xref: /sqlite-3.40.0/src/insert.c (revision 8f1eb6f5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0 ){
286     pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287     if( pOp->opcode==OP_Affinity ){
288       /* Change the OP_Affinity argument to '@' (NONE) for all stored
289       ** columns.  '@' is the no-op affinity and those columns have not
290       ** yet been computed. */
291       int ii, jj;
292       char *zP4 = pOp->p4.z;
293       assert( zP4!=0 );
294       assert( pOp->p4type==P4_DYNAMIC );
295       for(ii=jj=0; zP4[jj]; ii++){
296         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297           continue;
298         }
299         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300           zP4[jj] = SQLITE_AFF_NONE;
301         }
302         jj++;
303       }
304     }else if( pOp->opcode==OP_TypeCheck ){
305       /* If an OP_TypeCheck was generated because the table is STRICT,
306       ** then set the P3 operand to indicate that generated columns should
307       ** not be checked */
308       pOp->p3 = 1;
309     }
310   }
311 
312   /* Because there can be multiple generated columns that refer to one another,
313   ** this is a two-pass algorithm.  On the first pass, mark all generated
314   ** columns as "not available".
315   */
316   for(i=0; i<pTab->nCol; i++){
317     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
318       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
319       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
320       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
321     }
322   }
323 
324   w.u.pTab = pTab;
325   w.xExprCallback = exprColumnFlagUnion;
326   w.xSelectCallback = 0;
327   w.xSelectCallback2 = 0;
328 
329   /* On the second pass, compute the value of each NOT-AVAILABLE column.
330   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
332   ** they are needed.
333   */
334   pParse->iSelfTab = -iRegStore;
335   do{
336     eProgress = 0;
337     pRedo = 0;
338     for(i=0; i<pTab->nCol; i++){
339       Column *pCol = pTab->aCol + i;
340       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
341         int x;
342         pCol->colFlags |= COLFLAG_BUSY;
343         w.eCode = 0;
344         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
345         pCol->colFlags &= ~COLFLAG_BUSY;
346         if( w.eCode & COLFLAG_NOTAVAIL ){
347           pRedo = pCol;
348           continue;
349         }
350         eProgress = 1;
351         assert( pCol->colFlags & COLFLAG_GENERATED );
352         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
353         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
354         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
355       }
356     }
357   }while( pRedo && eProgress );
358   if( pRedo ){
359     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
360   }
361   pParse->iSelfTab = 0;
362 }
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
364 
365 
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
367 /*
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb.  Return the register number for the register
370 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
371 ** table.  (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
373 **
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers.  A new AutoincInfo structure is created if this is the
377 ** first use of table pTab.  On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
379 **
380 ** Four consecutive registers are allocated:
381 **
382 **   (1)  The name of the pTab table.
383 **   (2)  The maximum ROWID of pTab.
384 **   (3)  The rowid in sqlite_sequence of pTab
385 **   (4)  The original value of the max ROWID in pTab, or NULL if none
386 **
387 ** The 2nd register is the one that is returned.  That is all the
388 ** insert routine needs to know about.
389 */
390 static int autoIncBegin(
391   Parse *pParse,      /* Parsing context */
392   int iDb,            /* Index of the database holding pTab */
393   Table *pTab         /* The table we are writing to */
394 ){
395   int memId = 0;      /* Register holding maximum rowid */
396   assert( pParse->db->aDb[iDb].pSchema!=0 );
397   if( (pTab->tabFlags & TF_Autoincrement)!=0
398    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
399   ){
400     Parse *pToplevel = sqlite3ParseToplevel(pParse);
401     AutoincInfo *pInfo;
402     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
403 
404     /* Verify that the sqlite_sequence table exists and is an ordinary
405     ** rowid table with exactly two columns.
406     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
407     if( pSeqTab==0
408      || !HasRowid(pSeqTab)
409      || NEVER(IsVirtual(pSeqTab))
410      || pSeqTab->nCol!=2
411     ){
412       pParse->nErr++;
413       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
414       return 0;
415     }
416 
417     pInfo = pToplevel->pAinc;
418     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
419     if( pInfo==0 ){
420       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
421       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
422       testcase( pParse->earlyCleanup );
423       if( pParse->db->mallocFailed ) return 0;
424       pInfo->pNext = pToplevel->pAinc;
425       pToplevel->pAinc = pInfo;
426       pInfo->pTab = pTab;
427       pInfo->iDb = iDb;
428       pToplevel->nMem++;                  /* Register to hold name of table */
429       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
430       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
431     }
432     memId = pInfo->regCtr;
433   }
434   return memId;
435 }
436 
437 /*
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
440 */
441 void sqlite3AutoincrementBegin(Parse *pParse){
442   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
443   sqlite3 *db = pParse->db;  /* The database connection */
444   Db *pDb;                   /* Database only autoinc table */
445   int memId;                 /* Register holding max rowid */
446   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
447 
448   /* This routine is never called during trigger-generation.  It is
449   ** only called from the top-level */
450   assert( pParse->pTriggerTab==0 );
451   assert( sqlite3IsToplevel(pParse) );
452 
453   assert( v );   /* We failed long ago if this is not so */
454   for(p = pParse->pAinc; p; p = p->pNext){
455     static const int iLn = VDBE_OFFSET_LINENO(2);
456     static const VdbeOpList autoInc[] = {
457       /* 0  */ {OP_Null,    0,  0, 0},
458       /* 1  */ {OP_Rewind,  0, 10, 0},
459       /* 2  */ {OP_Column,  0,  0, 0},
460       /* 3  */ {OP_Ne,      0,  9, 0},
461       /* 4  */ {OP_Rowid,   0,  0, 0},
462       /* 5  */ {OP_Column,  0,  1, 0},
463       /* 6  */ {OP_AddImm,  0,  0, 0},
464       /* 7  */ {OP_Copy,    0,  0, 0},
465       /* 8  */ {OP_Goto,    0, 11, 0},
466       /* 9  */ {OP_Next,    0,  2, 0},
467       /* 10 */ {OP_Integer, 0,  0, 0},
468       /* 11 */ {OP_Close,   0,  0, 0}
469     };
470     VdbeOp *aOp;
471     pDb = &db->aDb[p->iDb];
472     memId = p->regCtr;
473     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
474     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
475     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
476     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
477     if( aOp==0 ) break;
478     aOp[0].p2 = memId;
479     aOp[0].p3 = memId+2;
480     aOp[2].p3 = memId;
481     aOp[3].p1 = memId-1;
482     aOp[3].p3 = memId;
483     aOp[3].p5 = SQLITE_JUMPIFNULL;
484     aOp[4].p2 = memId+1;
485     aOp[5].p3 = memId;
486     aOp[6].p1 = memId;
487     aOp[7].p2 = memId+2;
488     aOp[7].p1 = memId;
489     aOp[10].p2 = memId;
490     if( pParse->nTab==0 ) pParse->nTab = 1;
491   }
492 }
493 
494 /*
495 ** Update the maximum rowid for an autoincrement calculation.
496 **
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted.  If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
501 */
502 static void autoIncStep(Parse *pParse, int memId, int regRowid){
503   if( memId>0 ){
504     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
505   }
506 }
507 
508 /*
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
514 */
515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
516   AutoincInfo *p;
517   Vdbe *v = pParse->pVdbe;
518   sqlite3 *db = pParse->db;
519 
520   assert( v );
521   for(p = pParse->pAinc; p; p = p->pNext){
522     static const int iLn = VDBE_OFFSET_LINENO(2);
523     static const VdbeOpList autoIncEnd[] = {
524       /* 0 */ {OP_NotNull,     0, 2, 0},
525       /* 1 */ {OP_NewRowid,    0, 0, 0},
526       /* 2 */ {OP_MakeRecord,  0, 2, 0},
527       /* 3 */ {OP_Insert,      0, 0, 0},
528       /* 4 */ {OP_Close,       0, 0, 0}
529     };
530     VdbeOp *aOp;
531     Db *pDb = &db->aDb[p->iDb];
532     int iRec;
533     int memId = p->regCtr;
534 
535     iRec = sqlite3GetTempReg(pParse);
536     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
537     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
538     VdbeCoverage(v);
539     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
540     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
541     if( aOp==0 ) break;
542     aOp[0].p1 = memId+1;
543     aOp[1].p2 = memId+1;
544     aOp[2].p1 = memId-1;
545     aOp[2].p3 = iRec;
546     aOp[3].p2 = iRec;
547     aOp[3].p3 = memId+1;
548     aOp[3].p5 = OPFLAG_APPEND;
549     sqlite3ReleaseTempReg(pParse, iRec);
550   }
551 }
552 void sqlite3AutoincrementEnd(Parse *pParse){
553   if( pParse->pAinc ) autoIncrementEnd(pParse);
554 }
555 #else
556 /*
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
559 */
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
563 
564 
565 /* Forward declaration */
566 static int xferOptimization(
567   Parse *pParse,        /* Parser context */
568   Table *pDest,         /* The table we are inserting into */
569   Select *pSelect,      /* A SELECT statement to use as the data source */
570   int onError,          /* How to handle constraint errors */
571   int iDbDest           /* The database of pDest */
572 );
573 
574 /*
575 ** This routine is called to handle SQL of the following forms:
576 **
577 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 **    insert into TABLE (IDLIST) select
579 **    insert into TABLE (IDLIST) default values
580 **
581 ** The IDLIST following the table name is always optional.  If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
584 ** is omitted.
585 **
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above.  A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows.  If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
591 **
592 ** The code generated follows one of four templates.  For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through.  Pseudo-code follows (we call this
595 ** the "1st template"):
596 **
597 **         open write cursor to <table> and its indices
598 **         put VALUES clause expressions into registers
599 **         write the resulting record into <table>
600 **         cleanup
601 **
602 ** The three remaining templates assume the statement is of the form
603 **
604 **   INSERT INTO <table> SELECT ...
605 **
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template.  This is the 2nd template.
614 **
615 **         open a write cursor to <table>
616 **         open read cursor on <table2>
617 **         transfer all records in <table2> over to <table>
618 **         close cursors
619 **         foreach index on <table>
620 **           open a write cursor on the <table> index
621 **           open a read cursor on the corresponding <table2> index
622 **           transfer all records from the read to the write cursors
623 **           close cursors
624 **         end foreach
625 **
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
629 **
630 **         X <- A
631 **         goto B
632 **      A: setup for the SELECT
633 **         loop over the rows in the SELECT
634 **           load values into registers R..R+n
635 **           yield X
636 **         end loop
637 **         cleanup after the SELECT
638 **         end-coroutine X
639 **      B: open write cursor to <table> and its indices
640 **      C: yield X, at EOF goto D
641 **         insert the select result into <table> from R..R+n
642 **         goto C
643 **      D: cleanup
644 **
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT.  In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select.  The template is like this:
650 **
651 **         X <- A
652 **         goto B
653 **      A: setup for the SELECT
654 **         loop over the tables in the SELECT
655 **           load value into register R..R+n
656 **           yield X
657 **         end loop
658 **         cleanup after the SELECT
659 **         end co-routine R
660 **      B: open temp table
661 **      L: yield X, at EOF goto M
662 **         insert row from R..R+n into temp table
663 **         goto L
664 **      M: open write cursor to <table> and its indices
665 **         rewind temp table
666 **      C: loop over rows of intermediate table
667 **           transfer values form intermediate table into <table>
668 **         end loop
669 **      D: cleanup
670 */
671 void sqlite3Insert(
672   Parse *pParse,        /* Parser context */
673   SrcList *pTabList,    /* Name of table into which we are inserting */
674   Select *pSelect,      /* A SELECT statement to use as the data source */
675   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
676   int onError,          /* How to handle constraint errors */
677   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
678 ){
679   sqlite3 *db;          /* The main database structure */
680   Table *pTab;          /* The table to insert into.  aka TABLE */
681   int i, j;             /* Loop counters */
682   Vdbe *v;              /* Generate code into this virtual machine */
683   Index *pIdx;          /* For looping over indices of the table */
684   int nColumn;          /* Number of columns in the data */
685   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
686   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
687   int iIdxCur = 0;      /* First index cursor */
688   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
689   int endOfLoop;        /* Label for the end of the insertion loop */
690   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
691   int addrInsTop = 0;   /* Jump to label "D" */
692   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
693   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
694   int iDb;              /* Index of database holding TABLE */
695   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
696   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
697   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
698   u8 bIdListInOrder;    /* True if IDLIST is in table order */
699   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
700   int iRegStore;        /* Register in which to store next column */
701 
702   /* Register allocations */
703   int regFromSelect = 0;/* Base register for data coming from SELECT */
704   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
705   int regRowCount = 0;  /* Memory cell used for the row counter */
706   int regIns;           /* Block of regs holding rowid+data being inserted */
707   int regRowid;         /* registers holding insert rowid */
708   int regData;          /* register holding first column to insert */
709   int *aRegIdx = 0;     /* One register allocated to each index */
710 
711 #ifndef SQLITE_OMIT_TRIGGER
712   int isView;                 /* True if attempting to insert into a view */
713   Trigger *pTrigger;          /* List of triggers on pTab, if required */
714   int tmask;                  /* Mask of trigger times */
715 #endif
716 
717   db = pParse->db;
718   assert( db->pParse==pParse );
719   if( pParse->nErr ){
720     goto insert_cleanup;
721   }
722   assert( db->mallocFailed==0 );
723   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
724 
725 #if TREETRACE_ENABLED
726   if( sqlite3TreeTrace & 0x10000 ){
727     sqlite3TreeViewInsert(0, pParse->pWith, pTabList, pColumn, pSelect,
728                              onError, pUpsert);
729   }
730 #endif
731 
732   /* If the Select object is really just a simple VALUES() list with a
733   ** single row (the common case) then keep that one row of values
734   ** and discard the other (unused) parts of the pSelect object
735   */
736   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
737     pList = pSelect->pEList;
738     pSelect->pEList = 0;
739     sqlite3SelectDelete(db, pSelect);
740     pSelect = 0;
741   }
742 
743   /* Locate the table into which we will be inserting new information.
744   */
745   assert( pTabList->nSrc==1 );
746   pTab = sqlite3SrcListLookup(pParse, pTabList);
747   if( pTab==0 ){
748     goto insert_cleanup;
749   }
750   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
751   assert( iDb<db->nDb );
752   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
753                        db->aDb[iDb].zDbSName) ){
754     goto insert_cleanup;
755   }
756   withoutRowid = !HasRowid(pTab);
757 
758   /* Figure out if we have any triggers and if the table being
759   ** inserted into is a view
760   */
761 #ifndef SQLITE_OMIT_TRIGGER
762   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
763   isView = IsView(pTab);
764 #else
765 # define pTrigger 0
766 # define tmask 0
767 # define isView 0
768 #endif
769 #ifdef SQLITE_OMIT_VIEW
770 # undef isView
771 # define isView 0
772 #endif
773   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
774 
775   /* If pTab is really a view, make sure it has been initialized.
776   ** ViewGetColumnNames() is a no-op if pTab is not a view.
777   */
778   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
779     goto insert_cleanup;
780   }
781 
782   /* Cannot insert into a read-only table.
783   */
784   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
785     goto insert_cleanup;
786   }
787 
788   /* Allocate a VDBE
789   */
790   v = sqlite3GetVdbe(pParse);
791   if( v==0 ) goto insert_cleanup;
792   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
793   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
794 
795 #ifndef SQLITE_OMIT_XFER_OPT
796   /* If the statement is of the form
797   **
798   **       INSERT INTO <table1> SELECT * FROM <table2>;
799   **
800   ** Then special optimizations can be applied that make the transfer
801   ** very fast and which reduce fragmentation of indices.
802   **
803   ** This is the 2nd template.
804   */
805   if( pColumn==0
806    && pSelect!=0
807    && pTrigger==0
808    && xferOptimization(pParse, pTab, pSelect, onError, iDb)
809   ){
810     assert( !pTrigger );
811     assert( pList==0 );
812     goto insert_end;
813   }
814 #endif /* SQLITE_OMIT_XFER_OPT */
815 
816   /* If this is an AUTOINCREMENT table, look up the sequence number in the
817   ** sqlite_sequence table and store it in memory cell regAutoinc.
818   */
819   regAutoinc = autoIncBegin(pParse, iDb, pTab);
820 
821   /* Allocate a block registers to hold the rowid and the values
822   ** for all columns of the new row.
823   */
824   regRowid = regIns = pParse->nMem+1;
825   pParse->nMem += pTab->nCol + 1;
826   if( IsVirtual(pTab) ){
827     regRowid++;
828     pParse->nMem++;
829   }
830   regData = regRowid+1;
831 
832   /* If the INSERT statement included an IDLIST term, then make sure
833   ** all elements of the IDLIST really are columns of the table and
834   ** remember the column indices.
835   **
836   ** If the table has an INTEGER PRIMARY KEY column and that column
837   ** is named in the IDLIST, then record in the ipkColumn variable
838   ** the index into IDLIST of the primary key column.  ipkColumn is
839   ** the index of the primary key as it appears in IDLIST, not as
840   ** is appears in the original table.  (The index of the INTEGER
841   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
842   ** loop, if ipkColumn==(-1), that means that integer primary key
843   ** is unspecified, and hence the table is either WITHOUT ROWID or
844   ** it will automatically generated an integer primary key.
845   **
846   ** bIdListInOrder is true if the columns in IDLIST are in storage
847   ** order.  This enables an optimization that avoids shuffling the
848   ** columns into storage order.  False negatives are harmless,
849   ** but false positives will cause database corruption.
850   */
851   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
852   if( pColumn ){
853     for(i=0; i<pColumn->nId; i++){
854       pColumn->a[i].idx = -1;
855     }
856     for(i=0; i<pColumn->nId; i++){
857       for(j=0; j<pTab->nCol; j++){
858         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
859           pColumn->a[i].idx = j;
860           if( i!=j ) bIdListInOrder = 0;
861           if( j==pTab->iPKey ){
862             ipkColumn = i;  assert( !withoutRowid );
863           }
864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
865           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
866             sqlite3ErrorMsg(pParse,
867                "cannot INSERT into generated column \"%s\"",
868                pTab->aCol[j].zCnName);
869             goto insert_cleanup;
870           }
871 #endif
872           break;
873         }
874       }
875       if( j>=pTab->nCol ){
876         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
877           ipkColumn = i;
878           bIdListInOrder = 0;
879         }else{
880           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
881               pTabList->a, pColumn->a[i].zName);
882           pParse->checkSchema = 1;
883           goto insert_cleanup;
884         }
885       }
886     }
887   }
888 
889   /* Figure out how many columns of data are supplied.  If the data
890   ** is coming from a SELECT statement, then generate a co-routine that
891   ** produces a single row of the SELECT on each invocation.  The
892   ** co-routine is the common header to the 3rd and 4th templates.
893   */
894   if( pSelect ){
895     /* Data is coming from a SELECT or from a multi-row VALUES clause.
896     ** Generate a co-routine to run the SELECT. */
897     int regYield;       /* Register holding co-routine entry-point */
898     int addrTop;        /* Top of the co-routine */
899     int rc;             /* Result code */
900 
901     regYield = ++pParse->nMem;
902     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
903     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
904     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
905     dest.iSdst = bIdListInOrder ? regData : 0;
906     dest.nSdst = pTab->nCol;
907     rc = sqlite3Select(pParse, pSelect, &dest);
908     regFromSelect = dest.iSdst;
909     assert( db->pParse==pParse );
910     if( rc || pParse->nErr ) goto insert_cleanup;
911     assert( db->mallocFailed==0 );
912     sqlite3VdbeEndCoroutine(v, regYield);
913     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
914     assert( pSelect->pEList );
915     nColumn = pSelect->pEList->nExpr;
916 
917     /* Set useTempTable to TRUE if the result of the SELECT statement
918     ** should be written into a temporary table (template 4).  Set to
919     ** FALSE if each output row of the SELECT can be written directly into
920     ** the destination table (template 3).
921     **
922     ** A temp table must be used if the table being updated is also one
923     ** of the tables being read by the SELECT statement.  Also use a
924     ** temp table in the case of row triggers.
925     */
926     if( pTrigger || readsTable(pParse, iDb, pTab) ){
927       useTempTable = 1;
928     }
929 
930     if( useTempTable ){
931       /* Invoke the coroutine to extract information from the SELECT
932       ** and add it to a transient table srcTab.  The code generated
933       ** here is from the 4th template:
934       **
935       **      B: open temp table
936       **      L: yield X, goto M at EOF
937       **         insert row from R..R+n into temp table
938       **         goto L
939       **      M: ...
940       */
941       int regRec;          /* Register to hold packed record */
942       int regTempRowid;    /* Register to hold temp table ROWID */
943       int addrL;           /* Label "L" */
944 
945       srcTab = pParse->nTab++;
946       regRec = sqlite3GetTempReg(pParse);
947       regTempRowid = sqlite3GetTempReg(pParse);
948       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
949       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
950       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
951       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
952       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
953       sqlite3VdbeGoto(v, addrL);
954       sqlite3VdbeJumpHere(v, addrL);
955       sqlite3ReleaseTempReg(pParse, regRec);
956       sqlite3ReleaseTempReg(pParse, regTempRowid);
957     }
958   }else{
959     /* This is the case if the data for the INSERT is coming from a
960     ** single-row VALUES clause
961     */
962     NameContext sNC;
963     memset(&sNC, 0, sizeof(sNC));
964     sNC.pParse = pParse;
965     srcTab = -1;
966     assert( useTempTable==0 );
967     if( pList ){
968       nColumn = pList->nExpr;
969       if( sqlite3ResolveExprListNames(&sNC, pList) ){
970         goto insert_cleanup;
971       }
972     }else{
973       nColumn = 0;
974     }
975   }
976 
977   /* If there is no IDLIST term but the table has an integer primary
978   ** key, the set the ipkColumn variable to the integer primary key
979   ** column index in the original table definition.
980   */
981   if( pColumn==0 && nColumn>0 ){
982     ipkColumn = pTab->iPKey;
983 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
984     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
985       testcase( pTab->tabFlags & TF_HasVirtual );
986       testcase( pTab->tabFlags & TF_HasStored );
987       for(i=ipkColumn-1; i>=0; i--){
988         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
989           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
990           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
991           ipkColumn--;
992         }
993       }
994     }
995 #endif
996 
997     /* Make sure the number of columns in the source data matches the number
998     ** of columns to be inserted into the table.
999     */
1000     assert( TF_HasHidden==COLFLAG_HIDDEN );
1001     assert( TF_HasGenerated==COLFLAG_GENERATED );
1002     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
1003     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
1004       for(i=0; i<pTab->nCol; i++){
1005         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
1006       }
1007     }
1008     if( nColumn!=(pTab->nCol-nHidden) ){
1009       sqlite3ErrorMsg(pParse,
1010          "table %S has %d columns but %d values were supplied",
1011          pTabList->a, pTab->nCol-nHidden, nColumn);
1012      goto insert_cleanup;
1013     }
1014   }
1015   if( pColumn!=0 && nColumn!=pColumn->nId ){
1016     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1017     goto insert_cleanup;
1018   }
1019 
1020   /* Initialize the count of rows to be inserted
1021   */
1022   if( (db->flags & SQLITE_CountRows)!=0
1023    && !pParse->nested
1024    && !pParse->pTriggerTab
1025    && !pParse->bReturning
1026   ){
1027     regRowCount = ++pParse->nMem;
1028     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1029   }
1030 
1031   /* If this is not a view, open the table and and all indices */
1032   if( !isView ){
1033     int nIdx;
1034     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1035                                       &iDataCur, &iIdxCur);
1036     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1037     if( aRegIdx==0 ){
1038       goto insert_cleanup;
1039     }
1040     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1041       assert( pIdx );
1042       aRegIdx[i] = ++pParse->nMem;
1043       pParse->nMem += pIdx->nColumn;
1044     }
1045     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1046   }
1047 #ifndef SQLITE_OMIT_UPSERT
1048   if( pUpsert ){
1049     Upsert *pNx;
1050     if( IsVirtual(pTab) ){
1051       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1052               pTab->zName);
1053       goto insert_cleanup;
1054     }
1055     if( IsView(pTab) ){
1056       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1057       goto insert_cleanup;
1058     }
1059     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1060       goto insert_cleanup;
1061     }
1062     pTabList->a[0].iCursor = iDataCur;
1063     pNx = pUpsert;
1064     do{
1065       pNx->pUpsertSrc = pTabList;
1066       pNx->regData = regData;
1067       pNx->iDataCur = iDataCur;
1068       pNx->iIdxCur = iIdxCur;
1069       if( pNx->pUpsertTarget ){
1070         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1071           goto insert_cleanup;
1072         }
1073       }
1074       pNx = pNx->pNextUpsert;
1075     }while( pNx!=0 );
1076   }
1077 #endif
1078 
1079 
1080   /* This is the top of the main insertion loop */
1081   if( useTempTable ){
1082     /* This block codes the top of loop only.  The complete loop is the
1083     ** following pseudocode (template 4):
1084     **
1085     **         rewind temp table, if empty goto D
1086     **      C: loop over rows of intermediate table
1087     **           transfer values form intermediate table into <table>
1088     **         end loop
1089     **      D: ...
1090     */
1091     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1092     addrCont = sqlite3VdbeCurrentAddr(v);
1093   }else if( pSelect ){
1094     /* This block codes the top of loop only.  The complete loop is the
1095     ** following pseudocode (template 3):
1096     **
1097     **      C: yield X, at EOF goto D
1098     **         insert the select result into <table> from R..R+n
1099     **         goto C
1100     **      D: ...
1101     */
1102     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1103     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1104     VdbeCoverage(v);
1105     if( ipkColumn>=0 ){
1106       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1107       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1108       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1109       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1110     }
1111   }
1112 
1113   /* Compute data for ordinary columns of the new entry.  Values
1114   ** are written in storage order into registers starting with regData.
1115   ** Only ordinary columns are computed in this loop. The rowid
1116   ** (if there is one) is computed later and generated columns are
1117   ** computed after the rowid since they might depend on the value
1118   ** of the rowid.
1119   */
1120   nHidden = 0;
1121   iRegStore = regData;  assert( regData==regRowid+1 );
1122   for(i=0; i<pTab->nCol; i++, iRegStore++){
1123     int k;
1124     u32 colFlags;
1125     assert( i>=nHidden );
1126     if( i==pTab->iPKey ){
1127       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1128       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1129       ** using excess space.  The file format definition requires this extra
1130       ** NULL - we cannot optimize further by skipping the column completely */
1131       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1132       continue;
1133     }
1134     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1135       nHidden++;
1136       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1137         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1138         ** iRegStore by one slot to compensate for the iRegStore++ in the
1139         ** outer for() loop */
1140         iRegStore--;
1141         continue;
1142       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1143         /* Stored columns are computed later.  But if there are BEFORE
1144         ** triggers, the slots used for stored columns will be OP_Copy-ed
1145         ** to a second block of registers, so the register needs to be
1146         ** initialized to NULL to avoid an uninitialized register read */
1147         if( tmask & TRIGGER_BEFORE ){
1148           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1149         }
1150         continue;
1151       }else if( pColumn==0 ){
1152         /* Hidden columns that are not explicitly named in the INSERT
1153         ** get there default value */
1154         sqlite3ExprCodeFactorable(pParse,
1155             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1156             iRegStore);
1157         continue;
1158       }
1159     }
1160     if( pColumn ){
1161       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1162       if( j>=pColumn->nId ){
1163         /* A column not named in the insert column list gets its
1164         ** default value */
1165         sqlite3ExprCodeFactorable(pParse,
1166             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1167             iRegStore);
1168         continue;
1169       }
1170       k = j;
1171     }else if( nColumn==0 ){
1172       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1173       sqlite3ExprCodeFactorable(pParse,
1174           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1175           iRegStore);
1176       continue;
1177     }else{
1178       k = i - nHidden;
1179     }
1180 
1181     if( useTempTable ){
1182       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1183     }else if( pSelect ){
1184       if( regFromSelect!=regData ){
1185         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1186       }
1187     }else{
1188       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1189     }
1190   }
1191 
1192 
1193   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1194   */
1195   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1196   if( tmask & TRIGGER_BEFORE ){
1197     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1198 
1199     /* build the NEW.* reference row.  Note that if there is an INTEGER
1200     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1201     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1202     ** we do not know what the unique ID will be (because the insert has
1203     ** not happened yet) so we substitute a rowid of -1
1204     */
1205     if( ipkColumn<0 ){
1206       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1207     }else{
1208       int addr1;
1209       assert( !withoutRowid );
1210       if( useTempTable ){
1211         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1212       }else{
1213         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1214         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1215       }
1216       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1217       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1218       sqlite3VdbeJumpHere(v, addr1);
1219       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1220     }
1221 
1222     /* Copy the new data already generated. */
1223     assert( pTab->nNVCol>0 );
1224     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1225 
1226 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1227     /* Compute the new value for generated columns after all other
1228     ** columns have already been computed.  This must be done after
1229     ** computing the ROWID in case one of the generated columns
1230     ** refers to the ROWID. */
1231     if( pTab->tabFlags & TF_HasGenerated ){
1232       testcase( pTab->tabFlags & TF_HasVirtual );
1233       testcase( pTab->tabFlags & TF_HasStored );
1234       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1235     }
1236 #endif
1237 
1238     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1239     ** do not attempt any conversions before assembling the record.
1240     ** If this is a real table, attempt conversions as required by the
1241     ** table column affinities.
1242     */
1243     if( !isView ){
1244       sqlite3TableAffinity(v, pTab, regCols+1);
1245     }
1246 
1247     /* Fire BEFORE or INSTEAD OF triggers */
1248     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1249         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1250 
1251     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1252   }
1253 
1254   if( !isView ){
1255     if( IsVirtual(pTab) ){
1256       /* The row that the VUpdate opcode will delete: none */
1257       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1258     }
1259     if( ipkColumn>=0 ){
1260       /* Compute the new rowid */
1261       if( useTempTable ){
1262         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1263       }else if( pSelect ){
1264         /* Rowid already initialized at tag-20191021-001 */
1265       }else{
1266         Expr *pIpk = pList->a[ipkColumn].pExpr;
1267         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1268           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1269           appendFlag = 1;
1270         }else{
1271           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1272         }
1273       }
1274       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1275       ** to generate a unique primary key value.
1276       */
1277       if( !appendFlag ){
1278         int addr1;
1279         if( !IsVirtual(pTab) ){
1280           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1281           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1282           sqlite3VdbeJumpHere(v, addr1);
1283         }else{
1284           addr1 = sqlite3VdbeCurrentAddr(v);
1285           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1286         }
1287         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1288       }
1289     }else if( IsVirtual(pTab) || withoutRowid ){
1290       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1291     }else{
1292       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1293       appendFlag = 1;
1294     }
1295     autoIncStep(pParse, regAutoinc, regRowid);
1296 
1297 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1298     /* Compute the new value for generated columns after all other
1299     ** columns have already been computed.  This must be done after
1300     ** computing the ROWID in case one of the generated columns
1301     ** is derived from the INTEGER PRIMARY KEY. */
1302     if( pTab->tabFlags & TF_HasGenerated ){
1303       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1304     }
1305 #endif
1306 
1307     /* Generate code to check constraints and generate index keys and
1308     ** do the insertion.
1309     */
1310 #ifndef SQLITE_OMIT_VIRTUALTABLE
1311     if( IsVirtual(pTab) ){
1312       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1313       sqlite3VtabMakeWritable(pParse, pTab);
1314       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1315       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1316       sqlite3MayAbort(pParse);
1317     }else
1318 #endif
1319     {
1320       int isReplace = 0;/* Set to true if constraints may cause a replace */
1321       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1322       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1323           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1324       );
1325       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1326 
1327       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1328       ** constraints or (b) there are no triggers and this table is not a
1329       ** parent table in a foreign key constraint. It is safe to set the
1330       ** flag in the second case as if any REPLACE constraint is hit, an
1331       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1332       ** cursor that is disturbed. And these instructions both clear the
1333       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1334       ** functionality.  */
1335       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1336       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1337           regIns, aRegIdx, 0, appendFlag, bUseSeek
1338       );
1339     }
1340 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1341   }else if( pParse->bReturning ){
1342     /* If there is a RETURNING clause, populate the rowid register with
1343     ** constant value -1, in case one or more of the returned expressions
1344     ** refer to the "rowid" of the view.  */
1345     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1346 #endif
1347   }
1348 
1349   /* Update the count of rows that are inserted
1350   */
1351   if( regRowCount ){
1352     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1353   }
1354 
1355   if( pTrigger ){
1356     /* Code AFTER triggers */
1357     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1358         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1359   }
1360 
1361   /* The bottom of the main insertion loop, if the data source
1362   ** is a SELECT statement.
1363   */
1364   sqlite3VdbeResolveLabel(v, endOfLoop);
1365   if( useTempTable ){
1366     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1367     sqlite3VdbeJumpHere(v, addrInsTop);
1368     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1369   }else if( pSelect ){
1370     sqlite3VdbeGoto(v, addrCont);
1371 #ifdef SQLITE_DEBUG
1372     /* If we are jumping back to an OP_Yield that is preceded by an
1373     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1374     ** OP_ReleaseReg will be included in the loop. */
1375     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1376       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1377       sqlite3VdbeChangeP5(v, 1);
1378     }
1379 #endif
1380     sqlite3VdbeJumpHere(v, addrInsTop);
1381   }
1382 
1383 #ifndef SQLITE_OMIT_XFER_OPT
1384 insert_end:
1385 #endif /* SQLITE_OMIT_XFER_OPT */
1386   /* Update the sqlite_sequence table by storing the content of the
1387   ** maximum rowid counter values recorded while inserting into
1388   ** autoincrement tables.
1389   */
1390   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1391     sqlite3AutoincrementEnd(pParse);
1392   }
1393 
1394   /*
1395   ** Return the number of rows inserted. If this routine is
1396   ** generating code because of a call to sqlite3NestedParse(), do not
1397   ** invoke the callback function.
1398   */
1399   if( regRowCount ){
1400     sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1401   }
1402 
1403 insert_cleanup:
1404   sqlite3SrcListDelete(db, pTabList);
1405   sqlite3ExprListDelete(db, pList);
1406   sqlite3UpsertDelete(db, pUpsert);
1407   sqlite3SelectDelete(db, pSelect);
1408   sqlite3IdListDelete(db, pColumn);
1409   sqlite3DbFree(db, aRegIdx);
1410 }
1411 
1412 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1413 ** they may interfere with compilation of other functions in this file
1414 ** (or in another file, if this file becomes part of the amalgamation).  */
1415 #ifdef isView
1416  #undef isView
1417 #endif
1418 #ifdef pTrigger
1419  #undef pTrigger
1420 #endif
1421 #ifdef tmask
1422  #undef tmask
1423 #endif
1424 
1425 /*
1426 ** Meanings of bits in of pWalker->eCode for
1427 ** sqlite3ExprReferencesUpdatedColumn()
1428 */
1429 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1430 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1431 
1432 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1433 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1434 ** expression node references any of the
1435 ** columns that are being modifed by an UPDATE statement.
1436 */
1437 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1438   if( pExpr->op==TK_COLUMN ){
1439     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1440     if( pExpr->iColumn>=0 ){
1441       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1442         pWalker->eCode |= CKCNSTRNT_COLUMN;
1443       }
1444     }else{
1445       pWalker->eCode |= CKCNSTRNT_ROWID;
1446     }
1447   }
1448   return WRC_Continue;
1449 }
1450 
1451 /*
1452 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1453 ** only columns that are modified by the UPDATE are those for which
1454 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1455 **
1456 ** Return true if CHECK constraint pExpr uses any of the
1457 ** changing columns (or the rowid if it is changing).  In other words,
1458 ** return true if this CHECK constraint must be validated for
1459 ** the new row in the UPDATE statement.
1460 **
1461 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1462 ** The operation of this routine is the same - return true if an only if
1463 ** the expression uses one or more of columns identified by the second and
1464 ** third arguments.
1465 */
1466 int sqlite3ExprReferencesUpdatedColumn(
1467   Expr *pExpr,    /* The expression to be checked */
1468   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1469   int chngRowid   /* True if UPDATE changes the rowid */
1470 ){
1471   Walker w;
1472   memset(&w, 0, sizeof(w));
1473   w.eCode = 0;
1474   w.xExprCallback = checkConstraintExprNode;
1475   w.u.aiCol = aiChng;
1476   sqlite3WalkExpr(&w, pExpr);
1477   if( !chngRowid ){
1478     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1479     w.eCode &= ~CKCNSTRNT_ROWID;
1480   }
1481   testcase( w.eCode==0 );
1482   testcase( w.eCode==CKCNSTRNT_COLUMN );
1483   testcase( w.eCode==CKCNSTRNT_ROWID );
1484   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1485   return w.eCode!=0;
1486 }
1487 
1488 /*
1489 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1490 ** the indexes of a table in the order provided in the Table->pIndex list.
1491 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1492 ** the indexes in a different order.  The following data structures accomplish
1493 ** this.
1494 **
1495 ** The IndexIterator object is used to walk through all of the indexes
1496 ** of a table in either Index.pNext order, or in some other order established
1497 ** by an array of IndexListTerm objects.
1498 */
1499 typedef struct IndexListTerm IndexListTerm;
1500 typedef struct IndexIterator IndexIterator;
1501 struct IndexIterator {
1502   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1503   int i;        /* Index of the current item from the list */
1504   union {
1505     struct {    /* Use this object for eType==0: A Index.pNext list */
1506       Index *pIdx;   /* The current Index */
1507     } lx;
1508     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1509       int nIdx;               /* Size of the array */
1510       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1511     } ax;
1512   } u;
1513 };
1514 
1515 /* When IndexIterator.eType==1, then each index is an array of instances
1516 ** of the following object
1517 */
1518 struct IndexListTerm {
1519   Index *p;  /* The index */
1520   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1521 };
1522 
1523 /* Return the first index on the list */
1524 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1525   assert( pIter->i==0 );
1526   if( pIter->eType ){
1527     *pIx = pIter->u.ax.aIdx[0].ix;
1528     return pIter->u.ax.aIdx[0].p;
1529   }else{
1530     *pIx = 0;
1531     return pIter->u.lx.pIdx;
1532   }
1533 }
1534 
1535 /* Return the next index from the list.  Return NULL when out of indexes */
1536 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1537   if( pIter->eType ){
1538     int i = ++pIter->i;
1539     if( i>=pIter->u.ax.nIdx ){
1540       *pIx = i;
1541       return 0;
1542     }
1543     *pIx = pIter->u.ax.aIdx[i].ix;
1544     return pIter->u.ax.aIdx[i].p;
1545   }else{
1546     ++(*pIx);
1547     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1548     return pIter->u.lx.pIdx;
1549   }
1550 }
1551 
1552 /*
1553 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1554 ** on table pTab.
1555 **
1556 ** The regNewData parameter is the first register in a range that contains
1557 ** the data to be inserted or the data after the update.  There will be
1558 ** pTab->nCol+1 registers in this range.  The first register (the one
1559 ** that regNewData points to) will contain the new rowid, or NULL in the
1560 ** case of a WITHOUT ROWID table.  The second register in the range will
1561 ** contain the content of the first table column.  The third register will
1562 ** contain the content of the second table column.  And so forth.
1563 **
1564 ** The regOldData parameter is similar to regNewData except that it contains
1565 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1566 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1567 ** checking regOldData for zero.
1568 **
1569 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1570 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1571 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1572 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1573 **
1574 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1575 ** was explicitly specified as part of the INSERT statement.  If pkChng
1576 ** is zero, it means that the either rowid is computed automatically or
1577 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1578 ** pkChng will only be true if the INSERT statement provides an integer
1579 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1580 **
1581 ** The code generated by this routine will store new index entries into
1582 ** registers identified by aRegIdx[].  No index entry is created for
1583 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1584 ** the same as the order of indices on the linked list of indices
1585 ** at pTab->pIndex.
1586 **
1587 ** (2019-05-07) The generated code also creates a new record for the
1588 ** main table, if pTab is a rowid table, and stores that record in the
1589 ** register identified by aRegIdx[nIdx] - in other words in the first
1590 ** entry of aRegIdx[] past the last index.  It is important that the
1591 ** record be generated during constraint checks to avoid affinity changes
1592 ** to the register content that occur after constraint checks but before
1593 ** the new record is inserted.
1594 **
1595 ** The caller must have already opened writeable cursors on the main
1596 ** table and all applicable indices (that is to say, all indices for which
1597 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1598 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1599 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1600 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1601 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1602 **
1603 ** This routine also generates code to check constraints.  NOT NULL,
1604 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1605 ** then the appropriate action is performed.  There are five possible
1606 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1607 **
1608 **  Constraint type  Action       What Happens
1609 **  ---------------  ----------   ----------------------------------------
1610 **  any              ROLLBACK     The current transaction is rolled back and
1611 **                                sqlite3_step() returns immediately with a
1612 **                                return code of SQLITE_CONSTRAINT.
1613 **
1614 **  any              ABORT        Back out changes from the current command
1615 **                                only (do not do a complete rollback) then
1616 **                                cause sqlite3_step() to return immediately
1617 **                                with SQLITE_CONSTRAINT.
1618 **
1619 **  any              FAIL         Sqlite3_step() returns immediately with a
1620 **                                return code of SQLITE_CONSTRAINT.  The
1621 **                                transaction is not rolled back and any
1622 **                                changes to prior rows are retained.
1623 **
1624 **  any              IGNORE       The attempt in insert or update the current
1625 **                                row is skipped, without throwing an error.
1626 **                                Processing continues with the next row.
1627 **                                (There is an immediate jump to ignoreDest.)
1628 **
1629 **  NOT NULL         REPLACE      The NULL value is replace by the default
1630 **                                value for that column.  If the default value
1631 **                                is NULL, the action is the same as ABORT.
1632 **
1633 **  UNIQUE           REPLACE      The other row that conflicts with the row
1634 **                                being inserted is removed.
1635 **
1636 **  CHECK            REPLACE      Illegal.  The results in an exception.
1637 **
1638 ** Which action to take is determined by the overrideError parameter.
1639 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1640 ** is used.  Or if pParse->onError==OE_Default then the onError value
1641 ** for the constraint is used.
1642 */
1643 void sqlite3GenerateConstraintChecks(
1644   Parse *pParse,       /* The parser context */
1645   Table *pTab,         /* The table being inserted or updated */
1646   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1647   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1648   int iIdxCur,         /* First index cursor */
1649   int regNewData,      /* First register in a range holding values to insert */
1650   int regOldData,      /* Previous content.  0 for INSERTs */
1651   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1652   u8 overrideError,    /* Override onError to this if not OE_Default */
1653   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1654   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1655   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1656   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1657 ){
1658   Vdbe *v;             /* VDBE under constrution */
1659   Index *pIdx;         /* Pointer to one of the indices */
1660   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1661   sqlite3 *db;         /* Database connection */
1662   int i;               /* loop counter */
1663   int ix;              /* Index loop counter */
1664   int nCol;            /* Number of columns */
1665   int onError;         /* Conflict resolution strategy */
1666   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1667   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1668   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1669   u8 isUpdate;           /* True if this is an UPDATE operation */
1670   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1671   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1672   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1673   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1674   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1675   /* Variables associated with retesting uniqueness constraints after
1676   ** replace triggers fire have run */
1677   int regTrigCnt;       /* Register used to count replace trigger invocations */
1678   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1679   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1680   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1681   int nReplaceTrig = 0; /* Number of replace triggers coded */
1682   IndexIterator sIdxIter;  /* Index iterator */
1683 
1684   isUpdate = regOldData!=0;
1685   db = pParse->db;
1686   v = pParse->pVdbe;
1687   assert( v!=0 );
1688   assert( !IsView(pTab) );  /* This table is not a VIEW */
1689   nCol = pTab->nCol;
1690 
1691   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1692   ** normal rowid tables.  nPkField is the number of key fields in the
1693   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1694   ** number of fields in the true primary key of the table. */
1695   if( HasRowid(pTab) ){
1696     pPk = 0;
1697     nPkField = 1;
1698   }else{
1699     pPk = sqlite3PrimaryKeyIndex(pTab);
1700     nPkField = pPk->nKeyCol;
1701   }
1702 
1703   /* Record that this module has started */
1704   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1705                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1706 
1707   /* Test all NOT NULL constraints.
1708   */
1709   if( pTab->tabFlags & TF_HasNotNull ){
1710     int b2ndPass = 0;         /* True if currently running 2nd pass */
1711     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1712     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1713     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1714       for(i=0; i<nCol; i++){
1715         int iReg;                        /* Register holding column value */
1716         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1717         int isGenerated;                 /* non-zero if column is generated */
1718         onError = pCol->notNull;
1719         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1720         if( i==pTab->iPKey ){
1721           continue;        /* ROWID is never NULL */
1722         }
1723         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1724         if( isGenerated && !b2ndPass ){
1725           nGenerated++;
1726           continue;        /* Generated columns processed on 2nd pass */
1727         }
1728         if( aiChng && aiChng[i]<0 && !isGenerated ){
1729           /* Do not check NOT NULL on columns that do not change */
1730           continue;
1731         }
1732         if( overrideError!=OE_Default ){
1733           onError = overrideError;
1734         }else if( onError==OE_Default ){
1735           onError = OE_Abort;
1736         }
1737         if( onError==OE_Replace ){
1738           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1739            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1740           ){
1741             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1742             testcase( pCol->colFlags & COLFLAG_STORED );
1743             testcase( pCol->colFlags & COLFLAG_GENERATED );
1744             onError = OE_Abort;
1745           }else{
1746             assert( !isGenerated );
1747           }
1748         }else if( b2ndPass && !isGenerated ){
1749           continue;
1750         }
1751         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1752             || onError==OE_Ignore || onError==OE_Replace );
1753         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1754         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1755         switch( onError ){
1756           case OE_Replace: {
1757             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1758             VdbeCoverage(v);
1759             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1760             nSeenReplace++;
1761             sqlite3ExprCodeCopy(pParse,
1762                sqlite3ColumnExpr(pTab, pCol), iReg);
1763             sqlite3VdbeJumpHere(v, addr1);
1764             break;
1765           }
1766           case OE_Abort:
1767             sqlite3MayAbort(pParse);
1768             /* no break */ deliberate_fall_through
1769           case OE_Rollback:
1770           case OE_Fail: {
1771             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1772                                         pCol->zCnName);
1773             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1774                               onError, iReg);
1775             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1776             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1777             VdbeCoverage(v);
1778             break;
1779           }
1780           default: {
1781             assert( onError==OE_Ignore );
1782             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1783             VdbeCoverage(v);
1784             break;
1785           }
1786         } /* end switch(onError) */
1787       } /* end loop i over columns */
1788       if( nGenerated==0 && nSeenReplace==0 ){
1789         /* If there are no generated columns with NOT NULL constraints
1790         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1791         ** pass is sufficient */
1792         break;
1793       }
1794       if( b2ndPass ) break;  /* Never need more than 2 passes */
1795       b2ndPass = 1;
1796 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1797       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1798         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1799         ** first pass, recomputed values for all generated columns, as
1800         ** those values might depend on columns affected by the REPLACE.
1801         */
1802         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1803       }
1804 #endif
1805     } /* end of 2-pass loop */
1806   } /* end if( has-not-null-constraints ) */
1807 
1808   /* Test all CHECK constraints
1809   */
1810 #ifndef SQLITE_OMIT_CHECK
1811   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1812     ExprList *pCheck = pTab->pCheck;
1813     pParse->iSelfTab = -(regNewData+1);
1814     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1815     for(i=0; i<pCheck->nExpr; i++){
1816       int allOk;
1817       Expr *pCopy;
1818       Expr *pExpr = pCheck->a[i].pExpr;
1819       if( aiChng
1820        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1821       ){
1822         /* The check constraints do not reference any of the columns being
1823         ** updated so there is no point it verifying the check constraint */
1824         continue;
1825       }
1826       if( bAffinityDone==0 ){
1827         sqlite3TableAffinity(v, pTab, regNewData+1);
1828         bAffinityDone = 1;
1829       }
1830       allOk = sqlite3VdbeMakeLabel(pParse);
1831       sqlite3VdbeVerifyAbortable(v, onError);
1832       pCopy = sqlite3ExprDup(db, pExpr, 0);
1833       if( !db->mallocFailed ){
1834         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1835       }
1836       sqlite3ExprDelete(db, pCopy);
1837       if( onError==OE_Ignore ){
1838         sqlite3VdbeGoto(v, ignoreDest);
1839       }else{
1840         char *zName = pCheck->a[i].zEName;
1841         assert( zName!=0 || pParse->db->mallocFailed );
1842         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1843         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1844                               onError, zName, P4_TRANSIENT,
1845                               P5_ConstraintCheck);
1846       }
1847       sqlite3VdbeResolveLabel(v, allOk);
1848     }
1849     pParse->iSelfTab = 0;
1850   }
1851 #endif /* !defined(SQLITE_OMIT_CHECK) */
1852 
1853   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1854   ** order:
1855   **
1856   **   (1)  OE_Update
1857   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1858   **   (3)  OE_Replace
1859   **
1860   ** OE_Fail and OE_Ignore must happen before any changes are made.
1861   ** OE_Update guarantees that only a single row will change, so it
1862   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1863   ** could happen in any order, but they are grouped up front for
1864   ** convenience.
1865   **
1866   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1867   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1868   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1869   ** constraint before any others, so it had to be moved.
1870   **
1871   ** Constraint checking code is generated in this order:
1872   **   (A)  The rowid constraint
1873   **   (B)  Unique index constraints that do not have OE_Replace as their
1874   **        default conflict resolution strategy
1875   **   (C)  Unique index that do use OE_Replace by default.
1876   **
1877   ** The ordering of (2) and (3) is accomplished by making sure the linked
1878   ** list of indexes attached to a table puts all OE_Replace indexes last
1879   ** in the list.  See sqlite3CreateIndex() for where that happens.
1880   */
1881   sIdxIter.eType = 0;
1882   sIdxIter.i = 0;
1883   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1884   sIdxIter.u.lx.pIdx = pTab->pIndex;
1885   if( pUpsert ){
1886     if( pUpsert->pUpsertTarget==0 ){
1887       /* There is just on ON CONFLICT clause and it has no constraint-target */
1888       assert( pUpsert->pNextUpsert==0 );
1889       if( pUpsert->isDoUpdate==0 ){
1890         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1891         ** Make all unique constraint resolution be OE_Ignore */
1892         overrideError = OE_Ignore;
1893         pUpsert = 0;
1894       }else{
1895         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1896         overrideError = OE_Update;
1897       }
1898     }else if( pTab->pIndex!=0 ){
1899       /* Otherwise, we'll need to run the IndexListTerm array version of the
1900       ** iterator to ensure that all of the ON CONFLICT conditions are
1901       ** checked first and in order. */
1902       int nIdx, jj;
1903       u64 nByte;
1904       Upsert *pTerm;
1905       u8 *bUsed;
1906       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1907          assert( aRegIdx[nIdx]>0 );
1908       }
1909       sIdxIter.eType = 1;
1910       sIdxIter.u.ax.nIdx = nIdx;
1911       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1912       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1913       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1914       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1915       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1916       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1917         if( pTerm->pUpsertTarget==0 ) break;
1918         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1919         jj = 0;
1920         pIdx = pTab->pIndex;
1921         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1922            pIdx = pIdx->pNext;
1923            jj++;
1924         }
1925         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1926         bUsed[jj] = 1;
1927         sIdxIter.u.ax.aIdx[i].p = pIdx;
1928         sIdxIter.u.ax.aIdx[i].ix = jj;
1929         i++;
1930       }
1931       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1932         if( bUsed[jj] ) continue;
1933         sIdxIter.u.ax.aIdx[i].p = pIdx;
1934         sIdxIter.u.ax.aIdx[i].ix = jj;
1935         i++;
1936       }
1937       assert( i==nIdx );
1938     }
1939   }
1940 
1941   /* Determine if it is possible that triggers (either explicitly coded
1942   ** triggers or FK resolution actions) might run as a result of deletes
1943   ** that happen when OE_Replace conflict resolution occurs. (Call these
1944   ** "replace triggers".)  If any replace triggers run, we will need to
1945   ** recheck all of the uniqueness constraints after they have all run.
1946   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1947   **
1948   ** If replace triggers are a possibility, then
1949   **
1950   **   (1) Allocate register regTrigCnt and initialize it to zero.
1951   **       That register will count the number of replace triggers that
1952   **       fire.  Constraint recheck only occurs if the number is positive.
1953   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1954   **   (3) Initialize addrRecheck and lblRecheckOk
1955   **
1956   ** The uniqueness rechecking code will create a series of tests to run
1957   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1958   ** used to link together these tests which are separated from each other
1959   ** in the generate bytecode.
1960   */
1961   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1962     /* There are not DELETE triggers nor FK constraints.  No constraint
1963     ** rechecks are needed. */
1964     pTrigger = 0;
1965     regTrigCnt = 0;
1966   }else{
1967     if( db->flags&SQLITE_RecTriggers ){
1968       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1969       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1970     }else{
1971       pTrigger = 0;
1972       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1973     }
1974     if( regTrigCnt ){
1975       /* Replace triggers might exist.  Allocate the counter and
1976       ** initialize it to zero. */
1977       regTrigCnt = ++pParse->nMem;
1978       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1979       VdbeComment((v, "trigger count"));
1980       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1981       addrRecheck = lblRecheckOk;
1982     }
1983   }
1984 
1985   /* If rowid is changing, make sure the new rowid does not previously
1986   ** exist in the table.
1987   */
1988   if( pkChng && pPk==0 ){
1989     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1990 
1991     /* Figure out what action to take in case of a rowid collision */
1992     onError = pTab->keyConf;
1993     if( overrideError!=OE_Default ){
1994       onError = overrideError;
1995     }else if( onError==OE_Default ){
1996       onError = OE_Abort;
1997     }
1998 
1999     /* figure out whether or not upsert applies in this case */
2000     if( pUpsert ){
2001       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
2002       if( pUpsertClause!=0 ){
2003         if( pUpsertClause->isDoUpdate==0 ){
2004           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2005         }else{
2006           onError = OE_Update;  /* DO UPDATE */
2007         }
2008       }
2009       if( pUpsertClause!=pUpsert ){
2010         /* The first ON CONFLICT clause has a conflict target other than
2011         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
2012         ** and then come back here and deal with the IPK afterwards */
2013         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2014       }
2015     }
2016 
2017     /* If the response to a rowid conflict is REPLACE but the response
2018     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2019     ** to defer the running of the rowid conflict checking until after
2020     ** the UNIQUE constraints have run.
2021     */
2022     if( onError==OE_Replace      /* IPK rule is REPLACE */
2023      && onError!=overrideError   /* Rules for other constraints are different */
2024      && pTab->pIndex             /* There exist other constraints */
2025      && !upsertIpkDelay          /* IPK check already deferred by UPSERT */
2026     ){
2027       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2028       VdbeComment((v, "defer IPK REPLACE until last"));
2029     }
2030 
2031     if( isUpdate ){
2032       /* pkChng!=0 does not mean that the rowid has changed, only that
2033       ** it might have changed.  Skip the conflict logic below if the rowid
2034       ** is unchanged. */
2035       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2036       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2037       VdbeCoverage(v);
2038     }
2039 
2040     /* Check to see if the new rowid already exists in the table.  Skip
2041     ** the following conflict logic if it does not. */
2042     VdbeNoopComment((v, "uniqueness check for ROWID"));
2043     sqlite3VdbeVerifyAbortable(v, onError);
2044     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2045     VdbeCoverage(v);
2046 
2047     switch( onError ){
2048       default: {
2049         onError = OE_Abort;
2050         /* no break */ deliberate_fall_through
2051       }
2052       case OE_Rollback:
2053       case OE_Abort:
2054       case OE_Fail: {
2055         testcase( onError==OE_Rollback );
2056         testcase( onError==OE_Abort );
2057         testcase( onError==OE_Fail );
2058         sqlite3RowidConstraint(pParse, onError, pTab);
2059         break;
2060       }
2061       case OE_Replace: {
2062         /* If there are DELETE triggers on this table and the
2063         ** recursive-triggers flag is set, call GenerateRowDelete() to
2064         ** remove the conflicting row from the table. This will fire
2065         ** the triggers and remove both the table and index b-tree entries.
2066         **
2067         ** Otherwise, if there are no triggers or the recursive-triggers
2068         ** flag is not set, but the table has one or more indexes, call
2069         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2070         ** only. The table b-tree entry will be replaced by the new entry
2071         ** when it is inserted.
2072         **
2073         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2074         ** also invoke MultiWrite() to indicate that this VDBE may require
2075         ** statement rollback (if the statement is aborted after the delete
2076         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2077         ** but being more selective here allows statements like:
2078         **
2079         **   REPLACE INTO t(rowid) VALUES($newrowid)
2080         **
2081         ** to run without a statement journal if there are no indexes on the
2082         ** table.
2083         */
2084         if( regTrigCnt ){
2085           sqlite3MultiWrite(pParse);
2086           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2087                                    regNewData, 1, 0, OE_Replace, 1, -1);
2088           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2089           nReplaceTrig++;
2090         }else{
2091 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2092           assert( HasRowid(pTab) );
2093           /* This OP_Delete opcode fires the pre-update-hook only. It does
2094           ** not modify the b-tree. It is more efficient to let the coming
2095           ** OP_Insert replace the existing entry than it is to delete the
2096           ** existing entry and then insert a new one. */
2097           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2098           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2099 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2100           if( pTab->pIndex ){
2101             sqlite3MultiWrite(pParse);
2102             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2103           }
2104         }
2105         seenReplace = 1;
2106         break;
2107       }
2108 #ifndef SQLITE_OMIT_UPSERT
2109       case OE_Update: {
2110         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2111         /* no break */ deliberate_fall_through
2112       }
2113 #endif
2114       case OE_Ignore: {
2115         testcase( onError==OE_Ignore );
2116         sqlite3VdbeGoto(v, ignoreDest);
2117         break;
2118       }
2119     }
2120     sqlite3VdbeResolveLabel(v, addrRowidOk);
2121     if( pUpsert && pUpsertClause!=pUpsert ){
2122       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2123     }else if( ipkTop ){
2124       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2125       sqlite3VdbeJumpHere(v, ipkTop-1);
2126     }
2127   }
2128 
2129   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2130   ** index and making sure that duplicate entries do not already exist.
2131   ** Compute the revised record entries for indices as we go.
2132   **
2133   ** This loop also handles the case of the PRIMARY KEY index for a
2134   ** WITHOUT ROWID table.
2135   */
2136   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2137       pIdx;
2138       pIdx = indexIteratorNext(&sIdxIter, &ix)
2139   ){
2140     int regIdx;          /* Range of registers hold conent for pIdx */
2141     int regR;            /* Range of registers holding conflicting PK */
2142     int iThisCur;        /* Cursor for this UNIQUE index */
2143     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2144     int addrConflictCk;  /* First opcode in the conflict check logic */
2145 
2146     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2147     if( pUpsert ){
2148       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2149       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2150         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2151       }
2152     }
2153     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2154     if( bAffinityDone==0 ){
2155       sqlite3TableAffinity(v, pTab, regNewData+1);
2156       bAffinityDone = 1;
2157     }
2158     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2159     iThisCur = iIdxCur+ix;
2160 
2161 
2162     /* Skip partial indices for which the WHERE clause is not true */
2163     if( pIdx->pPartIdxWhere ){
2164       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2165       pParse->iSelfTab = -(regNewData+1);
2166       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2167                             SQLITE_JUMPIFNULL);
2168       pParse->iSelfTab = 0;
2169     }
2170 
2171     /* Create a record for this index entry as it should appear after
2172     ** the insert or update.  Store that record in the aRegIdx[ix] register
2173     */
2174     regIdx = aRegIdx[ix]+1;
2175     for(i=0; i<pIdx->nColumn; i++){
2176       int iField = pIdx->aiColumn[i];
2177       int x;
2178       if( iField==XN_EXPR ){
2179         pParse->iSelfTab = -(regNewData+1);
2180         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2181         pParse->iSelfTab = 0;
2182         VdbeComment((v, "%s column %d", pIdx->zName, i));
2183       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2184         x = regNewData;
2185         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2186         VdbeComment((v, "rowid"));
2187       }else{
2188         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2189         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2190         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2191         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2192       }
2193     }
2194     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2195     VdbeComment((v, "for %s", pIdx->zName));
2196 #ifdef SQLITE_ENABLE_NULL_TRIM
2197     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2198       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2199     }
2200 #endif
2201     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2202 
2203     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2204     ** of a WITHOUT ROWID table and there has been no change the
2205     ** primary key, then no collision is possible.  The collision detection
2206     ** logic below can all be skipped. */
2207     if( isUpdate && pPk==pIdx && pkChng==0 ){
2208       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2209       continue;
2210     }
2211 
2212     /* Find out what action to take in case there is a uniqueness conflict */
2213     onError = pIdx->onError;
2214     if( onError==OE_None ){
2215       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2216       continue;  /* pIdx is not a UNIQUE index */
2217     }
2218     if( overrideError!=OE_Default ){
2219       onError = overrideError;
2220     }else if( onError==OE_Default ){
2221       onError = OE_Abort;
2222     }
2223 
2224     /* Figure out if the upsert clause applies to this index */
2225     if( pUpsertClause ){
2226       if( pUpsertClause->isDoUpdate==0 ){
2227         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2228       }else{
2229         onError = OE_Update;  /* DO UPDATE */
2230       }
2231     }
2232 
2233     /* Collision detection may be omitted if all of the following are true:
2234     **   (1) The conflict resolution algorithm is REPLACE
2235     **   (2) The table is a WITHOUT ROWID table
2236     **   (3) There are no secondary indexes on the table
2237     **   (4) No delete triggers need to be fired if there is a conflict
2238     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2239     **
2240     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2241     ** must be explicitly deleted in order to ensure any pre-update hook
2242     ** is invoked.  */
2243     assert( IsOrdinaryTable(pTab) );
2244 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2245     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2246      && pPk==pIdx                                   /* Condition 2 */
2247      && onError==OE_Replace                         /* Condition 1 */
2248      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2249           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2250      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2251          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2252     ){
2253       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2254       continue;
2255     }
2256 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2257 
2258     /* Check to see if the new index entry will be unique */
2259     sqlite3VdbeVerifyAbortable(v, onError);
2260     addrConflictCk =
2261       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2262                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2263 
2264     /* Generate code to handle collisions */
2265     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2266     if( isUpdate || onError==OE_Replace ){
2267       if( HasRowid(pTab) ){
2268         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2269         /* Conflict only if the rowid of the existing index entry
2270         ** is different from old-rowid */
2271         if( isUpdate ){
2272           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2273           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2274           VdbeCoverage(v);
2275         }
2276       }else{
2277         int x;
2278         /* Extract the PRIMARY KEY from the end of the index entry and
2279         ** store it in registers regR..regR+nPk-1 */
2280         if( pIdx!=pPk ){
2281           for(i=0; i<pPk->nKeyCol; i++){
2282             assert( pPk->aiColumn[i]>=0 );
2283             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2284             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2285             VdbeComment((v, "%s.%s", pTab->zName,
2286                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2287           }
2288         }
2289         if( isUpdate ){
2290           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2291           ** table, only conflict if the new PRIMARY KEY values are actually
2292           ** different from the old.  See TH3 withoutrowid04.test.
2293           **
2294           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2295           ** of the matched index row are different from the original PRIMARY
2296           ** KEY values of this row before the update.  */
2297           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2298           int op = OP_Ne;
2299           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2300 
2301           for(i=0; i<pPk->nKeyCol; i++){
2302             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2303             x = pPk->aiColumn[i];
2304             assert( x>=0 );
2305             if( i==(pPk->nKeyCol-1) ){
2306               addrJump = addrUniqueOk;
2307               op = OP_Eq;
2308             }
2309             x = sqlite3TableColumnToStorage(pTab, x);
2310             sqlite3VdbeAddOp4(v, op,
2311                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2312             );
2313             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2314             VdbeCoverageIf(v, op==OP_Eq);
2315             VdbeCoverageIf(v, op==OP_Ne);
2316           }
2317         }
2318       }
2319     }
2320 
2321     /* Generate code that executes if the new index entry is not unique */
2322     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2323         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2324     switch( onError ){
2325       case OE_Rollback:
2326       case OE_Abort:
2327       case OE_Fail: {
2328         testcase( onError==OE_Rollback );
2329         testcase( onError==OE_Abort );
2330         testcase( onError==OE_Fail );
2331         sqlite3UniqueConstraint(pParse, onError, pIdx);
2332         break;
2333       }
2334 #ifndef SQLITE_OMIT_UPSERT
2335       case OE_Update: {
2336         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2337         /* no break */ deliberate_fall_through
2338       }
2339 #endif
2340       case OE_Ignore: {
2341         testcase( onError==OE_Ignore );
2342         sqlite3VdbeGoto(v, ignoreDest);
2343         break;
2344       }
2345       default: {
2346         int nConflictCk;   /* Number of opcodes in conflict check logic */
2347 
2348         assert( onError==OE_Replace );
2349         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2350         assert( nConflictCk>0 || db->mallocFailed );
2351         testcase( nConflictCk<=0 );
2352         testcase( nConflictCk>1 );
2353         if( regTrigCnt ){
2354           sqlite3MultiWrite(pParse);
2355           nReplaceTrig++;
2356         }
2357         if( pTrigger && isUpdate ){
2358           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2359         }
2360         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2361             regR, nPkField, 0, OE_Replace,
2362             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2363         if( pTrigger && isUpdate ){
2364           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2365         }
2366         if( regTrigCnt ){
2367           int addrBypass;  /* Jump destination to bypass recheck logic */
2368 
2369           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2370           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2371           VdbeComment((v, "bypass recheck"));
2372 
2373           /* Here we insert code that will be invoked after all constraint
2374           ** checks have run, if and only if one or more replace triggers
2375           ** fired. */
2376           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2377           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2378           if( pIdx->pPartIdxWhere ){
2379             /* Bypass the recheck if this partial index is not defined
2380             ** for the current row */
2381             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2382             VdbeCoverage(v);
2383           }
2384           /* Copy the constraint check code from above, except change
2385           ** the constraint-ok jump destination to be the address of
2386           ** the next retest block */
2387           while( nConflictCk>0 ){
2388             VdbeOp x;    /* Conflict check opcode to copy */
2389             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2390             ** Hence, make a complete copy of the opcode, rather than using
2391             ** a pointer to the opcode. */
2392             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2393             if( x.opcode!=OP_IdxRowid ){
2394               int p2;      /* New P2 value for copied conflict check opcode */
2395               const char *zP4;
2396               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2397                 p2 = lblRecheckOk;
2398               }else{
2399                 p2 = x.p2;
2400               }
2401               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2402               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2403               sqlite3VdbeChangeP5(v, x.p5);
2404               VdbeCoverageIf(v, p2!=x.p2);
2405             }
2406             nConflictCk--;
2407             addrConflictCk++;
2408           }
2409           /* If the retest fails, issue an abort */
2410           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2411 
2412           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2413         }
2414         seenReplace = 1;
2415         break;
2416       }
2417     }
2418     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2419     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2420     if( pUpsertClause
2421      && upsertIpkReturn
2422      && sqlite3UpsertNextIsIPK(pUpsertClause)
2423     ){
2424       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2425       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2426       upsertIpkReturn = 0;
2427     }
2428   }
2429 
2430   /* If the IPK constraint is a REPLACE, run it last */
2431   if( ipkTop ){
2432     sqlite3VdbeGoto(v, ipkTop);
2433     VdbeComment((v, "Do IPK REPLACE"));
2434     assert( ipkBottom>0 );
2435     sqlite3VdbeJumpHere(v, ipkBottom);
2436   }
2437 
2438   /* Recheck all uniqueness constraints after replace triggers have run */
2439   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2440   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2441   if( nReplaceTrig ){
2442     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2443     if( !pPk ){
2444       if( isUpdate ){
2445         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2446         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2447         VdbeCoverage(v);
2448       }
2449       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2450       VdbeCoverage(v);
2451       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2452     }else{
2453       sqlite3VdbeGoto(v, addrRecheck);
2454     }
2455     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2456   }
2457 
2458   /* Generate the table record */
2459   if( HasRowid(pTab) ){
2460     int regRec = aRegIdx[ix];
2461     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2462     sqlite3SetMakeRecordP5(v, pTab);
2463     if( !bAffinityDone ){
2464       sqlite3TableAffinity(v, pTab, 0);
2465     }
2466   }
2467 
2468   *pbMayReplace = seenReplace;
2469   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2470 }
2471 
2472 #ifdef SQLITE_ENABLE_NULL_TRIM
2473 /*
2474 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2475 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2476 **
2477 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2478 */
2479 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2480   u16 i;
2481 
2482   /* Records with omitted columns are only allowed for schema format
2483   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2484   if( pTab->pSchema->file_format<2 ) return;
2485 
2486   for(i=pTab->nCol-1; i>0; i--){
2487     if( pTab->aCol[i].iDflt!=0 ) break;
2488     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2489   }
2490   sqlite3VdbeChangeP5(v, i+1);
2491 }
2492 #endif
2493 
2494 /*
2495 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2496 ** number is iCur, and register regData contains the new record for the
2497 ** PK index. This function adds code to invoke the pre-update hook,
2498 ** if one is registered.
2499 */
2500 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2501 static void codeWithoutRowidPreupdate(
2502   Parse *pParse,                  /* Parse context */
2503   Table *pTab,                    /* Table being updated */
2504   int iCur,                       /* Cursor number for table */
2505   int regData                     /* Data containing new record */
2506 ){
2507   Vdbe *v = pParse->pVdbe;
2508   int r = sqlite3GetTempReg(pParse);
2509   assert( !HasRowid(pTab) );
2510   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2511   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2512   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2513   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2514   sqlite3ReleaseTempReg(pParse, r);
2515 }
2516 #else
2517 # define codeWithoutRowidPreupdate(a,b,c,d)
2518 #endif
2519 
2520 /*
2521 ** This routine generates code to finish the INSERT or UPDATE operation
2522 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2523 ** A consecutive range of registers starting at regNewData contains the
2524 ** rowid and the content to be inserted.
2525 **
2526 ** The arguments to this routine should be the same as the first six
2527 ** arguments to sqlite3GenerateConstraintChecks.
2528 */
2529 void sqlite3CompleteInsertion(
2530   Parse *pParse,      /* The parser context */
2531   Table *pTab,        /* the table into which we are inserting */
2532   int iDataCur,       /* Cursor of the canonical data source */
2533   int iIdxCur,        /* First index cursor */
2534   int regNewData,     /* Range of content */
2535   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2536   int update_flags,   /* True for UPDATE, False for INSERT */
2537   int appendBias,     /* True if this is likely to be an append */
2538   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2539 ){
2540   Vdbe *v;            /* Prepared statements under construction */
2541   Index *pIdx;        /* An index being inserted or updated */
2542   u8 pik_flags;       /* flag values passed to the btree insert */
2543   int i;              /* Loop counter */
2544 
2545   assert( update_flags==0
2546        || update_flags==OPFLAG_ISUPDATE
2547        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2548   );
2549 
2550   v = pParse->pVdbe;
2551   assert( v!=0 );
2552   assert( !IsView(pTab) );  /* This table is not a VIEW */
2553   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2554     /* All REPLACE indexes are at the end of the list */
2555     assert( pIdx->onError!=OE_Replace
2556          || pIdx->pNext==0
2557          || pIdx->pNext->onError==OE_Replace );
2558     if( aRegIdx[i]==0 ) continue;
2559     if( pIdx->pPartIdxWhere ){
2560       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2561       VdbeCoverage(v);
2562     }
2563     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2564     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2565       pik_flags |= OPFLAG_NCHANGE;
2566       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2567       if( update_flags==0 ){
2568         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2569       }
2570     }
2571     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2572                          aRegIdx[i]+1,
2573                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2574     sqlite3VdbeChangeP5(v, pik_flags);
2575   }
2576   if( !HasRowid(pTab) ) return;
2577   if( pParse->nested ){
2578     pik_flags = 0;
2579   }else{
2580     pik_flags = OPFLAG_NCHANGE;
2581     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2582   }
2583   if( appendBias ){
2584     pik_flags |= OPFLAG_APPEND;
2585   }
2586   if( useSeekResult ){
2587     pik_flags |= OPFLAG_USESEEKRESULT;
2588   }
2589   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2590   if( !pParse->nested ){
2591     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2592   }
2593   sqlite3VdbeChangeP5(v, pik_flags);
2594 }
2595 
2596 /*
2597 ** Allocate cursors for the pTab table and all its indices and generate
2598 ** code to open and initialized those cursors.
2599 **
2600 ** The cursor for the object that contains the complete data (normally
2601 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2602 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2603 ** returned in *piIdxCur.  The number of indices is returned.
2604 **
2605 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2606 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2607 ** If iBase is negative, then allocate the next available cursor.
2608 **
2609 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2610 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2611 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2612 ** pTab->pIndex list.
2613 **
2614 ** If pTab is a virtual table, then this routine is a no-op and the
2615 ** *piDataCur and *piIdxCur values are left uninitialized.
2616 */
2617 int sqlite3OpenTableAndIndices(
2618   Parse *pParse,   /* Parsing context */
2619   Table *pTab,     /* Table to be opened */
2620   int op,          /* OP_OpenRead or OP_OpenWrite */
2621   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2622   int iBase,       /* Use this for the table cursor, if there is one */
2623   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2624   int *piDataCur,  /* Write the database source cursor number here */
2625   int *piIdxCur    /* Write the first index cursor number here */
2626 ){
2627   int i;
2628   int iDb;
2629   int iDataCur;
2630   Index *pIdx;
2631   Vdbe *v;
2632 
2633   assert( op==OP_OpenRead || op==OP_OpenWrite );
2634   assert( op==OP_OpenWrite || p5==0 );
2635   if( IsVirtual(pTab) ){
2636     /* This routine is a no-op for virtual tables. Leave the output
2637     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2638     ** for improved error detection. */
2639     *piDataCur = *piIdxCur = -999;
2640     return 0;
2641   }
2642   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2643   v = pParse->pVdbe;
2644   assert( v!=0 );
2645   if( iBase<0 ) iBase = pParse->nTab;
2646   iDataCur = iBase++;
2647   if( piDataCur ) *piDataCur = iDataCur;
2648   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2649     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2650   }else{
2651     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2652   }
2653   if( piIdxCur ) *piIdxCur = iBase;
2654   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2655     int iIdxCur = iBase++;
2656     assert( pIdx->pSchema==pTab->pSchema );
2657     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2658       if( piDataCur ) *piDataCur = iIdxCur;
2659       p5 = 0;
2660     }
2661     if( aToOpen==0 || aToOpen[i+1] ){
2662       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2663       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2664       sqlite3VdbeChangeP5(v, p5);
2665       VdbeComment((v, "%s", pIdx->zName));
2666     }
2667   }
2668   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2669   return i;
2670 }
2671 
2672 
2673 #ifdef SQLITE_TEST
2674 /*
2675 ** The following global variable is incremented whenever the
2676 ** transfer optimization is used.  This is used for testing
2677 ** purposes only - to make sure the transfer optimization really
2678 ** is happening when it is supposed to.
2679 */
2680 int sqlite3_xferopt_count;
2681 #endif /* SQLITE_TEST */
2682 
2683 
2684 #ifndef SQLITE_OMIT_XFER_OPT
2685 /*
2686 ** Check to see if index pSrc is compatible as a source of data
2687 ** for index pDest in an insert transfer optimization.  The rules
2688 ** for a compatible index:
2689 **
2690 **    *   The index is over the same set of columns
2691 **    *   The same DESC and ASC markings occurs on all columns
2692 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2693 **    *   The same collating sequence on each column
2694 **    *   The index has the exact same WHERE clause
2695 */
2696 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2697   int i;
2698   assert( pDest && pSrc );
2699   assert( pDest->pTable!=pSrc->pTable );
2700   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2701     return 0;   /* Different number of columns */
2702   }
2703   if( pDest->onError!=pSrc->onError ){
2704     return 0;   /* Different conflict resolution strategies */
2705   }
2706   for(i=0; i<pSrc->nKeyCol; i++){
2707     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2708       return 0;   /* Different columns indexed */
2709     }
2710     if( pSrc->aiColumn[i]==XN_EXPR ){
2711       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2712       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2713                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2714         return 0;   /* Different expressions in the index */
2715       }
2716     }
2717     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2718       return 0;   /* Different sort orders */
2719     }
2720     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2721       return 0;   /* Different collating sequences */
2722     }
2723   }
2724   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2725     return 0;     /* Different WHERE clauses */
2726   }
2727 
2728   /* If no test above fails then the indices must be compatible */
2729   return 1;
2730 }
2731 
2732 /*
2733 ** Attempt the transfer optimization on INSERTs of the form
2734 **
2735 **     INSERT INTO tab1 SELECT * FROM tab2;
2736 **
2737 ** The xfer optimization transfers raw records from tab2 over to tab1.
2738 ** Columns are not decoded and reassembled, which greatly improves
2739 ** performance.  Raw index records are transferred in the same way.
2740 **
2741 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2742 ** There are lots of rules for determining compatibility - see comments
2743 ** embedded in the code for details.
2744 **
2745 ** This routine returns TRUE if the optimization is guaranteed to be used.
2746 ** Sometimes the xfer optimization will only work if the destination table
2747 ** is empty - a factor that can only be determined at run-time.  In that
2748 ** case, this routine generates code for the xfer optimization but also
2749 ** does a test to see if the destination table is empty and jumps over the
2750 ** xfer optimization code if the test fails.  In that case, this routine
2751 ** returns FALSE so that the caller will know to go ahead and generate
2752 ** an unoptimized transfer.  This routine also returns FALSE if there
2753 ** is no chance that the xfer optimization can be applied.
2754 **
2755 ** This optimization is particularly useful at making VACUUM run faster.
2756 */
2757 static int xferOptimization(
2758   Parse *pParse,        /* Parser context */
2759   Table *pDest,         /* The table we are inserting into */
2760   Select *pSelect,      /* A SELECT statement to use as the data source */
2761   int onError,          /* How to handle constraint errors */
2762   int iDbDest           /* The database of pDest */
2763 ){
2764   sqlite3 *db = pParse->db;
2765   ExprList *pEList;                /* The result set of the SELECT */
2766   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2767   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2768   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2769   int i;                           /* Loop counter */
2770   int iDbSrc;                      /* The database of pSrc */
2771   int iSrc, iDest;                 /* Cursors from source and destination */
2772   int addr1, addr2;                /* Loop addresses */
2773   int emptyDestTest = 0;           /* Address of test for empty pDest */
2774   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2775   Vdbe *v;                         /* The VDBE we are building */
2776   int regAutoinc;                  /* Memory register used by AUTOINC */
2777   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2778   int regData, regRowid;           /* Registers holding data and rowid */
2779 
2780   assert( pSelect!=0 );
2781   if( pParse->pWith || pSelect->pWith ){
2782     /* Do not attempt to process this query if there are an WITH clauses
2783     ** attached to it. Proceeding may generate a false "no such table: xxx"
2784     ** error if pSelect reads from a CTE named "xxx".  */
2785     return 0;
2786   }
2787 #ifndef SQLITE_OMIT_VIRTUALTABLE
2788   if( IsVirtual(pDest) ){
2789     return 0;   /* tab1 must not be a virtual table */
2790   }
2791 #endif
2792   if( onError==OE_Default ){
2793     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2794     if( onError==OE_Default ) onError = OE_Abort;
2795   }
2796   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2797   if( pSelect->pSrc->nSrc!=1 ){
2798     return 0;   /* FROM clause must have exactly one term */
2799   }
2800   if( pSelect->pSrc->a[0].pSelect ){
2801     return 0;   /* FROM clause cannot contain a subquery */
2802   }
2803   if( pSelect->pWhere ){
2804     return 0;   /* SELECT may not have a WHERE clause */
2805   }
2806   if( pSelect->pOrderBy ){
2807     return 0;   /* SELECT may not have an ORDER BY clause */
2808   }
2809   /* Do not need to test for a HAVING clause.  If HAVING is present but
2810   ** there is no ORDER BY, we will get an error. */
2811   if( pSelect->pGroupBy ){
2812     return 0;   /* SELECT may not have a GROUP BY clause */
2813   }
2814   if( pSelect->pLimit ){
2815     return 0;   /* SELECT may not have a LIMIT clause */
2816   }
2817   if( pSelect->pPrior ){
2818     return 0;   /* SELECT may not be a compound query */
2819   }
2820   if( pSelect->selFlags & SF_Distinct ){
2821     return 0;   /* SELECT may not be DISTINCT */
2822   }
2823   pEList = pSelect->pEList;
2824   assert( pEList!=0 );
2825   if( pEList->nExpr!=1 ){
2826     return 0;   /* The result set must have exactly one column */
2827   }
2828   assert( pEList->a[0].pExpr );
2829   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2830     return 0;   /* The result set must be the special operator "*" */
2831   }
2832 
2833   /* At this point we have established that the statement is of the
2834   ** correct syntactic form to participate in this optimization.  Now
2835   ** we have to check the semantics.
2836   */
2837   pItem = pSelect->pSrc->a;
2838   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2839   if( pSrc==0 ){
2840     return 0;   /* FROM clause does not contain a real table */
2841   }
2842   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2843     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2844     return 0;   /* tab1 and tab2 may not be the same table */
2845   }
2846   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2847     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2848   }
2849   if( !IsOrdinaryTable(pSrc) ){
2850     return 0;   /* tab2 may not be a view or virtual table */
2851   }
2852   if( pDest->nCol!=pSrc->nCol ){
2853     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2854   }
2855   if( pDest->iPKey!=pSrc->iPKey ){
2856     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2857   }
2858   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2859     return 0;   /* Cannot feed from a non-strict into a strict table */
2860   }
2861   for(i=0; i<pDest->nCol; i++){
2862     Column *pDestCol = &pDest->aCol[i];
2863     Column *pSrcCol = &pSrc->aCol[i];
2864 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2865     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2866      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2867     ){
2868       return 0;    /* Neither table may have __hidden__ columns */
2869     }
2870 #endif
2871 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2872     /* Even if tables t1 and t2 have identical schemas, if they contain
2873     ** generated columns, then this statement is semantically incorrect:
2874     **
2875     **     INSERT INTO t2 SELECT * FROM t1;
2876     **
2877     ** The reason is that generated column values are returned by the
2878     ** the SELECT statement on the right but the INSERT statement on the
2879     ** left wants them to be omitted.
2880     **
2881     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2882     ** to do a bulk transfer all of the content from t1 over to t2.
2883     **
2884     ** We could, in theory, disable this (except for internal use by the
2885     ** VACUUM command where it is actually needed).  But why do that?  It
2886     ** seems harmless enough, and provides a useful service.
2887     */
2888     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2889         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2890       return 0;    /* Both columns have the same generated-column type */
2891     }
2892     /* But the transfer is only allowed if both the source and destination
2893     ** tables have the exact same expressions for generated columns.
2894     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2895     */
2896     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2897       if( sqlite3ExprCompare(0,
2898              sqlite3ColumnExpr(pSrc, pSrcCol),
2899              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2900         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2901         testcase( pDestCol->colFlags & COLFLAG_STORED );
2902         return 0;  /* Different generator expressions */
2903       }
2904     }
2905 #endif
2906     if( pDestCol->affinity!=pSrcCol->affinity ){
2907       return 0;    /* Affinity must be the same on all columns */
2908     }
2909     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2910                         sqlite3ColumnColl(pSrcCol))!=0 ){
2911       return 0;    /* Collating sequence must be the same on all columns */
2912     }
2913     if( pDestCol->notNull && !pSrcCol->notNull ){
2914       return 0;    /* tab2 must be NOT NULL if tab1 is */
2915     }
2916     /* Default values for second and subsequent columns need to match. */
2917     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2918       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2919       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2920       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2921       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2922       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2923       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2924       if( (pDestExpr==0)!=(pSrcExpr==0)
2925        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2926                                        pSrcExpr->u.zToken)!=0)
2927       ){
2928         return 0;    /* Default values must be the same for all columns */
2929       }
2930     }
2931   }
2932   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2933     if( IsUniqueIndex(pDestIdx) ){
2934       destHasUniqueIdx = 1;
2935     }
2936     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2937       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2938     }
2939     if( pSrcIdx==0 ){
2940       return 0;    /* pDestIdx has no corresponding index in pSrc */
2941     }
2942     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2943          && sqlite3FaultSim(411)==SQLITE_OK ){
2944       /* The sqlite3FaultSim() call allows this corruption test to be
2945       ** bypassed during testing, in order to exercise other corruption tests
2946       ** further downstream. */
2947       return 0;   /* Corrupt schema - two indexes on the same btree */
2948     }
2949   }
2950 #ifndef SQLITE_OMIT_CHECK
2951   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2952     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2953   }
2954 #endif
2955 #ifndef SQLITE_OMIT_FOREIGN_KEY
2956   /* Disallow the transfer optimization if the destination table constains
2957   ** any foreign key constraints.  This is more restrictive than necessary.
2958   ** But the main beneficiary of the transfer optimization is the VACUUM
2959   ** command, and the VACUUM command disables foreign key constraints.  So
2960   ** the extra complication to make this rule less restrictive is probably
2961   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2962   */
2963   assert( IsOrdinaryTable(pDest) );
2964   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2965     return 0;
2966   }
2967 #endif
2968   if( (db->flags & SQLITE_CountRows)!=0 ){
2969     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2970   }
2971 
2972   /* If we get this far, it means that the xfer optimization is at
2973   ** least a possibility, though it might only work if the destination
2974   ** table (tab1) is initially empty.
2975   */
2976 #ifdef SQLITE_TEST
2977   sqlite3_xferopt_count++;
2978 #endif
2979   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2980   v = sqlite3GetVdbe(pParse);
2981   sqlite3CodeVerifySchema(pParse, iDbSrc);
2982   iSrc = pParse->nTab++;
2983   iDest = pParse->nTab++;
2984   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2985   regData = sqlite3GetTempReg(pParse);
2986   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2987   regRowid = sqlite3GetTempReg(pParse);
2988   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2989   assert( HasRowid(pDest) || destHasUniqueIdx );
2990   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2991       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2992    || destHasUniqueIdx                              /* (2) */
2993    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2994   )){
2995     /* In some circumstances, we are able to run the xfer optimization
2996     ** only if the destination table is initially empty. Unless the
2997     ** DBFLAG_Vacuum flag is set, this block generates code to make
2998     ** that determination. If DBFLAG_Vacuum is set, then the destination
2999     ** table is always empty.
3000     **
3001     ** Conditions under which the destination must be empty:
3002     **
3003     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3004     **     (If the destination is not initially empty, the rowid fields
3005     **     of index entries might need to change.)
3006     **
3007     ** (2) The destination has a unique index.  (The xfer optimization
3008     **     is unable to test uniqueness.)
3009     **
3010     ** (3) onError is something other than OE_Abort and OE_Rollback.
3011     */
3012     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3013     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3014     sqlite3VdbeJumpHere(v, addr1);
3015   }
3016   if( HasRowid(pSrc) ){
3017     u8 insFlags;
3018     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3019     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3020     if( pDest->iPKey>=0 ){
3021       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3022       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3023         sqlite3VdbeVerifyAbortable(v, onError);
3024         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3025         VdbeCoverage(v);
3026         sqlite3RowidConstraint(pParse, onError, pDest);
3027         sqlite3VdbeJumpHere(v, addr2);
3028       }
3029       autoIncStep(pParse, regAutoinc, regRowid);
3030     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3031       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3032     }else{
3033       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3034       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3035     }
3036 
3037     if( db->mDbFlags & DBFLAG_Vacuum ){
3038       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3039       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3040     }else{
3041       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3042     }
3043 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3044     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3045       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3046       insFlags &= ~OPFLAG_PREFORMAT;
3047     }else
3048 #endif
3049     {
3050       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3051     }
3052     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3053     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3054       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3055     }
3056     sqlite3VdbeChangeP5(v, insFlags);
3057 
3058     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3059     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3060     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3061   }else{
3062     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3063     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3064   }
3065   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3066     u8 idxInsFlags = 0;
3067     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3068       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3069     }
3070     assert( pSrcIdx );
3071     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3072     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3073     VdbeComment((v, "%s", pSrcIdx->zName));
3074     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3075     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3076     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3077     VdbeComment((v, "%s", pDestIdx->zName));
3078     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3079     if( db->mDbFlags & DBFLAG_Vacuum ){
3080       /* This INSERT command is part of a VACUUM operation, which guarantees
3081       ** that the destination table is empty. If all indexed columns use
3082       ** collation sequence BINARY, then it can also be assumed that the
3083       ** index will be populated by inserting keys in strictly sorted
3084       ** order. In this case, instead of seeking within the b-tree as part
3085       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3086       ** OP_IdxInsert to seek to the point within the b-tree where each key
3087       ** should be inserted. This is faster.
3088       **
3089       ** If any of the indexed columns use a collation sequence other than
3090       ** BINARY, this optimization is disabled. This is because the user
3091       ** might change the definition of a collation sequence and then run
3092       ** a VACUUM command. In that case keys may not be written in strictly
3093       ** sorted order.  */
3094       for(i=0; i<pSrcIdx->nColumn; i++){
3095         const char *zColl = pSrcIdx->azColl[i];
3096         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3097       }
3098       if( i==pSrcIdx->nColumn ){
3099         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3100         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3101         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3102       }
3103     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3104       idxInsFlags |= OPFLAG_NCHANGE;
3105     }
3106     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3107       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3108       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3109        && !HasRowid(pDest)
3110        && IsPrimaryKeyIndex(pDestIdx)
3111       ){
3112         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3113       }
3114     }
3115     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3116     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3117     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3118     sqlite3VdbeJumpHere(v, addr1);
3119     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3120     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3121   }
3122   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3123   sqlite3ReleaseTempReg(pParse, regRowid);
3124   sqlite3ReleaseTempReg(pParse, regData);
3125   if( emptyDestTest ){
3126     sqlite3AutoincrementEnd(pParse);
3127     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3128     sqlite3VdbeJumpHere(v, emptyDestTest);
3129     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3130     return 0;
3131   }else{
3132     return 1;
3133   }
3134 }
3135 #endif /* SQLITE_OMIT_XFER_OPT */
3136