1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Compute the affinity string for table pTab, if it has not already been 114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 115 ** 116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 118 ** for register iReg and following. Or if affinities exists and iReg==0, 119 ** then just set the P4 operand of the previous opcode (which should be 120 ** an OP_MakeRecord) to the affinity string. 121 ** 122 ** A column affinity string has one character per column: 123 ** 124 ** Character Column affinity 125 ** ------------------------------ 126 ** 'A' BLOB 127 ** 'B' TEXT 128 ** 'C' NUMERIC 129 ** 'D' INTEGER 130 ** 'E' REAL 131 */ 132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 133 int i, j; 134 char *zColAff = pTab->zColAff; 135 if( zColAff==0 ){ 136 sqlite3 *db = sqlite3VdbeDb(v); 137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 138 if( !zColAff ){ 139 sqlite3OomFault(db); 140 return; 141 } 142 143 for(i=j=0; i<pTab->nCol; i++){ 144 assert( pTab->aCol[i].affinity!=0 ); 145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 146 zColAff[j++] = pTab->aCol[i].affinity; 147 } 148 } 149 do{ 150 zColAff[j--] = 0; 151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 152 pTab->zColAff = zColAff; 153 } 154 assert( zColAff!=0 ); 155 i = sqlite3Strlen30NN(zColAff); 156 if( i ){ 157 if( iReg ){ 158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 159 }else{ 160 sqlite3VdbeChangeP4(v, -1, zColAff, i); 161 } 162 } 163 } 164 165 /* 166 ** Return non-zero if the table pTab in database iDb or any of its indices 167 ** have been opened at any point in the VDBE program. This is used to see if 168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 169 ** run without using a temporary table for the results of the SELECT. 170 */ 171 static int readsTable(Parse *p, int iDb, Table *pTab){ 172 Vdbe *v = sqlite3GetVdbe(p); 173 int i; 174 int iEnd = sqlite3VdbeCurrentAddr(v); 175 #ifndef SQLITE_OMIT_VIRTUALTABLE 176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 177 #endif 178 179 for(i=1; i<iEnd; i++){ 180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 181 assert( pOp!=0 ); 182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 183 Index *pIndex; 184 Pgno tnum = pOp->p2; 185 if( tnum==pTab->tnum ){ 186 return 1; 187 } 188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 189 if( tnum==pIndex->tnum ){ 190 return 1; 191 } 192 } 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 196 assert( pOp->p4.pVtab!=0 ); 197 assert( pOp->p4type==P4_VTAB ); 198 return 1; 199 } 200 #endif 201 } 202 return 0; 203 } 204 205 /* This walker callback will compute the union of colFlags flags for all 206 ** referenced columns in a CHECK constraint or generated column expression. 207 */ 208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 210 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 212 } 213 return WRC_Continue; 214 } 215 216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 217 /* 218 ** All regular columns for table pTab have been puts into registers 219 ** starting with iRegStore. The registers that correspond to STORED 220 ** or VIRTUAL columns have not yet been initialized. This routine goes 221 ** back and computes the values for those columns based on the previously 222 ** computed normal columns. 223 */ 224 void sqlite3ComputeGeneratedColumns( 225 Parse *pParse, /* Parsing context */ 226 int iRegStore, /* Register holding the first column */ 227 Table *pTab /* The table */ 228 ){ 229 int i; 230 Walker w; 231 Column *pRedo; 232 int eProgress; 233 VdbeOp *pOp; 234 235 assert( pTab->tabFlags & TF_HasGenerated ); 236 testcase( pTab->tabFlags & TF_HasVirtual ); 237 testcase( pTab->tabFlags & TF_HasStored ); 238 239 /* Before computing generated columns, first go through and make sure 240 ** that appropriate affinity has been applied to the regular columns 241 */ 242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 243 if( (pTab->tabFlags & TF_HasStored)!=0 244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 245 ){ 246 /* Change the OP_Affinity argument to '@' (NONE) for all stored 247 ** columns. '@' is the no-op affinity and those columns have not 248 ** yet been computed. */ 249 int ii, jj; 250 char *zP4 = pOp->p4.z; 251 assert( zP4!=0 ); 252 assert( pOp->p4type==P4_DYNAMIC ); 253 for(ii=jj=0; zP4[jj]; ii++){ 254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 255 continue; 256 } 257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 258 zP4[jj] = SQLITE_AFF_NONE; 259 } 260 jj++; 261 } 262 } 263 264 /* Because there can be multiple generated columns that refer to one another, 265 ** this is a two-pass algorithm. On the first pass, mark all generated 266 ** columns as "not available". 267 */ 268 for(i=0; i<pTab->nCol; i++){ 269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 273 } 274 } 275 276 w.u.pTab = pTab; 277 w.xExprCallback = exprColumnFlagUnion; 278 w.xSelectCallback = 0; 279 w.xSelectCallback2 = 0; 280 281 /* On the second pass, compute the value of each NOT-AVAILABLE column. 282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 284 ** they are needed. 285 */ 286 pParse->iSelfTab = -iRegStore; 287 do{ 288 eProgress = 0; 289 pRedo = 0; 290 for(i=0; i<pTab->nCol; i++){ 291 Column *pCol = pTab->aCol + i; 292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 293 int x; 294 pCol->colFlags |= COLFLAG_BUSY; 295 w.eCode = 0; 296 sqlite3WalkExpr(&w, pCol->pDflt); 297 pCol->colFlags &= ~COLFLAG_BUSY; 298 if( w.eCode & COLFLAG_NOTAVAIL ){ 299 pRedo = pCol; 300 continue; 301 } 302 eProgress = 1; 303 assert( pCol->colFlags & COLFLAG_GENERATED ); 304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 305 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 306 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 307 } 308 } 309 }while( pRedo && eProgress ); 310 if( pRedo ){ 311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 312 } 313 pParse->iSelfTab = 0; 314 } 315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 316 317 318 #ifndef SQLITE_OMIT_AUTOINCREMENT 319 /* 320 ** Locate or create an AutoincInfo structure associated with table pTab 321 ** which is in database iDb. Return the register number for the register 322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 323 ** table. (Also return zero when doing a VACUUM since we do not want to 324 ** update the AUTOINCREMENT counters during a VACUUM.) 325 ** 326 ** There is at most one AutoincInfo structure per table even if the 327 ** same table is autoincremented multiple times due to inserts within 328 ** triggers. A new AutoincInfo structure is created if this is the 329 ** first use of table pTab. On 2nd and subsequent uses, the original 330 ** AutoincInfo structure is used. 331 ** 332 ** Four consecutive registers are allocated: 333 ** 334 ** (1) The name of the pTab table. 335 ** (2) The maximum ROWID of pTab. 336 ** (3) The rowid in sqlite_sequence of pTab 337 ** (4) The original value of the max ROWID in pTab, or NULL if none 338 ** 339 ** The 2nd register is the one that is returned. That is all the 340 ** insert routine needs to know about. 341 */ 342 static int autoIncBegin( 343 Parse *pParse, /* Parsing context */ 344 int iDb, /* Index of the database holding pTab */ 345 Table *pTab /* The table we are writing to */ 346 ){ 347 int memId = 0; /* Register holding maximum rowid */ 348 assert( pParse->db->aDb[iDb].pSchema!=0 ); 349 if( (pTab->tabFlags & TF_Autoincrement)!=0 350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 351 ){ 352 Parse *pToplevel = sqlite3ParseToplevel(pParse); 353 AutoincInfo *pInfo; 354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 355 356 /* Verify that the sqlite_sequence table exists and is an ordinary 357 ** rowid table with exactly two columns. 358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 359 if( pSeqTab==0 360 || !HasRowid(pSeqTab) 361 || IsVirtual(pSeqTab) 362 || pSeqTab->nCol!=2 363 ){ 364 pParse->nErr++; 365 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 366 return 0; 367 } 368 369 pInfo = pToplevel->pAinc; 370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 371 if( pInfo==0 ){ 372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 373 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 374 testcase( pParse->earlyCleanup ); 375 if( pParse->db->mallocFailed ) return 0; 376 pInfo->pNext = pToplevel->pAinc; 377 pToplevel->pAinc = pInfo; 378 pInfo->pTab = pTab; 379 pInfo->iDb = iDb; 380 pToplevel->nMem++; /* Register to hold name of table */ 381 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 382 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 383 } 384 memId = pInfo->regCtr; 385 } 386 return memId; 387 } 388 389 /* 390 ** This routine generates code that will initialize all of the 391 ** register used by the autoincrement tracker. 392 */ 393 void sqlite3AutoincrementBegin(Parse *pParse){ 394 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 395 sqlite3 *db = pParse->db; /* The database connection */ 396 Db *pDb; /* Database only autoinc table */ 397 int memId; /* Register holding max rowid */ 398 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 399 400 /* This routine is never called during trigger-generation. It is 401 ** only called from the top-level */ 402 assert( pParse->pTriggerTab==0 ); 403 assert( sqlite3IsToplevel(pParse) ); 404 405 assert( v ); /* We failed long ago if this is not so */ 406 for(p = pParse->pAinc; p; p = p->pNext){ 407 static const int iLn = VDBE_OFFSET_LINENO(2); 408 static const VdbeOpList autoInc[] = { 409 /* 0 */ {OP_Null, 0, 0, 0}, 410 /* 1 */ {OP_Rewind, 0, 10, 0}, 411 /* 2 */ {OP_Column, 0, 0, 0}, 412 /* 3 */ {OP_Ne, 0, 9, 0}, 413 /* 4 */ {OP_Rowid, 0, 0, 0}, 414 /* 5 */ {OP_Column, 0, 1, 0}, 415 /* 6 */ {OP_AddImm, 0, 0, 0}, 416 /* 7 */ {OP_Copy, 0, 0, 0}, 417 /* 8 */ {OP_Goto, 0, 11, 0}, 418 /* 9 */ {OP_Next, 0, 2, 0}, 419 /* 10 */ {OP_Integer, 0, 0, 0}, 420 /* 11 */ {OP_Close, 0, 0, 0} 421 }; 422 VdbeOp *aOp; 423 pDb = &db->aDb[p->iDb]; 424 memId = p->regCtr; 425 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 426 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 427 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 428 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 429 if( aOp==0 ) break; 430 aOp[0].p2 = memId; 431 aOp[0].p3 = memId+2; 432 aOp[2].p3 = memId; 433 aOp[3].p1 = memId-1; 434 aOp[3].p3 = memId; 435 aOp[3].p5 = SQLITE_JUMPIFNULL; 436 aOp[4].p2 = memId+1; 437 aOp[5].p3 = memId; 438 aOp[6].p1 = memId; 439 aOp[7].p2 = memId+2; 440 aOp[7].p1 = memId; 441 aOp[10].p2 = memId; 442 if( pParse->nTab==0 ) pParse->nTab = 1; 443 } 444 } 445 446 /* 447 ** Update the maximum rowid for an autoincrement calculation. 448 ** 449 ** This routine should be called when the regRowid register holds a 450 ** new rowid that is about to be inserted. If that new rowid is 451 ** larger than the maximum rowid in the memId memory cell, then the 452 ** memory cell is updated. 453 */ 454 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 455 if( memId>0 ){ 456 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 457 } 458 } 459 460 /* 461 ** This routine generates the code needed to write autoincrement 462 ** maximum rowid values back into the sqlite_sequence register. 463 ** Every statement that might do an INSERT into an autoincrement 464 ** table (either directly or through triggers) needs to call this 465 ** routine just before the "exit" code. 466 */ 467 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 468 AutoincInfo *p; 469 Vdbe *v = pParse->pVdbe; 470 sqlite3 *db = pParse->db; 471 472 assert( v ); 473 for(p = pParse->pAinc; p; p = p->pNext){ 474 static const int iLn = VDBE_OFFSET_LINENO(2); 475 static const VdbeOpList autoIncEnd[] = { 476 /* 0 */ {OP_NotNull, 0, 2, 0}, 477 /* 1 */ {OP_NewRowid, 0, 0, 0}, 478 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 479 /* 3 */ {OP_Insert, 0, 0, 0}, 480 /* 4 */ {OP_Close, 0, 0, 0} 481 }; 482 VdbeOp *aOp; 483 Db *pDb = &db->aDb[p->iDb]; 484 int iRec; 485 int memId = p->regCtr; 486 487 iRec = sqlite3GetTempReg(pParse); 488 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 489 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 490 VdbeCoverage(v); 491 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 493 if( aOp==0 ) break; 494 aOp[0].p1 = memId+1; 495 aOp[1].p2 = memId+1; 496 aOp[2].p1 = memId-1; 497 aOp[2].p3 = iRec; 498 aOp[3].p2 = iRec; 499 aOp[3].p3 = memId+1; 500 aOp[3].p5 = OPFLAG_APPEND; 501 sqlite3ReleaseTempReg(pParse, iRec); 502 } 503 } 504 void sqlite3AutoincrementEnd(Parse *pParse){ 505 if( pParse->pAinc ) autoIncrementEnd(pParse); 506 } 507 #else 508 /* 509 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 510 ** above are all no-ops 511 */ 512 # define autoIncBegin(A,B,C) (0) 513 # define autoIncStep(A,B,C) 514 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 515 516 517 /* Forward declaration */ 518 static int xferOptimization( 519 Parse *pParse, /* Parser context */ 520 Table *pDest, /* The table we are inserting into */ 521 Select *pSelect, /* A SELECT statement to use as the data source */ 522 int onError, /* How to handle constraint errors */ 523 int iDbDest /* The database of pDest */ 524 ); 525 526 /* 527 ** This routine is called to handle SQL of the following forms: 528 ** 529 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 530 ** insert into TABLE (IDLIST) select 531 ** insert into TABLE (IDLIST) default values 532 ** 533 ** The IDLIST following the table name is always optional. If omitted, 534 ** then a list of all (non-hidden) columns for the table is substituted. 535 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 536 ** is omitted. 537 ** 538 ** For the pSelect parameter holds the values to be inserted for the 539 ** first two forms shown above. A VALUES clause is really just short-hand 540 ** for a SELECT statement that omits the FROM clause and everything else 541 ** that follows. If the pSelect parameter is NULL, that means that the 542 ** DEFAULT VALUES form of the INSERT statement is intended. 543 ** 544 ** The code generated follows one of four templates. For a simple 545 ** insert with data coming from a single-row VALUES clause, the code executes 546 ** once straight down through. Pseudo-code follows (we call this 547 ** the "1st template"): 548 ** 549 ** open write cursor to <table> and its indices 550 ** put VALUES clause expressions into registers 551 ** write the resulting record into <table> 552 ** cleanup 553 ** 554 ** The three remaining templates assume the statement is of the form 555 ** 556 ** INSERT INTO <table> SELECT ... 557 ** 558 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 559 ** in other words if the SELECT pulls all columns from a single table 560 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 561 ** if <table2> and <table1> are distinct tables but have identical 562 ** schemas, including all the same indices, then a special optimization 563 ** is invoked that copies raw records from <table2> over to <table1>. 564 ** See the xferOptimization() function for the implementation of this 565 ** template. This is the 2nd template. 566 ** 567 ** open a write cursor to <table> 568 ** open read cursor on <table2> 569 ** transfer all records in <table2> over to <table> 570 ** close cursors 571 ** foreach index on <table> 572 ** open a write cursor on the <table> index 573 ** open a read cursor on the corresponding <table2> index 574 ** transfer all records from the read to the write cursors 575 ** close cursors 576 ** end foreach 577 ** 578 ** The 3rd template is for when the second template does not apply 579 ** and the SELECT clause does not read from <table> at any time. 580 ** The generated code follows this template: 581 ** 582 ** X <- A 583 ** goto B 584 ** A: setup for the SELECT 585 ** loop over the rows in the SELECT 586 ** load values into registers R..R+n 587 ** yield X 588 ** end loop 589 ** cleanup after the SELECT 590 ** end-coroutine X 591 ** B: open write cursor to <table> and its indices 592 ** C: yield X, at EOF goto D 593 ** insert the select result into <table> from R..R+n 594 ** goto C 595 ** D: cleanup 596 ** 597 ** The 4th template is used if the insert statement takes its 598 ** values from a SELECT but the data is being inserted into a table 599 ** that is also read as part of the SELECT. In the third form, 600 ** we have to use an intermediate table to store the results of 601 ** the select. The template is like this: 602 ** 603 ** X <- A 604 ** goto B 605 ** A: setup for the SELECT 606 ** loop over the tables in the SELECT 607 ** load value into register R..R+n 608 ** yield X 609 ** end loop 610 ** cleanup after the SELECT 611 ** end co-routine R 612 ** B: open temp table 613 ** L: yield X, at EOF goto M 614 ** insert row from R..R+n into temp table 615 ** goto L 616 ** M: open write cursor to <table> and its indices 617 ** rewind temp table 618 ** C: loop over rows of intermediate table 619 ** transfer values form intermediate table into <table> 620 ** end loop 621 ** D: cleanup 622 */ 623 void sqlite3Insert( 624 Parse *pParse, /* Parser context */ 625 SrcList *pTabList, /* Name of table into which we are inserting */ 626 Select *pSelect, /* A SELECT statement to use as the data source */ 627 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 628 int onError, /* How to handle constraint errors */ 629 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 630 ){ 631 sqlite3 *db; /* The main database structure */ 632 Table *pTab; /* The table to insert into. aka TABLE */ 633 int i, j; /* Loop counters */ 634 Vdbe *v; /* Generate code into this virtual machine */ 635 Index *pIdx; /* For looping over indices of the table */ 636 int nColumn; /* Number of columns in the data */ 637 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 638 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 639 int iIdxCur = 0; /* First index cursor */ 640 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 641 int endOfLoop; /* Label for the end of the insertion loop */ 642 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 643 int addrInsTop = 0; /* Jump to label "D" */ 644 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 645 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 646 int iDb; /* Index of database holding TABLE */ 647 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 648 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 649 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 650 u8 bIdListInOrder; /* True if IDLIST is in table order */ 651 ExprList *pList = 0; /* List of VALUES() to be inserted */ 652 int iRegStore; /* Register in which to store next column */ 653 654 /* Register allocations */ 655 int regFromSelect = 0;/* Base register for data coming from SELECT */ 656 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 657 int regRowCount = 0; /* Memory cell used for the row counter */ 658 int regIns; /* Block of regs holding rowid+data being inserted */ 659 int regRowid; /* registers holding insert rowid */ 660 int regData; /* register holding first column to insert */ 661 int *aRegIdx = 0; /* One register allocated to each index */ 662 663 #ifndef SQLITE_OMIT_TRIGGER 664 int isView; /* True if attempting to insert into a view */ 665 Trigger *pTrigger; /* List of triggers on pTab, if required */ 666 int tmask; /* Mask of trigger times */ 667 #endif 668 669 db = pParse->db; 670 if( pParse->nErr || db->mallocFailed ){ 671 goto insert_cleanup; 672 } 673 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 674 675 /* If the Select object is really just a simple VALUES() list with a 676 ** single row (the common case) then keep that one row of values 677 ** and discard the other (unused) parts of the pSelect object 678 */ 679 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 680 pList = pSelect->pEList; 681 pSelect->pEList = 0; 682 sqlite3SelectDelete(db, pSelect); 683 pSelect = 0; 684 } 685 686 /* Locate the table into which we will be inserting new information. 687 */ 688 assert( pTabList->nSrc==1 ); 689 pTab = sqlite3SrcListLookup(pParse, pTabList); 690 if( pTab==0 ){ 691 goto insert_cleanup; 692 } 693 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 694 assert( iDb<db->nDb ); 695 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 696 db->aDb[iDb].zDbSName) ){ 697 goto insert_cleanup; 698 } 699 withoutRowid = !HasRowid(pTab); 700 701 /* Figure out if we have any triggers and if the table being 702 ** inserted into is a view 703 */ 704 #ifndef SQLITE_OMIT_TRIGGER 705 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 706 isView = pTab->pSelect!=0; 707 #else 708 # define pTrigger 0 709 # define tmask 0 710 # define isView 0 711 #endif 712 #ifdef SQLITE_OMIT_VIEW 713 # undef isView 714 # define isView 0 715 #endif 716 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 717 718 /* If pTab is really a view, make sure it has been initialized. 719 ** ViewGetColumnNames() is a no-op if pTab is not a view. 720 */ 721 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 722 goto insert_cleanup; 723 } 724 725 /* Cannot insert into a read-only table. 726 */ 727 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 728 goto insert_cleanup; 729 } 730 731 /* Allocate a VDBE 732 */ 733 v = sqlite3GetVdbe(pParse); 734 if( v==0 ) goto insert_cleanup; 735 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 736 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 737 738 #ifndef SQLITE_OMIT_XFER_OPT 739 /* If the statement is of the form 740 ** 741 ** INSERT INTO <table1> SELECT * FROM <table2>; 742 ** 743 ** Then special optimizations can be applied that make the transfer 744 ** very fast and which reduce fragmentation of indices. 745 ** 746 ** This is the 2nd template. 747 */ 748 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 749 assert( !pTrigger ); 750 assert( pList==0 ); 751 goto insert_end; 752 } 753 #endif /* SQLITE_OMIT_XFER_OPT */ 754 755 /* If this is an AUTOINCREMENT table, look up the sequence number in the 756 ** sqlite_sequence table and store it in memory cell regAutoinc. 757 */ 758 regAutoinc = autoIncBegin(pParse, iDb, pTab); 759 760 /* Allocate a block registers to hold the rowid and the values 761 ** for all columns of the new row. 762 */ 763 regRowid = regIns = pParse->nMem+1; 764 pParse->nMem += pTab->nCol + 1; 765 if( IsVirtual(pTab) ){ 766 regRowid++; 767 pParse->nMem++; 768 } 769 regData = regRowid+1; 770 771 /* If the INSERT statement included an IDLIST term, then make sure 772 ** all elements of the IDLIST really are columns of the table and 773 ** remember the column indices. 774 ** 775 ** If the table has an INTEGER PRIMARY KEY column and that column 776 ** is named in the IDLIST, then record in the ipkColumn variable 777 ** the index into IDLIST of the primary key column. ipkColumn is 778 ** the index of the primary key as it appears in IDLIST, not as 779 ** is appears in the original table. (The index of the INTEGER 780 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 781 ** loop, if ipkColumn==(-1), that means that integer primary key 782 ** is unspecified, and hence the table is either WITHOUT ROWID or 783 ** it will automatically generated an integer primary key. 784 ** 785 ** bIdListInOrder is true if the columns in IDLIST are in storage 786 ** order. This enables an optimization that avoids shuffling the 787 ** columns into storage order. False negatives are harmless, 788 ** but false positives will cause database corruption. 789 */ 790 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 791 if( pColumn ){ 792 for(i=0; i<pColumn->nId; i++){ 793 pColumn->a[i].idx = -1; 794 } 795 for(i=0; i<pColumn->nId; i++){ 796 for(j=0; j<pTab->nCol; j++){ 797 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 798 pColumn->a[i].idx = j; 799 if( i!=j ) bIdListInOrder = 0; 800 if( j==pTab->iPKey ){ 801 ipkColumn = i; assert( !withoutRowid ); 802 } 803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 804 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 805 sqlite3ErrorMsg(pParse, 806 "cannot INSERT into generated column \"%s\"", 807 pTab->aCol[j].zName); 808 goto insert_cleanup; 809 } 810 #endif 811 break; 812 } 813 } 814 if( j>=pTab->nCol ){ 815 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 816 ipkColumn = i; 817 bIdListInOrder = 0; 818 }else{ 819 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 820 pTabList, 0, pColumn->a[i].zName); 821 pParse->checkSchema = 1; 822 goto insert_cleanup; 823 } 824 } 825 } 826 } 827 828 /* Figure out how many columns of data are supplied. If the data 829 ** is coming from a SELECT statement, then generate a co-routine that 830 ** produces a single row of the SELECT on each invocation. The 831 ** co-routine is the common header to the 3rd and 4th templates. 832 */ 833 if( pSelect ){ 834 /* Data is coming from a SELECT or from a multi-row VALUES clause. 835 ** Generate a co-routine to run the SELECT. */ 836 int regYield; /* Register holding co-routine entry-point */ 837 int addrTop; /* Top of the co-routine */ 838 int rc; /* Result code */ 839 840 regYield = ++pParse->nMem; 841 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 842 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 843 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 844 dest.iSdst = bIdListInOrder ? regData : 0; 845 dest.nSdst = pTab->nCol; 846 rc = sqlite3Select(pParse, pSelect, &dest); 847 regFromSelect = dest.iSdst; 848 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 849 sqlite3VdbeEndCoroutine(v, regYield); 850 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 851 assert( pSelect->pEList ); 852 nColumn = pSelect->pEList->nExpr; 853 854 /* Set useTempTable to TRUE if the result of the SELECT statement 855 ** should be written into a temporary table (template 4). Set to 856 ** FALSE if each output row of the SELECT can be written directly into 857 ** the destination table (template 3). 858 ** 859 ** A temp table must be used if the table being updated is also one 860 ** of the tables being read by the SELECT statement. Also use a 861 ** temp table in the case of row triggers. 862 */ 863 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 864 useTempTable = 1; 865 } 866 867 if( useTempTable ){ 868 /* Invoke the coroutine to extract information from the SELECT 869 ** and add it to a transient table srcTab. The code generated 870 ** here is from the 4th template: 871 ** 872 ** B: open temp table 873 ** L: yield X, goto M at EOF 874 ** insert row from R..R+n into temp table 875 ** goto L 876 ** M: ... 877 */ 878 int regRec; /* Register to hold packed record */ 879 int regTempRowid; /* Register to hold temp table ROWID */ 880 int addrL; /* Label "L" */ 881 882 srcTab = pParse->nTab++; 883 regRec = sqlite3GetTempReg(pParse); 884 regTempRowid = sqlite3GetTempReg(pParse); 885 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 886 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 887 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 888 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 889 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 890 sqlite3VdbeGoto(v, addrL); 891 sqlite3VdbeJumpHere(v, addrL); 892 sqlite3ReleaseTempReg(pParse, regRec); 893 sqlite3ReleaseTempReg(pParse, regTempRowid); 894 } 895 }else{ 896 /* This is the case if the data for the INSERT is coming from a 897 ** single-row VALUES clause 898 */ 899 NameContext sNC; 900 memset(&sNC, 0, sizeof(sNC)); 901 sNC.pParse = pParse; 902 srcTab = -1; 903 assert( useTempTable==0 ); 904 if( pList ){ 905 nColumn = pList->nExpr; 906 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 907 goto insert_cleanup; 908 } 909 }else{ 910 nColumn = 0; 911 } 912 } 913 914 /* If there is no IDLIST term but the table has an integer primary 915 ** key, the set the ipkColumn variable to the integer primary key 916 ** column index in the original table definition. 917 */ 918 if( pColumn==0 && nColumn>0 ){ 919 ipkColumn = pTab->iPKey; 920 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 921 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 922 testcase( pTab->tabFlags & TF_HasVirtual ); 923 testcase( pTab->tabFlags & TF_HasStored ); 924 for(i=ipkColumn-1; i>=0; i--){ 925 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 926 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 927 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 928 ipkColumn--; 929 } 930 } 931 } 932 #endif 933 } 934 935 /* Make sure the number of columns in the source data matches the number 936 ** of columns to be inserted into the table. 937 */ 938 for(i=0; i<pTab->nCol; i++){ 939 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 940 } 941 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 942 sqlite3ErrorMsg(pParse, 943 "table %S has %d columns but %d values were supplied", 944 pTabList, 0, pTab->nCol-nHidden, nColumn); 945 goto insert_cleanup; 946 } 947 if( pColumn!=0 && nColumn!=pColumn->nId ){ 948 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 949 goto insert_cleanup; 950 } 951 952 /* Initialize the count of rows to be inserted 953 */ 954 if( (db->flags & SQLITE_CountRows)!=0 955 && !pParse->nested 956 && !pParse->pTriggerTab 957 ){ 958 regRowCount = ++pParse->nMem; 959 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 960 } 961 962 /* If this is not a view, open the table and and all indices */ 963 if( !isView ){ 964 int nIdx; 965 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 966 &iDataCur, &iIdxCur); 967 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 968 if( aRegIdx==0 ){ 969 goto insert_cleanup; 970 } 971 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 972 assert( pIdx ); 973 aRegIdx[i] = ++pParse->nMem; 974 pParse->nMem += pIdx->nColumn; 975 } 976 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 977 } 978 #ifndef SQLITE_OMIT_UPSERT 979 if( pUpsert ){ 980 Upsert *pNx; 981 if( IsVirtual(pTab) ){ 982 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 983 pTab->zName); 984 goto insert_cleanup; 985 } 986 if( pTab->pSelect ){ 987 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 988 goto insert_cleanup; 989 } 990 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 991 goto insert_cleanup; 992 } 993 pTabList->a[0].iCursor = iDataCur; 994 pNx = pUpsert; 995 do{ 996 pNx->pUpsertSrc = pTabList; 997 pNx->regData = regData; 998 pNx->iDataCur = iDataCur; 999 pNx->iIdxCur = iIdxCur; 1000 if( pNx->pUpsertTarget ){ 1001 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx); 1002 } 1003 pNx = pNx->pNextUpsert; 1004 }while( pNx!=0 ); 1005 } 1006 #endif 1007 1008 1009 /* This is the top of the main insertion loop */ 1010 if( useTempTable ){ 1011 /* This block codes the top of loop only. The complete loop is the 1012 ** following pseudocode (template 4): 1013 ** 1014 ** rewind temp table, if empty goto D 1015 ** C: loop over rows of intermediate table 1016 ** transfer values form intermediate table into <table> 1017 ** end loop 1018 ** D: ... 1019 */ 1020 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1021 addrCont = sqlite3VdbeCurrentAddr(v); 1022 }else if( pSelect ){ 1023 /* This block codes the top of loop only. The complete loop is the 1024 ** following pseudocode (template 3): 1025 ** 1026 ** C: yield X, at EOF goto D 1027 ** insert the select result into <table> from R..R+n 1028 ** goto C 1029 ** D: ... 1030 */ 1031 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1032 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1033 VdbeCoverage(v); 1034 if( ipkColumn>=0 ){ 1035 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1036 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1037 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1038 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1039 } 1040 } 1041 1042 /* Compute data for ordinary columns of the new entry. Values 1043 ** are written in storage order into registers starting with regData. 1044 ** Only ordinary columns are computed in this loop. The rowid 1045 ** (if there is one) is computed later and generated columns are 1046 ** computed after the rowid since they might depend on the value 1047 ** of the rowid. 1048 */ 1049 nHidden = 0; 1050 iRegStore = regData; assert( regData==regRowid+1 ); 1051 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1052 int k; 1053 u32 colFlags; 1054 assert( i>=nHidden ); 1055 if( i==pTab->iPKey ){ 1056 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1057 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1058 ** using excess space. The file format definition requires this extra 1059 ** NULL - we cannot optimize further by skipping the column completely */ 1060 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1061 continue; 1062 } 1063 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1064 nHidden++; 1065 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1066 /* Virtual columns do not participate in OP_MakeRecord. So back up 1067 ** iRegStore by one slot to compensate for the iRegStore++ in the 1068 ** outer for() loop */ 1069 iRegStore--; 1070 continue; 1071 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1072 /* Stored columns are computed later. But if there are BEFORE 1073 ** triggers, the slots used for stored columns will be OP_Copy-ed 1074 ** to a second block of registers, so the register needs to be 1075 ** initialized to NULL to avoid an uninitialized register read */ 1076 if( tmask & TRIGGER_BEFORE ){ 1077 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1078 } 1079 continue; 1080 }else if( pColumn==0 ){ 1081 /* Hidden columns that are not explicitly named in the INSERT 1082 ** get there default value */ 1083 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1084 continue; 1085 } 1086 } 1087 if( pColumn ){ 1088 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1089 if( j>=pColumn->nId ){ 1090 /* A column not named in the insert column list gets its 1091 ** default value */ 1092 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1093 continue; 1094 } 1095 k = j; 1096 }else if( nColumn==0 ){ 1097 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1098 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1099 continue; 1100 }else{ 1101 k = i - nHidden; 1102 } 1103 1104 if( useTempTable ){ 1105 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1106 }else if( pSelect ){ 1107 if( regFromSelect!=regData ){ 1108 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1109 } 1110 }else{ 1111 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1112 } 1113 } 1114 1115 1116 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1117 */ 1118 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1119 if( tmask & TRIGGER_BEFORE ){ 1120 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1121 1122 /* build the NEW.* reference row. Note that if there is an INTEGER 1123 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1124 ** translated into a unique ID for the row. But on a BEFORE trigger, 1125 ** we do not know what the unique ID will be (because the insert has 1126 ** not happened yet) so we substitute a rowid of -1 1127 */ 1128 if( ipkColumn<0 ){ 1129 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1130 }else{ 1131 int addr1; 1132 assert( !withoutRowid ); 1133 if( useTempTable ){ 1134 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1135 }else{ 1136 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1137 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1138 } 1139 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1140 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1141 sqlite3VdbeJumpHere(v, addr1); 1142 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1143 } 1144 1145 /* Cannot have triggers on a virtual table. If it were possible, 1146 ** this block would have to account for hidden column. 1147 */ 1148 assert( !IsVirtual(pTab) ); 1149 1150 /* Copy the new data already generated. */ 1151 assert( pTab->nNVCol>0 ); 1152 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1153 1154 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1155 /* Compute the new value for generated columns after all other 1156 ** columns have already been computed. This must be done after 1157 ** computing the ROWID in case one of the generated columns 1158 ** refers to the ROWID. */ 1159 if( pTab->tabFlags & TF_HasGenerated ){ 1160 testcase( pTab->tabFlags & TF_HasVirtual ); 1161 testcase( pTab->tabFlags & TF_HasStored ); 1162 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1163 } 1164 #endif 1165 1166 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1167 ** do not attempt any conversions before assembling the record. 1168 ** If this is a real table, attempt conversions as required by the 1169 ** table column affinities. 1170 */ 1171 if( !isView ){ 1172 sqlite3TableAffinity(v, pTab, regCols+1); 1173 } 1174 1175 /* Fire BEFORE or INSTEAD OF triggers */ 1176 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1177 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1178 1179 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1180 } 1181 1182 if( !isView ){ 1183 if( IsVirtual(pTab) ){ 1184 /* The row that the VUpdate opcode will delete: none */ 1185 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1186 } 1187 if( ipkColumn>=0 ){ 1188 /* Compute the new rowid */ 1189 if( useTempTable ){ 1190 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1191 }else if( pSelect ){ 1192 /* Rowid already initialized at tag-20191021-001 */ 1193 }else{ 1194 Expr *pIpk = pList->a[ipkColumn].pExpr; 1195 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1196 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1197 appendFlag = 1; 1198 }else{ 1199 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1200 } 1201 } 1202 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1203 ** to generate a unique primary key value. 1204 */ 1205 if( !appendFlag ){ 1206 int addr1; 1207 if( !IsVirtual(pTab) ){ 1208 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1209 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1210 sqlite3VdbeJumpHere(v, addr1); 1211 }else{ 1212 addr1 = sqlite3VdbeCurrentAddr(v); 1213 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1214 } 1215 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1216 } 1217 }else if( IsVirtual(pTab) || withoutRowid ){ 1218 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1219 }else{ 1220 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1221 appendFlag = 1; 1222 } 1223 autoIncStep(pParse, regAutoinc, regRowid); 1224 1225 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1226 /* Compute the new value for generated columns after all other 1227 ** columns have already been computed. This must be done after 1228 ** computing the ROWID in case one of the generated columns 1229 ** is derived from the INTEGER PRIMARY KEY. */ 1230 if( pTab->tabFlags & TF_HasGenerated ){ 1231 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1232 } 1233 #endif 1234 1235 /* Generate code to check constraints and generate index keys and 1236 ** do the insertion. 1237 */ 1238 #ifndef SQLITE_OMIT_VIRTUALTABLE 1239 if( IsVirtual(pTab) ){ 1240 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1241 sqlite3VtabMakeWritable(pParse, pTab); 1242 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1243 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1244 sqlite3MayAbort(pParse); 1245 }else 1246 #endif 1247 { 1248 int isReplace; /* Set to true if constraints may cause a replace */ 1249 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1250 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1251 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1252 ); 1253 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1254 1255 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1256 ** constraints or (b) there are no triggers and this table is not a 1257 ** parent table in a foreign key constraint. It is safe to set the 1258 ** flag in the second case as if any REPLACE constraint is hit, an 1259 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1260 ** cursor that is disturbed. And these instructions both clear the 1261 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1262 ** functionality. */ 1263 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1264 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1265 regIns, aRegIdx, 0, appendFlag, bUseSeek 1266 ); 1267 } 1268 } 1269 1270 /* Update the count of rows that are inserted 1271 */ 1272 if( regRowCount ){ 1273 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1274 } 1275 1276 if( pTrigger ){ 1277 /* Code AFTER triggers */ 1278 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1279 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1280 } 1281 1282 /* The bottom of the main insertion loop, if the data source 1283 ** is a SELECT statement. 1284 */ 1285 sqlite3VdbeResolveLabel(v, endOfLoop); 1286 if( useTempTable ){ 1287 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1288 sqlite3VdbeJumpHere(v, addrInsTop); 1289 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1290 }else if( pSelect ){ 1291 sqlite3VdbeGoto(v, addrCont); 1292 #ifdef SQLITE_DEBUG 1293 /* If we are jumping back to an OP_Yield that is preceded by an 1294 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1295 ** OP_ReleaseReg will be included in the loop. */ 1296 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1297 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1298 sqlite3VdbeChangeP5(v, 1); 1299 } 1300 #endif 1301 sqlite3VdbeJumpHere(v, addrInsTop); 1302 } 1303 1304 #ifndef SQLITE_OMIT_XFER_OPT 1305 insert_end: 1306 #endif /* SQLITE_OMIT_XFER_OPT */ 1307 /* Update the sqlite_sequence table by storing the content of the 1308 ** maximum rowid counter values recorded while inserting into 1309 ** autoincrement tables. 1310 */ 1311 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1312 sqlite3AutoincrementEnd(pParse); 1313 } 1314 1315 /* 1316 ** Return the number of rows inserted. If this routine is 1317 ** generating code because of a call to sqlite3NestedParse(), do not 1318 ** invoke the callback function. 1319 */ 1320 if( regRowCount ){ 1321 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1322 sqlite3VdbeSetNumCols(v, 1); 1323 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1324 } 1325 1326 insert_cleanup: 1327 sqlite3SrcListDelete(db, pTabList); 1328 sqlite3ExprListDelete(db, pList); 1329 sqlite3UpsertDelete(db, pUpsert); 1330 sqlite3SelectDelete(db, pSelect); 1331 sqlite3IdListDelete(db, pColumn); 1332 sqlite3DbFree(db, aRegIdx); 1333 } 1334 1335 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1336 ** they may interfere with compilation of other functions in this file 1337 ** (or in another file, if this file becomes part of the amalgamation). */ 1338 #ifdef isView 1339 #undef isView 1340 #endif 1341 #ifdef pTrigger 1342 #undef pTrigger 1343 #endif 1344 #ifdef tmask 1345 #undef tmask 1346 #endif 1347 1348 /* 1349 ** Meanings of bits in of pWalker->eCode for 1350 ** sqlite3ExprReferencesUpdatedColumn() 1351 */ 1352 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1353 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1354 1355 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1356 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1357 ** expression node references any of the 1358 ** columns that are being modifed by an UPDATE statement. 1359 */ 1360 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1361 if( pExpr->op==TK_COLUMN ){ 1362 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1363 if( pExpr->iColumn>=0 ){ 1364 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1365 pWalker->eCode |= CKCNSTRNT_COLUMN; 1366 } 1367 }else{ 1368 pWalker->eCode |= CKCNSTRNT_ROWID; 1369 } 1370 } 1371 return WRC_Continue; 1372 } 1373 1374 /* 1375 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1376 ** only columns that are modified by the UPDATE are those for which 1377 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1378 ** 1379 ** Return true if CHECK constraint pExpr uses any of the 1380 ** changing columns (or the rowid if it is changing). In other words, 1381 ** return true if this CHECK constraint must be validated for 1382 ** the new row in the UPDATE statement. 1383 ** 1384 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1385 ** The operation of this routine is the same - return true if an only if 1386 ** the expression uses one or more of columns identified by the second and 1387 ** third arguments. 1388 */ 1389 int sqlite3ExprReferencesUpdatedColumn( 1390 Expr *pExpr, /* The expression to be checked */ 1391 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1392 int chngRowid /* True if UPDATE changes the rowid */ 1393 ){ 1394 Walker w; 1395 memset(&w, 0, sizeof(w)); 1396 w.eCode = 0; 1397 w.xExprCallback = checkConstraintExprNode; 1398 w.u.aiCol = aiChng; 1399 sqlite3WalkExpr(&w, pExpr); 1400 if( !chngRowid ){ 1401 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1402 w.eCode &= ~CKCNSTRNT_ROWID; 1403 } 1404 testcase( w.eCode==0 ); 1405 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1406 testcase( w.eCode==CKCNSTRNT_ROWID ); 1407 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1408 return w.eCode!=0; 1409 } 1410 1411 /* 1412 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1413 ** the indexes of a table in the order provided in the Table->pIndex list. 1414 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1415 ** the indexes in a different order. The following data structures accomplish 1416 ** this. 1417 ** 1418 ** The IndexIterator object is used to walk through all of the indexes 1419 ** of a table in either Index.pNext order, or in some other order established 1420 ** by an array of IndexListTerm objects. 1421 */ 1422 typedef struct IndexListTerm IndexListTerm; 1423 typedef struct IndexIterator IndexIterator; 1424 struct IndexIterator { 1425 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1426 int i; /* Index of the current item from the list */ 1427 union { 1428 struct { /* Use this object for eType==0: A Index.pNext list */ 1429 Index *pIdx; /* The current Index */ 1430 } lx; 1431 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1432 int nIdx; /* Size of the array */ 1433 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1434 } ax; 1435 } u; 1436 }; 1437 1438 /* When IndexIterator.eType==1, then each index is an array of instances 1439 ** of the following object 1440 */ 1441 struct IndexListTerm { 1442 Index *p; /* The index */ 1443 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1444 }; 1445 1446 /* Return the first index on the list */ 1447 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1448 assert( pIter->i==0 ); 1449 if( pIter->eType ){ 1450 *pIx = pIter->u.ax.aIdx[0].ix; 1451 return pIter->u.ax.aIdx[0].p; 1452 }else{ 1453 *pIx = 0; 1454 return pIter->u.lx.pIdx; 1455 } 1456 } 1457 1458 /* Return the next index from the list. Return NULL when out of indexes */ 1459 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1460 if( pIter->eType ){ 1461 int i = ++pIter->i; 1462 if( i>=pIter->u.ax.nIdx ){ 1463 *pIx = i; 1464 return 0; 1465 } 1466 *pIx = pIter->u.ax.aIdx[i].ix; 1467 return pIter->u.ax.aIdx[i].p; 1468 }else{ 1469 ++(*pIx); 1470 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1471 return pIter->u.lx.pIdx; 1472 } 1473 } 1474 1475 /* 1476 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1477 ** on table pTab. 1478 ** 1479 ** The regNewData parameter is the first register in a range that contains 1480 ** the data to be inserted or the data after the update. There will be 1481 ** pTab->nCol+1 registers in this range. The first register (the one 1482 ** that regNewData points to) will contain the new rowid, or NULL in the 1483 ** case of a WITHOUT ROWID table. The second register in the range will 1484 ** contain the content of the first table column. The third register will 1485 ** contain the content of the second table column. And so forth. 1486 ** 1487 ** The regOldData parameter is similar to regNewData except that it contains 1488 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1489 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1490 ** checking regOldData for zero. 1491 ** 1492 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1493 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1494 ** might be modified by the UPDATE. If pkChng is false, then the key of 1495 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1496 ** 1497 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1498 ** was explicitly specified as part of the INSERT statement. If pkChng 1499 ** is zero, it means that the either rowid is computed automatically or 1500 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1501 ** pkChng will only be true if the INSERT statement provides an integer 1502 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1503 ** 1504 ** The code generated by this routine will store new index entries into 1505 ** registers identified by aRegIdx[]. No index entry is created for 1506 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1507 ** the same as the order of indices on the linked list of indices 1508 ** at pTab->pIndex. 1509 ** 1510 ** (2019-05-07) The generated code also creates a new record for the 1511 ** main table, if pTab is a rowid table, and stores that record in the 1512 ** register identified by aRegIdx[nIdx] - in other words in the first 1513 ** entry of aRegIdx[] past the last index. It is important that the 1514 ** record be generated during constraint checks to avoid affinity changes 1515 ** to the register content that occur after constraint checks but before 1516 ** the new record is inserted. 1517 ** 1518 ** The caller must have already opened writeable cursors on the main 1519 ** table and all applicable indices (that is to say, all indices for which 1520 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1521 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1522 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1523 ** for the first index in the pTab->pIndex list. Cursors for other indices 1524 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1525 ** 1526 ** This routine also generates code to check constraints. NOT NULL, 1527 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1528 ** then the appropriate action is performed. There are five possible 1529 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1530 ** 1531 ** Constraint type Action What Happens 1532 ** --------------- ---------- ---------------------------------------- 1533 ** any ROLLBACK The current transaction is rolled back and 1534 ** sqlite3_step() returns immediately with a 1535 ** return code of SQLITE_CONSTRAINT. 1536 ** 1537 ** any ABORT Back out changes from the current command 1538 ** only (do not do a complete rollback) then 1539 ** cause sqlite3_step() to return immediately 1540 ** with SQLITE_CONSTRAINT. 1541 ** 1542 ** any FAIL Sqlite3_step() returns immediately with a 1543 ** return code of SQLITE_CONSTRAINT. The 1544 ** transaction is not rolled back and any 1545 ** changes to prior rows are retained. 1546 ** 1547 ** any IGNORE The attempt in insert or update the current 1548 ** row is skipped, without throwing an error. 1549 ** Processing continues with the next row. 1550 ** (There is an immediate jump to ignoreDest.) 1551 ** 1552 ** NOT NULL REPLACE The NULL value is replace by the default 1553 ** value for that column. If the default value 1554 ** is NULL, the action is the same as ABORT. 1555 ** 1556 ** UNIQUE REPLACE The other row that conflicts with the row 1557 ** being inserted is removed. 1558 ** 1559 ** CHECK REPLACE Illegal. The results in an exception. 1560 ** 1561 ** Which action to take is determined by the overrideError parameter. 1562 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1563 ** is used. Or if pParse->onError==OE_Default then the onError value 1564 ** for the constraint is used. 1565 */ 1566 void sqlite3GenerateConstraintChecks( 1567 Parse *pParse, /* The parser context */ 1568 Table *pTab, /* The table being inserted or updated */ 1569 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1570 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1571 int iIdxCur, /* First index cursor */ 1572 int regNewData, /* First register in a range holding values to insert */ 1573 int regOldData, /* Previous content. 0 for INSERTs */ 1574 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1575 u8 overrideError, /* Override onError to this if not OE_Default */ 1576 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1577 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1578 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1579 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1580 ){ 1581 Vdbe *v; /* VDBE under constrution */ 1582 Index *pIdx; /* Pointer to one of the indices */ 1583 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1584 sqlite3 *db; /* Database connection */ 1585 int i; /* loop counter */ 1586 int ix; /* Index loop counter */ 1587 int nCol; /* Number of columns */ 1588 int onError; /* Conflict resolution strategy */ 1589 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1590 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1591 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1592 u8 isUpdate; /* True if this is an UPDATE operation */ 1593 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1594 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1595 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1596 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1597 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1598 /* Variables associated with retesting uniqueness constraints after 1599 ** replace triggers fire have run */ 1600 int regTrigCnt; /* Register used to count replace trigger invocations */ 1601 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1602 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1603 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1604 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1605 IndexIterator sIdxIter; /* Index iterator */ 1606 1607 isUpdate = regOldData!=0; 1608 db = pParse->db; 1609 v = pParse->pVdbe; 1610 assert( v!=0 ); 1611 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1612 nCol = pTab->nCol; 1613 1614 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1615 ** normal rowid tables. nPkField is the number of key fields in the 1616 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1617 ** number of fields in the true primary key of the table. */ 1618 if( HasRowid(pTab) ){ 1619 pPk = 0; 1620 nPkField = 1; 1621 }else{ 1622 pPk = sqlite3PrimaryKeyIndex(pTab); 1623 nPkField = pPk->nKeyCol; 1624 } 1625 1626 /* Record that this module has started */ 1627 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1628 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1629 1630 /* Test all NOT NULL constraints. 1631 */ 1632 if( pTab->tabFlags & TF_HasNotNull ){ 1633 int b2ndPass = 0; /* True if currently running 2nd pass */ 1634 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1635 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1636 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1637 for(i=0; i<nCol; i++){ 1638 int iReg; /* Register holding column value */ 1639 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1640 int isGenerated; /* non-zero if column is generated */ 1641 onError = pCol->notNull; 1642 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1643 if( i==pTab->iPKey ){ 1644 continue; /* ROWID is never NULL */ 1645 } 1646 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1647 if( isGenerated && !b2ndPass ){ 1648 nGenerated++; 1649 continue; /* Generated columns processed on 2nd pass */ 1650 } 1651 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1652 /* Do not check NOT NULL on columns that do not change */ 1653 continue; 1654 } 1655 if( overrideError!=OE_Default ){ 1656 onError = overrideError; 1657 }else if( onError==OE_Default ){ 1658 onError = OE_Abort; 1659 } 1660 if( onError==OE_Replace ){ 1661 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1662 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1663 ){ 1664 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1665 testcase( pCol->colFlags & COLFLAG_STORED ); 1666 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1667 onError = OE_Abort; 1668 }else{ 1669 assert( !isGenerated ); 1670 } 1671 }else if( b2ndPass && !isGenerated ){ 1672 continue; 1673 } 1674 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1675 || onError==OE_Ignore || onError==OE_Replace ); 1676 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1677 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1678 switch( onError ){ 1679 case OE_Replace: { 1680 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1681 VdbeCoverage(v); 1682 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1683 nSeenReplace++; 1684 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg); 1685 sqlite3VdbeJumpHere(v, addr1); 1686 break; 1687 } 1688 case OE_Abort: 1689 sqlite3MayAbort(pParse); 1690 /* no break */ deliberate_fall_through 1691 case OE_Rollback: 1692 case OE_Fail: { 1693 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1694 pCol->zName); 1695 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1696 onError, iReg); 1697 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1698 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1699 VdbeCoverage(v); 1700 break; 1701 } 1702 default: { 1703 assert( onError==OE_Ignore ); 1704 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1705 VdbeCoverage(v); 1706 break; 1707 } 1708 } /* end switch(onError) */ 1709 } /* end loop i over columns */ 1710 if( nGenerated==0 && nSeenReplace==0 ){ 1711 /* If there are no generated columns with NOT NULL constraints 1712 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1713 ** pass is sufficient */ 1714 break; 1715 } 1716 if( b2ndPass ) break; /* Never need more than 2 passes */ 1717 b2ndPass = 1; 1718 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1719 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1720 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1721 ** first pass, recomputed values for all generated columns, as 1722 ** those values might depend on columns affected by the REPLACE. 1723 */ 1724 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1725 } 1726 #endif 1727 } /* end of 2-pass loop */ 1728 } /* end if( has-not-null-constraints ) */ 1729 1730 /* Test all CHECK constraints 1731 */ 1732 #ifndef SQLITE_OMIT_CHECK 1733 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1734 ExprList *pCheck = pTab->pCheck; 1735 pParse->iSelfTab = -(regNewData+1); 1736 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1737 for(i=0; i<pCheck->nExpr; i++){ 1738 int allOk; 1739 Expr *pCopy; 1740 Expr *pExpr = pCheck->a[i].pExpr; 1741 if( aiChng 1742 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1743 ){ 1744 /* The check constraints do not reference any of the columns being 1745 ** updated so there is no point it verifying the check constraint */ 1746 continue; 1747 } 1748 if( bAffinityDone==0 ){ 1749 sqlite3TableAffinity(v, pTab, regNewData+1); 1750 bAffinityDone = 1; 1751 } 1752 allOk = sqlite3VdbeMakeLabel(pParse); 1753 sqlite3VdbeVerifyAbortable(v, onError); 1754 pCopy = sqlite3ExprDup(db, pExpr, 0); 1755 if( !db->mallocFailed ){ 1756 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1757 } 1758 sqlite3ExprDelete(db, pCopy); 1759 if( onError==OE_Ignore ){ 1760 sqlite3VdbeGoto(v, ignoreDest); 1761 }else{ 1762 char *zName = pCheck->a[i].zEName; 1763 assert( zName!=0 || pParse->db->mallocFailed ); 1764 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1765 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1766 onError, zName, P4_TRANSIENT, 1767 P5_ConstraintCheck); 1768 } 1769 sqlite3VdbeResolveLabel(v, allOk); 1770 } 1771 pParse->iSelfTab = 0; 1772 } 1773 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1774 1775 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1776 ** order: 1777 ** 1778 ** (1) OE_Update 1779 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1780 ** (3) OE_Replace 1781 ** 1782 ** OE_Fail and OE_Ignore must happen before any changes are made. 1783 ** OE_Update guarantees that only a single row will change, so it 1784 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1785 ** could happen in any order, but they are grouped up front for 1786 ** convenience. 1787 ** 1788 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1789 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1790 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1791 ** constraint before any others, so it had to be moved. 1792 ** 1793 ** Constraint checking code is generated in this order: 1794 ** (A) The rowid constraint 1795 ** (B) Unique index constraints that do not have OE_Replace as their 1796 ** default conflict resolution strategy 1797 ** (C) Unique index that do use OE_Replace by default. 1798 ** 1799 ** The ordering of (2) and (3) is accomplished by making sure the linked 1800 ** list of indexes attached to a table puts all OE_Replace indexes last 1801 ** in the list. See sqlite3CreateIndex() for where that happens. 1802 */ 1803 sIdxIter.eType = 0; 1804 sIdxIter.i = 0; 1805 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1806 sIdxIter.u.lx.pIdx = pTab->pIndex; 1807 if( pUpsert ){ 1808 if( pUpsert->pUpsertTarget==0 ){ 1809 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1810 assert( pUpsert->pNextUpsert==0 ); 1811 if( pUpsert->isDoUpdate==0 ){ 1812 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1813 ** Make all unique constraint resolution be OE_Ignore */ 1814 overrideError = OE_Ignore; 1815 pUpsert = 0; 1816 }else{ 1817 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1818 overrideError = OE_Update; 1819 } 1820 }else if( pTab->pIndex!=0 ){ 1821 /* Otherwise, we'll need to run the IndexListTerm array version of the 1822 ** iterator to ensure that all of the ON CONFLICT conditions are 1823 ** checked first and in order. */ 1824 int nIdx, jj; 1825 u64 nByte; 1826 Upsert *pTerm; 1827 u8 *bUsed; 1828 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1829 assert( aRegIdx[nIdx]>0 ); 1830 } 1831 sIdxIter.eType = 1; 1832 sIdxIter.u.ax.nIdx = nIdx; 1833 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1834 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1835 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1836 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1837 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1838 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1839 if( pTerm->pUpsertTarget==0 ) break; 1840 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1841 jj = 0; 1842 pIdx = pTab->pIndex; 1843 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1844 pIdx = pIdx->pNext; 1845 jj++; 1846 } 1847 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1848 bUsed[jj] = 1; 1849 sIdxIter.u.ax.aIdx[i].p = pIdx; 1850 sIdxIter.u.ax.aIdx[i].ix = jj; 1851 i++; 1852 } 1853 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1854 if( bUsed[jj] ) continue; 1855 sIdxIter.u.ax.aIdx[i].p = pIdx; 1856 sIdxIter.u.ax.aIdx[i].ix = jj; 1857 i++; 1858 } 1859 assert( i==nIdx ); 1860 } 1861 } 1862 1863 /* Determine if it is possible that triggers (either explicitly coded 1864 ** triggers or FK resolution actions) might run as a result of deletes 1865 ** that happen when OE_Replace conflict resolution occurs. (Call these 1866 ** "replace triggers".) If any replace triggers run, we will need to 1867 ** recheck all of the uniqueness constraints after they have all run. 1868 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1869 ** 1870 ** If replace triggers are a possibility, then 1871 ** 1872 ** (1) Allocate register regTrigCnt and initialize it to zero. 1873 ** That register will count the number of replace triggers that 1874 ** fire. Constraint recheck only occurs if the number is positive. 1875 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1876 ** (3) Initialize addrRecheck and lblRecheckOk 1877 ** 1878 ** The uniqueness rechecking code will create a series of tests to run 1879 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1880 ** used to link together these tests which are separated from each other 1881 ** in the generate bytecode. 1882 */ 1883 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1884 /* There are not DELETE triggers nor FK constraints. No constraint 1885 ** rechecks are needed. */ 1886 pTrigger = 0; 1887 regTrigCnt = 0; 1888 }else{ 1889 if( db->flags&SQLITE_RecTriggers ){ 1890 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1891 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1892 }else{ 1893 pTrigger = 0; 1894 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1895 } 1896 if( regTrigCnt ){ 1897 /* Replace triggers might exist. Allocate the counter and 1898 ** initialize it to zero. */ 1899 regTrigCnt = ++pParse->nMem; 1900 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1901 VdbeComment((v, "trigger count")); 1902 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1903 addrRecheck = lblRecheckOk; 1904 } 1905 } 1906 1907 /* If rowid is changing, make sure the new rowid does not previously 1908 ** exist in the table. 1909 */ 1910 if( pkChng && pPk==0 ){ 1911 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1912 1913 /* Figure out what action to take in case of a rowid collision */ 1914 onError = pTab->keyConf; 1915 if( overrideError!=OE_Default ){ 1916 onError = overrideError; 1917 }else if( onError==OE_Default ){ 1918 onError = OE_Abort; 1919 } 1920 1921 /* figure out whether or not upsert applies in this case */ 1922 if( pUpsert ){ 1923 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1924 if( pUpsertClause!=0 ){ 1925 if( pUpsertClause->isDoUpdate==0 ){ 1926 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1927 }else{ 1928 onError = OE_Update; /* DO UPDATE */ 1929 } 1930 } 1931 if( pUpsertClause!=pUpsert ){ 1932 /* The first ON CONFLICT clause has a conflict target other than 1933 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1934 ** and then come back here and deal with the IPK afterwards */ 1935 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1936 } 1937 } 1938 1939 /* If the response to a rowid conflict is REPLACE but the response 1940 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1941 ** to defer the running of the rowid conflict checking until after 1942 ** the UNIQUE constraints have run. 1943 */ 1944 if( onError==OE_Replace /* IPK rule is REPLACE */ 1945 && onError!=overrideError /* Rules for other constraints are different */ 1946 && pTab->pIndex /* There exist other constraints */ 1947 ){ 1948 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1949 VdbeComment((v, "defer IPK REPLACE until last")); 1950 } 1951 1952 if( isUpdate ){ 1953 /* pkChng!=0 does not mean that the rowid has changed, only that 1954 ** it might have changed. Skip the conflict logic below if the rowid 1955 ** is unchanged. */ 1956 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1957 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1958 VdbeCoverage(v); 1959 } 1960 1961 /* Check to see if the new rowid already exists in the table. Skip 1962 ** the following conflict logic if it does not. */ 1963 VdbeNoopComment((v, "uniqueness check for ROWID")); 1964 sqlite3VdbeVerifyAbortable(v, onError); 1965 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1966 VdbeCoverage(v); 1967 1968 switch( onError ){ 1969 default: { 1970 onError = OE_Abort; 1971 /* no break */ deliberate_fall_through 1972 } 1973 case OE_Rollback: 1974 case OE_Abort: 1975 case OE_Fail: { 1976 testcase( onError==OE_Rollback ); 1977 testcase( onError==OE_Abort ); 1978 testcase( onError==OE_Fail ); 1979 sqlite3RowidConstraint(pParse, onError, pTab); 1980 break; 1981 } 1982 case OE_Replace: { 1983 /* If there are DELETE triggers on this table and the 1984 ** recursive-triggers flag is set, call GenerateRowDelete() to 1985 ** remove the conflicting row from the table. This will fire 1986 ** the triggers and remove both the table and index b-tree entries. 1987 ** 1988 ** Otherwise, if there are no triggers or the recursive-triggers 1989 ** flag is not set, but the table has one or more indexes, call 1990 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1991 ** only. The table b-tree entry will be replaced by the new entry 1992 ** when it is inserted. 1993 ** 1994 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1995 ** also invoke MultiWrite() to indicate that this VDBE may require 1996 ** statement rollback (if the statement is aborted after the delete 1997 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1998 ** but being more selective here allows statements like: 1999 ** 2000 ** REPLACE INTO t(rowid) VALUES($newrowid) 2001 ** 2002 ** to run without a statement journal if there are no indexes on the 2003 ** table. 2004 */ 2005 if( regTrigCnt ){ 2006 sqlite3MultiWrite(pParse); 2007 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2008 regNewData, 1, 0, OE_Replace, 1, -1); 2009 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2010 nReplaceTrig++; 2011 }else{ 2012 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2013 assert( HasRowid(pTab) ); 2014 /* This OP_Delete opcode fires the pre-update-hook only. It does 2015 ** not modify the b-tree. It is more efficient to let the coming 2016 ** OP_Insert replace the existing entry than it is to delete the 2017 ** existing entry and then insert a new one. */ 2018 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2019 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2020 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2021 if( pTab->pIndex ){ 2022 sqlite3MultiWrite(pParse); 2023 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2024 } 2025 } 2026 seenReplace = 1; 2027 break; 2028 } 2029 #ifndef SQLITE_OMIT_UPSERT 2030 case OE_Update: { 2031 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2032 /* no break */ deliberate_fall_through 2033 } 2034 #endif 2035 case OE_Ignore: { 2036 testcase( onError==OE_Ignore ); 2037 sqlite3VdbeGoto(v, ignoreDest); 2038 break; 2039 } 2040 } 2041 sqlite3VdbeResolveLabel(v, addrRowidOk); 2042 if( pUpsert && pUpsertClause!=pUpsert ){ 2043 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2044 }else if( ipkTop ){ 2045 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2046 sqlite3VdbeJumpHere(v, ipkTop-1); 2047 } 2048 } 2049 2050 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2051 ** index and making sure that duplicate entries do not already exist. 2052 ** Compute the revised record entries for indices as we go. 2053 ** 2054 ** This loop also handles the case of the PRIMARY KEY index for a 2055 ** WITHOUT ROWID table. 2056 */ 2057 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2058 pIdx; 2059 pIdx = indexIteratorNext(&sIdxIter, &ix) 2060 ){ 2061 int regIdx; /* Range of registers hold conent for pIdx */ 2062 int regR; /* Range of registers holding conflicting PK */ 2063 int iThisCur; /* Cursor for this UNIQUE index */ 2064 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2065 int addrConflictCk; /* First opcode in the conflict check logic */ 2066 2067 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2068 if( pUpsert ){ 2069 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2070 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2071 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2072 } 2073 } 2074 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2075 if( bAffinityDone==0 ){ 2076 sqlite3TableAffinity(v, pTab, regNewData+1); 2077 bAffinityDone = 1; 2078 } 2079 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2080 iThisCur = iIdxCur+ix; 2081 2082 2083 /* Skip partial indices for which the WHERE clause is not true */ 2084 if( pIdx->pPartIdxWhere ){ 2085 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2086 pParse->iSelfTab = -(regNewData+1); 2087 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2088 SQLITE_JUMPIFNULL); 2089 pParse->iSelfTab = 0; 2090 } 2091 2092 /* Create a record for this index entry as it should appear after 2093 ** the insert or update. Store that record in the aRegIdx[ix] register 2094 */ 2095 regIdx = aRegIdx[ix]+1; 2096 for(i=0; i<pIdx->nColumn; i++){ 2097 int iField = pIdx->aiColumn[i]; 2098 int x; 2099 if( iField==XN_EXPR ){ 2100 pParse->iSelfTab = -(regNewData+1); 2101 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2102 pParse->iSelfTab = 0; 2103 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2104 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2105 x = regNewData; 2106 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2107 VdbeComment((v, "rowid")); 2108 }else{ 2109 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2110 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2111 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2112 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 2113 } 2114 } 2115 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2116 VdbeComment((v, "for %s", pIdx->zName)); 2117 #ifdef SQLITE_ENABLE_NULL_TRIM 2118 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2119 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2120 } 2121 #endif 2122 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2123 2124 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2125 ** of a WITHOUT ROWID table and there has been no change the 2126 ** primary key, then no collision is possible. The collision detection 2127 ** logic below can all be skipped. */ 2128 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2129 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2130 continue; 2131 } 2132 2133 /* Find out what action to take in case there is a uniqueness conflict */ 2134 onError = pIdx->onError; 2135 if( onError==OE_None ){ 2136 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2137 continue; /* pIdx is not a UNIQUE index */ 2138 } 2139 if( overrideError!=OE_Default ){ 2140 onError = overrideError; 2141 }else if( onError==OE_Default ){ 2142 onError = OE_Abort; 2143 } 2144 2145 /* Figure out if the upsert clause applies to this index */ 2146 if( pUpsertClause ){ 2147 if( pUpsertClause->isDoUpdate==0 ){ 2148 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2149 }else{ 2150 onError = OE_Update; /* DO UPDATE */ 2151 } 2152 } 2153 2154 /* Collision detection may be omitted if all of the following are true: 2155 ** (1) The conflict resolution algorithm is REPLACE 2156 ** (2) The table is a WITHOUT ROWID table 2157 ** (3) There are no secondary indexes on the table 2158 ** (4) No delete triggers need to be fired if there is a conflict 2159 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2160 ** 2161 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2162 ** must be explicitly deleted in order to ensure any pre-update hook 2163 ** is invoked. */ 2164 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2165 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2166 && pPk==pIdx /* Condition 2 */ 2167 && onError==OE_Replace /* Condition 1 */ 2168 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2169 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2170 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2171 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 2172 ){ 2173 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2174 continue; 2175 } 2176 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2177 2178 /* Check to see if the new index entry will be unique */ 2179 sqlite3VdbeVerifyAbortable(v, onError); 2180 addrConflictCk = 2181 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2182 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2183 2184 /* Generate code to handle collisions */ 2185 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2186 if( isUpdate || onError==OE_Replace ){ 2187 if( HasRowid(pTab) ){ 2188 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2189 /* Conflict only if the rowid of the existing index entry 2190 ** is different from old-rowid */ 2191 if( isUpdate ){ 2192 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2193 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2194 VdbeCoverage(v); 2195 } 2196 }else{ 2197 int x; 2198 /* Extract the PRIMARY KEY from the end of the index entry and 2199 ** store it in registers regR..regR+nPk-1 */ 2200 if( pIdx!=pPk ){ 2201 for(i=0; i<pPk->nKeyCol; i++){ 2202 assert( pPk->aiColumn[i]>=0 ); 2203 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2204 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2205 VdbeComment((v, "%s.%s", pTab->zName, 2206 pTab->aCol[pPk->aiColumn[i]].zName)); 2207 } 2208 } 2209 if( isUpdate ){ 2210 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2211 ** table, only conflict if the new PRIMARY KEY values are actually 2212 ** different from the old. 2213 ** 2214 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2215 ** of the matched index row are different from the original PRIMARY 2216 ** KEY values of this row before the update. */ 2217 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2218 int op = OP_Ne; 2219 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2220 2221 for(i=0; i<pPk->nKeyCol; i++){ 2222 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2223 x = pPk->aiColumn[i]; 2224 assert( x>=0 ); 2225 if( i==(pPk->nKeyCol-1) ){ 2226 addrJump = addrUniqueOk; 2227 op = OP_Eq; 2228 } 2229 x = sqlite3TableColumnToStorage(pTab, x); 2230 sqlite3VdbeAddOp4(v, op, 2231 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2232 ); 2233 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2234 VdbeCoverageIf(v, op==OP_Eq); 2235 VdbeCoverageIf(v, op==OP_Ne); 2236 } 2237 } 2238 } 2239 } 2240 2241 /* Generate code that executes if the new index entry is not unique */ 2242 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2243 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2244 switch( onError ){ 2245 case OE_Rollback: 2246 case OE_Abort: 2247 case OE_Fail: { 2248 testcase( onError==OE_Rollback ); 2249 testcase( onError==OE_Abort ); 2250 testcase( onError==OE_Fail ); 2251 sqlite3UniqueConstraint(pParse, onError, pIdx); 2252 break; 2253 } 2254 #ifndef SQLITE_OMIT_UPSERT 2255 case OE_Update: { 2256 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2257 /* no break */ deliberate_fall_through 2258 } 2259 #endif 2260 case OE_Ignore: { 2261 testcase( onError==OE_Ignore ); 2262 sqlite3VdbeGoto(v, ignoreDest); 2263 break; 2264 } 2265 default: { 2266 int nConflictCk; /* Number of opcodes in conflict check logic */ 2267 2268 assert( onError==OE_Replace ); 2269 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2270 assert( nConflictCk>0 ); 2271 testcase( nConflictCk>1 ); 2272 if( regTrigCnt ){ 2273 sqlite3MultiWrite(pParse); 2274 nReplaceTrig++; 2275 } 2276 if( pTrigger && isUpdate ){ 2277 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2278 } 2279 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2280 regR, nPkField, 0, OE_Replace, 2281 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2282 if( pTrigger && isUpdate ){ 2283 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2284 } 2285 if( regTrigCnt ){ 2286 int addrBypass; /* Jump destination to bypass recheck logic */ 2287 2288 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2289 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2290 VdbeComment((v, "bypass recheck")); 2291 2292 /* Here we insert code that will be invoked after all constraint 2293 ** checks have run, if and only if one or more replace triggers 2294 ** fired. */ 2295 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2296 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2297 if( pIdx->pPartIdxWhere ){ 2298 /* Bypass the recheck if this partial index is not defined 2299 ** for the current row */ 2300 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2301 VdbeCoverage(v); 2302 } 2303 /* Copy the constraint check code from above, except change 2304 ** the constraint-ok jump destination to be the address of 2305 ** the next retest block */ 2306 while( nConflictCk>0 ){ 2307 VdbeOp x; /* Conflict check opcode to copy */ 2308 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2309 ** Hence, make a complete copy of the opcode, rather than using 2310 ** a pointer to the opcode. */ 2311 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2312 if( x.opcode!=OP_IdxRowid ){ 2313 int p2; /* New P2 value for copied conflict check opcode */ 2314 const char *zP4; 2315 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2316 p2 = lblRecheckOk; 2317 }else{ 2318 p2 = x.p2; 2319 } 2320 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2321 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2322 sqlite3VdbeChangeP5(v, x.p5); 2323 VdbeCoverageIf(v, p2!=x.p2); 2324 } 2325 nConflictCk--; 2326 addrConflictCk++; 2327 } 2328 /* If the retest fails, issue an abort */ 2329 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2330 2331 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2332 } 2333 seenReplace = 1; 2334 break; 2335 } 2336 } 2337 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2338 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2339 if( pUpsertClause 2340 && upsertIpkReturn 2341 && sqlite3UpsertNextIsIPK(pUpsertClause) 2342 ){ 2343 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2344 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2345 upsertIpkReturn = 0; 2346 } 2347 } 2348 2349 /* If the IPK constraint is a REPLACE, run it last */ 2350 if( ipkTop ){ 2351 sqlite3VdbeGoto(v, ipkTop); 2352 VdbeComment((v, "Do IPK REPLACE")); 2353 sqlite3VdbeJumpHere(v, ipkBottom); 2354 } 2355 2356 /* Recheck all uniqueness constraints after replace triggers have run */ 2357 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2358 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2359 if( nReplaceTrig ){ 2360 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2361 if( !pPk ){ 2362 if( isUpdate ){ 2363 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2364 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2365 VdbeCoverage(v); 2366 } 2367 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2368 VdbeCoverage(v); 2369 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2370 }else{ 2371 sqlite3VdbeGoto(v, addrRecheck); 2372 } 2373 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2374 } 2375 2376 /* Generate the table record */ 2377 if( HasRowid(pTab) ){ 2378 int regRec = aRegIdx[ix]; 2379 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2380 sqlite3SetMakeRecordP5(v, pTab); 2381 if( !bAffinityDone ){ 2382 sqlite3TableAffinity(v, pTab, 0); 2383 } 2384 } 2385 2386 *pbMayReplace = seenReplace; 2387 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2388 } 2389 2390 #ifdef SQLITE_ENABLE_NULL_TRIM 2391 /* 2392 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2393 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2394 ** 2395 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2396 */ 2397 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2398 u16 i; 2399 2400 /* Records with omitted columns are only allowed for schema format 2401 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2402 if( pTab->pSchema->file_format<2 ) return; 2403 2404 for(i=pTab->nCol-1; i>0; i--){ 2405 if( pTab->aCol[i].pDflt!=0 ) break; 2406 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2407 } 2408 sqlite3VdbeChangeP5(v, i+1); 2409 } 2410 #endif 2411 2412 /* 2413 ** This routine generates code to finish the INSERT or UPDATE operation 2414 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2415 ** A consecutive range of registers starting at regNewData contains the 2416 ** rowid and the content to be inserted. 2417 ** 2418 ** The arguments to this routine should be the same as the first six 2419 ** arguments to sqlite3GenerateConstraintChecks. 2420 */ 2421 void sqlite3CompleteInsertion( 2422 Parse *pParse, /* The parser context */ 2423 Table *pTab, /* the table into which we are inserting */ 2424 int iDataCur, /* Cursor of the canonical data source */ 2425 int iIdxCur, /* First index cursor */ 2426 int regNewData, /* Range of content */ 2427 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2428 int update_flags, /* True for UPDATE, False for INSERT */ 2429 int appendBias, /* True if this is likely to be an append */ 2430 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2431 ){ 2432 Vdbe *v; /* Prepared statements under construction */ 2433 Index *pIdx; /* An index being inserted or updated */ 2434 u8 pik_flags; /* flag values passed to the btree insert */ 2435 int i; /* Loop counter */ 2436 2437 assert( update_flags==0 2438 || update_flags==OPFLAG_ISUPDATE 2439 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2440 ); 2441 2442 v = pParse->pVdbe; 2443 assert( v!=0 ); 2444 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2445 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2446 /* All REPLACE indexes are at the end of the list */ 2447 assert( pIdx->onError!=OE_Replace 2448 || pIdx->pNext==0 2449 || pIdx->pNext->onError==OE_Replace ); 2450 if( aRegIdx[i]==0 ) continue; 2451 if( pIdx->pPartIdxWhere ){ 2452 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2453 VdbeCoverage(v); 2454 } 2455 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2456 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2457 assert( pParse->nested==0 ); 2458 pik_flags |= OPFLAG_NCHANGE; 2459 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2460 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2461 if( update_flags==0 ){ 2462 int r = sqlite3GetTempReg(pParse); 2463 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2464 sqlite3VdbeAddOp4(v, OP_Insert, 2465 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2466 ); 2467 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2468 sqlite3ReleaseTempReg(pParse, r); 2469 } 2470 #endif 2471 } 2472 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2473 aRegIdx[i]+1, 2474 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2475 sqlite3VdbeChangeP5(v, pik_flags); 2476 } 2477 if( !HasRowid(pTab) ) return; 2478 if( pParse->nested ){ 2479 pik_flags = 0; 2480 }else{ 2481 pik_flags = OPFLAG_NCHANGE; 2482 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2483 } 2484 if( appendBias ){ 2485 pik_flags |= OPFLAG_APPEND; 2486 } 2487 if( useSeekResult ){ 2488 pik_flags |= OPFLAG_USESEEKRESULT; 2489 } 2490 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2491 if( !pParse->nested ){ 2492 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2493 } 2494 sqlite3VdbeChangeP5(v, pik_flags); 2495 } 2496 2497 /* 2498 ** Allocate cursors for the pTab table and all its indices and generate 2499 ** code to open and initialized those cursors. 2500 ** 2501 ** The cursor for the object that contains the complete data (normally 2502 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2503 ** ROWID table) is returned in *piDataCur. The first index cursor is 2504 ** returned in *piIdxCur. The number of indices is returned. 2505 ** 2506 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2507 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2508 ** If iBase is negative, then allocate the next available cursor. 2509 ** 2510 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2511 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2512 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2513 ** pTab->pIndex list. 2514 ** 2515 ** If pTab is a virtual table, then this routine is a no-op and the 2516 ** *piDataCur and *piIdxCur values are left uninitialized. 2517 */ 2518 int sqlite3OpenTableAndIndices( 2519 Parse *pParse, /* Parsing context */ 2520 Table *pTab, /* Table to be opened */ 2521 int op, /* OP_OpenRead or OP_OpenWrite */ 2522 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2523 int iBase, /* Use this for the table cursor, if there is one */ 2524 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2525 int *piDataCur, /* Write the database source cursor number here */ 2526 int *piIdxCur /* Write the first index cursor number here */ 2527 ){ 2528 int i; 2529 int iDb; 2530 int iDataCur; 2531 Index *pIdx; 2532 Vdbe *v; 2533 2534 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2535 assert( op==OP_OpenWrite || p5==0 ); 2536 if( IsVirtual(pTab) ){ 2537 /* This routine is a no-op for virtual tables. Leave the output 2538 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2539 ** can detect if they are used by mistake in the caller. */ 2540 return 0; 2541 } 2542 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2543 v = pParse->pVdbe; 2544 assert( v!=0 ); 2545 if( iBase<0 ) iBase = pParse->nTab; 2546 iDataCur = iBase++; 2547 if( piDataCur ) *piDataCur = iDataCur; 2548 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2549 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2550 }else{ 2551 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2552 } 2553 if( piIdxCur ) *piIdxCur = iBase; 2554 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2555 int iIdxCur = iBase++; 2556 assert( pIdx->pSchema==pTab->pSchema ); 2557 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2558 if( piDataCur ) *piDataCur = iIdxCur; 2559 p5 = 0; 2560 } 2561 if( aToOpen==0 || aToOpen[i+1] ){ 2562 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2563 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2564 sqlite3VdbeChangeP5(v, p5); 2565 VdbeComment((v, "%s", pIdx->zName)); 2566 } 2567 } 2568 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2569 return i; 2570 } 2571 2572 2573 #ifdef SQLITE_TEST 2574 /* 2575 ** The following global variable is incremented whenever the 2576 ** transfer optimization is used. This is used for testing 2577 ** purposes only - to make sure the transfer optimization really 2578 ** is happening when it is supposed to. 2579 */ 2580 int sqlite3_xferopt_count; 2581 #endif /* SQLITE_TEST */ 2582 2583 2584 #ifndef SQLITE_OMIT_XFER_OPT 2585 /* 2586 ** Check to see if index pSrc is compatible as a source of data 2587 ** for index pDest in an insert transfer optimization. The rules 2588 ** for a compatible index: 2589 ** 2590 ** * The index is over the same set of columns 2591 ** * The same DESC and ASC markings occurs on all columns 2592 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2593 ** * The same collating sequence on each column 2594 ** * The index has the exact same WHERE clause 2595 */ 2596 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2597 int i; 2598 assert( pDest && pSrc ); 2599 assert( pDest->pTable!=pSrc->pTable ); 2600 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2601 return 0; /* Different number of columns */ 2602 } 2603 if( pDest->onError!=pSrc->onError ){ 2604 return 0; /* Different conflict resolution strategies */ 2605 } 2606 for(i=0; i<pSrc->nKeyCol; i++){ 2607 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2608 return 0; /* Different columns indexed */ 2609 } 2610 if( pSrc->aiColumn[i]==XN_EXPR ){ 2611 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2612 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2613 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2614 return 0; /* Different expressions in the index */ 2615 } 2616 } 2617 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2618 return 0; /* Different sort orders */ 2619 } 2620 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2621 return 0; /* Different collating sequences */ 2622 } 2623 } 2624 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2625 return 0; /* Different WHERE clauses */ 2626 } 2627 2628 /* If no test above fails then the indices must be compatible */ 2629 return 1; 2630 } 2631 2632 /* 2633 ** Attempt the transfer optimization on INSERTs of the form 2634 ** 2635 ** INSERT INTO tab1 SELECT * FROM tab2; 2636 ** 2637 ** The xfer optimization transfers raw records from tab2 over to tab1. 2638 ** Columns are not decoded and reassembled, which greatly improves 2639 ** performance. Raw index records are transferred in the same way. 2640 ** 2641 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2642 ** There are lots of rules for determining compatibility - see comments 2643 ** embedded in the code for details. 2644 ** 2645 ** This routine returns TRUE if the optimization is guaranteed to be used. 2646 ** Sometimes the xfer optimization will only work if the destination table 2647 ** is empty - a factor that can only be determined at run-time. In that 2648 ** case, this routine generates code for the xfer optimization but also 2649 ** does a test to see if the destination table is empty and jumps over the 2650 ** xfer optimization code if the test fails. In that case, this routine 2651 ** returns FALSE so that the caller will know to go ahead and generate 2652 ** an unoptimized transfer. This routine also returns FALSE if there 2653 ** is no chance that the xfer optimization can be applied. 2654 ** 2655 ** This optimization is particularly useful at making VACUUM run faster. 2656 */ 2657 static int xferOptimization( 2658 Parse *pParse, /* Parser context */ 2659 Table *pDest, /* The table we are inserting into */ 2660 Select *pSelect, /* A SELECT statement to use as the data source */ 2661 int onError, /* How to handle constraint errors */ 2662 int iDbDest /* The database of pDest */ 2663 ){ 2664 sqlite3 *db = pParse->db; 2665 ExprList *pEList; /* The result set of the SELECT */ 2666 Table *pSrc; /* The table in the FROM clause of SELECT */ 2667 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2668 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2669 int i; /* Loop counter */ 2670 int iDbSrc; /* The database of pSrc */ 2671 int iSrc, iDest; /* Cursors from source and destination */ 2672 int addr1, addr2; /* Loop addresses */ 2673 int emptyDestTest = 0; /* Address of test for empty pDest */ 2674 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2675 Vdbe *v; /* The VDBE we are building */ 2676 int regAutoinc; /* Memory register used by AUTOINC */ 2677 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2678 int regData, regRowid; /* Registers holding data and rowid */ 2679 2680 if( pSelect==0 ){ 2681 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2682 } 2683 if( pParse->pWith || pSelect->pWith ){ 2684 /* Do not attempt to process this query if there are an WITH clauses 2685 ** attached to it. Proceeding may generate a false "no such table: xxx" 2686 ** error if pSelect reads from a CTE named "xxx". */ 2687 return 0; 2688 } 2689 if( sqlite3TriggerList(pParse, pDest) ){ 2690 return 0; /* tab1 must not have triggers */ 2691 } 2692 #ifndef SQLITE_OMIT_VIRTUALTABLE 2693 if( IsVirtual(pDest) ){ 2694 return 0; /* tab1 must not be a virtual table */ 2695 } 2696 #endif 2697 if( onError==OE_Default ){ 2698 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2699 if( onError==OE_Default ) onError = OE_Abort; 2700 } 2701 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2702 if( pSelect->pSrc->nSrc!=1 ){ 2703 return 0; /* FROM clause must have exactly one term */ 2704 } 2705 if( pSelect->pSrc->a[0].pSelect ){ 2706 return 0; /* FROM clause cannot contain a subquery */ 2707 } 2708 if( pSelect->pWhere ){ 2709 return 0; /* SELECT may not have a WHERE clause */ 2710 } 2711 if( pSelect->pOrderBy ){ 2712 return 0; /* SELECT may not have an ORDER BY clause */ 2713 } 2714 /* Do not need to test for a HAVING clause. If HAVING is present but 2715 ** there is no ORDER BY, we will get an error. */ 2716 if( pSelect->pGroupBy ){ 2717 return 0; /* SELECT may not have a GROUP BY clause */ 2718 } 2719 if( pSelect->pLimit ){ 2720 return 0; /* SELECT may not have a LIMIT clause */ 2721 } 2722 if( pSelect->pPrior ){ 2723 return 0; /* SELECT may not be a compound query */ 2724 } 2725 if( pSelect->selFlags & SF_Distinct ){ 2726 return 0; /* SELECT may not be DISTINCT */ 2727 } 2728 pEList = pSelect->pEList; 2729 assert( pEList!=0 ); 2730 if( pEList->nExpr!=1 ){ 2731 return 0; /* The result set must have exactly one column */ 2732 } 2733 assert( pEList->a[0].pExpr ); 2734 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2735 return 0; /* The result set must be the special operator "*" */ 2736 } 2737 2738 /* At this point we have established that the statement is of the 2739 ** correct syntactic form to participate in this optimization. Now 2740 ** we have to check the semantics. 2741 */ 2742 pItem = pSelect->pSrc->a; 2743 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2744 if( pSrc==0 ){ 2745 return 0; /* FROM clause does not contain a real table */ 2746 } 2747 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2748 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2749 return 0; /* tab1 and tab2 may not be the same table */ 2750 } 2751 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2752 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2753 } 2754 #ifndef SQLITE_OMIT_VIRTUALTABLE 2755 if( IsVirtual(pSrc) ){ 2756 return 0; /* tab2 must not be a virtual table */ 2757 } 2758 #endif 2759 if( pSrc->pSelect ){ 2760 return 0; /* tab2 may not be a view */ 2761 } 2762 if( pDest->nCol!=pSrc->nCol ){ 2763 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2764 } 2765 if( pDest->iPKey!=pSrc->iPKey ){ 2766 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2767 } 2768 for(i=0; i<pDest->nCol; i++){ 2769 Column *pDestCol = &pDest->aCol[i]; 2770 Column *pSrcCol = &pSrc->aCol[i]; 2771 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2772 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2773 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2774 ){ 2775 return 0; /* Neither table may have __hidden__ columns */ 2776 } 2777 #endif 2778 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2779 /* Even if tables t1 and t2 have identical schemas, if they contain 2780 ** generated columns, then this statement is semantically incorrect: 2781 ** 2782 ** INSERT INTO t2 SELECT * FROM t1; 2783 ** 2784 ** The reason is that generated column values are returned by the 2785 ** the SELECT statement on the right but the INSERT statement on the 2786 ** left wants them to be omitted. 2787 ** 2788 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2789 ** to do a bulk transfer all of the content from t1 over to t2. 2790 ** 2791 ** We could, in theory, disable this (except for internal use by the 2792 ** VACUUM command where it is actually needed). But why do that? It 2793 ** seems harmless enough, and provides a useful service. 2794 */ 2795 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2796 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2797 return 0; /* Both columns have the same generated-column type */ 2798 } 2799 /* But the transfer is only allowed if both the source and destination 2800 ** tables have the exact same expressions for generated columns. 2801 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2802 */ 2803 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2804 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2805 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2806 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2807 return 0; /* Different generator expressions */ 2808 } 2809 } 2810 #endif 2811 if( pDestCol->affinity!=pSrcCol->affinity ){ 2812 return 0; /* Affinity must be the same on all columns */ 2813 } 2814 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2815 return 0; /* Collating sequence must be the same on all columns */ 2816 } 2817 if( pDestCol->notNull && !pSrcCol->notNull ){ 2818 return 0; /* tab2 must be NOT NULL if tab1 is */ 2819 } 2820 /* Default values for second and subsequent columns need to match. */ 2821 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2822 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2823 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2824 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2825 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2826 pSrcCol->pDflt->u.zToken)!=0) 2827 ){ 2828 return 0; /* Default values must be the same for all columns */ 2829 } 2830 } 2831 } 2832 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2833 if( IsUniqueIndex(pDestIdx) ){ 2834 destHasUniqueIdx = 1; 2835 } 2836 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2837 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2838 } 2839 if( pSrcIdx==0 ){ 2840 return 0; /* pDestIdx has no corresponding index in pSrc */ 2841 } 2842 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2843 && sqlite3FaultSim(411)==SQLITE_OK ){ 2844 /* The sqlite3FaultSim() call allows this corruption test to be 2845 ** bypassed during testing, in order to exercise other corruption tests 2846 ** further downstream. */ 2847 return 0; /* Corrupt schema - two indexes on the same btree */ 2848 } 2849 } 2850 #ifndef SQLITE_OMIT_CHECK 2851 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2852 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2853 } 2854 #endif 2855 #ifndef SQLITE_OMIT_FOREIGN_KEY 2856 /* Disallow the transfer optimization if the destination table constains 2857 ** any foreign key constraints. This is more restrictive than necessary. 2858 ** But the main beneficiary of the transfer optimization is the VACUUM 2859 ** command, and the VACUUM command disables foreign key constraints. So 2860 ** the extra complication to make this rule less restrictive is probably 2861 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2862 */ 2863 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2864 return 0; 2865 } 2866 #endif 2867 if( (db->flags & SQLITE_CountRows)!=0 ){ 2868 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2869 } 2870 2871 /* If we get this far, it means that the xfer optimization is at 2872 ** least a possibility, though it might only work if the destination 2873 ** table (tab1) is initially empty. 2874 */ 2875 #ifdef SQLITE_TEST 2876 sqlite3_xferopt_count++; 2877 #endif 2878 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2879 v = sqlite3GetVdbe(pParse); 2880 sqlite3CodeVerifySchema(pParse, iDbSrc); 2881 iSrc = pParse->nTab++; 2882 iDest = pParse->nTab++; 2883 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2884 regData = sqlite3GetTempReg(pParse); 2885 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2886 regRowid = sqlite3GetTempReg(pParse); 2887 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2888 assert( HasRowid(pDest) || destHasUniqueIdx ); 2889 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2890 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2891 || destHasUniqueIdx /* (2) */ 2892 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2893 )){ 2894 /* In some circumstances, we are able to run the xfer optimization 2895 ** only if the destination table is initially empty. Unless the 2896 ** DBFLAG_Vacuum flag is set, this block generates code to make 2897 ** that determination. If DBFLAG_Vacuum is set, then the destination 2898 ** table is always empty. 2899 ** 2900 ** Conditions under which the destination must be empty: 2901 ** 2902 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2903 ** (If the destination is not initially empty, the rowid fields 2904 ** of index entries might need to change.) 2905 ** 2906 ** (2) The destination has a unique index. (The xfer optimization 2907 ** is unable to test uniqueness.) 2908 ** 2909 ** (3) onError is something other than OE_Abort and OE_Rollback. 2910 */ 2911 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2912 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2913 sqlite3VdbeJumpHere(v, addr1); 2914 } 2915 if( HasRowid(pSrc) ){ 2916 u8 insFlags; 2917 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2918 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2919 if( pDest->iPKey>=0 ){ 2920 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2921 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2922 sqlite3VdbeVerifyAbortable(v, onError); 2923 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2924 VdbeCoverage(v); 2925 sqlite3RowidConstraint(pParse, onError, pDest); 2926 sqlite3VdbeJumpHere(v, addr2); 2927 } 2928 autoIncStep(pParse, regAutoinc, regRowid); 2929 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2930 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2931 }else{ 2932 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2933 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2934 } 2935 2936 if( db->mDbFlags & DBFLAG_Vacuum ){ 2937 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2938 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2939 }else{ 2940 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 2941 } 2942 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2943 if( db->xPreUpdateCallback ){ 2944 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2945 insFlags &= ~OPFLAG_PREFORMAT; 2946 }else 2947 #endif 2948 { 2949 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 2950 } 2951 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2952 (char*)pDest, P4_TABLE); 2953 sqlite3VdbeChangeP5(v, insFlags); 2954 2955 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2956 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2957 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2958 }else{ 2959 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2960 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2961 } 2962 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2963 u8 idxInsFlags = 0; 2964 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2965 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2966 } 2967 assert( pSrcIdx ); 2968 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2969 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2970 VdbeComment((v, "%s", pSrcIdx->zName)); 2971 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2972 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2973 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2974 VdbeComment((v, "%s", pDestIdx->zName)); 2975 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2976 if( db->mDbFlags & DBFLAG_Vacuum ){ 2977 /* This INSERT command is part of a VACUUM operation, which guarantees 2978 ** that the destination table is empty. If all indexed columns use 2979 ** collation sequence BINARY, then it can also be assumed that the 2980 ** index will be populated by inserting keys in strictly sorted 2981 ** order. In this case, instead of seeking within the b-tree as part 2982 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2983 ** OP_IdxInsert to seek to the point within the b-tree where each key 2984 ** should be inserted. This is faster. 2985 ** 2986 ** If any of the indexed columns use a collation sequence other than 2987 ** BINARY, this optimization is disabled. This is because the user 2988 ** might change the definition of a collation sequence and then run 2989 ** a VACUUM command. In that case keys may not be written in strictly 2990 ** sorted order. */ 2991 for(i=0; i<pSrcIdx->nColumn; i++){ 2992 const char *zColl = pSrcIdx->azColl[i]; 2993 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2994 } 2995 if( i==pSrcIdx->nColumn ){ 2996 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2997 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2998 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 2999 } 3000 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3001 idxInsFlags |= OPFLAG_NCHANGE; 3002 } 3003 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3004 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3005 } 3006 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3007 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3008 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3009 sqlite3VdbeJumpHere(v, addr1); 3010 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3011 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3012 } 3013 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3014 sqlite3ReleaseTempReg(pParse, regRowid); 3015 sqlite3ReleaseTempReg(pParse, regData); 3016 if( emptyDestTest ){ 3017 sqlite3AutoincrementEnd(pParse); 3018 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3019 sqlite3VdbeJumpHere(v, emptyDestTest); 3020 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3021 return 0; 3022 }else{ 3023 return 1; 3024 } 3025 } 3026 #endif /* SQLITE_OMIT_XFER_OPT */ 3027