xref: /sqlite-3.40.0/src/insert.c (revision a3f06598)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.260 2009/02/28 10:47:42 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P4 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 **
32 ** An extra 'b' is appended to the end of the string to cover the
33 ** rowid that appears as the last column in every index.
34 */
35 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
36   if( !pIdx->zColAff ){
37     /* The first time a column affinity string for a particular index is
38     ** required, it is allocated and populated here. It is then stored as
39     ** a member of the Index structure for subsequent use.
40     **
41     ** The column affinity string will eventually be deleted by
42     ** sqliteDeleteIndex() when the Index structure itself is cleaned
43     ** up.
44     */
45     int n;
46     Table *pTab = pIdx->pTable;
47     sqlite3 *db = sqlite3VdbeDb(v);
48     pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
49     if( !pIdx->zColAff ){
50       db->mallocFailed = 1;
51       return;
52     }
53     for(n=0; n<pIdx->nColumn; n++){
54       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
55     }
56     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
57     pIdx->zColAff[n] = 0;
58   }
59 
60   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
61 }
62 
63 /*
64 ** Set P4 of the most recently inserted opcode to a column affinity
65 ** string for table pTab. A column affinity string has one character
66 ** for each column indexed by the index, according to the affinity of the
67 ** column:
68 **
69 **  Character      Column affinity
70 **  ------------------------------
71 **  'a'            TEXT
72 **  'b'            NONE
73 **  'c'            NUMERIC
74 **  'd'            INTEGER
75 **  'e'            REAL
76 */
77 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
78   /* The first time a column affinity string for a particular table
79   ** is required, it is allocated and populated here. It is then
80   ** stored as a member of the Table structure for subsequent use.
81   **
82   ** The column affinity string will eventually be deleted by
83   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
84   */
85   if( !pTab->zColAff ){
86     char *zColAff;
87     int i;
88     sqlite3 *db = sqlite3VdbeDb(v);
89 
90     zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
91     if( !zColAff ){
92       db->mallocFailed = 1;
93       return;
94     }
95 
96     for(i=0; i<pTab->nCol; i++){
97       zColAff[i] = pTab->aCol[i].affinity;
98     }
99     zColAff[pTab->nCol] = '\0';
100 
101     pTab->zColAff = zColAff;
102   }
103 
104   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
105 }
106 
107 /*
108 ** Return non-zero if the table pTab in database iDb or any of its indices
109 ** have been opened at any point in the VDBE program beginning at location
110 ** iStartAddr throught the end of the program.  This is used to see if
111 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
112 ** run without using temporary table for the results of the SELECT.
113 */
114 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
115   int i;
116   int iEnd = sqlite3VdbeCurrentAddr(v);
117   for(i=iStartAddr; i<iEnd; i++){
118     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
119     assert( pOp!=0 );
120     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
121       Index *pIndex;
122       int tnum = pOp->p2;
123       if( tnum==pTab->tnum ){
124         return 1;
125       }
126       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
127         if( tnum==pIndex->tnum ){
128           return 1;
129         }
130       }
131     }
132 #ifndef SQLITE_OMIT_VIRTUALTABLE
133     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
134       assert( pOp->p4.pVtab!=0 );
135       assert( pOp->p4type==P4_VTAB );
136       return 1;
137     }
138 #endif
139   }
140   return 0;
141 }
142 
143 #ifndef SQLITE_OMIT_AUTOINCREMENT
144 /*
145 ** Write out code to initialize the autoincrement logic.  This code
146 ** looks up the current autoincrement value in the sqlite_sequence
147 ** table and stores that value in a register.  Code generated by
148 ** autoIncStep() will keep that register holding the largest
149 ** rowid value.  Code generated by autoIncEnd() will write the new
150 ** largest value of the counter back into the sqlite_sequence table.
151 **
152 ** This routine returns the index of the mem[] cell that contains
153 ** the maximum rowid counter.
154 **
155 ** Three consecutive registers are allocated by this routine.  The
156 ** first two hold the name of the target table and the maximum rowid
157 ** inserted into the target table, respectively.
158 ** The third holds the rowid in sqlite_sequence where we will
159 ** write back the revised maximum rowid.  This routine returns the
160 ** index of the second of these three registers.
161 */
162 static int autoIncBegin(
163   Parse *pParse,      /* Parsing context */
164   int iDb,            /* Index of the database holding pTab */
165   Table *pTab         /* The table we are writing to */
166 ){
167   int memId = 0;      /* Register holding maximum rowid */
168   if( pTab->tabFlags & TF_Autoincrement ){
169     Vdbe *v = pParse->pVdbe;
170     Db *pDb = &pParse->db->aDb[iDb];
171     int iCur = pParse->nTab++;
172     int addr;               /* Address of the top of the loop */
173     assert( v );
174     pParse->nMem++;         /* Holds name of table */
175     memId = ++pParse->nMem;
176     pParse->nMem++;
177     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
178     addr = sqlite3VdbeCurrentAddr(v);
179     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
180     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
181     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
182     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
183     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
184     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
185     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
186     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
187     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
188     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
189     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
190   }
191   return memId;
192 }
193 
194 /*
195 ** Update the maximum rowid for an autoincrement calculation.
196 **
197 ** This routine should be called when the top of the stack holds a
198 ** new rowid that is about to be inserted.  If that new rowid is
199 ** larger than the maximum rowid in the memId memory cell, then the
200 ** memory cell is updated.  The stack is unchanged.
201 */
202 static void autoIncStep(Parse *pParse, int memId, int regRowid){
203   if( memId>0 ){
204     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
205   }
206 }
207 
208 /*
209 ** After doing one or more inserts, the maximum rowid is stored
210 ** in reg[memId].  Generate code to write this value back into the
211 ** the sqlite_sequence table.
212 */
213 static void autoIncEnd(
214   Parse *pParse,     /* The parsing context */
215   int iDb,           /* Index of the database holding pTab */
216   Table *pTab,       /* Table we are inserting into */
217   int memId          /* Memory cell holding the maximum rowid */
218 ){
219   if( pTab->tabFlags & TF_Autoincrement ){
220     int iCur = pParse->nTab++;
221     Vdbe *v = pParse->pVdbe;
222     Db *pDb = &pParse->db->aDb[iDb];
223     int j1;
224     int iRec = ++pParse->nMem;    /* Memory cell used for record */
225 
226     assert( v );
227     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
228     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
229     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
230     sqlite3VdbeJumpHere(v, j1);
231     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
232     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
233     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
234     sqlite3VdbeAddOp1(v, OP_Close, iCur);
235   }
236 }
237 #else
238 /*
239 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
240 ** above are all no-ops
241 */
242 # define autoIncBegin(A,B,C) (0)
243 # define autoIncStep(A,B,C)
244 # define autoIncEnd(A,B,C,D)
245 #endif /* SQLITE_OMIT_AUTOINCREMENT */
246 
247 
248 /* Forward declaration */
249 static int xferOptimization(
250   Parse *pParse,        /* Parser context */
251   Table *pDest,         /* The table we are inserting into */
252   Select *pSelect,      /* A SELECT statement to use as the data source */
253   int onError,          /* How to handle constraint errors */
254   int iDbDest           /* The database of pDest */
255 );
256 
257 /*
258 ** This routine is call to handle SQL of the following forms:
259 **
260 **    insert into TABLE (IDLIST) values(EXPRLIST)
261 **    insert into TABLE (IDLIST) select
262 **
263 ** The IDLIST following the table name is always optional.  If omitted,
264 ** then a list of all columns for the table is substituted.  The IDLIST
265 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
266 **
267 ** The pList parameter holds EXPRLIST in the first form of the INSERT
268 ** statement above, and pSelect is NULL.  For the second form, pList is
269 ** NULL and pSelect is a pointer to the select statement used to generate
270 ** data for the insert.
271 **
272 ** The code generated follows one of four templates.  For a simple
273 ** select with data coming from a VALUES clause, the code executes
274 ** once straight down through.  Pseudo-code follows (we call this
275 ** the "1st template"):
276 **
277 **         open write cursor to <table> and its indices
278 **         puts VALUES clause expressions onto the stack
279 **         write the resulting record into <table>
280 **         cleanup
281 **
282 ** The three remaining templates assume the statement is of the form
283 **
284 **   INSERT INTO <table> SELECT ...
285 **
286 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
287 ** in other words if the SELECT pulls all columns from a single table
288 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
289 ** if <table2> and <table1> are distinct tables but have identical
290 ** schemas, including all the same indices, then a special optimization
291 ** is invoked that copies raw records from <table2> over to <table1>.
292 ** See the xferOptimization() function for the implementation of this
293 ** template.  This is the 2nd template.
294 **
295 **         open a write cursor to <table>
296 **         open read cursor on <table2>
297 **         transfer all records in <table2> over to <table>
298 **         close cursors
299 **         foreach index on <table>
300 **           open a write cursor on the <table> index
301 **           open a read cursor on the corresponding <table2> index
302 **           transfer all records from the read to the write cursors
303 **           close cursors
304 **         end foreach
305 **
306 ** The 3rd template is for when the second template does not apply
307 ** and the SELECT clause does not read from <table> at any time.
308 ** The generated code follows this template:
309 **
310 **         EOF <- 0
311 **         X <- A
312 **         goto B
313 **      A: setup for the SELECT
314 **         loop over the rows in the SELECT
315 **           load values into registers R..R+n
316 **           yield X
317 **         end loop
318 **         cleanup after the SELECT
319 **         EOF <- 1
320 **         yield X
321 **         goto A
322 **      B: open write cursor to <table> and its indices
323 **      C: yield X
324 **         if EOF goto D
325 **         insert the select result into <table> from R..R+n
326 **         goto C
327 **      D: cleanup
328 **
329 ** The 4th template is used if the insert statement takes its
330 ** values from a SELECT but the data is being inserted into a table
331 ** that is also read as part of the SELECT.  In the third form,
332 ** we have to use a intermediate table to store the results of
333 ** the select.  The template is like this:
334 **
335 **         EOF <- 0
336 **         X <- A
337 **         goto B
338 **      A: setup for the SELECT
339 **         loop over the tables in the SELECT
340 **           load value into register R..R+n
341 **           yield X
342 **         end loop
343 **         cleanup after the SELECT
344 **         EOF <- 1
345 **         yield X
346 **         halt-error
347 **      B: open temp table
348 **      L: yield X
349 **         if EOF goto M
350 **         insert row from R..R+n into temp table
351 **         goto L
352 **      M: open write cursor to <table> and its indices
353 **         rewind temp table
354 **      C: loop over rows of intermediate table
355 **           transfer values form intermediate table into <table>
356 **         end loop
357 **      D: cleanup
358 */
359 void sqlite3Insert(
360   Parse *pParse,        /* Parser context */
361   SrcList *pTabList,    /* Name of table into which we are inserting */
362   ExprList *pList,      /* List of values to be inserted */
363   Select *pSelect,      /* A SELECT statement to use as the data source */
364   IdList *pColumn,      /* Column names corresponding to IDLIST. */
365   int onError           /* How to handle constraint errors */
366 ){
367   sqlite3 *db;          /* The main database structure */
368   Table *pTab;          /* The table to insert into.  aka TABLE */
369   char *zTab;           /* Name of the table into which we are inserting */
370   const char *zDb;      /* Name of the database holding this table */
371   int i, j, idx;        /* Loop counters */
372   Vdbe *v;              /* Generate code into this virtual machine */
373   Index *pIdx;          /* For looping over indices of the table */
374   int nColumn;          /* Number of columns in the data */
375   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
376   int baseCur = 0;      /* VDBE Cursor number for pTab */
377   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
378   int endOfLoop;        /* Label for the end of the insertion loop */
379   int useTempTable = 0; /* Store SELECT results in intermediate table */
380   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
381   int addrInsTop = 0;   /* Jump to label "D" */
382   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
383   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
384   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
385   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
386   int iDb;              /* Index of database holding TABLE */
387   Db *pDb;              /* The database containing table being inserted into */
388   int appendFlag = 0;   /* True if the insert is likely to be an append */
389 
390   /* Register allocations */
391   int regFromSelect = 0;/* Base register for data coming from SELECT */
392   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
393   int regRowCount = 0;  /* Memory cell used for the row counter */
394   int regIns;           /* Block of regs holding rowid+data being inserted */
395   int regRowid;         /* registers holding insert rowid */
396   int regData;          /* register holding first column to insert */
397   int regRecord;        /* Holds the assemblied row record */
398   int regEof = 0;       /* Register recording end of SELECT data */
399   int *aRegIdx = 0;     /* One register allocated to each index */
400 
401 
402 #ifndef SQLITE_OMIT_TRIGGER
403   int isView;                 /* True if attempting to insert into a view */
404   Trigger *pTrigger;          /* List of triggers on pTab, if required */
405   int tmask;                  /* Mask of trigger times */
406 #endif
407 
408   db = pParse->db;
409   memset(&dest, 0, sizeof(dest));
410   if( pParse->nErr || db->mallocFailed ){
411     goto insert_cleanup;
412   }
413 
414   /* Locate the table into which we will be inserting new information.
415   */
416   assert( pTabList->nSrc==1 );
417   zTab = pTabList->a[0].zName;
418   if( zTab==0 ) goto insert_cleanup;
419   pTab = sqlite3SrcListLookup(pParse, pTabList);
420   if( pTab==0 ){
421     goto insert_cleanup;
422   }
423   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
424   assert( iDb<db->nDb );
425   pDb = &db->aDb[iDb];
426   zDb = pDb->zName;
427   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
428     goto insert_cleanup;
429   }
430 
431   /* Figure out if we have any triggers and if the table being
432   ** inserted into is a view
433   */
434 #ifndef SQLITE_OMIT_TRIGGER
435   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
436   isView = pTab->pSelect!=0;
437 #else
438 # define pTrigger 0
439 # define tmask 0
440 # define isView 0
441 #endif
442 #ifdef SQLITE_OMIT_VIEW
443 # undef isView
444 # define isView 0
445 #endif
446   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
447 
448   /* Ensure that:
449   *  (a) the table is not read-only,
450   *  (b) that if it is a view then ON INSERT triggers exist
451   */
452   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
453     goto insert_cleanup;
454   }
455   assert( pTab!=0 );
456 
457   /* If pTab is really a view, make sure it has been initialized.
458   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
459   ** module table).
460   */
461   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
462     goto insert_cleanup;
463   }
464 
465   /* Allocate a VDBE
466   */
467   v = sqlite3GetVdbe(pParse);
468   if( v==0 ) goto insert_cleanup;
469   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
470   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
471 
472   /* if there are row triggers, allocate a temp table for new.* references. */
473   if( pTrigger ){
474     newIdx = pParse->nTab++;
475   }
476 
477 #ifndef SQLITE_OMIT_XFER_OPT
478   /* If the statement is of the form
479   **
480   **       INSERT INTO <table1> SELECT * FROM <table2>;
481   **
482   ** Then special optimizations can be applied that make the transfer
483   ** very fast and which reduce fragmentation of indices.
484   **
485   ** This is the 2nd template.
486   */
487   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
488     assert( !pTrigger );
489     assert( pList==0 );
490     goto insert_cleanup;
491   }
492 #endif /* SQLITE_OMIT_XFER_OPT */
493 
494   /* If this is an AUTOINCREMENT table, look up the sequence number in the
495   ** sqlite_sequence table and store it in memory cell regAutoinc.
496   */
497   regAutoinc = autoIncBegin(pParse, iDb, pTab);
498 
499   /* Figure out how many columns of data are supplied.  If the data
500   ** is coming from a SELECT statement, then generate a co-routine that
501   ** produces a single row of the SELECT on each invocation.  The
502   ** co-routine is the common header to the 3rd and 4th templates.
503   */
504   if( pSelect ){
505     /* Data is coming from a SELECT.  Generate code to implement that SELECT
506     ** as a co-routine.  The code is common to both the 3rd and 4th
507     ** templates:
508     **
509     **         EOF <- 0
510     **         X <- A
511     **         goto B
512     **      A: setup for the SELECT
513     **         loop over the tables in the SELECT
514     **           load value into register R..R+n
515     **           yield X
516     **         end loop
517     **         cleanup after the SELECT
518     **         EOF <- 1
519     **         yield X
520     **         halt-error
521     **
522     ** On each invocation of the co-routine, it puts a single row of the
523     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
524     ** (These output registers are allocated by sqlite3Select().)  When
525     ** the SELECT completes, it sets the EOF flag stored in regEof.
526     */
527     int rc, j1;
528 
529     regEof = ++pParse->nMem;
530     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
531     VdbeComment((v, "SELECT eof flag"));
532     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
533     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
534     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
535     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
536     VdbeComment((v, "Jump over SELECT coroutine"));
537 
538     /* Resolve the expressions in the SELECT statement and execute it. */
539     rc = sqlite3Select(pParse, pSelect, &dest);
540     if( rc || pParse->nErr || db->mallocFailed ){
541       goto insert_cleanup;
542     }
543     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
544     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
545     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
546     VdbeComment((v, "End of SELECT coroutine"));
547     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
548 
549     regFromSelect = dest.iMem;
550     assert( pSelect->pEList );
551     nColumn = pSelect->pEList->nExpr;
552     assert( dest.nMem==nColumn );
553 
554     /* Set useTempTable to TRUE if the result of the SELECT statement
555     ** should be written into a temporary table (template 4).  Set to
556     ** FALSE if each* row of the SELECT can be written directly into
557     ** the destination table (template 3).
558     **
559     ** A temp table must be used if the table being updated is also one
560     ** of the tables being read by the SELECT statement.  Also use a
561     ** temp table in the case of row triggers.
562     */
563     if( pTrigger || readsTable(v, addrSelect, iDb, pTab) ){
564       useTempTable = 1;
565     }
566 
567     if( useTempTable ){
568       /* Invoke the coroutine to extract information from the SELECT
569       ** and add it to a transient table srcTab.  The code generated
570       ** here is from the 4th template:
571       **
572       **      B: open temp table
573       **      L: yield X
574       **         if EOF goto M
575       **         insert row from R..R+n into temp table
576       **         goto L
577       **      M: ...
578       */
579       int regRec;          /* Register to hold packed record */
580       int regTempRowid;    /* Register to hold temp table ROWID */
581       int addrTop;         /* Label "L" */
582       int addrIf;          /* Address of jump to M */
583 
584       srcTab = pParse->nTab++;
585       regRec = sqlite3GetTempReg(pParse);
586       regTempRowid = sqlite3GetTempReg(pParse);
587       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
588       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
589       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
590       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
591       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
592       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
593       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
594       sqlite3VdbeJumpHere(v, addrIf);
595       sqlite3ReleaseTempReg(pParse, regRec);
596       sqlite3ReleaseTempReg(pParse, regTempRowid);
597     }
598   }else{
599     /* This is the case if the data for the INSERT is coming from a VALUES
600     ** clause
601     */
602     NameContext sNC;
603     memset(&sNC, 0, sizeof(sNC));
604     sNC.pParse = pParse;
605     srcTab = -1;
606     assert( useTempTable==0 );
607     nColumn = pList ? pList->nExpr : 0;
608     for(i=0; i<nColumn; i++){
609       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
610         goto insert_cleanup;
611       }
612     }
613   }
614 
615   /* Make sure the number of columns in the source data matches the number
616   ** of columns to be inserted into the table.
617   */
618   if( IsVirtual(pTab) ){
619     for(i=0; i<pTab->nCol; i++){
620       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
621     }
622   }
623   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
624     sqlite3ErrorMsg(pParse,
625        "table %S has %d columns but %d values were supplied",
626        pTabList, 0, pTab->nCol, nColumn);
627     goto insert_cleanup;
628   }
629   if( pColumn!=0 && nColumn!=pColumn->nId ){
630     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
631     goto insert_cleanup;
632   }
633 
634   /* If the INSERT statement included an IDLIST term, then make sure
635   ** all elements of the IDLIST really are columns of the table and
636   ** remember the column indices.
637   **
638   ** If the table has an INTEGER PRIMARY KEY column and that column
639   ** is named in the IDLIST, then record in the keyColumn variable
640   ** the index into IDLIST of the primary key column.  keyColumn is
641   ** the index of the primary key as it appears in IDLIST, not as
642   ** is appears in the original table.  (The index of the primary
643   ** key in the original table is pTab->iPKey.)
644   */
645   if( pColumn ){
646     for(i=0; i<pColumn->nId; i++){
647       pColumn->a[i].idx = -1;
648     }
649     for(i=0; i<pColumn->nId; i++){
650       for(j=0; j<pTab->nCol; j++){
651         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
652           pColumn->a[i].idx = j;
653           if( j==pTab->iPKey ){
654             keyColumn = i;
655           }
656           break;
657         }
658       }
659       if( j>=pTab->nCol ){
660         if( sqlite3IsRowid(pColumn->a[i].zName) ){
661           keyColumn = i;
662         }else{
663           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
664               pTabList, 0, pColumn->a[i].zName);
665           pParse->nErr++;
666           goto insert_cleanup;
667         }
668       }
669     }
670   }
671 
672   /* If there is no IDLIST term but the table has an integer primary
673   ** key, the set the keyColumn variable to the primary key column index
674   ** in the original table definition.
675   */
676   if( pColumn==0 && nColumn>0 ){
677     keyColumn = pTab->iPKey;
678   }
679 
680   /* Open the temp table for FOR EACH ROW triggers
681   */
682   if( pTrigger ){
683     sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol);
684   }
685 
686   /* Initialize the count of rows to be inserted
687   */
688   if( db->flags & SQLITE_CountRows ){
689     regRowCount = ++pParse->nMem;
690     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
691   }
692 
693   /* If this is not a view, open the table and and all indices */
694   if( !isView ){
695     int nIdx;
696 
697     baseCur = pParse->nTab;
698     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
699     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
700     if( aRegIdx==0 ){
701       goto insert_cleanup;
702     }
703     for(i=0; i<nIdx; i++){
704       aRegIdx[i] = ++pParse->nMem;
705     }
706   }
707 
708   /* This is the top of the main insertion loop */
709   if( useTempTable ){
710     /* This block codes the top of loop only.  The complete loop is the
711     ** following pseudocode (template 4):
712     **
713     **         rewind temp table
714     **      C: loop over rows of intermediate table
715     **           transfer values form intermediate table into <table>
716     **         end loop
717     **      D: ...
718     */
719     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
720     addrCont = sqlite3VdbeCurrentAddr(v);
721   }else if( pSelect ){
722     /* This block codes the top of loop only.  The complete loop is the
723     ** following pseudocode (template 3):
724     **
725     **      C: yield X
726     **         if EOF goto D
727     **         insert the select result into <table> from R..R+n
728     **         goto C
729     **      D: ...
730     */
731     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
732     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
733   }
734 
735   /* Allocate registers for holding the rowid of the new row,
736   ** the content of the new row, and the assemblied row record.
737   */
738   regRecord = ++pParse->nMem;
739   regRowid = regIns = pParse->nMem+1;
740   pParse->nMem += pTab->nCol + 1;
741   if( IsVirtual(pTab) ){
742     regRowid++;
743     pParse->nMem++;
744   }
745   regData = regRowid+1;
746 
747   /* Run the BEFORE and INSTEAD OF triggers, if there are any
748   */
749   endOfLoop = sqlite3VdbeMakeLabel(v);
750   if( tmask & TRIGGER_BEFORE ){
751     int regTrigRowid;
752     int regCols;
753     int regRec;
754 
755     /* build the NEW.* reference row.  Note that if there is an INTEGER
756     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
757     ** translated into a unique ID for the row.  But on a BEFORE trigger,
758     ** we do not know what the unique ID will be (because the insert has
759     ** not happened yet) so we substitute a rowid of -1
760     */
761     regTrigRowid = sqlite3GetTempReg(pParse);
762     if( keyColumn<0 ){
763       sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
764     }else if( useTempTable ){
765       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regTrigRowid);
766     }else{
767       int j1;
768       assert( pSelect==0 );  /* Otherwise useTempTable is true */
769       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regTrigRowid);
770       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regTrigRowid);
771       sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid);
772       sqlite3VdbeJumpHere(v, j1);
773       sqlite3VdbeAddOp1(v, OP_MustBeInt, regTrigRowid);
774     }
775 
776     /* Cannot have triggers on a virtual table. If it were possible,
777     ** this block would have to account for hidden column.
778     */
779     assert(!IsVirtual(pTab));
780 
781     /* Create the new column data
782     */
783     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
784     for(i=0; i<pTab->nCol; i++){
785       if( pColumn==0 ){
786         j = i;
787       }else{
788         for(j=0; j<pColumn->nId; j++){
789           if( pColumn->a[j].idx==i ) break;
790         }
791       }
792       if( pColumn && j>=pColumn->nId ){
793         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
794       }else if( useTempTable ){
795         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
796       }else{
797         assert( pSelect==0 ); /* Otherwise useTempTable is true */
798         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
799       }
800     }
801     regRec = sqlite3GetTempReg(pParse);
802     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
803 
804     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
805     ** do not attempt any conversions before assembling the record.
806     ** If this is a real table, attempt conversions as required by the
807     ** table column affinities.
808     */
809     if( !isView ){
810       sqlite3TableAffinityStr(v, pTab);
811     }
812     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regTrigRowid);
813     sqlite3ReleaseTempReg(pParse, regRec);
814     sqlite3ReleaseTempReg(pParse, regTrigRowid);
815     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
816 
817     /* Fire BEFORE or INSTEAD OF triggers */
818     if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
819         pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
820       goto insert_cleanup;
821     }
822   }
823 
824   /* Push the record number for the new entry onto the stack.  The
825   ** record number is a randomly generate integer created by NewRowid
826   ** except when the table has an INTEGER PRIMARY KEY column, in which
827   ** case the record number is the same as that column.
828   */
829   if( !isView ){
830     if( IsVirtual(pTab) ){
831       /* The row that the VUpdate opcode will delete: none */
832       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
833     }
834     if( keyColumn>=0 ){
835       if( useTempTable ){
836         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
837       }else if( pSelect ){
838         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
839       }else{
840         VdbeOp *pOp;
841         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
842         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
843         if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
844           appendFlag = 1;
845           pOp->opcode = OP_NewRowid;
846           pOp->p1 = baseCur;
847           pOp->p2 = regRowid;
848           pOp->p3 = regAutoinc;
849         }
850       }
851       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
852       ** to generate a unique primary key value.
853       */
854       if( !appendFlag ){
855         int j1;
856         if( !IsVirtual(pTab) ){
857           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
858           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
859           sqlite3VdbeJumpHere(v, j1);
860         }else{
861           j1 = sqlite3VdbeCurrentAddr(v);
862           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
863         }
864         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
865       }
866     }else if( IsVirtual(pTab) ){
867       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
868     }else{
869       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
870       appendFlag = 1;
871     }
872     autoIncStep(pParse, regAutoinc, regRowid);
873 
874     /* Push onto the stack, data for all columns of the new entry, beginning
875     ** with the first column.
876     */
877     nHidden = 0;
878     for(i=0; i<pTab->nCol; i++){
879       int iRegStore = regRowid+1+i;
880       if( i==pTab->iPKey ){
881         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
882         ** Whenever this column is read, the record number will be substituted
883         ** in its place.  So will fill this column with a NULL to avoid
884         ** taking up data space with information that will never be used. */
885         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
886         continue;
887       }
888       if( pColumn==0 ){
889         if( IsHiddenColumn(&pTab->aCol[i]) ){
890           assert( IsVirtual(pTab) );
891           j = -1;
892           nHidden++;
893         }else{
894           j = i - nHidden;
895         }
896       }else{
897         for(j=0; j<pColumn->nId; j++){
898           if( pColumn->a[j].idx==i ) break;
899         }
900       }
901       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
902         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
903       }else if( useTempTable ){
904         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
905       }else if( pSelect ){
906         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
907       }else{
908         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
909       }
910     }
911 
912     /* Generate code to check constraints and generate index keys and
913     ** do the insertion.
914     */
915 #ifndef SQLITE_OMIT_VIRTUALTABLE
916     if( IsVirtual(pTab) ){
917       sqlite3VtabMakeWritable(pParse, pTab);
918       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
919                      (const char*)pTab->pVtab, P4_VTAB);
920     }else
921 #endif
922     {
923       sqlite3GenerateConstraintChecks(
924           pParse,
925           pTab,
926           baseCur,
927           regIns,
928           aRegIdx,
929           keyColumn>=0,
930           0,
931           onError,
932           endOfLoop
933       );
934       sqlite3CompleteInsertion(
935           pParse,
936           pTab,
937           baseCur,
938           regIns,
939           aRegIdx,
940           0,
941           (tmask&TRIGGER_AFTER) ? newIdx : -1,
942           appendFlag
943        );
944     }
945   }
946 
947   /* Update the count of rows that are inserted
948   */
949   if( (db->flags & SQLITE_CountRows)!=0 ){
950     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
951   }
952 
953   if( pTrigger ){
954     /* Code AFTER triggers */
955     if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
956           pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){
957       goto insert_cleanup;
958     }
959   }
960 
961   /* The bottom of the main insertion loop, if the data source
962   ** is a SELECT statement.
963   */
964   sqlite3VdbeResolveLabel(v, endOfLoop);
965   if( useTempTable ){
966     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
967     sqlite3VdbeJumpHere(v, addrInsTop);
968     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
969   }else if( pSelect ){
970     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
971     sqlite3VdbeJumpHere(v, addrInsTop);
972   }
973 
974   if( !IsVirtual(pTab) && !isView ){
975     /* Close all tables opened */
976     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
977     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
978       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
979     }
980   }
981 
982   /* Update the sqlite_sequence table by storing the content of the
983   ** counter value in memory regAutoinc back into the sqlite_sequence
984   ** table.
985   */
986   autoIncEnd(pParse, iDb, pTab, regAutoinc);
987 
988   /*
989   ** Return the number of rows inserted. If this routine is
990   ** generating code because of a call to sqlite3NestedParse(), do not
991   ** invoke the callback function.
992   */
993   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
994     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
995     sqlite3VdbeSetNumCols(v, 1);
996     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
997   }
998 
999 insert_cleanup:
1000   sqlite3SrcListDelete(db, pTabList);
1001   sqlite3ExprListDelete(db, pList);
1002   sqlite3SelectDelete(db, pSelect);
1003   sqlite3IdListDelete(db, pColumn);
1004   sqlite3DbFree(db, aRegIdx);
1005 }
1006 
1007 /*
1008 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
1009 **
1010 ** The input is a range of consecutive registers as follows:
1011 **
1012 **    1.  The rowid of the row to be updated before the update.  This
1013 **        value is omitted unless we are doing an UPDATE that involves a
1014 **        change to the record number or writing to a virtual table.
1015 **
1016 **    2.  The rowid of the row after the update.
1017 **
1018 **    3.  The data in the first column of the entry after the update.
1019 **
1020 **    i.  Data from middle columns...
1021 **
1022 **    N.  The data in the last column of the entry after the update.
1023 **
1024 ** The regRowid parameter is the index of the register containing (2).
1025 **
1026 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
1027 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
1028 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
1029 ** the update or insert statement.  If rowidChng is false, it means that
1030 ** the rowid is computed automatically in an insert or that the rowid value
1031 ** is not modified by the update.
1032 **
1033 ** The code generated by this routine store new index entries into
1034 ** registers identified by aRegIdx[].  No index entry is created for
1035 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1036 ** the same as the order of indices on the linked list of indices
1037 ** attached to the table.
1038 **
1039 ** This routine also generates code to check constraints.  NOT NULL,
1040 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1041 ** then the appropriate action is performed.  There are five possible
1042 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1043 **
1044 **  Constraint type  Action       What Happens
1045 **  ---------------  ----------   ----------------------------------------
1046 **  any              ROLLBACK     The current transaction is rolled back and
1047 **                                sqlite3_exec() returns immediately with a
1048 **                                return code of SQLITE_CONSTRAINT.
1049 **
1050 **  any              ABORT        Back out changes from the current command
1051 **                                only (do not do a complete rollback) then
1052 **                                cause sqlite3_exec() to return immediately
1053 **                                with SQLITE_CONSTRAINT.
1054 **
1055 **  any              FAIL         Sqlite_exec() returns immediately with a
1056 **                                return code of SQLITE_CONSTRAINT.  The
1057 **                                transaction is not rolled back and any
1058 **                                prior changes are retained.
1059 **
1060 **  any              IGNORE       The record number and data is popped from
1061 **                                the stack and there is an immediate jump
1062 **                                to label ignoreDest.
1063 **
1064 **  NOT NULL         REPLACE      The NULL value is replace by the default
1065 **                                value for that column.  If the default value
1066 **                                is NULL, the action is the same as ABORT.
1067 **
1068 **  UNIQUE           REPLACE      The other row that conflicts with the row
1069 **                                being inserted is removed.
1070 **
1071 **  CHECK            REPLACE      Illegal.  The results in an exception.
1072 **
1073 ** Which action to take is determined by the overrideError parameter.
1074 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1075 ** is used.  Or if pParse->onError==OE_Default then the onError value
1076 ** for the constraint is used.
1077 **
1078 ** The calling routine must open a read/write cursor for pTab with
1079 ** cursor number "baseCur".  All indices of pTab must also have open
1080 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1081 ** Except, if there is no possibility of a REPLACE action then
1082 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1083 */
1084 void sqlite3GenerateConstraintChecks(
1085   Parse *pParse,      /* The parser context */
1086   Table *pTab,        /* the table into which we are inserting */
1087   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1088   int regRowid,       /* Index of the range of input registers */
1089   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1090   int rowidChng,      /* True if the rowid might collide with existing entry */
1091   int isUpdate,       /* True for UPDATE, False for INSERT */
1092   int overrideError,  /* Override onError to this if not OE_Default */
1093   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
1094 ){
1095   int i;
1096   Vdbe *v;
1097   int nCol;
1098   int onError;
1099   int j1;             /* Addresss of jump instruction */
1100   int j2 = 0, j3;     /* Addresses of jump instructions */
1101   int regData;        /* Register containing first data column */
1102   int iCur;
1103   Index *pIdx;
1104   int seenReplace = 0;
1105   int hasTwoRowids = (isUpdate && rowidChng);
1106 
1107   v = sqlite3GetVdbe(pParse);
1108   assert( v!=0 );
1109   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1110   nCol = pTab->nCol;
1111   regData = regRowid + 1;
1112 
1113 
1114   /* Test all NOT NULL constraints.
1115   */
1116   for(i=0; i<nCol; i++){
1117     if( i==pTab->iPKey ){
1118       continue;
1119     }
1120     onError = pTab->aCol[i].notNull;
1121     if( onError==OE_None ) continue;
1122     if( overrideError!=OE_Default ){
1123       onError = overrideError;
1124     }else if( onError==OE_Default ){
1125       onError = OE_Abort;
1126     }
1127     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1128       onError = OE_Abort;
1129     }
1130     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1131         || onError==OE_Ignore || onError==OE_Replace );
1132     switch( onError ){
1133       case OE_Rollback:
1134       case OE_Abort:
1135       case OE_Fail: {
1136         char *zMsg;
1137         j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull,
1138                                   SQLITE_CONSTRAINT, onError, regData+i);
1139         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
1140                               pTab->zName, pTab->aCol[i].zName);
1141         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1142         break;
1143       }
1144       case OE_Ignore: {
1145         sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
1146         break;
1147       }
1148       case OE_Replace: {
1149         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1150         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1151         sqlite3VdbeJumpHere(v, j1);
1152         break;
1153       }
1154     }
1155   }
1156 
1157   /* Test all CHECK constraints
1158   */
1159 #ifndef SQLITE_OMIT_CHECK
1160   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1161     int allOk = sqlite3VdbeMakeLabel(v);
1162     pParse->ckBase = regData;
1163     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1164     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1165     if( onError==OE_Ignore ){
1166       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1167     }else{
1168       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1169     }
1170     sqlite3VdbeResolveLabel(v, allOk);
1171   }
1172 #endif /* !defined(SQLITE_OMIT_CHECK) */
1173 
1174   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1175   ** of the new record does not previously exist.  Except, if this
1176   ** is an UPDATE and the primary key is not changing, that is OK.
1177   */
1178   if( rowidChng ){
1179     onError = pTab->keyConf;
1180     if( overrideError!=OE_Default ){
1181       onError = overrideError;
1182     }else if( onError==OE_Default ){
1183       onError = OE_Abort;
1184     }
1185 
1186     if( onError!=OE_Replace || pTab->pIndex ){
1187       if( isUpdate ){
1188         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1189       }
1190       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1191       switch( onError ){
1192         default: {
1193           onError = OE_Abort;
1194           /* Fall thru into the next case */
1195         }
1196         case OE_Rollback:
1197         case OE_Abort:
1198         case OE_Fail: {
1199           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1200                            "PRIMARY KEY must be unique", P4_STATIC);
1201           break;
1202         }
1203         case OE_Replace: {
1204           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1205           seenReplace = 1;
1206           break;
1207         }
1208         case OE_Ignore: {
1209           assert( seenReplace==0 );
1210           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1211           break;
1212         }
1213       }
1214       sqlite3VdbeJumpHere(v, j3);
1215       if( isUpdate ){
1216         sqlite3VdbeJumpHere(v, j2);
1217       }
1218     }
1219   }
1220 
1221   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1222   ** index and making sure that duplicate entries do not already exist.
1223   ** Add the new records to the indices as we go.
1224   */
1225   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1226     int regIdx;
1227     int regR;
1228 
1229     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
1230 
1231     /* Create a key for accessing the index entry */
1232     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1233     for(i=0; i<pIdx->nColumn; i++){
1234       int idx = pIdx->aiColumn[i];
1235       if( idx==pTab->iPKey ){
1236         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1237       }else{
1238         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1239       }
1240     }
1241     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1242     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1243     sqlite3IndexAffinityStr(v, pIdx);
1244     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1245     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1246 
1247     /* Find out what action to take in case there is an indexing conflict */
1248     onError = pIdx->onError;
1249     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1250     if( overrideError!=OE_Default ){
1251       onError = overrideError;
1252     }else if( onError==OE_Default ){
1253       onError = OE_Abort;
1254     }
1255     if( seenReplace ){
1256       if( onError==OE_Ignore ) onError = OE_Replace;
1257       else if( onError==OE_Fail ) onError = OE_Abort;
1258     }
1259 
1260 
1261     /* Check to see if the new index entry will be unique */
1262     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1263     regR = sqlite3GetTempReg(pParse);
1264     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1265     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1266                            regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
1267                            P4_INT32);
1268 
1269     /* Generate code that executes if the new index entry is not unique */
1270     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1271         || onError==OE_Ignore || onError==OE_Replace );
1272     switch( onError ){
1273       case OE_Rollback:
1274       case OE_Abort:
1275       case OE_Fail: {
1276         int j, n1, n2;
1277         char zErrMsg[200];
1278         sqlite3_snprintf(ArraySize(zErrMsg), zErrMsg,
1279                          pIdx->nColumn>1 ? "columns " : "column ");
1280         n1 = sqlite3Strlen30(zErrMsg);
1281         for(j=0; j<pIdx->nColumn && n1<ArraySize(zErrMsg)-30; j++){
1282           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1283           n2 = sqlite3Strlen30(zCol);
1284           if( j>0 ){
1285             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], ", ");
1286             n1 += 2;
1287           }
1288           if( n1+n2>ArraySize(zErrMsg)-30 ){
1289             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], "...");
1290             n1 += 3;
1291             break;
1292           }else{
1293             sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1294             n1 += n2;
1295           }
1296         }
1297         sqlite3_snprintf(ArraySize(zErrMsg)-n1, &zErrMsg[n1],
1298             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1299         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1300         break;
1301       }
1302       case OE_Ignore: {
1303         assert( seenReplace==0 );
1304         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1305         break;
1306       }
1307       case OE_Replace: {
1308         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1309         seenReplace = 1;
1310         break;
1311       }
1312     }
1313     sqlite3VdbeJumpHere(v, j2);
1314     sqlite3VdbeJumpHere(v, j3);
1315     sqlite3ReleaseTempReg(pParse, regR);
1316   }
1317 }
1318 
1319 /*
1320 ** This routine generates code to finish the INSERT or UPDATE operation
1321 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1322 ** A consecutive range of registers starting at regRowid contains the
1323 ** rowid and the content to be inserted.
1324 **
1325 ** The arguments to this routine should be the same as the first six
1326 ** arguments to sqlite3GenerateConstraintChecks.
1327 */
1328 void sqlite3CompleteInsertion(
1329   Parse *pParse,      /* The parser context */
1330   Table *pTab,        /* the table into which we are inserting */
1331   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1332   int regRowid,       /* Range of content */
1333   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1334   int isUpdate,       /* True for UPDATE, False for INSERT */
1335   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1336   int appendBias      /* True if this is likely to be an append */
1337 ){
1338   int i;
1339   Vdbe *v;
1340   int nIdx;
1341   Index *pIdx;
1342   u8 pik_flags;
1343   int regData;
1344   int regRec;
1345 
1346   v = sqlite3GetVdbe(pParse);
1347   assert( v!=0 );
1348   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1349   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1350   for(i=nIdx-1; i>=0; i--){
1351     if( aRegIdx[i]==0 ) continue;
1352     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1353   }
1354   regData = regRowid + 1;
1355   regRec = sqlite3GetTempReg(pParse);
1356   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1357   sqlite3TableAffinityStr(v, pTab);
1358   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1359 #ifndef SQLITE_OMIT_TRIGGER
1360   if( newIdx>=0 ){
1361     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1362   }
1363 #endif
1364   if( pParse->nested ){
1365     pik_flags = 0;
1366   }else{
1367     pik_flags = OPFLAG_NCHANGE;
1368     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1369   }
1370   if( appendBias ){
1371     pik_flags |= OPFLAG_APPEND;
1372   }
1373   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1374   if( !pParse->nested ){
1375     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1376   }
1377   sqlite3VdbeChangeP5(v, pik_flags);
1378 }
1379 
1380 /*
1381 ** Generate code that will open cursors for a table and for all
1382 ** indices of that table.  The "baseCur" parameter is the cursor number used
1383 ** for the table.  Indices are opened on subsequent cursors.
1384 **
1385 ** Return the number of indices on the table.
1386 */
1387 int sqlite3OpenTableAndIndices(
1388   Parse *pParse,   /* Parsing context */
1389   Table *pTab,     /* Table to be opened */
1390   int baseCur,     /* Cursor number assigned to the table */
1391   int op           /* OP_OpenRead or OP_OpenWrite */
1392 ){
1393   int i;
1394   int iDb;
1395   Index *pIdx;
1396   Vdbe *v;
1397 
1398   if( IsVirtual(pTab) ) return 0;
1399   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1400   v = sqlite3GetVdbe(pParse);
1401   assert( v!=0 );
1402   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1403   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1404     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1405     assert( pIdx->pSchema==pTab->pSchema );
1406     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1407                       (char*)pKey, P4_KEYINFO_HANDOFF);
1408     VdbeComment((v, "%s", pIdx->zName));
1409   }
1410   if( pParse->nTab<=baseCur+i ){
1411     pParse->nTab = baseCur+i;
1412   }
1413   return i-1;
1414 }
1415 
1416 
1417 #ifdef SQLITE_TEST
1418 /*
1419 ** The following global variable is incremented whenever the
1420 ** transfer optimization is used.  This is used for testing
1421 ** purposes only - to make sure the transfer optimization really
1422 ** is happening when it is suppose to.
1423 */
1424 int sqlite3_xferopt_count;
1425 #endif /* SQLITE_TEST */
1426 
1427 
1428 #ifndef SQLITE_OMIT_XFER_OPT
1429 /*
1430 ** Check to collation names to see if they are compatible.
1431 */
1432 static int xferCompatibleCollation(const char *z1, const char *z2){
1433   if( z1==0 ){
1434     return z2==0;
1435   }
1436   if( z2==0 ){
1437     return 0;
1438   }
1439   return sqlite3StrICmp(z1, z2)==0;
1440 }
1441 
1442 
1443 /*
1444 ** Check to see if index pSrc is compatible as a source of data
1445 ** for index pDest in an insert transfer optimization.  The rules
1446 ** for a compatible index:
1447 **
1448 **    *   The index is over the same set of columns
1449 **    *   The same DESC and ASC markings occurs on all columns
1450 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1451 **    *   The same collating sequence on each column
1452 */
1453 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1454   int i;
1455   assert( pDest && pSrc );
1456   assert( pDest->pTable!=pSrc->pTable );
1457   if( pDest->nColumn!=pSrc->nColumn ){
1458     return 0;   /* Different number of columns */
1459   }
1460   if( pDest->onError!=pSrc->onError ){
1461     return 0;   /* Different conflict resolution strategies */
1462   }
1463   for(i=0; i<pSrc->nColumn; i++){
1464     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1465       return 0;   /* Different columns indexed */
1466     }
1467     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1468       return 0;   /* Different sort orders */
1469     }
1470     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1471       return 0;   /* Different collating sequences */
1472     }
1473   }
1474 
1475   /* If no test above fails then the indices must be compatible */
1476   return 1;
1477 }
1478 
1479 /*
1480 ** Attempt the transfer optimization on INSERTs of the form
1481 **
1482 **     INSERT INTO tab1 SELECT * FROM tab2;
1483 **
1484 ** This optimization is only attempted if
1485 **
1486 **    (1)  tab1 and tab2 have identical schemas including all the
1487 **         same indices and constraints
1488 **
1489 **    (2)  tab1 and tab2 are different tables
1490 **
1491 **    (3)  There must be no triggers on tab1
1492 **
1493 **    (4)  The result set of the SELECT statement is "*"
1494 **
1495 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1496 **         or LIMIT clause.
1497 **
1498 **    (6)  The SELECT statement is a simple (not a compound) select that
1499 **         contains only tab2 in its FROM clause
1500 **
1501 ** This method for implementing the INSERT transfers raw records from
1502 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1503 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1504 ** the resulting tab1 has much less fragmentation.
1505 **
1506 ** This routine returns TRUE if the optimization is attempted.  If any
1507 ** of the conditions above fail so that the optimization should not
1508 ** be attempted, then this routine returns FALSE.
1509 */
1510 static int xferOptimization(
1511   Parse *pParse,        /* Parser context */
1512   Table *pDest,         /* The table we are inserting into */
1513   Select *pSelect,      /* A SELECT statement to use as the data source */
1514   int onError,          /* How to handle constraint errors */
1515   int iDbDest           /* The database of pDest */
1516 ){
1517   ExprList *pEList;                /* The result set of the SELECT */
1518   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1519   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1520   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1521   int i;                           /* Loop counter */
1522   int iDbSrc;                      /* The database of pSrc */
1523   int iSrc, iDest;                 /* Cursors from source and destination */
1524   int addr1, addr2;                /* Loop addresses */
1525   int emptyDestTest;               /* Address of test for empty pDest */
1526   int emptySrcTest;                /* Address of test for empty pSrc */
1527   Vdbe *v;                         /* The VDBE we are building */
1528   KeyInfo *pKey;                   /* Key information for an index */
1529   int regAutoinc;                  /* Memory register used by AUTOINC */
1530   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1531   int regData, regRowid;           /* Registers holding data and rowid */
1532 
1533   if( pSelect==0 ){
1534     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1535   }
1536   if( sqlite3TriggerList(pParse, pDest) ){
1537     return 0;   /* tab1 must not have triggers */
1538   }
1539 #ifndef SQLITE_OMIT_VIRTUALTABLE
1540   if( pDest->tabFlags & TF_Virtual ){
1541     return 0;   /* tab1 must not be a virtual table */
1542   }
1543 #endif
1544   if( onError==OE_Default ){
1545     onError = OE_Abort;
1546   }
1547   if( onError!=OE_Abort && onError!=OE_Rollback ){
1548     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1549   }
1550   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1551   if( pSelect->pSrc->nSrc!=1 ){
1552     return 0;   /* FROM clause must have exactly one term */
1553   }
1554   if( pSelect->pSrc->a[0].pSelect ){
1555     return 0;   /* FROM clause cannot contain a subquery */
1556   }
1557   if( pSelect->pWhere ){
1558     return 0;   /* SELECT may not have a WHERE clause */
1559   }
1560   if( pSelect->pOrderBy ){
1561     return 0;   /* SELECT may not have an ORDER BY clause */
1562   }
1563   /* Do not need to test for a HAVING clause.  If HAVING is present but
1564   ** there is no ORDER BY, we will get an error. */
1565   if( pSelect->pGroupBy ){
1566     return 0;   /* SELECT may not have a GROUP BY clause */
1567   }
1568   if( pSelect->pLimit ){
1569     return 0;   /* SELECT may not have a LIMIT clause */
1570   }
1571   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1572   if( pSelect->pPrior ){
1573     return 0;   /* SELECT may not be a compound query */
1574   }
1575   if( pSelect->selFlags & SF_Distinct ){
1576     return 0;   /* SELECT may not be DISTINCT */
1577   }
1578   pEList = pSelect->pEList;
1579   assert( pEList!=0 );
1580   if( pEList->nExpr!=1 ){
1581     return 0;   /* The result set must have exactly one column */
1582   }
1583   assert( pEList->a[0].pExpr );
1584   if( pEList->a[0].pExpr->op!=TK_ALL ){
1585     return 0;   /* The result set must be the special operator "*" */
1586   }
1587 
1588   /* At this point we have established that the statement is of the
1589   ** correct syntactic form to participate in this optimization.  Now
1590   ** we have to check the semantics.
1591   */
1592   pItem = pSelect->pSrc->a;
1593   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1594   if( pSrc==0 ){
1595     return 0;   /* FROM clause does not contain a real table */
1596   }
1597   if( pSrc==pDest ){
1598     return 0;   /* tab1 and tab2 may not be the same table */
1599   }
1600 #ifndef SQLITE_OMIT_VIRTUALTABLE
1601   if( pSrc->tabFlags & TF_Virtual ){
1602     return 0;   /* tab2 must not be a virtual table */
1603   }
1604 #endif
1605   if( pSrc->pSelect ){
1606     return 0;   /* tab2 may not be a view */
1607   }
1608   if( pDest->nCol!=pSrc->nCol ){
1609     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1610   }
1611   if( pDest->iPKey!=pSrc->iPKey ){
1612     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1613   }
1614   for(i=0; i<pDest->nCol; i++){
1615     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1616       return 0;    /* Affinity must be the same on all columns */
1617     }
1618     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1619       return 0;    /* Collating sequence must be the same on all columns */
1620     }
1621     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1622       return 0;    /* tab2 must be NOT NULL if tab1 is */
1623     }
1624   }
1625   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1626     if( pDestIdx->onError!=OE_None ){
1627       destHasUniqueIdx = 1;
1628     }
1629     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1630       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1631     }
1632     if( pSrcIdx==0 ){
1633       return 0;    /* pDestIdx has no corresponding index in pSrc */
1634     }
1635   }
1636 #ifndef SQLITE_OMIT_CHECK
1637   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1638     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1639   }
1640 #endif
1641 
1642   /* If we get this far, it means either:
1643   **
1644   **    *   We can always do the transfer if the table contains an
1645   **        an integer primary key
1646   **
1647   **    *   We can conditionally do the transfer if the destination
1648   **        table is empty.
1649   */
1650 #ifdef SQLITE_TEST
1651   sqlite3_xferopt_count++;
1652 #endif
1653   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1654   v = sqlite3GetVdbe(pParse);
1655   sqlite3CodeVerifySchema(pParse, iDbSrc);
1656   iSrc = pParse->nTab++;
1657   iDest = pParse->nTab++;
1658   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1659   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1660   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1661     /* If tables do not have an INTEGER PRIMARY KEY and there
1662     ** are indices to be copied and the destination is not empty,
1663     ** we have to disallow the transfer optimization because the
1664     ** the rowids might change which will mess up indexing.
1665     **
1666     ** Or if the destination has a UNIQUE index and is not empty,
1667     ** we also disallow the transfer optimization because we cannot
1668     ** insure that all entries in the union of DEST and SRC will be
1669     ** unique.
1670     */
1671     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1672     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1673     sqlite3VdbeJumpHere(v, addr1);
1674   }else{
1675     emptyDestTest = 0;
1676   }
1677   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1678   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1679   regData = sqlite3GetTempReg(pParse);
1680   regRowid = sqlite3GetTempReg(pParse);
1681   if( pDest->iPKey>=0 ){
1682     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1683     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1684     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1685                       "PRIMARY KEY must be unique", P4_STATIC);
1686     sqlite3VdbeJumpHere(v, addr2);
1687     autoIncStep(pParse, regAutoinc, regRowid);
1688   }else if( pDest->pIndex==0 ){
1689     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1690   }else{
1691     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1692     assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1693   }
1694   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1695   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1696   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1697   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1698   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1699   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1700   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1701     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1702       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1703     }
1704     assert( pSrcIdx );
1705     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1706     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1707     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1708     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1709                       (char*)pKey, P4_KEYINFO_HANDOFF);
1710     VdbeComment((v, "%s", pSrcIdx->zName));
1711     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1712     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1713                       (char*)pKey, P4_KEYINFO_HANDOFF);
1714     VdbeComment((v, "%s", pDestIdx->zName));
1715     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1716     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1717     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1718     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1719     sqlite3VdbeJumpHere(v, addr1);
1720   }
1721   sqlite3VdbeJumpHere(v, emptySrcTest);
1722   sqlite3ReleaseTempReg(pParse, regRowid);
1723   sqlite3ReleaseTempReg(pParse, regData);
1724   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1725   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1726   if( emptyDestTest ){
1727     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1728     sqlite3VdbeJumpHere(v, emptyDestTest);
1729     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1730     return 0;
1731   }else{
1732     return 1;
1733   }
1734 }
1735 #endif /* SQLITE_OMIT_XFER_OPT */
1736 
1737 /* Make sure "isView" gets undefined in case this file becomes part of
1738 ** the amalgamation - so that subsequent files do not see isView as a
1739 ** macro. */
1740 #undef isView
1741