1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 assert( (pTab->tabFlags & TF_Strict)==0 ); 296 for(ii=jj=0; zP4[jj]; ii++){ 297 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 298 continue; 299 } 300 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 301 zP4[jj] = SQLITE_AFF_NONE; 302 } 303 jj++; 304 } 305 }else if( pOp->opcode==OP_TypeCheck ){ 306 /* If an OP_TypeCheck was generated because the table is STRICT, 307 ** then set the P3 operand to indicate that generated columns should 308 ** not be checked */ 309 assert( pTab->tabFlags & TF_Strict ); 310 pOp->p3 = 1; 311 } 312 } 313 314 /* Because there can be multiple generated columns that refer to one another, 315 ** this is a two-pass algorithm. On the first pass, mark all generated 316 ** columns as "not available". 317 */ 318 for(i=0; i<pTab->nCol; i++){ 319 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 320 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 321 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 322 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 323 } 324 } 325 326 w.u.pTab = pTab; 327 w.xExprCallback = exprColumnFlagUnion; 328 w.xSelectCallback = 0; 329 w.xSelectCallback2 = 0; 330 331 /* On the second pass, compute the value of each NOT-AVAILABLE column. 332 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 333 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 334 ** they are needed. 335 */ 336 pParse->iSelfTab = -iRegStore; 337 do{ 338 eProgress = 0; 339 pRedo = 0; 340 for(i=0; i<pTab->nCol; i++){ 341 Column *pCol = pTab->aCol + i; 342 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 343 int x; 344 pCol->colFlags |= COLFLAG_BUSY; 345 w.eCode = 0; 346 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 347 pCol->colFlags &= ~COLFLAG_BUSY; 348 if( w.eCode & COLFLAG_NOTAVAIL ){ 349 pRedo = pCol; 350 continue; 351 } 352 eProgress = 1; 353 assert( pCol->colFlags & COLFLAG_GENERATED ); 354 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 355 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 356 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 357 } 358 } 359 }while( pRedo && eProgress ); 360 if( pRedo ){ 361 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 362 } 363 pParse->iSelfTab = 0; 364 } 365 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 366 367 368 #ifndef SQLITE_OMIT_AUTOINCREMENT 369 /* 370 ** Locate or create an AutoincInfo structure associated with table pTab 371 ** which is in database iDb. Return the register number for the register 372 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 373 ** table. (Also return zero when doing a VACUUM since we do not want to 374 ** update the AUTOINCREMENT counters during a VACUUM.) 375 ** 376 ** There is at most one AutoincInfo structure per table even if the 377 ** same table is autoincremented multiple times due to inserts within 378 ** triggers. A new AutoincInfo structure is created if this is the 379 ** first use of table pTab. On 2nd and subsequent uses, the original 380 ** AutoincInfo structure is used. 381 ** 382 ** Four consecutive registers are allocated: 383 ** 384 ** (1) The name of the pTab table. 385 ** (2) The maximum ROWID of pTab. 386 ** (3) The rowid in sqlite_sequence of pTab 387 ** (4) The original value of the max ROWID in pTab, or NULL if none 388 ** 389 ** The 2nd register is the one that is returned. That is all the 390 ** insert routine needs to know about. 391 */ 392 static int autoIncBegin( 393 Parse *pParse, /* Parsing context */ 394 int iDb, /* Index of the database holding pTab */ 395 Table *pTab /* The table we are writing to */ 396 ){ 397 int memId = 0; /* Register holding maximum rowid */ 398 assert( pParse->db->aDb[iDb].pSchema!=0 ); 399 if( (pTab->tabFlags & TF_Autoincrement)!=0 400 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 401 ){ 402 Parse *pToplevel = sqlite3ParseToplevel(pParse); 403 AutoincInfo *pInfo; 404 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 405 406 /* Verify that the sqlite_sequence table exists and is an ordinary 407 ** rowid table with exactly two columns. 408 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 409 if( pSeqTab==0 410 || !HasRowid(pSeqTab) 411 || NEVER(IsVirtual(pSeqTab)) 412 || pSeqTab->nCol!=2 413 ){ 414 pParse->nErr++; 415 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 416 return 0; 417 } 418 419 pInfo = pToplevel->pAinc; 420 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 421 if( pInfo==0 ){ 422 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 423 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 424 testcase( pParse->earlyCleanup ); 425 if( pParse->db->mallocFailed ) return 0; 426 pInfo->pNext = pToplevel->pAinc; 427 pToplevel->pAinc = pInfo; 428 pInfo->pTab = pTab; 429 pInfo->iDb = iDb; 430 pToplevel->nMem++; /* Register to hold name of table */ 431 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 432 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 433 } 434 memId = pInfo->regCtr; 435 } 436 return memId; 437 } 438 439 /* 440 ** This routine generates code that will initialize all of the 441 ** register used by the autoincrement tracker. 442 */ 443 void sqlite3AutoincrementBegin(Parse *pParse){ 444 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 445 sqlite3 *db = pParse->db; /* The database connection */ 446 Db *pDb; /* Database only autoinc table */ 447 int memId; /* Register holding max rowid */ 448 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 449 450 /* This routine is never called during trigger-generation. It is 451 ** only called from the top-level */ 452 assert( pParse->pTriggerTab==0 ); 453 assert( sqlite3IsToplevel(pParse) ); 454 455 assert( v ); /* We failed long ago if this is not so */ 456 for(p = pParse->pAinc; p; p = p->pNext){ 457 static const int iLn = VDBE_OFFSET_LINENO(2); 458 static const VdbeOpList autoInc[] = { 459 /* 0 */ {OP_Null, 0, 0, 0}, 460 /* 1 */ {OP_Rewind, 0, 10, 0}, 461 /* 2 */ {OP_Column, 0, 0, 0}, 462 /* 3 */ {OP_Ne, 0, 9, 0}, 463 /* 4 */ {OP_Rowid, 0, 0, 0}, 464 /* 5 */ {OP_Column, 0, 1, 0}, 465 /* 6 */ {OP_AddImm, 0, 0, 0}, 466 /* 7 */ {OP_Copy, 0, 0, 0}, 467 /* 8 */ {OP_Goto, 0, 11, 0}, 468 /* 9 */ {OP_Next, 0, 2, 0}, 469 /* 10 */ {OP_Integer, 0, 0, 0}, 470 /* 11 */ {OP_Close, 0, 0, 0} 471 }; 472 VdbeOp *aOp; 473 pDb = &db->aDb[p->iDb]; 474 memId = p->regCtr; 475 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 476 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 477 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 478 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 479 if( aOp==0 ) break; 480 aOp[0].p2 = memId; 481 aOp[0].p3 = memId+2; 482 aOp[2].p3 = memId; 483 aOp[3].p1 = memId-1; 484 aOp[3].p3 = memId; 485 aOp[3].p5 = SQLITE_JUMPIFNULL; 486 aOp[4].p2 = memId+1; 487 aOp[5].p3 = memId; 488 aOp[6].p1 = memId; 489 aOp[7].p2 = memId+2; 490 aOp[7].p1 = memId; 491 aOp[10].p2 = memId; 492 if( pParse->nTab==0 ) pParse->nTab = 1; 493 } 494 } 495 496 /* 497 ** Update the maximum rowid for an autoincrement calculation. 498 ** 499 ** This routine should be called when the regRowid register holds a 500 ** new rowid that is about to be inserted. If that new rowid is 501 ** larger than the maximum rowid in the memId memory cell, then the 502 ** memory cell is updated. 503 */ 504 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 505 if( memId>0 ){ 506 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 507 } 508 } 509 510 /* 511 ** This routine generates the code needed to write autoincrement 512 ** maximum rowid values back into the sqlite_sequence register. 513 ** Every statement that might do an INSERT into an autoincrement 514 ** table (either directly or through triggers) needs to call this 515 ** routine just before the "exit" code. 516 */ 517 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 518 AutoincInfo *p; 519 Vdbe *v = pParse->pVdbe; 520 sqlite3 *db = pParse->db; 521 522 assert( v ); 523 for(p = pParse->pAinc; p; p = p->pNext){ 524 static const int iLn = VDBE_OFFSET_LINENO(2); 525 static const VdbeOpList autoIncEnd[] = { 526 /* 0 */ {OP_NotNull, 0, 2, 0}, 527 /* 1 */ {OP_NewRowid, 0, 0, 0}, 528 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 529 /* 3 */ {OP_Insert, 0, 0, 0}, 530 /* 4 */ {OP_Close, 0, 0, 0} 531 }; 532 VdbeOp *aOp; 533 Db *pDb = &db->aDb[p->iDb]; 534 int iRec; 535 int memId = p->regCtr; 536 537 iRec = sqlite3GetTempReg(pParse); 538 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 539 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 540 VdbeCoverage(v); 541 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 542 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 543 if( aOp==0 ) break; 544 aOp[0].p1 = memId+1; 545 aOp[1].p2 = memId+1; 546 aOp[2].p1 = memId-1; 547 aOp[2].p3 = iRec; 548 aOp[3].p2 = iRec; 549 aOp[3].p3 = memId+1; 550 aOp[3].p5 = OPFLAG_APPEND; 551 sqlite3ReleaseTempReg(pParse, iRec); 552 } 553 } 554 void sqlite3AutoincrementEnd(Parse *pParse){ 555 if( pParse->pAinc ) autoIncrementEnd(pParse); 556 } 557 #else 558 /* 559 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 560 ** above are all no-ops 561 */ 562 # define autoIncBegin(A,B,C) (0) 563 # define autoIncStep(A,B,C) 564 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 565 566 567 /* Forward declaration */ 568 static int xferOptimization( 569 Parse *pParse, /* Parser context */ 570 Table *pDest, /* The table we are inserting into */ 571 Select *pSelect, /* A SELECT statement to use as the data source */ 572 int onError, /* How to handle constraint errors */ 573 int iDbDest /* The database of pDest */ 574 ); 575 576 /* 577 ** This routine is called to handle SQL of the following forms: 578 ** 579 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 580 ** insert into TABLE (IDLIST) select 581 ** insert into TABLE (IDLIST) default values 582 ** 583 ** The IDLIST following the table name is always optional. If omitted, 584 ** then a list of all (non-hidden) columns for the table is substituted. 585 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 586 ** is omitted. 587 ** 588 ** For the pSelect parameter holds the values to be inserted for the 589 ** first two forms shown above. A VALUES clause is really just short-hand 590 ** for a SELECT statement that omits the FROM clause and everything else 591 ** that follows. If the pSelect parameter is NULL, that means that the 592 ** DEFAULT VALUES form of the INSERT statement is intended. 593 ** 594 ** The code generated follows one of four templates. For a simple 595 ** insert with data coming from a single-row VALUES clause, the code executes 596 ** once straight down through. Pseudo-code follows (we call this 597 ** the "1st template"): 598 ** 599 ** open write cursor to <table> and its indices 600 ** put VALUES clause expressions into registers 601 ** write the resulting record into <table> 602 ** cleanup 603 ** 604 ** The three remaining templates assume the statement is of the form 605 ** 606 ** INSERT INTO <table> SELECT ... 607 ** 608 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 609 ** in other words if the SELECT pulls all columns from a single table 610 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 611 ** if <table2> and <table1> are distinct tables but have identical 612 ** schemas, including all the same indices, then a special optimization 613 ** is invoked that copies raw records from <table2> over to <table1>. 614 ** See the xferOptimization() function for the implementation of this 615 ** template. This is the 2nd template. 616 ** 617 ** open a write cursor to <table> 618 ** open read cursor on <table2> 619 ** transfer all records in <table2> over to <table> 620 ** close cursors 621 ** foreach index on <table> 622 ** open a write cursor on the <table> index 623 ** open a read cursor on the corresponding <table2> index 624 ** transfer all records from the read to the write cursors 625 ** close cursors 626 ** end foreach 627 ** 628 ** The 3rd template is for when the second template does not apply 629 ** and the SELECT clause does not read from <table> at any time. 630 ** The generated code follows this template: 631 ** 632 ** X <- A 633 ** goto B 634 ** A: setup for the SELECT 635 ** loop over the rows in the SELECT 636 ** load values into registers R..R+n 637 ** yield X 638 ** end loop 639 ** cleanup after the SELECT 640 ** end-coroutine X 641 ** B: open write cursor to <table> and its indices 642 ** C: yield X, at EOF goto D 643 ** insert the select result into <table> from R..R+n 644 ** goto C 645 ** D: cleanup 646 ** 647 ** The 4th template is used if the insert statement takes its 648 ** values from a SELECT but the data is being inserted into a table 649 ** that is also read as part of the SELECT. In the third form, 650 ** we have to use an intermediate table to store the results of 651 ** the select. The template is like this: 652 ** 653 ** X <- A 654 ** goto B 655 ** A: setup for the SELECT 656 ** loop over the tables in the SELECT 657 ** load value into register R..R+n 658 ** yield X 659 ** end loop 660 ** cleanup after the SELECT 661 ** end co-routine R 662 ** B: open temp table 663 ** L: yield X, at EOF goto M 664 ** insert row from R..R+n into temp table 665 ** goto L 666 ** M: open write cursor to <table> and its indices 667 ** rewind temp table 668 ** C: loop over rows of intermediate table 669 ** transfer values form intermediate table into <table> 670 ** end loop 671 ** D: cleanup 672 */ 673 void sqlite3Insert( 674 Parse *pParse, /* Parser context */ 675 SrcList *pTabList, /* Name of table into which we are inserting */ 676 Select *pSelect, /* A SELECT statement to use as the data source */ 677 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 678 int onError, /* How to handle constraint errors */ 679 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 680 ){ 681 sqlite3 *db; /* The main database structure */ 682 Table *pTab; /* The table to insert into. aka TABLE */ 683 int i, j; /* Loop counters */ 684 Vdbe *v; /* Generate code into this virtual machine */ 685 Index *pIdx; /* For looping over indices of the table */ 686 int nColumn; /* Number of columns in the data */ 687 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 688 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 689 int iIdxCur = 0; /* First index cursor */ 690 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 691 int endOfLoop; /* Label for the end of the insertion loop */ 692 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 693 int addrInsTop = 0; /* Jump to label "D" */ 694 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 695 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 696 int iDb; /* Index of database holding TABLE */ 697 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 698 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 699 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 700 u8 bIdListInOrder; /* True if IDLIST is in table order */ 701 ExprList *pList = 0; /* List of VALUES() to be inserted */ 702 int iRegStore; /* Register in which to store next column */ 703 704 /* Register allocations */ 705 int regFromSelect = 0;/* Base register for data coming from SELECT */ 706 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 707 int regRowCount = 0; /* Memory cell used for the row counter */ 708 int regIns; /* Block of regs holding rowid+data being inserted */ 709 int regRowid; /* registers holding insert rowid */ 710 int regData; /* register holding first column to insert */ 711 int *aRegIdx = 0; /* One register allocated to each index */ 712 713 #ifndef SQLITE_OMIT_TRIGGER 714 int isView; /* True if attempting to insert into a view */ 715 Trigger *pTrigger; /* List of triggers on pTab, if required */ 716 int tmask; /* Mask of trigger times */ 717 #endif 718 719 db = pParse->db; 720 if( pParse->nErr || db->mallocFailed ){ 721 goto insert_cleanup; 722 } 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 /* If the Select object is really just a simple VALUES() list with a 726 ** single row (the common case) then keep that one row of values 727 ** and discard the other (unused) parts of the pSelect object 728 */ 729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 730 pList = pSelect->pEList; 731 pSelect->pEList = 0; 732 sqlite3SelectDelete(db, pSelect); 733 pSelect = 0; 734 } 735 736 /* Locate the table into which we will be inserting new information. 737 */ 738 assert( pTabList->nSrc==1 ); 739 pTab = sqlite3SrcListLookup(pParse, pTabList); 740 if( pTab==0 ){ 741 goto insert_cleanup; 742 } 743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 744 assert( iDb<db->nDb ); 745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 746 db->aDb[iDb].zDbSName) ){ 747 goto insert_cleanup; 748 } 749 withoutRowid = !HasRowid(pTab); 750 751 /* Figure out if we have any triggers and if the table being 752 ** inserted into is a view 753 */ 754 #ifndef SQLITE_OMIT_TRIGGER 755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 756 isView = IsView(pTab); 757 #else 758 # define pTrigger 0 759 # define tmask 0 760 # define isView 0 761 #endif 762 #ifdef SQLITE_OMIT_VIEW 763 # undef isView 764 # define isView 0 765 #endif 766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 767 768 /* If pTab is really a view, make sure it has been initialized. 769 ** ViewGetColumnNames() is a no-op if pTab is not a view. 770 */ 771 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 772 goto insert_cleanup; 773 } 774 775 /* Cannot insert into a read-only table. 776 */ 777 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 778 goto insert_cleanup; 779 } 780 781 /* Allocate a VDBE 782 */ 783 v = sqlite3GetVdbe(pParse); 784 if( v==0 ) goto insert_cleanup; 785 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 786 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 787 788 #ifndef SQLITE_OMIT_XFER_OPT 789 /* If the statement is of the form 790 ** 791 ** INSERT INTO <table1> SELECT * FROM <table2>; 792 ** 793 ** Then special optimizations can be applied that make the transfer 794 ** very fast and which reduce fragmentation of indices. 795 ** 796 ** This is the 2nd template. 797 */ 798 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 799 assert( !pTrigger ); 800 assert( pList==0 ); 801 goto insert_end; 802 } 803 #endif /* SQLITE_OMIT_XFER_OPT */ 804 805 /* If this is an AUTOINCREMENT table, look up the sequence number in the 806 ** sqlite_sequence table and store it in memory cell regAutoinc. 807 */ 808 regAutoinc = autoIncBegin(pParse, iDb, pTab); 809 810 /* Allocate a block registers to hold the rowid and the values 811 ** for all columns of the new row. 812 */ 813 regRowid = regIns = pParse->nMem+1; 814 pParse->nMem += pTab->nCol + 1; 815 if( IsVirtual(pTab) ){ 816 regRowid++; 817 pParse->nMem++; 818 } 819 regData = regRowid+1; 820 821 /* If the INSERT statement included an IDLIST term, then make sure 822 ** all elements of the IDLIST really are columns of the table and 823 ** remember the column indices. 824 ** 825 ** If the table has an INTEGER PRIMARY KEY column and that column 826 ** is named in the IDLIST, then record in the ipkColumn variable 827 ** the index into IDLIST of the primary key column. ipkColumn is 828 ** the index of the primary key as it appears in IDLIST, not as 829 ** is appears in the original table. (The index of the INTEGER 830 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 831 ** loop, if ipkColumn==(-1), that means that integer primary key 832 ** is unspecified, and hence the table is either WITHOUT ROWID or 833 ** it will automatically generated an integer primary key. 834 ** 835 ** bIdListInOrder is true if the columns in IDLIST are in storage 836 ** order. This enables an optimization that avoids shuffling the 837 ** columns into storage order. False negatives are harmless, 838 ** but false positives will cause database corruption. 839 */ 840 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 841 if( pColumn ){ 842 for(i=0; i<pColumn->nId; i++){ 843 pColumn->a[i].idx = -1; 844 } 845 for(i=0; i<pColumn->nId; i++){ 846 for(j=0; j<pTab->nCol; j++){ 847 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 848 pColumn->a[i].idx = j; 849 if( i!=j ) bIdListInOrder = 0; 850 if( j==pTab->iPKey ){ 851 ipkColumn = i; assert( !withoutRowid ); 852 } 853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 854 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 855 sqlite3ErrorMsg(pParse, 856 "cannot INSERT into generated column \"%s\"", 857 pTab->aCol[j].zCnName); 858 goto insert_cleanup; 859 } 860 #endif 861 break; 862 } 863 } 864 if( j>=pTab->nCol ){ 865 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 866 ipkColumn = i; 867 bIdListInOrder = 0; 868 }else{ 869 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 870 pTabList->a, pColumn->a[i].zName); 871 pParse->checkSchema = 1; 872 goto insert_cleanup; 873 } 874 } 875 } 876 } 877 878 /* Figure out how many columns of data are supplied. If the data 879 ** is coming from a SELECT statement, then generate a co-routine that 880 ** produces a single row of the SELECT on each invocation. The 881 ** co-routine is the common header to the 3rd and 4th templates. 882 */ 883 if( pSelect ){ 884 /* Data is coming from a SELECT or from a multi-row VALUES clause. 885 ** Generate a co-routine to run the SELECT. */ 886 int regYield; /* Register holding co-routine entry-point */ 887 int addrTop; /* Top of the co-routine */ 888 int rc; /* Result code */ 889 890 regYield = ++pParse->nMem; 891 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 892 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 893 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 894 dest.iSdst = bIdListInOrder ? regData : 0; 895 dest.nSdst = pTab->nCol; 896 rc = sqlite3Select(pParse, pSelect, &dest); 897 regFromSelect = dest.iSdst; 898 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 899 sqlite3VdbeEndCoroutine(v, regYield); 900 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 901 assert( pSelect->pEList ); 902 nColumn = pSelect->pEList->nExpr; 903 904 /* Set useTempTable to TRUE if the result of the SELECT statement 905 ** should be written into a temporary table (template 4). Set to 906 ** FALSE if each output row of the SELECT can be written directly into 907 ** the destination table (template 3). 908 ** 909 ** A temp table must be used if the table being updated is also one 910 ** of the tables being read by the SELECT statement. Also use a 911 ** temp table in the case of row triggers. 912 */ 913 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 914 useTempTable = 1; 915 } 916 917 if( useTempTable ){ 918 /* Invoke the coroutine to extract information from the SELECT 919 ** and add it to a transient table srcTab. The code generated 920 ** here is from the 4th template: 921 ** 922 ** B: open temp table 923 ** L: yield X, goto M at EOF 924 ** insert row from R..R+n into temp table 925 ** goto L 926 ** M: ... 927 */ 928 int regRec; /* Register to hold packed record */ 929 int regTempRowid; /* Register to hold temp table ROWID */ 930 int addrL; /* Label "L" */ 931 932 srcTab = pParse->nTab++; 933 regRec = sqlite3GetTempReg(pParse); 934 regTempRowid = sqlite3GetTempReg(pParse); 935 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 936 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 937 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 938 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 939 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 940 sqlite3VdbeGoto(v, addrL); 941 sqlite3VdbeJumpHere(v, addrL); 942 sqlite3ReleaseTempReg(pParse, regRec); 943 sqlite3ReleaseTempReg(pParse, regTempRowid); 944 } 945 }else{ 946 /* This is the case if the data for the INSERT is coming from a 947 ** single-row VALUES clause 948 */ 949 NameContext sNC; 950 memset(&sNC, 0, sizeof(sNC)); 951 sNC.pParse = pParse; 952 srcTab = -1; 953 assert( useTempTable==0 ); 954 if( pList ){ 955 nColumn = pList->nExpr; 956 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 957 goto insert_cleanup; 958 } 959 }else{ 960 nColumn = 0; 961 } 962 } 963 964 /* If there is no IDLIST term but the table has an integer primary 965 ** key, the set the ipkColumn variable to the integer primary key 966 ** column index in the original table definition. 967 */ 968 if( pColumn==0 && nColumn>0 ){ 969 ipkColumn = pTab->iPKey; 970 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 971 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 972 testcase( pTab->tabFlags & TF_HasVirtual ); 973 testcase( pTab->tabFlags & TF_HasStored ); 974 for(i=ipkColumn-1; i>=0; i--){ 975 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 976 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 977 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 978 ipkColumn--; 979 } 980 } 981 } 982 #endif 983 984 /* Make sure the number of columns in the source data matches the number 985 ** of columns to be inserted into the table. 986 */ 987 assert( TF_HasHidden==COLFLAG_HIDDEN ); 988 assert( TF_HasGenerated==COLFLAG_GENERATED ); 989 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 990 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 991 for(i=0; i<pTab->nCol; i++){ 992 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 993 } 994 } 995 if( nColumn!=(pTab->nCol-nHidden) ){ 996 sqlite3ErrorMsg(pParse, 997 "table %S has %d columns but %d values were supplied", 998 pTabList->a, pTab->nCol-nHidden, nColumn); 999 goto insert_cleanup; 1000 } 1001 } 1002 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1003 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1004 goto insert_cleanup; 1005 } 1006 1007 /* Initialize the count of rows to be inserted 1008 */ 1009 if( (db->flags & SQLITE_CountRows)!=0 1010 && !pParse->nested 1011 && !pParse->pTriggerTab 1012 && !pParse->bReturning 1013 ){ 1014 regRowCount = ++pParse->nMem; 1015 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1016 } 1017 1018 /* If this is not a view, open the table and and all indices */ 1019 if( !isView ){ 1020 int nIdx; 1021 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1022 &iDataCur, &iIdxCur); 1023 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1024 if( aRegIdx==0 ){ 1025 goto insert_cleanup; 1026 } 1027 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1028 assert( pIdx ); 1029 aRegIdx[i] = ++pParse->nMem; 1030 pParse->nMem += pIdx->nColumn; 1031 } 1032 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1033 } 1034 #ifndef SQLITE_OMIT_UPSERT 1035 if( pUpsert ){ 1036 Upsert *pNx; 1037 if( IsVirtual(pTab) ){ 1038 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1039 pTab->zName); 1040 goto insert_cleanup; 1041 } 1042 if( IsView(pTab) ){ 1043 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1044 goto insert_cleanup; 1045 } 1046 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1047 goto insert_cleanup; 1048 } 1049 pTabList->a[0].iCursor = iDataCur; 1050 pNx = pUpsert; 1051 do{ 1052 pNx->pUpsertSrc = pTabList; 1053 pNx->regData = regData; 1054 pNx->iDataCur = iDataCur; 1055 pNx->iIdxCur = iIdxCur; 1056 if( pNx->pUpsertTarget ){ 1057 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1058 goto insert_cleanup; 1059 } 1060 } 1061 pNx = pNx->pNextUpsert; 1062 }while( pNx!=0 ); 1063 } 1064 #endif 1065 1066 1067 /* This is the top of the main insertion loop */ 1068 if( useTempTable ){ 1069 /* This block codes the top of loop only. The complete loop is the 1070 ** following pseudocode (template 4): 1071 ** 1072 ** rewind temp table, if empty goto D 1073 ** C: loop over rows of intermediate table 1074 ** transfer values form intermediate table into <table> 1075 ** end loop 1076 ** D: ... 1077 */ 1078 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1079 addrCont = sqlite3VdbeCurrentAddr(v); 1080 }else if( pSelect ){ 1081 /* This block codes the top of loop only. The complete loop is the 1082 ** following pseudocode (template 3): 1083 ** 1084 ** C: yield X, at EOF goto D 1085 ** insert the select result into <table> from R..R+n 1086 ** goto C 1087 ** D: ... 1088 */ 1089 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1090 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1091 VdbeCoverage(v); 1092 if( ipkColumn>=0 ){ 1093 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1094 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1095 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1096 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1097 } 1098 } 1099 1100 /* Compute data for ordinary columns of the new entry. Values 1101 ** are written in storage order into registers starting with regData. 1102 ** Only ordinary columns are computed in this loop. The rowid 1103 ** (if there is one) is computed later and generated columns are 1104 ** computed after the rowid since they might depend on the value 1105 ** of the rowid. 1106 */ 1107 nHidden = 0; 1108 iRegStore = regData; assert( regData==regRowid+1 ); 1109 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1110 int k; 1111 u32 colFlags; 1112 assert( i>=nHidden ); 1113 if( i==pTab->iPKey ){ 1114 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1115 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1116 ** using excess space. The file format definition requires this extra 1117 ** NULL - we cannot optimize further by skipping the column completely */ 1118 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1119 continue; 1120 } 1121 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1122 nHidden++; 1123 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1124 /* Virtual columns do not participate in OP_MakeRecord. So back up 1125 ** iRegStore by one slot to compensate for the iRegStore++ in the 1126 ** outer for() loop */ 1127 iRegStore--; 1128 continue; 1129 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1130 /* Stored columns are computed later. But if there are BEFORE 1131 ** triggers, the slots used for stored columns will be OP_Copy-ed 1132 ** to a second block of registers, so the register needs to be 1133 ** initialized to NULL to avoid an uninitialized register read */ 1134 if( tmask & TRIGGER_BEFORE ){ 1135 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1136 } 1137 continue; 1138 }else if( pColumn==0 ){ 1139 /* Hidden columns that are not explicitly named in the INSERT 1140 ** get there default value */ 1141 sqlite3ExprCodeFactorable(pParse, 1142 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1143 iRegStore); 1144 continue; 1145 } 1146 } 1147 if( pColumn ){ 1148 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1149 if( j>=pColumn->nId ){ 1150 /* A column not named in the insert column list gets its 1151 ** default value */ 1152 sqlite3ExprCodeFactorable(pParse, 1153 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1154 iRegStore); 1155 continue; 1156 } 1157 k = j; 1158 }else if( nColumn==0 ){ 1159 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1160 sqlite3ExprCodeFactorable(pParse, 1161 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1162 iRegStore); 1163 continue; 1164 }else{ 1165 k = i - nHidden; 1166 } 1167 1168 if( useTempTable ){ 1169 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1170 }else if( pSelect ){ 1171 if( regFromSelect!=regData ){ 1172 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1173 } 1174 }else{ 1175 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1176 } 1177 } 1178 1179 1180 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1181 */ 1182 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1183 if( tmask & TRIGGER_BEFORE ){ 1184 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1185 1186 /* build the NEW.* reference row. Note that if there is an INTEGER 1187 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1188 ** translated into a unique ID for the row. But on a BEFORE trigger, 1189 ** we do not know what the unique ID will be (because the insert has 1190 ** not happened yet) so we substitute a rowid of -1 1191 */ 1192 if( ipkColumn<0 ){ 1193 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1194 }else{ 1195 int addr1; 1196 assert( !withoutRowid ); 1197 if( useTempTable ){ 1198 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1199 }else{ 1200 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1201 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1202 } 1203 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1204 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1205 sqlite3VdbeJumpHere(v, addr1); 1206 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1207 } 1208 1209 /* Copy the new data already generated. */ 1210 assert( pTab->nNVCol>0 ); 1211 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1212 1213 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1214 /* Compute the new value for generated columns after all other 1215 ** columns have already been computed. This must be done after 1216 ** computing the ROWID in case one of the generated columns 1217 ** refers to the ROWID. */ 1218 if( pTab->tabFlags & TF_HasGenerated ){ 1219 testcase( pTab->tabFlags & TF_HasVirtual ); 1220 testcase( pTab->tabFlags & TF_HasStored ); 1221 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1222 } 1223 #endif 1224 1225 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1226 ** do not attempt any conversions before assembling the record. 1227 ** If this is a real table, attempt conversions as required by the 1228 ** table column affinities. 1229 */ 1230 if( !isView ){ 1231 sqlite3TableAffinity(v, pTab, regCols+1); 1232 } 1233 1234 /* Fire BEFORE or INSTEAD OF triggers */ 1235 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1236 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1237 1238 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1239 } 1240 1241 if( !isView ){ 1242 if( IsVirtual(pTab) ){ 1243 /* The row that the VUpdate opcode will delete: none */ 1244 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1245 } 1246 if( ipkColumn>=0 ){ 1247 /* Compute the new rowid */ 1248 if( useTempTable ){ 1249 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1250 }else if( pSelect ){ 1251 /* Rowid already initialized at tag-20191021-001 */ 1252 }else{ 1253 Expr *pIpk = pList->a[ipkColumn].pExpr; 1254 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1255 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1256 appendFlag = 1; 1257 }else{ 1258 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1259 } 1260 } 1261 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1262 ** to generate a unique primary key value. 1263 */ 1264 if( !appendFlag ){ 1265 int addr1; 1266 if( !IsVirtual(pTab) ){ 1267 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1268 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1269 sqlite3VdbeJumpHere(v, addr1); 1270 }else{ 1271 addr1 = sqlite3VdbeCurrentAddr(v); 1272 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1273 } 1274 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1275 } 1276 }else if( IsVirtual(pTab) || withoutRowid ){ 1277 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1278 }else{ 1279 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1280 appendFlag = 1; 1281 } 1282 autoIncStep(pParse, regAutoinc, regRowid); 1283 1284 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1285 /* Compute the new value for generated columns after all other 1286 ** columns have already been computed. This must be done after 1287 ** computing the ROWID in case one of the generated columns 1288 ** is derived from the INTEGER PRIMARY KEY. */ 1289 if( pTab->tabFlags & TF_HasGenerated ){ 1290 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1291 } 1292 #endif 1293 1294 /* Generate code to check constraints and generate index keys and 1295 ** do the insertion. 1296 */ 1297 #ifndef SQLITE_OMIT_VIRTUALTABLE 1298 if( IsVirtual(pTab) ){ 1299 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1300 sqlite3VtabMakeWritable(pParse, pTab); 1301 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1302 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1303 sqlite3MayAbort(pParse); 1304 }else 1305 #endif 1306 { 1307 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1308 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1309 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1310 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1311 ); 1312 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1313 1314 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1315 ** constraints or (b) there are no triggers and this table is not a 1316 ** parent table in a foreign key constraint. It is safe to set the 1317 ** flag in the second case as if any REPLACE constraint is hit, an 1318 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1319 ** cursor that is disturbed. And these instructions both clear the 1320 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1321 ** functionality. */ 1322 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1323 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1324 regIns, aRegIdx, 0, appendFlag, bUseSeek 1325 ); 1326 } 1327 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1328 }else if( pParse->bReturning ){ 1329 /* If there is a RETURNING clause, populate the rowid register with 1330 ** constant value -1, in case one or more of the returned expressions 1331 ** refer to the "rowid" of the view. */ 1332 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1333 #endif 1334 } 1335 1336 /* Update the count of rows that are inserted 1337 */ 1338 if( regRowCount ){ 1339 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1340 } 1341 1342 if( pTrigger ){ 1343 /* Code AFTER triggers */ 1344 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1345 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1346 } 1347 1348 /* The bottom of the main insertion loop, if the data source 1349 ** is a SELECT statement. 1350 */ 1351 sqlite3VdbeResolveLabel(v, endOfLoop); 1352 if( useTempTable ){ 1353 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1354 sqlite3VdbeJumpHere(v, addrInsTop); 1355 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1356 }else if( pSelect ){ 1357 sqlite3VdbeGoto(v, addrCont); 1358 #ifdef SQLITE_DEBUG 1359 /* If we are jumping back to an OP_Yield that is preceded by an 1360 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1361 ** OP_ReleaseReg will be included in the loop. */ 1362 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1363 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1364 sqlite3VdbeChangeP5(v, 1); 1365 } 1366 #endif 1367 sqlite3VdbeJumpHere(v, addrInsTop); 1368 } 1369 1370 #ifndef SQLITE_OMIT_XFER_OPT 1371 insert_end: 1372 #endif /* SQLITE_OMIT_XFER_OPT */ 1373 /* Update the sqlite_sequence table by storing the content of the 1374 ** maximum rowid counter values recorded while inserting into 1375 ** autoincrement tables. 1376 */ 1377 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1378 sqlite3AutoincrementEnd(pParse); 1379 } 1380 1381 /* 1382 ** Return the number of rows inserted. If this routine is 1383 ** generating code because of a call to sqlite3NestedParse(), do not 1384 ** invoke the callback function. 1385 */ 1386 if( regRowCount ){ 1387 sqlite3VdbeAddOp2(v, OP_ChngCntRow, regRowCount, 1); 1388 sqlite3VdbeSetNumCols(v, 1); 1389 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1390 } 1391 1392 insert_cleanup: 1393 sqlite3SrcListDelete(db, pTabList); 1394 sqlite3ExprListDelete(db, pList); 1395 sqlite3UpsertDelete(db, pUpsert); 1396 sqlite3SelectDelete(db, pSelect); 1397 sqlite3IdListDelete(db, pColumn); 1398 sqlite3DbFree(db, aRegIdx); 1399 } 1400 1401 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1402 ** they may interfere with compilation of other functions in this file 1403 ** (or in another file, if this file becomes part of the amalgamation). */ 1404 #ifdef isView 1405 #undef isView 1406 #endif 1407 #ifdef pTrigger 1408 #undef pTrigger 1409 #endif 1410 #ifdef tmask 1411 #undef tmask 1412 #endif 1413 1414 /* 1415 ** Meanings of bits in of pWalker->eCode for 1416 ** sqlite3ExprReferencesUpdatedColumn() 1417 */ 1418 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1419 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1420 1421 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1422 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1423 ** expression node references any of the 1424 ** columns that are being modifed by an UPDATE statement. 1425 */ 1426 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1427 if( pExpr->op==TK_COLUMN ){ 1428 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1429 if( pExpr->iColumn>=0 ){ 1430 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1431 pWalker->eCode |= CKCNSTRNT_COLUMN; 1432 } 1433 }else{ 1434 pWalker->eCode |= CKCNSTRNT_ROWID; 1435 } 1436 } 1437 return WRC_Continue; 1438 } 1439 1440 /* 1441 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1442 ** only columns that are modified by the UPDATE are those for which 1443 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1444 ** 1445 ** Return true if CHECK constraint pExpr uses any of the 1446 ** changing columns (or the rowid if it is changing). In other words, 1447 ** return true if this CHECK constraint must be validated for 1448 ** the new row in the UPDATE statement. 1449 ** 1450 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1451 ** The operation of this routine is the same - return true if an only if 1452 ** the expression uses one or more of columns identified by the second and 1453 ** third arguments. 1454 */ 1455 int sqlite3ExprReferencesUpdatedColumn( 1456 Expr *pExpr, /* The expression to be checked */ 1457 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1458 int chngRowid /* True if UPDATE changes the rowid */ 1459 ){ 1460 Walker w; 1461 memset(&w, 0, sizeof(w)); 1462 w.eCode = 0; 1463 w.xExprCallback = checkConstraintExprNode; 1464 w.u.aiCol = aiChng; 1465 sqlite3WalkExpr(&w, pExpr); 1466 if( !chngRowid ){ 1467 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1468 w.eCode &= ~CKCNSTRNT_ROWID; 1469 } 1470 testcase( w.eCode==0 ); 1471 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1472 testcase( w.eCode==CKCNSTRNT_ROWID ); 1473 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1474 return w.eCode!=0; 1475 } 1476 1477 /* 1478 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1479 ** the indexes of a table in the order provided in the Table->pIndex list. 1480 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1481 ** the indexes in a different order. The following data structures accomplish 1482 ** this. 1483 ** 1484 ** The IndexIterator object is used to walk through all of the indexes 1485 ** of a table in either Index.pNext order, or in some other order established 1486 ** by an array of IndexListTerm objects. 1487 */ 1488 typedef struct IndexListTerm IndexListTerm; 1489 typedef struct IndexIterator IndexIterator; 1490 struct IndexIterator { 1491 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1492 int i; /* Index of the current item from the list */ 1493 union { 1494 struct { /* Use this object for eType==0: A Index.pNext list */ 1495 Index *pIdx; /* The current Index */ 1496 } lx; 1497 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1498 int nIdx; /* Size of the array */ 1499 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1500 } ax; 1501 } u; 1502 }; 1503 1504 /* When IndexIterator.eType==1, then each index is an array of instances 1505 ** of the following object 1506 */ 1507 struct IndexListTerm { 1508 Index *p; /* The index */ 1509 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1510 }; 1511 1512 /* Return the first index on the list */ 1513 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1514 assert( pIter->i==0 ); 1515 if( pIter->eType ){ 1516 *pIx = pIter->u.ax.aIdx[0].ix; 1517 return pIter->u.ax.aIdx[0].p; 1518 }else{ 1519 *pIx = 0; 1520 return pIter->u.lx.pIdx; 1521 } 1522 } 1523 1524 /* Return the next index from the list. Return NULL when out of indexes */ 1525 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1526 if( pIter->eType ){ 1527 int i = ++pIter->i; 1528 if( i>=pIter->u.ax.nIdx ){ 1529 *pIx = i; 1530 return 0; 1531 } 1532 *pIx = pIter->u.ax.aIdx[i].ix; 1533 return pIter->u.ax.aIdx[i].p; 1534 }else{ 1535 ++(*pIx); 1536 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1537 return pIter->u.lx.pIdx; 1538 } 1539 } 1540 1541 /* 1542 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1543 ** on table pTab. 1544 ** 1545 ** The regNewData parameter is the first register in a range that contains 1546 ** the data to be inserted or the data after the update. There will be 1547 ** pTab->nCol+1 registers in this range. The first register (the one 1548 ** that regNewData points to) will contain the new rowid, or NULL in the 1549 ** case of a WITHOUT ROWID table. The second register in the range will 1550 ** contain the content of the first table column. The third register will 1551 ** contain the content of the second table column. And so forth. 1552 ** 1553 ** The regOldData parameter is similar to regNewData except that it contains 1554 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1555 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1556 ** checking regOldData for zero. 1557 ** 1558 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1559 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1560 ** might be modified by the UPDATE. If pkChng is false, then the key of 1561 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1562 ** 1563 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1564 ** was explicitly specified as part of the INSERT statement. If pkChng 1565 ** is zero, it means that the either rowid is computed automatically or 1566 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1567 ** pkChng will only be true if the INSERT statement provides an integer 1568 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1569 ** 1570 ** The code generated by this routine will store new index entries into 1571 ** registers identified by aRegIdx[]. No index entry is created for 1572 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1573 ** the same as the order of indices on the linked list of indices 1574 ** at pTab->pIndex. 1575 ** 1576 ** (2019-05-07) The generated code also creates a new record for the 1577 ** main table, if pTab is a rowid table, and stores that record in the 1578 ** register identified by aRegIdx[nIdx] - in other words in the first 1579 ** entry of aRegIdx[] past the last index. It is important that the 1580 ** record be generated during constraint checks to avoid affinity changes 1581 ** to the register content that occur after constraint checks but before 1582 ** the new record is inserted. 1583 ** 1584 ** The caller must have already opened writeable cursors on the main 1585 ** table and all applicable indices (that is to say, all indices for which 1586 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1587 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1588 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1589 ** for the first index in the pTab->pIndex list. Cursors for other indices 1590 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1591 ** 1592 ** This routine also generates code to check constraints. NOT NULL, 1593 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1594 ** then the appropriate action is performed. There are five possible 1595 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1596 ** 1597 ** Constraint type Action What Happens 1598 ** --------------- ---------- ---------------------------------------- 1599 ** any ROLLBACK The current transaction is rolled back and 1600 ** sqlite3_step() returns immediately with a 1601 ** return code of SQLITE_CONSTRAINT. 1602 ** 1603 ** any ABORT Back out changes from the current command 1604 ** only (do not do a complete rollback) then 1605 ** cause sqlite3_step() to return immediately 1606 ** with SQLITE_CONSTRAINT. 1607 ** 1608 ** any FAIL Sqlite3_step() returns immediately with a 1609 ** return code of SQLITE_CONSTRAINT. The 1610 ** transaction is not rolled back and any 1611 ** changes to prior rows are retained. 1612 ** 1613 ** any IGNORE The attempt in insert or update the current 1614 ** row is skipped, without throwing an error. 1615 ** Processing continues with the next row. 1616 ** (There is an immediate jump to ignoreDest.) 1617 ** 1618 ** NOT NULL REPLACE The NULL value is replace by the default 1619 ** value for that column. If the default value 1620 ** is NULL, the action is the same as ABORT. 1621 ** 1622 ** UNIQUE REPLACE The other row that conflicts with the row 1623 ** being inserted is removed. 1624 ** 1625 ** CHECK REPLACE Illegal. The results in an exception. 1626 ** 1627 ** Which action to take is determined by the overrideError parameter. 1628 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1629 ** is used. Or if pParse->onError==OE_Default then the onError value 1630 ** for the constraint is used. 1631 */ 1632 void sqlite3GenerateConstraintChecks( 1633 Parse *pParse, /* The parser context */ 1634 Table *pTab, /* The table being inserted or updated */ 1635 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1636 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1637 int iIdxCur, /* First index cursor */ 1638 int regNewData, /* First register in a range holding values to insert */ 1639 int regOldData, /* Previous content. 0 for INSERTs */ 1640 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1641 u8 overrideError, /* Override onError to this if not OE_Default */ 1642 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1643 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1644 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1645 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1646 ){ 1647 Vdbe *v; /* VDBE under constrution */ 1648 Index *pIdx; /* Pointer to one of the indices */ 1649 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1650 sqlite3 *db; /* Database connection */ 1651 int i; /* loop counter */ 1652 int ix; /* Index loop counter */ 1653 int nCol; /* Number of columns */ 1654 int onError; /* Conflict resolution strategy */ 1655 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1656 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1657 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1658 u8 isUpdate; /* True if this is an UPDATE operation */ 1659 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1660 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1661 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1662 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1663 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1664 /* Variables associated with retesting uniqueness constraints after 1665 ** replace triggers fire have run */ 1666 int regTrigCnt; /* Register used to count replace trigger invocations */ 1667 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1668 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1669 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1670 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1671 IndexIterator sIdxIter; /* Index iterator */ 1672 1673 isUpdate = regOldData!=0; 1674 db = pParse->db; 1675 v = pParse->pVdbe; 1676 assert( v!=0 ); 1677 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1678 nCol = pTab->nCol; 1679 1680 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1681 ** normal rowid tables. nPkField is the number of key fields in the 1682 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1683 ** number of fields in the true primary key of the table. */ 1684 if( HasRowid(pTab) ){ 1685 pPk = 0; 1686 nPkField = 1; 1687 }else{ 1688 pPk = sqlite3PrimaryKeyIndex(pTab); 1689 nPkField = pPk->nKeyCol; 1690 } 1691 1692 /* Record that this module has started */ 1693 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1694 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1695 1696 /* Test all NOT NULL constraints. 1697 */ 1698 if( pTab->tabFlags & TF_HasNotNull ){ 1699 int b2ndPass = 0; /* True if currently running 2nd pass */ 1700 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1701 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1702 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1703 for(i=0; i<nCol; i++){ 1704 int iReg; /* Register holding column value */ 1705 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1706 int isGenerated; /* non-zero if column is generated */ 1707 onError = pCol->notNull; 1708 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1709 if( i==pTab->iPKey ){ 1710 continue; /* ROWID is never NULL */ 1711 } 1712 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1713 if( isGenerated && !b2ndPass ){ 1714 nGenerated++; 1715 continue; /* Generated columns processed on 2nd pass */ 1716 } 1717 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1718 /* Do not check NOT NULL on columns that do not change */ 1719 continue; 1720 } 1721 if( overrideError!=OE_Default ){ 1722 onError = overrideError; 1723 }else if( onError==OE_Default ){ 1724 onError = OE_Abort; 1725 } 1726 if( onError==OE_Replace ){ 1727 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1728 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1729 ){ 1730 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1731 testcase( pCol->colFlags & COLFLAG_STORED ); 1732 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1733 onError = OE_Abort; 1734 }else{ 1735 assert( !isGenerated ); 1736 } 1737 }else if( b2ndPass && !isGenerated ){ 1738 continue; 1739 } 1740 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1741 || onError==OE_Ignore || onError==OE_Replace ); 1742 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1743 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1744 switch( onError ){ 1745 case OE_Replace: { 1746 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1747 VdbeCoverage(v); 1748 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1749 nSeenReplace++; 1750 sqlite3ExprCodeCopy(pParse, 1751 sqlite3ColumnExpr(pTab, pCol), iReg); 1752 sqlite3VdbeJumpHere(v, addr1); 1753 break; 1754 } 1755 case OE_Abort: 1756 sqlite3MayAbort(pParse); 1757 /* no break */ deliberate_fall_through 1758 case OE_Rollback: 1759 case OE_Fail: { 1760 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1761 pCol->zCnName); 1762 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1763 onError, iReg); 1764 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1765 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1766 VdbeCoverage(v); 1767 break; 1768 } 1769 default: { 1770 assert( onError==OE_Ignore ); 1771 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1772 VdbeCoverage(v); 1773 break; 1774 } 1775 } /* end switch(onError) */ 1776 } /* end loop i over columns */ 1777 if( nGenerated==0 && nSeenReplace==0 ){ 1778 /* If there are no generated columns with NOT NULL constraints 1779 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1780 ** pass is sufficient */ 1781 break; 1782 } 1783 if( b2ndPass ) break; /* Never need more than 2 passes */ 1784 b2ndPass = 1; 1785 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1786 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1787 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1788 ** first pass, recomputed values for all generated columns, as 1789 ** those values might depend on columns affected by the REPLACE. 1790 */ 1791 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1792 } 1793 #endif 1794 } /* end of 2-pass loop */ 1795 } /* end if( has-not-null-constraints ) */ 1796 1797 /* Test all CHECK constraints 1798 */ 1799 #ifndef SQLITE_OMIT_CHECK 1800 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1801 ExprList *pCheck = pTab->pCheck; 1802 pParse->iSelfTab = -(regNewData+1); 1803 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1804 for(i=0; i<pCheck->nExpr; i++){ 1805 int allOk; 1806 Expr *pCopy; 1807 Expr *pExpr = pCheck->a[i].pExpr; 1808 if( aiChng 1809 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1810 ){ 1811 /* The check constraints do not reference any of the columns being 1812 ** updated so there is no point it verifying the check constraint */ 1813 continue; 1814 } 1815 if( bAffinityDone==0 ){ 1816 sqlite3TableAffinity(v, pTab, regNewData+1); 1817 bAffinityDone = 1; 1818 } 1819 allOk = sqlite3VdbeMakeLabel(pParse); 1820 sqlite3VdbeVerifyAbortable(v, onError); 1821 pCopy = sqlite3ExprDup(db, pExpr, 0); 1822 if( !db->mallocFailed ){ 1823 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1824 } 1825 sqlite3ExprDelete(db, pCopy); 1826 if( onError==OE_Ignore ){ 1827 sqlite3VdbeGoto(v, ignoreDest); 1828 }else{ 1829 char *zName = pCheck->a[i].zEName; 1830 assert( zName!=0 || pParse->db->mallocFailed ); 1831 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1832 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1833 onError, zName, P4_TRANSIENT, 1834 P5_ConstraintCheck); 1835 } 1836 sqlite3VdbeResolveLabel(v, allOk); 1837 } 1838 pParse->iSelfTab = 0; 1839 } 1840 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1841 1842 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1843 ** order: 1844 ** 1845 ** (1) OE_Update 1846 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1847 ** (3) OE_Replace 1848 ** 1849 ** OE_Fail and OE_Ignore must happen before any changes are made. 1850 ** OE_Update guarantees that only a single row will change, so it 1851 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1852 ** could happen in any order, but they are grouped up front for 1853 ** convenience. 1854 ** 1855 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1856 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1857 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1858 ** constraint before any others, so it had to be moved. 1859 ** 1860 ** Constraint checking code is generated in this order: 1861 ** (A) The rowid constraint 1862 ** (B) Unique index constraints that do not have OE_Replace as their 1863 ** default conflict resolution strategy 1864 ** (C) Unique index that do use OE_Replace by default. 1865 ** 1866 ** The ordering of (2) and (3) is accomplished by making sure the linked 1867 ** list of indexes attached to a table puts all OE_Replace indexes last 1868 ** in the list. See sqlite3CreateIndex() for where that happens. 1869 */ 1870 sIdxIter.eType = 0; 1871 sIdxIter.i = 0; 1872 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1873 sIdxIter.u.lx.pIdx = pTab->pIndex; 1874 if( pUpsert ){ 1875 if( pUpsert->pUpsertTarget==0 ){ 1876 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1877 assert( pUpsert->pNextUpsert==0 ); 1878 if( pUpsert->isDoUpdate==0 ){ 1879 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1880 ** Make all unique constraint resolution be OE_Ignore */ 1881 overrideError = OE_Ignore; 1882 pUpsert = 0; 1883 }else{ 1884 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1885 overrideError = OE_Update; 1886 } 1887 }else if( pTab->pIndex!=0 ){ 1888 /* Otherwise, we'll need to run the IndexListTerm array version of the 1889 ** iterator to ensure that all of the ON CONFLICT conditions are 1890 ** checked first and in order. */ 1891 int nIdx, jj; 1892 u64 nByte; 1893 Upsert *pTerm; 1894 u8 *bUsed; 1895 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1896 assert( aRegIdx[nIdx]>0 ); 1897 } 1898 sIdxIter.eType = 1; 1899 sIdxIter.u.ax.nIdx = nIdx; 1900 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1901 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1902 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1903 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1904 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1905 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1906 if( pTerm->pUpsertTarget==0 ) break; 1907 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1908 jj = 0; 1909 pIdx = pTab->pIndex; 1910 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1911 pIdx = pIdx->pNext; 1912 jj++; 1913 } 1914 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1915 bUsed[jj] = 1; 1916 sIdxIter.u.ax.aIdx[i].p = pIdx; 1917 sIdxIter.u.ax.aIdx[i].ix = jj; 1918 i++; 1919 } 1920 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1921 if( bUsed[jj] ) continue; 1922 sIdxIter.u.ax.aIdx[i].p = pIdx; 1923 sIdxIter.u.ax.aIdx[i].ix = jj; 1924 i++; 1925 } 1926 assert( i==nIdx ); 1927 } 1928 } 1929 1930 /* Determine if it is possible that triggers (either explicitly coded 1931 ** triggers or FK resolution actions) might run as a result of deletes 1932 ** that happen when OE_Replace conflict resolution occurs. (Call these 1933 ** "replace triggers".) If any replace triggers run, we will need to 1934 ** recheck all of the uniqueness constraints after they have all run. 1935 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1936 ** 1937 ** If replace triggers are a possibility, then 1938 ** 1939 ** (1) Allocate register regTrigCnt and initialize it to zero. 1940 ** That register will count the number of replace triggers that 1941 ** fire. Constraint recheck only occurs if the number is positive. 1942 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1943 ** (3) Initialize addrRecheck and lblRecheckOk 1944 ** 1945 ** The uniqueness rechecking code will create a series of tests to run 1946 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1947 ** used to link together these tests which are separated from each other 1948 ** in the generate bytecode. 1949 */ 1950 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1951 /* There are not DELETE triggers nor FK constraints. No constraint 1952 ** rechecks are needed. */ 1953 pTrigger = 0; 1954 regTrigCnt = 0; 1955 }else{ 1956 if( db->flags&SQLITE_RecTriggers ){ 1957 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1958 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1959 }else{ 1960 pTrigger = 0; 1961 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1962 } 1963 if( regTrigCnt ){ 1964 /* Replace triggers might exist. Allocate the counter and 1965 ** initialize it to zero. */ 1966 regTrigCnt = ++pParse->nMem; 1967 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1968 VdbeComment((v, "trigger count")); 1969 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1970 addrRecheck = lblRecheckOk; 1971 } 1972 } 1973 1974 /* If rowid is changing, make sure the new rowid does not previously 1975 ** exist in the table. 1976 */ 1977 if( pkChng && pPk==0 ){ 1978 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1979 1980 /* Figure out what action to take in case of a rowid collision */ 1981 onError = pTab->keyConf; 1982 if( overrideError!=OE_Default ){ 1983 onError = overrideError; 1984 }else if( onError==OE_Default ){ 1985 onError = OE_Abort; 1986 } 1987 1988 /* figure out whether or not upsert applies in this case */ 1989 if( pUpsert ){ 1990 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1991 if( pUpsertClause!=0 ){ 1992 if( pUpsertClause->isDoUpdate==0 ){ 1993 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1994 }else{ 1995 onError = OE_Update; /* DO UPDATE */ 1996 } 1997 } 1998 if( pUpsertClause!=pUpsert ){ 1999 /* The first ON CONFLICT clause has a conflict target other than 2000 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2001 ** and then come back here and deal with the IPK afterwards */ 2002 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2003 } 2004 } 2005 2006 /* If the response to a rowid conflict is REPLACE but the response 2007 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2008 ** to defer the running of the rowid conflict checking until after 2009 ** the UNIQUE constraints have run. 2010 */ 2011 if( onError==OE_Replace /* IPK rule is REPLACE */ 2012 && onError!=overrideError /* Rules for other constraints are different */ 2013 && pTab->pIndex /* There exist other constraints */ 2014 ){ 2015 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2016 VdbeComment((v, "defer IPK REPLACE until last")); 2017 } 2018 2019 if( isUpdate ){ 2020 /* pkChng!=0 does not mean that the rowid has changed, only that 2021 ** it might have changed. Skip the conflict logic below if the rowid 2022 ** is unchanged. */ 2023 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2024 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2025 VdbeCoverage(v); 2026 } 2027 2028 /* Check to see if the new rowid already exists in the table. Skip 2029 ** the following conflict logic if it does not. */ 2030 VdbeNoopComment((v, "uniqueness check for ROWID")); 2031 sqlite3VdbeVerifyAbortable(v, onError); 2032 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2033 VdbeCoverage(v); 2034 2035 switch( onError ){ 2036 default: { 2037 onError = OE_Abort; 2038 /* no break */ deliberate_fall_through 2039 } 2040 case OE_Rollback: 2041 case OE_Abort: 2042 case OE_Fail: { 2043 testcase( onError==OE_Rollback ); 2044 testcase( onError==OE_Abort ); 2045 testcase( onError==OE_Fail ); 2046 sqlite3RowidConstraint(pParse, onError, pTab); 2047 break; 2048 } 2049 case OE_Replace: { 2050 /* If there are DELETE triggers on this table and the 2051 ** recursive-triggers flag is set, call GenerateRowDelete() to 2052 ** remove the conflicting row from the table. This will fire 2053 ** the triggers and remove both the table and index b-tree entries. 2054 ** 2055 ** Otherwise, if there are no triggers or the recursive-triggers 2056 ** flag is not set, but the table has one or more indexes, call 2057 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2058 ** only. The table b-tree entry will be replaced by the new entry 2059 ** when it is inserted. 2060 ** 2061 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2062 ** also invoke MultiWrite() to indicate that this VDBE may require 2063 ** statement rollback (if the statement is aborted after the delete 2064 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2065 ** but being more selective here allows statements like: 2066 ** 2067 ** REPLACE INTO t(rowid) VALUES($newrowid) 2068 ** 2069 ** to run without a statement journal if there are no indexes on the 2070 ** table. 2071 */ 2072 if( regTrigCnt ){ 2073 sqlite3MultiWrite(pParse); 2074 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2075 regNewData, 1, 0, OE_Replace, 1, -1); 2076 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2077 nReplaceTrig++; 2078 }else{ 2079 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2080 assert( HasRowid(pTab) ); 2081 /* This OP_Delete opcode fires the pre-update-hook only. It does 2082 ** not modify the b-tree. It is more efficient to let the coming 2083 ** OP_Insert replace the existing entry than it is to delete the 2084 ** existing entry and then insert a new one. */ 2085 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2086 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2087 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2088 if( pTab->pIndex ){ 2089 sqlite3MultiWrite(pParse); 2090 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2091 } 2092 } 2093 seenReplace = 1; 2094 break; 2095 } 2096 #ifndef SQLITE_OMIT_UPSERT 2097 case OE_Update: { 2098 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2099 /* no break */ deliberate_fall_through 2100 } 2101 #endif 2102 case OE_Ignore: { 2103 testcase( onError==OE_Ignore ); 2104 sqlite3VdbeGoto(v, ignoreDest); 2105 break; 2106 } 2107 } 2108 sqlite3VdbeResolveLabel(v, addrRowidOk); 2109 if( pUpsert && pUpsertClause!=pUpsert ){ 2110 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2111 }else if( ipkTop ){ 2112 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2113 sqlite3VdbeJumpHere(v, ipkTop-1); 2114 } 2115 } 2116 2117 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2118 ** index and making sure that duplicate entries do not already exist. 2119 ** Compute the revised record entries for indices as we go. 2120 ** 2121 ** This loop also handles the case of the PRIMARY KEY index for a 2122 ** WITHOUT ROWID table. 2123 */ 2124 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2125 pIdx; 2126 pIdx = indexIteratorNext(&sIdxIter, &ix) 2127 ){ 2128 int regIdx; /* Range of registers hold conent for pIdx */ 2129 int regR; /* Range of registers holding conflicting PK */ 2130 int iThisCur; /* Cursor for this UNIQUE index */ 2131 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2132 int addrConflictCk; /* First opcode in the conflict check logic */ 2133 2134 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2135 if( pUpsert ){ 2136 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2137 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2138 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2139 } 2140 } 2141 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2142 if( bAffinityDone==0 ){ 2143 sqlite3TableAffinity(v, pTab, regNewData+1); 2144 bAffinityDone = 1; 2145 } 2146 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2147 iThisCur = iIdxCur+ix; 2148 2149 2150 /* Skip partial indices for which the WHERE clause is not true */ 2151 if( pIdx->pPartIdxWhere ){ 2152 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2153 pParse->iSelfTab = -(regNewData+1); 2154 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2155 SQLITE_JUMPIFNULL); 2156 pParse->iSelfTab = 0; 2157 } 2158 2159 /* Create a record for this index entry as it should appear after 2160 ** the insert or update. Store that record in the aRegIdx[ix] register 2161 */ 2162 regIdx = aRegIdx[ix]+1; 2163 for(i=0; i<pIdx->nColumn; i++){ 2164 int iField = pIdx->aiColumn[i]; 2165 int x; 2166 if( iField==XN_EXPR ){ 2167 pParse->iSelfTab = -(regNewData+1); 2168 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2169 pParse->iSelfTab = 0; 2170 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2171 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2172 x = regNewData; 2173 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2174 VdbeComment((v, "rowid")); 2175 }else{ 2176 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2177 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2178 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2179 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2180 } 2181 } 2182 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2183 VdbeComment((v, "for %s", pIdx->zName)); 2184 #ifdef SQLITE_ENABLE_NULL_TRIM 2185 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2186 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2187 } 2188 #endif 2189 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2190 2191 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2192 ** of a WITHOUT ROWID table and there has been no change the 2193 ** primary key, then no collision is possible. The collision detection 2194 ** logic below can all be skipped. */ 2195 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2196 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2197 continue; 2198 } 2199 2200 /* Find out what action to take in case there is a uniqueness conflict */ 2201 onError = pIdx->onError; 2202 if( onError==OE_None ){ 2203 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2204 continue; /* pIdx is not a UNIQUE index */ 2205 } 2206 if( overrideError!=OE_Default ){ 2207 onError = overrideError; 2208 }else if( onError==OE_Default ){ 2209 onError = OE_Abort; 2210 } 2211 2212 /* Figure out if the upsert clause applies to this index */ 2213 if( pUpsertClause ){ 2214 if( pUpsertClause->isDoUpdate==0 ){ 2215 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2216 }else{ 2217 onError = OE_Update; /* DO UPDATE */ 2218 } 2219 } 2220 2221 /* Collision detection may be omitted if all of the following are true: 2222 ** (1) The conflict resolution algorithm is REPLACE 2223 ** (2) The table is a WITHOUT ROWID table 2224 ** (3) There are no secondary indexes on the table 2225 ** (4) No delete triggers need to be fired if there is a conflict 2226 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2227 ** 2228 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2229 ** must be explicitly deleted in order to ensure any pre-update hook 2230 ** is invoked. */ 2231 assert( IsOrdinaryTable(pTab) ); 2232 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2233 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2234 && pPk==pIdx /* Condition 2 */ 2235 && onError==OE_Replace /* Condition 1 */ 2236 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2237 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2238 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2239 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2240 ){ 2241 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2242 continue; 2243 } 2244 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2245 2246 /* Check to see if the new index entry will be unique */ 2247 sqlite3VdbeVerifyAbortable(v, onError); 2248 addrConflictCk = 2249 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2250 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2251 2252 /* Generate code to handle collisions */ 2253 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2254 if( isUpdate || onError==OE_Replace ){ 2255 if( HasRowid(pTab) ){ 2256 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2257 /* Conflict only if the rowid of the existing index entry 2258 ** is different from old-rowid */ 2259 if( isUpdate ){ 2260 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2261 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2262 VdbeCoverage(v); 2263 } 2264 }else{ 2265 int x; 2266 /* Extract the PRIMARY KEY from the end of the index entry and 2267 ** store it in registers regR..regR+nPk-1 */ 2268 if( pIdx!=pPk ){ 2269 for(i=0; i<pPk->nKeyCol; i++){ 2270 assert( pPk->aiColumn[i]>=0 ); 2271 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2272 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2273 VdbeComment((v, "%s.%s", pTab->zName, 2274 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2275 } 2276 } 2277 if( isUpdate ){ 2278 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2279 ** table, only conflict if the new PRIMARY KEY values are actually 2280 ** different from the old. 2281 ** 2282 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2283 ** of the matched index row are different from the original PRIMARY 2284 ** KEY values of this row before the update. */ 2285 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2286 int op = OP_Ne; 2287 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2288 2289 for(i=0; i<pPk->nKeyCol; i++){ 2290 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2291 x = pPk->aiColumn[i]; 2292 assert( x>=0 ); 2293 if( i==(pPk->nKeyCol-1) ){ 2294 addrJump = addrUniqueOk; 2295 op = OP_Eq; 2296 } 2297 x = sqlite3TableColumnToStorage(pTab, x); 2298 sqlite3VdbeAddOp4(v, op, 2299 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2300 ); 2301 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2302 VdbeCoverageIf(v, op==OP_Eq); 2303 VdbeCoverageIf(v, op==OP_Ne); 2304 } 2305 } 2306 } 2307 } 2308 2309 /* Generate code that executes if the new index entry is not unique */ 2310 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2311 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2312 switch( onError ){ 2313 case OE_Rollback: 2314 case OE_Abort: 2315 case OE_Fail: { 2316 testcase( onError==OE_Rollback ); 2317 testcase( onError==OE_Abort ); 2318 testcase( onError==OE_Fail ); 2319 sqlite3UniqueConstraint(pParse, onError, pIdx); 2320 break; 2321 } 2322 #ifndef SQLITE_OMIT_UPSERT 2323 case OE_Update: { 2324 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2325 /* no break */ deliberate_fall_through 2326 } 2327 #endif 2328 case OE_Ignore: { 2329 testcase( onError==OE_Ignore ); 2330 sqlite3VdbeGoto(v, ignoreDest); 2331 break; 2332 } 2333 default: { 2334 int nConflictCk; /* Number of opcodes in conflict check logic */ 2335 2336 assert( onError==OE_Replace ); 2337 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2338 assert( nConflictCk>0 || db->mallocFailed ); 2339 testcase( nConflictCk<=0 ); 2340 testcase( nConflictCk>1 ); 2341 if( regTrigCnt ){ 2342 sqlite3MultiWrite(pParse); 2343 nReplaceTrig++; 2344 } 2345 if( pTrigger && isUpdate ){ 2346 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2347 } 2348 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2349 regR, nPkField, 0, OE_Replace, 2350 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2351 if( pTrigger && isUpdate ){ 2352 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2353 } 2354 if( regTrigCnt ){ 2355 int addrBypass; /* Jump destination to bypass recheck logic */ 2356 2357 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2358 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2359 VdbeComment((v, "bypass recheck")); 2360 2361 /* Here we insert code that will be invoked after all constraint 2362 ** checks have run, if and only if one or more replace triggers 2363 ** fired. */ 2364 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2365 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2366 if( pIdx->pPartIdxWhere ){ 2367 /* Bypass the recheck if this partial index is not defined 2368 ** for the current row */ 2369 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2370 VdbeCoverage(v); 2371 } 2372 /* Copy the constraint check code from above, except change 2373 ** the constraint-ok jump destination to be the address of 2374 ** the next retest block */ 2375 while( nConflictCk>0 ){ 2376 VdbeOp x; /* Conflict check opcode to copy */ 2377 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2378 ** Hence, make a complete copy of the opcode, rather than using 2379 ** a pointer to the opcode. */ 2380 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2381 if( x.opcode!=OP_IdxRowid ){ 2382 int p2; /* New P2 value for copied conflict check opcode */ 2383 const char *zP4; 2384 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2385 p2 = lblRecheckOk; 2386 }else{ 2387 p2 = x.p2; 2388 } 2389 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2390 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2391 sqlite3VdbeChangeP5(v, x.p5); 2392 VdbeCoverageIf(v, p2!=x.p2); 2393 } 2394 nConflictCk--; 2395 addrConflictCk++; 2396 } 2397 /* If the retest fails, issue an abort */ 2398 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2399 2400 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2401 } 2402 seenReplace = 1; 2403 break; 2404 } 2405 } 2406 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2407 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2408 if( pUpsertClause 2409 && upsertIpkReturn 2410 && sqlite3UpsertNextIsIPK(pUpsertClause) 2411 ){ 2412 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2413 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2414 upsertIpkReturn = 0; 2415 } 2416 } 2417 2418 /* If the IPK constraint is a REPLACE, run it last */ 2419 if( ipkTop ){ 2420 sqlite3VdbeGoto(v, ipkTop); 2421 VdbeComment((v, "Do IPK REPLACE")); 2422 sqlite3VdbeJumpHere(v, ipkBottom); 2423 } 2424 2425 /* Recheck all uniqueness constraints after replace triggers have run */ 2426 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2427 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2428 if( nReplaceTrig ){ 2429 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2430 if( !pPk ){ 2431 if( isUpdate ){ 2432 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2433 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2434 VdbeCoverage(v); 2435 } 2436 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2437 VdbeCoverage(v); 2438 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2439 }else{ 2440 sqlite3VdbeGoto(v, addrRecheck); 2441 } 2442 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2443 } 2444 2445 /* Generate the table record */ 2446 if( HasRowid(pTab) ){ 2447 int regRec = aRegIdx[ix]; 2448 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2449 sqlite3SetMakeRecordP5(v, pTab); 2450 if( !bAffinityDone ){ 2451 sqlite3TableAffinity(v, pTab, 0); 2452 } 2453 } 2454 2455 *pbMayReplace = seenReplace; 2456 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2457 } 2458 2459 #ifdef SQLITE_ENABLE_NULL_TRIM 2460 /* 2461 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2462 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2463 ** 2464 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2465 */ 2466 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2467 u16 i; 2468 2469 /* Records with omitted columns are only allowed for schema format 2470 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2471 if( pTab->pSchema->file_format<2 ) return; 2472 2473 for(i=pTab->nCol-1; i>0; i--){ 2474 if( pTab->aCol[i].iDflt!=0 ) break; 2475 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2476 } 2477 sqlite3VdbeChangeP5(v, i+1); 2478 } 2479 #endif 2480 2481 /* 2482 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2483 ** number is iCur, and register regData contains the new record for the 2484 ** PK index. This function adds code to invoke the pre-update hook, 2485 ** if one is registered. 2486 */ 2487 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2488 static void codeWithoutRowidPreupdate( 2489 Parse *pParse, /* Parse context */ 2490 Table *pTab, /* Table being updated */ 2491 int iCur, /* Cursor number for table */ 2492 int regData /* Data containing new record */ 2493 ){ 2494 Vdbe *v = pParse->pVdbe; 2495 int r = sqlite3GetTempReg(pParse); 2496 assert( !HasRowid(pTab) ); 2497 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2498 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2499 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2500 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2501 sqlite3ReleaseTempReg(pParse, r); 2502 } 2503 #else 2504 # define codeWithoutRowidPreupdate(a,b,c,d) 2505 #endif 2506 2507 /* 2508 ** This routine generates code to finish the INSERT or UPDATE operation 2509 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2510 ** A consecutive range of registers starting at regNewData contains the 2511 ** rowid and the content to be inserted. 2512 ** 2513 ** The arguments to this routine should be the same as the first six 2514 ** arguments to sqlite3GenerateConstraintChecks. 2515 */ 2516 void sqlite3CompleteInsertion( 2517 Parse *pParse, /* The parser context */ 2518 Table *pTab, /* the table into which we are inserting */ 2519 int iDataCur, /* Cursor of the canonical data source */ 2520 int iIdxCur, /* First index cursor */ 2521 int regNewData, /* Range of content */ 2522 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2523 int update_flags, /* True for UPDATE, False for INSERT */ 2524 int appendBias, /* True if this is likely to be an append */ 2525 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2526 ){ 2527 Vdbe *v; /* Prepared statements under construction */ 2528 Index *pIdx; /* An index being inserted or updated */ 2529 u8 pik_flags; /* flag values passed to the btree insert */ 2530 int i; /* Loop counter */ 2531 2532 assert( update_flags==0 2533 || update_flags==OPFLAG_ISUPDATE 2534 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2535 ); 2536 2537 v = pParse->pVdbe; 2538 assert( v!=0 ); 2539 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2540 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2541 /* All REPLACE indexes are at the end of the list */ 2542 assert( pIdx->onError!=OE_Replace 2543 || pIdx->pNext==0 2544 || pIdx->pNext->onError==OE_Replace ); 2545 if( aRegIdx[i]==0 ) continue; 2546 if( pIdx->pPartIdxWhere ){ 2547 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2548 VdbeCoverage(v); 2549 } 2550 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2551 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2552 assert( pParse->nested==0 ); 2553 pik_flags |= OPFLAG_NCHANGE; 2554 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2555 if( update_flags==0 ){ 2556 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2557 } 2558 } 2559 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2560 aRegIdx[i]+1, 2561 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2562 sqlite3VdbeChangeP5(v, pik_flags); 2563 } 2564 if( !HasRowid(pTab) ) return; 2565 if( pParse->nested ){ 2566 pik_flags = 0; 2567 }else{ 2568 pik_flags = OPFLAG_NCHANGE; 2569 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2570 } 2571 if( appendBias ){ 2572 pik_flags |= OPFLAG_APPEND; 2573 } 2574 if( useSeekResult ){ 2575 pik_flags |= OPFLAG_USESEEKRESULT; 2576 } 2577 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2578 if( !pParse->nested ){ 2579 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2580 } 2581 sqlite3VdbeChangeP5(v, pik_flags); 2582 } 2583 2584 /* 2585 ** Allocate cursors for the pTab table and all its indices and generate 2586 ** code to open and initialized those cursors. 2587 ** 2588 ** The cursor for the object that contains the complete data (normally 2589 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2590 ** ROWID table) is returned in *piDataCur. The first index cursor is 2591 ** returned in *piIdxCur. The number of indices is returned. 2592 ** 2593 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2594 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2595 ** If iBase is negative, then allocate the next available cursor. 2596 ** 2597 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2598 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2599 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2600 ** pTab->pIndex list. 2601 ** 2602 ** If pTab is a virtual table, then this routine is a no-op and the 2603 ** *piDataCur and *piIdxCur values are left uninitialized. 2604 */ 2605 int sqlite3OpenTableAndIndices( 2606 Parse *pParse, /* Parsing context */ 2607 Table *pTab, /* Table to be opened */ 2608 int op, /* OP_OpenRead or OP_OpenWrite */ 2609 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2610 int iBase, /* Use this for the table cursor, if there is one */ 2611 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2612 int *piDataCur, /* Write the database source cursor number here */ 2613 int *piIdxCur /* Write the first index cursor number here */ 2614 ){ 2615 int i; 2616 int iDb; 2617 int iDataCur; 2618 Index *pIdx; 2619 Vdbe *v; 2620 2621 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2622 assert( op==OP_OpenWrite || p5==0 ); 2623 if( IsVirtual(pTab) ){ 2624 /* This routine is a no-op for virtual tables. Leave the output 2625 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2626 ** for improved error detection. */ 2627 *piDataCur = *piIdxCur = -999; 2628 return 0; 2629 } 2630 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2631 v = pParse->pVdbe; 2632 assert( v!=0 ); 2633 if( iBase<0 ) iBase = pParse->nTab; 2634 iDataCur = iBase++; 2635 if( piDataCur ) *piDataCur = iDataCur; 2636 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2637 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2638 }else{ 2639 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2640 } 2641 if( piIdxCur ) *piIdxCur = iBase; 2642 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2643 int iIdxCur = iBase++; 2644 assert( pIdx->pSchema==pTab->pSchema ); 2645 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2646 if( piDataCur ) *piDataCur = iIdxCur; 2647 p5 = 0; 2648 } 2649 if( aToOpen==0 || aToOpen[i+1] ){ 2650 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2651 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2652 sqlite3VdbeChangeP5(v, p5); 2653 VdbeComment((v, "%s", pIdx->zName)); 2654 } 2655 } 2656 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2657 return i; 2658 } 2659 2660 2661 #ifdef SQLITE_TEST 2662 /* 2663 ** The following global variable is incremented whenever the 2664 ** transfer optimization is used. This is used for testing 2665 ** purposes only - to make sure the transfer optimization really 2666 ** is happening when it is supposed to. 2667 */ 2668 int sqlite3_xferopt_count; 2669 #endif /* SQLITE_TEST */ 2670 2671 2672 #ifndef SQLITE_OMIT_XFER_OPT 2673 /* 2674 ** Check to see if index pSrc is compatible as a source of data 2675 ** for index pDest in an insert transfer optimization. The rules 2676 ** for a compatible index: 2677 ** 2678 ** * The index is over the same set of columns 2679 ** * The same DESC and ASC markings occurs on all columns 2680 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2681 ** * The same collating sequence on each column 2682 ** * The index has the exact same WHERE clause 2683 */ 2684 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2685 int i; 2686 assert( pDest && pSrc ); 2687 assert( pDest->pTable!=pSrc->pTable ); 2688 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2689 return 0; /* Different number of columns */ 2690 } 2691 if( pDest->onError!=pSrc->onError ){ 2692 return 0; /* Different conflict resolution strategies */ 2693 } 2694 for(i=0; i<pSrc->nKeyCol; i++){ 2695 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2696 return 0; /* Different columns indexed */ 2697 } 2698 if( pSrc->aiColumn[i]==XN_EXPR ){ 2699 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2700 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2701 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2702 return 0; /* Different expressions in the index */ 2703 } 2704 } 2705 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2706 return 0; /* Different sort orders */ 2707 } 2708 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2709 return 0; /* Different collating sequences */ 2710 } 2711 } 2712 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2713 return 0; /* Different WHERE clauses */ 2714 } 2715 2716 /* If no test above fails then the indices must be compatible */ 2717 return 1; 2718 } 2719 2720 /* 2721 ** Attempt the transfer optimization on INSERTs of the form 2722 ** 2723 ** INSERT INTO tab1 SELECT * FROM tab2; 2724 ** 2725 ** The xfer optimization transfers raw records from tab2 over to tab1. 2726 ** Columns are not decoded and reassembled, which greatly improves 2727 ** performance. Raw index records are transferred in the same way. 2728 ** 2729 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2730 ** There are lots of rules for determining compatibility - see comments 2731 ** embedded in the code for details. 2732 ** 2733 ** This routine returns TRUE if the optimization is guaranteed to be used. 2734 ** Sometimes the xfer optimization will only work if the destination table 2735 ** is empty - a factor that can only be determined at run-time. In that 2736 ** case, this routine generates code for the xfer optimization but also 2737 ** does a test to see if the destination table is empty and jumps over the 2738 ** xfer optimization code if the test fails. In that case, this routine 2739 ** returns FALSE so that the caller will know to go ahead and generate 2740 ** an unoptimized transfer. This routine also returns FALSE if there 2741 ** is no chance that the xfer optimization can be applied. 2742 ** 2743 ** This optimization is particularly useful at making VACUUM run faster. 2744 */ 2745 static int xferOptimization( 2746 Parse *pParse, /* Parser context */ 2747 Table *pDest, /* The table we are inserting into */ 2748 Select *pSelect, /* A SELECT statement to use as the data source */ 2749 int onError, /* How to handle constraint errors */ 2750 int iDbDest /* The database of pDest */ 2751 ){ 2752 sqlite3 *db = pParse->db; 2753 ExprList *pEList; /* The result set of the SELECT */ 2754 Table *pSrc; /* The table in the FROM clause of SELECT */ 2755 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2756 SrcItem *pItem; /* An element of pSelect->pSrc */ 2757 int i; /* Loop counter */ 2758 int iDbSrc; /* The database of pSrc */ 2759 int iSrc, iDest; /* Cursors from source and destination */ 2760 int addr1, addr2; /* Loop addresses */ 2761 int emptyDestTest = 0; /* Address of test for empty pDest */ 2762 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2763 Vdbe *v; /* The VDBE we are building */ 2764 int regAutoinc; /* Memory register used by AUTOINC */ 2765 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2766 int regData, regRowid; /* Registers holding data and rowid */ 2767 2768 if( pSelect==0 ){ 2769 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2770 } 2771 if( pParse->pWith || pSelect->pWith ){ 2772 /* Do not attempt to process this query if there are an WITH clauses 2773 ** attached to it. Proceeding may generate a false "no such table: xxx" 2774 ** error if pSelect reads from a CTE named "xxx". */ 2775 return 0; 2776 } 2777 if( sqlite3TriggerList(pParse, pDest) ){ 2778 return 0; /* tab1 must not have triggers */ 2779 } 2780 #ifndef SQLITE_OMIT_VIRTUALTABLE 2781 if( IsVirtual(pDest) ){ 2782 return 0; /* tab1 must not be a virtual table */ 2783 } 2784 #endif 2785 if( onError==OE_Default ){ 2786 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2787 if( onError==OE_Default ) onError = OE_Abort; 2788 } 2789 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2790 if( pSelect->pSrc->nSrc!=1 ){ 2791 return 0; /* FROM clause must have exactly one term */ 2792 } 2793 if( pSelect->pSrc->a[0].pSelect ){ 2794 return 0; /* FROM clause cannot contain a subquery */ 2795 } 2796 if( pSelect->pWhere ){ 2797 return 0; /* SELECT may not have a WHERE clause */ 2798 } 2799 if( pSelect->pOrderBy ){ 2800 return 0; /* SELECT may not have an ORDER BY clause */ 2801 } 2802 /* Do not need to test for a HAVING clause. If HAVING is present but 2803 ** there is no ORDER BY, we will get an error. */ 2804 if( pSelect->pGroupBy ){ 2805 return 0; /* SELECT may not have a GROUP BY clause */ 2806 } 2807 if( pSelect->pLimit ){ 2808 return 0; /* SELECT may not have a LIMIT clause */ 2809 } 2810 if( pSelect->pPrior ){ 2811 return 0; /* SELECT may not be a compound query */ 2812 } 2813 if( pSelect->selFlags & SF_Distinct ){ 2814 return 0; /* SELECT may not be DISTINCT */ 2815 } 2816 pEList = pSelect->pEList; 2817 assert( pEList!=0 ); 2818 if( pEList->nExpr!=1 ){ 2819 return 0; /* The result set must have exactly one column */ 2820 } 2821 assert( pEList->a[0].pExpr ); 2822 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2823 return 0; /* The result set must be the special operator "*" */ 2824 } 2825 2826 /* At this point we have established that the statement is of the 2827 ** correct syntactic form to participate in this optimization. Now 2828 ** we have to check the semantics. 2829 */ 2830 pItem = pSelect->pSrc->a; 2831 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2832 if( pSrc==0 ){ 2833 return 0; /* FROM clause does not contain a real table */ 2834 } 2835 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2836 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2837 return 0; /* tab1 and tab2 may not be the same table */ 2838 } 2839 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2840 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2841 } 2842 if( !IsOrdinaryTable(pSrc) ){ 2843 return 0; /* tab2 may not be a view or virtual table */ 2844 } 2845 if( pDest->nCol!=pSrc->nCol ){ 2846 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2847 } 2848 if( pDest->iPKey!=pSrc->iPKey ){ 2849 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2850 } 2851 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2852 return 0; /* Cannot feed from a non-strict into a strict table */ 2853 } 2854 for(i=0; i<pDest->nCol; i++){ 2855 Column *pDestCol = &pDest->aCol[i]; 2856 Column *pSrcCol = &pSrc->aCol[i]; 2857 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2858 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2859 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2860 ){ 2861 return 0; /* Neither table may have __hidden__ columns */ 2862 } 2863 #endif 2864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2865 /* Even if tables t1 and t2 have identical schemas, if they contain 2866 ** generated columns, then this statement is semantically incorrect: 2867 ** 2868 ** INSERT INTO t2 SELECT * FROM t1; 2869 ** 2870 ** The reason is that generated column values are returned by the 2871 ** the SELECT statement on the right but the INSERT statement on the 2872 ** left wants them to be omitted. 2873 ** 2874 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2875 ** to do a bulk transfer all of the content from t1 over to t2. 2876 ** 2877 ** We could, in theory, disable this (except for internal use by the 2878 ** VACUUM command where it is actually needed). But why do that? It 2879 ** seems harmless enough, and provides a useful service. 2880 */ 2881 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2882 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2883 return 0; /* Both columns have the same generated-column type */ 2884 } 2885 /* But the transfer is only allowed if both the source and destination 2886 ** tables have the exact same expressions for generated columns. 2887 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2888 */ 2889 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2890 if( sqlite3ExprCompare(0, 2891 sqlite3ColumnExpr(pSrc, pSrcCol), 2892 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2893 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2894 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2895 return 0; /* Different generator expressions */ 2896 } 2897 } 2898 #endif 2899 if( pDestCol->affinity!=pSrcCol->affinity ){ 2900 return 0; /* Affinity must be the same on all columns */ 2901 } 2902 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2903 sqlite3ColumnColl(pSrcCol))!=0 ){ 2904 return 0; /* Collating sequence must be the same on all columns */ 2905 } 2906 if( pDestCol->notNull && !pSrcCol->notNull ){ 2907 return 0; /* tab2 must be NOT NULL if tab1 is */ 2908 } 2909 /* Default values for second and subsequent columns need to match. */ 2910 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2911 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2912 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2913 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2914 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2915 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2916 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2917 if( (pDestExpr==0)!=(pSrcExpr==0) 2918 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2919 pSrcExpr->u.zToken)!=0) 2920 ){ 2921 return 0; /* Default values must be the same for all columns */ 2922 } 2923 } 2924 } 2925 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2926 if( IsUniqueIndex(pDestIdx) ){ 2927 destHasUniqueIdx = 1; 2928 } 2929 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2930 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2931 } 2932 if( pSrcIdx==0 ){ 2933 return 0; /* pDestIdx has no corresponding index in pSrc */ 2934 } 2935 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2936 && sqlite3FaultSim(411)==SQLITE_OK ){ 2937 /* The sqlite3FaultSim() call allows this corruption test to be 2938 ** bypassed during testing, in order to exercise other corruption tests 2939 ** further downstream. */ 2940 return 0; /* Corrupt schema - two indexes on the same btree */ 2941 } 2942 } 2943 #ifndef SQLITE_OMIT_CHECK 2944 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2945 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2946 } 2947 #endif 2948 #ifndef SQLITE_OMIT_FOREIGN_KEY 2949 /* Disallow the transfer optimization if the destination table constains 2950 ** any foreign key constraints. This is more restrictive than necessary. 2951 ** But the main beneficiary of the transfer optimization is the VACUUM 2952 ** command, and the VACUUM command disables foreign key constraints. So 2953 ** the extra complication to make this rule less restrictive is probably 2954 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2955 */ 2956 assert( IsOrdinaryTable(pDest) ); 2957 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2958 return 0; 2959 } 2960 #endif 2961 if( (db->flags & SQLITE_CountRows)!=0 ){ 2962 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2963 } 2964 2965 /* If we get this far, it means that the xfer optimization is at 2966 ** least a possibility, though it might only work if the destination 2967 ** table (tab1) is initially empty. 2968 */ 2969 #ifdef SQLITE_TEST 2970 sqlite3_xferopt_count++; 2971 #endif 2972 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2973 v = sqlite3GetVdbe(pParse); 2974 sqlite3CodeVerifySchema(pParse, iDbSrc); 2975 iSrc = pParse->nTab++; 2976 iDest = pParse->nTab++; 2977 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2978 regData = sqlite3GetTempReg(pParse); 2979 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2980 regRowid = sqlite3GetTempReg(pParse); 2981 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2982 assert( HasRowid(pDest) || destHasUniqueIdx ); 2983 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2984 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2985 || destHasUniqueIdx /* (2) */ 2986 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2987 )){ 2988 /* In some circumstances, we are able to run the xfer optimization 2989 ** only if the destination table is initially empty. Unless the 2990 ** DBFLAG_Vacuum flag is set, this block generates code to make 2991 ** that determination. If DBFLAG_Vacuum is set, then the destination 2992 ** table is always empty. 2993 ** 2994 ** Conditions under which the destination must be empty: 2995 ** 2996 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2997 ** (If the destination is not initially empty, the rowid fields 2998 ** of index entries might need to change.) 2999 ** 3000 ** (2) The destination has a unique index. (The xfer optimization 3001 ** is unable to test uniqueness.) 3002 ** 3003 ** (3) onError is something other than OE_Abort and OE_Rollback. 3004 */ 3005 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3006 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3007 sqlite3VdbeJumpHere(v, addr1); 3008 } 3009 if( HasRowid(pSrc) ){ 3010 u8 insFlags; 3011 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3012 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3013 if( pDest->iPKey>=0 ){ 3014 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3015 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3016 sqlite3VdbeVerifyAbortable(v, onError); 3017 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3018 VdbeCoverage(v); 3019 sqlite3RowidConstraint(pParse, onError, pDest); 3020 sqlite3VdbeJumpHere(v, addr2); 3021 } 3022 autoIncStep(pParse, regAutoinc, regRowid); 3023 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3024 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3025 }else{ 3026 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3027 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3028 } 3029 3030 if( db->mDbFlags & DBFLAG_Vacuum ){ 3031 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3032 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3033 }else{ 3034 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3035 } 3036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3037 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3038 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3039 insFlags &= ~OPFLAG_PREFORMAT; 3040 }else 3041 #endif 3042 { 3043 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3044 } 3045 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3046 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3047 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3048 } 3049 sqlite3VdbeChangeP5(v, insFlags); 3050 3051 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3052 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3053 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3054 }else{ 3055 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3056 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3057 } 3058 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3059 u8 idxInsFlags = 0; 3060 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3061 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3062 } 3063 assert( pSrcIdx ); 3064 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3065 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3066 VdbeComment((v, "%s", pSrcIdx->zName)); 3067 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3068 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3069 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3070 VdbeComment((v, "%s", pDestIdx->zName)); 3071 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3072 if( db->mDbFlags & DBFLAG_Vacuum ){ 3073 /* This INSERT command is part of a VACUUM operation, which guarantees 3074 ** that the destination table is empty. If all indexed columns use 3075 ** collation sequence BINARY, then it can also be assumed that the 3076 ** index will be populated by inserting keys in strictly sorted 3077 ** order. In this case, instead of seeking within the b-tree as part 3078 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3079 ** OP_IdxInsert to seek to the point within the b-tree where each key 3080 ** should be inserted. This is faster. 3081 ** 3082 ** If any of the indexed columns use a collation sequence other than 3083 ** BINARY, this optimization is disabled. This is because the user 3084 ** might change the definition of a collation sequence and then run 3085 ** a VACUUM command. In that case keys may not be written in strictly 3086 ** sorted order. */ 3087 for(i=0; i<pSrcIdx->nColumn; i++){ 3088 const char *zColl = pSrcIdx->azColl[i]; 3089 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3090 } 3091 if( i==pSrcIdx->nColumn ){ 3092 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3093 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3094 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3095 } 3096 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3097 idxInsFlags |= OPFLAG_NCHANGE; 3098 } 3099 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3100 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3101 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3102 && !HasRowid(pDest) 3103 && IsPrimaryKeyIndex(pDestIdx) 3104 ){ 3105 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3106 } 3107 } 3108 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3109 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3110 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3111 sqlite3VdbeJumpHere(v, addr1); 3112 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3113 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3114 } 3115 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3116 sqlite3ReleaseTempReg(pParse, regRowid); 3117 sqlite3ReleaseTempReg(pParse, regData); 3118 if( emptyDestTest ){ 3119 sqlite3AutoincrementEnd(pParse); 3120 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3121 sqlite3VdbeJumpHere(v, emptyDestTest); 3122 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3123 return 0; 3124 }else{ 3125 return 1; 3126 } 3127 } 3128 #endif /* SQLITE_OMIT_XFER_OPT */ 3129