. No index entry is created for 1168 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1169 ** the same as the order of indices on the linked list of indices 1170 ** at pTab->pIndex. 1171 ** 1172 ** The caller must have already opened writeable cursors on the main 1173 ** table and all applicable indices (that is to say, all indices for which 1174 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1175 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1176 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1177 ** for the first index in the pTab->pIndex list. Cursors for other indices 1178 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1179 ** 1180 ** This routine also generates code to check constraints. NOT NULL, 1181 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1182 ** then the appropriate action is performed. There are five possible 1183 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1184 ** 1185 ** Constraint type Action What Happens 1186 ** --------------- ---------- ---------------------------------------- 1187 ** any ROLLBACK The current transaction is rolled back and 1188 ** sqlite3_step() returns immediately with a 1189 ** return code of SQLITE_CONSTRAINT. 1190 ** 1191 ** any ABORT Back out changes from the current command 1192 ** only (do not do a complete rollback) then 1193 ** cause sqlite3_step() to return immediately 1194 ** with SQLITE_CONSTRAINT. 1195 ** 1196 ** any FAIL Sqlite3_step() returns immediately with a 1197 ** return code of SQLITE_CONSTRAINT. The 1198 ** transaction is not rolled back and any 1199 ** changes to prior rows are retained. 1200 ** 1201 ** any IGNORE The attempt in insert or update the current 1202 ** row is skipped, without throwing an error. 1203 ** Processing continues with the next row. 1204 ** (There is an immediate jump to ignoreDest.) 1205 ** 1206 ** NOT NULL REPLACE The NULL value is replace by the default 1207 ** value for that column. If the default value 1208 ** is NULL, the action is the same as ABORT. 1209 ** 1210 ** UNIQUE REPLACE The other row that conflicts with the row 1211 ** being inserted is removed. 1212 ** 1213 ** CHECK REPLACE Illegal. The results in an exception. 1214 ** 1215 ** Which action to take is determined by the overrideError parameter. 1216 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1217 ** is used. Or if pParse->onError==OE_Default then the onError value 1218 ** for the constraint is used. 1219 */ 1220 void sqlite3GenerateConstraintChecks( 1221 Parse *pParse, /* The parser context */ 1222 Table *pTab, /* The table being inserted or updated */ 1223 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1224 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1225 int iIdxCur, /* First index cursor */ 1226 int regNewData, /* First register in a range holding values to insert */ 1227 int regOldData, /* Previous content. 0 for INSERTs */ 1228 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1229 u8 overrideError, /* Override onError to this if not OE_Default */ 1230 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1231 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1232 ){ 1233 Vdbe *v; /* VDBE under constrution */ 1234 Index *pIdx; /* Pointer to one of the indices */ 1235 Index *pPk = 0; /* The PRIMARY KEY index */ 1236 sqlite3 *db; /* Database connection */ 1237 int i; /* loop counter */ 1238 int ix; /* Index loop counter */ 1239 int nCol; /* Number of columns */ 1240 int onError; /* Conflict resolution strategy */ 1241 int j1; /* Addresss of jump instruction */ 1242 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1243 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1244 int ipkTop = 0; /* Top of the rowid change constraint check */ 1245 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1246 u8 isUpdate; /* True if this is an UPDATE operation */ 1247 int regRowid = -1; /* Register holding ROWID value */ 1248 1249 isUpdate = regOldData!=0; 1250 db = pParse->db; 1251 v = sqlite3GetVdbe(pParse); 1252 assert( v!=0 ); 1253 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1254 nCol = pTab->nCol; 1255 1256 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1257 ** normal rowid tables. nPkField is the number of key fields in the 1258 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1259 ** number of fields in the true primary key of the table. */ 1260 if( HasRowid(pTab) ){ 1261 pPk = 0; 1262 nPkField = 1; 1263 }else{ 1264 pPk = sqlite3PrimaryKeyIndex(pTab); 1265 nPkField = pPk->nKeyCol; 1266 } 1267 1268 /* Record that this module has started */ 1269 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1270 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1271 1272 /* Test all NOT NULL constraints. 1273 */ 1274 for(i=0; i<nCol; i++){ 1275 if( i==pTab->iPKey ){ 1276 continue; 1277 } 1278 onError = pTab->aCol[i].notNull; 1279 if( onError==OE_None ) continue; 1280 if( overrideError!=OE_Default ){ 1281 onError = overrideError; 1282 }else if( onError==OE_Default ){ 1283 onError = OE_Abort; 1284 } 1285 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1286 onError = OE_Abort; 1287 } 1288 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1289 || onError==OE_Ignore || onError==OE_Replace ); 1290 switch( onError ){ 1291 case OE_Abort: 1292 sqlite3MayAbort(pParse); 1293 /* Fall through */ 1294 case OE_Rollback: 1295 case OE_Fail: { 1296 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1297 pTab->aCol[i].zName); 1298 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1299 regNewData+1+i, zMsg, P4_DYNAMIC); 1300 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1301 break; 1302 } 1303 case OE_Ignore: { 1304 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1305 break; 1306 } 1307 default: { 1308 assert( onError==OE_Replace ); 1309 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1310 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1311 sqlite3VdbeJumpHere(v, j1); 1312 break; 1313 } 1314 } 1315 } 1316 1317 /* Test all CHECK constraints 1318 */ 1319 #ifndef SQLITE_OMIT_CHECK 1320 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1321 ExprList *pCheck = pTab->pCheck; 1322 pParse->ckBase = regNewData+1; 1323 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1324 for(i=0; i<pCheck->nExpr; i++){ 1325 int allOk = sqlite3VdbeMakeLabel(v); 1326 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); 1327 if( onError==OE_Ignore ){ 1328 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1329 }else{ 1330 char *zName = pCheck->a[i].zName; 1331 if( zName==0 ) zName = pTab->zName; 1332 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1333 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1334 onError, zName, P4_TRANSIENT, 1335 P5_ConstraintCheck); 1336 } 1337 sqlite3VdbeResolveLabel(v, allOk); 1338 } 1339 } 1340 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1341 1342 /* If rowid is changing, make sure the new rowid does not previously 1343 ** exist in the table. 1344 */ 1345 if( pkChng && pPk==0 ){ 1346 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1347 1348 /* Figure out what action to take in case of a rowid collision */ 1349 onError = pTab->keyConf; 1350 if( overrideError!=OE_Default ){ 1351 onError = overrideError; 1352 }else if( onError==OE_Default ){ 1353 onError = OE_Abort; 1354 } 1355 1356 if( isUpdate ){ 1357 /* pkChng!=0 does not mean that the rowid has change, only that 1358 ** it might have changed. Skip the conflict logic below if the rowid 1359 ** is unchanged. */ 1360 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1361 } 1362 1363 /* If the response to a rowid conflict is REPLACE but the response 1364 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1365 ** to defer the running of the rowid conflict checking until after 1366 ** the UNIQUE constraints have run. 1367 */ 1368 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1369 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1370 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1371 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1372 break; 1373 } 1374 } 1375 } 1376 1377 /* Check to see if the new rowid already exists in the table. Skip 1378 ** the following conflict logic if it does not. */ 1379 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1380 1381 /* Generate code that deals with a rowid collision */ 1382 switch( onError ){ 1383 default: { 1384 onError = OE_Abort; 1385 /* Fall thru into the next case */ 1386 } 1387 case OE_Rollback: 1388 case OE_Abort: 1389 case OE_Fail: { 1390 sqlite3RowidConstraint(pParse, onError, pTab); 1391 break; 1392 } 1393 case OE_Replace: { 1394 /* If there are DELETE triggers on this table and the 1395 ** recursive-triggers flag is set, call GenerateRowDelete() to 1396 ** remove the conflicting row from the table. This will fire 1397 ** the triggers and remove both the table and index b-tree entries. 1398 ** 1399 ** Otherwise, if there are no triggers or the recursive-triggers 1400 ** flag is not set, but the table has one or more indexes, call 1401 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1402 ** only. The table b-tree entry will be replaced by the new entry 1403 ** when it is inserted. 1404 ** 1405 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1406 ** also invoke MultiWrite() to indicate that this VDBE may require 1407 ** statement rollback (if the statement is aborted after the delete 1408 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1409 ** but being more selective here allows statements like: 1410 ** 1411 ** REPLACE INTO t(rowid) VALUES($newrowid) 1412 ** 1413 ** to run without a statement journal if there are no indexes on the 1414 ** table. 1415 */ 1416 Trigger *pTrigger = 0; 1417 if( db->flags&SQLITE_RecTriggers ){ 1418 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1419 } 1420 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1421 sqlite3MultiWrite(pParse); 1422 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1423 regNewData, 1, 0, OE_Replace, 1); 1424 }else if( pTab->pIndex ){ 1425 sqlite3MultiWrite(pParse); 1426 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); 1427 } 1428 seenReplace = 1; 1429 break; 1430 } 1431 case OE_Ignore: { 1432 /*assert( seenReplace==0 );*/ 1433 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1434 break; 1435 } 1436 } 1437 sqlite3VdbeResolveLabel(v, addrRowidOk); 1438 if( ipkTop ){ 1439 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1440 sqlite3VdbeJumpHere(v, ipkTop); 1441 } 1442 } 1443 1444 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1445 ** index and making sure that duplicate entries do not already exist. 1446 ** Compute the revised record entries for indices as we go. 1447 ** 1448 ** This loop also handles the case of the PRIMARY KEY index for a 1449 ** WITHOUT ROWID table. 1450 */ 1451 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1452 int regIdx; /* Range of registers hold conent for pIdx */ 1453 int regR; /* Range of registers holding conflicting PK */ 1454 int iThisCur; /* Cursor for this UNIQUE index */ 1455 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1456 1457 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1458 iThisCur = iIdxCur+ix; 1459 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1460 1461 /* Skip partial indices for which the WHERE clause is not true */ 1462 if( pIdx->pPartIdxWhere ){ 1463 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1464 pParse->ckBase = regNewData+1; 1465 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1466 SQLITE_JUMPIFNULL); 1467 pParse->ckBase = 0; 1468 } 1469 1470 /* Create a record for this index entry as it should appear after 1471 ** the insert or update. Store that record in the aRegIdx[ix] register 1472 */ 1473 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); 1474 for(i=0; i<pIdx->nColumn; i++){ 1475 int iField = pIdx->aiColumn[i]; 1476 int x; 1477 if( iField<0 || iField==pTab->iPKey ){ 1478 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ 1479 x = regNewData; 1480 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; 1481 }else{ 1482 x = iField + regNewData + 1; 1483 } 1484 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 1485 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1486 } 1487 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1488 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); 1489 VdbeComment((v, "for %s", pIdx->zName)); 1490 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); 1491 1492 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1493 ** of a WITHOUT ROWID table and there has been no change the 1494 ** primary key, then no collision is possible. The collision detection 1495 ** logic below can all be skipped. */ 1496 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1497 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1498 continue; 1499 } 1500 1501 /* Find out what action to take in case there is a uniqueness conflict */ 1502 onError = pIdx->onError; 1503 if( onError==OE_None ){ 1504 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1505 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1506 continue; /* pIdx is not a UNIQUE index */ 1507 } 1508 if( overrideError!=OE_Default ){ 1509 onError = overrideError; 1510 }else if( onError==OE_Default ){ 1511 onError = OE_Abort; 1512 } 1513 1514 /* Check to see if the new index entry will be unique */ 1515 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1516 regIdx, pIdx->nKeyCol); 1517 1518 /* Generate code to handle collisions */ 1519 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1520 if( isUpdate || onError==OE_Replace ){ 1521 if( HasRowid(pTab) ){ 1522 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1523 /* Conflict only if the rowid of the existing index entry 1524 ** is different from old-rowid */ 1525 if( isUpdate ){ 1526 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1527 } 1528 }else{ 1529 int x; 1530 /* Extract the PRIMARY KEY from the end of the index entry and 1531 ** store it in registers regR..regR+nPk-1 */ 1532 if( pIdx!=pPk ){ 1533 for(i=0; i<pPk->nKeyCol; i++){ 1534 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1535 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1536 VdbeComment((v, "%s.%s", pTab->zName, 1537 pTab->aCol[pPk->aiColumn[i]].zName)); 1538 } 1539 } 1540 if( isUpdate ){ 1541 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1542 ** table, only conflict if the new PRIMARY KEY values are actually 1543 ** different from the old. 1544 ** 1545 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1546 ** of the matched index row are different from the original PRIMARY 1547 ** KEY values of this row before the update. */ 1548 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1549 int op = OP_Ne; 1550 int regCmp = (pIdx->autoIndex==2 ? regIdx : regR); 1551 1552 for(i=0; i<pPk->nKeyCol; i++){ 1553 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1554 x = pPk->aiColumn[i]; 1555 if( i==(pPk->nKeyCol-1) ){ 1556 addrJump = addrUniqueOk; 1557 op = OP_Eq; 1558 } 1559 sqlite3VdbeAddOp4(v, op, 1560 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1561 ); 1562 } 1563 } 1564 } 1565 } 1566 1567 /* Generate code that executes if the new index entry is not unique */ 1568 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1569 || onError==OE_Ignore || onError==OE_Replace ); 1570 switch( onError ){ 1571 case OE_Rollback: 1572 case OE_Abort: 1573 case OE_Fail: { 1574 sqlite3UniqueConstraint(pParse, onError, pIdx); 1575 break; 1576 } 1577 case OE_Ignore: { 1578 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1579 break; 1580 } 1581 default: { 1582 Trigger *pTrigger = 0; 1583 assert( onError==OE_Replace ); 1584 sqlite3MultiWrite(pParse); 1585 if( db->flags&SQLITE_RecTriggers ){ 1586 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1587 } 1588 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1589 regR, nPkField, 0, OE_Replace, pIdx==pPk); 1590 seenReplace = 1; 1591 break; 1592 } 1593 } 1594 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1595 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1596 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1597 } 1598 if( ipkTop ){ 1599 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); 1600 sqlite3VdbeJumpHere(v, ipkBottom); 1601 } 1602 1603 *pbMayReplace = seenReplace; 1604 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1605 } 1606 1607 /* 1608 ** This routine generates code to finish the INSERT or UPDATE operation 1609 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1610 ** A consecutive range of registers starting at regNewData contains the 1611 ** rowid and the content to be inserted. 1612 ** 1613 ** The arguments to this routine should be the same as the first six 1614 ** arguments to sqlite3GenerateConstraintChecks. 1615 */ 1616 void sqlite3CompleteInsertion( 1617 Parse *pParse, /* The parser context */ 1618 Table *pTab, /* the table into which we are inserting */ 1619 int iDataCur, /* Cursor of the canonical data source */ 1620 int iIdxCur, /* First index cursor */ 1621 int regNewData, /* Range of content */ 1622 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1623 int isUpdate, /* True for UPDATE, False for INSERT */ 1624 int appendBias, /* True if this is likely to be an append */ 1625 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1626 ){ 1627 Vdbe *v; /* Prepared statements under construction */ 1628 Index *pIdx; /* An index being inserted or updated */ 1629 u8 pik_flags; /* flag values passed to the btree insert */ 1630 int regData; /* Content registers (after the rowid) */ 1631 int regRec; /* Register holding assemblied record for the table */ 1632 int i; /* Loop counter */ 1633 1634 v = sqlite3GetVdbe(pParse); 1635 assert( v!=0 ); 1636 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1637 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1638 if( aRegIdx[i]==0 ) continue; 1639 if( pIdx->pPartIdxWhere ){ 1640 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1641 } 1642 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); 1643 pik_flags = 0; 1644 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; 1645 if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ 1646 assert( pParse->nested==0 ); 1647 pik_flags |= OPFLAG_NCHANGE; 1648 } 1649 if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); 1650 } 1651 if( !HasRowid(pTab) ) return; 1652 regData = regNewData + 1; 1653 regRec = sqlite3GetTempReg(pParse); 1654 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1655 sqlite3TableAffinityStr(v, pTab); 1656 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1657 if( pParse->nested ){ 1658 pik_flags = 0; 1659 }else{ 1660 pik_flags = OPFLAG_NCHANGE; 1661 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1662 } 1663 if( appendBias ){ 1664 pik_flags |= OPFLAG_APPEND; 1665 } 1666 if( useSeekResult ){ 1667 pik_flags |= OPFLAG_USESEEKRESULT; 1668 } 1669 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1670 if( !pParse->nested ){ 1671 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); 1672 } 1673 sqlite3VdbeChangeP5(v, pik_flags); 1674 } 1675 1676 /* 1677 ** Allocate cursors for the pTab table and all its indices and generate 1678 ** code to open and initialized those cursors. 1679 ** 1680 ** The cursor for the object that contains the complete data (normally 1681 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1682 ** ROWID table) is returned in *piDataCur. The first index cursor is 1683 ** returned in *piIdxCur. The number of indices is returned. 1684 ** 1685 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1686 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1687 ** If iBase is negative, then allocate the next available cursor. 1688 ** 1689 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1690 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1691 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1692 ** pTab->pIndex list. 1693 */ 1694 int sqlite3OpenTableAndIndices( 1695 Parse *pParse, /* Parsing context */ 1696 Table *pTab, /* Table to be opened */ 1697 int op, /* OP_OpenRead or OP_OpenWrite */ 1698 int iBase, /* Use this for the table cursor, if there is one */ 1699 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1700 int *piDataCur, /* Write the database source cursor number here */ 1701 int *piIdxCur /* Write the first index cursor number here */ 1702 ){ 1703 int i; 1704 int iDb; 1705 int iDataCur; 1706 Index *pIdx; 1707 Vdbe *v; 1708 1709 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1710 if( IsVirtual(pTab) ){ 1711 assert( aToOpen==0 ); 1712 *piDataCur = 0; 1713 *piIdxCur = 1; 1714 return 0; 1715 } 1716 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1717 v = sqlite3GetVdbe(pParse); 1718 assert( v!=0 ); 1719 if( iBase<0 ) iBase = pParse->nTab; 1720 iDataCur = iBase++; 1721 if( piDataCur ) *piDataCur = iDataCur; 1722 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1723 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1724 }else{ 1725 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1726 } 1727 if( piIdxCur ) *piIdxCur = iBase; 1728 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1729 int iIdxCur = iBase++; 1730 assert( pIdx->pSchema==pTab->pSchema ); 1731 if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){ 1732 *piDataCur = iIdxCur; 1733 } 1734 if( aToOpen==0 || aToOpen[i+1] ){ 1735 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1736 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1737 VdbeComment((v, "%s", pIdx->zName)); 1738 } 1739 } 1740 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1741 return i; 1742 } 1743 1744 1745 #ifdef SQLITE_TEST 1746 /* 1747 ** The following global variable is incremented whenever the 1748 ** transfer optimization is used. This is used for testing 1749 ** purposes only - to make sure the transfer optimization really 1750 ** is happening when it is suppose to. 1751 */ 1752 int sqlite3_xferopt_count; 1753 #endif /* SQLITE_TEST */ 1754 1755 1756 #ifndef SQLITE_OMIT_XFER_OPT 1757 /* 1758 ** Check to collation names to see if they are compatible. 1759 */ 1760 static int xferCompatibleCollation(const char *z1, const char *z2){ 1761 if( z1==0 ){ 1762 return z2==0; 1763 } 1764 if( z2==0 ){ 1765 return 0; 1766 } 1767 return sqlite3StrICmp(z1, z2)==0; 1768 } 1769 1770 1771 /* 1772 ** Check to see if index pSrc is compatible as a source of data 1773 ** for index pDest in an insert transfer optimization. The rules 1774 ** for a compatible index: 1775 ** 1776 ** * The index is over the same set of columns 1777 ** * The same DESC and ASC markings occurs on all columns 1778 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1779 ** * The same collating sequence on each column 1780 ** * The index has the exact same WHERE clause 1781 */ 1782 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1783 int i; 1784 assert( pDest && pSrc ); 1785 assert( pDest->pTable!=pSrc->pTable ); 1786 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1787 return 0; /* Different number of columns */ 1788 } 1789 if( pDest->onError!=pSrc->onError ){ 1790 return 0; /* Different conflict resolution strategies */ 1791 } 1792 for(i=0; i<pSrc->nKeyCol; i++){ 1793 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1794 return 0; /* Different columns indexed */ 1795 } 1796 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1797 return 0; /* Different sort orders */ 1798 } 1799 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1800 return 0; /* Different collating sequences */ 1801 } 1802 } 1803 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1804 return 0; /* Different WHERE clauses */ 1805 } 1806 1807 /* If no test above fails then the indices must be compatible */ 1808 return 1; 1809 } 1810 1811 /* 1812 ** Attempt the transfer optimization on INSERTs of the form 1813 ** 1814 ** INSERT INTO tab1 SELECT * FROM tab2; 1815 ** 1816 ** The xfer optimization transfers raw records from tab2 over to tab1. 1817 ** Columns are not decoded and reassemblied, which greatly improves 1818 ** performance. Raw index records are transferred in the same way. 1819 ** 1820 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1821 ** There are lots of rules for determining compatibility - see comments 1822 ** embedded in the code for details. 1823 ** 1824 ** This routine returns TRUE if the optimization is guaranteed to be used. 1825 ** Sometimes the xfer optimization will only work if the destination table 1826 ** is empty - a factor that can only be determined at run-time. In that 1827 ** case, this routine generates code for the xfer optimization but also 1828 ** does a test to see if the destination table is empty and jumps over the 1829 ** xfer optimization code if the test fails. In that case, this routine 1830 ** returns FALSE so that the caller will know to go ahead and generate 1831 ** an unoptimized transfer. This routine also returns FALSE if there 1832 ** is no chance that the xfer optimization can be applied. 1833 ** 1834 ** This optimization is particularly useful at making VACUUM run faster. 1835 */ 1836 static int xferOptimization( 1837 Parse *pParse, /* Parser context */ 1838 Table *pDest, /* The table we are inserting into */ 1839 Select *pSelect, /* A SELECT statement to use as the data source */ 1840 int onError, /* How to handle constraint errors */ 1841 int iDbDest /* The database of pDest */ 1842 ){ 1843 ExprList *pEList; /* The result set of the SELECT */ 1844 Table *pSrc; /* The table in the FROM clause of SELECT */ 1845 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1846 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1847 int i; /* Loop counter */ 1848 int iDbSrc; /* The database of pSrc */ 1849 int iSrc, iDest; /* Cursors from source and destination */ 1850 int addr1, addr2; /* Loop addresses */ 1851 int emptyDestTest = 0; /* Address of test for empty pDest */ 1852 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1853 Vdbe *v; /* The VDBE we are building */ 1854 int regAutoinc; /* Memory register used by AUTOINC */ 1855 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1856 int regData, regRowid; /* Registers holding data and rowid */ 1857 1858 if( pSelect==0 ){ 1859 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1860 } 1861 if( pParse->pWith || pSelect->pWith ){ 1862 /* Do not attempt to process this query if there are an WITH clauses 1863 ** attached to it. Proceeding may generate a false "no such table: xxx" 1864 ** error if pSelect reads from a CTE named "xxx". */ 1865 return 0; 1866 } 1867 if( sqlite3TriggerList(pParse, pDest) ){ 1868 return 0; /* tab1 must not have triggers */ 1869 } 1870 #ifndef SQLITE_OMIT_VIRTUALTABLE 1871 if( pDest->tabFlags & TF_Virtual ){ 1872 return 0; /* tab1 must not be a virtual table */ 1873 } 1874 #endif 1875 if( onError==OE_Default ){ 1876 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1877 if( onError==OE_Default ) onError = OE_Abort; 1878 } 1879 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1880 if( pSelect->pSrc->nSrc!=1 ){ 1881 return 0; /* FROM clause must have exactly one term */ 1882 } 1883 if( pSelect->pSrc->a[0].pSelect ){ 1884 return 0; /* FROM clause cannot contain a subquery */ 1885 } 1886 if( pSelect->pWhere ){ 1887 return 0; /* SELECT may not have a WHERE clause */ 1888 } 1889 if( pSelect->pOrderBy ){ 1890 return 0; /* SELECT may not have an ORDER BY clause */ 1891 } 1892 /* Do not need to test for a HAVING clause. If HAVING is present but 1893 ** there is no ORDER BY, we will get an error. */ 1894 if( pSelect->pGroupBy ){ 1895 return 0; /* SELECT may not have a GROUP BY clause */ 1896 } 1897 if( pSelect->pLimit ){ 1898 return 0; /* SELECT may not have a LIMIT clause */ 1899 } 1900 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1901 if( pSelect->pPrior ){ 1902 return 0; /* SELECT may not be a compound query */ 1903 } 1904 if( pSelect->selFlags & SF_Distinct ){ 1905 return 0; /* SELECT may not be DISTINCT */ 1906 } 1907 pEList = pSelect->pEList; 1908 assert( pEList!=0 ); 1909 if( pEList->nExpr!=1 ){ 1910 return 0; /* The result set must have exactly one column */ 1911 } 1912 assert( pEList->a[0].pExpr ); 1913 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1914 return 0; /* The result set must be the special operator "*" */ 1915 } 1916 1917 /* At this point we have established that the statement is of the 1918 ** correct syntactic form to participate in this optimization. Now 1919 ** we have to check the semantics. 1920 */ 1921 pItem = pSelect->pSrc->a; 1922 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 1923 if( pSrc==0 ){ 1924 return 0; /* FROM clause does not contain a real table */ 1925 } 1926 if( pSrc==pDest ){ 1927 return 0; /* tab1 and tab2 may not be the same table */ 1928 } 1929 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 1930 return 0; /* source and destination must both be WITHOUT ROWID or not */ 1931 } 1932 #ifndef SQLITE_OMIT_VIRTUALTABLE 1933 if( pSrc->tabFlags & TF_Virtual ){ 1934 return 0; /* tab2 must not be a virtual table */ 1935 } 1936 #endif 1937 if( pSrc->pSelect ){ 1938 return 0; /* tab2 may not be a view */ 1939 } 1940 if( pDest->nCol!=pSrc->nCol ){ 1941 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1942 } 1943 if( pDest->iPKey!=pSrc->iPKey ){ 1944 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1945 } 1946 for(i=0; i<pDest->nCol; i++){ 1947 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1948 return 0; /* Affinity must be the same on all columns */ 1949 } 1950 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1951 return 0; /* Collating sequence must be the same on all columns */ 1952 } 1953 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1954 return 0; /* tab2 must be NOT NULL if tab1 is */ 1955 } 1956 } 1957 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1958 if( pDestIdx->onError!=OE_None ){ 1959 destHasUniqueIdx = 1; 1960 } 1961 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1962 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1963 } 1964 if( pSrcIdx==0 ){ 1965 return 0; /* pDestIdx has no corresponding index in pSrc */ 1966 } 1967 } 1968 #ifndef SQLITE_OMIT_CHECK 1969 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 1970 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1971 } 1972 #endif 1973 #ifndef SQLITE_OMIT_FOREIGN_KEY 1974 /* Disallow the transfer optimization if the destination table constains 1975 ** any foreign key constraints. This is more restrictive than necessary. 1976 ** But the main beneficiary of the transfer optimization is the VACUUM 1977 ** command, and the VACUUM command disables foreign key constraints. So 1978 ** the extra complication to make this rule less restrictive is probably 1979 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 1980 */ 1981 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 1982 return 0; 1983 } 1984 #endif 1985 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ 1986 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 1987 } 1988 1989 /* If we get this far, it means that the xfer optimization is at 1990 ** least a possibility, though it might only work if the destination 1991 ** table (tab1) is initially empty. 1992 */ 1993 #ifdef SQLITE_TEST 1994 sqlite3_xferopt_count++; 1995 #endif 1996 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1997 v = sqlite3GetVdbe(pParse); 1998 sqlite3CodeVerifySchema(pParse, iDbSrc); 1999 iSrc = pParse->nTab++; 2000 iDest = pParse->nTab++; 2001 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2002 regData = sqlite3GetTempReg(pParse); 2003 regRowid = sqlite3GetTempReg(pParse); 2004 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2005 assert( HasRowid(pDest) || destHasUniqueIdx ); 2006 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2007 || destHasUniqueIdx /* (2) */ 2008 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2009 ){ 2010 /* In some circumstances, we are able to run the xfer optimization 2011 ** only if the destination table is initially empty. This code makes 2012 ** that determination. Conditions under which the destination must 2013 ** be empty: 2014 ** 2015 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2016 ** (If the destination is not initially empty, the rowid fields 2017 ** of index entries might need to change.) 2018 ** 2019 ** (2) The destination has a unique index. (The xfer optimization 2020 ** is unable to test uniqueness.) 2021 ** 2022 ** (3) onError is something other than OE_Abort and OE_Rollback. 2023 */ 2024 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 2025 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 2026 sqlite3VdbeJumpHere(v, addr1); 2027 } 2028 if( HasRowid(pSrc) ){ 2029 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2030 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 2031 if( pDest->iPKey>=0 ){ 2032 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2033 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2034 sqlite3RowidConstraint(pParse, onError, pDest); 2035 sqlite3VdbeJumpHere(v, addr2); 2036 autoIncStep(pParse, regAutoinc, regRowid); 2037 }else if( pDest->pIndex==0 ){ 2038 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2039 }else{ 2040 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2041 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2042 } 2043 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 2044 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 2045 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 2046 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 2047 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 2048 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2049 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2050 }else{ 2051 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2052 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2053 } 2054 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2055 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2056 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2057 } 2058 assert( pSrcIdx ); 2059 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2060 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2061 VdbeComment((v, "%s", pSrcIdx->zName)); 2062 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2063 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2064 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2065 VdbeComment((v, "%s", pDestIdx->zName)); 2066 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 2067 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 2068 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 2069 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 2070 sqlite3VdbeJumpHere(v, addr1); 2071 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2072 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2073 } 2074 sqlite3VdbeJumpHere(v, emptySrcTest); 2075 sqlite3ReleaseTempReg(pParse, regRowid); 2076 sqlite3ReleaseTempReg(pParse, regData); 2077 if( emptyDestTest ){ 2078 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2079 sqlite3VdbeJumpHere(v, emptyDestTest); 2080 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2081 return 0; 2082 }else{ 2083 return 1; 2084 } 2085 } 2086 #endif /* SQLITE_OMIT_XFER_OPT */ 2087