1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum=pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'a' TEXT 60 ** 'b' NONE 61 ** 'c' NUMERIC 62 ** 'd' INTEGER 63 ** 'e' REAL 64 ** 65 ** An extra 'd' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 sqlite3 *db = sqlite3VdbeDb(v); 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 db->mallocFailed = 1; 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; 93 } 94 pIdx->zColAff[n] = 0; 95 } 96 97 return pIdx->zColAff; 98 } 99 100 /* 101 ** Set P4 of the most recently inserted opcode to a column affinity 102 ** string for table pTab. A column affinity string has one character 103 ** for each column indexed by the index, according to the affinity of the 104 ** column: 105 ** 106 ** Character Column affinity 107 ** ------------------------------ 108 ** 'a' TEXT 109 ** 'b' NONE 110 ** 'c' NUMERIC 111 ** 'd' INTEGER 112 ** 'e' REAL 113 */ 114 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 115 /* The first time a column affinity string for a particular table 116 ** is required, it is allocated and populated here. It is then 117 ** stored as a member of the Table structure for subsequent use. 118 ** 119 ** The column affinity string will eventually be deleted by 120 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 121 */ 122 if( !pTab->zColAff ){ 123 char *zColAff; 124 int i; 125 sqlite3 *db = sqlite3VdbeDb(v); 126 127 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 128 if( !zColAff ){ 129 db->mallocFailed = 1; 130 return; 131 } 132 133 for(i=0; i<pTab->nCol; i++){ 134 zColAff[i] = pTab->aCol[i].affinity; 135 } 136 zColAff[pTab->nCol] = '\0'; 137 138 pTab->zColAff = zColAff; 139 } 140 141 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); 142 } 143 144 /* 145 ** Return non-zero if the table pTab in database iDb or any of its indices 146 ** have been opened at any point in the VDBE program beginning at location 147 ** iStartAddr throught the end of the program. This is used to see if 148 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 149 ** run without using temporary table for the results of the SELECT. 150 */ 151 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 152 Vdbe *v = sqlite3GetVdbe(p); 153 int i; 154 int iEnd = sqlite3VdbeCurrentAddr(v); 155 #ifndef SQLITE_OMIT_VIRTUALTABLE 156 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 157 #endif 158 159 for(i=iStartAddr; i<iEnd; i++){ 160 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 161 assert( pOp!=0 ); 162 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 163 Index *pIndex; 164 int tnum = pOp->p2; 165 if( tnum==pTab->tnum ){ 166 return 1; 167 } 168 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 169 if( tnum==pIndex->tnum ){ 170 return 1; 171 } 172 } 173 } 174 #ifndef SQLITE_OMIT_VIRTUALTABLE 175 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 176 assert( pOp->p4.pVtab!=0 ); 177 assert( pOp->p4type==P4_VTAB ); 178 return 1; 179 } 180 #endif 181 } 182 return 0; 183 } 184 185 #ifndef SQLITE_OMIT_AUTOINCREMENT 186 /* 187 ** Locate or create an AutoincInfo structure associated with table pTab 188 ** which is in database iDb. Return the register number for the register 189 ** that holds the maximum rowid. 190 ** 191 ** There is at most one AutoincInfo structure per table even if the 192 ** same table is autoincremented multiple times due to inserts within 193 ** triggers. A new AutoincInfo structure is created if this is the 194 ** first use of table pTab. On 2nd and subsequent uses, the original 195 ** AutoincInfo structure is used. 196 ** 197 ** Three memory locations are allocated: 198 ** 199 ** (1) Register to hold the name of the pTab table. 200 ** (2) Register to hold the maximum ROWID of pTab. 201 ** (3) Register to hold the rowid in sqlite_sequence of pTab 202 ** 203 ** The 2nd register is the one that is returned. That is all the 204 ** insert routine needs to know about. 205 */ 206 static int autoIncBegin( 207 Parse *pParse, /* Parsing context */ 208 int iDb, /* Index of the database holding pTab */ 209 Table *pTab /* The table we are writing to */ 210 ){ 211 int memId = 0; /* Register holding maximum rowid */ 212 if( pTab->tabFlags & TF_Autoincrement ){ 213 Parse *pToplevel = sqlite3ParseToplevel(pParse); 214 AutoincInfo *pInfo; 215 216 pInfo = pToplevel->pAinc; 217 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 218 if( pInfo==0 ){ 219 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 220 if( pInfo==0 ) return 0; 221 pInfo->pNext = pToplevel->pAinc; 222 pToplevel->pAinc = pInfo; 223 pInfo->pTab = pTab; 224 pInfo->iDb = iDb; 225 pToplevel->nMem++; /* Register to hold name of table */ 226 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 227 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 228 } 229 memId = pInfo->regCtr; 230 } 231 return memId; 232 } 233 234 /* 235 ** This routine generates code that will initialize all of the 236 ** register used by the autoincrement tracker. 237 */ 238 void sqlite3AutoincrementBegin(Parse *pParse){ 239 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 240 sqlite3 *db = pParse->db; /* The database connection */ 241 Db *pDb; /* Database only autoinc table */ 242 int memId; /* Register holding max rowid */ 243 int addr; /* A VDBE address */ 244 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 245 246 /* This routine is never called during trigger-generation. It is 247 ** only called from the top-level */ 248 assert( pParse->pTriggerTab==0 ); 249 assert( pParse==sqlite3ParseToplevel(pParse) ); 250 251 assert( v ); /* We failed long ago if this is not so */ 252 for(p = pParse->pAinc; p; p = p->pNext){ 253 pDb = &db->aDb[p->iDb]; 254 memId = p->regCtr; 255 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 256 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 257 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); 258 addr = sqlite3VdbeCurrentAddr(v); 259 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 260 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 261 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 262 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 263 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 264 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 265 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 266 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 267 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 268 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 269 sqlite3VdbeAddOp0(v, OP_Close); 270 } 271 } 272 273 /* 274 ** Update the maximum rowid for an autoincrement calculation. 275 ** 276 ** This routine should be called when the top of the stack holds a 277 ** new rowid that is about to be inserted. If that new rowid is 278 ** larger than the maximum rowid in the memId memory cell, then the 279 ** memory cell is updated. The stack is unchanged. 280 */ 281 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 282 if( memId>0 ){ 283 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 284 } 285 } 286 287 /* 288 ** This routine generates the code needed to write autoincrement 289 ** maximum rowid values back into the sqlite_sequence register. 290 ** Every statement that might do an INSERT into an autoincrement 291 ** table (either directly or through triggers) needs to call this 292 ** routine just before the "exit" code. 293 */ 294 void sqlite3AutoincrementEnd(Parse *pParse){ 295 AutoincInfo *p; 296 Vdbe *v = pParse->pVdbe; 297 sqlite3 *db = pParse->db; 298 299 assert( v ); 300 for(p = pParse->pAinc; p; p = p->pNext){ 301 Db *pDb = &db->aDb[p->iDb]; 302 int j1, j2, j3, j4, j5; 303 int iRec; 304 int memId = p->regCtr; 305 306 iRec = sqlite3GetTempReg(pParse); 307 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 308 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 309 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 310 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 311 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 312 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 313 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 314 sqlite3VdbeJumpHere(v, j2); 315 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 316 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 317 sqlite3VdbeJumpHere(v, j4); 318 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 319 sqlite3VdbeJumpHere(v, j1); 320 sqlite3VdbeJumpHere(v, j5); 321 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 322 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 323 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 324 sqlite3VdbeAddOp0(v, OP_Close); 325 sqlite3ReleaseTempReg(pParse, iRec); 326 } 327 } 328 #else 329 /* 330 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 331 ** above are all no-ops 332 */ 333 # define autoIncBegin(A,B,C) (0) 334 # define autoIncStep(A,B,C) 335 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 336 337 338 /* 339 ** Generate code for a co-routine that will evaluate a subquery one 340 ** row at a time. 341 ** 342 ** The pSelect parameter is the subquery that the co-routine will evaluation. 343 ** Information about the location of co-routine and the registers it will use 344 ** is returned by filling in the pDest object. 345 ** 346 ** Registers are allocated as follows: 347 ** 348 ** pDest->iSDParm The register holding the next entry-point of the 349 ** co-routine. Run the co-routine to its next breakpoint 350 ** by calling "OP_Yield $X" where $X is pDest->iSDParm. 351 ** 352 ** pDest->iSdst First result register. 353 ** 354 ** pDest->nSdst Number of result registers. 355 ** 356 ** At EOF the first result register will be marked as "undefined" so that 357 ** the caller can know when to stop reading results. 358 ** 359 ** This routine handles all of the register allocation and fills in the 360 ** pDest structure appropriately. 361 ** 362 ** Here is a schematic of the generated code assuming that X is the 363 ** co-routine entry-point register reg[pDest->iSDParm], that EOF is the 364 ** completed flag reg[pDest->iSDParm+1], and R and S are the range of 365 ** registers that hold the result set, reg[pDest->iSdst] through 366 ** reg[pDest->iSdst+pDest->nSdst-1]: 367 ** 368 ** X <- A 369 ** goto B 370 ** A: setup for the SELECT 371 ** loop rows in the SELECT 372 ** load results into registers R..S 373 ** yield X 374 ** end loop 375 ** cleanup after the SELECT 376 ** end co-routine R 377 ** B: 378 ** 379 ** To use this subroutine, the caller generates code as follows: 380 ** 381 ** [ Co-routine generated by this subroutine, shown above ] 382 ** S: yield X, at EOF goto E 383 ** if skip this row, goto C 384 ** if terminate loop, goto E 385 ** deal with this row 386 ** C: goto S 387 ** E: 388 */ 389 int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){ 390 int regYield; /* Register holding co-routine entry-point */ 391 int addrTop; /* Top of the co-routine */ 392 int rc; /* Result code */ 393 Vdbe *v; /* VDBE under construction */ 394 395 regYield = ++pParse->nMem; 396 v = sqlite3GetVdbe(pParse); 397 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 398 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 399 sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield); 400 rc = sqlite3Select(pParse, pSelect, pDest); 401 assert( pParse->nErr==0 || rc ); 402 if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM; 403 if( rc ) return rc; 404 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 405 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 406 return rc; 407 } 408 409 410 411 /* Forward declaration */ 412 static int xferOptimization( 413 Parse *pParse, /* Parser context */ 414 Table *pDest, /* The table we are inserting into */ 415 Select *pSelect, /* A SELECT statement to use as the data source */ 416 int onError, /* How to handle constraint errors */ 417 int iDbDest /* The database of pDest */ 418 ); 419 420 /* 421 ** This routine is called to handle SQL of the following forms: 422 ** 423 ** insert into TABLE (IDLIST) values(EXPRLIST) 424 ** insert into TABLE (IDLIST) select 425 ** 426 ** The IDLIST following the table name is always optional. If omitted, 427 ** then a list of all columns for the table is substituted. The IDLIST 428 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 429 ** 430 ** The pList parameter holds EXPRLIST in the first form of the INSERT 431 ** statement above, and pSelect is NULL. For the second form, pList is 432 ** NULL and pSelect is a pointer to the select statement used to generate 433 ** data for the insert. 434 ** 435 ** The code generated follows one of four templates. For a simple 436 ** insert with data coming from a VALUES clause, the code executes 437 ** once straight down through. Pseudo-code follows (we call this 438 ** the "1st template"): 439 ** 440 ** open write cursor to <table> and its indices 441 ** put VALUES clause expressions into registers 442 ** write the resulting record into <table> 443 ** cleanup 444 ** 445 ** The three remaining templates assume the statement is of the form 446 ** 447 ** INSERT INTO <table> SELECT ... 448 ** 449 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 450 ** in other words if the SELECT pulls all columns from a single table 451 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 452 ** if <table2> and <table1> are distinct tables but have identical 453 ** schemas, including all the same indices, then a special optimization 454 ** is invoked that copies raw records from <table2> over to <table1>. 455 ** See the xferOptimization() function for the implementation of this 456 ** template. This is the 2nd template. 457 ** 458 ** open a write cursor to <table> 459 ** open read cursor on <table2> 460 ** transfer all records in <table2> over to <table> 461 ** close cursors 462 ** foreach index on <table> 463 ** open a write cursor on the <table> index 464 ** open a read cursor on the corresponding <table2> index 465 ** transfer all records from the read to the write cursors 466 ** close cursors 467 ** end foreach 468 ** 469 ** The 3rd template is for when the second template does not apply 470 ** and the SELECT clause does not read from <table> at any time. 471 ** The generated code follows this template: 472 ** 473 ** X <- A 474 ** goto B 475 ** A: setup for the SELECT 476 ** loop over the rows in the SELECT 477 ** load values into registers R..R+n 478 ** yield X 479 ** end loop 480 ** cleanup after the SELECT 481 ** end-coroutine X 482 ** B: open write cursor to <table> and its indices 483 ** C: yield X, at EOF goto D 484 ** insert the select result into <table> from R..R+n 485 ** goto C 486 ** D: cleanup 487 ** 488 ** The 4th template is used if the insert statement takes its 489 ** values from a SELECT but the data is being inserted into a table 490 ** that is also read as part of the SELECT. In the third form, 491 ** we have to use a intermediate table to store the results of 492 ** the select. The template is like this: 493 ** 494 ** X <- A 495 ** goto B 496 ** A: setup for the SELECT 497 ** loop over the tables in the SELECT 498 ** load value into register R..R+n 499 ** yield X 500 ** end loop 501 ** cleanup after the SELECT 502 ** end co-routine R 503 ** B: open temp table 504 ** L: yield X, at EOF goto M 505 ** insert row from R..R+n into temp table 506 ** goto L 507 ** M: open write cursor to <table> and its indices 508 ** rewind temp table 509 ** C: loop over rows of intermediate table 510 ** transfer values form intermediate table into <table> 511 ** end loop 512 ** D: cleanup 513 */ 514 void sqlite3Insert( 515 Parse *pParse, /* Parser context */ 516 SrcList *pTabList, /* Name of table into which we are inserting */ 517 Select *pSelect, /* A SELECT statement to use as the data source */ 518 IdList *pColumn, /* Column names corresponding to IDLIST. */ 519 int onError /* How to handle constraint errors */ 520 ){ 521 sqlite3 *db; /* The main database structure */ 522 Table *pTab; /* The table to insert into. aka TABLE */ 523 char *zTab; /* Name of the table into which we are inserting */ 524 const char *zDb; /* Name of the database holding this table */ 525 int i, j, idx; /* Loop counters */ 526 Vdbe *v; /* Generate code into this virtual machine */ 527 Index *pIdx; /* For looping over indices of the table */ 528 int nColumn; /* Number of columns in the data */ 529 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 530 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 531 int iIdxCur = 0; /* First index cursor */ 532 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 533 int endOfLoop; /* Label for the end of the insertion loop */ 534 int useTempTable = 0; /* Store SELECT results in intermediate table */ 535 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 536 int addrInsTop = 0; /* Jump to label "D" */ 537 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 538 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 539 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 540 int iDb; /* Index of database holding TABLE */ 541 Db *pDb; /* The database containing table being inserted into */ 542 int appendFlag = 0; /* True if the insert is likely to be an append */ 543 int withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 544 ExprList *pList = 0; /* List of VALUES() to be inserted */ 545 546 /* Register allocations */ 547 int regFromSelect = 0;/* Base register for data coming from SELECT */ 548 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 549 int regRowCount = 0; /* Memory cell used for the row counter */ 550 int regIns; /* Block of regs holding rowid+data being inserted */ 551 int regRowid; /* registers holding insert rowid */ 552 int regData; /* register holding first column to insert */ 553 int *aRegIdx = 0; /* One register allocated to each index */ 554 555 #ifndef SQLITE_OMIT_TRIGGER 556 int isView; /* True if attempting to insert into a view */ 557 Trigger *pTrigger; /* List of triggers on pTab, if required */ 558 int tmask; /* Mask of trigger times */ 559 #endif 560 561 db = pParse->db; 562 memset(&dest, 0, sizeof(dest)); 563 if( pParse->nErr || db->mallocFailed ){ 564 goto insert_cleanup; 565 } 566 567 /* If the Select object is really just a simple VALUES() list with a 568 ** single row values (the common case) then keep that one row of values 569 ** and go ahead and discard the Select object 570 */ 571 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 572 pList = pSelect->pEList; 573 pSelect->pEList = 0; 574 sqlite3SelectDelete(db, pSelect); 575 pSelect = 0; 576 } 577 578 /* Locate the table into which we will be inserting new information. 579 */ 580 assert( pTabList->nSrc==1 ); 581 zTab = pTabList->a[0].zName; 582 if( NEVER(zTab==0) ) goto insert_cleanup; 583 pTab = sqlite3SrcListLookup(pParse, pTabList); 584 if( pTab==0 ){ 585 goto insert_cleanup; 586 } 587 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 588 assert( iDb<db->nDb ); 589 pDb = &db->aDb[iDb]; 590 zDb = pDb->zName; 591 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 592 goto insert_cleanup; 593 } 594 withoutRowid = !HasRowid(pTab); 595 596 /* Figure out if we have any triggers and if the table being 597 ** inserted into is a view 598 */ 599 #ifndef SQLITE_OMIT_TRIGGER 600 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 601 isView = pTab->pSelect!=0; 602 #else 603 # define pTrigger 0 604 # define tmask 0 605 # define isView 0 606 #endif 607 #ifdef SQLITE_OMIT_VIEW 608 # undef isView 609 # define isView 0 610 #endif 611 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 612 613 /* If pTab is really a view, make sure it has been initialized. 614 ** ViewGetColumnNames() is a no-op if pTab is not a view. 615 */ 616 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 617 goto insert_cleanup; 618 } 619 620 /* Cannot insert into a read-only table. 621 */ 622 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 623 goto insert_cleanup; 624 } 625 626 /* Allocate a VDBE 627 */ 628 v = sqlite3GetVdbe(pParse); 629 if( v==0 ) goto insert_cleanup; 630 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 631 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 632 633 #ifndef SQLITE_OMIT_XFER_OPT 634 /* If the statement is of the form 635 ** 636 ** INSERT INTO <table1> SELECT * FROM <table2>; 637 ** 638 ** Then special optimizations can be applied that make the transfer 639 ** very fast and which reduce fragmentation of indices. 640 ** 641 ** This is the 2nd template. 642 */ 643 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 644 assert( !pTrigger ); 645 assert( pList==0 ); 646 goto insert_end; 647 } 648 #endif /* SQLITE_OMIT_XFER_OPT */ 649 650 /* If this is an AUTOINCREMENT table, look up the sequence number in the 651 ** sqlite_sequence table and store it in memory cell regAutoinc. 652 */ 653 regAutoinc = autoIncBegin(pParse, iDb, pTab); 654 655 /* Figure out how many columns of data are supplied. If the data 656 ** is coming from a SELECT statement, then generate a co-routine that 657 ** produces a single row of the SELECT on each invocation. The 658 ** co-routine is the common header to the 3rd and 4th templates. 659 */ 660 if( pSelect ){ 661 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ 662 int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest); 663 if( rc ) goto insert_cleanup; 664 665 regFromSelect = dest.iSdst; 666 assert( pSelect->pEList ); 667 nColumn = pSelect->pEList->nExpr; 668 assert( dest.nSdst==nColumn ); 669 670 /* Set useTempTable to TRUE if the result of the SELECT statement 671 ** should be written into a temporary table (template 4). Set to 672 ** FALSE if each output row of the SELECT can be written directly into 673 ** the destination table (template 3). 674 ** 675 ** A temp table must be used if the table being updated is also one 676 ** of the tables being read by the SELECT statement. Also use a 677 ** temp table in the case of row triggers. 678 */ 679 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 680 useTempTable = 1; 681 } 682 683 if( useTempTable ){ 684 /* Invoke the coroutine to extract information from the SELECT 685 ** and add it to a transient table srcTab. The code generated 686 ** here is from the 4th template: 687 ** 688 ** B: open temp table 689 ** L: yield X, goto M at EOF 690 ** insert row from R..R+n into temp table 691 ** goto L 692 ** M: ... 693 */ 694 int regRec; /* Register to hold packed record */ 695 int regTempRowid; /* Register to hold temp table ROWID */ 696 int addrTop; /* Label "L" */ 697 698 srcTab = pParse->nTab++; 699 regRec = sqlite3GetTempReg(pParse); 700 regTempRowid = sqlite3GetTempReg(pParse); 701 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 702 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 703 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 704 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 705 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 706 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 707 sqlite3VdbeJumpHere(v, addrTop); 708 sqlite3ReleaseTempReg(pParse, regRec); 709 sqlite3ReleaseTempReg(pParse, regTempRowid); 710 } 711 }else{ 712 /* This is the case if the data for the INSERT is coming from a VALUES 713 ** clause 714 */ 715 NameContext sNC; 716 memset(&sNC, 0, sizeof(sNC)); 717 sNC.pParse = pParse; 718 srcTab = -1; 719 assert( useTempTable==0 ); 720 nColumn = pList ? pList->nExpr : 0; 721 for(i=0; i<nColumn; i++){ 722 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 723 goto insert_cleanup; 724 } 725 } 726 } 727 728 /* Make sure the number of columns in the source data matches the number 729 ** of columns to be inserted into the table. 730 */ 731 if( IsVirtual(pTab) ){ 732 for(i=0; i<pTab->nCol; i++){ 733 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 734 } 735 } 736 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 737 sqlite3ErrorMsg(pParse, 738 "table %S has %d columns but %d values were supplied", 739 pTabList, 0, pTab->nCol-nHidden, nColumn); 740 goto insert_cleanup; 741 } 742 if( pColumn!=0 && nColumn!=pColumn->nId ){ 743 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 744 goto insert_cleanup; 745 } 746 747 /* If the INSERT statement included an IDLIST term, then make sure 748 ** all elements of the IDLIST really are columns of the table and 749 ** remember the column indices. 750 ** 751 ** If the table has an INTEGER PRIMARY KEY column and that column 752 ** is named in the IDLIST, then record in the ipkColumn variable 753 ** the index into IDLIST of the primary key column. ipkColumn is 754 ** the index of the primary key as it appears in IDLIST, not as 755 ** is appears in the original table. (The index of the INTEGER 756 ** PRIMARY KEY in the original table is pTab->iPKey.) 757 */ 758 if( pColumn ){ 759 for(i=0; i<pColumn->nId; i++){ 760 pColumn->a[i].idx = -1; 761 } 762 for(i=0; i<pColumn->nId; i++){ 763 for(j=0; j<pTab->nCol; j++){ 764 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 765 pColumn->a[i].idx = j; 766 if( j==pTab->iPKey ){ 767 ipkColumn = i; assert( !withoutRowid ); 768 } 769 break; 770 } 771 } 772 if( j>=pTab->nCol ){ 773 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 774 ipkColumn = i; 775 }else{ 776 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 777 pTabList, 0, pColumn->a[i].zName); 778 pParse->checkSchema = 1; 779 goto insert_cleanup; 780 } 781 } 782 } 783 } 784 785 /* If there is no IDLIST term but the table has an integer primary 786 ** key, the set the ipkColumn variable to the integer primary key 787 ** column index in the original table definition. 788 */ 789 if( pColumn==0 && nColumn>0 ){ 790 ipkColumn = pTab->iPKey; 791 } 792 793 /* Initialize the count of rows to be inserted 794 */ 795 if( db->flags & SQLITE_CountRows ){ 796 regRowCount = ++pParse->nMem; 797 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 798 } 799 800 /* If this is not a view, open the table and and all indices */ 801 if( !isView ){ 802 int nIdx; 803 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, 804 &iDataCur, &iIdxCur); 805 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 806 if( aRegIdx==0 ){ 807 goto insert_cleanup; 808 } 809 for(i=0; i<nIdx; i++){ 810 aRegIdx[i] = ++pParse->nMem; 811 } 812 } 813 814 /* This is the top of the main insertion loop */ 815 if( useTempTable ){ 816 /* This block codes the top of loop only. The complete loop is the 817 ** following pseudocode (template 4): 818 ** 819 ** rewind temp table, if empty goto D 820 ** C: loop over rows of intermediate table 821 ** transfer values form intermediate table into <table> 822 ** end loop 823 ** D: ... 824 */ 825 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 826 addrCont = sqlite3VdbeCurrentAddr(v); 827 }else if( pSelect ){ 828 /* This block codes the top of loop only. The complete loop is the 829 ** following pseudocode (template 3): 830 ** 831 ** C: yield X, at EOF goto D 832 ** insert the select result into <table> from R..R+n 833 ** goto C 834 ** D: ... 835 */ 836 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 837 } 838 839 /* Allocate registers for holding the rowid of the new row, 840 ** the content of the new row, and the assemblied row record. 841 */ 842 regRowid = regIns = pParse->nMem+1; 843 pParse->nMem += pTab->nCol + 1; 844 if( IsVirtual(pTab) ){ 845 regRowid++; 846 pParse->nMem++; 847 } 848 regData = regRowid+1; 849 850 /* Run the BEFORE and INSTEAD OF triggers, if there are any 851 */ 852 endOfLoop = sqlite3VdbeMakeLabel(v); 853 if( tmask & TRIGGER_BEFORE ){ 854 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 855 856 /* build the NEW.* reference row. Note that if there is an INTEGER 857 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 858 ** translated into a unique ID for the row. But on a BEFORE trigger, 859 ** we do not know what the unique ID will be (because the insert has 860 ** not happened yet) so we substitute a rowid of -1 861 */ 862 if( ipkColumn<0 ){ 863 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 864 }else{ 865 int j1; 866 assert( !withoutRowid ); 867 if( useTempTable ){ 868 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 869 }else{ 870 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 871 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 872 } 873 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); 874 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 875 sqlite3VdbeJumpHere(v, j1); 876 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); 877 } 878 879 /* Cannot have triggers on a virtual table. If it were possible, 880 ** this block would have to account for hidden column. 881 */ 882 assert( !IsVirtual(pTab) ); 883 884 /* Create the new column data 885 */ 886 for(i=0; i<pTab->nCol; i++){ 887 if( pColumn==0 ){ 888 j = i; 889 }else{ 890 for(j=0; j<pColumn->nId; j++){ 891 if( pColumn->a[j].idx==i ) break; 892 } 893 } 894 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ 895 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 896 }else if( useTempTable ){ 897 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 898 }else{ 899 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 900 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 901 } 902 } 903 904 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 905 ** do not attempt any conversions before assembling the record. 906 ** If this is a real table, attempt conversions as required by the 907 ** table column affinities. 908 */ 909 if( !isView ){ 910 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); 911 sqlite3TableAffinityStr(v, pTab); 912 } 913 914 /* Fire BEFORE or INSTEAD OF triggers */ 915 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 916 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 917 918 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 919 } 920 921 /* Compute the content of the next row to insert into a range of 922 ** registers beginning at regIns. 923 */ 924 if( !isView ){ 925 if( IsVirtual(pTab) ){ 926 /* The row that the VUpdate opcode will delete: none */ 927 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 928 } 929 if( ipkColumn>=0 ){ 930 if( useTempTable ){ 931 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 932 }else if( pSelect ){ 933 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid); 934 }else{ 935 VdbeOp *pOp; 936 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 937 pOp = sqlite3VdbeGetOp(v, -1); 938 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 939 appendFlag = 1; 940 pOp->opcode = OP_NewRowid; 941 pOp->p1 = iDataCur; 942 pOp->p2 = regRowid; 943 pOp->p3 = regAutoinc; 944 } 945 } 946 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 947 ** to generate a unique primary key value. 948 */ 949 if( !appendFlag ){ 950 int j1; 951 if( !IsVirtual(pTab) ){ 952 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 953 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 954 sqlite3VdbeJumpHere(v, j1); 955 }else{ 956 j1 = sqlite3VdbeCurrentAddr(v); 957 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 958 } 959 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 960 } 961 }else if( IsVirtual(pTab) || withoutRowid ){ 962 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 963 }else{ 964 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 965 appendFlag = 1; 966 } 967 autoIncStep(pParse, regAutoinc, regRowid); 968 969 /* Compute data for all columns of the new entry, beginning 970 ** with the first column. 971 */ 972 nHidden = 0; 973 for(i=0; i<pTab->nCol; i++){ 974 int iRegStore = regRowid+1+i; 975 if( i==pTab->iPKey ){ 976 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 977 ** Whenever this column is read, the rowid will be substituted 978 ** in its place. Hence, fill this column with a NULL to avoid 979 ** taking up data space with information that will never be used. */ 980 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 981 continue; 982 } 983 if( pColumn==0 ){ 984 if( IsHiddenColumn(&pTab->aCol[i]) ){ 985 assert( IsVirtual(pTab) ); 986 j = -1; 987 nHidden++; 988 }else{ 989 j = i - nHidden; 990 } 991 }else{ 992 for(j=0; j<pColumn->nId; j++){ 993 if( pColumn->a[j].idx==i ) break; 994 } 995 } 996 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 997 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 998 }else if( useTempTable ){ 999 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1000 }else if( pSelect ){ 1001 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1002 }else{ 1003 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1004 } 1005 } 1006 1007 /* Generate code to check constraints and generate index keys and 1008 ** do the insertion. 1009 */ 1010 #ifndef SQLITE_OMIT_VIRTUALTABLE 1011 if( IsVirtual(pTab) ){ 1012 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1013 sqlite3VtabMakeWritable(pParse, pTab); 1014 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1015 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1016 sqlite3MayAbort(pParse); 1017 }else 1018 #endif 1019 { 1020 int isReplace; /* Set to true if constraints may cause a replace */ 1021 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1022 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace 1023 ); 1024 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1025 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1026 regIns, aRegIdx, 0, appendFlag, isReplace==0); 1027 } 1028 } 1029 1030 /* Update the count of rows that are inserted 1031 */ 1032 if( (db->flags & SQLITE_CountRows)!=0 ){ 1033 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1034 } 1035 1036 if( pTrigger ){ 1037 /* Code AFTER triggers */ 1038 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1039 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1040 } 1041 1042 /* The bottom of the main insertion loop, if the data source 1043 ** is a SELECT statement. 1044 */ 1045 sqlite3VdbeResolveLabel(v, endOfLoop); 1046 if( useTempTable ){ 1047 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1048 sqlite3VdbeJumpHere(v, addrInsTop); 1049 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1050 }else if( pSelect ){ 1051 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1052 sqlite3VdbeJumpHere(v, addrInsTop); 1053 } 1054 1055 if( !IsVirtual(pTab) && !isView ){ 1056 /* Close all tables opened */ 1057 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); 1058 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1059 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); 1060 } 1061 } 1062 1063 insert_end: 1064 /* Update the sqlite_sequence table by storing the content of the 1065 ** maximum rowid counter values recorded while inserting into 1066 ** autoincrement tables. 1067 */ 1068 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1069 sqlite3AutoincrementEnd(pParse); 1070 } 1071 1072 /* 1073 ** Return the number of rows inserted. If this routine is 1074 ** generating code because of a call to sqlite3NestedParse(), do not 1075 ** invoke the callback function. 1076 */ 1077 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1078 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1079 sqlite3VdbeSetNumCols(v, 1); 1080 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1081 } 1082 1083 insert_cleanup: 1084 sqlite3SrcListDelete(db, pTabList); 1085 sqlite3ExprListDelete(db, pList); 1086 sqlite3SelectDelete(db, pSelect); 1087 sqlite3IdListDelete(db, pColumn); 1088 sqlite3DbFree(db, aRegIdx); 1089 } 1090 1091 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1092 ** thely may interfere with compilation of other functions in this file 1093 ** (or in another file, if this file becomes part of the amalgamation). */ 1094 #ifdef isView 1095 #undef isView 1096 #endif 1097 #ifdef pTrigger 1098 #undef pTrigger 1099 #endif 1100 #ifdef tmask 1101 #undef tmask 1102 #endif 1103 1104 /* 1105 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1106 ** on table pTab. 1107 ** 1108 ** The regNewData parameter is the first register in a range that contains 1109 ** the data to be inserted or the data after the update. There will be 1110 ** pTab->nCol+1 registers in this range. The first register (the one 1111 ** that regNewData points to) will contain the new rowid, or NULL in the 1112 ** case of a WITHOUT ROWID table. The second register in the range will 1113 ** contain the content of the first table column. The third register will 1114 ** contain the content of the second table column. And so forth. 1115 ** 1116 ** The regOldData parameter is similar to regNewData except that it contains 1117 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1118 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1119 ** checking regOldData for zero. 1120 ** 1121 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1122 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1123 ** might be modified by the UPDATE. If pkChng is false, then the key of 1124 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1125 ** 1126 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1127 ** was explicitly specified as part of the INSERT statement. If pkChng 1128 ** is zero, it means that the either rowid is computed automatically or 1129 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1130 ** pkChng will only be true if the INSERT statement provides an integer 1131 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1132 ** 1133 ** The code generated by this routine will store new index entries into 1134 ** registers identified by aRegIdx[]. No index entry is created for 1135 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1136 ** the same as the order of indices on the linked list of indices 1137 ** at pTab->pIndex. 1138 ** 1139 ** The caller must have already opened writeable cursors on the main 1140 ** table and all applicable indices (that is to say, all indices for which 1141 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1142 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1143 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1144 ** for the first index in the pTab->pIndex list. Cursors for other indices 1145 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1146 ** 1147 ** This routine also generates code to check constraints. NOT NULL, 1148 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1149 ** then the appropriate action is performed. There are five possible 1150 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1151 ** 1152 ** Constraint type Action What Happens 1153 ** --------------- ---------- ---------------------------------------- 1154 ** any ROLLBACK The current transaction is rolled back and 1155 ** sqlite3_step() returns immediately with a 1156 ** return code of SQLITE_CONSTRAINT. 1157 ** 1158 ** any ABORT Back out changes from the current command 1159 ** only (do not do a complete rollback) then 1160 ** cause sqlite3_step() to return immediately 1161 ** with SQLITE_CONSTRAINT. 1162 ** 1163 ** any FAIL Sqlite3_step() returns immediately with a 1164 ** return code of SQLITE_CONSTRAINT. The 1165 ** transaction is not rolled back and any 1166 ** changes to prior rows are retained. 1167 ** 1168 ** any IGNORE The attempt in insert or update the current 1169 ** row is skipped, without throwing an error. 1170 ** Processing continues with the next row. 1171 ** (There is an immediate jump to ignoreDest.) 1172 ** 1173 ** NOT NULL REPLACE The NULL value is replace by the default 1174 ** value for that column. If the default value 1175 ** is NULL, the action is the same as ABORT. 1176 ** 1177 ** UNIQUE REPLACE The other row that conflicts with the row 1178 ** being inserted is removed. 1179 ** 1180 ** CHECK REPLACE Illegal. The results in an exception. 1181 ** 1182 ** Which action to take is determined by the overrideError parameter. 1183 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1184 ** is used. Or if pParse->onError==OE_Default then the onError value 1185 ** for the constraint is used. 1186 */ 1187 void sqlite3GenerateConstraintChecks( 1188 Parse *pParse, /* The parser context */ 1189 Table *pTab, /* The table being inserted or updated */ 1190 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1191 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1192 int iIdxCur, /* First index cursor */ 1193 int regNewData, /* First register in a range holding values to insert */ 1194 int regOldData, /* Previous content. 0 for INSERTs */ 1195 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1196 u8 overrideError, /* Override onError to this if not OE_Default */ 1197 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1198 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1199 ){ 1200 Vdbe *v; /* VDBE under constrution */ 1201 Index *pIdx; /* Pointer to one of the indices */ 1202 Index *pPk = 0; /* The PRIMARY KEY index */ 1203 sqlite3 *db; /* Database connection */ 1204 int i; /* loop counter */ 1205 int ix; /* Index loop counter */ 1206 int nCol; /* Number of columns */ 1207 int onError; /* Conflict resolution strategy */ 1208 int j1; /* Addresss of jump instruction */ 1209 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1210 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1211 int ipkTop = 0; /* Top of the rowid change constraint check */ 1212 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1213 u8 isUpdate; /* True if this is an UPDATE operation */ 1214 int regRowid = -1; /* Register holding ROWID value */ 1215 1216 isUpdate = regOldData!=0; 1217 db = pParse->db; 1218 v = sqlite3GetVdbe(pParse); 1219 assert( v!=0 ); 1220 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1221 nCol = pTab->nCol; 1222 1223 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1224 ** normal rowid tables. nPkField is the number of key fields in the 1225 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1226 ** number of fields in the true primary key of the table. */ 1227 if( HasRowid(pTab) ){ 1228 pPk = 0; 1229 nPkField = 1; 1230 }else{ 1231 pPk = sqlite3PrimaryKeyIndex(pTab); 1232 nPkField = pPk->nKeyCol; 1233 } 1234 1235 /* Record that this module has started */ 1236 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1237 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1238 1239 /* Test all NOT NULL constraints. 1240 */ 1241 for(i=0; i<nCol; i++){ 1242 if( i==pTab->iPKey ){ 1243 continue; 1244 } 1245 onError = pTab->aCol[i].notNull; 1246 if( onError==OE_None ) continue; 1247 if( overrideError!=OE_Default ){ 1248 onError = overrideError; 1249 }else if( onError==OE_Default ){ 1250 onError = OE_Abort; 1251 } 1252 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1253 onError = OE_Abort; 1254 } 1255 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1256 || onError==OE_Ignore || onError==OE_Replace ); 1257 switch( onError ){ 1258 case OE_Abort: 1259 sqlite3MayAbort(pParse); 1260 /* Fall through */ 1261 case OE_Rollback: 1262 case OE_Fail: { 1263 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1264 pTab->aCol[i].zName); 1265 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1266 regNewData+1+i, zMsg, P4_DYNAMIC); 1267 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1268 break; 1269 } 1270 case OE_Ignore: { 1271 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1272 break; 1273 } 1274 default: { 1275 assert( onError==OE_Replace ); 1276 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1277 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1278 sqlite3VdbeJumpHere(v, j1); 1279 break; 1280 } 1281 } 1282 } 1283 1284 /* Test all CHECK constraints 1285 */ 1286 #ifndef SQLITE_OMIT_CHECK 1287 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1288 ExprList *pCheck = pTab->pCheck; 1289 pParse->ckBase = regNewData+1; 1290 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1291 for(i=0; i<pCheck->nExpr; i++){ 1292 int allOk = sqlite3VdbeMakeLabel(v); 1293 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); 1294 if( onError==OE_Ignore ){ 1295 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1296 }else{ 1297 char *zName = pCheck->a[i].zName; 1298 if( zName==0 ) zName = pTab->zName; 1299 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1300 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1301 onError, zName, P4_TRANSIENT, 1302 P5_ConstraintCheck); 1303 } 1304 sqlite3VdbeResolveLabel(v, allOk); 1305 } 1306 } 1307 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1308 1309 /* If rowid is changing, make sure the new rowid does not previously 1310 ** exist in the table. 1311 */ 1312 if( pkChng && pPk==0 ){ 1313 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1314 1315 /* Figure out what action to take in case of a rowid collision */ 1316 onError = pTab->keyConf; 1317 if( overrideError!=OE_Default ){ 1318 onError = overrideError; 1319 }else if( onError==OE_Default ){ 1320 onError = OE_Abort; 1321 } 1322 1323 if( isUpdate ){ 1324 /* pkChng!=0 does not mean that the rowid has change, only that 1325 ** it might have changed. Skip the conflict logic below if the rowid 1326 ** is unchanged. */ 1327 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1328 } 1329 1330 /* If the response to a rowid conflict is REPLACE but the response 1331 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1332 ** to defer the running of the rowid conflict checking until after 1333 ** the UNIQUE constraints have run. 1334 */ 1335 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1336 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1337 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1338 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1339 break; 1340 } 1341 } 1342 } 1343 1344 /* Check to see if the new rowid already exists in the table. Skip 1345 ** the following conflict logic if it does not. */ 1346 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1347 1348 /* Generate code that deals with a rowid collision */ 1349 switch( onError ){ 1350 default: { 1351 onError = OE_Abort; 1352 /* Fall thru into the next case */ 1353 } 1354 case OE_Rollback: 1355 case OE_Abort: 1356 case OE_Fail: { 1357 sqlite3RowidConstraint(pParse, onError, pTab); 1358 break; 1359 } 1360 case OE_Replace: { 1361 /* If there are DELETE triggers on this table and the 1362 ** recursive-triggers flag is set, call GenerateRowDelete() to 1363 ** remove the conflicting row from the table. This will fire 1364 ** the triggers and remove both the table and index b-tree entries. 1365 ** 1366 ** Otherwise, if there are no triggers or the recursive-triggers 1367 ** flag is not set, but the table has one or more indexes, call 1368 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1369 ** only. The table b-tree entry will be replaced by the new entry 1370 ** when it is inserted. 1371 ** 1372 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1373 ** also invoke MultiWrite() to indicate that this VDBE may require 1374 ** statement rollback (if the statement is aborted after the delete 1375 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1376 ** but being more selective here allows statements like: 1377 ** 1378 ** REPLACE INTO t(rowid) VALUES($newrowid) 1379 ** 1380 ** to run without a statement journal if there are no indexes on the 1381 ** table. 1382 */ 1383 Trigger *pTrigger = 0; 1384 if( db->flags&SQLITE_RecTriggers ){ 1385 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1386 } 1387 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1388 sqlite3MultiWrite(pParse); 1389 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1390 regNewData, 1, 0, OE_Replace, 1); 1391 }else if( pTab->pIndex ){ 1392 sqlite3MultiWrite(pParse); 1393 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); 1394 } 1395 seenReplace = 1; 1396 break; 1397 } 1398 case OE_Ignore: { 1399 /*assert( seenReplace==0 );*/ 1400 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1401 break; 1402 } 1403 } 1404 sqlite3VdbeResolveLabel(v, addrRowidOk); 1405 if( ipkTop ){ 1406 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1407 sqlite3VdbeJumpHere(v, ipkTop); 1408 } 1409 } 1410 1411 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1412 ** index and making sure that duplicate entries do not already exist. 1413 ** Compute the revised record entries for indices as we go. 1414 ** 1415 ** This loop also handles the case of the PRIMARY KEY index for a 1416 ** WITHOUT ROWID table. 1417 */ 1418 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1419 int regIdx; /* Range of registers hold conent for pIdx */ 1420 int regR; /* Range of registers holding conflicting PK */ 1421 int iThisCur; /* Cursor for this UNIQUE index */ 1422 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1423 1424 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1425 iThisCur = iIdxCur+ix; 1426 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1427 1428 /* Skip partial indices for which the WHERE clause is not true */ 1429 if( pIdx->pPartIdxWhere ){ 1430 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1431 pParse->ckBase = regNewData+1; 1432 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1433 SQLITE_JUMPIFNULL); 1434 pParse->ckBase = 0; 1435 } 1436 1437 /* Create a record for this index entry as it should appear after 1438 ** the insert or update. Store that record in the aRegIdx[ix] register 1439 */ 1440 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); 1441 for(i=0; i<pIdx->nColumn; i++){ 1442 int iField = pIdx->aiColumn[i]; 1443 int x; 1444 if( iField<0 || iField==pTab->iPKey ){ 1445 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ 1446 x = regNewData; 1447 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; 1448 }else{ 1449 x = iField + regNewData + 1; 1450 } 1451 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 1452 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1453 } 1454 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1455 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); 1456 VdbeComment((v, "for %s", pIdx->zName)); 1457 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); 1458 1459 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1460 ** of a WITHOUT ROWID table and there has been no change the 1461 ** primary key, then no collision is possible. The collision detection 1462 ** logic below can all be skipped. */ 1463 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1464 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1465 continue; 1466 } 1467 1468 /* Find out what action to take in case there is a uniqueness conflict */ 1469 onError = pIdx->onError; 1470 if( onError==OE_None ){ 1471 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1472 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1473 continue; /* pIdx is not a UNIQUE index */ 1474 } 1475 if( overrideError!=OE_Default ){ 1476 onError = overrideError; 1477 }else if( onError==OE_Default ){ 1478 onError = OE_Abort; 1479 } 1480 1481 /* Check to see if the new index entry will be unique */ 1482 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1483 regIdx, pIdx->nKeyCol); 1484 1485 /* Generate code to handle collisions */ 1486 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1487 if( isUpdate || onError==OE_Replace ){ 1488 if( HasRowid(pTab) ){ 1489 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1490 /* Conflict only if the rowid of the existing index entry 1491 ** is different from old-rowid */ 1492 if( isUpdate ){ 1493 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1494 } 1495 }else{ 1496 int x; 1497 /* Extract the PRIMARY KEY from the end of the index entry and 1498 ** store it in registers regR..regR+nPk-1 */ 1499 if( pIdx!=pPk ){ 1500 for(i=0; i<pPk->nKeyCol; i++){ 1501 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1502 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1503 VdbeComment((v, "%s.%s", pTab->zName, 1504 pTab->aCol[pPk->aiColumn[i]].zName)); 1505 } 1506 } 1507 if( isUpdate ){ 1508 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1509 ** table, only conflict if the new PRIMARY KEY values are actually 1510 ** different from the old. 1511 ** 1512 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1513 ** of the matched index row are different from the original PRIMARY 1514 ** KEY values of this row before the update. */ 1515 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1516 int op = OP_Ne; 1517 int regCmp = (pIdx->autoIndex==2 ? regIdx : regR); 1518 1519 for(i=0; i<pPk->nKeyCol; i++){ 1520 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1521 x = pPk->aiColumn[i]; 1522 if( i==(pPk->nKeyCol-1) ){ 1523 addrJump = addrUniqueOk; 1524 op = OP_Eq; 1525 } 1526 sqlite3VdbeAddOp4(v, op, 1527 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1528 ); 1529 } 1530 } 1531 } 1532 } 1533 1534 /* Generate code that executes if the new index entry is not unique */ 1535 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1536 || onError==OE_Ignore || onError==OE_Replace ); 1537 switch( onError ){ 1538 case OE_Rollback: 1539 case OE_Abort: 1540 case OE_Fail: { 1541 sqlite3UniqueConstraint(pParse, onError, pIdx); 1542 break; 1543 } 1544 case OE_Ignore: { 1545 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1546 break; 1547 } 1548 default: { 1549 Trigger *pTrigger = 0; 1550 assert( onError==OE_Replace ); 1551 sqlite3MultiWrite(pParse); 1552 if( db->flags&SQLITE_RecTriggers ){ 1553 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1554 } 1555 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1556 regR, nPkField, 0, OE_Replace, pIdx==pPk); 1557 seenReplace = 1; 1558 break; 1559 } 1560 } 1561 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1562 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1563 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1564 } 1565 if( ipkTop ){ 1566 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); 1567 sqlite3VdbeJumpHere(v, ipkBottom); 1568 } 1569 1570 *pbMayReplace = seenReplace; 1571 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1572 } 1573 1574 /* 1575 ** This routine generates code to finish the INSERT or UPDATE operation 1576 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1577 ** A consecutive range of registers starting at regNewData contains the 1578 ** rowid and the content to be inserted. 1579 ** 1580 ** The arguments to this routine should be the same as the first six 1581 ** arguments to sqlite3GenerateConstraintChecks. 1582 */ 1583 void sqlite3CompleteInsertion( 1584 Parse *pParse, /* The parser context */ 1585 Table *pTab, /* the table into which we are inserting */ 1586 int iDataCur, /* Cursor of the canonical data source */ 1587 int iIdxCur, /* First index cursor */ 1588 int regNewData, /* Range of content */ 1589 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1590 int isUpdate, /* True for UPDATE, False for INSERT */ 1591 int appendBias, /* True if this is likely to be an append */ 1592 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1593 ){ 1594 Vdbe *v; /* Prepared statements under construction */ 1595 Index *pIdx; /* An index being inserted or updated */ 1596 u8 pik_flags; /* flag values passed to the btree insert */ 1597 int regData; /* Content registers (after the rowid) */ 1598 int regRec; /* Register holding assemblied record for the table */ 1599 int i; /* Loop counter */ 1600 1601 v = sqlite3GetVdbe(pParse); 1602 assert( v!=0 ); 1603 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1604 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1605 if( aRegIdx[i]==0 ) continue; 1606 if( pIdx->pPartIdxWhere ){ 1607 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1608 } 1609 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); 1610 pik_flags = 0; 1611 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; 1612 if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ 1613 assert( pParse->nested==0 ); 1614 pik_flags |= OPFLAG_NCHANGE; 1615 } 1616 if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); 1617 } 1618 if( !HasRowid(pTab) ) return; 1619 regData = regNewData + 1; 1620 regRec = sqlite3GetTempReg(pParse); 1621 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1622 sqlite3TableAffinityStr(v, pTab); 1623 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1624 if( pParse->nested ){ 1625 pik_flags = 0; 1626 }else{ 1627 pik_flags = OPFLAG_NCHANGE; 1628 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1629 } 1630 if( appendBias ){ 1631 pik_flags |= OPFLAG_APPEND; 1632 } 1633 if( useSeekResult ){ 1634 pik_flags |= OPFLAG_USESEEKRESULT; 1635 } 1636 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1637 if( !pParse->nested ){ 1638 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); 1639 } 1640 sqlite3VdbeChangeP5(v, pik_flags); 1641 } 1642 1643 /* 1644 ** Allocate cursors for the pTab table and all its indices and generate 1645 ** code to open and initialized those cursors. 1646 ** 1647 ** The cursor for the object that contains the complete data (normally 1648 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1649 ** ROWID table) is returned in *piDataCur. The first index cursor is 1650 ** returned in *piIdxCur. The number of indices is returned. 1651 ** 1652 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1653 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1654 ** If iBase is negative, then allocate the next available cursor. 1655 ** 1656 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1657 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1658 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1659 ** pTab->pIndex list. 1660 */ 1661 int sqlite3OpenTableAndIndices( 1662 Parse *pParse, /* Parsing context */ 1663 Table *pTab, /* Table to be opened */ 1664 int op, /* OP_OpenRead or OP_OpenWrite */ 1665 int iBase, /* Use this for the table cursor, if there is one */ 1666 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1667 int *piDataCur, /* Write the database source cursor number here */ 1668 int *piIdxCur /* Write the first index cursor number here */ 1669 ){ 1670 int i; 1671 int iDb; 1672 int iDataCur; 1673 Index *pIdx; 1674 Vdbe *v; 1675 1676 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1677 if( IsVirtual(pTab) ){ 1678 assert( aToOpen==0 ); 1679 *piDataCur = 0; 1680 *piIdxCur = 1; 1681 return 0; 1682 } 1683 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1684 v = sqlite3GetVdbe(pParse); 1685 assert( v!=0 ); 1686 if( iBase<0 ) iBase = pParse->nTab; 1687 iDataCur = iBase++; 1688 if( piDataCur ) *piDataCur = iDataCur; 1689 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1690 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1691 }else{ 1692 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1693 } 1694 if( piIdxCur ) *piIdxCur = iBase; 1695 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1696 int iIdxCur = iBase++; 1697 assert( pIdx->pSchema==pTab->pSchema ); 1698 if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){ 1699 *piDataCur = iIdxCur; 1700 } 1701 if( aToOpen==0 || aToOpen[i+1] ){ 1702 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1703 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1704 VdbeComment((v, "%s", pIdx->zName)); 1705 } 1706 } 1707 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1708 return i; 1709 } 1710 1711 1712 #ifdef SQLITE_TEST 1713 /* 1714 ** The following global variable is incremented whenever the 1715 ** transfer optimization is used. This is used for testing 1716 ** purposes only - to make sure the transfer optimization really 1717 ** is happening when it is suppose to. 1718 */ 1719 int sqlite3_xferopt_count; 1720 #endif /* SQLITE_TEST */ 1721 1722 1723 #ifndef SQLITE_OMIT_XFER_OPT 1724 /* 1725 ** Check to collation names to see if they are compatible. 1726 */ 1727 static int xferCompatibleCollation(const char *z1, const char *z2){ 1728 if( z1==0 ){ 1729 return z2==0; 1730 } 1731 if( z2==0 ){ 1732 return 0; 1733 } 1734 return sqlite3StrICmp(z1, z2)==0; 1735 } 1736 1737 1738 /* 1739 ** Check to see if index pSrc is compatible as a source of data 1740 ** for index pDest in an insert transfer optimization. The rules 1741 ** for a compatible index: 1742 ** 1743 ** * The index is over the same set of columns 1744 ** * The same DESC and ASC markings occurs on all columns 1745 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1746 ** * The same collating sequence on each column 1747 ** * The index has the exact same WHERE clause 1748 */ 1749 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1750 int i; 1751 assert( pDest && pSrc ); 1752 assert( pDest->pTable!=pSrc->pTable ); 1753 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1754 return 0; /* Different number of columns */ 1755 } 1756 if( pDest->onError!=pSrc->onError ){ 1757 return 0; /* Different conflict resolution strategies */ 1758 } 1759 for(i=0; i<pSrc->nKeyCol; i++){ 1760 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1761 return 0; /* Different columns indexed */ 1762 } 1763 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1764 return 0; /* Different sort orders */ 1765 } 1766 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1767 return 0; /* Different collating sequences */ 1768 } 1769 } 1770 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1771 return 0; /* Different WHERE clauses */ 1772 } 1773 1774 /* If no test above fails then the indices must be compatible */ 1775 return 1; 1776 } 1777 1778 /* 1779 ** Attempt the transfer optimization on INSERTs of the form 1780 ** 1781 ** INSERT INTO tab1 SELECT * FROM tab2; 1782 ** 1783 ** The xfer optimization transfers raw records from tab2 over to tab1. 1784 ** Columns are not decoded and reassemblied, which greatly improves 1785 ** performance. Raw index records are transferred in the same way. 1786 ** 1787 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1788 ** There are lots of rules for determining compatibility - see comments 1789 ** embedded in the code for details. 1790 ** 1791 ** This routine returns TRUE if the optimization is guaranteed to be used. 1792 ** Sometimes the xfer optimization will only work if the destination table 1793 ** is empty - a factor that can only be determined at run-time. In that 1794 ** case, this routine generates code for the xfer optimization but also 1795 ** does a test to see if the destination table is empty and jumps over the 1796 ** xfer optimization code if the test fails. In that case, this routine 1797 ** returns FALSE so that the caller will know to go ahead and generate 1798 ** an unoptimized transfer. This routine also returns FALSE if there 1799 ** is no chance that the xfer optimization can be applied. 1800 ** 1801 ** This optimization is particularly useful at making VACUUM run faster. 1802 */ 1803 static int xferOptimization( 1804 Parse *pParse, /* Parser context */ 1805 Table *pDest, /* The table we are inserting into */ 1806 Select *pSelect, /* A SELECT statement to use as the data source */ 1807 int onError, /* How to handle constraint errors */ 1808 int iDbDest /* The database of pDest */ 1809 ){ 1810 ExprList *pEList; /* The result set of the SELECT */ 1811 Table *pSrc; /* The table in the FROM clause of SELECT */ 1812 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1813 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1814 int i; /* Loop counter */ 1815 int iDbSrc; /* The database of pSrc */ 1816 int iSrc, iDest; /* Cursors from source and destination */ 1817 int addr1, addr2; /* Loop addresses */ 1818 int emptyDestTest = 0; /* Address of test for empty pDest */ 1819 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1820 Vdbe *v; /* The VDBE we are building */ 1821 int regAutoinc; /* Memory register used by AUTOINC */ 1822 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1823 int regData, regRowid; /* Registers holding data and rowid */ 1824 1825 if( pSelect==0 ){ 1826 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1827 } 1828 if( pParse->pWith || pSelect->pWith ){ 1829 /* Do not attempt to process this query if there are an WITH clauses 1830 ** attached to it. Proceeding may generate a false "no such table: xxx" 1831 ** error if pSelect reads from a CTE named "xxx". */ 1832 return 0; 1833 } 1834 if( sqlite3TriggerList(pParse, pDest) ){ 1835 return 0; /* tab1 must not have triggers */ 1836 } 1837 #ifndef SQLITE_OMIT_VIRTUALTABLE 1838 if( pDest->tabFlags & TF_Virtual ){ 1839 return 0; /* tab1 must not be a virtual table */ 1840 } 1841 #endif 1842 if( onError==OE_Default ){ 1843 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1844 if( onError==OE_Default ) onError = OE_Abort; 1845 } 1846 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1847 if( pSelect->pSrc->nSrc!=1 ){ 1848 return 0; /* FROM clause must have exactly one term */ 1849 } 1850 if( pSelect->pSrc->a[0].pSelect ){ 1851 return 0; /* FROM clause cannot contain a subquery */ 1852 } 1853 if( pSelect->pWhere ){ 1854 return 0; /* SELECT may not have a WHERE clause */ 1855 } 1856 if( pSelect->pOrderBy ){ 1857 return 0; /* SELECT may not have an ORDER BY clause */ 1858 } 1859 /* Do not need to test for a HAVING clause. If HAVING is present but 1860 ** there is no ORDER BY, we will get an error. */ 1861 if( pSelect->pGroupBy ){ 1862 return 0; /* SELECT may not have a GROUP BY clause */ 1863 } 1864 if( pSelect->pLimit ){ 1865 return 0; /* SELECT may not have a LIMIT clause */ 1866 } 1867 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1868 if( pSelect->pPrior ){ 1869 return 0; /* SELECT may not be a compound query */ 1870 } 1871 if( pSelect->selFlags & SF_Distinct ){ 1872 return 0; /* SELECT may not be DISTINCT */ 1873 } 1874 pEList = pSelect->pEList; 1875 assert( pEList!=0 ); 1876 if( pEList->nExpr!=1 ){ 1877 return 0; /* The result set must have exactly one column */ 1878 } 1879 assert( pEList->a[0].pExpr ); 1880 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1881 return 0; /* The result set must be the special operator "*" */ 1882 } 1883 1884 /* At this point we have established that the statement is of the 1885 ** correct syntactic form to participate in this optimization. Now 1886 ** we have to check the semantics. 1887 */ 1888 pItem = pSelect->pSrc->a; 1889 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 1890 if( pSrc==0 ){ 1891 return 0; /* FROM clause does not contain a real table */ 1892 } 1893 if( pSrc==pDest ){ 1894 return 0; /* tab1 and tab2 may not be the same table */ 1895 } 1896 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 1897 return 0; /* source and destination must both be WITHOUT ROWID or not */ 1898 } 1899 #ifndef SQLITE_OMIT_VIRTUALTABLE 1900 if( pSrc->tabFlags & TF_Virtual ){ 1901 return 0; /* tab2 must not be a virtual table */ 1902 } 1903 #endif 1904 if( pSrc->pSelect ){ 1905 return 0; /* tab2 may not be a view */ 1906 } 1907 if( pDest->nCol!=pSrc->nCol ){ 1908 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1909 } 1910 if( pDest->iPKey!=pSrc->iPKey ){ 1911 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1912 } 1913 for(i=0; i<pDest->nCol; i++){ 1914 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1915 return 0; /* Affinity must be the same on all columns */ 1916 } 1917 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1918 return 0; /* Collating sequence must be the same on all columns */ 1919 } 1920 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1921 return 0; /* tab2 must be NOT NULL if tab1 is */ 1922 } 1923 } 1924 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1925 if( pDestIdx->onError!=OE_None ){ 1926 destHasUniqueIdx = 1; 1927 } 1928 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1929 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1930 } 1931 if( pSrcIdx==0 ){ 1932 return 0; /* pDestIdx has no corresponding index in pSrc */ 1933 } 1934 } 1935 #ifndef SQLITE_OMIT_CHECK 1936 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 1937 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1938 } 1939 #endif 1940 #ifndef SQLITE_OMIT_FOREIGN_KEY 1941 /* Disallow the transfer optimization if the destination table constains 1942 ** any foreign key constraints. This is more restrictive than necessary. 1943 ** But the main beneficiary of the transfer optimization is the VACUUM 1944 ** command, and the VACUUM command disables foreign key constraints. So 1945 ** the extra complication to make this rule less restrictive is probably 1946 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 1947 */ 1948 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 1949 return 0; 1950 } 1951 #endif 1952 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ 1953 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 1954 } 1955 1956 /* If we get this far, it means that the xfer optimization is at 1957 ** least a possibility, though it might only work if the destination 1958 ** table (tab1) is initially empty. 1959 */ 1960 #ifdef SQLITE_TEST 1961 sqlite3_xferopt_count++; 1962 #endif 1963 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1964 v = sqlite3GetVdbe(pParse); 1965 sqlite3CodeVerifySchema(pParse, iDbSrc); 1966 iSrc = pParse->nTab++; 1967 iDest = pParse->nTab++; 1968 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1969 regData = sqlite3GetTempReg(pParse); 1970 regRowid = sqlite3GetTempReg(pParse); 1971 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1972 assert( HasRowid(pDest) || destHasUniqueIdx ); 1973 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 1974 || destHasUniqueIdx /* (2) */ 1975 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 1976 ){ 1977 /* In some circumstances, we are able to run the xfer optimization 1978 ** only if the destination table is initially empty. This code makes 1979 ** that determination. Conditions under which the destination must 1980 ** be empty: 1981 ** 1982 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 1983 ** (If the destination is not initially empty, the rowid fields 1984 ** of index entries might need to change.) 1985 ** 1986 ** (2) The destination has a unique index. (The xfer optimization 1987 ** is unable to test uniqueness.) 1988 ** 1989 ** (3) onError is something other than OE_Abort and OE_Rollback. 1990 */ 1991 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1992 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1993 sqlite3VdbeJumpHere(v, addr1); 1994 } 1995 if( HasRowid(pSrc) ){ 1996 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1997 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1998 if( pDest->iPKey>=0 ){ 1999 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2000 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2001 sqlite3RowidConstraint(pParse, onError, pDest); 2002 sqlite3VdbeJumpHere(v, addr2); 2003 autoIncStep(pParse, regAutoinc, regRowid); 2004 }else if( pDest->pIndex==0 ){ 2005 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2006 }else{ 2007 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2008 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2009 } 2010 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 2011 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 2012 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 2013 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 2014 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 2015 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2016 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2017 }else{ 2018 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2019 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2020 } 2021 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2022 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2023 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2024 } 2025 assert( pSrcIdx ); 2026 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2027 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2028 VdbeComment((v, "%s", pSrcIdx->zName)); 2029 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2030 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2031 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2032 VdbeComment((v, "%s", pDestIdx->zName)); 2033 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 2034 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 2035 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 2036 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 2037 sqlite3VdbeJumpHere(v, addr1); 2038 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2039 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2040 } 2041 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2042 sqlite3ReleaseTempReg(pParse, regRowid); 2043 sqlite3ReleaseTempReg(pParse, regData); 2044 if( emptyDestTest ){ 2045 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2046 sqlite3VdbeJumpHere(v, emptyDestTest); 2047 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2048 return 0; 2049 }else{ 2050 return 1; 2051 } 2052 } 2053 #endif /* SQLITE_OMIT_XFER_OPT */ 2054