xref: /sqlite-3.40.0/src/insert.c (revision 9edb5ceb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     sqlite3 *db = sqlite3VdbeDb(v);
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       db->mallocFailed = 1;
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
93     }
94     pIdx->zColAff[n] = 0;
95   }
96 
97   return pIdx->zColAff;
98 }
99 
100 /*
101 ** Compute the affinity string for table pTab, if it has not already been
102 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
103 **
104 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
106 ** for register iReg and following.  Or if affinities exists and iReg==0,
107 ** then just set the P4 operand of the previous opcode (which should  be
108 ** an OP_MakeRecord) to the affinity string.
109 **
110 ** A column affinity string has one character per column:
111 **
112 **  Character      Column affinity
113 **  ------------------------------
114 **  'A'            BLOB
115 **  'B'            TEXT
116 **  'C'            NUMERIC
117 **  'D'            INTEGER
118 **  'E'            REAL
119 */
120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
121   int i;
122   char *zColAff = pTab->zColAff;
123   if( zColAff==0 ){
124     sqlite3 *db = sqlite3VdbeDb(v);
125     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
126     if( !zColAff ){
127       db->mallocFailed = 1;
128       return;
129     }
130 
131     for(i=0; i<pTab->nCol; i++){
132       zColAff[i] = pTab->aCol[i].affinity;
133     }
134     do{
135       zColAff[i--] = 0;
136     }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
137     pTab->zColAff = zColAff;
138   }
139   i = sqlite3Strlen30(zColAff);
140   if( i ){
141     if( iReg ){
142       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
143     }else{
144       sqlite3VdbeChangeP4(v, -1, zColAff, i);
145     }
146   }
147 }
148 
149 /*
150 ** Return non-zero if the table pTab in database iDb or any of its indices
151 ** have been opened at any point in the VDBE program. This is used to see if
152 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
153 ** run without using a temporary table for the results of the SELECT.
154 */
155 static int readsTable(Parse *p, int iDb, Table *pTab){
156   Vdbe *v = sqlite3GetVdbe(p);
157   int i;
158   int iEnd = sqlite3VdbeCurrentAddr(v);
159 #ifndef SQLITE_OMIT_VIRTUALTABLE
160   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
161 #endif
162 
163   for(i=1; i<iEnd; i++){
164     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
165     assert( pOp!=0 );
166     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
167       Index *pIndex;
168       int tnum = pOp->p2;
169       if( tnum==pTab->tnum ){
170         return 1;
171       }
172       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
173         if( tnum==pIndex->tnum ){
174           return 1;
175         }
176       }
177     }
178 #ifndef SQLITE_OMIT_VIRTUALTABLE
179     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
180       assert( pOp->p4.pVtab!=0 );
181       assert( pOp->p4type==P4_VTAB );
182       return 1;
183     }
184 #endif
185   }
186   return 0;
187 }
188 
189 #ifndef SQLITE_OMIT_AUTOINCREMENT
190 /*
191 ** Locate or create an AutoincInfo structure associated with table pTab
192 ** which is in database iDb.  Return the register number for the register
193 ** that holds the maximum rowid.
194 **
195 ** There is at most one AutoincInfo structure per table even if the
196 ** same table is autoincremented multiple times due to inserts within
197 ** triggers.  A new AutoincInfo structure is created if this is the
198 ** first use of table pTab.  On 2nd and subsequent uses, the original
199 ** AutoincInfo structure is used.
200 **
201 ** Three memory locations are allocated:
202 **
203 **   (1)  Register to hold the name of the pTab table.
204 **   (2)  Register to hold the maximum ROWID of pTab.
205 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
206 **
207 ** The 2nd register is the one that is returned.  That is all the
208 ** insert routine needs to know about.
209 */
210 static int autoIncBegin(
211   Parse *pParse,      /* Parsing context */
212   int iDb,            /* Index of the database holding pTab */
213   Table *pTab         /* The table we are writing to */
214 ){
215   int memId = 0;      /* Register holding maximum rowid */
216   if( pTab->tabFlags & TF_Autoincrement ){
217     Parse *pToplevel = sqlite3ParseToplevel(pParse);
218     AutoincInfo *pInfo;
219 
220     pInfo = pToplevel->pAinc;
221     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
222     if( pInfo==0 ){
223       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
224       if( pInfo==0 ) return 0;
225       pInfo->pNext = pToplevel->pAinc;
226       pToplevel->pAinc = pInfo;
227       pInfo->pTab = pTab;
228       pInfo->iDb = iDb;
229       pToplevel->nMem++;                  /* Register to hold name of table */
230       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
231       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
232     }
233     memId = pInfo->regCtr;
234   }
235   return memId;
236 }
237 
238 /*
239 ** This routine generates code that will initialize all of the
240 ** register used by the autoincrement tracker.
241 */
242 void sqlite3AutoincrementBegin(Parse *pParse){
243   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
244   sqlite3 *db = pParse->db;  /* The database connection */
245   Db *pDb;                   /* Database only autoinc table */
246   int memId;                 /* Register holding max rowid */
247   int addr;                  /* A VDBE address */
248   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
249 
250   /* This routine is never called during trigger-generation.  It is
251   ** only called from the top-level */
252   assert( pParse->pTriggerTab==0 );
253   assert( pParse==sqlite3ParseToplevel(pParse) );
254 
255   assert( v );   /* We failed long ago if this is not so */
256   for(p = pParse->pAinc; p; p = p->pNext){
257     pDb = &db->aDb[p->iDb];
258     memId = p->regCtr;
259     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
260     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
261     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
262     addr = sqlite3VdbeCurrentAddr(v);
263     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
264     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
265     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
266     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
267     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
268     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
269     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
270     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
271     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
272     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
273     sqlite3VdbeAddOp0(v, OP_Close);
274   }
275 }
276 
277 /*
278 ** Update the maximum rowid for an autoincrement calculation.
279 **
280 ** This routine should be called when the top of the stack holds a
281 ** new rowid that is about to be inserted.  If that new rowid is
282 ** larger than the maximum rowid in the memId memory cell, then the
283 ** memory cell is updated.  The stack is unchanged.
284 */
285 static void autoIncStep(Parse *pParse, int memId, int regRowid){
286   if( memId>0 ){
287     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
288   }
289 }
290 
291 /*
292 ** This routine generates the code needed to write autoincrement
293 ** maximum rowid values back into the sqlite_sequence register.
294 ** Every statement that might do an INSERT into an autoincrement
295 ** table (either directly or through triggers) needs to call this
296 ** routine just before the "exit" code.
297 */
298 void sqlite3AutoincrementEnd(Parse *pParse){
299   AutoincInfo *p;
300   Vdbe *v = pParse->pVdbe;
301   sqlite3 *db = pParse->db;
302 
303   assert( v );
304   for(p = pParse->pAinc; p; p = p->pNext){
305     Db *pDb = &db->aDb[p->iDb];
306     int j1;
307     int iRec;
308     int memId = p->regCtr;
309 
310     iRec = sqlite3GetTempReg(pParse);
311     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
312     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
313     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
314     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
315     sqlite3VdbeJumpHere(v, j1);
316     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
317     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
318     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
319     sqlite3VdbeAddOp0(v, OP_Close);
320     sqlite3ReleaseTempReg(pParse, iRec);
321   }
322 }
323 #else
324 /*
325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
326 ** above are all no-ops
327 */
328 # define autoIncBegin(A,B,C) (0)
329 # define autoIncStep(A,B,C)
330 #endif /* SQLITE_OMIT_AUTOINCREMENT */
331 
332 
333 /* Forward declaration */
334 static int xferOptimization(
335   Parse *pParse,        /* Parser context */
336   Table *pDest,         /* The table we are inserting into */
337   Select *pSelect,      /* A SELECT statement to use as the data source */
338   int onError,          /* How to handle constraint errors */
339   int iDbDest           /* The database of pDest */
340 );
341 
342 /*
343 ** This routine is called to handle SQL of the following forms:
344 **
345 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
346 **    insert into TABLE (IDLIST) select
347 **    insert into TABLE (IDLIST) default values
348 **
349 ** The IDLIST following the table name is always optional.  If omitted,
350 ** then a list of all (non-hidden) columns for the table is substituted.
351 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
352 ** is omitted.
353 **
354 ** For the pSelect parameter holds the values to be inserted for the
355 ** first two forms shown above.  A VALUES clause is really just short-hand
356 ** for a SELECT statement that omits the FROM clause and everything else
357 ** that follows.  If the pSelect parameter is NULL, that means that the
358 ** DEFAULT VALUES form of the INSERT statement is intended.
359 **
360 ** The code generated follows one of four templates.  For a simple
361 ** insert with data coming from a single-row VALUES clause, the code executes
362 ** once straight down through.  Pseudo-code follows (we call this
363 ** the "1st template"):
364 **
365 **         open write cursor to <table> and its indices
366 **         put VALUES clause expressions into registers
367 **         write the resulting record into <table>
368 **         cleanup
369 **
370 ** The three remaining templates assume the statement is of the form
371 **
372 **   INSERT INTO <table> SELECT ...
373 **
374 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
375 ** in other words if the SELECT pulls all columns from a single table
376 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
377 ** if <table2> and <table1> are distinct tables but have identical
378 ** schemas, including all the same indices, then a special optimization
379 ** is invoked that copies raw records from <table2> over to <table1>.
380 ** See the xferOptimization() function for the implementation of this
381 ** template.  This is the 2nd template.
382 **
383 **         open a write cursor to <table>
384 **         open read cursor on <table2>
385 **         transfer all records in <table2> over to <table>
386 **         close cursors
387 **         foreach index on <table>
388 **           open a write cursor on the <table> index
389 **           open a read cursor on the corresponding <table2> index
390 **           transfer all records from the read to the write cursors
391 **           close cursors
392 **         end foreach
393 **
394 ** The 3rd template is for when the second template does not apply
395 ** and the SELECT clause does not read from <table> at any time.
396 ** The generated code follows this template:
397 **
398 **         X <- A
399 **         goto B
400 **      A: setup for the SELECT
401 **         loop over the rows in the SELECT
402 **           load values into registers R..R+n
403 **           yield X
404 **         end loop
405 **         cleanup after the SELECT
406 **         end-coroutine X
407 **      B: open write cursor to <table> and its indices
408 **      C: yield X, at EOF goto D
409 **         insert the select result into <table> from R..R+n
410 **         goto C
411 **      D: cleanup
412 **
413 ** The 4th template is used if the insert statement takes its
414 ** values from a SELECT but the data is being inserted into a table
415 ** that is also read as part of the SELECT.  In the third form,
416 ** we have to use an intermediate table to store the results of
417 ** the select.  The template is like this:
418 **
419 **         X <- A
420 **         goto B
421 **      A: setup for the SELECT
422 **         loop over the tables in the SELECT
423 **           load value into register R..R+n
424 **           yield X
425 **         end loop
426 **         cleanup after the SELECT
427 **         end co-routine R
428 **      B: open temp table
429 **      L: yield X, at EOF goto M
430 **         insert row from R..R+n into temp table
431 **         goto L
432 **      M: open write cursor to <table> and its indices
433 **         rewind temp table
434 **      C: loop over rows of intermediate table
435 **           transfer values form intermediate table into <table>
436 **         end loop
437 **      D: cleanup
438 */
439 void sqlite3Insert(
440   Parse *pParse,        /* Parser context */
441   SrcList *pTabList,    /* Name of table into which we are inserting */
442   Select *pSelect,      /* A SELECT statement to use as the data source */
443   IdList *pColumn,      /* Column names corresponding to IDLIST. */
444   int onError           /* How to handle constraint errors */
445 ){
446   sqlite3 *db;          /* The main database structure */
447   Table *pTab;          /* The table to insert into.  aka TABLE */
448   char *zTab;           /* Name of the table into which we are inserting */
449   const char *zDb;      /* Name of the database holding this table */
450   int i, j, idx;        /* Loop counters */
451   Vdbe *v;              /* Generate code into this virtual machine */
452   Index *pIdx;          /* For looping over indices of the table */
453   int nColumn;          /* Number of columns in the data */
454   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
455   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
456   int iIdxCur = 0;      /* First index cursor */
457   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
458   int endOfLoop;        /* Label for the end of the insertion loop */
459   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
460   int addrInsTop = 0;   /* Jump to label "D" */
461   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
462   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
463   int iDb;              /* Index of database holding TABLE */
464   Db *pDb;              /* The database containing table being inserted into */
465   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
466   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
467   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
468   u8 bIdListInOrder;    /* True if IDLIST is in table order */
469   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
470 
471   /* Register allocations */
472   int regFromSelect = 0;/* Base register for data coming from SELECT */
473   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
474   int regRowCount = 0;  /* Memory cell used for the row counter */
475   int regIns;           /* Block of regs holding rowid+data being inserted */
476   int regRowid;         /* registers holding insert rowid */
477   int regData;          /* register holding first column to insert */
478   int *aRegIdx = 0;     /* One register allocated to each index */
479 
480 #ifndef SQLITE_OMIT_TRIGGER
481   int isView;                 /* True if attempting to insert into a view */
482   Trigger *pTrigger;          /* List of triggers on pTab, if required */
483   int tmask;                  /* Mask of trigger times */
484 #endif
485 
486   db = pParse->db;
487   memset(&dest, 0, sizeof(dest));
488   if( pParse->nErr || db->mallocFailed ){
489     goto insert_cleanup;
490   }
491 
492   /* If the Select object is really just a simple VALUES() list with a
493   ** single row (the common case) then keep that one row of values
494   ** and discard the other (unused) parts of the pSelect object
495   */
496   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
497     pList = pSelect->pEList;
498     pSelect->pEList = 0;
499     sqlite3SelectDelete(db, pSelect);
500     pSelect = 0;
501   }
502 
503   /* Locate the table into which we will be inserting new information.
504   */
505   assert( pTabList->nSrc==1 );
506   zTab = pTabList->a[0].zName;
507   if( NEVER(zTab==0) ) goto insert_cleanup;
508   pTab = sqlite3SrcListLookup(pParse, pTabList);
509   if( pTab==0 ){
510     goto insert_cleanup;
511   }
512   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
513   assert( iDb<db->nDb );
514   pDb = &db->aDb[iDb];
515   zDb = pDb->zName;
516   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
517     goto insert_cleanup;
518   }
519   withoutRowid = !HasRowid(pTab);
520 
521   /* Figure out if we have any triggers and if the table being
522   ** inserted into is a view
523   */
524 #ifndef SQLITE_OMIT_TRIGGER
525   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
526   isView = pTab->pSelect!=0;
527 #else
528 # define pTrigger 0
529 # define tmask 0
530 # define isView 0
531 #endif
532 #ifdef SQLITE_OMIT_VIEW
533 # undef isView
534 # define isView 0
535 #endif
536   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
537 
538   /* If pTab is really a view, make sure it has been initialized.
539   ** ViewGetColumnNames() is a no-op if pTab is not a view.
540   */
541   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
542     goto insert_cleanup;
543   }
544 
545   /* Cannot insert into a read-only table.
546   */
547   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
548     goto insert_cleanup;
549   }
550 
551   /* Allocate a VDBE
552   */
553   v = sqlite3GetVdbe(pParse);
554   if( v==0 ) goto insert_cleanup;
555   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
556   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
557 
558 #ifndef SQLITE_OMIT_XFER_OPT
559   /* If the statement is of the form
560   **
561   **       INSERT INTO <table1> SELECT * FROM <table2>;
562   **
563   ** Then special optimizations can be applied that make the transfer
564   ** very fast and which reduce fragmentation of indices.
565   **
566   ** This is the 2nd template.
567   */
568   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
569     assert( !pTrigger );
570     assert( pList==0 );
571     goto insert_end;
572   }
573 #endif /* SQLITE_OMIT_XFER_OPT */
574 
575   /* If this is an AUTOINCREMENT table, look up the sequence number in the
576   ** sqlite_sequence table and store it in memory cell regAutoinc.
577   */
578   regAutoinc = autoIncBegin(pParse, iDb, pTab);
579 
580   /* Allocate registers for holding the rowid of the new row,
581   ** the content of the new row, and the assembled row record.
582   */
583   regRowid = regIns = pParse->nMem+1;
584   pParse->nMem += pTab->nCol + 1;
585   if( IsVirtual(pTab) ){
586     regRowid++;
587     pParse->nMem++;
588   }
589   regData = regRowid+1;
590 
591   /* If the INSERT statement included an IDLIST term, then make sure
592   ** all elements of the IDLIST really are columns of the table and
593   ** remember the column indices.
594   **
595   ** If the table has an INTEGER PRIMARY KEY column and that column
596   ** is named in the IDLIST, then record in the ipkColumn variable
597   ** the index into IDLIST of the primary key column.  ipkColumn is
598   ** the index of the primary key as it appears in IDLIST, not as
599   ** is appears in the original table.  (The index of the INTEGER
600   ** PRIMARY KEY in the original table is pTab->iPKey.)
601   */
602   bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
603   if( pColumn ){
604     for(i=0; i<pColumn->nId; i++){
605       pColumn->a[i].idx = -1;
606     }
607     for(i=0; i<pColumn->nId; i++){
608       for(j=0; j<pTab->nCol; j++){
609         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
610           pColumn->a[i].idx = j;
611           if( i!=j ) bIdListInOrder = 0;
612           if( j==pTab->iPKey ){
613             ipkColumn = i;  assert( !withoutRowid );
614           }
615           break;
616         }
617       }
618       if( j>=pTab->nCol ){
619         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
620           ipkColumn = i;
621           bIdListInOrder = 0;
622         }else{
623           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
624               pTabList, 0, pColumn->a[i].zName);
625           pParse->checkSchema = 1;
626           goto insert_cleanup;
627         }
628       }
629     }
630   }
631 
632   /* Figure out how many columns of data are supplied.  If the data
633   ** is coming from a SELECT statement, then generate a co-routine that
634   ** produces a single row of the SELECT on each invocation.  The
635   ** co-routine is the common header to the 3rd and 4th templates.
636   */
637   if( pSelect ){
638     /* Data is coming from a SELECT or from a multi-row VALUES clause.
639     ** Generate a co-routine to run the SELECT. */
640     int regYield;       /* Register holding co-routine entry-point */
641     int addrTop;        /* Top of the co-routine */
642     int rc;             /* Result code */
643 
644     regYield = ++pParse->nMem;
645     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
646     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
647     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
648     dest.iSdst = bIdListInOrder ? regData : 0;
649     dest.nSdst = pTab->nCol;
650     rc = sqlite3Select(pParse, pSelect, &dest);
651     regFromSelect = dest.iSdst;
652     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
653     sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
654     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
655     assert( pSelect->pEList );
656     nColumn = pSelect->pEList->nExpr;
657 
658     /* Set useTempTable to TRUE if the result of the SELECT statement
659     ** should be written into a temporary table (template 4).  Set to
660     ** FALSE if each output row of the SELECT can be written directly into
661     ** the destination table (template 3).
662     **
663     ** A temp table must be used if the table being updated is also one
664     ** of the tables being read by the SELECT statement.  Also use a
665     ** temp table in the case of row triggers.
666     */
667     if( pTrigger || readsTable(pParse, iDb, pTab) ){
668       useTempTable = 1;
669     }
670 
671     if( useTempTable ){
672       /* Invoke the coroutine to extract information from the SELECT
673       ** and add it to a transient table srcTab.  The code generated
674       ** here is from the 4th template:
675       **
676       **      B: open temp table
677       **      L: yield X, goto M at EOF
678       **         insert row from R..R+n into temp table
679       **         goto L
680       **      M: ...
681       */
682       int regRec;          /* Register to hold packed record */
683       int regTempRowid;    /* Register to hold temp table ROWID */
684       int addrL;           /* Label "L" */
685 
686       srcTab = pParse->nTab++;
687       regRec = sqlite3GetTempReg(pParse);
688       regTempRowid = sqlite3GetTempReg(pParse);
689       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
690       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
691       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
692       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
693       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
694       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
695       sqlite3VdbeJumpHere(v, addrL);
696       sqlite3ReleaseTempReg(pParse, regRec);
697       sqlite3ReleaseTempReg(pParse, regTempRowid);
698     }
699   }else{
700     /* This is the case if the data for the INSERT is coming from a
701     ** single-row VALUES clause
702     */
703     NameContext sNC;
704     memset(&sNC, 0, sizeof(sNC));
705     sNC.pParse = pParse;
706     srcTab = -1;
707     assert( useTempTable==0 );
708     nColumn = pList ? pList->nExpr : 0;
709     for(i=0; i<nColumn; i++){
710       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
711         goto insert_cleanup;
712       }
713     }
714   }
715 
716   /* If there is no IDLIST term but the table has an integer primary
717   ** key, the set the ipkColumn variable to the integer primary key
718   ** column index in the original table definition.
719   */
720   if( pColumn==0 && nColumn>0 ){
721     ipkColumn = pTab->iPKey;
722   }
723 
724   /* Make sure the number of columns in the source data matches the number
725   ** of columns to be inserted into the table.
726   */
727   if( IsVirtual(pTab) ){
728     for(i=0; i<pTab->nCol; i++){
729       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
730     }
731   }
732   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
733     sqlite3ErrorMsg(pParse,
734        "table %S has %d columns but %d values were supplied",
735        pTabList, 0, pTab->nCol-nHidden, nColumn);
736     goto insert_cleanup;
737   }
738   if( pColumn!=0 && nColumn!=pColumn->nId ){
739     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
740     goto insert_cleanup;
741   }
742 
743   /* Initialize the count of rows to be inserted
744   */
745   if( db->flags & SQLITE_CountRows ){
746     regRowCount = ++pParse->nMem;
747     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
748   }
749 
750   /* If this is not a view, open the table and and all indices */
751   if( !isView ){
752     int nIdx;
753     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
754                                       &iDataCur, &iIdxCur);
755     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
756     if( aRegIdx==0 ){
757       goto insert_cleanup;
758     }
759     for(i=0; i<nIdx; i++){
760       aRegIdx[i] = ++pParse->nMem;
761     }
762   }
763 
764   /* This is the top of the main insertion loop */
765   if( useTempTable ){
766     /* This block codes the top of loop only.  The complete loop is the
767     ** following pseudocode (template 4):
768     **
769     **         rewind temp table, if empty goto D
770     **      C: loop over rows of intermediate table
771     **           transfer values form intermediate table into <table>
772     **         end loop
773     **      D: ...
774     */
775     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
776     addrCont = sqlite3VdbeCurrentAddr(v);
777   }else if( pSelect ){
778     /* This block codes the top of loop only.  The complete loop is the
779     ** following pseudocode (template 3):
780     **
781     **      C: yield X, at EOF goto D
782     **         insert the select result into <table> from R..R+n
783     **         goto C
784     **      D: ...
785     */
786     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
787     VdbeCoverage(v);
788   }
789 
790   /* Run the BEFORE and INSTEAD OF triggers, if there are any
791   */
792   endOfLoop = sqlite3VdbeMakeLabel(v);
793   if( tmask & TRIGGER_BEFORE ){
794     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
795 
796     /* build the NEW.* reference row.  Note that if there is an INTEGER
797     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
798     ** translated into a unique ID for the row.  But on a BEFORE trigger,
799     ** we do not know what the unique ID will be (because the insert has
800     ** not happened yet) so we substitute a rowid of -1
801     */
802     if( ipkColumn<0 ){
803       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
804     }else{
805       int j1;
806       assert( !withoutRowid );
807       if( useTempTable ){
808         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
809       }else{
810         assert( pSelect==0 );  /* Otherwise useTempTable is true */
811         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
812       }
813       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
814       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
815       sqlite3VdbeJumpHere(v, j1);
816       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
817     }
818 
819     /* Cannot have triggers on a virtual table. If it were possible,
820     ** this block would have to account for hidden column.
821     */
822     assert( !IsVirtual(pTab) );
823 
824     /* Create the new column data
825     */
826     for(i=0; i<pTab->nCol; i++){
827       if( pColumn==0 ){
828         j = i;
829       }else{
830         for(j=0; j<pColumn->nId; j++){
831           if( pColumn->a[j].idx==i ) break;
832         }
833       }
834       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
835         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
836       }else if( useTempTable ){
837         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
838       }else{
839         assert( pSelect==0 ); /* Otherwise useTempTable is true */
840         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
841       }
842     }
843 
844     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
845     ** do not attempt any conversions before assembling the record.
846     ** If this is a real table, attempt conversions as required by the
847     ** table column affinities.
848     */
849     if( !isView ){
850       sqlite3TableAffinity(v, pTab, regCols+1);
851     }
852 
853     /* Fire BEFORE or INSTEAD OF triggers */
854     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
855         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
856 
857     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
858   }
859 
860   /* Compute the content of the next row to insert into a range of
861   ** registers beginning at regIns.
862   */
863   if( !isView ){
864     if( IsVirtual(pTab) ){
865       /* The row that the VUpdate opcode will delete: none */
866       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
867     }
868     if( ipkColumn>=0 ){
869       if( useTempTable ){
870         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
871       }else if( pSelect ){
872         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
873       }else{
874         VdbeOp *pOp;
875         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
876         pOp = sqlite3VdbeGetOp(v, -1);
877         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
878           appendFlag = 1;
879           pOp->opcode = OP_NewRowid;
880           pOp->p1 = iDataCur;
881           pOp->p2 = regRowid;
882           pOp->p3 = regAutoinc;
883         }
884       }
885       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
886       ** to generate a unique primary key value.
887       */
888       if( !appendFlag ){
889         int j1;
890         if( !IsVirtual(pTab) ){
891           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
892           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
893           sqlite3VdbeJumpHere(v, j1);
894         }else{
895           j1 = sqlite3VdbeCurrentAddr(v);
896           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
897         }
898         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
899       }
900     }else if( IsVirtual(pTab) || withoutRowid ){
901       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
902     }else{
903       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
904       appendFlag = 1;
905     }
906     autoIncStep(pParse, regAutoinc, regRowid);
907 
908     /* Compute data for all columns of the new entry, beginning
909     ** with the first column.
910     */
911     nHidden = 0;
912     for(i=0; i<pTab->nCol; i++){
913       int iRegStore = regRowid+1+i;
914       if( i==pTab->iPKey ){
915         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
916         ** Whenever this column is read, the rowid will be substituted
917         ** in its place.  Hence, fill this column with a NULL to avoid
918         ** taking up data space with information that will never be used.
919         ** As there may be shallow copies of this value, make it a soft-NULL */
920         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
921         continue;
922       }
923       if( pColumn==0 ){
924         if( IsHiddenColumn(&pTab->aCol[i]) ){
925           assert( IsVirtual(pTab) );
926           j = -1;
927           nHidden++;
928         }else{
929           j = i - nHidden;
930         }
931       }else{
932         for(j=0; j<pColumn->nId; j++){
933           if( pColumn->a[j].idx==i ) break;
934         }
935       }
936       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
937         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
938       }else if( useTempTable ){
939         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
940       }else if( pSelect ){
941         if( regFromSelect!=regData ){
942           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
943         }
944       }else{
945         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
946       }
947     }
948 
949     /* Generate code to check constraints and generate index keys and
950     ** do the insertion.
951     */
952 #ifndef SQLITE_OMIT_VIRTUALTABLE
953     if( IsVirtual(pTab) ){
954       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
955       sqlite3VtabMakeWritable(pParse, pTab);
956       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
957       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
958       sqlite3MayAbort(pParse);
959     }else
960 #endif
961     {
962       int isReplace;    /* Set to true if constraints may cause a replace */
963       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
964           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
965       );
966       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
967       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
968                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
969     }
970   }
971 
972   /* Update the count of rows that are inserted
973   */
974   if( (db->flags & SQLITE_CountRows)!=0 ){
975     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
976   }
977 
978   if( pTrigger ){
979     /* Code AFTER triggers */
980     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
981         pTab, regData-2-pTab->nCol, onError, endOfLoop);
982   }
983 
984   /* The bottom of the main insertion loop, if the data source
985   ** is a SELECT statement.
986   */
987   sqlite3VdbeResolveLabel(v, endOfLoop);
988   if( useTempTable ){
989     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
990     sqlite3VdbeJumpHere(v, addrInsTop);
991     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
992   }else if( pSelect ){
993     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
994     sqlite3VdbeJumpHere(v, addrInsTop);
995   }
996 
997   if( !IsVirtual(pTab) && !isView ){
998     /* Close all tables opened */
999     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1000     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1001       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1002     }
1003   }
1004 
1005 insert_end:
1006   /* Update the sqlite_sequence table by storing the content of the
1007   ** maximum rowid counter values recorded while inserting into
1008   ** autoincrement tables.
1009   */
1010   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1011     sqlite3AutoincrementEnd(pParse);
1012   }
1013 
1014   /*
1015   ** Return the number of rows inserted. If this routine is
1016   ** generating code because of a call to sqlite3NestedParse(), do not
1017   ** invoke the callback function.
1018   */
1019   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1020     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1021     sqlite3VdbeSetNumCols(v, 1);
1022     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1023   }
1024 
1025 insert_cleanup:
1026   sqlite3SrcListDelete(db, pTabList);
1027   sqlite3ExprListDelete(db, pList);
1028   sqlite3SelectDelete(db, pSelect);
1029   sqlite3IdListDelete(db, pColumn);
1030   sqlite3DbFree(db, aRegIdx);
1031 }
1032 
1033 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1034 ** they may interfere with compilation of other functions in this file
1035 ** (or in another file, if this file becomes part of the amalgamation).  */
1036 #ifdef isView
1037  #undef isView
1038 #endif
1039 #ifdef pTrigger
1040  #undef pTrigger
1041 #endif
1042 #ifdef tmask
1043  #undef tmask
1044 #endif
1045 
1046 /*
1047 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1048 ** on table pTab.
1049 **
1050 ** The regNewData parameter is the first register in a range that contains
1051 ** the data to be inserted or the data after the update.  There will be
1052 ** pTab->nCol+1 registers in this range.  The first register (the one
1053 ** that regNewData points to) will contain the new rowid, or NULL in the
1054 ** case of a WITHOUT ROWID table.  The second register in the range will
1055 ** contain the content of the first table column.  The third register will
1056 ** contain the content of the second table column.  And so forth.
1057 **
1058 ** The regOldData parameter is similar to regNewData except that it contains
1059 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1060 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1061 ** checking regOldData for zero.
1062 **
1063 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1064 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1065 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1066 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1067 **
1068 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1069 ** was explicitly specified as part of the INSERT statement.  If pkChng
1070 ** is zero, it means that the either rowid is computed automatically or
1071 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1072 ** pkChng will only be true if the INSERT statement provides an integer
1073 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1074 **
1075 ** The code generated by this routine will store new index entries into
1076 ** registers identified by aRegIdx[].  No index entry is created for
1077 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1078 ** the same as the order of indices on the linked list of indices
1079 ** at pTab->pIndex.
1080 **
1081 ** The caller must have already opened writeable cursors on the main
1082 ** table and all applicable indices (that is to say, all indices for which
1083 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1084 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1085 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1086 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1087 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1088 **
1089 ** This routine also generates code to check constraints.  NOT NULL,
1090 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1091 ** then the appropriate action is performed.  There are five possible
1092 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1093 **
1094 **  Constraint type  Action       What Happens
1095 **  ---------------  ----------   ----------------------------------------
1096 **  any              ROLLBACK     The current transaction is rolled back and
1097 **                                sqlite3_step() returns immediately with a
1098 **                                return code of SQLITE_CONSTRAINT.
1099 **
1100 **  any              ABORT        Back out changes from the current command
1101 **                                only (do not do a complete rollback) then
1102 **                                cause sqlite3_step() to return immediately
1103 **                                with SQLITE_CONSTRAINT.
1104 **
1105 **  any              FAIL         Sqlite3_step() returns immediately with a
1106 **                                return code of SQLITE_CONSTRAINT.  The
1107 **                                transaction is not rolled back and any
1108 **                                changes to prior rows are retained.
1109 **
1110 **  any              IGNORE       The attempt in insert or update the current
1111 **                                row is skipped, without throwing an error.
1112 **                                Processing continues with the next row.
1113 **                                (There is an immediate jump to ignoreDest.)
1114 **
1115 **  NOT NULL         REPLACE      The NULL value is replace by the default
1116 **                                value for that column.  If the default value
1117 **                                is NULL, the action is the same as ABORT.
1118 **
1119 **  UNIQUE           REPLACE      The other row that conflicts with the row
1120 **                                being inserted is removed.
1121 **
1122 **  CHECK            REPLACE      Illegal.  The results in an exception.
1123 **
1124 ** Which action to take is determined by the overrideError parameter.
1125 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1126 ** is used.  Or if pParse->onError==OE_Default then the onError value
1127 ** for the constraint is used.
1128 */
1129 void sqlite3GenerateConstraintChecks(
1130   Parse *pParse,       /* The parser context */
1131   Table *pTab,         /* The table being inserted or updated */
1132   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1133   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1134   int iIdxCur,         /* First index cursor */
1135   int regNewData,      /* First register in a range holding values to insert */
1136   int regOldData,      /* Previous content.  0 for INSERTs */
1137   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1138   u8 overrideError,    /* Override onError to this if not OE_Default */
1139   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1140   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
1141 ){
1142   Vdbe *v;             /* VDBE under constrution */
1143   Index *pIdx;         /* Pointer to one of the indices */
1144   Index *pPk = 0;      /* The PRIMARY KEY index */
1145   sqlite3 *db;         /* Database connection */
1146   int i;               /* loop counter */
1147   int ix;              /* Index loop counter */
1148   int nCol;            /* Number of columns */
1149   int onError;         /* Conflict resolution strategy */
1150   int j1;              /* Address of jump instruction */
1151   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1152   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1153   int ipkTop = 0;      /* Top of the rowid change constraint check */
1154   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
1155   u8 isUpdate;         /* True if this is an UPDATE operation */
1156   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1157   int regRowid = -1;   /* Register holding ROWID value */
1158 
1159   isUpdate = regOldData!=0;
1160   db = pParse->db;
1161   v = sqlite3GetVdbe(pParse);
1162   assert( v!=0 );
1163   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1164   nCol = pTab->nCol;
1165 
1166   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1167   ** normal rowid tables.  nPkField is the number of key fields in the
1168   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1169   ** number of fields in the true primary key of the table. */
1170   if( HasRowid(pTab) ){
1171     pPk = 0;
1172     nPkField = 1;
1173   }else{
1174     pPk = sqlite3PrimaryKeyIndex(pTab);
1175     nPkField = pPk->nKeyCol;
1176   }
1177 
1178   /* Record that this module has started */
1179   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1180                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1181 
1182   /* Test all NOT NULL constraints.
1183   */
1184   for(i=0; i<nCol; i++){
1185     if( i==pTab->iPKey ){
1186       continue;
1187     }
1188     onError = pTab->aCol[i].notNull;
1189     if( onError==OE_None ) continue;
1190     if( overrideError!=OE_Default ){
1191       onError = overrideError;
1192     }else if( onError==OE_Default ){
1193       onError = OE_Abort;
1194     }
1195     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1196       onError = OE_Abort;
1197     }
1198     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1199         || onError==OE_Ignore || onError==OE_Replace );
1200     switch( onError ){
1201       case OE_Abort:
1202         sqlite3MayAbort(pParse);
1203         /* Fall through */
1204       case OE_Rollback:
1205       case OE_Fail: {
1206         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1207                                     pTab->aCol[i].zName);
1208         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1209                           regNewData+1+i, zMsg, P4_DYNAMIC);
1210         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1211         VdbeCoverage(v);
1212         break;
1213       }
1214       case OE_Ignore: {
1215         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1216         VdbeCoverage(v);
1217         break;
1218       }
1219       default: {
1220         assert( onError==OE_Replace );
1221         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
1222         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1223         sqlite3VdbeJumpHere(v, j1);
1224         break;
1225       }
1226     }
1227   }
1228 
1229   /* Test all CHECK constraints
1230   */
1231 #ifndef SQLITE_OMIT_CHECK
1232   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1233     ExprList *pCheck = pTab->pCheck;
1234     pParse->ckBase = regNewData+1;
1235     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1236     for(i=0; i<pCheck->nExpr; i++){
1237       int allOk = sqlite3VdbeMakeLabel(v);
1238       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1239       if( onError==OE_Ignore ){
1240         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1241       }else{
1242         char *zName = pCheck->a[i].zName;
1243         if( zName==0 ) zName = pTab->zName;
1244         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1245         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1246                               onError, zName, P4_TRANSIENT,
1247                               P5_ConstraintCheck);
1248       }
1249       sqlite3VdbeResolveLabel(v, allOk);
1250     }
1251   }
1252 #endif /* !defined(SQLITE_OMIT_CHECK) */
1253 
1254   /* If rowid is changing, make sure the new rowid does not previously
1255   ** exist in the table.
1256   */
1257   if( pkChng && pPk==0 ){
1258     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1259 
1260     /* Figure out what action to take in case of a rowid collision */
1261     onError = pTab->keyConf;
1262     if( overrideError!=OE_Default ){
1263       onError = overrideError;
1264     }else if( onError==OE_Default ){
1265       onError = OE_Abort;
1266     }
1267 
1268     if( isUpdate ){
1269       /* pkChng!=0 does not mean that the rowid has change, only that
1270       ** it might have changed.  Skip the conflict logic below if the rowid
1271       ** is unchanged. */
1272       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1273       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1274       VdbeCoverage(v);
1275     }
1276 
1277     /* If the response to a rowid conflict is REPLACE but the response
1278     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1279     ** to defer the running of the rowid conflict checking until after
1280     ** the UNIQUE constraints have run.
1281     */
1282     if( onError==OE_Replace && overrideError!=OE_Replace ){
1283       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1284         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1285           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1286           break;
1287         }
1288       }
1289     }
1290 
1291     /* Check to see if the new rowid already exists in the table.  Skip
1292     ** the following conflict logic if it does not. */
1293     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1294     VdbeCoverage(v);
1295 
1296     /* Generate code that deals with a rowid collision */
1297     switch( onError ){
1298       default: {
1299         onError = OE_Abort;
1300         /* Fall thru into the next case */
1301       }
1302       case OE_Rollback:
1303       case OE_Abort:
1304       case OE_Fail: {
1305         sqlite3RowidConstraint(pParse, onError, pTab);
1306         break;
1307       }
1308       case OE_Replace: {
1309         /* If there are DELETE triggers on this table and the
1310         ** recursive-triggers flag is set, call GenerateRowDelete() to
1311         ** remove the conflicting row from the table. This will fire
1312         ** the triggers and remove both the table and index b-tree entries.
1313         **
1314         ** Otherwise, if there are no triggers or the recursive-triggers
1315         ** flag is not set, but the table has one or more indexes, call
1316         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1317         ** only. The table b-tree entry will be replaced by the new entry
1318         ** when it is inserted.
1319         **
1320         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1321         ** also invoke MultiWrite() to indicate that this VDBE may require
1322         ** statement rollback (if the statement is aborted after the delete
1323         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1324         ** but being more selective here allows statements like:
1325         **
1326         **   REPLACE INTO t(rowid) VALUES($newrowid)
1327         **
1328         ** to run without a statement journal if there are no indexes on the
1329         ** table.
1330         */
1331         Trigger *pTrigger = 0;
1332         if( db->flags&SQLITE_RecTriggers ){
1333           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1334         }
1335         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1336           sqlite3MultiWrite(pParse);
1337           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1338                                    regNewData, 1, 0, OE_Replace, 1);
1339         }else if( pTab->pIndex ){
1340           sqlite3MultiWrite(pParse);
1341           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1342         }
1343         seenReplace = 1;
1344         break;
1345       }
1346       case OE_Ignore: {
1347         /*assert( seenReplace==0 );*/
1348         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1349         break;
1350       }
1351     }
1352     sqlite3VdbeResolveLabel(v, addrRowidOk);
1353     if( ipkTop ){
1354       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1355       sqlite3VdbeJumpHere(v, ipkTop);
1356     }
1357   }
1358 
1359   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1360   ** index and making sure that duplicate entries do not already exist.
1361   ** Compute the revised record entries for indices as we go.
1362   **
1363   ** This loop also handles the case of the PRIMARY KEY index for a
1364   ** WITHOUT ROWID table.
1365   */
1366   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1367     int regIdx;          /* Range of registers hold conent for pIdx */
1368     int regR;            /* Range of registers holding conflicting PK */
1369     int iThisCur;        /* Cursor for this UNIQUE index */
1370     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1371 
1372     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1373     if( bAffinityDone==0 ){
1374       sqlite3TableAffinity(v, pTab, regNewData+1);
1375       bAffinityDone = 1;
1376     }
1377     iThisCur = iIdxCur+ix;
1378     addrUniqueOk = sqlite3VdbeMakeLabel(v);
1379 
1380     /* Skip partial indices for which the WHERE clause is not true */
1381     if( pIdx->pPartIdxWhere ){
1382       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1383       pParse->ckBase = regNewData+1;
1384       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1385                             SQLITE_JUMPIFNULL);
1386       pParse->ckBase = 0;
1387     }
1388 
1389     /* Create a record for this index entry as it should appear after
1390     ** the insert or update.  Store that record in the aRegIdx[ix] register
1391     */
1392     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1393     for(i=0; i<pIdx->nColumn; i++){
1394       int iField = pIdx->aiColumn[i];
1395       int x;
1396       if( iField<0 || iField==pTab->iPKey ){
1397         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1398         x = regNewData;
1399         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
1400       }else{
1401         x = iField + regNewData + 1;
1402       }
1403       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1404       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1405     }
1406     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1407     VdbeComment((v, "for %s", pIdx->zName));
1408     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1409 
1410     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1411     ** of a WITHOUT ROWID table and there has been no change the
1412     ** primary key, then no collision is possible.  The collision detection
1413     ** logic below can all be skipped. */
1414     if( isUpdate && pPk==pIdx && pkChng==0 ){
1415       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1416       continue;
1417     }
1418 
1419     /* Find out what action to take in case there is a uniqueness conflict */
1420     onError = pIdx->onError;
1421     if( onError==OE_None ){
1422       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1423       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1424       continue;  /* pIdx is not a UNIQUE index */
1425     }
1426     if( overrideError!=OE_Default ){
1427       onError = overrideError;
1428     }else if( onError==OE_Default ){
1429       onError = OE_Abort;
1430     }
1431 
1432     /* Check to see if the new index entry will be unique */
1433     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1434                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1435 
1436     /* Generate code to handle collisions */
1437     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1438     if( isUpdate || onError==OE_Replace ){
1439       if( HasRowid(pTab) ){
1440         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1441         /* Conflict only if the rowid of the existing index entry
1442         ** is different from old-rowid */
1443         if( isUpdate ){
1444           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1445           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1446           VdbeCoverage(v);
1447         }
1448       }else{
1449         int x;
1450         /* Extract the PRIMARY KEY from the end of the index entry and
1451         ** store it in registers regR..regR+nPk-1 */
1452         if( pIdx!=pPk ){
1453           for(i=0; i<pPk->nKeyCol; i++){
1454             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1455             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1456             VdbeComment((v, "%s.%s", pTab->zName,
1457                          pTab->aCol[pPk->aiColumn[i]].zName));
1458           }
1459         }
1460         if( isUpdate ){
1461           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1462           ** table, only conflict if the new PRIMARY KEY values are actually
1463           ** different from the old.
1464           **
1465           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1466           ** of the matched index row are different from the original PRIMARY
1467           ** KEY values of this row before the update.  */
1468           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1469           int op = OP_Ne;
1470           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1471 
1472           for(i=0; i<pPk->nKeyCol; i++){
1473             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1474             x = pPk->aiColumn[i];
1475             if( i==(pPk->nKeyCol-1) ){
1476               addrJump = addrUniqueOk;
1477               op = OP_Eq;
1478             }
1479             sqlite3VdbeAddOp4(v, op,
1480                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1481             );
1482             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1483             VdbeCoverageIf(v, op==OP_Eq);
1484             VdbeCoverageIf(v, op==OP_Ne);
1485           }
1486         }
1487       }
1488     }
1489 
1490     /* Generate code that executes if the new index entry is not unique */
1491     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1492         || onError==OE_Ignore || onError==OE_Replace );
1493     switch( onError ){
1494       case OE_Rollback:
1495       case OE_Abort:
1496       case OE_Fail: {
1497         sqlite3UniqueConstraint(pParse, onError, pIdx);
1498         break;
1499       }
1500       case OE_Ignore: {
1501         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1502         break;
1503       }
1504       default: {
1505         Trigger *pTrigger = 0;
1506         assert( onError==OE_Replace );
1507         sqlite3MultiWrite(pParse);
1508         if( db->flags&SQLITE_RecTriggers ){
1509           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1510         }
1511         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1512                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
1513         seenReplace = 1;
1514         break;
1515       }
1516     }
1517     sqlite3VdbeResolveLabel(v, addrUniqueOk);
1518     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1519     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1520   }
1521   if( ipkTop ){
1522     sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1523     sqlite3VdbeJumpHere(v, ipkBottom);
1524   }
1525 
1526   *pbMayReplace = seenReplace;
1527   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1528 }
1529 
1530 /*
1531 ** This routine generates code to finish the INSERT or UPDATE operation
1532 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1533 ** A consecutive range of registers starting at regNewData contains the
1534 ** rowid and the content to be inserted.
1535 **
1536 ** The arguments to this routine should be the same as the first six
1537 ** arguments to sqlite3GenerateConstraintChecks.
1538 */
1539 void sqlite3CompleteInsertion(
1540   Parse *pParse,      /* The parser context */
1541   Table *pTab,        /* the table into which we are inserting */
1542   int iDataCur,       /* Cursor of the canonical data source */
1543   int iIdxCur,        /* First index cursor */
1544   int regNewData,     /* Range of content */
1545   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1546   int isUpdate,       /* True for UPDATE, False for INSERT */
1547   int appendBias,     /* True if this is likely to be an append */
1548   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1549 ){
1550   Vdbe *v;            /* Prepared statements under construction */
1551   Index *pIdx;        /* An index being inserted or updated */
1552   u8 pik_flags;       /* flag values passed to the btree insert */
1553   int regData;        /* Content registers (after the rowid) */
1554   int regRec;         /* Register holding assembled record for the table */
1555   int i;              /* Loop counter */
1556   u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1557 
1558   v = sqlite3GetVdbe(pParse);
1559   assert( v!=0 );
1560   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1561   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1562     if( aRegIdx[i]==0 ) continue;
1563     bAffinityDone = 1;
1564     if( pIdx->pPartIdxWhere ){
1565       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1566       VdbeCoverage(v);
1567     }
1568     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1569     pik_flags = 0;
1570     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1571     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1572       assert( pParse->nested==0 );
1573       pik_flags |= OPFLAG_NCHANGE;
1574     }
1575     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
1576   }
1577   if( !HasRowid(pTab) ) return;
1578   regData = regNewData + 1;
1579   regRec = sqlite3GetTempReg(pParse);
1580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1581   if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1582   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1583   if( pParse->nested ){
1584     pik_flags = 0;
1585   }else{
1586     pik_flags = OPFLAG_NCHANGE;
1587     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1588   }
1589   if( appendBias ){
1590     pik_flags |= OPFLAG_APPEND;
1591   }
1592   if( useSeekResult ){
1593     pik_flags |= OPFLAG_USESEEKRESULT;
1594   }
1595   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1596   if( !pParse->nested ){
1597     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1598   }
1599   sqlite3VdbeChangeP5(v, pik_flags);
1600 }
1601 
1602 /*
1603 ** Allocate cursors for the pTab table and all its indices and generate
1604 ** code to open and initialized those cursors.
1605 **
1606 ** The cursor for the object that contains the complete data (normally
1607 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1608 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1609 ** returned in *piIdxCur.  The number of indices is returned.
1610 **
1611 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1612 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1613 ** If iBase is negative, then allocate the next available cursor.
1614 **
1615 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1616 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1617 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1618 ** pTab->pIndex list.
1619 **
1620 ** If pTab is a virtual table, then this routine is a no-op and the
1621 ** *piDataCur and *piIdxCur values are left uninitialized.
1622 */
1623 int sqlite3OpenTableAndIndices(
1624   Parse *pParse,   /* Parsing context */
1625   Table *pTab,     /* Table to be opened */
1626   int op,          /* OP_OpenRead or OP_OpenWrite */
1627   int iBase,       /* Use this for the table cursor, if there is one */
1628   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1629   int *piDataCur,  /* Write the database source cursor number here */
1630   int *piIdxCur    /* Write the first index cursor number here */
1631 ){
1632   int i;
1633   int iDb;
1634   int iDataCur;
1635   Index *pIdx;
1636   Vdbe *v;
1637 
1638   assert( op==OP_OpenRead || op==OP_OpenWrite );
1639   if( IsVirtual(pTab) ){
1640     /* This routine is a no-op for virtual tables. Leave the output
1641     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1642     ** can detect if they are used by mistake in the caller. */
1643     return 0;
1644   }
1645   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1646   v = sqlite3GetVdbe(pParse);
1647   assert( v!=0 );
1648   if( iBase<0 ) iBase = pParse->nTab;
1649   iDataCur = iBase++;
1650   if( piDataCur ) *piDataCur = iDataCur;
1651   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1652     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1653   }else{
1654     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1655   }
1656   if( piIdxCur ) *piIdxCur = iBase;
1657   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1658     int iIdxCur = iBase++;
1659     assert( pIdx->pSchema==pTab->pSchema );
1660     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
1661       *piDataCur = iIdxCur;
1662     }
1663     if( aToOpen==0 || aToOpen[i+1] ){
1664       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1665       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1666       VdbeComment((v, "%s", pIdx->zName));
1667     }
1668   }
1669   if( iBase>pParse->nTab ) pParse->nTab = iBase;
1670   return i;
1671 }
1672 
1673 
1674 #ifdef SQLITE_TEST
1675 /*
1676 ** The following global variable is incremented whenever the
1677 ** transfer optimization is used.  This is used for testing
1678 ** purposes only - to make sure the transfer optimization really
1679 ** is happening when it is supposed to.
1680 */
1681 int sqlite3_xferopt_count;
1682 #endif /* SQLITE_TEST */
1683 
1684 
1685 #ifndef SQLITE_OMIT_XFER_OPT
1686 /*
1687 ** Check to collation names to see if they are compatible.
1688 */
1689 static int xferCompatibleCollation(const char *z1, const char *z2){
1690   if( z1==0 ){
1691     return z2==0;
1692   }
1693   if( z2==0 ){
1694     return 0;
1695   }
1696   return sqlite3StrICmp(z1, z2)==0;
1697 }
1698 
1699 
1700 /*
1701 ** Check to see if index pSrc is compatible as a source of data
1702 ** for index pDest in an insert transfer optimization.  The rules
1703 ** for a compatible index:
1704 **
1705 **    *   The index is over the same set of columns
1706 **    *   The same DESC and ASC markings occurs on all columns
1707 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1708 **    *   The same collating sequence on each column
1709 **    *   The index has the exact same WHERE clause
1710 */
1711 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1712   int i;
1713   assert( pDest && pSrc );
1714   assert( pDest->pTable!=pSrc->pTable );
1715   if( pDest->nKeyCol!=pSrc->nKeyCol ){
1716     return 0;   /* Different number of columns */
1717   }
1718   if( pDest->onError!=pSrc->onError ){
1719     return 0;   /* Different conflict resolution strategies */
1720   }
1721   for(i=0; i<pSrc->nKeyCol; i++){
1722     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1723       return 0;   /* Different columns indexed */
1724     }
1725     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1726       return 0;   /* Different sort orders */
1727     }
1728     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1729       return 0;   /* Different collating sequences */
1730     }
1731   }
1732   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1733     return 0;     /* Different WHERE clauses */
1734   }
1735 
1736   /* If no test above fails then the indices must be compatible */
1737   return 1;
1738 }
1739 
1740 /*
1741 ** Attempt the transfer optimization on INSERTs of the form
1742 **
1743 **     INSERT INTO tab1 SELECT * FROM tab2;
1744 **
1745 ** The xfer optimization transfers raw records from tab2 over to tab1.
1746 ** Columns are not decoded and reassembled, which greatly improves
1747 ** performance.  Raw index records are transferred in the same way.
1748 **
1749 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1750 ** There are lots of rules for determining compatibility - see comments
1751 ** embedded in the code for details.
1752 **
1753 ** This routine returns TRUE if the optimization is guaranteed to be used.
1754 ** Sometimes the xfer optimization will only work if the destination table
1755 ** is empty - a factor that can only be determined at run-time.  In that
1756 ** case, this routine generates code for the xfer optimization but also
1757 ** does a test to see if the destination table is empty and jumps over the
1758 ** xfer optimization code if the test fails.  In that case, this routine
1759 ** returns FALSE so that the caller will know to go ahead and generate
1760 ** an unoptimized transfer.  This routine also returns FALSE if there
1761 ** is no chance that the xfer optimization can be applied.
1762 **
1763 ** This optimization is particularly useful at making VACUUM run faster.
1764 */
1765 static int xferOptimization(
1766   Parse *pParse,        /* Parser context */
1767   Table *pDest,         /* The table we are inserting into */
1768   Select *pSelect,      /* A SELECT statement to use as the data source */
1769   int onError,          /* How to handle constraint errors */
1770   int iDbDest           /* The database of pDest */
1771 ){
1772   sqlite3 *db = pParse->db;
1773   ExprList *pEList;                /* The result set of the SELECT */
1774   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1775   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1776   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1777   int i;                           /* Loop counter */
1778   int iDbSrc;                      /* The database of pSrc */
1779   int iSrc, iDest;                 /* Cursors from source and destination */
1780   int addr1, addr2;                /* Loop addresses */
1781   int emptyDestTest = 0;           /* Address of test for empty pDest */
1782   int emptySrcTest = 0;            /* Address of test for empty pSrc */
1783   Vdbe *v;                         /* The VDBE we are building */
1784   int regAutoinc;                  /* Memory register used by AUTOINC */
1785   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1786   int regData, regRowid;           /* Registers holding data and rowid */
1787 
1788   if( pSelect==0 ){
1789     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1790   }
1791   if( pParse->pWith || pSelect->pWith ){
1792     /* Do not attempt to process this query if there are an WITH clauses
1793     ** attached to it. Proceeding may generate a false "no such table: xxx"
1794     ** error if pSelect reads from a CTE named "xxx".  */
1795     return 0;
1796   }
1797   if( sqlite3TriggerList(pParse, pDest) ){
1798     return 0;   /* tab1 must not have triggers */
1799   }
1800 #ifndef SQLITE_OMIT_VIRTUALTABLE
1801   if( pDest->tabFlags & TF_Virtual ){
1802     return 0;   /* tab1 must not be a virtual table */
1803   }
1804 #endif
1805   if( onError==OE_Default ){
1806     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1807     if( onError==OE_Default ) onError = OE_Abort;
1808   }
1809   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1810   if( pSelect->pSrc->nSrc!=1 ){
1811     return 0;   /* FROM clause must have exactly one term */
1812   }
1813   if( pSelect->pSrc->a[0].pSelect ){
1814     return 0;   /* FROM clause cannot contain a subquery */
1815   }
1816   if( pSelect->pWhere ){
1817     return 0;   /* SELECT may not have a WHERE clause */
1818   }
1819   if( pSelect->pOrderBy ){
1820     return 0;   /* SELECT may not have an ORDER BY clause */
1821   }
1822   /* Do not need to test for a HAVING clause.  If HAVING is present but
1823   ** there is no ORDER BY, we will get an error. */
1824   if( pSelect->pGroupBy ){
1825     return 0;   /* SELECT may not have a GROUP BY clause */
1826   }
1827   if( pSelect->pLimit ){
1828     return 0;   /* SELECT may not have a LIMIT clause */
1829   }
1830   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1831   if( pSelect->pPrior ){
1832     return 0;   /* SELECT may not be a compound query */
1833   }
1834   if( pSelect->selFlags & SF_Distinct ){
1835     return 0;   /* SELECT may not be DISTINCT */
1836   }
1837   pEList = pSelect->pEList;
1838   assert( pEList!=0 );
1839   if( pEList->nExpr!=1 ){
1840     return 0;   /* The result set must have exactly one column */
1841   }
1842   assert( pEList->a[0].pExpr );
1843   if( pEList->a[0].pExpr->op!=TK_ALL ){
1844     return 0;   /* The result set must be the special operator "*" */
1845   }
1846 
1847   /* At this point we have established that the statement is of the
1848   ** correct syntactic form to participate in this optimization.  Now
1849   ** we have to check the semantics.
1850   */
1851   pItem = pSelect->pSrc->a;
1852   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1853   if( pSrc==0 ){
1854     return 0;   /* FROM clause does not contain a real table */
1855   }
1856   if( pSrc==pDest ){
1857     return 0;   /* tab1 and tab2 may not be the same table */
1858   }
1859   if( HasRowid(pDest)!=HasRowid(pSrc) ){
1860     return 0;   /* source and destination must both be WITHOUT ROWID or not */
1861   }
1862 #ifndef SQLITE_OMIT_VIRTUALTABLE
1863   if( pSrc->tabFlags & TF_Virtual ){
1864     return 0;   /* tab2 must not be a virtual table */
1865   }
1866 #endif
1867   if( pSrc->pSelect ){
1868     return 0;   /* tab2 may not be a view */
1869   }
1870   if( pDest->nCol!=pSrc->nCol ){
1871     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1872   }
1873   if( pDest->iPKey!=pSrc->iPKey ){
1874     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1875   }
1876   for(i=0; i<pDest->nCol; i++){
1877     Column *pDestCol = &pDest->aCol[i];
1878     Column *pSrcCol = &pSrc->aCol[i];
1879     if( pDestCol->affinity!=pSrcCol->affinity ){
1880       return 0;    /* Affinity must be the same on all columns */
1881     }
1882     if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
1883       return 0;    /* Collating sequence must be the same on all columns */
1884     }
1885     if( pDestCol->notNull && !pSrcCol->notNull ){
1886       return 0;    /* tab2 must be NOT NULL if tab1 is */
1887     }
1888     /* Default values for second and subsequent columns need to match. */
1889     if( i>0
1890      && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
1891          || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
1892     ){
1893       return 0;    /* Default values must be the same for all columns */
1894     }
1895   }
1896   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1897     if( IsUniqueIndex(pDestIdx) ){
1898       destHasUniqueIdx = 1;
1899     }
1900     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1901       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1902     }
1903     if( pSrcIdx==0 ){
1904       return 0;    /* pDestIdx has no corresponding index in pSrc */
1905     }
1906   }
1907 #ifndef SQLITE_OMIT_CHECK
1908   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1909     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1910   }
1911 #endif
1912 #ifndef SQLITE_OMIT_FOREIGN_KEY
1913   /* Disallow the transfer optimization if the destination table constains
1914   ** any foreign key constraints.  This is more restrictive than necessary.
1915   ** But the main beneficiary of the transfer optimization is the VACUUM
1916   ** command, and the VACUUM command disables foreign key constraints.  So
1917   ** the extra complication to make this rule less restrictive is probably
1918   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1919   */
1920   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1921     return 0;
1922   }
1923 #endif
1924   if( (db->flags & SQLITE_CountRows)!=0 ){
1925     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
1926   }
1927 
1928   /* If we get this far, it means that the xfer optimization is at
1929   ** least a possibility, though it might only work if the destination
1930   ** table (tab1) is initially empty.
1931   */
1932 #ifdef SQLITE_TEST
1933   sqlite3_xferopt_count++;
1934 #endif
1935   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
1936   v = sqlite3GetVdbe(pParse);
1937   sqlite3CodeVerifySchema(pParse, iDbSrc);
1938   iSrc = pParse->nTab++;
1939   iDest = pParse->nTab++;
1940   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1941   regData = sqlite3GetTempReg(pParse);
1942   regRowid = sqlite3GetTempReg(pParse);
1943   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1944   assert( HasRowid(pDest) || destHasUniqueIdx );
1945   if( (db->flags & SQLITE_Vacuum)==0 && (
1946       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
1947    || destHasUniqueIdx                              /* (2) */
1948    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
1949   )){
1950     /* In some circumstances, we are able to run the xfer optimization
1951     ** only if the destination table is initially empty. Unless the
1952     ** SQLITE_Vacuum flag is set, this block generates code to make
1953     ** that determination. If SQLITE_Vacuum is set, then the destination
1954     ** table is always empty.
1955     **
1956     ** Conditions under which the destination must be empty:
1957     **
1958     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1959     **     (If the destination is not initially empty, the rowid fields
1960     **     of index entries might need to change.)
1961     **
1962     ** (2) The destination has a unique index.  (The xfer optimization
1963     **     is unable to test uniqueness.)
1964     **
1965     ** (3) onError is something other than OE_Abort and OE_Rollback.
1966     */
1967     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
1968     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1969     sqlite3VdbeJumpHere(v, addr1);
1970   }
1971   if( HasRowid(pSrc) ){
1972     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1973     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
1974     if( pDest->iPKey>=0 ){
1975       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1976       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1977       VdbeCoverage(v);
1978       sqlite3RowidConstraint(pParse, onError, pDest);
1979       sqlite3VdbeJumpHere(v, addr2);
1980       autoIncStep(pParse, regAutoinc, regRowid);
1981     }else if( pDest->pIndex==0 ){
1982       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1983     }else{
1984       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1985       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1986     }
1987     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1988     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1989     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1990     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1991     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
1992     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1993     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1994   }else{
1995     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
1996     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
1997   }
1998   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1999     u8 useSeekResult = 0;
2000     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2001       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2002     }
2003     assert( pSrcIdx );
2004     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2005     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2006     VdbeComment((v, "%s", pSrcIdx->zName));
2007     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2008     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2009     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2010     VdbeComment((v, "%s", pDestIdx->zName));
2011     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2012     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2013     if( db->flags & SQLITE_Vacuum ){
2014       /* This INSERT command is part of a VACUUM operation, which guarantees
2015       ** that the destination table is empty. If all indexed columns use
2016       ** collation sequence BINARY, then it can also be assumed that the
2017       ** index will be populated by inserting keys in strictly sorted
2018       ** order. In this case, instead of seeking within the b-tree as part
2019       ** of every OP_IdxInsert opcode, an OP_Last is added before the
2020       ** OP_IdxInsert to seek to the point within the b-tree where each key
2021       ** should be inserted. This is faster.
2022       **
2023       ** If any of the indexed columns use a collation sequence other than
2024       ** BINARY, this optimization is disabled. This is because the user
2025       ** might change the definition of a collation sequence and then run
2026       ** a VACUUM command. In that case keys may not be written in strictly
2027       ** sorted order.  */
2028       for(i=0; i<pSrcIdx->nColumn; i++){
2029         char *zColl = pSrcIdx->azColl[i];
2030         assert( zColl!=0 );
2031         if( sqlite3_stricmp("BINARY", zColl) ) break;
2032       }
2033       if( i==pSrcIdx->nColumn ){
2034         useSeekResult = OPFLAG_USESEEKRESULT;
2035         sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
2036       }
2037     }
2038     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2039     sqlite3VdbeChangeP5(v, useSeekResult);
2040     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2041     sqlite3VdbeJumpHere(v, addr1);
2042     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2043     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2044   }
2045   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2046   sqlite3ReleaseTempReg(pParse, regRowid);
2047   sqlite3ReleaseTempReg(pParse, regData);
2048   if( emptyDestTest ){
2049     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2050     sqlite3VdbeJumpHere(v, emptyDestTest);
2051     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2052     return 0;
2053   }else{
2054     return 1;
2055   }
2056 }
2057 #endif /* SQLITE_OMIT_XFER_OPT */
2058