xref: /sqlite-3.40.0/src/insert.c (revision 926aac51)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0 ){
286     pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287     if( pOp->opcode==OP_Affinity ){
288       /* Change the OP_Affinity argument to '@' (NONE) for all stored
289       ** columns.  '@' is the no-op affinity and those columns have not
290       ** yet been computed. */
291       int ii, jj;
292       char *zP4 = pOp->p4.z;
293       assert( zP4!=0 );
294       assert( pOp->p4type==P4_DYNAMIC );
295       assert( (pTab->tabFlags & TF_Strict)==0 );
296       for(ii=jj=0; zP4[jj]; ii++){
297         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
298           continue;
299         }
300         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
301           zP4[jj] = SQLITE_AFF_NONE;
302         }
303         jj++;
304       }
305     }else if( pOp->opcode==OP_TypeCheck ){
306       /* If an OP_TypeCheck was generated because the table is STRICT,
307       ** then set the P3 operand to indicate that generated columns should
308       ** not be checked */
309       assert( pTab->tabFlags & TF_Strict );
310       pOp->p3 = 1;
311     }
312   }
313 
314   /* Because there can be multiple generated columns that refer to one another,
315   ** this is a two-pass algorithm.  On the first pass, mark all generated
316   ** columns as "not available".
317   */
318   for(i=0; i<pTab->nCol; i++){
319     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
320       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
321       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
322       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
323     }
324   }
325 
326   w.u.pTab = pTab;
327   w.xExprCallback = exprColumnFlagUnion;
328   w.xSelectCallback = 0;
329   w.xSelectCallback2 = 0;
330 
331   /* On the second pass, compute the value of each NOT-AVAILABLE column.
332   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
333   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
334   ** they are needed.
335   */
336   pParse->iSelfTab = -iRegStore;
337   do{
338     eProgress = 0;
339     pRedo = 0;
340     for(i=0; i<pTab->nCol; i++){
341       Column *pCol = pTab->aCol + i;
342       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
343         int x;
344         pCol->colFlags |= COLFLAG_BUSY;
345         w.eCode = 0;
346         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
347         pCol->colFlags &= ~COLFLAG_BUSY;
348         if( w.eCode & COLFLAG_NOTAVAIL ){
349           pRedo = pCol;
350           continue;
351         }
352         eProgress = 1;
353         assert( pCol->colFlags & COLFLAG_GENERATED );
354         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
355         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
356         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
357       }
358     }
359   }while( pRedo && eProgress );
360   if( pRedo ){
361     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
362   }
363   pParse->iSelfTab = 0;
364 }
365 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
366 
367 
368 #ifndef SQLITE_OMIT_AUTOINCREMENT
369 /*
370 ** Locate or create an AutoincInfo structure associated with table pTab
371 ** which is in database iDb.  Return the register number for the register
372 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
373 ** table.  (Also return zero when doing a VACUUM since we do not want to
374 ** update the AUTOINCREMENT counters during a VACUUM.)
375 **
376 ** There is at most one AutoincInfo structure per table even if the
377 ** same table is autoincremented multiple times due to inserts within
378 ** triggers.  A new AutoincInfo structure is created if this is the
379 ** first use of table pTab.  On 2nd and subsequent uses, the original
380 ** AutoincInfo structure is used.
381 **
382 ** Four consecutive registers are allocated:
383 **
384 **   (1)  The name of the pTab table.
385 **   (2)  The maximum ROWID of pTab.
386 **   (3)  The rowid in sqlite_sequence of pTab
387 **   (4)  The original value of the max ROWID in pTab, or NULL if none
388 **
389 ** The 2nd register is the one that is returned.  That is all the
390 ** insert routine needs to know about.
391 */
392 static int autoIncBegin(
393   Parse *pParse,      /* Parsing context */
394   int iDb,            /* Index of the database holding pTab */
395   Table *pTab         /* The table we are writing to */
396 ){
397   int memId = 0;      /* Register holding maximum rowid */
398   assert( pParse->db->aDb[iDb].pSchema!=0 );
399   if( (pTab->tabFlags & TF_Autoincrement)!=0
400    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
401   ){
402     Parse *pToplevel = sqlite3ParseToplevel(pParse);
403     AutoincInfo *pInfo;
404     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
405 
406     /* Verify that the sqlite_sequence table exists and is an ordinary
407     ** rowid table with exactly two columns.
408     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
409     if( pSeqTab==0
410      || !HasRowid(pSeqTab)
411      || NEVER(IsVirtual(pSeqTab))
412      || pSeqTab->nCol!=2
413     ){
414       pParse->nErr++;
415       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
416       return 0;
417     }
418 
419     pInfo = pToplevel->pAinc;
420     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
421     if( pInfo==0 ){
422       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
423       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
424       testcase( pParse->earlyCleanup );
425       if( pParse->db->mallocFailed ) return 0;
426       pInfo->pNext = pToplevel->pAinc;
427       pToplevel->pAinc = pInfo;
428       pInfo->pTab = pTab;
429       pInfo->iDb = iDb;
430       pToplevel->nMem++;                  /* Register to hold name of table */
431       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
432       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
433     }
434     memId = pInfo->regCtr;
435   }
436   return memId;
437 }
438 
439 /*
440 ** This routine generates code that will initialize all of the
441 ** register used by the autoincrement tracker.
442 */
443 void sqlite3AutoincrementBegin(Parse *pParse){
444   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
445   sqlite3 *db = pParse->db;  /* The database connection */
446   Db *pDb;                   /* Database only autoinc table */
447   int memId;                 /* Register holding max rowid */
448   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
449 
450   /* This routine is never called during trigger-generation.  It is
451   ** only called from the top-level */
452   assert( pParse->pTriggerTab==0 );
453   assert( sqlite3IsToplevel(pParse) );
454 
455   assert( v );   /* We failed long ago if this is not so */
456   for(p = pParse->pAinc; p; p = p->pNext){
457     static const int iLn = VDBE_OFFSET_LINENO(2);
458     static const VdbeOpList autoInc[] = {
459       /* 0  */ {OP_Null,    0,  0, 0},
460       /* 1  */ {OP_Rewind,  0, 10, 0},
461       /* 2  */ {OP_Column,  0,  0, 0},
462       /* 3  */ {OP_Ne,      0,  9, 0},
463       /* 4  */ {OP_Rowid,   0,  0, 0},
464       /* 5  */ {OP_Column,  0,  1, 0},
465       /* 6  */ {OP_AddImm,  0,  0, 0},
466       /* 7  */ {OP_Copy,    0,  0, 0},
467       /* 8  */ {OP_Goto,    0, 11, 0},
468       /* 9  */ {OP_Next,    0,  2, 0},
469       /* 10 */ {OP_Integer, 0,  0, 0},
470       /* 11 */ {OP_Close,   0,  0, 0}
471     };
472     VdbeOp *aOp;
473     pDb = &db->aDb[p->iDb];
474     memId = p->regCtr;
475     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
476     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
477     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
478     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
479     if( aOp==0 ) break;
480     aOp[0].p2 = memId;
481     aOp[0].p3 = memId+2;
482     aOp[2].p3 = memId;
483     aOp[3].p1 = memId-1;
484     aOp[3].p3 = memId;
485     aOp[3].p5 = SQLITE_JUMPIFNULL;
486     aOp[4].p2 = memId+1;
487     aOp[5].p3 = memId;
488     aOp[6].p1 = memId;
489     aOp[7].p2 = memId+2;
490     aOp[7].p1 = memId;
491     aOp[10].p2 = memId;
492     if( pParse->nTab==0 ) pParse->nTab = 1;
493   }
494 }
495 
496 /*
497 ** Update the maximum rowid for an autoincrement calculation.
498 **
499 ** This routine should be called when the regRowid register holds a
500 ** new rowid that is about to be inserted.  If that new rowid is
501 ** larger than the maximum rowid in the memId memory cell, then the
502 ** memory cell is updated.
503 */
504 static void autoIncStep(Parse *pParse, int memId, int regRowid){
505   if( memId>0 ){
506     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
507   }
508 }
509 
510 /*
511 ** This routine generates the code needed to write autoincrement
512 ** maximum rowid values back into the sqlite_sequence register.
513 ** Every statement that might do an INSERT into an autoincrement
514 ** table (either directly or through triggers) needs to call this
515 ** routine just before the "exit" code.
516 */
517 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
518   AutoincInfo *p;
519   Vdbe *v = pParse->pVdbe;
520   sqlite3 *db = pParse->db;
521 
522   assert( v );
523   for(p = pParse->pAinc; p; p = p->pNext){
524     static const int iLn = VDBE_OFFSET_LINENO(2);
525     static const VdbeOpList autoIncEnd[] = {
526       /* 0 */ {OP_NotNull,     0, 2, 0},
527       /* 1 */ {OP_NewRowid,    0, 0, 0},
528       /* 2 */ {OP_MakeRecord,  0, 2, 0},
529       /* 3 */ {OP_Insert,      0, 0, 0},
530       /* 4 */ {OP_Close,       0, 0, 0}
531     };
532     VdbeOp *aOp;
533     Db *pDb = &db->aDb[p->iDb];
534     int iRec;
535     int memId = p->regCtr;
536 
537     iRec = sqlite3GetTempReg(pParse);
538     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
539     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
540     VdbeCoverage(v);
541     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
542     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
543     if( aOp==0 ) break;
544     aOp[0].p1 = memId+1;
545     aOp[1].p2 = memId+1;
546     aOp[2].p1 = memId-1;
547     aOp[2].p3 = iRec;
548     aOp[3].p2 = iRec;
549     aOp[3].p3 = memId+1;
550     aOp[3].p5 = OPFLAG_APPEND;
551     sqlite3ReleaseTempReg(pParse, iRec);
552   }
553 }
554 void sqlite3AutoincrementEnd(Parse *pParse){
555   if( pParse->pAinc ) autoIncrementEnd(pParse);
556 }
557 #else
558 /*
559 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
560 ** above are all no-ops
561 */
562 # define autoIncBegin(A,B,C) (0)
563 # define autoIncStep(A,B,C)
564 #endif /* SQLITE_OMIT_AUTOINCREMENT */
565 
566 
567 /* Forward declaration */
568 static int xferOptimization(
569   Parse *pParse,        /* Parser context */
570   Table *pDest,         /* The table we are inserting into */
571   Select *pSelect,      /* A SELECT statement to use as the data source */
572   int onError,          /* How to handle constraint errors */
573   int iDbDest           /* The database of pDest */
574 );
575 
576 /*
577 ** This routine is called to handle SQL of the following forms:
578 **
579 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
580 **    insert into TABLE (IDLIST) select
581 **    insert into TABLE (IDLIST) default values
582 **
583 ** The IDLIST following the table name is always optional.  If omitted,
584 ** then a list of all (non-hidden) columns for the table is substituted.
585 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
586 ** is omitted.
587 **
588 ** For the pSelect parameter holds the values to be inserted for the
589 ** first two forms shown above.  A VALUES clause is really just short-hand
590 ** for a SELECT statement that omits the FROM clause and everything else
591 ** that follows.  If the pSelect parameter is NULL, that means that the
592 ** DEFAULT VALUES form of the INSERT statement is intended.
593 **
594 ** The code generated follows one of four templates.  For a simple
595 ** insert with data coming from a single-row VALUES clause, the code executes
596 ** once straight down through.  Pseudo-code follows (we call this
597 ** the "1st template"):
598 **
599 **         open write cursor to <table> and its indices
600 **         put VALUES clause expressions into registers
601 **         write the resulting record into <table>
602 **         cleanup
603 **
604 ** The three remaining templates assume the statement is of the form
605 **
606 **   INSERT INTO <table> SELECT ...
607 **
608 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
609 ** in other words if the SELECT pulls all columns from a single table
610 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
611 ** if <table2> and <table1> are distinct tables but have identical
612 ** schemas, including all the same indices, then a special optimization
613 ** is invoked that copies raw records from <table2> over to <table1>.
614 ** See the xferOptimization() function for the implementation of this
615 ** template.  This is the 2nd template.
616 **
617 **         open a write cursor to <table>
618 **         open read cursor on <table2>
619 **         transfer all records in <table2> over to <table>
620 **         close cursors
621 **         foreach index on <table>
622 **           open a write cursor on the <table> index
623 **           open a read cursor on the corresponding <table2> index
624 **           transfer all records from the read to the write cursors
625 **           close cursors
626 **         end foreach
627 **
628 ** The 3rd template is for when the second template does not apply
629 ** and the SELECT clause does not read from <table> at any time.
630 ** The generated code follows this template:
631 **
632 **         X <- A
633 **         goto B
634 **      A: setup for the SELECT
635 **         loop over the rows in the SELECT
636 **           load values into registers R..R+n
637 **           yield X
638 **         end loop
639 **         cleanup after the SELECT
640 **         end-coroutine X
641 **      B: open write cursor to <table> and its indices
642 **      C: yield X, at EOF goto D
643 **         insert the select result into <table> from R..R+n
644 **         goto C
645 **      D: cleanup
646 **
647 ** The 4th template is used if the insert statement takes its
648 ** values from a SELECT but the data is being inserted into a table
649 ** that is also read as part of the SELECT.  In the third form,
650 ** we have to use an intermediate table to store the results of
651 ** the select.  The template is like this:
652 **
653 **         X <- A
654 **         goto B
655 **      A: setup for the SELECT
656 **         loop over the tables in the SELECT
657 **           load value into register R..R+n
658 **           yield X
659 **         end loop
660 **         cleanup after the SELECT
661 **         end co-routine R
662 **      B: open temp table
663 **      L: yield X, at EOF goto M
664 **         insert row from R..R+n into temp table
665 **         goto L
666 **      M: open write cursor to <table> and its indices
667 **         rewind temp table
668 **      C: loop over rows of intermediate table
669 **           transfer values form intermediate table into <table>
670 **         end loop
671 **      D: cleanup
672 */
673 void sqlite3Insert(
674   Parse *pParse,        /* Parser context */
675   SrcList *pTabList,    /* Name of table into which we are inserting */
676   Select *pSelect,      /* A SELECT statement to use as the data source */
677   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
678   int onError,          /* How to handle constraint errors */
679   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
680 ){
681   sqlite3 *db;          /* The main database structure */
682   Table *pTab;          /* The table to insert into.  aka TABLE */
683   int i, j;             /* Loop counters */
684   Vdbe *v;              /* Generate code into this virtual machine */
685   Index *pIdx;          /* For looping over indices of the table */
686   int nColumn;          /* Number of columns in the data */
687   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
688   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
689   int iIdxCur = 0;      /* First index cursor */
690   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
691   int endOfLoop;        /* Label for the end of the insertion loop */
692   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
693   int addrInsTop = 0;   /* Jump to label "D" */
694   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
695   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
696   int iDb;              /* Index of database holding TABLE */
697   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
698   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
699   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
700   u8 bIdListInOrder;    /* True if IDLIST is in table order */
701   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
702   int iRegStore;        /* Register in which to store next column */
703 
704   /* Register allocations */
705   int regFromSelect = 0;/* Base register for data coming from SELECT */
706   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
707   int regRowCount = 0;  /* Memory cell used for the row counter */
708   int regIns;           /* Block of regs holding rowid+data being inserted */
709   int regRowid;         /* registers holding insert rowid */
710   int regData;          /* register holding first column to insert */
711   int *aRegIdx = 0;     /* One register allocated to each index */
712 
713 #ifndef SQLITE_OMIT_TRIGGER
714   int isView;                 /* True if attempting to insert into a view */
715   Trigger *pTrigger;          /* List of triggers on pTab, if required */
716   int tmask;                  /* Mask of trigger times */
717 #endif
718 
719   db = pParse->db;
720   if( pParse->nErr || db->mallocFailed ){
721     goto insert_cleanup;
722   }
723   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
724 
725   /* If the Select object is really just a simple VALUES() list with a
726   ** single row (the common case) then keep that one row of values
727   ** and discard the other (unused) parts of the pSelect object
728   */
729   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
730     pList = pSelect->pEList;
731     pSelect->pEList = 0;
732     sqlite3SelectDelete(db, pSelect);
733     pSelect = 0;
734   }
735 
736   /* Locate the table into which we will be inserting new information.
737   */
738   assert( pTabList->nSrc==1 );
739   pTab = sqlite3SrcListLookup(pParse, pTabList);
740   if( pTab==0 ){
741     goto insert_cleanup;
742   }
743   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
744   assert( iDb<db->nDb );
745   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
746                        db->aDb[iDb].zDbSName) ){
747     goto insert_cleanup;
748   }
749   withoutRowid = !HasRowid(pTab);
750 
751   /* Figure out if we have any triggers and if the table being
752   ** inserted into is a view
753   */
754 #ifndef SQLITE_OMIT_TRIGGER
755   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
756   isView = IsView(pTab);
757 #else
758 # define pTrigger 0
759 # define tmask 0
760 # define isView 0
761 #endif
762 #ifdef SQLITE_OMIT_VIEW
763 # undef isView
764 # define isView 0
765 #endif
766   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
767 
768   /* If pTab is really a view, make sure it has been initialized.
769   ** ViewGetColumnNames() is a no-op if pTab is not a view.
770   */
771   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
772     goto insert_cleanup;
773   }
774 
775   /* Cannot insert into a read-only table.
776   */
777   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
778     goto insert_cleanup;
779   }
780 
781   /* Allocate a VDBE
782   */
783   v = sqlite3GetVdbe(pParse);
784   if( v==0 ) goto insert_cleanup;
785   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
786   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
787 
788 #ifndef SQLITE_OMIT_XFER_OPT
789   /* If the statement is of the form
790   **
791   **       INSERT INTO <table1> SELECT * FROM <table2>;
792   **
793   ** Then special optimizations can be applied that make the transfer
794   ** very fast and which reduce fragmentation of indices.
795   **
796   ** This is the 2nd template.
797   */
798   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
799     assert( !pTrigger );
800     assert( pList==0 );
801     goto insert_end;
802   }
803 #endif /* SQLITE_OMIT_XFER_OPT */
804 
805   /* If this is an AUTOINCREMENT table, look up the sequence number in the
806   ** sqlite_sequence table and store it in memory cell regAutoinc.
807   */
808   regAutoinc = autoIncBegin(pParse, iDb, pTab);
809 
810   /* Allocate a block registers to hold the rowid and the values
811   ** for all columns of the new row.
812   */
813   regRowid = regIns = pParse->nMem+1;
814   pParse->nMem += pTab->nCol + 1;
815   if( IsVirtual(pTab) ){
816     regRowid++;
817     pParse->nMem++;
818   }
819   regData = regRowid+1;
820 
821   /* If the INSERT statement included an IDLIST term, then make sure
822   ** all elements of the IDLIST really are columns of the table and
823   ** remember the column indices.
824   **
825   ** If the table has an INTEGER PRIMARY KEY column and that column
826   ** is named in the IDLIST, then record in the ipkColumn variable
827   ** the index into IDLIST of the primary key column.  ipkColumn is
828   ** the index of the primary key as it appears in IDLIST, not as
829   ** is appears in the original table.  (The index of the INTEGER
830   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
831   ** loop, if ipkColumn==(-1), that means that integer primary key
832   ** is unspecified, and hence the table is either WITHOUT ROWID or
833   ** it will automatically generated an integer primary key.
834   **
835   ** bIdListInOrder is true if the columns in IDLIST are in storage
836   ** order.  This enables an optimization that avoids shuffling the
837   ** columns into storage order.  False negatives are harmless,
838   ** but false positives will cause database corruption.
839   */
840   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
841   if( pColumn ){
842     for(i=0; i<pColumn->nId; i++){
843       pColumn->a[i].idx = -1;
844     }
845     for(i=0; i<pColumn->nId; i++){
846       for(j=0; j<pTab->nCol; j++){
847         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
848           pColumn->a[i].idx = j;
849           if( i!=j ) bIdListInOrder = 0;
850           if( j==pTab->iPKey ){
851             ipkColumn = i;  assert( !withoutRowid );
852           }
853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
854           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
855             sqlite3ErrorMsg(pParse,
856                "cannot INSERT into generated column \"%s\"",
857                pTab->aCol[j].zCnName);
858             goto insert_cleanup;
859           }
860 #endif
861           break;
862         }
863       }
864       if( j>=pTab->nCol ){
865         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
866           ipkColumn = i;
867           bIdListInOrder = 0;
868         }else{
869           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
870               pTabList->a, pColumn->a[i].zName);
871           pParse->checkSchema = 1;
872           goto insert_cleanup;
873         }
874       }
875     }
876   }
877 
878   /* Figure out how many columns of data are supplied.  If the data
879   ** is coming from a SELECT statement, then generate a co-routine that
880   ** produces a single row of the SELECT on each invocation.  The
881   ** co-routine is the common header to the 3rd and 4th templates.
882   */
883   if( pSelect ){
884     /* Data is coming from a SELECT or from a multi-row VALUES clause.
885     ** Generate a co-routine to run the SELECT. */
886     int regYield;       /* Register holding co-routine entry-point */
887     int addrTop;        /* Top of the co-routine */
888     int rc;             /* Result code */
889 
890     regYield = ++pParse->nMem;
891     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
892     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
893     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
894     dest.iSdst = bIdListInOrder ? regData : 0;
895     dest.nSdst = pTab->nCol;
896     rc = sqlite3Select(pParse, pSelect, &dest);
897     regFromSelect = dest.iSdst;
898     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
899     sqlite3VdbeEndCoroutine(v, regYield);
900     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
901     assert( pSelect->pEList );
902     nColumn = pSelect->pEList->nExpr;
903 
904     /* Set useTempTable to TRUE if the result of the SELECT statement
905     ** should be written into a temporary table (template 4).  Set to
906     ** FALSE if each output row of the SELECT can be written directly into
907     ** the destination table (template 3).
908     **
909     ** A temp table must be used if the table being updated is also one
910     ** of the tables being read by the SELECT statement.  Also use a
911     ** temp table in the case of row triggers.
912     */
913     if( pTrigger || readsTable(pParse, iDb, pTab) ){
914       useTempTable = 1;
915     }
916 
917     if( useTempTable ){
918       /* Invoke the coroutine to extract information from the SELECT
919       ** and add it to a transient table srcTab.  The code generated
920       ** here is from the 4th template:
921       **
922       **      B: open temp table
923       **      L: yield X, goto M at EOF
924       **         insert row from R..R+n into temp table
925       **         goto L
926       **      M: ...
927       */
928       int regRec;          /* Register to hold packed record */
929       int regTempRowid;    /* Register to hold temp table ROWID */
930       int addrL;           /* Label "L" */
931 
932       srcTab = pParse->nTab++;
933       regRec = sqlite3GetTempReg(pParse);
934       regTempRowid = sqlite3GetTempReg(pParse);
935       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
936       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
937       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
938       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
939       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
940       sqlite3VdbeGoto(v, addrL);
941       sqlite3VdbeJumpHere(v, addrL);
942       sqlite3ReleaseTempReg(pParse, regRec);
943       sqlite3ReleaseTempReg(pParse, regTempRowid);
944     }
945   }else{
946     /* This is the case if the data for the INSERT is coming from a
947     ** single-row VALUES clause
948     */
949     NameContext sNC;
950     memset(&sNC, 0, sizeof(sNC));
951     sNC.pParse = pParse;
952     srcTab = -1;
953     assert( useTempTable==0 );
954     if( pList ){
955       nColumn = pList->nExpr;
956       if( sqlite3ResolveExprListNames(&sNC, pList) ){
957         goto insert_cleanup;
958       }
959     }else{
960       nColumn = 0;
961     }
962   }
963 
964   /* If there is no IDLIST term but the table has an integer primary
965   ** key, the set the ipkColumn variable to the integer primary key
966   ** column index in the original table definition.
967   */
968   if( pColumn==0 && nColumn>0 ){
969     ipkColumn = pTab->iPKey;
970 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
971     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
972       testcase( pTab->tabFlags & TF_HasVirtual );
973       testcase( pTab->tabFlags & TF_HasStored );
974       for(i=ipkColumn-1; i>=0; i--){
975         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
976           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
977           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
978           ipkColumn--;
979         }
980       }
981     }
982 #endif
983 
984     /* Make sure the number of columns in the source data matches the number
985     ** of columns to be inserted into the table.
986     */
987     assert( TF_HasHidden==COLFLAG_HIDDEN );
988     assert( TF_HasGenerated==COLFLAG_GENERATED );
989     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
990     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
991       for(i=0; i<pTab->nCol; i++){
992         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
993       }
994     }
995     if( nColumn!=(pTab->nCol-nHidden) ){
996       sqlite3ErrorMsg(pParse,
997          "table %S has %d columns but %d values were supplied",
998          pTabList->a, pTab->nCol-nHidden, nColumn);
999      goto insert_cleanup;
1000     }
1001   }
1002   if( pColumn!=0 && nColumn!=pColumn->nId ){
1003     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1004     goto insert_cleanup;
1005   }
1006 
1007   /* Initialize the count of rows to be inserted
1008   */
1009   if( (db->flags & SQLITE_CountRows)!=0
1010    && !pParse->nested
1011    && !pParse->pTriggerTab
1012    && !pParse->bReturning
1013   ){
1014     regRowCount = ++pParse->nMem;
1015     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1016   }
1017 
1018   /* If this is not a view, open the table and and all indices */
1019   if( !isView ){
1020     int nIdx;
1021     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1022                                       &iDataCur, &iIdxCur);
1023     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1024     if( aRegIdx==0 ){
1025       goto insert_cleanup;
1026     }
1027     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1028       assert( pIdx );
1029       aRegIdx[i] = ++pParse->nMem;
1030       pParse->nMem += pIdx->nColumn;
1031     }
1032     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1033   }
1034 #ifndef SQLITE_OMIT_UPSERT
1035   if( pUpsert ){
1036     Upsert *pNx;
1037     if( IsVirtual(pTab) ){
1038       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1039               pTab->zName);
1040       goto insert_cleanup;
1041     }
1042     if( IsView(pTab) ){
1043       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1044       goto insert_cleanup;
1045     }
1046     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1047       goto insert_cleanup;
1048     }
1049     pTabList->a[0].iCursor = iDataCur;
1050     pNx = pUpsert;
1051     do{
1052       pNx->pUpsertSrc = pTabList;
1053       pNx->regData = regData;
1054       pNx->iDataCur = iDataCur;
1055       pNx->iIdxCur = iIdxCur;
1056       if( pNx->pUpsertTarget ){
1057         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1058           goto insert_cleanup;
1059         }
1060       }
1061       pNx = pNx->pNextUpsert;
1062     }while( pNx!=0 );
1063   }
1064 #endif
1065 
1066 
1067   /* This is the top of the main insertion loop */
1068   if( useTempTable ){
1069     /* This block codes the top of loop only.  The complete loop is the
1070     ** following pseudocode (template 4):
1071     **
1072     **         rewind temp table, if empty goto D
1073     **      C: loop over rows of intermediate table
1074     **           transfer values form intermediate table into <table>
1075     **         end loop
1076     **      D: ...
1077     */
1078     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1079     addrCont = sqlite3VdbeCurrentAddr(v);
1080   }else if( pSelect ){
1081     /* This block codes the top of loop only.  The complete loop is the
1082     ** following pseudocode (template 3):
1083     **
1084     **      C: yield X, at EOF goto D
1085     **         insert the select result into <table> from R..R+n
1086     **         goto C
1087     **      D: ...
1088     */
1089     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1090     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1091     VdbeCoverage(v);
1092     if( ipkColumn>=0 ){
1093       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1094       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1095       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1096       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1097     }
1098   }
1099 
1100   /* Compute data for ordinary columns of the new entry.  Values
1101   ** are written in storage order into registers starting with regData.
1102   ** Only ordinary columns are computed in this loop. The rowid
1103   ** (if there is one) is computed later and generated columns are
1104   ** computed after the rowid since they might depend on the value
1105   ** of the rowid.
1106   */
1107   nHidden = 0;
1108   iRegStore = regData;  assert( regData==regRowid+1 );
1109   for(i=0; i<pTab->nCol; i++, iRegStore++){
1110     int k;
1111     u32 colFlags;
1112     assert( i>=nHidden );
1113     if( i==pTab->iPKey ){
1114       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1115       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1116       ** using excess space.  The file format definition requires this extra
1117       ** NULL - we cannot optimize further by skipping the column completely */
1118       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1119       continue;
1120     }
1121     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1122       nHidden++;
1123       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1124         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1125         ** iRegStore by one slot to compensate for the iRegStore++ in the
1126         ** outer for() loop */
1127         iRegStore--;
1128         continue;
1129       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1130         /* Stored columns are computed later.  But if there are BEFORE
1131         ** triggers, the slots used for stored columns will be OP_Copy-ed
1132         ** to a second block of registers, so the register needs to be
1133         ** initialized to NULL to avoid an uninitialized register read */
1134         if( tmask & TRIGGER_BEFORE ){
1135           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1136         }
1137         continue;
1138       }else if( pColumn==0 ){
1139         /* Hidden columns that are not explicitly named in the INSERT
1140         ** get there default value */
1141         sqlite3ExprCodeFactorable(pParse,
1142             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1143             iRegStore);
1144         continue;
1145       }
1146     }
1147     if( pColumn ){
1148       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1149       if( j>=pColumn->nId ){
1150         /* A column not named in the insert column list gets its
1151         ** default value */
1152         sqlite3ExprCodeFactorable(pParse,
1153             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1154             iRegStore);
1155         continue;
1156       }
1157       k = j;
1158     }else if( nColumn==0 ){
1159       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1160       sqlite3ExprCodeFactorable(pParse,
1161           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1162           iRegStore);
1163       continue;
1164     }else{
1165       k = i - nHidden;
1166     }
1167 
1168     if( useTempTable ){
1169       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1170     }else if( pSelect ){
1171       if( regFromSelect!=regData ){
1172         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1173       }
1174     }else{
1175       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1176     }
1177   }
1178 
1179 
1180   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1181   */
1182   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1183   if( tmask & TRIGGER_BEFORE ){
1184     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1185 
1186     /* build the NEW.* reference row.  Note that if there is an INTEGER
1187     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1188     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1189     ** we do not know what the unique ID will be (because the insert has
1190     ** not happened yet) so we substitute a rowid of -1
1191     */
1192     if( ipkColumn<0 ){
1193       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1194     }else{
1195       int addr1;
1196       assert( !withoutRowid );
1197       if( useTempTable ){
1198         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1199       }else{
1200         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1201         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1202       }
1203       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1204       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1205       sqlite3VdbeJumpHere(v, addr1);
1206       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1207     }
1208 
1209     /* Copy the new data already generated. */
1210     assert( pTab->nNVCol>0 );
1211     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1212 
1213 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1214     /* Compute the new value for generated columns after all other
1215     ** columns have already been computed.  This must be done after
1216     ** computing the ROWID in case one of the generated columns
1217     ** refers to the ROWID. */
1218     if( pTab->tabFlags & TF_HasGenerated ){
1219       testcase( pTab->tabFlags & TF_HasVirtual );
1220       testcase( pTab->tabFlags & TF_HasStored );
1221       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1222     }
1223 #endif
1224 
1225     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1226     ** do not attempt any conversions before assembling the record.
1227     ** If this is a real table, attempt conversions as required by the
1228     ** table column affinities.
1229     */
1230     if( !isView ){
1231       sqlite3TableAffinity(v, pTab, regCols+1);
1232     }
1233 
1234     /* Fire BEFORE or INSTEAD OF triggers */
1235     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1236         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1237 
1238     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1239   }
1240 
1241   if( !isView ){
1242     if( IsVirtual(pTab) ){
1243       /* The row that the VUpdate opcode will delete: none */
1244       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1245     }
1246     if( ipkColumn>=0 ){
1247       /* Compute the new rowid */
1248       if( useTempTable ){
1249         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1250       }else if( pSelect ){
1251         /* Rowid already initialized at tag-20191021-001 */
1252       }else{
1253         Expr *pIpk = pList->a[ipkColumn].pExpr;
1254         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1255           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1256           appendFlag = 1;
1257         }else{
1258           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1259         }
1260       }
1261       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1262       ** to generate a unique primary key value.
1263       */
1264       if( !appendFlag ){
1265         int addr1;
1266         if( !IsVirtual(pTab) ){
1267           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1268           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1269           sqlite3VdbeJumpHere(v, addr1);
1270         }else{
1271           addr1 = sqlite3VdbeCurrentAddr(v);
1272           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1273         }
1274         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1275       }
1276     }else if( IsVirtual(pTab) || withoutRowid ){
1277       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1278     }else{
1279       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1280       appendFlag = 1;
1281     }
1282     autoIncStep(pParse, regAutoinc, regRowid);
1283 
1284 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1285     /* Compute the new value for generated columns after all other
1286     ** columns have already been computed.  This must be done after
1287     ** computing the ROWID in case one of the generated columns
1288     ** is derived from the INTEGER PRIMARY KEY. */
1289     if( pTab->tabFlags & TF_HasGenerated ){
1290       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1291     }
1292 #endif
1293 
1294     /* Generate code to check constraints and generate index keys and
1295     ** do the insertion.
1296     */
1297 #ifndef SQLITE_OMIT_VIRTUALTABLE
1298     if( IsVirtual(pTab) ){
1299       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1300       sqlite3VtabMakeWritable(pParse, pTab);
1301       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1302       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1303       sqlite3MayAbort(pParse);
1304     }else
1305 #endif
1306     {
1307       int isReplace = 0;/* Set to true if constraints may cause a replace */
1308       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1309       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1310           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1311       );
1312       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1313 
1314       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1315       ** constraints or (b) there are no triggers and this table is not a
1316       ** parent table in a foreign key constraint. It is safe to set the
1317       ** flag in the second case as if any REPLACE constraint is hit, an
1318       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1319       ** cursor that is disturbed. And these instructions both clear the
1320       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1321       ** functionality.  */
1322       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1323       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1324           regIns, aRegIdx, 0, appendFlag, bUseSeek
1325       );
1326     }
1327 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1328   }else if( pParse->bReturning ){
1329     /* If there is a RETURNING clause, populate the rowid register with
1330     ** constant value -1, in case one or more of the returned expressions
1331     ** refer to the "rowid" of the view.  */
1332     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1333 #endif
1334   }
1335 
1336   /* Update the count of rows that are inserted
1337   */
1338   if( regRowCount ){
1339     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1340   }
1341 
1342   if( pTrigger ){
1343     /* Code AFTER triggers */
1344     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1345         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1346   }
1347 
1348   /* The bottom of the main insertion loop, if the data source
1349   ** is a SELECT statement.
1350   */
1351   sqlite3VdbeResolveLabel(v, endOfLoop);
1352   if( useTempTable ){
1353     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1354     sqlite3VdbeJumpHere(v, addrInsTop);
1355     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1356   }else if( pSelect ){
1357     sqlite3VdbeGoto(v, addrCont);
1358 #ifdef SQLITE_DEBUG
1359     /* If we are jumping back to an OP_Yield that is preceded by an
1360     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1361     ** OP_ReleaseReg will be included in the loop. */
1362     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1363       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1364       sqlite3VdbeChangeP5(v, 1);
1365     }
1366 #endif
1367     sqlite3VdbeJumpHere(v, addrInsTop);
1368   }
1369 
1370 #ifndef SQLITE_OMIT_XFER_OPT
1371 insert_end:
1372 #endif /* SQLITE_OMIT_XFER_OPT */
1373   /* Update the sqlite_sequence table by storing the content of the
1374   ** maximum rowid counter values recorded while inserting into
1375   ** autoincrement tables.
1376   */
1377   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1378     sqlite3AutoincrementEnd(pParse);
1379   }
1380 
1381   /*
1382   ** Return the number of rows inserted. If this routine is
1383   ** generating code because of a call to sqlite3NestedParse(), do not
1384   ** invoke the callback function.
1385   */
1386   if( regRowCount ){
1387     sqlite3VdbeAddOp2(v, OP_ChngCntRow, regRowCount, 1);
1388     sqlite3VdbeSetNumCols(v, 1);
1389     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1390   }
1391 
1392 insert_cleanup:
1393   sqlite3SrcListDelete(db, pTabList);
1394   sqlite3ExprListDelete(db, pList);
1395   sqlite3UpsertDelete(db, pUpsert);
1396   sqlite3SelectDelete(db, pSelect);
1397   sqlite3IdListDelete(db, pColumn);
1398   sqlite3DbFree(db, aRegIdx);
1399 }
1400 
1401 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1402 ** they may interfere with compilation of other functions in this file
1403 ** (or in another file, if this file becomes part of the amalgamation).  */
1404 #ifdef isView
1405  #undef isView
1406 #endif
1407 #ifdef pTrigger
1408  #undef pTrigger
1409 #endif
1410 #ifdef tmask
1411  #undef tmask
1412 #endif
1413 
1414 /*
1415 ** Meanings of bits in of pWalker->eCode for
1416 ** sqlite3ExprReferencesUpdatedColumn()
1417 */
1418 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1419 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1420 
1421 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1422 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1423 ** expression node references any of the
1424 ** columns that are being modifed by an UPDATE statement.
1425 */
1426 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1427   if( pExpr->op==TK_COLUMN ){
1428     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1429     if( pExpr->iColumn>=0 ){
1430       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1431         pWalker->eCode |= CKCNSTRNT_COLUMN;
1432       }
1433     }else{
1434       pWalker->eCode |= CKCNSTRNT_ROWID;
1435     }
1436   }
1437   return WRC_Continue;
1438 }
1439 
1440 /*
1441 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1442 ** only columns that are modified by the UPDATE are those for which
1443 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1444 **
1445 ** Return true if CHECK constraint pExpr uses any of the
1446 ** changing columns (or the rowid if it is changing).  In other words,
1447 ** return true if this CHECK constraint must be validated for
1448 ** the new row in the UPDATE statement.
1449 **
1450 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1451 ** The operation of this routine is the same - return true if an only if
1452 ** the expression uses one or more of columns identified by the second and
1453 ** third arguments.
1454 */
1455 int sqlite3ExprReferencesUpdatedColumn(
1456   Expr *pExpr,    /* The expression to be checked */
1457   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1458   int chngRowid   /* True if UPDATE changes the rowid */
1459 ){
1460   Walker w;
1461   memset(&w, 0, sizeof(w));
1462   w.eCode = 0;
1463   w.xExprCallback = checkConstraintExprNode;
1464   w.u.aiCol = aiChng;
1465   sqlite3WalkExpr(&w, pExpr);
1466   if( !chngRowid ){
1467     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1468     w.eCode &= ~CKCNSTRNT_ROWID;
1469   }
1470   testcase( w.eCode==0 );
1471   testcase( w.eCode==CKCNSTRNT_COLUMN );
1472   testcase( w.eCode==CKCNSTRNT_ROWID );
1473   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1474   return w.eCode!=0;
1475 }
1476 
1477 /*
1478 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1479 ** the indexes of a table in the order provided in the Table->pIndex list.
1480 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1481 ** the indexes in a different order.  The following data structures accomplish
1482 ** this.
1483 **
1484 ** The IndexIterator object is used to walk through all of the indexes
1485 ** of a table in either Index.pNext order, or in some other order established
1486 ** by an array of IndexListTerm objects.
1487 */
1488 typedef struct IndexListTerm IndexListTerm;
1489 typedef struct IndexIterator IndexIterator;
1490 struct IndexIterator {
1491   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1492   int i;        /* Index of the current item from the list */
1493   union {
1494     struct {    /* Use this object for eType==0: A Index.pNext list */
1495       Index *pIdx;   /* The current Index */
1496     } lx;
1497     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1498       int nIdx;               /* Size of the array */
1499       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1500     } ax;
1501   } u;
1502 };
1503 
1504 /* When IndexIterator.eType==1, then each index is an array of instances
1505 ** of the following object
1506 */
1507 struct IndexListTerm {
1508   Index *p;  /* The index */
1509   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1510 };
1511 
1512 /* Return the first index on the list */
1513 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1514   assert( pIter->i==0 );
1515   if( pIter->eType ){
1516     *pIx = pIter->u.ax.aIdx[0].ix;
1517     return pIter->u.ax.aIdx[0].p;
1518   }else{
1519     *pIx = 0;
1520     return pIter->u.lx.pIdx;
1521   }
1522 }
1523 
1524 /* Return the next index from the list.  Return NULL when out of indexes */
1525 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1526   if( pIter->eType ){
1527     int i = ++pIter->i;
1528     if( i>=pIter->u.ax.nIdx ){
1529       *pIx = i;
1530       return 0;
1531     }
1532     *pIx = pIter->u.ax.aIdx[i].ix;
1533     return pIter->u.ax.aIdx[i].p;
1534   }else{
1535     ++(*pIx);
1536     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1537     return pIter->u.lx.pIdx;
1538   }
1539 }
1540 
1541 /*
1542 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1543 ** on table pTab.
1544 **
1545 ** The regNewData parameter is the first register in a range that contains
1546 ** the data to be inserted or the data after the update.  There will be
1547 ** pTab->nCol+1 registers in this range.  The first register (the one
1548 ** that regNewData points to) will contain the new rowid, or NULL in the
1549 ** case of a WITHOUT ROWID table.  The second register in the range will
1550 ** contain the content of the first table column.  The third register will
1551 ** contain the content of the second table column.  And so forth.
1552 **
1553 ** The regOldData parameter is similar to regNewData except that it contains
1554 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1555 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1556 ** checking regOldData for zero.
1557 **
1558 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1559 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1560 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1561 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1562 **
1563 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1564 ** was explicitly specified as part of the INSERT statement.  If pkChng
1565 ** is zero, it means that the either rowid is computed automatically or
1566 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1567 ** pkChng will only be true if the INSERT statement provides an integer
1568 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1569 **
1570 ** The code generated by this routine will store new index entries into
1571 ** registers identified by aRegIdx[].  No index entry is created for
1572 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1573 ** the same as the order of indices on the linked list of indices
1574 ** at pTab->pIndex.
1575 **
1576 ** (2019-05-07) The generated code also creates a new record for the
1577 ** main table, if pTab is a rowid table, and stores that record in the
1578 ** register identified by aRegIdx[nIdx] - in other words in the first
1579 ** entry of aRegIdx[] past the last index.  It is important that the
1580 ** record be generated during constraint checks to avoid affinity changes
1581 ** to the register content that occur after constraint checks but before
1582 ** the new record is inserted.
1583 **
1584 ** The caller must have already opened writeable cursors on the main
1585 ** table and all applicable indices (that is to say, all indices for which
1586 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1587 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1588 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1589 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1590 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1591 **
1592 ** This routine also generates code to check constraints.  NOT NULL,
1593 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1594 ** then the appropriate action is performed.  There are five possible
1595 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1596 **
1597 **  Constraint type  Action       What Happens
1598 **  ---------------  ----------   ----------------------------------------
1599 **  any              ROLLBACK     The current transaction is rolled back and
1600 **                                sqlite3_step() returns immediately with a
1601 **                                return code of SQLITE_CONSTRAINT.
1602 **
1603 **  any              ABORT        Back out changes from the current command
1604 **                                only (do not do a complete rollback) then
1605 **                                cause sqlite3_step() to return immediately
1606 **                                with SQLITE_CONSTRAINT.
1607 **
1608 **  any              FAIL         Sqlite3_step() returns immediately with a
1609 **                                return code of SQLITE_CONSTRAINT.  The
1610 **                                transaction is not rolled back and any
1611 **                                changes to prior rows are retained.
1612 **
1613 **  any              IGNORE       The attempt in insert or update the current
1614 **                                row is skipped, without throwing an error.
1615 **                                Processing continues with the next row.
1616 **                                (There is an immediate jump to ignoreDest.)
1617 **
1618 **  NOT NULL         REPLACE      The NULL value is replace by the default
1619 **                                value for that column.  If the default value
1620 **                                is NULL, the action is the same as ABORT.
1621 **
1622 **  UNIQUE           REPLACE      The other row that conflicts with the row
1623 **                                being inserted is removed.
1624 **
1625 **  CHECK            REPLACE      Illegal.  The results in an exception.
1626 **
1627 ** Which action to take is determined by the overrideError parameter.
1628 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1629 ** is used.  Or if pParse->onError==OE_Default then the onError value
1630 ** for the constraint is used.
1631 */
1632 void sqlite3GenerateConstraintChecks(
1633   Parse *pParse,       /* The parser context */
1634   Table *pTab,         /* The table being inserted or updated */
1635   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1636   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1637   int iIdxCur,         /* First index cursor */
1638   int regNewData,      /* First register in a range holding values to insert */
1639   int regOldData,      /* Previous content.  0 for INSERTs */
1640   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1641   u8 overrideError,    /* Override onError to this if not OE_Default */
1642   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1643   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1644   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1645   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1646 ){
1647   Vdbe *v;             /* VDBE under constrution */
1648   Index *pIdx;         /* Pointer to one of the indices */
1649   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1650   sqlite3 *db;         /* Database connection */
1651   int i;               /* loop counter */
1652   int ix;              /* Index loop counter */
1653   int nCol;            /* Number of columns */
1654   int onError;         /* Conflict resolution strategy */
1655   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1656   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1657   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1658   u8 isUpdate;           /* True if this is an UPDATE operation */
1659   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1660   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1661   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1662   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1663   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1664   /* Variables associated with retesting uniqueness constraints after
1665   ** replace triggers fire have run */
1666   int regTrigCnt;       /* Register used to count replace trigger invocations */
1667   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1668   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1669   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1670   int nReplaceTrig = 0; /* Number of replace triggers coded */
1671   IndexIterator sIdxIter;  /* Index iterator */
1672 
1673   isUpdate = regOldData!=0;
1674   db = pParse->db;
1675   v = pParse->pVdbe;
1676   assert( v!=0 );
1677   assert( !IsView(pTab) );  /* This table is not a VIEW */
1678   nCol = pTab->nCol;
1679 
1680   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1681   ** normal rowid tables.  nPkField is the number of key fields in the
1682   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1683   ** number of fields in the true primary key of the table. */
1684   if( HasRowid(pTab) ){
1685     pPk = 0;
1686     nPkField = 1;
1687   }else{
1688     pPk = sqlite3PrimaryKeyIndex(pTab);
1689     nPkField = pPk->nKeyCol;
1690   }
1691 
1692   /* Record that this module has started */
1693   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1694                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1695 
1696   /* Test all NOT NULL constraints.
1697   */
1698   if( pTab->tabFlags & TF_HasNotNull ){
1699     int b2ndPass = 0;         /* True if currently running 2nd pass */
1700     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1701     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1702     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1703       for(i=0; i<nCol; i++){
1704         int iReg;                        /* Register holding column value */
1705         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1706         int isGenerated;                 /* non-zero if column is generated */
1707         onError = pCol->notNull;
1708         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1709         if( i==pTab->iPKey ){
1710           continue;        /* ROWID is never NULL */
1711         }
1712         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1713         if( isGenerated && !b2ndPass ){
1714           nGenerated++;
1715           continue;        /* Generated columns processed on 2nd pass */
1716         }
1717         if( aiChng && aiChng[i]<0 && !isGenerated ){
1718           /* Do not check NOT NULL on columns that do not change */
1719           continue;
1720         }
1721         if( overrideError!=OE_Default ){
1722           onError = overrideError;
1723         }else if( onError==OE_Default ){
1724           onError = OE_Abort;
1725         }
1726         if( onError==OE_Replace ){
1727           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1728            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1729           ){
1730             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1731             testcase( pCol->colFlags & COLFLAG_STORED );
1732             testcase( pCol->colFlags & COLFLAG_GENERATED );
1733             onError = OE_Abort;
1734           }else{
1735             assert( !isGenerated );
1736           }
1737         }else if( b2ndPass && !isGenerated ){
1738           continue;
1739         }
1740         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1741             || onError==OE_Ignore || onError==OE_Replace );
1742         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1743         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1744         switch( onError ){
1745           case OE_Replace: {
1746             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1747             VdbeCoverage(v);
1748             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1749             nSeenReplace++;
1750             sqlite3ExprCodeCopy(pParse,
1751                sqlite3ColumnExpr(pTab, pCol), iReg);
1752             sqlite3VdbeJumpHere(v, addr1);
1753             break;
1754           }
1755           case OE_Abort:
1756             sqlite3MayAbort(pParse);
1757             /* no break */ deliberate_fall_through
1758           case OE_Rollback:
1759           case OE_Fail: {
1760             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1761                                         pCol->zCnName);
1762             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1763                               onError, iReg);
1764             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1765             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1766             VdbeCoverage(v);
1767             break;
1768           }
1769           default: {
1770             assert( onError==OE_Ignore );
1771             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1772             VdbeCoverage(v);
1773             break;
1774           }
1775         } /* end switch(onError) */
1776       } /* end loop i over columns */
1777       if( nGenerated==0 && nSeenReplace==0 ){
1778         /* If there are no generated columns with NOT NULL constraints
1779         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1780         ** pass is sufficient */
1781         break;
1782       }
1783       if( b2ndPass ) break;  /* Never need more than 2 passes */
1784       b2ndPass = 1;
1785 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1786       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1787         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1788         ** first pass, recomputed values for all generated columns, as
1789         ** those values might depend on columns affected by the REPLACE.
1790         */
1791         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1792       }
1793 #endif
1794     } /* end of 2-pass loop */
1795   } /* end if( has-not-null-constraints ) */
1796 
1797   /* Test all CHECK constraints
1798   */
1799 #ifndef SQLITE_OMIT_CHECK
1800   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1801     ExprList *pCheck = pTab->pCheck;
1802     pParse->iSelfTab = -(regNewData+1);
1803     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1804     for(i=0; i<pCheck->nExpr; i++){
1805       int allOk;
1806       Expr *pCopy;
1807       Expr *pExpr = pCheck->a[i].pExpr;
1808       if( aiChng
1809        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1810       ){
1811         /* The check constraints do not reference any of the columns being
1812         ** updated so there is no point it verifying the check constraint */
1813         continue;
1814       }
1815       if( bAffinityDone==0 ){
1816         sqlite3TableAffinity(v, pTab, regNewData+1);
1817         bAffinityDone = 1;
1818       }
1819       allOk = sqlite3VdbeMakeLabel(pParse);
1820       sqlite3VdbeVerifyAbortable(v, onError);
1821       pCopy = sqlite3ExprDup(db, pExpr, 0);
1822       if( !db->mallocFailed ){
1823         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1824       }
1825       sqlite3ExprDelete(db, pCopy);
1826       if( onError==OE_Ignore ){
1827         sqlite3VdbeGoto(v, ignoreDest);
1828       }else{
1829         char *zName = pCheck->a[i].zEName;
1830         assert( zName!=0 || pParse->db->mallocFailed );
1831         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1832         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1833                               onError, zName, P4_TRANSIENT,
1834                               P5_ConstraintCheck);
1835       }
1836       sqlite3VdbeResolveLabel(v, allOk);
1837     }
1838     pParse->iSelfTab = 0;
1839   }
1840 #endif /* !defined(SQLITE_OMIT_CHECK) */
1841 
1842   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1843   ** order:
1844   **
1845   **   (1)  OE_Update
1846   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1847   **   (3)  OE_Replace
1848   **
1849   ** OE_Fail and OE_Ignore must happen before any changes are made.
1850   ** OE_Update guarantees that only a single row will change, so it
1851   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1852   ** could happen in any order, but they are grouped up front for
1853   ** convenience.
1854   **
1855   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1856   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1857   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1858   ** constraint before any others, so it had to be moved.
1859   **
1860   ** Constraint checking code is generated in this order:
1861   **   (A)  The rowid constraint
1862   **   (B)  Unique index constraints that do not have OE_Replace as their
1863   **        default conflict resolution strategy
1864   **   (C)  Unique index that do use OE_Replace by default.
1865   **
1866   ** The ordering of (2) and (3) is accomplished by making sure the linked
1867   ** list of indexes attached to a table puts all OE_Replace indexes last
1868   ** in the list.  See sqlite3CreateIndex() for where that happens.
1869   */
1870   sIdxIter.eType = 0;
1871   sIdxIter.i = 0;
1872   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1873   sIdxIter.u.lx.pIdx = pTab->pIndex;
1874   if( pUpsert ){
1875     if( pUpsert->pUpsertTarget==0 ){
1876       /* There is just on ON CONFLICT clause and it has no constraint-target */
1877       assert( pUpsert->pNextUpsert==0 );
1878       if( pUpsert->isDoUpdate==0 ){
1879         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1880         ** Make all unique constraint resolution be OE_Ignore */
1881         overrideError = OE_Ignore;
1882         pUpsert = 0;
1883       }else{
1884         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1885         overrideError = OE_Update;
1886       }
1887     }else if( pTab->pIndex!=0 ){
1888       /* Otherwise, we'll need to run the IndexListTerm array version of the
1889       ** iterator to ensure that all of the ON CONFLICT conditions are
1890       ** checked first and in order. */
1891       int nIdx, jj;
1892       u64 nByte;
1893       Upsert *pTerm;
1894       u8 *bUsed;
1895       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1896          assert( aRegIdx[nIdx]>0 );
1897       }
1898       sIdxIter.eType = 1;
1899       sIdxIter.u.ax.nIdx = nIdx;
1900       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1901       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1902       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1903       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1904       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1905       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1906         if( pTerm->pUpsertTarget==0 ) break;
1907         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1908         jj = 0;
1909         pIdx = pTab->pIndex;
1910         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1911            pIdx = pIdx->pNext;
1912            jj++;
1913         }
1914         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1915         bUsed[jj] = 1;
1916         sIdxIter.u.ax.aIdx[i].p = pIdx;
1917         sIdxIter.u.ax.aIdx[i].ix = jj;
1918         i++;
1919       }
1920       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1921         if( bUsed[jj] ) continue;
1922         sIdxIter.u.ax.aIdx[i].p = pIdx;
1923         sIdxIter.u.ax.aIdx[i].ix = jj;
1924         i++;
1925       }
1926       assert( i==nIdx );
1927     }
1928   }
1929 
1930   /* Determine if it is possible that triggers (either explicitly coded
1931   ** triggers or FK resolution actions) might run as a result of deletes
1932   ** that happen when OE_Replace conflict resolution occurs. (Call these
1933   ** "replace triggers".)  If any replace triggers run, we will need to
1934   ** recheck all of the uniqueness constraints after they have all run.
1935   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1936   **
1937   ** If replace triggers are a possibility, then
1938   **
1939   **   (1) Allocate register regTrigCnt and initialize it to zero.
1940   **       That register will count the number of replace triggers that
1941   **       fire.  Constraint recheck only occurs if the number is positive.
1942   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1943   **   (3) Initialize addrRecheck and lblRecheckOk
1944   **
1945   ** The uniqueness rechecking code will create a series of tests to run
1946   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1947   ** used to link together these tests which are separated from each other
1948   ** in the generate bytecode.
1949   */
1950   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1951     /* There are not DELETE triggers nor FK constraints.  No constraint
1952     ** rechecks are needed. */
1953     pTrigger = 0;
1954     regTrigCnt = 0;
1955   }else{
1956     if( db->flags&SQLITE_RecTriggers ){
1957       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1958       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1959     }else{
1960       pTrigger = 0;
1961       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1962     }
1963     if( regTrigCnt ){
1964       /* Replace triggers might exist.  Allocate the counter and
1965       ** initialize it to zero. */
1966       regTrigCnt = ++pParse->nMem;
1967       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1968       VdbeComment((v, "trigger count"));
1969       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1970       addrRecheck = lblRecheckOk;
1971     }
1972   }
1973 
1974   /* If rowid is changing, make sure the new rowid does not previously
1975   ** exist in the table.
1976   */
1977   if( pkChng && pPk==0 ){
1978     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1979 
1980     /* Figure out what action to take in case of a rowid collision */
1981     onError = pTab->keyConf;
1982     if( overrideError!=OE_Default ){
1983       onError = overrideError;
1984     }else if( onError==OE_Default ){
1985       onError = OE_Abort;
1986     }
1987 
1988     /* figure out whether or not upsert applies in this case */
1989     if( pUpsert ){
1990       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1991       if( pUpsertClause!=0 ){
1992         if( pUpsertClause->isDoUpdate==0 ){
1993           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1994         }else{
1995           onError = OE_Update;  /* DO UPDATE */
1996         }
1997       }
1998       if( pUpsertClause!=pUpsert ){
1999         /* The first ON CONFLICT clause has a conflict target other than
2000         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
2001         ** and then come back here and deal with the IPK afterwards */
2002         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2003       }
2004     }
2005 
2006     /* If the response to a rowid conflict is REPLACE but the response
2007     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2008     ** to defer the running of the rowid conflict checking until after
2009     ** the UNIQUE constraints have run.
2010     */
2011     if( onError==OE_Replace      /* IPK rule is REPLACE */
2012      && onError!=overrideError   /* Rules for other constraints are different */
2013      && pTab->pIndex             /* There exist other constraints */
2014     ){
2015       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2016       VdbeComment((v, "defer IPK REPLACE until last"));
2017     }
2018 
2019     if( isUpdate ){
2020       /* pkChng!=0 does not mean that the rowid has changed, only that
2021       ** it might have changed.  Skip the conflict logic below if the rowid
2022       ** is unchanged. */
2023       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2024       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2025       VdbeCoverage(v);
2026     }
2027 
2028     /* Check to see if the new rowid already exists in the table.  Skip
2029     ** the following conflict logic if it does not. */
2030     VdbeNoopComment((v, "uniqueness check for ROWID"));
2031     sqlite3VdbeVerifyAbortable(v, onError);
2032     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2033     VdbeCoverage(v);
2034 
2035     switch( onError ){
2036       default: {
2037         onError = OE_Abort;
2038         /* no break */ deliberate_fall_through
2039       }
2040       case OE_Rollback:
2041       case OE_Abort:
2042       case OE_Fail: {
2043         testcase( onError==OE_Rollback );
2044         testcase( onError==OE_Abort );
2045         testcase( onError==OE_Fail );
2046         sqlite3RowidConstraint(pParse, onError, pTab);
2047         break;
2048       }
2049       case OE_Replace: {
2050         /* If there are DELETE triggers on this table and the
2051         ** recursive-triggers flag is set, call GenerateRowDelete() to
2052         ** remove the conflicting row from the table. This will fire
2053         ** the triggers and remove both the table and index b-tree entries.
2054         **
2055         ** Otherwise, if there are no triggers or the recursive-triggers
2056         ** flag is not set, but the table has one or more indexes, call
2057         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2058         ** only. The table b-tree entry will be replaced by the new entry
2059         ** when it is inserted.
2060         **
2061         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2062         ** also invoke MultiWrite() to indicate that this VDBE may require
2063         ** statement rollback (if the statement is aborted after the delete
2064         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2065         ** but being more selective here allows statements like:
2066         **
2067         **   REPLACE INTO t(rowid) VALUES($newrowid)
2068         **
2069         ** to run without a statement journal if there are no indexes on the
2070         ** table.
2071         */
2072         if( regTrigCnt ){
2073           sqlite3MultiWrite(pParse);
2074           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2075                                    regNewData, 1, 0, OE_Replace, 1, -1);
2076           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2077           nReplaceTrig++;
2078         }else{
2079 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2080           assert( HasRowid(pTab) );
2081           /* This OP_Delete opcode fires the pre-update-hook only. It does
2082           ** not modify the b-tree. It is more efficient to let the coming
2083           ** OP_Insert replace the existing entry than it is to delete the
2084           ** existing entry and then insert a new one. */
2085           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2086           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2087 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2088           if( pTab->pIndex ){
2089             sqlite3MultiWrite(pParse);
2090             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2091           }
2092         }
2093         seenReplace = 1;
2094         break;
2095       }
2096 #ifndef SQLITE_OMIT_UPSERT
2097       case OE_Update: {
2098         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2099         /* no break */ deliberate_fall_through
2100       }
2101 #endif
2102       case OE_Ignore: {
2103         testcase( onError==OE_Ignore );
2104         sqlite3VdbeGoto(v, ignoreDest);
2105         break;
2106       }
2107     }
2108     sqlite3VdbeResolveLabel(v, addrRowidOk);
2109     if( pUpsert && pUpsertClause!=pUpsert ){
2110       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2111     }else if( ipkTop ){
2112       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2113       sqlite3VdbeJumpHere(v, ipkTop-1);
2114     }
2115   }
2116 
2117   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2118   ** index and making sure that duplicate entries do not already exist.
2119   ** Compute the revised record entries for indices as we go.
2120   **
2121   ** This loop also handles the case of the PRIMARY KEY index for a
2122   ** WITHOUT ROWID table.
2123   */
2124   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2125       pIdx;
2126       pIdx = indexIteratorNext(&sIdxIter, &ix)
2127   ){
2128     int regIdx;          /* Range of registers hold conent for pIdx */
2129     int regR;            /* Range of registers holding conflicting PK */
2130     int iThisCur;        /* Cursor for this UNIQUE index */
2131     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2132     int addrConflictCk;  /* First opcode in the conflict check logic */
2133 
2134     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2135     if( pUpsert ){
2136       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2137       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2138         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2139       }
2140     }
2141     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2142     if( bAffinityDone==0 ){
2143       sqlite3TableAffinity(v, pTab, regNewData+1);
2144       bAffinityDone = 1;
2145     }
2146     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2147     iThisCur = iIdxCur+ix;
2148 
2149 
2150     /* Skip partial indices for which the WHERE clause is not true */
2151     if( pIdx->pPartIdxWhere ){
2152       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2153       pParse->iSelfTab = -(regNewData+1);
2154       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2155                             SQLITE_JUMPIFNULL);
2156       pParse->iSelfTab = 0;
2157     }
2158 
2159     /* Create a record for this index entry as it should appear after
2160     ** the insert or update.  Store that record in the aRegIdx[ix] register
2161     */
2162     regIdx = aRegIdx[ix]+1;
2163     for(i=0; i<pIdx->nColumn; i++){
2164       int iField = pIdx->aiColumn[i];
2165       int x;
2166       if( iField==XN_EXPR ){
2167         pParse->iSelfTab = -(regNewData+1);
2168         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2169         pParse->iSelfTab = 0;
2170         VdbeComment((v, "%s column %d", pIdx->zName, i));
2171       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2172         x = regNewData;
2173         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2174         VdbeComment((v, "rowid"));
2175       }else{
2176         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2177         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2178         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2179         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2180       }
2181     }
2182     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2183     VdbeComment((v, "for %s", pIdx->zName));
2184 #ifdef SQLITE_ENABLE_NULL_TRIM
2185     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2186       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2187     }
2188 #endif
2189     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2190 
2191     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2192     ** of a WITHOUT ROWID table and there has been no change the
2193     ** primary key, then no collision is possible.  The collision detection
2194     ** logic below can all be skipped. */
2195     if( isUpdate && pPk==pIdx && pkChng==0 ){
2196       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2197       continue;
2198     }
2199 
2200     /* Find out what action to take in case there is a uniqueness conflict */
2201     onError = pIdx->onError;
2202     if( onError==OE_None ){
2203       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2204       continue;  /* pIdx is not a UNIQUE index */
2205     }
2206     if( overrideError!=OE_Default ){
2207       onError = overrideError;
2208     }else if( onError==OE_Default ){
2209       onError = OE_Abort;
2210     }
2211 
2212     /* Figure out if the upsert clause applies to this index */
2213     if( pUpsertClause ){
2214       if( pUpsertClause->isDoUpdate==0 ){
2215         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2216       }else{
2217         onError = OE_Update;  /* DO UPDATE */
2218       }
2219     }
2220 
2221     /* Collision detection may be omitted if all of the following are true:
2222     **   (1) The conflict resolution algorithm is REPLACE
2223     **   (2) The table is a WITHOUT ROWID table
2224     **   (3) There are no secondary indexes on the table
2225     **   (4) No delete triggers need to be fired if there is a conflict
2226     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2227     **
2228     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2229     ** must be explicitly deleted in order to ensure any pre-update hook
2230     ** is invoked.  */
2231     assert( IsOrdinaryTable(pTab) );
2232 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2233     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2234      && pPk==pIdx                                   /* Condition 2 */
2235      && onError==OE_Replace                         /* Condition 1 */
2236      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2237           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2238      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2239          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2240     ){
2241       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2242       continue;
2243     }
2244 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2245 
2246     /* Check to see if the new index entry will be unique */
2247     sqlite3VdbeVerifyAbortable(v, onError);
2248     addrConflictCk =
2249       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2250                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2251 
2252     /* Generate code to handle collisions */
2253     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2254     if( isUpdate || onError==OE_Replace ){
2255       if( HasRowid(pTab) ){
2256         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2257         /* Conflict only if the rowid of the existing index entry
2258         ** is different from old-rowid */
2259         if( isUpdate ){
2260           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2261           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2262           VdbeCoverage(v);
2263         }
2264       }else{
2265         int x;
2266         /* Extract the PRIMARY KEY from the end of the index entry and
2267         ** store it in registers regR..regR+nPk-1 */
2268         if( pIdx!=pPk ){
2269           for(i=0; i<pPk->nKeyCol; i++){
2270             assert( pPk->aiColumn[i]>=0 );
2271             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2272             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2273             VdbeComment((v, "%s.%s", pTab->zName,
2274                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2275           }
2276         }
2277         if( isUpdate ){
2278           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2279           ** table, only conflict if the new PRIMARY KEY values are actually
2280           ** different from the old.
2281           **
2282           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2283           ** of the matched index row are different from the original PRIMARY
2284           ** KEY values of this row before the update.  */
2285           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2286           int op = OP_Ne;
2287           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2288 
2289           for(i=0; i<pPk->nKeyCol; i++){
2290             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2291             x = pPk->aiColumn[i];
2292             assert( x>=0 );
2293             if( i==(pPk->nKeyCol-1) ){
2294               addrJump = addrUniqueOk;
2295               op = OP_Eq;
2296             }
2297             x = sqlite3TableColumnToStorage(pTab, x);
2298             sqlite3VdbeAddOp4(v, op,
2299                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2300             );
2301             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2302             VdbeCoverageIf(v, op==OP_Eq);
2303             VdbeCoverageIf(v, op==OP_Ne);
2304           }
2305         }
2306       }
2307     }
2308 
2309     /* Generate code that executes if the new index entry is not unique */
2310     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2311         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2312     switch( onError ){
2313       case OE_Rollback:
2314       case OE_Abort:
2315       case OE_Fail: {
2316         testcase( onError==OE_Rollback );
2317         testcase( onError==OE_Abort );
2318         testcase( onError==OE_Fail );
2319         sqlite3UniqueConstraint(pParse, onError, pIdx);
2320         break;
2321       }
2322 #ifndef SQLITE_OMIT_UPSERT
2323       case OE_Update: {
2324         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2325         /* no break */ deliberate_fall_through
2326       }
2327 #endif
2328       case OE_Ignore: {
2329         testcase( onError==OE_Ignore );
2330         sqlite3VdbeGoto(v, ignoreDest);
2331         break;
2332       }
2333       default: {
2334         int nConflictCk;   /* Number of opcodes in conflict check logic */
2335 
2336         assert( onError==OE_Replace );
2337         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2338         assert( nConflictCk>0 || db->mallocFailed );
2339         testcase( nConflictCk<=0 );
2340         testcase( nConflictCk>1 );
2341         if( regTrigCnt ){
2342           sqlite3MultiWrite(pParse);
2343           nReplaceTrig++;
2344         }
2345         if( pTrigger && isUpdate ){
2346           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2347         }
2348         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2349             regR, nPkField, 0, OE_Replace,
2350             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2351         if( pTrigger && isUpdate ){
2352           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2353         }
2354         if( regTrigCnt ){
2355           int addrBypass;  /* Jump destination to bypass recheck logic */
2356 
2357           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2358           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2359           VdbeComment((v, "bypass recheck"));
2360 
2361           /* Here we insert code that will be invoked after all constraint
2362           ** checks have run, if and only if one or more replace triggers
2363           ** fired. */
2364           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2365           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2366           if( pIdx->pPartIdxWhere ){
2367             /* Bypass the recheck if this partial index is not defined
2368             ** for the current row */
2369             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2370             VdbeCoverage(v);
2371           }
2372           /* Copy the constraint check code from above, except change
2373           ** the constraint-ok jump destination to be the address of
2374           ** the next retest block */
2375           while( nConflictCk>0 ){
2376             VdbeOp x;    /* Conflict check opcode to copy */
2377             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2378             ** Hence, make a complete copy of the opcode, rather than using
2379             ** a pointer to the opcode. */
2380             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2381             if( x.opcode!=OP_IdxRowid ){
2382               int p2;      /* New P2 value for copied conflict check opcode */
2383               const char *zP4;
2384               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2385                 p2 = lblRecheckOk;
2386               }else{
2387                 p2 = x.p2;
2388               }
2389               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2390               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2391               sqlite3VdbeChangeP5(v, x.p5);
2392               VdbeCoverageIf(v, p2!=x.p2);
2393             }
2394             nConflictCk--;
2395             addrConflictCk++;
2396           }
2397           /* If the retest fails, issue an abort */
2398           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2399 
2400           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2401         }
2402         seenReplace = 1;
2403         break;
2404       }
2405     }
2406     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2407     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2408     if( pUpsertClause
2409      && upsertIpkReturn
2410      && sqlite3UpsertNextIsIPK(pUpsertClause)
2411     ){
2412       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2413       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2414       upsertIpkReturn = 0;
2415     }
2416   }
2417 
2418   /* If the IPK constraint is a REPLACE, run it last */
2419   if( ipkTop ){
2420     sqlite3VdbeGoto(v, ipkTop);
2421     VdbeComment((v, "Do IPK REPLACE"));
2422     sqlite3VdbeJumpHere(v, ipkBottom);
2423   }
2424 
2425   /* Recheck all uniqueness constraints after replace triggers have run */
2426   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2427   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2428   if( nReplaceTrig ){
2429     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2430     if( !pPk ){
2431       if( isUpdate ){
2432         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2433         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2434         VdbeCoverage(v);
2435       }
2436       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2437       VdbeCoverage(v);
2438       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2439     }else{
2440       sqlite3VdbeGoto(v, addrRecheck);
2441     }
2442     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2443   }
2444 
2445   /* Generate the table record */
2446   if( HasRowid(pTab) ){
2447     int regRec = aRegIdx[ix];
2448     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2449     sqlite3SetMakeRecordP5(v, pTab);
2450     if( !bAffinityDone ){
2451       sqlite3TableAffinity(v, pTab, 0);
2452     }
2453   }
2454 
2455   *pbMayReplace = seenReplace;
2456   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2457 }
2458 
2459 #ifdef SQLITE_ENABLE_NULL_TRIM
2460 /*
2461 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2462 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2463 **
2464 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2465 */
2466 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2467   u16 i;
2468 
2469   /* Records with omitted columns are only allowed for schema format
2470   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2471   if( pTab->pSchema->file_format<2 ) return;
2472 
2473   for(i=pTab->nCol-1; i>0; i--){
2474     if( pTab->aCol[i].iDflt!=0 ) break;
2475     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2476   }
2477   sqlite3VdbeChangeP5(v, i+1);
2478 }
2479 #endif
2480 
2481 /*
2482 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2483 ** number is iCur, and register regData contains the new record for the
2484 ** PK index. This function adds code to invoke the pre-update hook,
2485 ** if one is registered.
2486 */
2487 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2488 static void codeWithoutRowidPreupdate(
2489   Parse *pParse,                  /* Parse context */
2490   Table *pTab,                    /* Table being updated */
2491   int iCur,                       /* Cursor number for table */
2492   int regData                     /* Data containing new record */
2493 ){
2494   Vdbe *v = pParse->pVdbe;
2495   int r = sqlite3GetTempReg(pParse);
2496   assert( !HasRowid(pTab) );
2497   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2498   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2499   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2500   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2501   sqlite3ReleaseTempReg(pParse, r);
2502 }
2503 #else
2504 # define codeWithoutRowidPreupdate(a,b,c,d)
2505 #endif
2506 
2507 /*
2508 ** This routine generates code to finish the INSERT or UPDATE operation
2509 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2510 ** A consecutive range of registers starting at regNewData contains the
2511 ** rowid and the content to be inserted.
2512 **
2513 ** The arguments to this routine should be the same as the first six
2514 ** arguments to sqlite3GenerateConstraintChecks.
2515 */
2516 void sqlite3CompleteInsertion(
2517   Parse *pParse,      /* The parser context */
2518   Table *pTab,        /* the table into which we are inserting */
2519   int iDataCur,       /* Cursor of the canonical data source */
2520   int iIdxCur,        /* First index cursor */
2521   int regNewData,     /* Range of content */
2522   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2523   int update_flags,   /* True for UPDATE, False for INSERT */
2524   int appendBias,     /* True if this is likely to be an append */
2525   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2526 ){
2527   Vdbe *v;            /* Prepared statements under construction */
2528   Index *pIdx;        /* An index being inserted or updated */
2529   u8 pik_flags;       /* flag values passed to the btree insert */
2530   int i;              /* Loop counter */
2531 
2532   assert( update_flags==0
2533        || update_flags==OPFLAG_ISUPDATE
2534        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2535   );
2536 
2537   v = pParse->pVdbe;
2538   assert( v!=0 );
2539   assert( !IsView(pTab) );  /* This table is not a VIEW */
2540   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2541     /* All REPLACE indexes are at the end of the list */
2542     assert( pIdx->onError!=OE_Replace
2543          || pIdx->pNext==0
2544          || pIdx->pNext->onError==OE_Replace );
2545     if( aRegIdx[i]==0 ) continue;
2546     if( pIdx->pPartIdxWhere ){
2547       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2548       VdbeCoverage(v);
2549     }
2550     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2551     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2552       assert( pParse->nested==0 );
2553       pik_flags |= OPFLAG_NCHANGE;
2554       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2555       if( update_flags==0 ){
2556         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2557       }
2558     }
2559     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2560                          aRegIdx[i]+1,
2561                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2562     sqlite3VdbeChangeP5(v, pik_flags);
2563   }
2564   if( !HasRowid(pTab) ) return;
2565   if( pParse->nested ){
2566     pik_flags = 0;
2567   }else{
2568     pik_flags = OPFLAG_NCHANGE;
2569     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2570   }
2571   if( appendBias ){
2572     pik_flags |= OPFLAG_APPEND;
2573   }
2574   if( useSeekResult ){
2575     pik_flags |= OPFLAG_USESEEKRESULT;
2576   }
2577   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2578   if( !pParse->nested ){
2579     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2580   }
2581   sqlite3VdbeChangeP5(v, pik_flags);
2582 }
2583 
2584 /*
2585 ** Allocate cursors for the pTab table and all its indices and generate
2586 ** code to open and initialized those cursors.
2587 **
2588 ** The cursor for the object that contains the complete data (normally
2589 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2590 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2591 ** returned in *piIdxCur.  The number of indices is returned.
2592 **
2593 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2594 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2595 ** If iBase is negative, then allocate the next available cursor.
2596 **
2597 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2598 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2599 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2600 ** pTab->pIndex list.
2601 **
2602 ** If pTab is a virtual table, then this routine is a no-op and the
2603 ** *piDataCur and *piIdxCur values are left uninitialized.
2604 */
2605 int sqlite3OpenTableAndIndices(
2606   Parse *pParse,   /* Parsing context */
2607   Table *pTab,     /* Table to be opened */
2608   int op,          /* OP_OpenRead or OP_OpenWrite */
2609   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2610   int iBase,       /* Use this for the table cursor, if there is one */
2611   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2612   int *piDataCur,  /* Write the database source cursor number here */
2613   int *piIdxCur    /* Write the first index cursor number here */
2614 ){
2615   int i;
2616   int iDb;
2617   int iDataCur;
2618   Index *pIdx;
2619   Vdbe *v;
2620 
2621   assert( op==OP_OpenRead || op==OP_OpenWrite );
2622   assert( op==OP_OpenWrite || p5==0 );
2623   if( IsVirtual(pTab) ){
2624     /* This routine is a no-op for virtual tables. Leave the output
2625     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2626     ** for improved error detection. */
2627     *piDataCur = *piIdxCur = -999;
2628     return 0;
2629   }
2630   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2631   v = pParse->pVdbe;
2632   assert( v!=0 );
2633   if( iBase<0 ) iBase = pParse->nTab;
2634   iDataCur = iBase++;
2635   if( piDataCur ) *piDataCur = iDataCur;
2636   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2637     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2638   }else{
2639     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2640   }
2641   if( piIdxCur ) *piIdxCur = iBase;
2642   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2643     int iIdxCur = iBase++;
2644     assert( pIdx->pSchema==pTab->pSchema );
2645     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2646       if( piDataCur ) *piDataCur = iIdxCur;
2647       p5 = 0;
2648     }
2649     if( aToOpen==0 || aToOpen[i+1] ){
2650       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2651       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2652       sqlite3VdbeChangeP5(v, p5);
2653       VdbeComment((v, "%s", pIdx->zName));
2654     }
2655   }
2656   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2657   return i;
2658 }
2659 
2660 
2661 #ifdef SQLITE_TEST
2662 /*
2663 ** The following global variable is incremented whenever the
2664 ** transfer optimization is used.  This is used for testing
2665 ** purposes only - to make sure the transfer optimization really
2666 ** is happening when it is supposed to.
2667 */
2668 int sqlite3_xferopt_count;
2669 #endif /* SQLITE_TEST */
2670 
2671 
2672 #ifndef SQLITE_OMIT_XFER_OPT
2673 /*
2674 ** Check to see if index pSrc is compatible as a source of data
2675 ** for index pDest in an insert transfer optimization.  The rules
2676 ** for a compatible index:
2677 **
2678 **    *   The index is over the same set of columns
2679 **    *   The same DESC and ASC markings occurs on all columns
2680 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2681 **    *   The same collating sequence on each column
2682 **    *   The index has the exact same WHERE clause
2683 */
2684 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2685   int i;
2686   assert( pDest && pSrc );
2687   assert( pDest->pTable!=pSrc->pTable );
2688   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2689     return 0;   /* Different number of columns */
2690   }
2691   if( pDest->onError!=pSrc->onError ){
2692     return 0;   /* Different conflict resolution strategies */
2693   }
2694   for(i=0; i<pSrc->nKeyCol; i++){
2695     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2696       return 0;   /* Different columns indexed */
2697     }
2698     if( pSrc->aiColumn[i]==XN_EXPR ){
2699       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2700       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2701                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2702         return 0;   /* Different expressions in the index */
2703       }
2704     }
2705     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2706       return 0;   /* Different sort orders */
2707     }
2708     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2709       return 0;   /* Different collating sequences */
2710     }
2711   }
2712   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2713     return 0;     /* Different WHERE clauses */
2714   }
2715 
2716   /* If no test above fails then the indices must be compatible */
2717   return 1;
2718 }
2719 
2720 /*
2721 ** Attempt the transfer optimization on INSERTs of the form
2722 **
2723 **     INSERT INTO tab1 SELECT * FROM tab2;
2724 **
2725 ** The xfer optimization transfers raw records from tab2 over to tab1.
2726 ** Columns are not decoded and reassembled, which greatly improves
2727 ** performance.  Raw index records are transferred in the same way.
2728 **
2729 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2730 ** There are lots of rules for determining compatibility - see comments
2731 ** embedded in the code for details.
2732 **
2733 ** This routine returns TRUE if the optimization is guaranteed to be used.
2734 ** Sometimes the xfer optimization will only work if the destination table
2735 ** is empty - a factor that can only be determined at run-time.  In that
2736 ** case, this routine generates code for the xfer optimization but also
2737 ** does a test to see if the destination table is empty and jumps over the
2738 ** xfer optimization code if the test fails.  In that case, this routine
2739 ** returns FALSE so that the caller will know to go ahead and generate
2740 ** an unoptimized transfer.  This routine also returns FALSE if there
2741 ** is no chance that the xfer optimization can be applied.
2742 **
2743 ** This optimization is particularly useful at making VACUUM run faster.
2744 */
2745 static int xferOptimization(
2746   Parse *pParse,        /* Parser context */
2747   Table *pDest,         /* The table we are inserting into */
2748   Select *pSelect,      /* A SELECT statement to use as the data source */
2749   int onError,          /* How to handle constraint errors */
2750   int iDbDest           /* The database of pDest */
2751 ){
2752   sqlite3 *db = pParse->db;
2753   ExprList *pEList;                /* The result set of the SELECT */
2754   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2755   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2756   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2757   int i;                           /* Loop counter */
2758   int iDbSrc;                      /* The database of pSrc */
2759   int iSrc, iDest;                 /* Cursors from source and destination */
2760   int addr1, addr2;                /* Loop addresses */
2761   int emptyDestTest = 0;           /* Address of test for empty pDest */
2762   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2763   Vdbe *v;                         /* The VDBE we are building */
2764   int regAutoinc;                  /* Memory register used by AUTOINC */
2765   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2766   int regData, regRowid;           /* Registers holding data and rowid */
2767 
2768   if( pSelect==0 ){
2769     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2770   }
2771   if( pParse->pWith || pSelect->pWith ){
2772     /* Do not attempt to process this query if there are an WITH clauses
2773     ** attached to it. Proceeding may generate a false "no such table: xxx"
2774     ** error if pSelect reads from a CTE named "xxx".  */
2775     return 0;
2776   }
2777   if( sqlite3TriggerList(pParse, pDest) ){
2778     return 0;   /* tab1 must not have triggers */
2779   }
2780 #ifndef SQLITE_OMIT_VIRTUALTABLE
2781   if( IsVirtual(pDest) ){
2782     return 0;   /* tab1 must not be a virtual table */
2783   }
2784 #endif
2785   if( onError==OE_Default ){
2786     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2787     if( onError==OE_Default ) onError = OE_Abort;
2788   }
2789   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2790   if( pSelect->pSrc->nSrc!=1 ){
2791     return 0;   /* FROM clause must have exactly one term */
2792   }
2793   if( pSelect->pSrc->a[0].pSelect ){
2794     return 0;   /* FROM clause cannot contain a subquery */
2795   }
2796   if( pSelect->pWhere ){
2797     return 0;   /* SELECT may not have a WHERE clause */
2798   }
2799   if( pSelect->pOrderBy ){
2800     return 0;   /* SELECT may not have an ORDER BY clause */
2801   }
2802   /* Do not need to test for a HAVING clause.  If HAVING is present but
2803   ** there is no ORDER BY, we will get an error. */
2804   if( pSelect->pGroupBy ){
2805     return 0;   /* SELECT may not have a GROUP BY clause */
2806   }
2807   if( pSelect->pLimit ){
2808     return 0;   /* SELECT may not have a LIMIT clause */
2809   }
2810   if( pSelect->pPrior ){
2811     return 0;   /* SELECT may not be a compound query */
2812   }
2813   if( pSelect->selFlags & SF_Distinct ){
2814     return 0;   /* SELECT may not be DISTINCT */
2815   }
2816   pEList = pSelect->pEList;
2817   assert( pEList!=0 );
2818   if( pEList->nExpr!=1 ){
2819     return 0;   /* The result set must have exactly one column */
2820   }
2821   assert( pEList->a[0].pExpr );
2822   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2823     return 0;   /* The result set must be the special operator "*" */
2824   }
2825 
2826   /* At this point we have established that the statement is of the
2827   ** correct syntactic form to participate in this optimization.  Now
2828   ** we have to check the semantics.
2829   */
2830   pItem = pSelect->pSrc->a;
2831   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2832   if( pSrc==0 ){
2833     return 0;   /* FROM clause does not contain a real table */
2834   }
2835   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2836     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2837     return 0;   /* tab1 and tab2 may not be the same table */
2838   }
2839   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2840     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2841   }
2842   if( !IsOrdinaryTable(pSrc) ){
2843     return 0;   /* tab2 may not be a view or virtual table */
2844   }
2845   if( pDest->nCol!=pSrc->nCol ){
2846     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2847   }
2848   if( pDest->iPKey!=pSrc->iPKey ){
2849     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2850   }
2851   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2852     return 0;   /* Cannot feed from a non-strict into a strict table */
2853   }
2854   for(i=0; i<pDest->nCol; i++){
2855     Column *pDestCol = &pDest->aCol[i];
2856     Column *pSrcCol = &pSrc->aCol[i];
2857 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2858     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2859      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2860     ){
2861       return 0;    /* Neither table may have __hidden__ columns */
2862     }
2863 #endif
2864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2865     /* Even if tables t1 and t2 have identical schemas, if they contain
2866     ** generated columns, then this statement is semantically incorrect:
2867     **
2868     **     INSERT INTO t2 SELECT * FROM t1;
2869     **
2870     ** The reason is that generated column values are returned by the
2871     ** the SELECT statement on the right but the INSERT statement on the
2872     ** left wants them to be omitted.
2873     **
2874     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2875     ** to do a bulk transfer all of the content from t1 over to t2.
2876     **
2877     ** We could, in theory, disable this (except for internal use by the
2878     ** VACUUM command where it is actually needed).  But why do that?  It
2879     ** seems harmless enough, and provides a useful service.
2880     */
2881     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2882         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2883       return 0;    /* Both columns have the same generated-column type */
2884     }
2885     /* But the transfer is only allowed if both the source and destination
2886     ** tables have the exact same expressions for generated columns.
2887     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2888     */
2889     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2890       if( sqlite3ExprCompare(0,
2891              sqlite3ColumnExpr(pSrc, pSrcCol),
2892              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2893         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2894         testcase( pDestCol->colFlags & COLFLAG_STORED );
2895         return 0;  /* Different generator expressions */
2896       }
2897     }
2898 #endif
2899     if( pDestCol->affinity!=pSrcCol->affinity ){
2900       return 0;    /* Affinity must be the same on all columns */
2901     }
2902     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2903                         sqlite3ColumnColl(pSrcCol))!=0 ){
2904       return 0;    /* Collating sequence must be the same on all columns */
2905     }
2906     if( pDestCol->notNull && !pSrcCol->notNull ){
2907       return 0;    /* tab2 must be NOT NULL if tab1 is */
2908     }
2909     /* Default values for second and subsequent columns need to match. */
2910     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2911       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2912       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2913       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2914       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2915       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2916       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2917       if( (pDestExpr==0)!=(pSrcExpr==0)
2918        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2919                                        pSrcExpr->u.zToken)!=0)
2920       ){
2921         return 0;    /* Default values must be the same for all columns */
2922       }
2923     }
2924   }
2925   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2926     if( IsUniqueIndex(pDestIdx) ){
2927       destHasUniqueIdx = 1;
2928     }
2929     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2930       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2931     }
2932     if( pSrcIdx==0 ){
2933       return 0;    /* pDestIdx has no corresponding index in pSrc */
2934     }
2935     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2936          && sqlite3FaultSim(411)==SQLITE_OK ){
2937       /* The sqlite3FaultSim() call allows this corruption test to be
2938       ** bypassed during testing, in order to exercise other corruption tests
2939       ** further downstream. */
2940       return 0;   /* Corrupt schema - two indexes on the same btree */
2941     }
2942   }
2943 #ifndef SQLITE_OMIT_CHECK
2944   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2945     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2946   }
2947 #endif
2948 #ifndef SQLITE_OMIT_FOREIGN_KEY
2949   /* Disallow the transfer optimization if the destination table constains
2950   ** any foreign key constraints.  This is more restrictive than necessary.
2951   ** But the main beneficiary of the transfer optimization is the VACUUM
2952   ** command, and the VACUUM command disables foreign key constraints.  So
2953   ** the extra complication to make this rule less restrictive is probably
2954   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2955   */
2956   assert( IsOrdinaryTable(pDest) );
2957   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2958     return 0;
2959   }
2960 #endif
2961   if( (db->flags & SQLITE_CountRows)!=0 ){
2962     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2963   }
2964 
2965   /* If we get this far, it means that the xfer optimization is at
2966   ** least a possibility, though it might only work if the destination
2967   ** table (tab1) is initially empty.
2968   */
2969 #ifdef SQLITE_TEST
2970   sqlite3_xferopt_count++;
2971 #endif
2972   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2973   v = sqlite3GetVdbe(pParse);
2974   sqlite3CodeVerifySchema(pParse, iDbSrc);
2975   iSrc = pParse->nTab++;
2976   iDest = pParse->nTab++;
2977   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2978   regData = sqlite3GetTempReg(pParse);
2979   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2980   regRowid = sqlite3GetTempReg(pParse);
2981   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2982   assert( HasRowid(pDest) || destHasUniqueIdx );
2983   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2984       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2985    || destHasUniqueIdx                              /* (2) */
2986    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2987   )){
2988     /* In some circumstances, we are able to run the xfer optimization
2989     ** only if the destination table is initially empty. Unless the
2990     ** DBFLAG_Vacuum flag is set, this block generates code to make
2991     ** that determination. If DBFLAG_Vacuum is set, then the destination
2992     ** table is always empty.
2993     **
2994     ** Conditions under which the destination must be empty:
2995     **
2996     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2997     **     (If the destination is not initially empty, the rowid fields
2998     **     of index entries might need to change.)
2999     **
3000     ** (2) The destination has a unique index.  (The xfer optimization
3001     **     is unable to test uniqueness.)
3002     **
3003     ** (3) onError is something other than OE_Abort and OE_Rollback.
3004     */
3005     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3006     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3007     sqlite3VdbeJumpHere(v, addr1);
3008   }
3009   if( HasRowid(pSrc) ){
3010     u8 insFlags;
3011     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3012     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3013     if( pDest->iPKey>=0 ){
3014       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3015       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3016         sqlite3VdbeVerifyAbortable(v, onError);
3017         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3018         VdbeCoverage(v);
3019         sqlite3RowidConstraint(pParse, onError, pDest);
3020         sqlite3VdbeJumpHere(v, addr2);
3021       }
3022       autoIncStep(pParse, regAutoinc, regRowid);
3023     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3024       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3025     }else{
3026       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3027       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3028     }
3029 
3030     if( db->mDbFlags & DBFLAG_Vacuum ){
3031       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3032       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3033     }else{
3034       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3035     }
3036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3037     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3038       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3039       insFlags &= ~OPFLAG_PREFORMAT;
3040     }else
3041 #endif
3042     {
3043       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3044     }
3045     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3046     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3047       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3048     }
3049     sqlite3VdbeChangeP5(v, insFlags);
3050 
3051     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3052     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3053     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3054   }else{
3055     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3056     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3057   }
3058   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3059     u8 idxInsFlags = 0;
3060     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3061       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3062     }
3063     assert( pSrcIdx );
3064     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3065     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3066     VdbeComment((v, "%s", pSrcIdx->zName));
3067     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3068     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3069     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3070     VdbeComment((v, "%s", pDestIdx->zName));
3071     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3072     if( db->mDbFlags & DBFLAG_Vacuum ){
3073       /* This INSERT command is part of a VACUUM operation, which guarantees
3074       ** that the destination table is empty. If all indexed columns use
3075       ** collation sequence BINARY, then it can also be assumed that the
3076       ** index will be populated by inserting keys in strictly sorted
3077       ** order. In this case, instead of seeking within the b-tree as part
3078       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3079       ** OP_IdxInsert to seek to the point within the b-tree where each key
3080       ** should be inserted. This is faster.
3081       **
3082       ** If any of the indexed columns use a collation sequence other than
3083       ** BINARY, this optimization is disabled. This is because the user
3084       ** might change the definition of a collation sequence and then run
3085       ** a VACUUM command. In that case keys may not be written in strictly
3086       ** sorted order.  */
3087       for(i=0; i<pSrcIdx->nColumn; i++){
3088         const char *zColl = pSrcIdx->azColl[i];
3089         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3090       }
3091       if( i==pSrcIdx->nColumn ){
3092         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3093         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3094         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3095       }
3096     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3097       idxInsFlags |= OPFLAG_NCHANGE;
3098     }
3099     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3100       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3101       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3102        && !HasRowid(pDest)
3103        && IsPrimaryKeyIndex(pDestIdx)
3104       ){
3105         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3106       }
3107     }
3108     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3109     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3110     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3111     sqlite3VdbeJumpHere(v, addr1);
3112     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3113     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3114   }
3115   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3116   sqlite3ReleaseTempReg(pParse, regRowid);
3117   sqlite3ReleaseTempReg(pParse, regData);
3118   if( emptyDestTest ){
3119     sqlite3AutoincrementEnd(pParse);
3120     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3121     sqlite3VdbeJumpHere(v, emptyDestTest);
3122     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3123     return 0;
3124   }else{
3125     return 1;
3126   }
3127 }
3128 #endif /* SQLITE_OMIT_XFER_OPT */
3129