1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.188 2007/07/23 19:39:47 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Set P3 of the most recently inserted opcode to a column affinity 21 ** string for index pIdx. A column affinity string has one character 22 ** for each column in the table, according to the affinity of the column: 23 ** 24 ** Character Column affinity 25 ** ------------------------------ 26 ** 'a' TEXT 27 ** 'b' NONE 28 ** 'c' NUMERIC 29 ** 'd' INTEGER 30 ** 'e' REAL 31 */ 32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 33 if( !pIdx->zColAff ){ 34 /* The first time a column affinity string for a particular index is 35 ** required, it is allocated and populated here. It is then stored as 36 ** a member of the Index structure for subsequent use. 37 ** 38 ** The column affinity string will eventually be deleted by 39 ** sqliteDeleteIndex() when the Index structure itself is cleaned 40 ** up. 41 */ 42 int n; 43 Table *pTab = pIdx->pTable; 44 pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1); 45 if( !pIdx->zColAff ){ 46 return; 47 } 48 for(n=0; n<pIdx->nColumn; n++){ 49 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 50 } 51 pIdx->zColAff[pIdx->nColumn] = '\0'; 52 } 53 54 sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); 55 } 56 57 /* 58 ** Set P3 of the most recently inserted opcode to a column affinity 59 ** string for table pTab. A column affinity string has one character 60 ** for each column indexed by the index, according to the affinity of the 61 ** column: 62 ** 63 ** Character Column affinity 64 ** ------------------------------ 65 ** 'a' TEXT 66 ** 'b' NONE 67 ** 'c' NUMERIC 68 ** 'd' INTEGER 69 ** 'e' REAL 70 */ 71 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 72 /* The first time a column affinity string for a particular table 73 ** is required, it is allocated and populated here. It is then 74 ** stored as a member of the Table structure for subsequent use. 75 ** 76 ** The column affinity string will eventually be deleted by 77 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 78 */ 79 if( !pTab->zColAff ){ 80 char *zColAff; 81 int i; 82 83 zColAff = (char *)sqliteMalloc(pTab->nCol+1); 84 if( !zColAff ){ 85 return; 86 } 87 88 for(i=0; i<pTab->nCol; i++){ 89 zColAff[i] = pTab->aCol[i].affinity; 90 } 91 zColAff[pTab->nCol] = '\0'; 92 93 pTab->zColAff = zColAff; 94 } 95 96 sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); 97 } 98 99 /* 100 ** Return non-zero if SELECT statement p opens the table with rootpage 101 ** iTab in database iDb. This is used to see if a statement of the form 102 ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary 103 ** table for the results of the SELECT. 104 ** 105 ** No checking is done for sub-selects that are part of expressions. 106 */ 107 static int selectReadsTable(Select *p, Schema *pSchema, int iTab){ 108 int i; 109 struct SrcList_item *pItem; 110 if( p->pSrc==0 ) return 0; 111 for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){ 112 if( pItem->pSelect ){ 113 if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1; 114 }else{ 115 if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1; 116 } 117 } 118 return 0; 119 } 120 121 #ifndef SQLITE_OMIT_AUTOINCREMENT 122 /* 123 ** Write out code to initialize the autoincrement logic. This code 124 ** looks up the current autoincrement value in the sqlite_sequence 125 ** table and stores that value in a memory cell. Code generated by 126 ** autoIncStep() will keep that memory cell holding the largest 127 ** rowid value. Code generated by autoIncEnd() will write the new 128 ** largest value of the counter back into the sqlite_sequence table. 129 ** 130 ** This routine returns the index of the mem[] cell that contains 131 ** the maximum rowid counter. 132 ** 133 ** Two memory cells are allocated. The next memory cell after the 134 ** one returned holds the rowid in sqlite_sequence where we will 135 ** write back the revised maximum rowid. 136 */ 137 static int autoIncBegin( 138 Parse *pParse, /* Parsing context */ 139 int iDb, /* Index of the database holding pTab */ 140 Table *pTab /* The table we are writing to */ 141 ){ 142 int memId = 0; 143 if( pTab->autoInc ){ 144 Vdbe *v = pParse->pVdbe; 145 Db *pDb = &pParse->db->aDb[iDb]; 146 int iCur = pParse->nTab; 147 int addr; 148 assert( v ); 149 addr = sqlite3VdbeCurrentAddr(v); 150 memId = pParse->nMem+1; 151 pParse->nMem += 2; 152 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 153 sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13); 154 sqlite3VdbeAddOp(v, OP_Column, iCur, 0); 155 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 156 sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12); 157 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 158 sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1); 159 sqlite3VdbeAddOp(v, OP_Column, iCur, 1); 160 sqlite3VdbeAddOp(v, OP_MemStore, memId, 1); 161 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13); 162 sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4); 163 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 164 } 165 return memId; 166 } 167 168 /* 169 ** Update the maximum rowid for an autoincrement calculation. 170 ** 171 ** This routine should be called when the top of the stack holds a 172 ** new rowid that is about to be inserted. If that new rowid is 173 ** larger than the maximum rowid in the memId memory cell, then the 174 ** memory cell is updated. The stack is unchanged. 175 */ 176 static void autoIncStep(Parse *pParse, int memId){ 177 if( memId>0 ){ 178 sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0); 179 } 180 } 181 182 /* 183 ** After doing one or more inserts, the maximum rowid is stored 184 ** in mem[memId]. Generate code to write this value back into the 185 ** the sqlite_sequence table. 186 */ 187 static void autoIncEnd( 188 Parse *pParse, /* The parsing context */ 189 int iDb, /* Index of the database holding pTab */ 190 Table *pTab, /* Table we are inserting into */ 191 int memId /* Memory cell holding the maximum rowid */ 192 ){ 193 if( pTab->autoInc ){ 194 int iCur = pParse->nTab; 195 Vdbe *v = pParse->pVdbe; 196 Db *pDb = &pParse->db->aDb[iDb]; 197 int addr; 198 assert( v ); 199 addr = sqlite3VdbeCurrentAddr(v); 200 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 201 sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0); 202 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7); 203 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 204 sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); 205 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 206 sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0); 207 sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); 208 sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND); 209 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 210 } 211 } 212 #else 213 /* 214 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 215 ** above are all no-ops 216 */ 217 # define autoIncBegin(A,B,C) (0) 218 # define autoIncStep(A,B) 219 # define autoIncEnd(A,B,C,D) 220 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 221 222 223 /* Forward declaration */ 224 static int xferOptimization( 225 Parse *pParse, /* Parser context */ 226 Table *pDest, /* The table we are inserting into */ 227 Select *pSelect, /* A SELECT statement to use as the data source */ 228 int onError, /* How to handle constraint errors */ 229 int iDbDest /* The database of pDest */ 230 ); 231 232 /* 233 ** This routine is call to handle SQL of the following forms: 234 ** 235 ** insert into TABLE (IDLIST) values(EXPRLIST) 236 ** insert into TABLE (IDLIST) select 237 ** 238 ** The IDLIST following the table name is always optional. If omitted, 239 ** then a list of all columns for the table is substituted. The IDLIST 240 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 241 ** 242 ** The pList parameter holds EXPRLIST in the first form of the INSERT 243 ** statement above, and pSelect is NULL. For the second form, pList is 244 ** NULL and pSelect is a pointer to the select statement used to generate 245 ** data for the insert. 246 ** 247 ** The code generated follows one of four templates. For a simple 248 ** select with data coming from a VALUES clause, the code executes 249 ** once straight down through. The template looks like this: 250 ** 251 ** open write cursor to <table> and its indices 252 ** puts VALUES clause expressions onto the stack 253 ** write the resulting record into <table> 254 ** cleanup 255 ** 256 ** The three remaining templates assume the statement is of the form 257 ** 258 ** INSERT INTO <table> SELECT ... 259 ** 260 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 261 ** in other words if the SELECT pulls all columns from a single table 262 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 263 ** if <table2> and <table1> are distinct tables but have identical 264 ** schemas, including all the same indices, then a special optimization 265 ** is invoked that copies raw records from <table2> over to <table1>. 266 ** See the xferOptimization() function for the implementation of this 267 ** template. This is the second template. 268 ** 269 ** open a write cursor to <table> 270 ** open read cursor on <table2> 271 ** transfer all records in <table2> over to <table> 272 ** close cursors 273 ** foreach index on <table> 274 ** open a write cursor on the <table> index 275 ** open a read cursor on the corresponding <table2> index 276 ** transfer all records from the read to the write cursors 277 ** close cursors 278 ** end foreach 279 ** 280 ** The third template is for when the second template does not apply 281 ** and the SELECT clause does not read from <table> at any time. 282 ** The generated code follows this template: 283 ** 284 ** goto B 285 ** A: setup for the SELECT 286 ** loop over the rows in the SELECT 287 ** gosub C 288 ** end loop 289 ** cleanup after the SELECT 290 ** goto D 291 ** B: open write cursor to <table> and its indices 292 ** goto A 293 ** C: insert the select result into <table> 294 ** return 295 ** D: cleanup 296 ** 297 ** The fourth template is used if the insert statement takes its 298 ** values from a SELECT but the data is being inserted into a table 299 ** that is also read as part of the SELECT. In the third form, 300 ** we have to use a intermediate table to store the results of 301 ** the select. The template is like this: 302 ** 303 ** goto B 304 ** A: setup for the SELECT 305 ** loop over the tables in the SELECT 306 ** gosub C 307 ** end loop 308 ** cleanup after the SELECT 309 ** goto D 310 ** C: insert the select result into the intermediate table 311 ** return 312 ** B: open a cursor to an intermediate table 313 ** goto A 314 ** D: open write cursor to <table> and its indices 315 ** loop over the intermediate table 316 ** transfer values form intermediate table into <table> 317 ** end the loop 318 ** cleanup 319 */ 320 void sqlite3Insert( 321 Parse *pParse, /* Parser context */ 322 SrcList *pTabList, /* Name of table into which we are inserting */ 323 ExprList *pList, /* List of values to be inserted */ 324 Select *pSelect, /* A SELECT statement to use as the data source */ 325 IdList *pColumn, /* Column names corresponding to IDLIST. */ 326 int onError /* How to handle constraint errors */ 327 ){ 328 Table *pTab; /* The table to insert into */ 329 char *zTab; /* Name of the table into which we are inserting */ 330 const char *zDb; /* Name of the database holding this table */ 331 int i, j, idx; /* Loop counters */ 332 Vdbe *v; /* Generate code into this virtual machine */ 333 Index *pIdx; /* For looping over indices of the table */ 334 int nColumn; /* Number of columns in the data */ 335 int base = 0; /* VDBE Cursor number for pTab */ 336 int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ 337 sqlite3 *db; /* The main database structure */ 338 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 339 int endOfLoop; /* Label for the end of the insertion loop */ 340 int useTempTable = 0; /* Store SELECT results in intermediate table */ 341 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 342 int iSelectLoop = 0; /* Address of code that implements the SELECT */ 343 int iCleanup = 0; /* Address of the cleanup code */ 344 int iInsertBlock = 0; /* Address of the subroutine used to insert data */ 345 int iCntMem = 0; /* Memory cell used for the row counter */ 346 int newIdx = -1; /* Cursor for the NEW table */ 347 Db *pDb; /* The database containing table being inserted into */ 348 int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ 349 int appendFlag = 0; /* True if the insert is likely to be an append */ 350 int iDb; 351 352 int nHidden = 0; 353 354 #ifndef SQLITE_OMIT_TRIGGER 355 int isView; /* True if attempting to insert into a view */ 356 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ 357 #endif 358 359 if( pParse->nErr || sqlite3MallocFailed() ){ 360 goto insert_cleanup; 361 } 362 db = pParse->db; 363 364 /* Locate the table into which we will be inserting new information. 365 */ 366 assert( pTabList->nSrc==1 ); 367 zTab = pTabList->a[0].zName; 368 if( zTab==0 ) goto insert_cleanup; 369 pTab = sqlite3SrcListLookup(pParse, pTabList); 370 if( pTab==0 ){ 371 goto insert_cleanup; 372 } 373 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 374 assert( iDb<db->nDb ); 375 pDb = &db->aDb[iDb]; 376 zDb = pDb->zName; 377 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 378 goto insert_cleanup; 379 } 380 381 /* Figure out if we have any triggers and if the table being 382 ** inserted into is a view 383 */ 384 #ifndef SQLITE_OMIT_TRIGGER 385 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); 386 isView = pTab->pSelect!=0; 387 #else 388 # define triggers_exist 0 389 # define isView 0 390 #endif 391 #ifdef SQLITE_OMIT_VIEW 392 # undef isView 393 # define isView 0 394 #endif 395 396 /* Ensure that: 397 * (a) the table is not read-only, 398 * (b) that if it is a view then ON INSERT triggers exist 399 */ 400 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ 401 goto insert_cleanup; 402 } 403 assert( pTab!=0 ); 404 405 /* If pTab is really a view, make sure it has been initialized. 406 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 407 ** module table). 408 */ 409 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 410 goto insert_cleanup; 411 } 412 413 /* Allocate a VDBE 414 */ 415 v = sqlite3GetVdbe(pParse); 416 if( v==0 ) goto insert_cleanup; 417 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 418 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); 419 420 /* if there are row triggers, allocate a temp table for new.* references. */ 421 if( triggers_exist ){ 422 newIdx = pParse->nTab++; 423 } 424 425 #ifndef SQLITE_OMIT_XFER_OPT 426 /* If the statement is of the form 427 ** 428 ** INSERT INTO <table1> SELECT * FROM <table2>; 429 ** 430 ** Then special optimizations can be applied that make the transfer 431 ** very fast and which reduce fragmentation of indices. 432 */ 433 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 434 assert( !triggers_exist ); 435 assert( pList==0 ); 436 goto insert_cleanup; 437 } 438 #endif /* SQLITE_OMIT_XFER_OPT */ 439 440 /* If this is an AUTOINCREMENT table, look up the sequence number in the 441 ** sqlite_sequence table and store it in memory cell counterMem. Also 442 ** remember the rowid of the sqlite_sequence table entry in memory cell 443 ** counterRowid. 444 */ 445 counterMem = autoIncBegin(pParse, iDb, pTab); 446 447 /* Figure out how many columns of data are supplied. If the data 448 ** is coming from a SELECT statement, then this step also generates 449 ** all the code to implement the SELECT statement and invoke a subroutine 450 ** to process each row of the result. (Template 2.) If the SELECT 451 ** statement uses the the table that is being inserted into, then the 452 ** subroutine is also coded here. That subroutine stores the SELECT 453 ** results in a temporary table. (Template 3.) 454 */ 455 if( pSelect ){ 456 /* Data is coming from a SELECT. Generate code to implement that SELECT 457 */ 458 int rc, iInitCode; 459 iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 460 iSelectLoop = sqlite3VdbeCurrentAddr(v); 461 iInsertBlock = sqlite3VdbeMakeLabel(v); 462 463 /* Resolve the expressions in the SELECT statement and execute it. */ 464 rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); 465 if( rc || pParse->nErr || sqlite3MallocFailed() ){ 466 goto insert_cleanup; 467 } 468 469 iCleanup = sqlite3VdbeMakeLabel(v); 470 sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); 471 assert( pSelect->pEList ); 472 nColumn = pSelect->pEList->nExpr; 473 474 /* Set useTempTable to TRUE if the result of the SELECT statement 475 ** should be written into a temporary table. Set to FALSE if each 476 ** row of the SELECT can be written directly into the result table. 477 ** 478 ** A temp table must be used if the table being updated is also one 479 ** of the tables being read by the SELECT statement. Also use a 480 ** temp table in the case of row triggers. 481 */ 482 if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){ 483 useTempTable = 1; 484 } 485 486 if( useTempTable ){ 487 /* Generate the subroutine that SELECT calls to process each row of 488 ** the result. Store the result in a temporary table 489 */ 490 srcTab = pParse->nTab++; 491 sqlite3VdbeResolveLabel(v, iInsertBlock); 492 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 493 sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); 494 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 495 sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND); 496 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 497 498 /* The following code runs first because the GOTO at the very top 499 ** of the program jumps to it. Create the temporary table, then jump 500 ** back up and execute the SELECT code above. 501 */ 502 sqlite3VdbeJumpHere(v, iInitCode); 503 sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0); 504 sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); 505 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 506 sqlite3VdbeResolveLabel(v, iCleanup); 507 }else{ 508 sqlite3VdbeJumpHere(v, iInitCode); 509 } 510 }else{ 511 /* This is the case if the data for the INSERT is coming from a VALUES 512 ** clause 513 */ 514 NameContext sNC; 515 memset(&sNC, 0, sizeof(sNC)); 516 sNC.pParse = pParse; 517 srcTab = -1; 518 useTempTable = 0; 519 nColumn = pList ? pList->nExpr : 0; 520 for(i=0; i<nColumn; i++){ 521 if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ 522 goto insert_cleanup; 523 } 524 } 525 } 526 527 /* Make sure the number of columns in the source data matches the number 528 ** of columns to be inserted into the table. 529 */ 530 if( IsVirtual(pTab) ){ 531 for(i=0; i<pTab->nCol; i++){ 532 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 533 } 534 } 535 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 536 sqlite3ErrorMsg(pParse, 537 "table %S has %d columns but %d values were supplied", 538 pTabList, 0, pTab->nCol, nColumn); 539 goto insert_cleanup; 540 } 541 if( pColumn!=0 && nColumn!=pColumn->nId ){ 542 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 543 goto insert_cleanup; 544 } 545 546 /* If the INSERT statement included an IDLIST term, then make sure 547 ** all elements of the IDLIST really are columns of the table and 548 ** remember the column indices. 549 ** 550 ** If the table has an INTEGER PRIMARY KEY column and that column 551 ** is named in the IDLIST, then record in the keyColumn variable 552 ** the index into IDLIST of the primary key column. keyColumn is 553 ** the index of the primary key as it appears in IDLIST, not as 554 ** is appears in the original table. (The index of the primary 555 ** key in the original table is pTab->iPKey.) 556 */ 557 if( pColumn ){ 558 for(i=0; i<pColumn->nId; i++){ 559 pColumn->a[i].idx = -1; 560 } 561 for(i=0; i<pColumn->nId; i++){ 562 for(j=0; j<pTab->nCol; j++){ 563 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 564 pColumn->a[i].idx = j; 565 if( j==pTab->iPKey ){ 566 keyColumn = i; 567 } 568 break; 569 } 570 } 571 if( j>=pTab->nCol ){ 572 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 573 keyColumn = i; 574 }else{ 575 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 576 pTabList, 0, pColumn->a[i].zName); 577 pParse->nErr++; 578 goto insert_cleanup; 579 } 580 } 581 } 582 } 583 584 /* If there is no IDLIST term but the table has an integer primary 585 ** key, the set the keyColumn variable to the primary key column index 586 ** in the original table definition. 587 */ 588 if( pColumn==0 && nColumn>0 ){ 589 keyColumn = pTab->iPKey; 590 } 591 592 /* Open the temp table for FOR EACH ROW triggers 593 */ 594 if( triggers_exist ){ 595 sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); 596 sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); 597 } 598 599 /* Initialize the count of rows to be inserted 600 */ 601 if( db->flags & SQLITE_CountRows ){ 602 iCntMem = pParse->nMem++; 603 sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem); 604 } 605 606 /* Open tables and indices if there are no row triggers */ 607 if( !triggers_exist ){ 608 base = pParse->nTab; 609 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 610 } 611 612 /* If the data source is a temporary table, then we have to create 613 ** a loop because there might be multiple rows of data. If the data 614 ** source is a subroutine call from the SELECT statement, then we need 615 ** to launch the SELECT statement processing. 616 */ 617 if( useTempTable ){ 618 iBreak = sqlite3VdbeMakeLabel(v); 619 sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); 620 iCont = sqlite3VdbeCurrentAddr(v); 621 }else if( pSelect ){ 622 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 623 sqlite3VdbeResolveLabel(v, iInsertBlock); 624 } 625 626 /* Run the BEFORE and INSTEAD OF triggers, if there are any 627 */ 628 endOfLoop = sqlite3VdbeMakeLabel(v); 629 if( triggers_exist & TRIGGER_BEFORE ){ 630 631 /* build the NEW.* reference row. Note that if there is an INTEGER 632 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 633 ** translated into a unique ID for the row. But on a BEFORE trigger, 634 ** we do not know what the unique ID will be (because the insert has 635 ** not happened yet) so we substitute a rowid of -1 636 */ 637 if( keyColumn<0 ){ 638 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 639 }else if( useTempTable ){ 640 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 641 }else{ 642 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 643 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 644 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 645 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 646 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 647 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 648 } 649 650 /* Cannot have triggers on a virtual table. If it were possible, 651 ** this block would have to account for hidden column. 652 */ 653 assert(!IsVirtual(pTab)); 654 655 /* Create the new column data 656 */ 657 for(i=0; i<pTab->nCol; i++){ 658 if( pColumn==0 ){ 659 j = i; 660 }else{ 661 for(j=0; j<pColumn->nId; j++){ 662 if( pColumn->a[j].idx==i ) break; 663 } 664 } 665 if( pColumn && j>=pColumn->nId ){ 666 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 667 }else if( useTempTable ){ 668 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 669 }else{ 670 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 671 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); 672 } 673 } 674 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 675 676 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 677 ** do not attempt any conversions before assembling the record. 678 ** If this is a real table, attempt conversions as required by the 679 ** table column affinities. 680 */ 681 if( !isView ){ 682 sqlite3TableAffinityStr(v, pTab); 683 } 684 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 685 686 /* Fire BEFORE or INSTEAD OF triggers */ 687 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 688 newIdx, -1, onError, endOfLoop) ){ 689 goto insert_cleanup; 690 } 691 } 692 693 /* If any triggers exists, the opening of tables and indices is deferred 694 ** until now. 695 */ 696 if( triggers_exist && !isView ){ 697 base = pParse->nTab; 698 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 699 } 700 701 /* Push the record number for the new entry onto the stack. The 702 ** record number is a randomly generate integer created by NewRowid 703 ** except when the table has an INTEGER PRIMARY KEY column, in which 704 ** case the record number is the same as that column. 705 */ 706 if( !isView ){ 707 if( IsVirtual(pTab) ){ 708 /* The row that the VUpdate opcode will delete: none */ 709 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 710 } 711 if( keyColumn>=0 ){ 712 if( useTempTable ){ 713 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 714 }else if( pSelect ){ 715 sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); 716 }else{ 717 VdbeOp *pOp; 718 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 719 pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); 720 if( pOp && pOp->opcode==OP_Null ){ 721 appendFlag = 1; 722 pOp->opcode = OP_NewRowid; 723 pOp->p1 = base; 724 pOp->p2 = counterMem; 725 } 726 } 727 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 728 ** to generate a unique primary key value. 729 */ 730 if( !appendFlag ){ 731 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 732 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 733 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 734 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 735 } 736 }else if( IsVirtual(pTab) ){ 737 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 738 }else{ 739 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 740 appendFlag = 1; 741 } 742 autoIncStep(pParse, counterMem); 743 744 /* Push onto the stack, data for all columns of the new entry, beginning 745 ** with the first column. 746 */ 747 nHidden = 0; 748 for(i=0; i<pTab->nCol; i++){ 749 if( i==pTab->iPKey ){ 750 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 751 ** Whenever this column is read, the record number will be substituted 752 ** in its place. So will fill this column with a NULL to avoid 753 ** taking up data space with information that will never be used. */ 754 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 755 continue; 756 } 757 if( pColumn==0 ){ 758 if( IsHiddenColumn(&pTab->aCol[i]) ){ 759 assert( IsVirtual(pTab) ); 760 j = -1; 761 nHidden++; 762 }else{ 763 j = i - nHidden; 764 } 765 }else{ 766 for(j=0; j<pColumn->nId; j++){ 767 if( pColumn->a[j].idx==i ) break; 768 } 769 } 770 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 771 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 772 }else if( useTempTable ){ 773 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 774 }else if( pSelect ){ 775 sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1); 776 }else{ 777 sqlite3ExprCode(pParse, pList->a[j].pExpr); 778 } 779 } 780 781 /* Generate code to check constraints and generate index keys and 782 ** do the insertion. 783 */ 784 #ifndef SQLITE_OMIT_VIRTUALTABLE 785 if( IsVirtual(pTab) ){ 786 pParse->pVirtualLock = pTab; 787 sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2, 788 (const char*)pTab->pVtab, P3_VTAB); 789 }else 790 #endif 791 { 792 sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 793 0, onError, endOfLoop); 794 sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, 795 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, 796 appendFlag); 797 } 798 } 799 800 /* Update the count of rows that are inserted 801 */ 802 if( (db->flags & SQLITE_CountRows)!=0 ){ 803 sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem); 804 } 805 806 if( triggers_exist ){ 807 /* Close all tables opened */ 808 if( !isView ){ 809 sqlite3VdbeAddOp(v, OP_Close, base, 0); 810 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 811 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 812 } 813 } 814 815 /* Code AFTER triggers */ 816 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, 817 newIdx, -1, onError, endOfLoop) ){ 818 goto insert_cleanup; 819 } 820 } 821 822 /* The bottom of the loop, if the data source is a SELECT statement 823 */ 824 sqlite3VdbeResolveLabel(v, endOfLoop); 825 if( useTempTable ){ 826 sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); 827 sqlite3VdbeResolveLabel(v, iBreak); 828 sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); 829 }else if( pSelect ){ 830 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 831 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 832 sqlite3VdbeResolveLabel(v, iCleanup); 833 } 834 835 if( !triggers_exist && !IsVirtual(pTab) ){ 836 /* Close all tables opened */ 837 sqlite3VdbeAddOp(v, OP_Close, base, 0); 838 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 839 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 840 } 841 } 842 843 /* Update the sqlite_sequence table by storing the content of the 844 ** counter value in memory counterMem back into the sqlite_sequence 845 ** table. 846 */ 847 autoIncEnd(pParse, iDb, pTab, counterMem); 848 849 /* 850 ** Return the number of rows inserted. If this routine is 851 ** generating code because of a call to sqlite3NestedParse(), do not 852 ** invoke the callback function. 853 */ 854 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 855 sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); 856 sqlite3VdbeAddOp(v, OP_Callback, 1, 0); 857 sqlite3VdbeSetNumCols(v, 1); 858 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC); 859 } 860 861 insert_cleanup: 862 sqlite3SrcListDelete(pTabList); 863 sqlite3ExprListDelete(pList); 864 sqlite3SelectDelete(pSelect); 865 sqlite3IdListDelete(pColumn); 866 } 867 868 /* 869 ** Generate code to do a constraint check prior to an INSERT or an UPDATE. 870 ** 871 ** When this routine is called, the stack contains (from bottom to top) 872 ** the following values: 873 ** 874 ** 1. The rowid of the row to be updated before the update. This 875 ** value is omitted unless we are doing an UPDATE that involves a 876 ** change to the record number. 877 ** 878 ** 2. The rowid of the row after the update. 879 ** 880 ** 3. The data in the first column of the entry after the update. 881 ** 882 ** i. Data from middle columns... 883 ** 884 ** N. The data in the last column of the entry after the update. 885 ** 886 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 887 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 888 ** INSERTs and rowidChng is true if the record number is being changed. 889 ** 890 ** The code generated by this routine pushes additional entries onto 891 ** the stack which are the keys for new index entries for the new record. 892 ** The order of index keys is the same as the order of the indices on 893 ** the pTable->pIndex list. A key is only created for index i if 894 ** aIdxUsed!=0 and aIdxUsed[i]!=0. 895 ** 896 ** This routine also generates code to check constraints. NOT NULL, 897 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 898 ** then the appropriate action is performed. There are five possible 899 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 900 ** 901 ** Constraint type Action What Happens 902 ** --------------- ---------- ---------------------------------------- 903 ** any ROLLBACK The current transaction is rolled back and 904 ** sqlite3_exec() returns immediately with a 905 ** return code of SQLITE_CONSTRAINT. 906 ** 907 ** any ABORT Back out changes from the current command 908 ** only (do not do a complete rollback) then 909 ** cause sqlite3_exec() to return immediately 910 ** with SQLITE_CONSTRAINT. 911 ** 912 ** any FAIL Sqlite_exec() returns immediately with a 913 ** return code of SQLITE_CONSTRAINT. The 914 ** transaction is not rolled back and any 915 ** prior changes are retained. 916 ** 917 ** any IGNORE The record number and data is popped from 918 ** the stack and there is an immediate jump 919 ** to label ignoreDest. 920 ** 921 ** NOT NULL REPLACE The NULL value is replace by the default 922 ** value for that column. If the default value 923 ** is NULL, the action is the same as ABORT. 924 ** 925 ** UNIQUE REPLACE The other row that conflicts with the row 926 ** being inserted is removed. 927 ** 928 ** CHECK REPLACE Illegal. The results in an exception. 929 ** 930 ** Which action to take is determined by the overrideError parameter. 931 ** Or if overrideError==OE_Default, then the pParse->onError parameter 932 ** is used. Or if pParse->onError==OE_Default then the onError value 933 ** for the constraint is used. 934 ** 935 ** The calling routine must open a read/write cursor for pTab with 936 ** cursor number "base". All indices of pTab must also have open 937 ** read/write cursors with cursor number base+i for the i-th cursor. 938 ** Except, if there is no possibility of a REPLACE action then 939 ** cursors do not need to be open for indices where aIdxUsed[i]==0. 940 ** 941 ** If the isUpdate flag is true, it means that the "base" cursor is 942 ** initially pointing to an entry that is being updated. The isUpdate 943 ** flag causes extra code to be generated so that the "base" cursor 944 ** is still pointing at the same entry after the routine returns. 945 ** Without the isUpdate flag, the "base" cursor might be moved. 946 */ 947 void sqlite3GenerateConstraintChecks( 948 Parse *pParse, /* The parser context */ 949 Table *pTab, /* the table into which we are inserting */ 950 int base, /* Index of a read/write cursor pointing at pTab */ 951 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 952 int rowidChng, /* True if the record number will change */ 953 int isUpdate, /* True for UPDATE, False for INSERT */ 954 int overrideError, /* Override onError to this if not OE_Default */ 955 int ignoreDest /* Jump to this label on an OE_Ignore resolution */ 956 ){ 957 int i; 958 Vdbe *v; 959 int nCol; 960 int onError; 961 int addr; 962 int extra; 963 int iCur; 964 Index *pIdx; 965 int seenReplace = 0; 966 int jumpInst1=0, jumpInst2; 967 int hasTwoRowids = (isUpdate && rowidChng); 968 969 v = sqlite3GetVdbe(pParse); 970 assert( v!=0 ); 971 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 972 nCol = pTab->nCol; 973 974 /* Test all NOT NULL constraints. 975 */ 976 for(i=0; i<nCol; i++){ 977 if( i==pTab->iPKey ){ 978 continue; 979 } 980 onError = pTab->aCol[i].notNull; 981 if( onError==OE_None ) continue; 982 if( overrideError!=OE_Default ){ 983 onError = overrideError; 984 }else if( onError==OE_Default ){ 985 onError = OE_Abort; 986 } 987 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 988 onError = OE_Abort; 989 } 990 sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); 991 addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); 992 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 993 || onError==OE_Ignore || onError==OE_Replace ); 994 switch( onError ){ 995 case OE_Rollback: 996 case OE_Abort: 997 case OE_Fail: { 998 char *zMsg = 0; 999 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1000 sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, 1001 " may not be NULL", (char*)0); 1002 sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); 1003 break; 1004 } 1005 case OE_Ignore: { 1006 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1007 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1008 break; 1009 } 1010 case OE_Replace: { 1011 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 1012 sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); 1013 break; 1014 } 1015 } 1016 sqlite3VdbeJumpHere(v, addr); 1017 } 1018 1019 /* Test all CHECK constraints 1020 */ 1021 #ifndef SQLITE_OMIT_CHECK 1022 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1023 int allOk = sqlite3VdbeMakeLabel(v); 1024 assert( pParse->ckOffset==0 ); 1025 pParse->ckOffset = nCol; 1026 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1); 1027 assert( pParse->ckOffset==nCol ); 1028 pParse->ckOffset = 0; 1029 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1030 if( onError==OE_Ignore ){ 1031 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1032 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1033 }else{ 1034 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1035 } 1036 sqlite3VdbeResolveLabel(v, allOk); 1037 } 1038 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1039 1040 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1041 ** of the new record does not previously exist. Except, if this 1042 ** is an UPDATE and the primary key is not changing, that is OK. 1043 */ 1044 if( rowidChng ){ 1045 onError = pTab->keyConf; 1046 if( overrideError!=OE_Default ){ 1047 onError = overrideError; 1048 }else if( onError==OE_Default ){ 1049 onError = OE_Abort; 1050 } 1051 1052 if( isUpdate ){ 1053 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1054 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1055 jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); 1056 } 1057 sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); 1058 jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); 1059 switch( onError ){ 1060 default: { 1061 onError = OE_Abort; 1062 /* Fall thru into the next case */ 1063 } 1064 case OE_Rollback: 1065 case OE_Abort: 1066 case OE_Fail: { 1067 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1068 "PRIMARY KEY must be unique", P3_STATIC); 1069 break; 1070 } 1071 case OE_Replace: { 1072 sqlite3GenerateRowIndexDelete(v, pTab, base, 0); 1073 if( isUpdate ){ 1074 sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); 1075 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1076 } 1077 seenReplace = 1; 1078 break; 1079 } 1080 case OE_Ignore: { 1081 assert( seenReplace==0 ); 1082 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1083 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1084 break; 1085 } 1086 } 1087 sqlite3VdbeJumpHere(v, jumpInst2); 1088 if( isUpdate ){ 1089 sqlite3VdbeJumpHere(v, jumpInst1); 1090 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1091 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1092 } 1093 } 1094 1095 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1096 ** index and making sure that duplicate entries do not already exist. 1097 ** Add the new records to the indices as we go. 1098 */ 1099 extra = -1; 1100 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1101 if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ 1102 extra++; 1103 1104 /* Create a key for accessing the index entry */ 1105 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); 1106 for(i=0; i<pIdx->nColumn; i++){ 1107 int idx = pIdx->aiColumn[i]; 1108 if( idx==pTab->iPKey ){ 1109 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); 1110 }else{ 1111 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); 1112 } 1113 } 1114 jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); 1115 sqlite3IndexAffinityStr(v, pIdx); 1116 1117 /* Find out what action to take in case there is an indexing conflict */ 1118 onError = pIdx->onError; 1119 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ 1120 if( overrideError!=OE_Default ){ 1121 onError = overrideError; 1122 }else if( onError==OE_Default ){ 1123 onError = OE_Abort; 1124 } 1125 if( seenReplace ){ 1126 if( onError==OE_Ignore ) onError = OE_Replace; 1127 else if( onError==OE_Fail ) onError = OE_Abort; 1128 } 1129 1130 1131 /* Check to see if the new index entry will be unique */ 1132 sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); 1133 jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); 1134 1135 /* Generate code that executes if the new index entry is not unique */ 1136 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1137 || onError==OE_Ignore || onError==OE_Replace ); 1138 switch( onError ){ 1139 case OE_Rollback: 1140 case OE_Abort: 1141 case OE_Fail: { 1142 int j, n1, n2; 1143 char zErrMsg[200]; 1144 sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, 1145 pIdx->nColumn>1 ? "columns " : "column "); 1146 n1 = strlen(zErrMsg); 1147 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ 1148 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1149 n2 = strlen(zCol); 1150 if( j>0 ){ 1151 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); 1152 n1 += 2; 1153 } 1154 if( n1+n2>sizeof(zErrMsg)-30 ){ 1155 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); 1156 n1 += 3; 1157 break; 1158 }else{ 1159 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); 1160 n1 += n2; 1161 } 1162 } 1163 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 1164 pIdx->nColumn>1 ? " are not unique" : " is not unique"); 1165 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); 1166 break; 1167 } 1168 case OE_Ignore: { 1169 assert( seenReplace==0 ); 1170 sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); 1171 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1172 break; 1173 } 1174 case OE_Replace: { 1175 sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); 1176 if( isUpdate ){ 1177 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); 1178 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1179 } 1180 seenReplace = 1; 1181 break; 1182 } 1183 } 1184 #if NULL_DISTINCT_FOR_UNIQUE 1185 sqlite3VdbeJumpHere(v, jumpInst1); 1186 #endif 1187 sqlite3VdbeJumpHere(v, jumpInst2); 1188 } 1189 } 1190 1191 /* 1192 ** This routine generates code to finish the INSERT or UPDATE operation 1193 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1194 ** The stack must contain keys for all active indices followed by data 1195 ** and the rowid for the new entry. This routine creates the new 1196 ** entries in all indices and in the main table. 1197 ** 1198 ** The arguments to this routine should be the same as the first six 1199 ** arguments to sqlite3GenerateConstraintChecks. 1200 */ 1201 void sqlite3CompleteInsertion( 1202 Parse *pParse, /* The parser context */ 1203 Table *pTab, /* the table into which we are inserting */ 1204 int base, /* Index of a read/write cursor pointing at pTab */ 1205 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 1206 int rowidChng, /* True if the record number will change */ 1207 int isUpdate, /* True for UPDATE, False for INSERT */ 1208 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1209 int appendBias /* True if this is likely to be an append */ 1210 ){ 1211 int i; 1212 Vdbe *v; 1213 int nIdx; 1214 Index *pIdx; 1215 int pik_flags; 1216 1217 v = sqlite3GetVdbe(pParse); 1218 assert( v!=0 ); 1219 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1220 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1221 for(i=nIdx-1; i>=0; i--){ 1222 if( aIdxUsed && aIdxUsed[i]==0 ) continue; 1223 sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); 1224 } 1225 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 1226 sqlite3TableAffinityStr(v, pTab); 1227 #ifndef SQLITE_OMIT_TRIGGER 1228 if( newIdx>=0 ){ 1229 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1230 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1231 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 1232 } 1233 #endif 1234 if( pParse->nested ){ 1235 pik_flags = 0; 1236 }else{ 1237 pik_flags = OPFLAG_NCHANGE; 1238 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1239 } 1240 if( appendBias ){ 1241 pik_flags |= OPFLAG_APPEND; 1242 } 1243 sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); 1244 if( !pParse->nested ){ 1245 sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); 1246 } 1247 1248 if( isUpdate && rowidChng ){ 1249 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1250 } 1251 } 1252 1253 /* 1254 ** Generate code that will open cursors for a table and for all 1255 ** indices of that table. The "base" parameter is the cursor number used 1256 ** for the table. Indices are opened on subsequent cursors. 1257 */ 1258 void sqlite3OpenTableAndIndices( 1259 Parse *pParse, /* Parsing context */ 1260 Table *pTab, /* Table to be opened */ 1261 int base, /* Cursor number assigned to the table */ 1262 int op /* OP_OpenRead or OP_OpenWrite */ 1263 ){ 1264 int i; 1265 int iDb; 1266 Index *pIdx; 1267 Vdbe *v; 1268 1269 if( IsVirtual(pTab) ) return; 1270 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1271 v = sqlite3GetVdbe(pParse); 1272 assert( v!=0 ); 1273 sqlite3OpenTable(pParse, base, iDb, pTab, op); 1274 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1275 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1276 assert( pIdx->pSchema==pTab->pSchema ); 1277 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1278 VdbeComment((v, "# %s", pIdx->zName)); 1279 sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF); 1280 } 1281 if( pParse->nTab<=base+i ){ 1282 pParse->nTab = base+i; 1283 } 1284 } 1285 1286 1287 #ifdef SQLITE_TEST 1288 /* 1289 ** The following global variable is incremented whenever the 1290 ** transfer optimization is used. This is used for testing 1291 ** purposes only - to make sure the transfer optimization really 1292 ** is happening when it is suppose to. 1293 */ 1294 int sqlite3_xferopt_count; 1295 #endif /* SQLITE_TEST */ 1296 1297 1298 #ifndef SQLITE_OMIT_XFER_OPT 1299 /* 1300 ** Check to collation names to see if they are compatible. 1301 */ 1302 static int xferCompatibleCollation(const char *z1, const char *z2){ 1303 if( z1==0 ){ 1304 return z2==0; 1305 } 1306 if( z2==0 ){ 1307 return 0; 1308 } 1309 return sqlite3StrICmp(z1, z2)==0; 1310 } 1311 1312 1313 /* 1314 ** Check to see if index pSrc is compatible as a source of data 1315 ** for index pDest in an insert transfer optimization. The rules 1316 ** for a compatible index: 1317 ** 1318 ** * The index is over the same set of columns 1319 ** * The same DESC and ASC markings occurs on all columns 1320 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1321 ** * The same collating sequence on each column 1322 */ 1323 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1324 int i; 1325 assert( pDest && pSrc ); 1326 assert( pDest->pTable!=pSrc->pTable ); 1327 if( pDest->nColumn!=pSrc->nColumn ){ 1328 return 0; /* Different number of columns */ 1329 } 1330 if( pDest->onError!=pSrc->onError ){ 1331 return 0; /* Different conflict resolution strategies */ 1332 } 1333 for(i=0; i<pSrc->nColumn; i++){ 1334 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1335 return 0; /* Different columns indexed */ 1336 } 1337 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1338 return 0; /* Different sort orders */ 1339 } 1340 if( pSrc->azColl[i]!=pDest->azColl[i] ){ 1341 return 0; /* Different sort orders */ 1342 } 1343 } 1344 1345 /* If no test above fails then the indices must be compatible */ 1346 return 1; 1347 } 1348 1349 /* 1350 ** Attempt the transfer optimization on INSERTs of the form 1351 ** 1352 ** INSERT INTO tab1 SELECT * FROM tab2; 1353 ** 1354 ** This optimization is only attempted if 1355 ** 1356 ** (1) tab1 and tab2 have identical schemas including all the 1357 ** same indices and constraints 1358 ** 1359 ** (2) tab1 and tab2 are different tables 1360 ** 1361 ** (3) There must be no triggers on tab1 1362 ** 1363 ** (4) The result set of the SELECT statement is "*" 1364 ** 1365 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1366 ** or LIMIT clause. 1367 ** 1368 ** (6) The SELECT statement is a simple (not a compound) select that 1369 ** contains only tab2 in its FROM clause 1370 ** 1371 ** This method for implementing the INSERT transfers raw records from 1372 ** tab2 over to tab1. The columns are not decoded. Raw records from 1373 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1374 ** the resulting tab1 has much less fragmentation. 1375 ** 1376 ** This routine returns TRUE if the optimization is attempted. If any 1377 ** of the conditions above fail so that the optimization should not 1378 ** be attempted, then this routine returns FALSE. 1379 */ 1380 static int xferOptimization( 1381 Parse *pParse, /* Parser context */ 1382 Table *pDest, /* The table we are inserting into */ 1383 Select *pSelect, /* A SELECT statement to use as the data source */ 1384 int onError, /* How to handle constraint errors */ 1385 int iDbDest /* The database of pDest */ 1386 ){ 1387 ExprList *pEList; /* The result set of the SELECT */ 1388 Table *pSrc; /* The table in the FROM clause of SELECT */ 1389 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1390 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1391 int i; /* Loop counter */ 1392 int iDbSrc; /* The database of pSrc */ 1393 int iSrc, iDest; /* Cursors from source and destination */ 1394 int addr1, addr2; /* Loop addresses */ 1395 int emptyDestTest; /* Address of test for empty pDest */ 1396 int emptySrcTest; /* Address of test for empty pSrc */ 1397 Vdbe *v; /* The VDBE we are building */ 1398 KeyInfo *pKey; /* Key information for an index */ 1399 int counterMem; /* Memory register used by AUTOINC */ 1400 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1401 1402 if( pSelect==0 ){ 1403 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1404 } 1405 if( pDest->pTrigger ){ 1406 return 0; /* tab1 must not have triggers */ 1407 } 1408 #ifndef SQLITE_OMIT_VIRTUALTABLE 1409 if( pDest->isVirtual ){ 1410 return 0; /* tab1 must not be a virtual table */ 1411 } 1412 #endif 1413 if( onError==OE_Default ){ 1414 onError = OE_Abort; 1415 } 1416 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1417 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1418 } 1419 if( pSelect->pSrc==0 ){ 1420 return 0; /* SELECT must have a FROM clause */ 1421 } 1422 if( pSelect->pSrc->nSrc!=1 ){ 1423 return 0; /* FROM clause must have exactly one term */ 1424 } 1425 if( pSelect->pSrc->a[0].pSelect ){ 1426 return 0; /* FROM clause cannot contain a subquery */ 1427 } 1428 if( pSelect->pWhere ){ 1429 return 0; /* SELECT may not have a WHERE clause */ 1430 } 1431 if( pSelect->pOrderBy ){ 1432 return 0; /* SELECT may not have an ORDER BY clause */ 1433 } 1434 /* Do not need to test for a HAVING clause. If HAVING is present but 1435 ** there is no ORDER BY, we will get an error. */ 1436 if( pSelect->pGroupBy ){ 1437 return 0; /* SELECT may not have a GROUP BY clause */ 1438 } 1439 if( pSelect->pLimit ){ 1440 return 0; /* SELECT may not have a LIMIT clause */ 1441 } 1442 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1443 if( pSelect->pPrior ){ 1444 return 0; /* SELECT may not be a compound query */ 1445 } 1446 if( pSelect->isDistinct ){ 1447 return 0; /* SELECT may not be DISTINCT */ 1448 } 1449 pEList = pSelect->pEList; 1450 assert( pEList!=0 ); 1451 if( pEList->nExpr!=1 ){ 1452 return 0; /* The result set must have exactly one column */ 1453 } 1454 assert( pEList->a[0].pExpr ); 1455 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1456 return 0; /* The result set must be the special operator "*" */ 1457 } 1458 1459 /* At this point we have established that the statement is of the 1460 ** correct syntactic form to participate in this optimization. Now 1461 ** we have to check the semantics. 1462 */ 1463 pItem = pSelect->pSrc->a; 1464 pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase); 1465 if( pSrc==0 ){ 1466 return 0; /* FROM clause does not contain a real table */ 1467 } 1468 if( pSrc==pDest ){ 1469 return 0; /* tab1 and tab2 may not be the same table */ 1470 } 1471 #ifndef SQLITE_OMIT_VIRTUALTABLE 1472 if( pSrc->isVirtual ){ 1473 return 0; /* tab2 must not be a virtual table */ 1474 } 1475 #endif 1476 if( pSrc->pSelect ){ 1477 return 0; /* tab2 may not be a view */ 1478 } 1479 if( pDest->nCol!=pSrc->nCol ){ 1480 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1481 } 1482 if( pDest->iPKey!=pSrc->iPKey ){ 1483 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1484 } 1485 for(i=0; i<pDest->nCol; i++){ 1486 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1487 return 0; /* Affinity must be the same on all columns */ 1488 } 1489 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1490 return 0; /* Collating sequence must be the same on all columns */ 1491 } 1492 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1493 return 0; /* tab2 must be NOT NULL if tab1 is */ 1494 } 1495 } 1496 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1497 if( pDestIdx->onError!=OE_None ){ 1498 destHasUniqueIdx = 1; 1499 } 1500 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1501 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1502 } 1503 if( pSrcIdx==0 ){ 1504 return 0; /* pDestIdx has no corresponding index in pSrc */ 1505 } 1506 } 1507 #ifndef SQLITE_OMIT_CHECK 1508 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1509 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1510 } 1511 #endif 1512 1513 /* If we get this far, it means either: 1514 ** 1515 ** * We can always do the transfer if the table contains an 1516 ** an integer primary key 1517 ** 1518 ** * We can conditionally do the transfer if the destination 1519 ** table is empty. 1520 */ 1521 #ifdef SQLITE_TEST 1522 sqlite3_xferopt_count++; 1523 #endif 1524 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1525 v = sqlite3GetVdbe(pParse); 1526 iSrc = pParse->nTab++; 1527 iDest = pParse->nTab++; 1528 counterMem = autoIncBegin(pParse, iDbDest, pDest); 1529 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1530 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1531 /* If tables do not have an INTEGER PRIMARY KEY and there 1532 ** are indices to be copied and the destination is not empty, 1533 ** we have to disallow the transfer optimization because the 1534 ** the rowids might change which will mess up indexing. 1535 ** 1536 ** Or if the destination has a UNIQUE index and is not empty, 1537 ** we also disallow the transfer optimization because we cannot 1538 ** insure that all entries in the union of DEST and SRC will be 1539 ** unique. 1540 */ 1541 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0); 1542 emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1543 sqlite3VdbeJumpHere(v, addr1); 1544 }else{ 1545 emptyDestTest = 0; 1546 } 1547 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1548 emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1549 if( pDest->iPKey>=0 ){ 1550 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1551 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1552 addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0); 1553 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1554 "PRIMARY KEY must be unique", P3_STATIC); 1555 sqlite3VdbeJumpHere(v, addr2); 1556 autoIncStep(pParse, counterMem); 1557 }else if( pDest->pIndex==0 ){ 1558 addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0); 1559 }else{ 1560 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1561 assert( pDest->autoInc==0 ); 1562 } 1563 sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0); 1564 sqlite3VdbeOp3(v, OP_Insert, iDest, 1565 OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND, 1566 pDest->zName, 0); 1567 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1); 1568 autoIncEnd(pParse, iDbDest, pDest, counterMem); 1569 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1570 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1571 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1572 } 1573 assert( pSrcIdx ); 1574 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1575 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1576 sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0); 1577 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1578 VdbeComment((v, "# %s", pSrcIdx->zName)); 1579 sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 1580 (char*)pKey, P3_KEYINFO_HANDOFF); 1581 sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0); 1582 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1583 VdbeComment((v, "# %s", pDestIdx->zName)); 1584 sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 1585 (char*)pKey, P3_KEYINFO_HANDOFF); 1586 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1587 sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0); 1588 sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1); 1589 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1); 1590 sqlite3VdbeJumpHere(v, addr1); 1591 } 1592 sqlite3VdbeJumpHere(v, emptySrcTest); 1593 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1594 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1595 if( emptyDestTest ){ 1596 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0); 1597 sqlite3VdbeJumpHere(v, emptyDestTest); 1598 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1599 return 0; 1600 }else{ 1601 return 1; 1602 } 1603 } 1604 #endif /* SQLITE_OMIT_XFER_OPT */ 1605