1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.191 2007/08/29 13:45:59 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Set P3 of the most recently inserted opcode to a column affinity 21 ** string for index pIdx. A column affinity string has one character 22 ** for each column in the table, according to the affinity of the column: 23 ** 24 ** Character Column affinity 25 ** ------------------------------ 26 ** 'a' TEXT 27 ** 'b' NONE 28 ** 'c' NUMERIC 29 ** 'd' INTEGER 30 ** 'e' REAL 31 */ 32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 33 if( !pIdx->zColAff ){ 34 /* The first time a column affinity string for a particular index is 35 ** required, it is allocated and populated here. It is then stored as 36 ** a member of the Index structure for subsequent use. 37 ** 38 ** The column affinity string will eventually be deleted by 39 ** sqliteDeleteIndex() when the Index structure itself is cleaned 40 ** up. 41 */ 42 int n; 43 Table *pTab = pIdx->pTable; 44 sqlite3 *db = sqlite3VdbeDb(v); 45 pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1); 46 if( !pIdx->zColAff ){ 47 return; 48 } 49 for(n=0; n<pIdx->nColumn; n++){ 50 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 51 } 52 pIdx->zColAff[pIdx->nColumn] = '\0'; 53 } 54 55 sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); 56 } 57 58 /* 59 ** Set P3 of the most recently inserted opcode to a column affinity 60 ** string for table pTab. A column affinity string has one character 61 ** for each column indexed by the index, according to the affinity of the 62 ** column: 63 ** 64 ** Character Column affinity 65 ** ------------------------------ 66 ** 'a' TEXT 67 ** 'b' NONE 68 ** 'c' NUMERIC 69 ** 'd' INTEGER 70 ** 'e' REAL 71 */ 72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 73 /* The first time a column affinity string for a particular table 74 ** is required, it is allocated and populated here. It is then 75 ** stored as a member of the Table structure for subsequent use. 76 ** 77 ** The column affinity string will eventually be deleted by 78 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 79 */ 80 if( !pTab->zColAff ){ 81 char *zColAff; 82 int i; 83 sqlite3 *db = sqlite3VdbeDb(v); 84 85 zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1); 86 if( !zColAff ){ 87 return; 88 } 89 90 for(i=0; i<pTab->nCol; i++){ 91 zColAff[i] = pTab->aCol[i].affinity; 92 } 93 zColAff[pTab->nCol] = '\0'; 94 95 pTab->zColAff = zColAff; 96 } 97 98 sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); 99 } 100 101 /* 102 ** Return non-zero if SELECT statement p opens the table with rootpage 103 ** iTab in database iDb. This is used to see if a statement of the form 104 ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary 105 ** table for the results of the SELECT. 106 ** 107 ** No checking is done for sub-selects that are part of expressions. 108 */ 109 static int selectReadsTable(Select *p, Schema *pSchema, int iTab){ 110 int i; 111 struct SrcList_item *pItem; 112 if( p->pSrc==0 ) return 0; 113 for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){ 114 if( pItem->pSelect ){ 115 if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1; 116 }else{ 117 if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1; 118 } 119 } 120 return 0; 121 } 122 123 #ifndef SQLITE_OMIT_AUTOINCREMENT 124 /* 125 ** Write out code to initialize the autoincrement logic. This code 126 ** looks up the current autoincrement value in the sqlite_sequence 127 ** table and stores that value in a memory cell. Code generated by 128 ** autoIncStep() will keep that memory cell holding the largest 129 ** rowid value. Code generated by autoIncEnd() will write the new 130 ** largest value of the counter back into the sqlite_sequence table. 131 ** 132 ** This routine returns the index of the mem[] cell that contains 133 ** the maximum rowid counter. 134 ** 135 ** Two memory cells are allocated. The next memory cell after the 136 ** one returned holds the rowid in sqlite_sequence where we will 137 ** write back the revised maximum rowid. 138 */ 139 static int autoIncBegin( 140 Parse *pParse, /* Parsing context */ 141 int iDb, /* Index of the database holding pTab */ 142 Table *pTab /* The table we are writing to */ 143 ){ 144 int memId = 0; 145 if( pTab->autoInc ){ 146 Vdbe *v = pParse->pVdbe; 147 Db *pDb = &pParse->db->aDb[iDb]; 148 int iCur = pParse->nTab; 149 int addr; 150 assert( v ); 151 addr = sqlite3VdbeCurrentAddr(v); 152 memId = pParse->nMem+1; 153 pParse->nMem += 2; 154 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 155 sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13); 156 sqlite3VdbeAddOp(v, OP_Column, iCur, 0); 157 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 158 sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12); 159 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 160 sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1); 161 sqlite3VdbeAddOp(v, OP_Column, iCur, 1); 162 sqlite3VdbeAddOp(v, OP_MemStore, memId, 1); 163 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13); 164 sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4); 165 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 166 } 167 return memId; 168 } 169 170 /* 171 ** Update the maximum rowid for an autoincrement calculation. 172 ** 173 ** This routine should be called when the top of the stack holds a 174 ** new rowid that is about to be inserted. If that new rowid is 175 ** larger than the maximum rowid in the memId memory cell, then the 176 ** memory cell is updated. The stack is unchanged. 177 */ 178 static void autoIncStep(Parse *pParse, int memId){ 179 if( memId>0 ){ 180 sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0); 181 } 182 } 183 184 /* 185 ** After doing one or more inserts, the maximum rowid is stored 186 ** in mem[memId]. Generate code to write this value back into the 187 ** the sqlite_sequence table. 188 */ 189 static void autoIncEnd( 190 Parse *pParse, /* The parsing context */ 191 int iDb, /* Index of the database holding pTab */ 192 Table *pTab, /* Table we are inserting into */ 193 int memId /* Memory cell holding the maximum rowid */ 194 ){ 195 if( pTab->autoInc ){ 196 int iCur = pParse->nTab; 197 Vdbe *v = pParse->pVdbe; 198 Db *pDb = &pParse->db->aDb[iDb]; 199 int addr; 200 assert( v ); 201 addr = sqlite3VdbeCurrentAddr(v); 202 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 203 sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0); 204 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7); 205 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 206 sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); 207 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 208 sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0); 209 sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); 210 sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND); 211 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 212 } 213 } 214 #else 215 /* 216 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 217 ** above are all no-ops 218 */ 219 # define autoIncBegin(A,B,C) (0) 220 # define autoIncStep(A,B) 221 # define autoIncEnd(A,B,C,D) 222 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 223 224 225 /* Forward declaration */ 226 static int xferOptimization( 227 Parse *pParse, /* Parser context */ 228 Table *pDest, /* The table we are inserting into */ 229 Select *pSelect, /* A SELECT statement to use as the data source */ 230 int onError, /* How to handle constraint errors */ 231 int iDbDest /* The database of pDest */ 232 ); 233 234 /* 235 ** This routine is call to handle SQL of the following forms: 236 ** 237 ** insert into TABLE (IDLIST) values(EXPRLIST) 238 ** insert into TABLE (IDLIST) select 239 ** 240 ** The IDLIST following the table name is always optional. If omitted, 241 ** then a list of all columns for the table is substituted. The IDLIST 242 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 243 ** 244 ** The pList parameter holds EXPRLIST in the first form of the INSERT 245 ** statement above, and pSelect is NULL. For the second form, pList is 246 ** NULL and pSelect is a pointer to the select statement used to generate 247 ** data for the insert. 248 ** 249 ** The code generated follows one of four templates. For a simple 250 ** select with data coming from a VALUES clause, the code executes 251 ** once straight down through. The template looks like this: 252 ** 253 ** open write cursor to <table> and its indices 254 ** puts VALUES clause expressions onto the stack 255 ** write the resulting record into <table> 256 ** cleanup 257 ** 258 ** The three remaining templates assume the statement is of the form 259 ** 260 ** INSERT INTO <table> SELECT ... 261 ** 262 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 263 ** in other words if the SELECT pulls all columns from a single table 264 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 265 ** if <table2> and <table1> are distinct tables but have identical 266 ** schemas, including all the same indices, then a special optimization 267 ** is invoked that copies raw records from <table2> over to <table1>. 268 ** See the xferOptimization() function for the implementation of this 269 ** template. This is the second template. 270 ** 271 ** open a write cursor to <table> 272 ** open read cursor on <table2> 273 ** transfer all records in <table2> over to <table> 274 ** close cursors 275 ** foreach index on <table> 276 ** open a write cursor on the <table> index 277 ** open a read cursor on the corresponding <table2> index 278 ** transfer all records from the read to the write cursors 279 ** close cursors 280 ** end foreach 281 ** 282 ** The third template is for when the second template does not apply 283 ** and the SELECT clause does not read from <table> at any time. 284 ** The generated code follows this template: 285 ** 286 ** goto B 287 ** A: setup for the SELECT 288 ** loop over the rows in the SELECT 289 ** gosub C 290 ** end loop 291 ** cleanup after the SELECT 292 ** goto D 293 ** B: open write cursor to <table> and its indices 294 ** goto A 295 ** C: insert the select result into <table> 296 ** return 297 ** D: cleanup 298 ** 299 ** The fourth template is used if the insert statement takes its 300 ** values from a SELECT but the data is being inserted into a table 301 ** that is also read as part of the SELECT. In the third form, 302 ** we have to use a intermediate table to store the results of 303 ** the select. The template is like this: 304 ** 305 ** goto B 306 ** A: setup for the SELECT 307 ** loop over the tables in the SELECT 308 ** gosub C 309 ** end loop 310 ** cleanup after the SELECT 311 ** goto D 312 ** C: insert the select result into the intermediate table 313 ** return 314 ** B: open a cursor to an intermediate table 315 ** goto A 316 ** D: open write cursor to <table> and its indices 317 ** loop over the intermediate table 318 ** transfer values form intermediate table into <table> 319 ** end the loop 320 ** cleanup 321 */ 322 void sqlite3Insert( 323 Parse *pParse, /* Parser context */ 324 SrcList *pTabList, /* Name of table into which we are inserting */ 325 ExprList *pList, /* List of values to be inserted */ 326 Select *pSelect, /* A SELECT statement to use as the data source */ 327 IdList *pColumn, /* Column names corresponding to IDLIST. */ 328 int onError /* How to handle constraint errors */ 329 ){ 330 Table *pTab; /* The table to insert into */ 331 char *zTab; /* Name of the table into which we are inserting */ 332 const char *zDb; /* Name of the database holding this table */ 333 int i, j, idx; /* Loop counters */ 334 Vdbe *v; /* Generate code into this virtual machine */ 335 Index *pIdx; /* For looping over indices of the table */ 336 int nColumn; /* Number of columns in the data */ 337 int base = 0; /* VDBE Cursor number for pTab */ 338 int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ 339 sqlite3 *db; /* The main database structure */ 340 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 341 int endOfLoop; /* Label for the end of the insertion loop */ 342 int useTempTable = 0; /* Store SELECT results in intermediate table */ 343 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 344 int iSelectLoop = 0; /* Address of code that implements the SELECT */ 345 int iCleanup = 0; /* Address of the cleanup code */ 346 int iInsertBlock = 0; /* Address of the subroutine used to insert data */ 347 int iCntMem = 0; /* Memory cell used for the row counter */ 348 int newIdx = -1; /* Cursor for the NEW table */ 349 Db *pDb; /* The database containing table being inserted into */ 350 int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ 351 int appendFlag = 0; /* True if the insert is likely to be an append */ 352 int iDb; 353 354 int nHidden = 0; 355 356 #ifndef SQLITE_OMIT_TRIGGER 357 int isView; /* True if attempting to insert into a view */ 358 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ 359 #endif 360 361 db = pParse->db; 362 if( pParse->nErr || db->mallocFailed ){ 363 goto insert_cleanup; 364 } 365 366 /* Locate the table into which we will be inserting new information. 367 */ 368 assert( pTabList->nSrc==1 ); 369 zTab = pTabList->a[0].zName; 370 if( zTab==0 ) goto insert_cleanup; 371 pTab = sqlite3SrcListLookup(pParse, pTabList); 372 if( pTab==0 ){ 373 goto insert_cleanup; 374 } 375 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 376 assert( iDb<db->nDb ); 377 pDb = &db->aDb[iDb]; 378 zDb = pDb->zName; 379 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 380 goto insert_cleanup; 381 } 382 383 /* Figure out if we have any triggers and if the table being 384 ** inserted into is a view 385 */ 386 #ifndef SQLITE_OMIT_TRIGGER 387 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); 388 isView = pTab->pSelect!=0; 389 #else 390 # define triggers_exist 0 391 # define isView 0 392 #endif 393 #ifdef SQLITE_OMIT_VIEW 394 # undef isView 395 # define isView 0 396 #endif 397 398 /* Ensure that: 399 * (a) the table is not read-only, 400 * (b) that if it is a view then ON INSERT triggers exist 401 */ 402 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ 403 goto insert_cleanup; 404 } 405 assert( pTab!=0 ); 406 407 /* If pTab is really a view, make sure it has been initialized. 408 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 409 ** module table). 410 */ 411 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 412 goto insert_cleanup; 413 } 414 415 /* Allocate a VDBE 416 */ 417 v = sqlite3GetVdbe(pParse); 418 if( v==0 ) goto insert_cleanup; 419 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 420 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); 421 422 /* if there are row triggers, allocate a temp table for new.* references. */ 423 if( triggers_exist ){ 424 newIdx = pParse->nTab++; 425 } 426 427 #ifndef SQLITE_OMIT_XFER_OPT 428 /* If the statement is of the form 429 ** 430 ** INSERT INTO <table1> SELECT * FROM <table2>; 431 ** 432 ** Then special optimizations can be applied that make the transfer 433 ** very fast and which reduce fragmentation of indices. 434 */ 435 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 436 assert( !triggers_exist ); 437 assert( pList==0 ); 438 goto insert_cleanup; 439 } 440 #endif /* SQLITE_OMIT_XFER_OPT */ 441 442 /* If this is an AUTOINCREMENT table, look up the sequence number in the 443 ** sqlite_sequence table and store it in memory cell counterMem. Also 444 ** remember the rowid of the sqlite_sequence table entry in memory cell 445 ** counterRowid. 446 */ 447 counterMem = autoIncBegin(pParse, iDb, pTab); 448 449 /* Figure out how many columns of data are supplied. If the data 450 ** is coming from a SELECT statement, then this step also generates 451 ** all the code to implement the SELECT statement and invoke a subroutine 452 ** to process each row of the result. (Template 2.) If the SELECT 453 ** statement uses the the table that is being inserted into, then the 454 ** subroutine is also coded here. That subroutine stores the SELECT 455 ** results in a temporary table. (Template 3.) 456 */ 457 if( pSelect ){ 458 /* Data is coming from a SELECT. Generate code to implement that SELECT 459 */ 460 int rc, iInitCode; 461 iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 462 iSelectLoop = sqlite3VdbeCurrentAddr(v); 463 iInsertBlock = sqlite3VdbeMakeLabel(v); 464 465 /* Resolve the expressions in the SELECT statement and execute it. */ 466 rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); 467 if( rc || pParse->nErr || db->mallocFailed ){ 468 goto insert_cleanup; 469 } 470 471 iCleanup = sqlite3VdbeMakeLabel(v); 472 sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); 473 assert( pSelect->pEList ); 474 nColumn = pSelect->pEList->nExpr; 475 476 /* Set useTempTable to TRUE if the result of the SELECT statement 477 ** should be written into a temporary table. Set to FALSE if each 478 ** row of the SELECT can be written directly into the result table. 479 ** 480 ** A temp table must be used if the table being updated is also one 481 ** of the tables being read by the SELECT statement. Also use a 482 ** temp table in the case of row triggers. 483 */ 484 if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){ 485 useTempTable = 1; 486 } 487 488 if( useTempTable ){ 489 /* Generate the subroutine that SELECT calls to process each row of 490 ** the result. Store the result in a temporary table 491 */ 492 srcTab = pParse->nTab++; 493 sqlite3VdbeResolveLabel(v, iInsertBlock); 494 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 495 sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); 496 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 497 sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND); 498 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 499 500 /* The following code runs first because the GOTO at the very top 501 ** of the program jumps to it. Create the temporary table, then jump 502 ** back up and execute the SELECT code above. 503 */ 504 sqlite3VdbeJumpHere(v, iInitCode); 505 sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0); 506 sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); 507 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 508 sqlite3VdbeResolveLabel(v, iCleanup); 509 }else{ 510 sqlite3VdbeJumpHere(v, iInitCode); 511 } 512 }else{ 513 /* This is the case if the data for the INSERT is coming from a VALUES 514 ** clause 515 */ 516 NameContext sNC; 517 memset(&sNC, 0, sizeof(sNC)); 518 sNC.pParse = pParse; 519 srcTab = -1; 520 useTempTable = 0; 521 nColumn = pList ? pList->nExpr : 0; 522 for(i=0; i<nColumn; i++){ 523 if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ 524 goto insert_cleanup; 525 } 526 } 527 } 528 529 /* Make sure the number of columns in the source data matches the number 530 ** of columns to be inserted into the table. 531 */ 532 if( IsVirtual(pTab) ){ 533 for(i=0; i<pTab->nCol; i++){ 534 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 535 } 536 } 537 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 538 sqlite3ErrorMsg(pParse, 539 "table %S has %d columns but %d values were supplied", 540 pTabList, 0, pTab->nCol, nColumn); 541 goto insert_cleanup; 542 } 543 if( pColumn!=0 && nColumn!=pColumn->nId ){ 544 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 545 goto insert_cleanup; 546 } 547 548 /* If the INSERT statement included an IDLIST term, then make sure 549 ** all elements of the IDLIST really are columns of the table and 550 ** remember the column indices. 551 ** 552 ** If the table has an INTEGER PRIMARY KEY column and that column 553 ** is named in the IDLIST, then record in the keyColumn variable 554 ** the index into IDLIST of the primary key column. keyColumn is 555 ** the index of the primary key as it appears in IDLIST, not as 556 ** is appears in the original table. (The index of the primary 557 ** key in the original table is pTab->iPKey.) 558 */ 559 if( pColumn ){ 560 for(i=0; i<pColumn->nId; i++){ 561 pColumn->a[i].idx = -1; 562 } 563 for(i=0; i<pColumn->nId; i++){ 564 for(j=0; j<pTab->nCol; j++){ 565 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 566 pColumn->a[i].idx = j; 567 if( j==pTab->iPKey ){ 568 keyColumn = i; 569 } 570 break; 571 } 572 } 573 if( j>=pTab->nCol ){ 574 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 575 keyColumn = i; 576 }else{ 577 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 578 pTabList, 0, pColumn->a[i].zName); 579 pParse->nErr++; 580 goto insert_cleanup; 581 } 582 } 583 } 584 } 585 586 /* If there is no IDLIST term but the table has an integer primary 587 ** key, the set the keyColumn variable to the primary key column index 588 ** in the original table definition. 589 */ 590 if( pColumn==0 && nColumn>0 ){ 591 keyColumn = pTab->iPKey; 592 } 593 594 /* Open the temp table for FOR EACH ROW triggers 595 */ 596 if( triggers_exist ){ 597 sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); 598 sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); 599 } 600 601 /* Initialize the count of rows to be inserted 602 */ 603 if( db->flags & SQLITE_CountRows ){ 604 iCntMem = pParse->nMem++; 605 sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem); 606 } 607 608 /* Open tables and indices if there are no row triggers */ 609 if( !triggers_exist ){ 610 base = pParse->nTab; 611 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 612 } 613 614 /* If the data source is a temporary table, then we have to create 615 ** a loop because there might be multiple rows of data. If the data 616 ** source is a subroutine call from the SELECT statement, then we need 617 ** to launch the SELECT statement processing. 618 */ 619 if( useTempTable ){ 620 iBreak = sqlite3VdbeMakeLabel(v); 621 sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); 622 iCont = sqlite3VdbeCurrentAddr(v); 623 }else if( pSelect ){ 624 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 625 sqlite3VdbeResolveLabel(v, iInsertBlock); 626 } 627 628 /* Run the BEFORE and INSTEAD OF triggers, if there are any 629 */ 630 endOfLoop = sqlite3VdbeMakeLabel(v); 631 if( triggers_exist & TRIGGER_BEFORE ){ 632 633 /* build the NEW.* reference row. Note that if there is an INTEGER 634 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 635 ** translated into a unique ID for the row. But on a BEFORE trigger, 636 ** we do not know what the unique ID will be (because the insert has 637 ** not happened yet) so we substitute a rowid of -1 638 */ 639 if( keyColumn<0 ){ 640 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 641 }else if( useTempTable ){ 642 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 643 }else{ 644 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 645 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 646 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 647 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 648 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 649 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 650 } 651 652 /* Cannot have triggers on a virtual table. If it were possible, 653 ** this block would have to account for hidden column. 654 */ 655 assert(!IsVirtual(pTab)); 656 657 /* Create the new column data 658 */ 659 for(i=0; i<pTab->nCol; i++){ 660 if( pColumn==0 ){ 661 j = i; 662 }else{ 663 for(j=0; j<pColumn->nId; j++){ 664 if( pColumn->a[j].idx==i ) break; 665 } 666 } 667 if( pColumn && j>=pColumn->nId ){ 668 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 669 }else if( useTempTable ){ 670 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 671 }else{ 672 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 673 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); 674 } 675 } 676 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 677 678 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 679 ** do not attempt any conversions before assembling the record. 680 ** If this is a real table, attempt conversions as required by the 681 ** table column affinities. 682 */ 683 if( !isView ){ 684 sqlite3TableAffinityStr(v, pTab); 685 } 686 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 687 688 /* Fire BEFORE or INSTEAD OF triggers */ 689 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 690 newIdx, -1, onError, endOfLoop) ){ 691 goto insert_cleanup; 692 } 693 } 694 695 /* If any triggers exists, the opening of tables and indices is deferred 696 ** until now. 697 */ 698 if( triggers_exist && !isView ){ 699 base = pParse->nTab; 700 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 701 } 702 703 /* Push the record number for the new entry onto the stack. The 704 ** record number is a randomly generate integer created by NewRowid 705 ** except when the table has an INTEGER PRIMARY KEY column, in which 706 ** case the record number is the same as that column. 707 */ 708 if( !isView ){ 709 if( IsVirtual(pTab) ){ 710 /* The row that the VUpdate opcode will delete: none */ 711 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 712 } 713 if( keyColumn>=0 ){ 714 if( useTempTable ){ 715 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 716 }else if( pSelect ){ 717 sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); 718 }else{ 719 VdbeOp *pOp; 720 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 721 pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); 722 if( pOp && pOp->opcode==OP_Null ){ 723 appendFlag = 1; 724 pOp->opcode = OP_NewRowid; 725 pOp->p1 = base; 726 pOp->p2 = counterMem; 727 } 728 } 729 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 730 ** to generate a unique primary key value. 731 */ 732 if( !appendFlag ){ 733 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 734 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 735 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 736 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 737 } 738 }else if( IsVirtual(pTab) ){ 739 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 740 }else{ 741 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 742 appendFlag = 1; 743 } 744 autoIncStep(pParse, counterMem); 745 746 /* Push onto the stack, data for all columns of the new entry, beginning 747 ** with the first column. 748 */ 749 nHidden = 0; 750 for(i=0; i<pTab->nCol; i++){ 751 if( i==pTab->iPKey ){ 752 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 753 ** Whenever this column is read, the record number will be substituted 754 ** in its place. So will fill this column with a NULL to avoid 755 ** taking up data space with information that will never be used. */ 756 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 757 continue; 758 } 759 if( pColumn==0 ){ 760 if( IsHiddenColumn(&pTab->aCol[i]) ){ 761 assert( IsVirtual(pTab) ); 762 j = -1; 763 nHidden++; 764 }else{ 765 j = i - nHidden; 766 } 767 }else{ 768 for(j=0; j<pColumn->nId; j++){ 769 if( pColumn->a[j].idx==i ) break; 770 } 771 } 772 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 773 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 774 }else if( useTempTable ){ 775 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 776 }else if( pSelect ){ 777 sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1); 778 }else{ 779 sqlite3ExprCode(pParse, pList->a[j].pExpr); 780 } 781 } 782 783 /* Generate code to check constraints and generate index keys and 784 ** do the insertion. 785 */ 786 #ifndef SQLITE_OMIT_VIRTUALTABLE 787 if( IsVirtual(pTab) ){ 788 pParse->pVirtualLock = pTab; 789 sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2, 790 (const char*)pTab->pVtab, P3_VTAB); 791 }else 792 #endif 793 { 794 sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 795 0, onError, endOfLoop); 796 sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, 797 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, 798 appendFlag); 799 } 800 } 801 802 /* Update the count of rows that are inserted 803 */ 804 if( (db->flags & SQLITE_CountRows)!=0 ){ 805 sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem); 806 } 807 808 if( triggers_exist ){ 809 /* Close all tables opened */ 810 if( !isView ){ 811 sqlite3VdbeAddOp(v, OP_Close, base, 0); 812 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 813 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 814 } 815 } 816 817 /* Code AFTER triggers */ 818 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, 819 newIdx, -1, onError, endOfLoop) ){ 820 goto insert_cleanup; 821 } 822 } 823 824 /* The bottom of the loop, if the data source is a SELECT statement 825 */ 826 sqlite3VdbeResolveLabel(v, endOfLoop); 827 if( useTempTable ){ 828 sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); 829 sqlite3VdbeResolveLabel(v, iBreak); 830 sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); 831 }else if( pSelect ){ 832 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 833 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 834 sqlite3VdbeResolveLabel(v, iCleanup); 835 } 836 837 if( !triggers_exist && !IsVirtual(pTab) ){ 838 /* Close all tables opened */ 839 sqlite3VdbeAddOp(v, OP_Close, base, 0); 840 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 841 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 842 } 843 } 844 845 /* Update the sqlite_sequence table by storing the content of the 846 ** counter value in memory counterMem back into the sqlite_sequence 847 ** table. 848 */ 849 autoIncEnd(pParse, iDb, pTab, counterMem); 850 851 /* 852 ** Return the number of rows inserted. If this routine is 853 ** generating code because of a call to sqlite3NestedParse(), do not 854 ** invoke the callback function. 855 */ 856 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 857 sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); 858 sqlite3VdbeAddOp(v, OP_Callback, 1, 0); 859 sqlite3VdbeSetNumCols(v, 1); 860 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC); 861 } 862 863 insert_cleanup: 864 sqlite3SrcListDelete(pTabList); 865 sqlite3ExprListDelete(pList); 866 sqlite3SelectDelete(pSelect); 867 sqlite3IdListDelete(pColumn); 868 } 869 870 /* 871 ** Generate code to do a constraint check prior to an INSERT or an UPDATE. 872 ** 873 ** When this routine is called, the stack contains (from bottom to top) 874 ** the following values: 875 ** 876 ** 1. The rowid of the row to be updated before the update. This 877 ** value is omitted unless we are doing an UPDATE that involves a 878 ** change to the record number. 879 ** 880 ** 2. The rowid of the row after the update. 881 ** 882 ** 3. The data in the first column of the entry after the update. 883 ** 884 ** i. Data from middle columns... 885 ** 886 ** N. The data in the last column of the entry after the update. 887 ** 888 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 889 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 890 ** INSERTs and rowidChng is true if the record number is being changed. 891 ** 892 ** The code generated by this routine pushes additional entries onto 893 ** the stack which are the keys for new index entries for the new record. 894 ** The order of index keys is the same as the order of the indices on 895 ** the pTable->pIndex list. A key is only created for index i if 896 ** aIdxUsed!=0 and aIdxUsed[i]!=0. 897 ** 898 ** This routine also generates code to check constraints. NOT NULL, 899 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 900 ** then the appropriate action is performed. There are five possible 901 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 902 ** 903 ** Constraint type Action What Happens 904 ** --------------- ---------- ---------------------------------------- 905 ** any ROLLBACK The current transaction is rolled back and 906 ** sqlite3_exec() returns immediately with a 907 ** return code of SQLITE_CONSTRAINT. 908 ** 909 ** any ABORT Back out changes from the current command 910 ** only (do not do a complete rollback) then 911 ** cause sqlite3_exec() to return immediately 912 ** with SQLITE_CONSTRAINT. 913 ** 914 ** any FAIL Sqlite_exec() returns immediately with a 915 ** return code of SQLITE_CONSTRAINT. The 916 ** transaction is not rolled back and any 917 ** prior changes are retained. 918 ** 919 ** any IGNORE The record number and data is popped from 920 ** the stack and there is an immediate jump 921 ** to label ignoreDest. 922 ** 923 ** NOT NULL REPLACE The NULL value is replace by the default 924 ** value for that column. If the default value 925 ** is NULL, the action is the same as ABORT. 926 ** 927 ** UNIQUE REPLACE The other row that conflicts with the row 928 ** being inserted is removed. 929 ** 930 ** CHECK REPLACE Illegal. The results in an exception. 931 ** 932 ** Which action to take is determined by the overrideError parameter. 933 ** Or if overrideError==OE_Default, then the pParse->onError parameter 934 ** is used. Or if pParse->onError==OE_Default then the onError value 935 ** for the constraint is used. 936 ** 937 ** The calling routine must open a read/write cursor for pTab with 938 ** cursor number "base". All indices of pTab must also have open 939 ** read/write cursors with cursor number base+i for the i-th cursor. 940 ** Except, if there is no possibility of a REPLACE action then 941 ** cursors do not need to be open for indices where aIdxUsed[i]==0. 942 ** 943 ** If the isUpdate flag is true, it means that the "base" cursor is 944 ** initially pointing to an entry that is being updated. The isUpdate 945 ** flag causes extra code to be generated so that the "base" cursor 946 ** is still pointing at the same entry after the routine returns. 947 ** Without the isUpdate flag, the "base" cursor might be moved. 948 */ 949 void sqlite3GenerateConstraintChecks( 950 Parse *pParse, /* The parser context */ 951 Table *pTab, /* the table into which we are inserting */ 952 int base, /* Index of a read/write cursor pointing at pTab */ 953 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 954 int rowidChng, /* True if the record number will change */ 955 int isUpdate, /* True for UPDATE, False for INSERT */ 956 int overrideError, /* Override onError to this if not OE_Default */ 957 int ignoreDest /* Jump to this label on an OE_Ignore resolution */ 958 ){ 959 int i; 960 Vdbe *v; 961 int nCol; 962 int onError; 963 int addr; 964 int extra; 965 int iCur; 966 Index *pIdx; 967 int seenReplace = 0; 968 int jumpInst1=0, jumpInst2; 969 int hasTwoRowids = (isUpdate && rowidChng); 970 971 v = sqlite3GetVdbe(pParse); 972 assert( v!=0 ); 973 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 974 nCol = pTab->nCol; 975 976 /* Test all NOT NULL constraints. 977 */ 978 for(i=0; i<nCol; i++){ 979 if( i==pTab->iPKey ){ 980 continue; 981 } 982 onError = pTab->aCol[i].notNull; 983 if( onError==OE_None ) continue; 984 if( overrideError!=OE_Default ){ 985 onError = overrideError; 986 }else if( onError==OE_Default ){ 987 onError = OE_Abort; 988 } 989 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 990 onError = OE_Abort; 991 } 992 sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); 993 addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); 994 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 995 || onError==OE_Ignore || onError==OE_Replace ); 996 switch( onError ){ 997 case OE_Rollback: 998 case OE_Abort: 999 case OE_Fail: { 1000 char *zMsg = 0; 1001 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1002 sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, 1003 " may not be NULL", (char*)0); 1004 sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); 1005 break; 1006 } 1007 case OE_Ignore: { 1008 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1009 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1010 break; 1011 } 1012 case OE_Replace: { 1013 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 1014 sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); 1015 break; 1016 } 1017 } 1018 sqlite3VdbeJumpHere(v, addr); 1019 } 1020 1021 /* Test all CHECK constraints 1022 */ 1023 #ifndef SQLITE_OMIT_CHECK 1024 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1025 int allOk = sqlite3VdbeMakeLabel(v); 1026 assert( pParse->ckOffset==0 ); 1027 pParse->ckOffset = nCol; 1028 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1); 1029 assert( pParse->ckOffset==nCol ); 1030 pParse->ckOffset = 0; 1031 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1032 if( onError==OE_Ignore ){ 1033 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1034 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1035 }else{ 1036 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1037 } 1038 sqlite3VdbeResolveLabel(v, allOk); 1039 } 1040 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1041 1042 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1043 ** of the new record does not previously exist. Except, if this 1044 ** is an UPDATE and the primary key is not changing, that is OK. 1045 */ 1046 if( rowidChng ){ 1047 onError = pTab->keyConf; 1048 if( overrideError!=OE_Default ){ 1049 onError = overrideError; 1050 }else if( onError==OE_Default ){ 1051 onError = OE_Abort; 1052 } 1053 1054 if( isUpdate ){ 1055 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1056 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1057 jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); 1058 } 1059 sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); 1060 jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); 1061 switch( onError ){ 1062 default: { 1063 onError = OE_Abort; 1064 /* Fall thru into the next case */ 1065 } 1066 case OE_Rollback: 1067 case OE_Abort: 1068 case OE_Fail: { 1069 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1070 "PRIMARY KEY must be unique", P3_STATIC); 1071 break; 1072 } 1073 case OE_Replace: { 1074 sqlite3GenerateRowIndexDelete(v, pTab, base, 0); 1075 if( isUpdate ){ 1076 sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); 1077 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1078 } 1079 seenReplace = 1; 1080 break; 1081 } 1082 case OE_Ignore: { 1083 assert( seenReplace==0 ); 1084 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1085 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1086 break; 1087 } 1088 } 1089 sqlite3VdbeJumpHere(v, jumpInst2); 1090 if( isUpdate ){ 1091 sqlite3VdbeJumpHere(v, jumpInst1); 1092 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1093 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1094 } 1095 } 1096 1097 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1098 ** index and making sure that duplicate entries do not already exist. 1099 ** Add the new records to the indices as we go. 1100 */ 1101 extra = -1; 1102 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1103 if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ 1104 extra++; 1105 1106 /* Create a key for accessing the index entry */ 1107 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); 1108 for(i=0; i<pIdx->nColumn; i++){ 1109 int idx = pIdx->aiColumn[i]; 1110 if( idx==pTab->iPKey ){ 1111 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); 1112 }else{ 1113 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); 1114 } 1115 } 1116 jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); 1117 sqlite3IndexAffinityStr(v, pIdx); 1118 1119 /* Find out what action to take in case there is an indexing conflict */ 1120 onError = pIdx->onError; 1121 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ 1122 if( overrideError!=OE_Default ){ 1123 onError = overrideError; 1124 }else if( onError==OE_Default ){ 1125 onError = OE_Abort; 1126 } 1127 if( seenReplace ){ 1128 if( onError==OE_Ignore ) onError = OE_Replace; 1129 else if( onError==OE_Fail ) onError = OE_Abort; 1130 } 1131 1132 1133 /* Check to see if the new index entry will be unique */ 1134 sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); 1135 jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); 1136 1137 /* Generate code that executes if the new index entry is not unique */ 1138 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1139 || onError==OE_Ignore || onError==OE_Replace ); 1140 switch( onError ){ 1141 case OE_Rollback: 1142 case OE_Abort: 1143 case OE_Fail: { 1144 int j, n1, n2; 1145 char zErrMsg[200]; 1146 sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, 1147 pIdx->nColumn>1 ? "columns " : "column "); 1148 n1 = strlen(zErrMsg); 1149 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ 1150 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1151 n2 = strlen(zCol); 1152 if( j>0 ){ 1153 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); 1154 n1 += 2; 1155 } 1156 if( n1+n2>sizeof(zErrMsg)-30 ){ 1157 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); 1158 n1 += 3; 1159 break; 1160 }else{ 1161 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); 1162 n1 += n2; 1163 } 1164 } 1165 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 1166 pIdx->nColumn>1 ? " are not unique" : " is not unique"); 1167 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); 1168 break; 1169 } 1170 case OE_Ignore: { 1171 assert( seenReplace==0 ); 1172 sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); 1173 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1174 break; 1175 } 1176 case OE_Replace: { 1177 sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); 1178 if( isUpdate ){ 1179 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); 1180 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1181 } 1182 seenReplace = 1; 1183 break; 1184 } 1185 } 1186 #if NULL_DISTINCT_FOR_UNIQUE 1187 sqlite3VdbeJumpHere(v, jumpInst1); 1188 #endif 1189 sqlite3VdbeJumpHere(v, jumpInst2); 1190 } 1191 } 1192 1193 /* 1194 ** This routine generates code to finish the INSERT or UPDATE operation 1195 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1196 ** The stack must contain keys for all active indices followed by data 1197 ** and the rowid for the new entry. This routine creates the new 1198 ** entries in all indices and in the main table. 1199 ** 1200 ** The arguments to this routine should be the same as the first six 1201 ** arguments to sqlite3GenerateConstraintChecks. 1202 */ 1203 void sqlite3CompleteInsertion( 1204 Parse *pParse, /* The parser context */ 1205 Table *pTab, /* the table into which we are inserting */ 1206 int base, /* Index of a read/write cursor pointing at pTab */ 1207 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 1208 int rowidChng, /* True if the record number will change */ 1209 int isUpdate, /* True for UPDATE, False for INSERT */ 1210 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1211 int appendBias /* True if this is likely to be an append */ 1212 ){ 1213 int i; 1214 Vdbe *v; 1215 int nIdx; 1216 Index *pIdx; 1217 int pik_flags; 1218 1219 v = sqlite3GetVdbe(pParse); 1220 assert( v!=0 ); 1221 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1222 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1223 for(i=nIdx-1; i>=0; i--){ 1224 if( aIdxUsed && aIdxUsed[i]==0 ) continue; 1225 sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); 1226 } 1227 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 1228 sqlite3TableAffinityStr(v, pTab); 1229 #ifndef SQLITE_OMIT_TRIGGER 1230 if( newIdx>=0 ){ 1231 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1232 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1233 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 1234 } 1235 #endif 1236 if( pParse->nested ){ 1237 pik_flags = 0; 1238 }else{ 1239 pik_flags = OPFLAG_NCHANGE; 1240 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1241 } 1242 if( appendBias ){ 1243 pik_flags |= OPFLAG_APPEND; 1244 } 1245 sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); 1246 if( !pParse->nested ){ 1247 sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); 1248 } 1249 1250 if( isUpdate && rowidChng ){ 1251 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1252 } 1253 } 1254 1255 /* 1256 ** Generate code that will open cursors for a table and for all 1257 ** indices of that table. The "base" parameter is the cursor number used 1258 ** for the table. Indices are opened on subsequent cursors. 1259 */ 1260 void sqlite3OpenTableAndIndices( 1261 Parse *pParse, /* Parsing context */ 1262 Table *pTab, /* Table to be opened */ 1263 int base, /* Cursor number assigned to the table */ 1264 int op /* OP_OpenRead or OP_OpenWrite */ 1265 ){ 1266 int i; 1267 int iDb; 1268 Index *pIdx; 1269 Vdbe *v; 1270 1271 if( IsVirtual(pTab) ) return; 1272 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1273 v = sqlite3GetVdbe(pParse); 1274 assert( v!=0 ); 1275 sqlite3OpenTable(pParse, base, iDb, pTab, op); 1276 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1277 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1278 assert( pIdx->pSchema==pTab->pSchema ); 1279 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1280 VdbeComment((v, "# %s", pIdx->zName)); 1281 sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF); 1282 } 1283 if( pParse->nTab<=base+i ){ 1284 pParse->nTab = base+i; 1285 } 1286 } 1287 1288 1289 #ifdef SQLITE_TEST 1290 /* 1291 ** The following global variable is incremented whenever the 1292 ** transfer optimization is used. This is used for testing 1293 ** purposes only - to make sure the transfer optimization really 1294 ** is happening when it is suppose to. 1295 */ 1296 int sqlite3_xferopt_count; 1297 #endif /* SQLITE_TEST */ 1298 1299 1300 #ifndef SQLITE_OMIT_XFER_OPT 1301 /* 1302 ** Check to collation names to see if they are compatible. 1303 */ 1304 static int xferCompatibleCollation(const char *z1, const char *z2){ 1305 if( z1==0 ){ 1306 return z2==0; 1307 } 1308 if( z2==0 ){ 1309 return 0; 1310 } 1311 return sqlite3StrICmp(z1, z2)==0; 1312 } 1313 1314 1315 /* 1316 ** Check to see if index pSrc is compatible as a source of data 1317 ** for index pDest in an insert transfer optimization. The rules 1318 ** for a compatible index: 1319 ** 1320 ** * The index is over the same set of columns 1321 ** * The same DESC and ASC markings occurs on all columns 1322 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1323 ** * The same collating sequence on each column 1324 */ 1325 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1326 int i; 1327 assert( pDest && pSrc ); 1328 assert( pDest->pTable!=pSrc->pTable ); 1329 if( pDest->nColumn!=pSrc->nColumn ){ 1330 return 0; /* Different number of columns */ 1331 } 1332 if( pDest->onError!=pSrc->onError ){ 1333 return 0; /* Different conflict resolution strategies */ 1334 } 1335 for(i=0; i<pSrc->nColumn; i++){ 1336 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1337 return 0; /* Different columns indexed */ 1338 } 1339 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1340 return 0; /* Different sort orders */ 1341 } 1342 if( pSrc->azColl[i]!=pDest->azColl[i] ){ 1343 return 0; /* Different sort orders */ 1344 } 1345 } 1346 1347 /* If no test above fails then the indices must be compatible */ 1348 return 1; 1349 } 1350 1351 /* 1352 ** Attempt the transfer optimization on INSERTs of the form 1353 ** 1354 ** INSERT INTO tab1 SELECT * FROM tab2; 1355 ** 1356 ** This optimization is only attempted if 1357 ** 1358 ** (1) tab1 and tab2 have identical schemas including all the 1359 ** same indices and constraints 1360 ** 1361 ** (2) tab1 and tab2 are different tables 1362 ** 1363 ** (3) There must be no triggers on tab1 1364 ** 1365 ** (4) The result set of the SELECT statement is "*" 1366 ** 1367 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1368 ** or LIMIT clause. 1369 ** 1370 ** (6) The SELECT statement is a simple (not a compound) select that 1371 ** contains only tab2 in its FROM clause 1372 ** 1373 ** This method for implementing the INSERT transfers raw records from 1374 ** tab2 over to tab1. The columns are not decoded. Raw records from 1375 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1376 ** the resulting tab1 has much less fragmentation. 1377 ** 1378 ** This routine returns TRUE if the optimization is attempted. If any 1379 ** of the conditions above fail so that the optimization should not 1380 ** be attempted, then this routine returns FALSE. 1381 */ 1382 static int xferOptimization( 1383 Parse *pParse, /* Parser context */ 1384 Table *pDest, /* The table we are inserting into */ 1385 Select *pSelect, /* A SELECT statement to use as the data source */ 1386 int onError, /* How to handle constraint errors */ 1387 int iDbDest /* The database of pDest */ 1388 ){ 1389 ExprList *pEList; /* The result set of the SELECT */ 1390 Table *pSrc; /* The table in the FROM clause of SELECT */ 1391 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1392 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1393 int i; /* Loop counter */ 1394 int iDbSrc; /* The database of pSrc */ 1395 int iSrc, iDest; /* Cursors from source and destination */ 1396 int addr1, addr2; /* Loop addresses */ 1397 int emptyDestTest; /* Address of test for empty pDest */ 1398 int emptySrcTest; /* Address of test for empty pSrc */ 1399 Vdbe *v; /* The VDBE we are building */ 1400 KeyInfo *pKey; /* Key information for an index */ 1401 int counterMem; /* Memory register used by AUTOINC */ 1402 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1403 1404 if( pSelect==0 ){ 1405 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1406 } 1407 if( pDest->pTrigger ){ 1408 return 0; /* tab1 must not have triggers */ 1409 } 1410 #ifndef SQLITE_OMIT_VIRTUALTABLE 1411 if( pDest->isVirtual ){ 1412 return 0; /* tab1 must not be a virtual table */ 1413 } 1414 #endif 1415 if( onError==OE_Default ){ 1416 onError = OE_Abort; 1417 } 1418 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1419 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1420 } 1421 if( pSelect->pSrc==0 ){ 1422 return 0; /* SELECT must have a FROM clause */ 1423 } 1424 if( pSelect->pSrc->nSrc!=1 ){ 1425 return 0; /* FROM clause must have exactly one term */ 1426 } 1427 if( pSelect->pSrc->a[0].pSelect ){ 1428 return 0; /* FROM clause cannot contain a subquery */ 1429 } 1430 if( pSelect->pWhere ){ 1431 return 0; /* SELECT may not have a WHERE clause */ 1432 } 1433 if( pSelect->pOrderBy ){ 1434 return 0; /* SELECT may not have an ORDER BY clause */ 1435 } 1436 /* Do not need to test for a HAVING clause. If HAVING is present but 1437 ** there is no ORDER BY, we will get an error. */ 1438 if( pSelect->pGroupBy ){ 1439 return 0; /* SELECT may not have a GROUP BY clause */ 1440 } 1441 if( pSelect->pLimit ){ 1442 return 0; /* SELECT may not have a LIMIT clause */ 1443 } 1444 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1445 if( pSelect->pPrior ){ 1446 return 0; /* SELECT may not be a compound query */ 1447 } 1448 if( pSelect->isDistinct ){ 1449 return 0; /* SELECT may not be DISTINCT */ 1450 } 1451 pEList = pSelect->pEList; 1452 assert( pEList!=0 ); 1453 if( pEList->nExpr!=1 ){ 1454 return 0; /* The result set must have exactly one column */ 1455 } 1456 assert( pEList->a[0].pExpr ); 1457 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1458 return 0; /* The result set must be the special operator "*" */ 1459 } 1460 1461 /* At this point we have established that the statement is of the 1462 ** correct syntactic form to participate in this optimization. Now 1463 ** we have to check the semantics. 1464 */ 1465 pItem = pSelect->pSrc->a; 1466 pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase); 1467 if( pSrc==0 ){ 1468 return 0; /* FROM clause does not contain a real table */ 1469 } 1470 if( pSrc==pDest ){ 1471 return 0; /* tab1 and tab2 may not be the same table */ 1472 } 1473 #ifndef SQLITE_OMIT_VIRTUALTABLE 1474 if( pSrc->isVirtual ){ 1475 return 0; /* tab2 must not be a virtual table */ 1476 } 1477 #endif 1478 if( pSrc->pSelect ){ 1479 return 0; /* tab2 may not be a view */ 1480 } 1481 if( pDest->nCol!=pSrc->nCol ){ 1482 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1483 } 1484 if( pDest->iPKey!=pSrc->iPKey ){ 1485 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1486 } 1487 for(i=0; i<pDest->nCol; i++){ 1488 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1489 return 0; /* Affinity must be the same on all columns */ 1490 } 1491 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1492 return 0; /* Collating sequence must be the same on all columns */ 1493 } 1494 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1495 return 0; /* tab2 must be NOT NULL if tab1 is */ 1496 } 1497 } 1498 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1499 if( pDestIdx->onError!=OE_None ){ 1500 destHasUniqueIdx = 1; 1501 } 1502 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1503 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1504 } 1505 if( pSrcIdx==0 ){ 1506 return 0; /* pDestIdx has no corresponding index in pSrc */ 1507 } 1508 } 1509 #ifndef SQLITE_OMIT_CHECK 1510 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1511 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1512 } 1513 #endif 1514 1515 /* If we get this far, it means either: 1516 ** 1517 ** * We can always do the transfer if the table contains an 1518 ** an integer primary key 1519 ** 1520 ** * We can conditionally do the transfer if the destination 1521 ** table is empty. 1522 */ 1523 #ifdef SQLITE_TEST 1524 sqlite3_xferopt_count++; 1525 #endif 1526 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1527 v = sqlite3GetVdbe(pParse); 1528 sqlite3CodeVerifySchema(pParse, iDbSrc); 1529 iSrc = pParse->nTab++; 1530 iDest = pParse->nTab++; 1531 counterMem = autoIncBegin(pParse, iDbDest, pDest); 1532 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1533 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1534 /* If tables do not have an INTEGER PRIMARY KEY and there 1535 ** are indices to be copied and the destination is not empty, 1536 ** we have to disallow the transfer optimization because the 1537 ** the rowids might change which will mess up indexing. 1538 ** 1539 ** Or if the destination has a UNIQUE index and is not empty, 1540 ** we also disallow the transfer optimization because we cannot 1541 ** insure that all entries in the union of DEST and SRC will be 1542 ** unique. 1543 */ 1544 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0); 1545 emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1546 sqlite3VdbeJumpHere(v, addr1); 1547 }else{ 1548 emptyDestTest = 0; 1549 } 1550 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1551 emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1552 if( pDest->iPKey>=0 ){ 1553 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1554 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1555 addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0); 1556 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1557 "PRIMARY KEY must be unique", P3_STATIC); 1558 sqlite3VdbeJumpHere(v, addr2); 1559 autoIncStep(pParse, counterMem); 1560 }else if( pDest->pIndex==0 ){ 1561 addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0); 1562 }else{ 1563 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1564 assert( pDest->autoInc==0 ); 1565 } 1566 sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0); 1567 sqlite3VdbeOp3(v, OP_Insert, iDest, 1568 OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND, 1569 pDest->zName, 0); 1570 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1); 1571 autoIncEnd(pParse, iDbDest, pDest, counterMem); 1572 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1573 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1574 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1575 } 1576 assert( pSrcIdx ); 1577 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1578 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1579 sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0); 1580 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1581 VdbeComment((v, "# %s", pSrcIdx->zName)); 1582 sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 1583 (char*)pKey, P3_KEYINFO_HANDOFF); 1584 sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0); 1585 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1586 VdbeComment((v, "# %s", pDestIdx->zName)); 1587 sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 1588 (char*)pKey, P3_KEYINFO_HANDOFF); 1589 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1590 sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0); 1591 sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1); 1592 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1); 1593 sqlite3VdbeJumpHere(v, addr1); 1594 } 1595 sqlite3VdbeJumpHere(v, emptySrcTest); 1596 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1597 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1598 if( emptyDestTest ){ 1599 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0); 1600 sqlite3VdbeJumpHere(v, emptyDestTest); 1601 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1602 return 0; 1603 }else{ 1604 return 1; 1605 } 1606 } 1607 #endif /* SQLITE_OMIT_XFER_OPT */ 1608