xref: /sqlite-3.40.0/src/insert.c (revision 962f9669)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum=pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'a'            TEXT
60 **  'b'            NONE
61 **  'c'            NUMERIC
62 **  'd'            INTEGER
63 **  'e'            REAL
64 **
65 ** An extra 'd' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     sqlite3 *db = sqlite3VdbeDb(v);
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       db->mallocFailed = 1;
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
93     }
94     pIdx->zColAff[n] = 0;
95   }
96 
97   return pIdx->zColAff;
98 }
99 
100 /*
101 ** Set P4 of the most recently inserted opcode to a column affinity
102 ** string for table pTab. A column affinity string has one character
103 ** for each column indexed by the index, according to the affinity of the
104 ** column:
105 **
106 **  Character      Column affinity
107 **  ------------------------------
108 **  'a'            TEXT
109 **  'b'            NONE
110 **  'c'            NUMERIC
111 **  'd'            INTEGER
112 **  'e'            REAL
113 */
114 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
115   /* The first time a column affinity string for a particular table
116   ** is required, it is allocated and populated here. It is then
117   ** stored as a member of the Table structure for subsequent use.
118   **
119   ** The column affinity string will eventually be deleted by
120   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
121   */
122   if( !pTab->zColAff ){
123     char *zColAff;
124     int i;
125     sqlite3 *db = sqlite3VdbeDb(v);
126 
127     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
128     if( !zColAff ){
129       db->mallocFailed = 1;
130       return;
131     }
132 
133     for(i=0; i<pTab->nCol; i++){
134       zColAff[i] = pTab->aCol[i].affinity;
135     }
136     zColAff[pTab->nCol] = '\0';
137 
138     pTab->zColAff = zColAff;
139   }
140 
141   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
142 }
143 
144 /*
145 ** Return non-zero if the table pTab in database iDb or any of its indices
146 ** have been opened at any point in the VDBE program beginning at location
147 ** iStartAddr throught the end of the program.  This is used to see if
148 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
149 ** run without using temporary table for the results of the SELECT.
150 */
151 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
152   Vdbe *v = sqlite3GetVdbe(p);
153   int i;
154   int iEnd = sqlite3VdbeCurrentAddr(v);
155 #ifndef SQLITE_OMIT_VIRTUALTABLE
156   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
157 #endif
158 
159   for(i=iStartAddr; i<iEnd; i++){
160     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
161     assert( pOp!=0 );
162     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
163       Index *pIndex;
164       int tnum = pOp->p2;
165       if( tnum==pTab->tnum ){
166         return 1;
167       }
168       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
169         if( tnum==pIndex->tnum ){
170           return 1;
171         }
172       }
173     }
174 #ifndef SQLITE_OMIT_VIRTUALTABLE
175     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
176       assert( pOp->p4.pVtab!=0 );
177       assert( pOp->p4type==P4_VTAB );
178       return 1;
179     }
180 #endif
181   }
182   return 0;
183 }
184 
185 #ifndef SQLITE_OMIT_AUTOINCREMENT
186 /*
187 ** Locate or create an AutoincInfo structure associated with table pTab
188 ** which is in database iDb.  Return the register number for the register
189 ** that holds the maximum rowid.
190 **
191 ** There is at most one AutoincInfo structure per table even if the
192 ** same table is autoincremented multiple times due to inserts within
193 ** triggers.  A new AutoincInfo structure is created if this is the
194 ** first use of table pTab.  On 2nd and subsequent uses, the original
195 ** AutoincInfo structure is used.
196 **
197 ** Three memory locations are allocated:
198 **
199 **   (1)  Register to hold the name of the pTab table.
200 **   (2)  Register to hold the maximum ROWID of pTab.
201 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
202 **
203 ** The 2nd register is the one that is returned.  That is all the
204 ** insert routine needs to know about.
205 */
206 static int autoIncBegin(
207   Parse *pParse,      /* Parsing context */
208   int iDb,            /* Index of the database holding pTab */
209   Table *pTab         /* The table we are writing to */
210 ){
211   int memId = 0;      /* Register holding maximum rowid */
212   if( pTab->tabFlags & TF_Autoincrement ){
213     Parse *pToplevel = sqlite3ParseToplevel(pParse);
214     AutoincInfo *pInfo;
215 
216     pInfo = pToplevel->pAinc;
217     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
218     if( pInfo==0 ){
219       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
220       if( pInfo==0 ) return 0;
221       pInfo->pNext = pToplevel->pAinc;
222       pToplevel->pAinc = pInfo;
223       pInfo->pTab = pTab;
224       pInfo->iDb = iDb;
225       pToplevel->nMem++;                  /* Register to hold name of table */
226       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
227       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
228     }
229     memId = pInfo->regCtr;
230   }
231   return memId;
232 }
233 
234 /*
235 ** This routine generates code that will initialize all of the
236 ** register used by the autoincrement tracker.
237 */
238 void sqlite3AutoincrementBegin(Parse *pParse){
239   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
240   sqlite3 *db = pParse->db;  /* The database connection */
241   Db *pDb;                   /* Database only autoinc table */
242   int memId;                 /* Register holding max rowid */
243   int addr;                  /* A VDBE address */
244   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
245 
246   /* This routine is never called during trigger-generation.  It is
247   ** only called from the top-level */
248   assert( pParse->pTriggerTab==0 );
249   assert( pParse==sqlite3ParseToplevel(pParse) );
250 
251   assert( v );   /* We failed long ago if this is not so */
252   for(p = pParse->pAinc; p; p = p->pNext){
253     pDb = &db->aDb[p->iDb];
254     memId = p->regCtr;
255     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
256     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
257     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
258     addr = sqlite3VdbeCurrentAddr(v);
259     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
260     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
261     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
262     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
263     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
264     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
265     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
266     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
267     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
268     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
269     sqlite3VdbeAddOp0(v, OP_Close);
270   }
271 }
272 
273 /*
274 ** Update the maximum rowid for an autoincrement calculation.
275 **
276 ** This routine should be called when the top of the stack holds a
277 ** new rowid that is about to be inserted.  If that new rowid is
278 ** larger than the maximum rowid in the memId memory cell, then the
279 ** memory cell is updated.  The stack is unchanged.
280 */
281 static void autoIncStep(Parse *pParse, int memId, int regRowid){
282   if( memId>0 ){
283     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
284   }
285 }
286 
287 /*
288 ** This routine generates the code needed to write autoincrement
289 ** maximum rowid values back into the sqlite_sequence register.
290 ** Every statement that might do an INSERT into an autoincrement
291 ** table (either directly or through triggers) needs to call this
292 ** routine just before the "exit" code.
293 */
294 void sqlite3AutoincrementEnd(Parse *pParse){
295   AutoincInfo *p;
296   Vdbe *v = pParse->pVdbe;
297   sqlite3 *db = pParse->db;
298 
299   assert( v );
300   for(p = pParse->pAinc; p; p = p->pNext){
301     Db *pDb = &db->aDb[p->iDb];
302     int j1, j2, j3, j4, j5;
303     int iRec;
304     int memId = p->regCtr;
305 
306     iRec = sqlite3GetTempReg(pParse);
307     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
308     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
309     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
310     j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
311     j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
312     j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
313     sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
314     sqlite3VdbeJumpHere(v, j2);
315     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
316     j5 = sqlite3VdbeAddOp0(v, OP_Goto);
317     sqlite3VdbeJumpHere(v, j4);
318     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
319     sqlite3VdbeJumpHere(v, j1);
320     sqlite3VdbeJumpHere(v, j5);
321     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
322     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
323     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
324     sqlite3VdbeAddOp0(v, OP_Close);
325     sqlite3ReleaseTempReg(pParse, iRec);
326   }
327 }
328 #else
329 /*
330 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
331 ** above are all no-ops
332 */
333 # define autoIncBegin(A,B,C) (0)
334 # define autoIncStep(A,B,C)
335 #endif /* SQLITE_OMIT_AUTOINCREMENT */
336 
337 
338 /*
339 ** Generate code for a co-routine that will evaluate a subquery one
340 ** row at a time.
341 **
342 ** The pSelect parameter is the subquery that the co-routine will evaluation.
343 ** Information about the location of co-routine and the registers it will use
344 ** is returned by filling in the pDest object.
345 **
346 ** Registers are allocated as follows:
347 **
348 **   pDest->iSDParm      The register holding the next entry-point of the
349 **                       co-routine.  Run the co-routine to its next breakpoint
350 **                       by calling "OP_Yield $X" where $X is pDest->iSDParm.
351 **
352 **   pDest->iSdst        First result register.
353 **
354 **   pDest->nSdst        Number of result registers.
355 **
356 ** At EOF the first result register will be marked as "undefined" so that
357 ** the caller can know when to stop reading results.
358 **
359 ** This routine handles all of the register allocation and fills in the
360 ** pDest structure appropriately.
361 **
362 ** Here is a schematic of the generated code assuming that X is the
363 ** co-routine entry-point register reg[pDest->iSDParm], that EOF is the
364 ** completed flag reg[pDest->iSDParm+1], and R and S are the range of
365 ** registers that hold the result set, reg[pDest->iSdst] through
366 ** reg[pDest->iSdst+pDest->nSdst-1]:
367 **
368 **         X <- A
369 **         goto B
370 **      A: setup for the SELECT
371 **         loop rows in the SELECT
372 **           load results into registers R..S
373 **           yield X
374 **         end loop
375 **         cleanup after the SELECT
376 **         end co-routine R
377 **      B:
378 **
379 ** To use this subroutine, the caller generates code as follows:
380 **
381 **         [ Co-routine generated by this subroutine, shown above ]
382 **      S: yield X, at EOF goto E
383 **         if skip this row, goto C
384 **         if terminate loop, goto E
385 **         deal with this row
386 **      C: goto S
387 **      E:
388 */
389 int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
390   int regYield;       /* Register holding co-routine entry-point */
391   int addrTop;        /* Top of the co-routine */
392   int rc;             /* Result code */
393   Vdbe *v;            /* VDBE under construction */
394 
395   regYield = ++pParse->nMem;
396   v = sqlite3GetVdbe(pParse);
397   addrTop = sqlite3VdbeCurrentAddr(v) + 1;
398   sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
399   sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
400   rc = sqlite3Select(pParse, pSelect, pDest);
401   assert( pParse->nErr==0 || rc );
402   if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
403   if( rc ) return rc;
404   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
405   sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
406   return rc;
407 }
408 
409 
410 
411 /* Forward declaration */
412 static int xferOptimization(
413   Parse *pParse,        /* Parser context */
414   Table *pDest,         /* The table we are inserting into */
415   Select *pSelect,      /* A SELECT statement to use as the data source */
416   int onError,          /* How to handle constraint errors */
417   int iDbDest           /* The database of pDest */
418 );
419 
420 /*
421 ** This routine is called to handle SQL of the following forms:
422 **
423 **    insert into TABLE (IDLIST) values(EXPRLIST)
424 **    insert into TABLE (IDLIST) select
425 **
426 ** The IDLIST following the table name is always optional.  If omitted,
427 ** then a list of all columns for the table is substituted.  The IDLIST
428 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
429 **
430 ** The pList parameter holds EXPRLIST in the first form of the INSERT
431 ** statement above, and pSelect is NULL.  For the second form, pList is
432 ** NULL and pSelect is a pointer to the select statement used to generate
433 ** data for the insert.
434 **
435 ** The code generated follows one of four templates.  For a simple
436 ** insert with data coming from a VALUES clause, the code executes
437 ** once straight down through.  Pseudo-code follows (we call this
438 ** the "1st template"):
439 **
440 **         open write cursor to <table> and its indices
441 **         put VALUES clause expressions into registers
442 **         write the resulting record into <table>
443 **         cleanup
444 **
445 ** The three remaining templates assume the statement is of the form
446 **
447 **   INSERT INTO <table> SELECT ...
448 **
449 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
450 ** in other words if the SELECT pulls all columns from a single table
451 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
452 ** if <table2> and <table1> are distinct tables but have identical
453 ** schemas, including all the same indices, then a special optimization
454 ** is invoked that copies raw records from <table2> over to <table1>.
455 ** See the xferOptimization() function for the implementation of this
456 ** template.  This is the 2nd template.
457 **
458 **         open a write cursor to <table>
459 **         open read cursor on <table2>
460 **         transfer all records in <table2> over to <table>
461 **         close cursors
462 **         foreach index on <table>
463 **           open a write cursor on the <table> index
464 **           open a read cursor on the corresponding <table2> index
465 **           transfer all records from the read to the write cursors
466 **           close cursors
467 **         end foreach
468 **
469 ** The 3rd template is for when the second template does not apply
470 ** and the SELECT clause does not read from <table> at any time.
471 ** The generated code follows this template:
472 **
473 **         X <- A
474 **         goto B
475 **      A: setup for the SELECT
476 **         loop over the rows in the SELECT
477 **           load values into registers R..R+n
478 **           yield X
479 **         end loop
480 **         cleanup after the SELECT
481 **         end-coroutine X
482 **      B: open write cursor to <table> and its indices
483 **      C: yield X, at EOF goto D
484 **         insert the select result into <table> from R..R+n
485 **         goto C
486 **      D: cleanup
487 **
488 ** The 4th template is used if the insert statement takes its
489 ** values from a SELECT but the data is being inserted into a table
490 ** that is also read as part of the SELECT.  In the third form,
491 ** we have to use a intermediate table to store the results of
492 ** the select.  The template is like this:
493 **
494 **         X <- A
495 **         goto B
496 **      A: setup for the SELECT
497 **         loop over the tables in the SELECT
498 **           load value into register R..R+n
499 **           yield X
500 **         end loop
501 **         cleanup after the SELECT
502 **         end co-routine R
503 **      B: open temp table
504 **      L: yield X, at EOF goto M
505 **         insert row from R..R+n into temp table
506 **         goto L
507 **      M: open write cursor to <table> and its indices
508 **         rewind temp table
509 **      C: loop over rows of intermediate table
510 **           transfer values form intermediate table into <table>
511 **         end loop
512 **      D: cleanup
513 */
514 void sqlite3Insert(
515   Parse *pParse,        /* Parser context */
516   SrcList *pTabList,    /* Name of table into which we are inserting */
517   Select *pSelect,      /* A SELECT statement to use as the data source */
518   IdList *pColumn,      /* Column names corresponding to IDLIST. */
519   int onError           /* How to handle constraint errors */
520 ){
521   sqlite3 *db;          /* The main database structure */
522   Table *pTab;          /* The table to insert into.  aka TABLE */
523   char *zTab;           /* Name of the table into which we are inserting */
524   const char *zDb;      /* Name of the database holding this table */
525   int i, j, idx;        /* Loop counters */
526   Vdbe *v;              /* Generate code into this virtual machine */
527   Index *pIdx;          /* For looping over indices of the table */
528   int nColumn;          /* Number of columns in the data */
529   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
530   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
531   int iIdxCur = 0;      /* First index cursor */
532   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
533   int endOfLoop;        /* Label for the end of the insertion loop */
534   int useTempTable = 0; /* Store SELECT results in intermediate table */
535   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
536   int addrInsTop = 0;   /* Jump to label "D" */
537   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
538   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
539   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
540   int iDb;              /* Index of database holding TABLE */
541   Db *pDb;              /* The database containing table being inserted into */
542   int appendFlag = 0;   /* True if the insert is likely to be an append */
543   int withoutRowid;     /* 0 for normal table.  1 for WITHOUT ROWID table */
544   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
545 
546   /* Register allocations */
547   int regFromSelect = 0;/* Base register for data coming from SELECT */
548   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
549   int regRowCount = 0;  /* Memory cell used for the row counter */
550   int regIns;           /* Block of regs holding rowid+data being inserted */
551   int regRowid;         /* registers holding insert rowid */
552   int regData;          /* register holding first column to insert */
553   int *aRegIdx = 0;     /* One register allocated to each index */
554 
555 #ifndef SQLITE_OMIT_TRIGGER
556   int isView;                 /* True if attempting to insert into a view */
557   Trigger *pTrigger;          /* List of triggers on pTab, if required */
558   int tmask;                  /* Mask of trigger times */
559 #endif
560 
561   db = pParse->db;
562   memset(&dest, 0, sizeof(dest));
563   if( pParse->nErr || db->mallocFailed ){
564     goto insert_cleanup;
565   }
566 
567   /* If the Select object is really just a simple VALUES() list with a
568   ** single row values (the common case) then keep that one row of values
569   ** and go ahead and discard the Select object
570   */
571   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
572     pList = pSelect->pEList;
573     pSelect->pEList = 0;
574     sqlite3SelectDelete(db, pSelect);
575     pSelect = 0;
576   }
577 
578   /* Locate the table into which we will be inserting new information.
579   */
580   assert( pTabList->nSrc==1 );
581   zTab = pTabList->a[0].zName;
582   if( NEVER(zTab==0) ) goto insert_cleanup;
583   pTab = sqlite3SrcListLookup(pParse, pTabList);
584   if( pTab==0 ){
585     goto insert_cleanup;
586   }
587   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
588   assert( iDb<db->nDb );
589   pDb = &db->aDb[iDb];
590   zDb = pDb->zName;
591   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
592     goto insert_cleanup;
593   }
594   withoutRowid = !HasRowid(pTab);
595 
596   /* Figure out if we have any triggers and if the table being
597   ** inserted into is a view
598   */
599 #ifndef SQLITE_OMIT_TRIGGER
600   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
601   isView = pTab->pSelect!=0;
602 #else
603 # define pTrigger 0
604 # define tmask 0
605 # define isView 0
606 #endif
607 #ifdef SQLITE_OMIT_VIEW
608 # undef isView
609 # define isView 0
610 #endif
611   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
612 
613   /* If pTab is really a view, make sure it has been initialized.
614   ** ViewGetColumnNames() is a no-op if pTab is not a view.
615   */
616   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
617     goto insert_cleanup;
618   }
619 
620   /* Cannot insert into a read-only table.
621   */
622   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
623     goto insert_cleanup;
624   }
625 
626   /* Allocate a VDBE
627   */
628   v = sqlite3GetVdbe(pParse);
629   if( v==0 ) goto insert_cleanup;
630   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
631   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
632 
633 #ifndef SQLITE_OMIT_XFER_OPT
634   /* If the statement is of the form
635   **
636   **       INSERT INTO <table1> SELECT * FROM <table2>;
637   **
638   ** Then special optimizations can be applied that make the transfer
639   ** very fast and which reduce fragmentation of indices.
640   **
641   ** This is the 2nd template.
642   */
643   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
644     assert( !pTrigger );
645     assert( pList==0 );
646     goto insert_end;
647   }
648 #endif /* SQLITE_OMIT_XFER_OPT */
649 
650   /* If this is an AUTOINCREMENT table, look up the sequence number in the
651   ** sqlite_sequence table and store it in memory cell regAutoinc.
652   */
653   regAutoinc = autoIncBegin(pParse, iDb, pTab);
654 
655   /* Figure out how many columns of data are supplied.  If the data
656   ** is coming from a SELECT statement, then generate a co-routine that
657   ** produces a single row of the SELECT on each invocation.  The
658   ** co-routine is the common header to the 3rd and 4th templates.
659   */
660   if( pSelect ){
661     /* Data is coming from a SELECT.  Generate a co-routine to run the SELECT */
662     int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest);
663     if( rc ) goto insert_cleanup;
664 
665     regFromSelect = dest.iSdst;
666     assert( pSelect->pEList );
667     nColumn = pSelect->pEList->nExpr;
668     assert( dest.nSdst==nColumn );
669 
670     /* Set useTempTable to TRUE if the result of the SELECT statement
671     ** should be written into a temporary table (template 4).  Set to
672     ** FALSE if each output row of the SELECT can be written directly into
673     ** the destination table (template 3).
674     **
675     ** A temp table must be used if the table being updated is also one
676     ** of the tables being read by the SELECT statement.  Also use a
677     ** temp table in the case of row triggers.
678     */
679     if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
680       useTempTable = 1;
681     }
682 
683     if( useTempTable ){
684       /* Invoke the coroutine to extract information from the SELECT
685       ** and add it to a transient table srcTab.  The code generated
686       ** here is from the 4th template:
687       **
688       **      B: open temp table
689       **      L: yield X, goto M at EOF
690       **         insert row from R..R+n into temp table
691       **         goto L
692       **      M: ...
693       */
694       int regRec;          /* Register to hold packed record */
695       int regTempRowid;    /* Register to hold temp table ROWID */
696       int addrTop;         /* Label "L" */
697 
698       srcTab = pParse->nTab++;
699       regRec = sqlite3GetTempReg(pParse);
700       regTempRowid = sqlite3GetTempReg(pParse);
701       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
702       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
703       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
704       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
705       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
706       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
707       sqlite3VdbeJumpHere(v, addrTop);
708       sqlite3ReleaseTempReg(pParse, regRec);
709       sqlite3ReleaseTempReg(pParse, regTempRowid);
710     }
711   }else{
712     /* This is the case if the data for the INSERT is coming from a VALUES
713     ** clause
714     */
715     NameContext sNC;
716     memset(&sNC, 0, sizeof(sNC));
717     sNC.pParse = pParse;
718     srcTab = -1;
719     assert( useTempTable==0 );
720     nColumn = pList ? pList->nExpr : 0;
721     for(i=0; i<nColumn; i++){
722       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
723         goto insert_cleanup;
724       }
725     }
726   }
727 
728   /* Make sure the number of columns in the source data matches the number
729   ** of columns to be inserted into the table.
730   */
731   if( IsVirtual(pTab) ){
732     for(i=0; i<pTab->nCol; i++){
733       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
734     }
735   }
736   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
737     sqlite3ErrorMsg(pParse,
738        "table %S has %d columns but %d values were supplied",
739        pTabList, 0, pTab->nCol-nHidden, nColumn);
740     goto insert_cleanup;
741   }
742   if( pColumn!=0 && nColumn!=pColumn->nId ){
743     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
744     goto insert_cleanup;
745   }
746 
747   /* If the INSERT statement included an IDLIST term, then make sure
748   ** all elements of the IDLIST really are columns of the table and
749   ** remember the column indices.
750   **
751   ** If the table has an INTEGER PRIMARY KEY column and that column
752   ** is named in the IDLIST, then record in the ipkColumn variable
753   ** the index into IDLIST of the primary key column.  ipkColumn is
754   ** the index of the primary key as it appears in IDLIST, not as
755   ** is appears in the original table.  (The index of the INTEGER
756   ** PRIMARY KEY in the original table is pTab->iPKey.)
757   */
758   if( pColumn ){
759     for(i=0; i<pColumn->nId; i++){
760       pColumn->a[i].idx = -1;
761     }
762     for(i=0; i<pColumn->nId; i++){
763       for(j=0; j<pTab->nCol; j++){
764         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
765           pColumn->a[i].idx = j;
766           if( j==pTab->iPKey ){
767             ipkColumn = i;  assert( !withoutRowid );
768           }
769           break;
770         }
771       }
772       if( j>=pTab->nCol ){
773         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
774           ipkColumn = i;
775         }else{
776           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
777               pTabList, 0, pColumn->a[i].zName);
778           pParse->checkSchema = 1;
779           goto insert_cleanup;
780         }
781       }
782     }
783   }
784 
785   /* If there is no IDLIST term but the table has an integer primary
786   ** key, the set the ipkColumn variable to the integer primary key
787   ** column index in the original table definition.
788   */
789   if( pColumn==0 && nColumn>0 ){
790     ipkColumn = pTab->iPKey;
791   }
792 
793   /* Initialize the count of rows to be inserted
794   */
795   if( db->flags & SQLITE_CountRows ){
796     regRowCount = ++pParse->nMem;
797     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
798   }
799 
800   /* If this is not a view, open the table and and all indices */
801   if( !isView ){
802     int nIdx;
803     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
804                                       &iDataCur, &iIdxCur);
805     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
806     if( aRegIdx==0 ){
807       goto insert_cleanup;
808     }
809     for(i=0; i<nIdx; i++){
810       aRegIdx[i] = ++pParse->nMem;
811     }
812   }
813 
814   /* This is the top of the main insertion loop */
815   if( useTempTable ){
816     /* This block codes the top of loop only.  The complete loop is the
817     ** following pseudocode (template 4):
818     **
819     **         rewind temp table, if empty goto D
820     **      C: loop over rows of intermediate table
821     **           transfer values form intermediate table into <table>
822     **         end loop
823     **      D: ...
824     */
825     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
826     addrCont = sqlite3VdbeCurrentAddr(v);
827   }else if( pSelect ){
828     /* This block codes the top of loop only.  The complete loop is the
829     ** following pseudocode (template 3):
830     **
831     **      C: yield X, at EOF goto D
832     **         insert the select result into <table> from R..R+n
833     **         goto C
834     **      D: ...
835     */
836     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
837   }
838 
839   /* Allocate registers for holding the rowid of the new row,
840   ** the content of the new row, and the assemblied row record.
841   */
842   regRowid = regIns = pParse->nMem+1;
843   pParse->nMem += pTab->nCol + 1;
844   if( IsVirtual(pTab) ){
845     regRowid++;
846     pParse->nMem++;
847   }
848   regData = regRowid+1;
849 
850   /* Run the BEFORE and INSTEAD OF triggers, if there are any
851   */
852   endOfLoop = sqlite3VdbeMakeLabel(v);
853   if( tmask & TRIGGER_BEFORE ){
854     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
855 
856     /* build the NEW.* reference row.  Note that if there is an INTEGER
857     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
858     ** translated into a unique ID for the row.  But on a BEFORE trigger,
859     ** we do not know what the unique ID will be (because the insert has
860     ** not happened yet) so we substitute a rowid of -1
861     */
862     if( ipkColumn<0 ){
863       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
864     }else{
865       int j1;
866       assert( !withoutRowid );
867       if( useTempTable ){
868         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
869       }else{
870         assert( pSelect==0 );  /* Otherwise useTempTable is true */
871         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
872       }
873       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
874       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
875       sqlite3VdbeJumpHere(v, j1);
876       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
877     }
878 
879     /* Cannot have triggers on a virtual table. If it were possible,
880     ** this block would have to account for hidden column.
881     */
882     assert( !IsVirtual(pTab) );
883 
884     /* Create the new column data
885     */
886     for(i=0; i<pTab->nCol; i++){
887       if( pColumn==0 ){
888         j = i;
889       }else{
890         for(j=0; j<pColumn->nId; j++){
891           if( pColumn->a[j].idx==i ) break;
892         }
893       }
894       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
895         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
896       }else if( useTempTable ){
897         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
898       }else{
899         assert( pSelect==0 ); /* Otherwise useTempTable is true */
900         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
901       }
902     }
903 
904     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
905     ** do not attempt any conversions before assembling the record.
906     ** If this is a real table, attempt conversions as required by the
907     ** table column affinities.
908     */
909     if( !isView ){
910       sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
911       sqlite3TableAffinityStr(v, pTab);
912     }
913 
914     /* Fire BEFORE or INSTEAD OF triggers */
915     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
916         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
917 
918     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
919   }
920 
921   /* Compute the content of the next row to insert into a range of
922   ** registers beginning at regIns.
923   */
924   if( !isView ){
925     if( IsVirtual(pTab) ){
926       /* The row that the VUpdate opcode will delete: none */
927       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
928     }
929     if( ipkColumn>=0 ){
930       if( useTempTable ){
931         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
932       }else if( pSelect ){
933         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+ipkColumn, regRowid);
934       }else{
935         VdbeOp *pOp;
936         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
937         pOp = sqlite3VdbeGetOp(v, -1);
938         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
939           appendFlag = 1;
940           pOp->opcode = OP_NewRowid;
941           pOp->p1 = iDataCur;
942           pOp->p2 = regRowid;
943           pOp->p3 = regAutoinc;
944         }
945       }
946       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
947       ** to generate a unique primary key value.
948       */
949       if( !appendFlag ){
950         int j1;
951         if( !IsVirtual(pTab) ){
952           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
953           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
954           sqlite3VdbeJumpHere(v, j1);
955         }else{
956           j1 = sqlite3VdbeCurrentAddr(v);
957           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
958         }
959         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
960       }
961     }else if( IsVirtual(pTab) || withoutRowid ){
962       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
963     }else{
964       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
965       appendFlag = 1;
966     }
967     autoIncStep(pParse, regAutoinc, regRowid);
968 
969     /* Compute data for all columns of the new entry, beginning
970     ** with the first column.
971     */
972     nHidden = 0;
973     for(i=0; i<pTab->nCol; i++){
974       int iRegStore = regRowid+1+i;
975       if( i==pTab->iPKey ){
976         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
977         ** Whenever this column is read, the rowid will be substituted
978         ** in its place.  Hence, fill this column with a NULL to avoid
979         ** taking up data space with information that will never be used. */
980         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
981         continue;
982       }
983       if( pColumn==0 ){
984         if( IsHiddenColumn(&pTab->aCol[i]) ){
985           assert( IsVirtual(pTab) );
986           j = -1;
987           nHidden++;
988         }else{
989           j = i - nHidden;
990         }
991       }else{
992         for(j=0; j<pColumn->nId; j++){
993           if( pColumn->a[j].idx==i ) break;
994         }
995       }
996       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
997         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
998       }else if( useTempTable ){
999         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1000       }else if( pSelect ){
1001         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1002       }else{
1003         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1004       }
1005     }
1006 
1007     /* Generate code to check constraints and generate index keys and
1008     ** do the insertion.
1009     */
1010 #ifndef SQLITE_OMIT_VIRTUALTABLE
1011     if( IsVirtual(pTab) ){
1012       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1013       sqlite3VtabMakeWritable(pParse, pTab);
1014       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1015       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1016       sqlite3MayAbort(pParse);
1017     }else
1018 #endif
1019     {
1020       int isReplace;    /* Set to true if constraints may cause a replace */
1021       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1022           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
1023       );
1024       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1025       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1026                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
1027     }
1028   }
1029 
1030   /* Update the count of rows that are inserted
1031   */
1032   if( (db->flags & SQLITE_CountRows)!=0 ){
1033     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1034   }
1035 
1036   if( pTrigger ){
1037     /* Code AFTER triggers */
1038     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1039         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1040   }
1041 
1042   /* The bottom of the main insertion loop, if the data source
1043   ** is a SELECT statement.
1044   */
1045   sqlite3VdbeResolveLabel(v, endOfLoop);
1046   if( useTempTable ){
1047     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
1048     sqlite3VdbeJumpHere(v, addrInsTop);
1049     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1050   }else if( pSelect ){
1051     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
1052     sqlite3VdbeJumpHere(v, addrInsTop);
1053   }
1054 
1055   if( !IsVirtual(pTab) && !isView ){
1056     /* Close all tables opened */
1057     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1058     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1059       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1060     }
1061   }
1062 
1063 insert_end:
1064   /* Update the sqlite_sequence table by storing the content of the
1065   ** maximum rowid counter values recorded while inserting into
1066   ** autoincrement tables.
1067   */
1068   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1069     sqlite3AutoincrementEnd(pParse);
1070   }
1071 
1072   /*
1073   ** Return the number of rows inserted. If this routine is
1074   ** generating code because of a call to sqlite3NestedParse(), do not
1075   ** invoke the callback function.
1076   */
1077   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1078     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1079     sqlite3VdbeSetNumCols(v, 1);
1080     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1081   }
1082 
1083 insert_cleanup:
1084   sqlite3SrcListDelete(db, pTabList);
1085   sqlite3ExprListDelete(db, pList);
1086   sqlite3SelectDelete(db, pSelect);
1087   sqlite3IdListDelete(db, pColumn);
1088   sqlite3DbFree(db, aRegIdx);
1089 }
1090 
1091 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1092 ** thely may interfere with compilation of other functions in this file
1093 ** (or in another file, if this file becomes part of the amalgamation).  */
1094 #ifdef isView
1095  #undef isView
1096 #endif
1097 #ifdef pTrigger
1098  #undef pTrigger
1099 #endif
1100 #ifdef tmask
1101  #undef tmask
1102 #endif
1103 
1104 /*
1105 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1106 ** on table pTab.
1107 **
1108 ** The regNewData parameter is the first register in a range that contains
1109 ** the data to be inserted or the data after the update.  There will be
1110 ** pTab->nCol+1 registers in this range.  The first register (the one
1111 ** that regNewData points to) will contain the new rowid, or NULL in the
1112 ** case of a WITHOUT ROWID table.  The second register in the range will
1113 ** contain the content of the first table column.  The third register will
1114 ** contain the content of the second table column.  And so forth.
1115 **
1116 ** The regOldData parameter is similar to regNewData except that it contains
1117 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1118 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1119 ** checking regOldData for zero.
1120 **
1121 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1122 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1123 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1124 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1125 **
1126 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1127 ** was explicitly specified as part of the INSERT statement.  If pkChng
1128 ** is zero, it means that the either rowid is computed automatically or
1129 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1130 ** pkChng will only be true if the INSERT statement provides an integer
1131 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1132 **
1133 ** The code generated by this routine will store new index entries into
1134 ** registers identified by aRegIdx[].  No index entry is created for
1135 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1136 ** the same as the order of indices on the linked list of indices
1137 ** at pTab->pIndex.
1138 **
1139 ** The caller must have already opened writeable cursors on the main
1140 ** table and all applicable indices (that is to say, all indices for which
1141 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1142 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1143 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1144 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1145 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1146 **
1147 ** This routine also generates code to check constraints.  NOT NULL,
1148 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1149 ** then the appropriate action is performed.  There are five possible
1150 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1151 **
1152 **  Constraint type  Action       What Happens
1153 **  ---------------  ----------   ----------------------------------------
1154 **  any              ROLLBACK     The current transaction is rolled back and
1155 **                                sqlite3_step() returns immediately with a
1156 **                                return code of SQLITE_CONSTRAINT.
1157 **
1158 **  any              ABORT        Back out changes from the current command
1159 **                                only (do not do a complete rollback) then
1160 **                                cause sqlite3_step() to return immediately
1161 **                                with SQLITE_CONSTRAINT.
1162 **
1163 **  any              FAIL         Sqlite3_step() returns immediately with a
1164 **                                return code of SQLITE_CONSTRAINT.  The
1165 **                                transaction is not rolled back and any
1166 **                                changes to prior rows are retained.
1167 **
1168 **  any              IGNORE       The attempt in insert or update the current
1169 **                                row is skipped, without throwing an error.
1170 **                                Processing continues with the next row.
1171 **                                (There is an immediate jump to ignoreDest.)
1172 **
1173 **  NOT NULL         REPLACE      The NULL value is replace by the default
1174 **                                value for that column.  If the default value
1175 **                                is NULL, the action is the same as ABORT.
1176 **
1177 **  UNIQUE           REPLACE      The other row that conflicts with the row
1178 **                                being inserted is removed.
1179 **
1180 **  CHECK            REPLACE      Illegal.  The results in an exception.
1181 **
1182 ** Which action to take is determined by the overrideError parameter.
1183 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1184 ** is used.  Or if pParse->onError==OE_Default then the onError value
1185 ** for the constraint is used.
1186 */
1187 void sqlite3GenerateConstraintChecks(
1188   Parse *pParse,       /* The parser context */
1189   Table *pTab,         /* The table being inserted or updated */
1190   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1191   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1192   int iIdxCur,         /* First index cursor */
1193   int regNewData,      /* First register in a range holding values to insert */
1194   int regOldData,      /* Previous content.  0 for INSERTs */
1195   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1196   u8 overrideError,    /* Override onError to this if not OE_Default */
1197   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1198   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
1199 ){
1200   Vdbe *v;             /* VDBE under constrution */
1201   Index *pIdx;         /* Pointer to one of the indices */
1202   Index *pPk = 0;      /* The PRIMARY KEY index */
1203   sqlite3 *db;         /* Database connection */
1204   int i;               /* loop counter */
1205   int ix;              /* Index loop counter */
1206   int nCol;            /* Number of columns */
1207   int onError;         /* Conflict resolution strategy */
1208   int j1;              /* Addresss of jump instruction */
1209   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1210   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1211   int ipkTop = 0;      /* Top of the rowid change constraint check */
1212   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
1213   u8 isUpdate;         /* True if this is an UPDATE operation */
1214   int regRowid = -1;   /* Register holding ROWID value */
1215 
1216   isUpdate = regOldData!=0;
1217   db = pParse->db;
1218   v = sqlite3GetVdbe(pParse);
1219   assert( v!=0 );
1220   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1221   nCol = pTab->nCol;
1222 
1223   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1224   ** normal rowid tables.  nPkField is the number of key fields in the
1225   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1226   ** number of fields in the true primary key of the table. */
1227   if( HasRowid(pTab) ){
1228     pPk = 0;
1229     nPkField = 1;
1230   }else{
1231     pPk = sqlite3PrimaryKeyIndex(pTab);
1232     nPkField = pPk->nKeyCol;
1233   }
1234 
1235   /* Record that this module has started */
1236   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1237                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1238 
1239   /* Test all NOT NULL constraints.
1240   */
1241   for(i=0; i<nCol; i++){
1242     if( i==pTab->iPKey ){
1243       continue;
1244     }
1245     onError = pTab->aCol[i].notNull;
1246     if( onError==OE_None ) continue;
1247     if( overrideError!=OE_Default ){
1248       onError = overrideError;
1249     }else if( onError==OE_Default ){
1250       onError = OE_Abort;
1251     }
1252     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1253       onError = OE_Abort;
1254     }
1255     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1256         || onError==OE_Ignore || onError==OE_Replace );
1257     switch( onError ){
1258       case OE_Abort:
1259         sqlite3MayAbort(pParse);
1260         /* Fall through */
1261       case OE_Rollback:
1262       case OE_Fail: {
1263         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1264                                     pTab->aCol[i].zName);
1265         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1266                           regNewData+1+i, zMsg, P4_DYNAMIC);
1267         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1268         break;
1269       }
1270       case OE_Ignore: {
1271         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1272         break;
1273       }
1274       default: {
1275         assert( onError==OE_Replace );
1276         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1277         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1278         sqlite3VdbeJumpHere(v, j1);
1279         break;
1280       }
1281     }
1282   }
1283 
1284   /* Test all CHECK constraints
1285   */
1286 #ifndef SQLITE_OMIT_CHECK
1287   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1288     ExprList *pCheck = pTab->pCheck;
1289     pParse->ckBase = regNewData+1;
1290     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1291     for(i=0; i<pCheck->nExpr; i++){
1292       int allOk = sqlite3VdbeMakeLabel(v);
1293       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1294       if( onError==OE_Ignore ){
1295         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1296       }else{
1297         char *zName = pCheck->a[i].zName;
1298         if( zName==0 ) zName = pTab->zName;
1299         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1300         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1301                               onError, zName, P4_TRANSIENT,
1302                               P5_ConstraintCheck);
1303       }
1304       sqlite3VdbeResolveLabel(v, allOk);
1305     }
1306   }
1307 #endif /* !defined(SQLITE_OMIT_CHECK) */
1308 
1309   /* If rowid is changing, make sure the new rowid does not previously
1310   ** exist in the table.
1311   */
1312   if( pkChng && pPk==0 ){
1313     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1314 
1315     /* Figure out what action to take in case of a rowid collision */
1316     onError = pTab->keyConf;
1317     if( overrideError!=OE_Default ){
1318       onError = overrideError;
1319     }else if( onError==OE_Default ){
1320       onError = OE_Abort;
1321     }
1322 
1323     if( isUpdate ){
1324       /* pkChng!=0 does not mean that the rowid has change, only that
1325       ** it might have changed.  Skip the conflict logic below if the rowid
1326       ** is unchanged. */
1327       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1328     }
1329 
1330     /* If the response to a rowid conflict is REPLACE but the response
1331     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1332     ** to defer the running of the rowid conflict checking until after
1333     ** the UNIQUE constraints have run.
1334     */
1335     if( onError==OE_Replace && overrideError!=OE_Replace ){
1336       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1337         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1338           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1339           break;
1340         }
1341       }
1342     }
1343 
1344     /* Check to see if the new rowid already exists in the table.  Skip
1345     ** the following conflict logic if it does not. */
1346     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1347 
1348     /* Generate code that deals with a rowid collision */
1349     switch( onError ){
1350       default: {
1351         onError = OE_Abort;
1352         /* Fall thru into the next case */
1353       }
1354       case OE_Rollback:
1355       case OE_Abort:
1356       case OE_Fail: {
1357         sqlite3RowidConstraint(pParse, onError, pTab);
1358         break;
1359       }
1360       case OE_Replace: {
1361         /* If there are DELETE triggers on this table and the
1362         ** recursive-triggers flag is set, call GenerateRowDelete() to
1363         ** remove the conflicting row from the table. This will fire
1364         ** the triggers and remove both the table and index b-tree entries.
1365         **
1366         ** Otherwise, if there are no triggers or the recursive-triggers
1367         ** flag is not set, but the table has one or more indexes, call
1368         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1369         ** only. The table b-tree entry will be replaced by the new entry
1370         ** when it is inserted.
1371         **
1372         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1373         ** also invoke MultiWrite() to indicate that this VDBE may require
1374         ** statement rollback (if the statement is aborted after the delete
1375         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1376         ** but being more selective here allows statements like:
1377         **
1378         **   REPLACE INTO t(rowid) VALUES($newrowid)
1379         **
1380         ** to run without a statement journal if there are no indexes on the
1381         ** table.
1382         */
1383         Trigger *pTrigger = 0;
1384         if( db->flags&SQLITE_RecTriggers ){
1385           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1386         }
1387         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1388           sqlite3MultiWrite(pParse);
1389           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1390                                    regNewData, 1, 0, OE_Replace, 1);
1391         }else if( pTab->pIndex ){
1392           sqlite3MultiWrite(pParse);
1393           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1394         }
1395         seenReplace = 1;
1396         break;
1397       }
1398       case OE_Ignore: {
1399         /*assert( seenReplace==0 );*/
1400         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1401         break;
1402       }
1403     }
1404     sqlite3VdbeResolveLabel(v, addrRowidOk);
1405     if( ipkTop ){
1406       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1407       sqlite3VdbeJumpHere(v, ipkTop);
1408     }
1409   }
1410 
1411   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1412   ** index and making sure that duplicate entries do not already exist.
1413   ** Compute the revised record entries for indices as we go.
1414   **
1415   ** This loop also handles the case of the PRIMARY KEY index for a
1416   ** WITHOUT ROWID table.
1417   */
1418   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1419     int regIdx;          /* Range of registers hold conent for pIdx */
1420     int regR;            /* Range of registers holding conflicting PK */
1421     int iThisCur;        /* Cursor for this UNIQUE index */
1422     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1423 
1424     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1425     iThisCur = iIdxCur+ix;
1426     addrUniqueOk = sqlite3VdbeMakeLabel(v);
1427 
1428     /* Skip partial indices for which the WHERE clause is not true */
1429     if( pIdx->pPartIdxWhere ){
1430       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1431       pParse->ckBase = regNewData+1;
1432       sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1433                          SQLITE_JUMPIFNULL);
1434       pParse->ckBase = 0;
1435     }
1436 
1437     /* Create a record for this index entry as it should appear after
1438     ** the insert or update.  Store that record in the aRegIdx[ix] register
1439     */
1440     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1441     for(i=0; i<pIdx->nColumn; i++){
1442       int iField = pIdx->aiColumn[i];
1443       int x;
1444       if( iField<0 || iField==pTab->iPKey ){
1445         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1446         x = regNewData;
1447         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
1448       }else{
1449         x = iField + regNewData + 1;
1450       }
1451       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1452       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1453     }
1454     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1455     sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
1456     VdbeComment((v, "for %s", pIdx->zName));
1457     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1458 
1459     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1460     ** of a WITHOUT ROWID table and there has been no change the
1461     ** primary key, then no collision is possible.  The collision detection
1462     ** logic below can all be skipped. */
1463     if( isUpdate && pPk==pIdx && pkChng==0 ){
1464       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1465       continue;
1466     }
1467 
1468     /* Find out what action to take in case there is a uniqueness conflict */
1469     onError = pIdx->onError;
1470     if( onError==OE_None ){
1471       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1472       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1473       continue;  /* pIdx is not a UNIQUE index */
1474     }
1475     if( overrideError!=OE_Default ){
1476       onError = overrideError;
1477     }else if( onError==OE_Default ){
1478       onError = OE_Abort;
1479     }
1480 
1481     /* Check to see if the new index entry will be unique */
1482     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1483                          regIdx, pIdx->nKeyCol);
1484 
1485     /* Generate code to handle collisions */
1486     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1487     if( isUpdate || onError==OE_Replace ){
1488       if( HasRowid(pTab) ){
1489         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1490         /* Conflict only if the rowid of the existing index entry
1491         ** is different from old-rowid */
1492         if( isUpdate ){
1493           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1494         }
1495       }else{
1496         int x;
1497         /* Extract the PRIMARY KEY from the end of the index entry and
1498         ** store it in registers regR..regR+nPk-1 */
1499         if( pIdx!=pPk ){
1500           for(i=0; i<pPk->nKeyCol; i++){
1501             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1502             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1503             VdbeComment((v, "%s.%s", pTab->zName,
1504                          pTab->aCol[pPk->aiColumn[i]].zName));
1505           }
1506         }
1507         if( isUpdate ){
1508           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1509           ** table, only conflict if the new PRIMARY KEY values are actually
1510           ** different from the old.
1511           **
1512           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1513           ** of the matched index row are different from the original PRIMARY
1514           ** KEY values of this row before the update.  */
1515           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1516           int op = OP_Ne;
1517           int regCmp = (pIdx->autoIndex==2 ? regIdx : regR);
1518 
1519           for(i=0; i<pPk->nKeyCol; i++){
1520             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1521             x = pPk->aiColumn[i];
1522             if( i==(pPk->nKeyCol-1) ){
1523               addrJump = addrUniqueOk;
1524               op = OP_Eq;
1525             }
1526             sqlite3VdbeAddOp4(v, op,
1527                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1528             );
1529           }
1530         }
1531       }
1532     }
1533 
1534     /* Generate code that executes if the new index entry is not unique */
1535     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1536         || onError==OE_Ignore || onError==OE_Replace );
1537     switch( onError ){
1538       case OE_Rollback:
1539       case OE_Abort:
1540       case OE_Fail: {
1541         sqlite3UniqueConstraint(pParse, onError, pIdx);
1542         break;
1543       }
1544       case OE_Ignore: {
1545         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1546         break;
1547       }
1548       default: {
1549         Trigger *pTrigger = 0;
1550         assert( onError==OE_Replace );
1551         sqlite3MultiWrite(pParse);
1552         if( db->flags&SQLITE_RecTriggers ){
1553           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1554         }
1555         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1556                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
1557         seenReplace = 1;
1558         break;
1559       }
1560     }
1561     sqlite3VdbeResolveLabel(v, addrUniqueOk);
1562     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1563     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1564   }
1565   if( ipkTop ){
1566     sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1567     sqlite3VdbeJumpHere(v, ipkBottom);
1568   }
1569 
1570   *pbMayReplace = seenReplace;
1571   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1572 }
1573 
1574 /*
1575 ** This routine generates code to finish the INSERT or UPDATE operation
1576 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1577 ** A consecutive range of registers starting at regNewData contains the
1578 ** rowid and the content to be inserted.
1579 **
1580 ** The arguments to this routine should be the same as the first six
1581 ** arguments to sqlite3GenerateConstraintChecks.
1582 */
1583 void sqlite3CompleteInsertion(
1584   Parse *pParse,      /* The parser context */
1585   Table *pTab,        /* the table into which we are inserting */
1586   int iDataCur,       /* Cursor of the canonical data source */
1587   int iIdxCur,        /* First index cursor */
1588   int regNewData,     /* Range of content */
1589   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1590   int isUpdate,       /* True for UPDATE, False for INSERT */
1591   int appendBias,     /* True if this is likely to be an append */
1592   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1593 ){
1594   Vdbe *v;            /* Prepared statements under construction */
1595   Index *pIdx;        /* An index being inserted or updated */
1596   u8 pik_flags;       /* flag values passed to the btree insert */
1597   int regData;        /* Content registers (after the rowid) */
1598   int regRec;         /* Register holding assemblied record for the table */
1599   int i;              /* Loop counter */
1600 
1601   v = sqlite3GetVdbe(pParse);
1602   assert( v!=0 );
1603   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1604   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1605     if( aRegIdx[i]==0 ) continue;
1606     if( pIdx->pPartIdxWhere ){
1607       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1608     }
1609     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1610     pik_flags = 0;
1611     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1612     if( pIdx->autoIndex==2 && !HasRowid(pTab) ){
1613       assert( pParse->nested==0 );
1614       pik_flags |= OPFLAG_NCHANGE;
1615     }
1616     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
1617   }
1618   if( !HasRowid(pTab) ) return;
1619   regData = regNewData + 1;
1620   regRec = sqlite3GetTempReg(pParse);
1621   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1622   sqlite3TableAffinityStr(v, pTab);
1623   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1624   if( pParse->nested ){
1625     pik_flags = 0;
1626   }else{
1627     pik_flags = OPFLAG_NCHANGE;
1628     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1629   }
1630   if( appendBias ){
1631     pik_flags |= OPFLAG_APPEND;
1632   }
1633   if( useSeekResult ){
1634     pik_flags |= OPFLAG_USESEEKRESULT;
1635   }
1636   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1637   if( !pParse->nested ){
1638     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1639   }
1640   sqlite3VdbeChangeP5(v, pik_flags);
1641 }
1642 
1643 /*
1644 ** Allocate cursors for the pTab table and all its indices and generate
1645 ** code to open and initialized those cursors.
1646 **
1647 ** The cursor for the object that contains the complete data (normally
1648 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1649 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1650 ** returned in *piIdxCur.  The number of indices is returned.
1651 **
1652 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1653 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1654 ** If iBase is negative, then allocate the next available cursor.
1655 **
1656 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1657 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1658 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1659 ** pTab->pIndex list.
1660 */
1661 int sqlite3OpenTableAndIndices(
1662   Parse *pParse,   /* Parsing context */
1663   Table *pTab,     /* Table to be opened */
1664   int op,          /* OP_OpenRead or OP_OpenWrite */
1665   int iBase,       /* Use this for the table cursor, if there is one */
1666   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1667   int *piDataCur,  /* Write the database source cursor number here */
1668   int *piIdxCur    /* Write the first index cursor number here */
1669 ){
1670   int i;
1671   int iDb;
1672   int iDataCur;
1673   Index *pIdx;
1674   Vdbe *v;
1675 
1676   assert( op==OP_OpenRead || op==OP_OpenWrite );
1677   if( IsVirtual(pTab) ){
1678     assert( aToOpen==0 );
1679     *piDataCur = 0;
1680     *piIdxCur = 1;
1681     return 0;
1682   }
1683   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1684   v = sqlite3GetVdbe(pParse);
1685   assert( v!=0 );
1686   if( iBase<0 ) iBase = pParse->nTab;
1687   iDataCur = iBase++;
1688   if( piDataCur ) *piDataCur = iDataCur;
1689   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1690     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1691   }else{
1692     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1693   }
1694   if( piIdxCur ) *piIdxCur = iBase;
1695   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1696     int iIdxCur = iBase++;
1697     assert( pIdx->pSchema==pTab->pSchema );
1698     if( pIdx->autoIndex==2 && !HasRowid(pTab) && piDataCur ){
1699       *piDataCur = iIdxCur;
1700     }
1701     if( aToOpen==0 || aToOpen[i+1] ){
1702       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1703       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1704       VdbeComment((v, "%s", pIdx->zName));
1705     }
1706   }
1707   if( iBase>pParse->nTab ) pParse->nTab = iBase;
1708   return i;
1709 }
1710 
1711 
1712 #ifdef SQLITE_TEST
1713 /*
1714 ** The following global variable is incremented whenever the
1715 ** transfer optimization is used.  This is used for testing
1716 ** purposes only - to make sure the transfer optimization really
1717 ** is happening when it is suppose to.
1718 */
1719 int sqlite3_xferopt_count;
1720 #endif /* SQLITE_TEST */
1721 
1722 
1723 #ifndef SQLITE_OMIT_XFER_OPT
1724 /*
1725 ** Check to collation names to see if they are compatible.
1726 */
1727 static int xferCompatibleCollation(const char *z1, const char *z2){
1728   if( z1==0 ){
1729     return z2==0;
1730   }
1731   if( z2==0 ){
1732     return 0;
1733   }
1734   return sqlite3StrICmp(z1, z2)==0;
1735 }
1736 
1737 
1738 /*
1739 ** Check to see if index pSrc is compatible as a source of data
1740 ** for index pDest in an insert transfer optimization.  The rules
1741 ** for a compatible index:
1742 **
1743 **    *   The index is over the same set of columns
1744 **    *   The same DESC and ASC markings occurs on all columns
1745 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1746 **    *   The same collating sequence on each column
1747 **    *   The index has the exact same WHERE clause
1748 */
1749 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1750   int i;
1751   assert( pDest && pSrc );
1752   assert( pDest->pTable!=pSrc->pTable );
1753   if( pDest->nKeyCol!=pSrc->nKeyCol ){
1754     return 0;   /* Different number of columns */
1755   }
1756   if( pDest->onError!=pSrc->onError ){
1757     return 0;   /* Different conflict resolution strategies */
1758   }
1759   for(i=0; i<pSrc->nKeyCol; i++){
1760     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1761       return 0;   /* Different columns indexed */
1762     }
1763     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1764       return 0;   /* Different sort orders */
1765     }
1766     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1767       return 0;   /* Different collating sequences */
1768     }
1769   }
1770   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1771     return 0;     /* Different WHERE clauses */
1772   }
1773 
1774   /* If no test above fails then the indices must be compatible */
1775   return 1;
1776 }
1777 
1778 /*
1779 ** Attempt the transfer optimization on INSERTs of the form
1780 **
1781 **     INSERT INTO tab1 SELECT * FROM tab2;
1782 **
1783 ** The xfer optimization transfers raw records from tab2 over to tab1.
1784 ** Columns are not decoded and reassemblied, which greatly improves
1785 ** performance.  Raw index records are transferred in the same way.
1786 **
1787 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1788 ** There are lots of rules for determining compatibility - see comments
1789 ** embedded in the code for details.
1790 **
1791 ** This routine returns TRUE if the optimization is guaranteed to be used.
1792 ** Sometimes the xfer optimization will only work if the destination table
1793 ** is empty - a factor that can only be determined at run-time.  In that
1794 ** case, this routine generates code for the xfer optimization but also
1795 ** does a test to see if the destination table is empty and jumps over the
1796 ** xfer optimization code if the test fails.  In that case, this routine
1797 ** returns FALSE so that the caller will know to go ahead and generate
1798 ** an unoptimized transfer.  This routine also returns FALSE if there
1799 ** is no chance that the xfer optimization can be applied.
1800 **
1801 ** This optimization is particularly useful at making VACUUM run faster.
1802 */
1803 static int xferOptimization(
1804   Parse *pParse,        /* Parser context */
1805   Table *pDest,         /* The table we are inserting into */
1806   Select *pSelect,      /* A SELECT statement to use as the data source */
1807   int onError,          /* How to handle constraint errors */
1808   int iDbDest           /* The database of pDest */
1809 ){
1810   ExprList *pEList;                /* The result set of the SELECT */
1811   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1812   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1813   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1814   int i;                           /* Loop counter */
1815   int iDbSrc;                      /* The database of pSrc */
1816   int iSrc, iDest;                 /* Cursors from source and destination */
1817   int addr1, addr2;                /* Loop addresses */
1818   int emptyDestTest = 0;           /* Address of test for empty pDest */
1819   int emptySrcTest = 0;            /* Address of test for empty pSrc */
1820   Vdbe *v;                         /* The VDBE we are building */
1821   int regAutoinc;                  /* Memory register used by AUTOINC */
1822   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1823   int regData, regRowid;           /* Registers holding data and rowid */
1824 
1825   if( pSelect==0 ){
1826     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1827   }
1828   if( pParse->pWith || pSelect->pWith ){
1829     /* Do not attempt to process this query if there are an WITH clauses
1830     ** attached to it. Proceeding may generate a false "no such table: xxx"
1831     ** error if pSelect reads from a CTE named "xxx".  */
1832     return 0;
1833   }
1834   if( sqlite3TriggerList(pParse, pDest) ){
1835     return 0;   /* tab1 must not have triggers */
1836   }
1837 #ifndef SQLITE_OMIT_VIRTUALTABLE
1838   if( pDest->tabFlags & TF_Virtual ){
1839     return 0;   /* tab1 must not be a virtual table */
1840   }
1841 #endif
1842   if( onError==OE_Default ){
1843     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1844     if( onError==OE_Default ) onError = OE_Abort;
1845   }
1846   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1847   if( pSelect->pSrc->nSrc!=1 ){
1848     return 0;   /* FROM clause must have exactly one term */
1849   }
1850   if( pSelect->pSrc->a[0].pSelect ){
1851     return 0;   /* FROM clause cannot contain a subquery */
1852   }
1853   if( pSelect->pWhere ){
1854     return 0;   /* SELECT may not have a WHERE clause */
1855   }
1856   if( pSelect->pOrderBy ){
1857     return 0;   /* SELECT may not have an ORDER BY clause */
1858   }
1859   /* Do not need to test for a HAVING clause.  If HAVING is present but
1860   ** there is no ORDER BY, we will get an error. */
1861   if( pSelect->pGroupBy ){
1862     return 0;   /* SELECT may not have a GROUP BY clause */
1863   }
1864   if( pSelect->pLimit ){
1865     return 0;   /* SELECT may not have a LIMIT clause */
1866   }
1867   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1868   if( pSelect->pPrior ){
1869     return 0;   /* SELECT may not be a compound query */
1870   }
1871   if( pSelect->selFlags & SF_Distinct ){
1872     return 0;   /* SELECT may not be DISTINCT */
1873   }
1874   pEList = pSelect->pEList;
1875   assert( pEList!=0 );
1876   if( pEList->nExpr!=1 ){
1877     return 0;   /* The result set must have exactly one column */
1878   }
1879   assert( pEList->a[0].pExpr );
1880   if( pEList->a[0].pExpr->op!=TK_ALL ){
1881     return 0;   /* The result set must be the special operator "*" */
1882   }
1883 
1884   /* At this point we have established that the statement is of the
1885   ** correct syntactic form to participate in this optimization.  Now
1886   ** we have to check the semantics.
1887   */
1888   pItem = pSelect->pSrc->a;
1889   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1890   if( pSrc==0 ){
1891     return 0;   /* FROM clause does not contain a real table */
1892   }
1893   if( pSrc==pDest ){
1894     return 0;   /* tab1 and tab2 may not be the same table */
1895   }
1896   if( HasRowid(pDest)!=HasRowid(pSrc) ){
1897     return 0;   /* source and destination must both be WITHOUT ROWID or not */
1898   }
1899 #ifndef SQLITE_OMIT_VIRTUALTABLE
1900   if( pSrc->tabFlags & TF_Virtual ){
1901     return 0;   /* tab2 must not be a virtual table */
1902   }
1903 #endif
1904   if( pSrc->pSelect ){
1905     return 0;   /* tab2 may not be a view */
1906   }
1907   if( pDest->nCol!=pSrc->nCol ){
1908     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1909   }
1910   if( pDest->iPKey!=pSrc->iPKey ){
1911     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1912   }
1913   for(i=0; i<pDest->nCol; i++){
1914     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1915       return 0;    /* Affinity must be the same on all columns */
1916     }
1917     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1918       return 0;    /* Collating sequence must be the same on all columns */
1919     }
1920     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1921       return 0;    /* tab2 must be NOT NULL if tab1 is */
1922     }
1923   }
1924   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1925     if( pDestIdx->onError!=OE_None ){
1926       destHasUniqueIdx = 1;
1927     }
1928     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1929       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1930     }
1931     if( pSrcIdx==0 ){
1932       return 0;    /* pDestIdx has no corresponding index in pSrc */
1933     }
1934   }
1935 #ifndef SQLITE_OMIT_CHECK
1936   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1937     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1938   }
1939 #endif
1940 #ifndef SQLITE_OMIT_FOREIGN_KEY
1941   /* Disallow the transfer optimization if the destination table constains
1942   ** any foreign key constraints.  This is more restrictive than necessary.
1943   ** But the main beneficiary of the transfer optimization is the VACUUM
1944   ** command, and the VACUUM command disables foreign key constraints.  So
1945   ** the extra complication to make this rule less restrictive is probably
1946   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1947   */
1948   if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1949     return 0;
1950   }
1951 #endif
1952   if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
1953     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
1954   }
1955 
1956   /* If we get this far, it means that the xfer optimization is at
1957   ** least a possibility, though it might only work if the destination
1958   ** table (tab1) is initially empty.
1959   */
1960 #ifdef SQLITE_TEST
1961   sqlite3_xferopt_count++;
1962 #endif
1963   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1964   v = sqlite3GetVdbe(pParse);
1965   sqlite3CodeVerifySchema(pParse, iDbSrc);
1966   iSrc = pParse->nTab++;
1967   iDest = pParse->nTab++;
1968   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1969   regData = sqlite3GetTempReg(pParse);
1970   regRowid = sqlite3GetTempReg(pParse);
1971   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1972   assert( HasRowid(pDest) || destHasUniqueIdx );
1973   if( (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
1974    || destHasUniqueIdx                              /* (2) */
1975    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
1976   ){
1977     /* In some circumstances, we are able to run the xfer optimization
1978     ** only if the destination table is initially empty.  This code makes
1979     ** that determination.  Conditions under which the destination must
1980     ** be empty:
1981     **
1982     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1983     **     (If the destination is not initially empty, the rowid fields
1984     **     of index entries might need to change.)
1985     **
1986     ** (2) The destination has a unique index.  (The xfer optimization
1987     **     is unable to test uniqueness.)
1988     **
1989     ** (3) onError is something other than OE_Abort and OE_Rollback.
1990     */
1991     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1992     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1993     sqlite3VdbeJumpHere(v, addr1);
1994   }
1995   if( HasRowid(pSrc) ){
1996     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1997     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1998     if( pDest->iPKey>=0 ){
1999       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2000       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2001       sqlite3RowidConstraint(pParse, onError, pDest);
2002       sqlite3VdbeJumpHere(v, addr2);
2003       autoIncStep(pParse, regAutoinc, regRowid);
2004     }else if( pDest->pIndex==0 ){
2005       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2006     }else{
2007       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2008       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2009     }
2010     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
2011     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
2012     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
2013     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
2014     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
2015     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2016     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2017   }else{
2018     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2019     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2020   }
2021   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2022     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2023       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2024     }
2025     assert( pSrcIdx );
2026     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2027     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2028     VdbeComment((v, "%s", pSrcIdx->zName));
2029     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2030     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2031     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2032     VdbeComment((v, "%s", pDestIdx->zName));
2033     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
2034     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2035     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2036     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
2037     sqlite3VdbeJumpHere(v, addr1);
2038     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2039     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2040   }
2041   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2042   sqlite3ReleaseTempReg(pParse, regRowid);
2043   sqlite3ReleaseTempReg(pParse, regData);
2044   if( emptyDestTest ){
2045     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2046     sqlite3VdbeJumpHere(v, emptyDestTest);
2047     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2048     return 0;
2049   }else{
2050     return 1;
2051   }
2052 }
2053 #endif /* SQLITE_OMIT_XFER_OPT */
2054