1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 assert( db->pParse==pParse ); 719 if( pParse->nErr ){ 720 goto insert_cleanup; 721 } 722 assert( db->mallocFailed==0 ); 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 #if TREETRACE_ENABLED 726 if( sqlite3TreeTrace & 0x10000 ){ 727 sqlite3TreeViewInsert(0, pParse->pWith, pTabList, pColumn, pSelect, 728 onError, pUpsert); 729 } 730 #endif 731 732 /* If the Select object is really just a simple VALUES() list with a 733 ** single row (the common case) then keep that one row of values 734 ** and discard the other (unused) parts of the pSelect object 735 */ 736 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 737 pList = pSelect->pEList; 738 pSelect->pEList = 0; 739 sqlite3SelectDelete(db, pSelect); 740 pSelect = 0; 741 } 742 743 /* Locate the table into which we will be inserting new information. 744 */ 745 assert( pTabList->nSrc==1 ); 746 pTab = sqlite3SrcListLookup(pParse, pTabList); 747 if( pTab==0 ){ 748 goto insert_cleanup; 749 } 750 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 751 assert( iDb<db->nDb ); 752 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 753 db->aDb[iDb].zDbSName) ){ 754 goto insert_cleanup; 755 } 756 withoutRowid = !HasRowid(pTab); 757 758 /* Figure out if we have any triggers and if the table being 759 ** inserted into is a view 760 */ 761 #ifndef SQLITE_OMIT_TRIGGER 762 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 763 isView = IsView(pTab); 764 #else 765 # define pTrigger 0 766 # define tmask 0 767 # define isView 0 768 #endif 769 #ifdef SQLITE_OMIT_VIEW 770 # undef isView 771 # define isView 0 772 #endif 773 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 774 775 /* If pTab is really a view, make sure it has been initialized. 776 ** ViewGetColumnNames() is a no-op if pTab is not a view. 777 */ 778 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 779 goto insert_cleanup; 780 } 781 782 /* Cannot insert into a read-only table. 783 */ 784 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 785 goto insert_cleanup; 786 } 787 788 /* Allocate a VDBE 789 */ 790 v = sqlite3GetVdbe(pParse); 791 if( v==0 ) goto insert_cleanup; 792 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 793 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 794 795 #ifndef SQLITE_OMIT_XFER_OPT 796 /* If the statement is of the form 797 ** 798 ** INSERT INTO <table1> SELECT * FROM <table2>; 799 ** 800 ** Then special optimizations can be applied that make the transfer 801 ** very fast and which reduce fragmentation of indices. 802 ** 803 ** This is the 2nd template. 804 */ 805 if( pColumn==0 806 && pSelect!=0 807 && pTrigger==0 808 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 809 ){ 810 assert( !pTrigger ); 811 assert( pList==0 ); 812 goto insert_end; 813 } 814 #endif /* SQLITE_OMIT_XFER_OPT */ 815 816 /* If this is an AUTOINCREMENT table, look up the sequence number in the 817 ** sqlite_sequence table and store it in memory cell regAutoinc. 818 */ 819 regAutoinc = autoIncBegin(pParse, iDb, pTab); 820 821 /* Allocate a block registers to hold the rowid and the values 822 ** for all columns of the new row. 823 */ 824 regRowid = regIns = pParse->nMem+1; 825 pParse->nMem += pTab->nCol + 1; 826 if( IsVirtual(pTab) ){ 827 regRowid++; 828 pParse->nMem++; 829 } 830 regData = regRowid+1; 831 832 /* If the INSERT statement included an IDLIST term, then make sure 833 ** all elements of the IDLIST really are columns of the table and 834 ** remember the column indices. 835 ** 836 ** If the table has an INTEGER PRIMARY KEY column and that column 837 ** is named in the IDLIST, then record in the ipkColumn variable 838 ** the index into IDLIST of the primary key column. ipkColumn is 839 ** the index of the primary key as it appears in IDLIST, not as 840 ** is appears in the original table. (The index of the INTEGER 841 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 842 ** loop, if ipkColumn==(-1), that means that integer primary key 843 ** is unspecified, and hence the table is either WITHOUT ROWID or 844 ** it will automatically generated an integer primary key. 845 ** 846 ** bIdListInOrder is true if the columns in IDLIST are in storage 847 ** order. This enables an optimization that avoids shuffling the 848 ** columns into storage order. False negatives are harmless, 849 ** but false positives will cause database corruption. 850 */ 851 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 852 if( pColumn ){ 853 for(i=0; i<pColumn->nId; i++){ 854 pColumn->a[i].idx = -1; 855 } 856 for(i=0; i<pColumn->nId; i++){ 857 for(j=0; j<pTab->nCol; j++){ 858 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 859 pColumn->a[i].idx = j; 860 if( i!=j ) bIdListInOrder = 0; 861 if( j==pTab->iPKey ){ 862 ipkColumn = i; assert( !withoutRowid ); 863 } 864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 865 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 866 sqlite3ErrorMsg(pParse, 867 "cannot INSERT into generated column \"%s\"", 868 pTab->aCol[j].zCnName); 869 goto insert_cleanup; 870 } 871 #endif 872 break; 873 } 874 } 875 if( j>=pTab->nCol ){ 876 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 877 ipkColumn = i; 878 bIdListInOrder = 0; 879 }else{ 880 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 881 pTabList->a, pColumn->a[i].zName); 882 pParse->checkSchema = 1; 883 goto insert_cleanup; 884 } 885 } 886 } 887 } 888 889 /* Figure out how many columns of data are supplied. If the data 890 ** is coming from a SELECT statement, then generate a co-routine that 891 ** produces a single row of the SELECT on each invocation. The 892 ** co-routine is the common header to the 3rd and 4th templates. 893 */ 894 if( pSelect ){ 895 /* Data is coming from a SELECT or from a multi-row VALUES clause. 896 ** Generate a co-routine to run the SELECT. */ 897 int regYield; /* Register holding co-routine entry-point */ 898 int addrTop; /* Top of the co-routine */ 899 int rc; /* Result code */ 900 901 regYield = ++pParse->nMem; 902 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 903 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 904 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 905 dest.iSdst = bIdListInOrder ? regData : 0; 906 dest.nSdst = pTab->nCol; 907 rc = sqlite3Select(pParse, pSelect, &dest); 908 regFromSelect = dest.iSdst; 909 assert( db->pParse==pParse ); 910 if( rc || pParse->nErr ) goto insert_cleanup; 911 assert( db->mallocFailed==0 ); 912 sqlite3VdbeEndCoroutine(v, regYield); 913 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 914 assert( pSelect->pEList ); 915 nColumn = pSelect->pEList->nExpr; 916 917 /* Set useTempTable to TRUE if the result of the SELECT statement 918 ** should be written into a temporary table (template 4). Set to 919 ** FALSE if each output row of the SELECT can be written directly into 920 ** the destination table (template 3). 921 ** 922 ** A temp table must be used if the table being updated is also one 923 ** of the tables being read by the SELECT statement. Also use a 924 ** temp table in the case of row triggers. 925 */ 926 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 927 useTempTable = 1; 928 } 929 930 if( useTempTable ){ 931 /* Invoke the coroutine to extract information from the SELECT 932 ** and add it to a transient table srcTab. The code generated 933 ** here is from the 4th template: 934 ** 935 ** B: open temp table 936 ** L: yield X, goto M at EOF 937 ** insert row from R..R+n into temp table 938 ** goto L 939 ** M: ... 940 */ 941 int regRec; /* Register to hold packed record */ 942 int regTempRowid; /* Register to hold temp table ROWID */ 943 int addrL; /* Label "L" */ 944 945 srcTab = pParse->nTab++; 946 regRec = sqlite3GetTempReg(pParse); 947 regTempRowid = sqlite3GetTempReg(pParse); 948 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 949 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 950 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 951 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 952 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 953 sqlite3VdbeGoto(v, addrL); 954 sqlite3VdbeJumpHere(v, addrL); 955 sqlite3ReleaseTempReg(pParse, regRec); 956 sqlite3ReleaseTempReg(pParse, regTempRowid); 957 } 958 }else{ 959 /* This is the case if the data for the INSERT is coming from a 960 ** single-row VALUES clause 961 */ 962 NameContext sNC; 963 memset(&sNC, 0, sizeof(sNC)); 964 sNC.pParse = pParse; 965 srcTab = -1; 966 assert( useTempTable==0 ); 967 if( pList ){ 968 nColumn = pList->nExpr; 969 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 970 goto insert_cleanup; 971 } 972 }else{ 973 nColumn = 0; 974 } 975 } 976 977 /* If there is no IDLIST term but the table has an integer primary 978 ** key, the set the ipkColumn variable to the integer primary key 979 ** column index in the original table definition. 980 */ 981 if( pColumn==0 && nColumn>0 ){ 982 ipkColumn = pTab->iPKey; 983 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 984 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 985 testcase( pTab->tabFlags & TF_HasVirtual ); 986 testcase( pTab->tabFlags & TF_HasStored ); 987 for(i=ipkColumn-1; i>=0; i--){ 988 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 989 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 990 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 991 ipkColumn--; 992 } 993 } 994 } 995 #endif 996 997 /* Make sure the number of columns in the source data matches the number 998 ** of columns to be inserted into the table. 999 */ 1000 assert( TF_HasHidden==COLFLAG_HIDDEN ); 1001 assert( TF_HasGenerated==COLFLAG_GENERATED ); 1002 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 1003 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 1004 for(i=0; i<pTab->nCol; i++){ 1005 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 1006 } 1007 } 1008 if( nColumn!=(pTab->nCol-nHidden) ){ 1009 sqlite3ErrorMsg(pParse, 1010 "table %S has %d columns but %d values were supplied", 1011 pTabList->a, pTab->nCol-nHidden, nColumn); 1012 goto insert_cleanup; 1013 } 1014 } 1015 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1016 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1017 goto insert_cleanup; 1018 } 1019 1020 /* Initialize the count of rows to be inserted 1021 */ 1022 if( (db->flags & SQLITE_CountRows)!=0 1023 && !pParse->nested 1024 && !pParse->pTriggerTab 1025 && !pParse->bReturning 1026 ){ 1027 regRowCount = ++pParse->nMem; 1028 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1029 } 1030 1031 /* If this is not a view, open the table and and all indices */ 1032 if( !isView ){ 1033 int nIdx; 1034 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1035 &iDataCur, &iIdxCur); 1036 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1037 if( aRegIdx==0 ){ 1038 goto insert_cleanup; 1039 } 1040 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1041 assert( pIdx ); 1042 aRegIdx[i] = ++pParse->nMem; 1043 pParse->nMem += pIdx->nColumn; 1044 } 1045 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1046 } 1047 #ifndef SQLITE_OMIT_UPSERT 1048 if( pUpsert ){ 1049 Upsert *pNx; 1050 if( IsVirtual(pTab) ){ 1051 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1052 pTab->zName); 1053 goto insert_cleanup; 1054 } 1055 if( IsView(pTab) ){ 1056 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1057 goto insert_cleanup; 1058 } 1059 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1060 goto insert_cleanup; 1061 } 1062 pTabList->a[0].iCursor = iDataCur; 1063 pNx = pUpsert; 1064 do{ 1065 pNx->pUpsertSrc = pTabList; 1066 pNx->regData = regData; 1067 pNx->iDataCur = iDataCur; 1068 pNx->iIdxCur = iIdxCur; 1069 if( pNx->pUpsertTarget ){ 1070 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1071 goto insert_cleanup; 1072 } 1073 } 1074 pNx = pNx->pNextUpsert; 1075 }while( pNx!=0 ); 1076 } 1077 #endif 1078 1079 1080 /* This is the top of the main insertion loop */ 1081 if( useTempTable ){ 1082 /* This block codes the top of loop only. The complete loop is the 1083 ** following pseudocode (template 4): 1084 ** 1085 ** rewind temp table, if empty goto D 1086 ** C: loop over rows of intermediate table 1087 ** transfer values form intermediate table into <table> 1088 ** end loop 1089 ** D: ... 1090 */ 1091 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1092 addrCont = sqlite3VdbeCurrentAddr(v); 1093 }else if( pSelect ){ 1094 /* This block codes the top of loop only. The complete loop is the 1095 ** following pseudocode (template 3): 1096 ** 1097 ** C: yield X, at EOF goto D 1098 ** insert the select result into <table> from R..R+n 1099 ** goto C 1100 ** D: ... 1101 */ 1102 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1103 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1104 VdbeCoverage(v); 1105 if( ipkColumn>=0 ){ 1106 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1107 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1108 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1109 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1110 } 1111 } 1112 1113 /* Compute data for ordinary columns of the new entry. Values 1114 ** are written in storage order into registers starting with regData. 1115 ** Only ordinary columns are computed in this loop. The rowid 1116 ** (if there is one) is computed later and generated columns are 1117 ** computed after the rowid since they might depend on the value 1118 ** of the rowid. 1119 */ 1120 nHidden = 0; 1121 iRegStore = regData; assert( regData==regRowid+1 ); 1122 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1123 int k; 1124 u32 colFlags; 1125 assert( i>=nHidden ); 1126 if( i==pTab->iPKey ){ 1127 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1128 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1129 ** using excess space. The file format definition requires this extra 1130 ** NULL - we cannot optimize further by skipping the column completely */ 1131 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1132 continue; 1133 } 1134 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1135 nHidden++; 1136 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1137 /* Virtual columns do not participate in OP_MakeRecord. So back up 1138 ** iRegStore by one slot to compensate for the iRegStore++ in the 1139 ** outer for() loop */ 1140 iRegStore--; 1141 continue; 1142 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1143 /* Stored columns are computed later. But if there are BEFORE 1144 ** triggers, the slots used for stored columns will be OP_Copy-ed 1145 ** to a second block of registers, so the register needs to be 1146 ** initialized to NULL to avoid an uninitialized register read */ 1147 if( tmask & TRIGGER_BEFORE ){ 1148 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1149 } 1150 continue; 1151 }else if( pColumn==0 ){ 1152 /* Hidden columns that are not explicitly named in the INSERT 1153 ** get there default value */ 1154 sqlite3ExprCodeFactorable(pParse, 1155 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1156 iRegStore); 1157 continue; 1158 } 1159 } 1160 if( pColumn ){ 1161 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1162 if( j>=pColumn->nId ){ 1163 /* A column not named in the insert column list gets its 1164 ** default value */ 1165 sqlite3ExprCodeFactorable(pParse, 1166 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1167 iRegStore); 1168 continue; 1169 } 1170 k = j; 1171 }else if( nColumn==0 ){ 1172 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1173 sqlite3ExprCodeFactorable(pParse, 1174 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1175 iRegStore); 1176 continue; 1177 }else{ 1178 k = i - nHidden; 1179 } 1180 1181 if( useTempTable ){ 1182 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1183 }else if( pSelect ){ 1184 if( regFromSelect!=regData ){ 1185 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1186 } 1187 }else{ 1188 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1189 } 1190 } 1191 1192 1193 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1194 */ 1195 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1196 if( tmask & TRIGGER_BEFORE ){ 1197 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1198 1199 /* build the NEW.* reference row. Note that if there is an INTEGER 1200 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1201 ** translated into a unique ID for the row. But on a BEFORE trigger, 1202 ** we do not know what the unique ID will be (because the insert has 1203 ** not happened yet) so we substitute a rowid of -1 1204 */ 1205 if( ipkColumn<0 ){ 1206 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1207 }else{ 1208 int addr1; 1209 assert( !withoutRowid ); 1210 if( useTempTable ){ 1211 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1212 }else{ 1213 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1214 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1215 } 1216 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1217 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1218 sqlite3VdbeJumpHere(v, addr1); 1219 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1220 } 1221 1222 /* Copy the new data already generated. */ 1223 assert( pTab->nNVCol>0 ); 1224 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1225 1226 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1227 /* Compute the new value for generated columns after all other 1228 ** columns have already been computed. This must be done after 1229 ** computing the ROWID in case one of the generated columns 1230 ** refers to the ROWID. */ 1231 if( pTab->tabFlags & TF_HasGenerated ){ 1232 testcase( pTab->tabFlags & TF_HasVirtual ); 1233 testcase( pTab->tabFlags & TF_HasStored ); 1234 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1235 } 1236 #endif 1237 1238 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1239 ** do not attempt any conversions before assembling the record. 1240 ** If this is a real table, attempt conversions as required by the 1241 ** table column affinities. 1242 */ 1243 if( !isView ){ 1244 sqlite3TableAffinity(v, pTab, regCols+1); 1245 } 1246 1247 /* Fire BEFORE or INSTEAD OF triggers */ 1248 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1249 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1250 1251 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1252 } 1253 1254 if( !isView ){ 1255 if( IsVirtual(pTab) ){ 1256 /* The row that the VUpdate opcode will delete: none */ 1257 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1258 } 1259 if( ipkColumn>=0 ){ 1260 /* Compute the new rowid */ 1261 if( useTempTable ){ 1262 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1263 }else if( pSelect ){ 1264 /* Rowid already initialized at tag-20191021-001 */ 1265 }else{ 1266 Expr *pIpk = pList->a[ipkColumn].pExpr; 1267 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1268 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1269 appendFlag = 1; 1270 }else{ 1271 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1272 } 1273 } 1274 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1275 ** to generate a unique primary key value. 1276 */ 1277 if( !appendFlag ){ 1278 int addr1; 1279 if( !IsVirtual(pTab) ){ 1280 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1281 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1282 sqlite3VdbeJumpHere(v, addr1); 1283 }else{ 1284 addr1 = sqlite3VdbeCurrentAddr(v); 1285 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1286 } 1287 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1288 } 1289 }else if( IsVirtual(pTab) || withoutRowid ){ 1290 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1291 }else{ 1292 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1293 appendFlag = 1; 1294 } 1295 autoIncStep(pParse, regAutoinc, regRowid); 1296 1297 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1298 /* Compute the new value for generated columns after all other 1299 ** columns have already been computed. This must be done after 1300 ** computing the ROWID in case one of the generated columns 1301 ** is derived from the INTEGER PRIMARY KEY. */ 1302 if( pTab->tabFlags & TF_HasGenerated ){ 1303 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1304 } 1305 #endif 1306 1307 /* Generate code to check constraints and generate index keys and 1308 ** do the insertion. 1309 */ 1310 #ifndef SQLITE_OMIT_VIRTUALTABLE 1311 if( IsVirtual(pTab) ){ 1312 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1313 sqlite3VtabMakeWritable(pParse, pTab); 1314 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1315 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1316 sqlite3MayAbort(pParse); 1317 }else 1318 #endif 1319 { 1320 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1321 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1322 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1323 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1324 ); 1325 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1326 1327 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1328 ** constraints or (b) there are no triggers and this table is not a 1329 ** parent table in a foreign key constraint. It is safe to set the 1330 ** flag in the second case as if any REPLACE constraint is hit, an 1331 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1332 ** cursor that is disturbed. And these instructions both clear the 1333 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1334 ** functionality. */ 1335 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1336 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1337 regIns, aRegIdx, 0, appendFlag, bUseSeek 1338 ); 1339 } 1340 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1341 }else if( pParse->bReturning ){ 1342 /* If there is a RETURNING clause, populate the rowid register with 1343 ** constant value -1, in case one or more of the returned expressions 1344 ** refer to the "rowid" of the view. */ 1345 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1346 #endif 1347 } 1348 1349 /* Update the count of rows that are inserted 1350 */ 1351 if( regRowCount ){ 1352 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1353 } 1354 1355 if( pTrigger ){ 1356 /* Code AFTER triggers */ 1357 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1358 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1359 } 1360 1361 /* The bottom of the main insertion loop, if the data source 1362 ** is a SELECT statement. 1363 */ 1364 sqlite3VdbeResolveLabel(v, endOfLoop); 1365 if( useTempTable ){ 1366 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1367 sqlite3VdbeJumpHere(v, addrInsTop); 1368 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1369 }else if( pSelect ){ 1370 sqlite3VdbeGoto(v, addrCont); 1371 #ifdef SQLITE_DEBUG 1372 /* If we are jumping back to an OP_Yield that is preceded by an 1373 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1374 ** OP_ReleaseReg will be included in the loop. */ 1375 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1376 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1377 sqlite3VdbeChangeP5(v, 1); 1378 } 1379 #endif 1380 sqlite3VdbeJumpHere(v, addrInsTop); 1381 } 1382 1383 #ifndef SQLITE_OMIT_XFER_OPT 1384 insert_end: 1385 #endif /* SQLITE_OMIT_XFER_OPT */ 1386 /* Update the sqlite_sequence table by storing the content of the 1387 ** maximum rowid counter values recorded while inserting into 1388 ** autoincrement tables. 1389 */ 1390 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1391 sqlite3AutoincrementEnd(pParse); 1392 } 1393 1394 /* 1395 ** Return the number of rows inserted. If this routine is 1396 ** generating code because of a call to sqlite3NestedParse(), do not 1397 ** invoke the callback function. 1398 */ 1399 if( regRowCount ){ 1400 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1401 } 1402 1403 insert_cleanup: 1404 sqlite3SrcListDelete(db, pTabList); 1405 sqlite3ExprListDelete(db, pList); 1406 sqlite3UpsertDelete(db, pUpsert); 1407 sqlite3SelectDelete(db, pSelect); 1408 sqlite3IdListDelete(db, pColumn); 1409 sqlite3DbFree(db, aRegIdx); 1410 } 1411 1412 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1413 ** they may interfere with compilation of other functions in this file 1414 ** (or in another file, if this file becomes part of the amalgamation). */ 1415 #ifdef isView 1416 #undef isView 1417 #endif 1418 #ifdef pTrigger 1419 #undef pTrigger 1420 #endif 1421 #ifdef tmask 1422 #undef tmask 1423 #endif 1424 1425 /* 1426 ** Meanings of bits in of pWalker->eCode for 1427 ** sqlite3ExprReferencesUpdatedColumn() 1428 */ 1429 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1430 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1431 1432 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1433 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1434 ** expression node references any of the 1435 ** columns that are being modifed by an UPDATE statement. 1436 */ 1437 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1438 if( pExpr->op==TK_COLUMN ){ 1439 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1440 if( pExpr->iColumn>=0 ){ 1441 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1442 pWalker->eCode |= CKCNSTRNT_COLUMN; 1443 } 1444 }else{ 1445 pWalker->eCode |= CKCNSTRNT_ROWID; 1446 } 1447 } 1448 return WRC_Continue; 1449 } 1450 1451 /* 1452 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1453 ** only columns that are modified by the UPDATE are those for which 1454 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1455 ** 1456 ** Return true if CHECK constraint pExpr uses any of the 1457 ** changing columns (or the rowid if it is changing). In other words, 1458 ** return true if this CHECK constraint must be validated for 1459 ** the new row in the UPDATE statement. 1460 ** 1461 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1462 ** The operation of this routine is the same - return true if an only if 1463 ** the expression uses one or more of columns identified by the second and 1464 ** third arguments. 1465 */ 1466 int sqlite3ExprReferencesUpdatedColumn( 1467 Expr *pExpr, /* The expression to be checked */ 1468 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1469 int chngRowid /* True if UPDATE changes the rowid */ 1470 ){ 1471 Walker w; 1472 memset(&w, 0, sizeof(w)); 1473 w.eCode = 0; 1474 w.xExprCallback = checkConstraintExprNode; 1475 w.u.aiCol = aiChng; 1476 sqlite3WalkExpr(&w, pExpr); 1477 if( !chngRowid ){ 1478 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1479 w.eCode &= ~CKCNSTRNT_ROWID; 1480 } 1481 testcase( w.eCode==0 ); 1482 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1483 testcase( w.eCode==CKCNSTRNT_ROWID ); 1484 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1485 return w.eCode!=0; 1486 } 1487 1488 /* 1489 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1490 ** the indexes of a table in the order provided in the Table->pIndex list. 1491 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1492 ** the indexes in a different order. The following data structures accomplish 1493 ** this. 1494 ** 1495 ** The IndexIterator object is used to walk through all of the indexes 1496 ** of a table in either Index.pNext order, or in some other order established 1497 ** by an array of IndexListTerm objects. 1498 */ 1499 typedef struct IndexListTerm IndexListTerm; 1500 typedef struct IndexIterator IndexIterator; 1501 struct IndexIterator { 1502 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1503 int i; /* Index of the current item from the list */ 1504 union { 1505 struct { /* Use this object for eType==0: A Index.pNext list */ 1506 Index *pIdx; /* The current Index */ 1507 } lx; 1508 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1509 int nIdx; /* Size of the array */ 1510 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1511 } ax; 1512 } u; 1513 }; 1514 1515 /* When IndexIterator.eType==1, then each index is an array of instances 1516 ** of the following object 1517 */ 1518 struct IndexListTerm { 1519 Index *p; /* The index */ 1520 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1521 }; 1522 1523 /* Return the first index on the list */ 1524 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1525 assert( pIter->i==0 ); 1526 if( pIter->eType ){ 1527 *pIx = pIter->u.ax.aIdx[0].ix; 1528 return pIter->u.ax.aIdx[0].p; 1529 }else{ 1530 *pIx = 0; 1531 return pIter->u.lx.pIdx; 1532 } 1533 } 1534 1535 /* Return the next index from the list. Return NULL when out of indexes */ 1536 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1537 if( pIter->eType ){ 1538 int i = ++pIter->i; 1539 if( i>=pIter->u.ax.nIdx ){ 1540 *pIx = i; 1541 return 0; 1542 } 1543 *pIx = pIter->u.ax.aIdx[i].ix; 1544 return pIter->u.ax.aIdx[i].p; 1545 }else{ 1546 ++(*pIx); 1547 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1548 return pIter->u.lx.pIdx; 1549 } 1550 } 1551 1552 /* 1553 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1554 ** on table pTab. 1555 ** 1556 ** The regNewData parameter is the first register in a range that contains 1557 ** the data to be inserted or the data after the update. There will be 1558 ** pTab->nCol+1 registers in this range. The first register (the one 1559 ** that regNewData points to) will contain the new rowid, or NULL in the 1560 ** case of a WITHOUT ROWID table. The second register in the range will 1561 ** contain the content of the first table column. The third register will 1562 ** contain the content of the second table column. And so forth. 1563 ** 1564 ** The regOldData parameter is similar to regNewData except that it contains 1565 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1566 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1567 ** checking regOldData for zero. 1568 ** 1569 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1570 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1571 ** might be modified by the UPDATE. If pkChng is false, then the key of 1572 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1573 ** 1574 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1575 ** was explicitly specified as part of the INSERT statement. If pkChng 1576 ** is zero, it means that the either rowid is computed automatically or 1577 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1578 ** pkChng will only be true if the INSERT statement provides an integer 1579 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1580 ** 1581 ** The code generated by this routine will store new index entries into 1582 ** registers identified by aRegIdx[]. No index entry is created for 1583 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1584 ** the same as the order of indices on the linked list of indices 1585 ** at pTab->pIndex. 1586 ** 1587 ** (2019-05-07) The generated code also creates a new record for the 1588 ** main table, if pTab is a rowid table, and stores that record in the 1589 ** register identified by aRegIdx[nIdx] - in other words in the first 1590 ** entry of aRegIdx[] past the last index. It is important that the 1591 ** record be generated during constraint checks to avoid affinity changes 1592 ** to the register content that occur after constraint checks but before 1593 ** the new record is inserted. 1594 ** 1595 ** The caller must have already opened writeable cursors on the main 1596 ** table and all applicable indices (that is to say, all indices for which 1597 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1598 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1599 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1600 ** for the first index in the pTab->pIndex list. Cursors for other indices 1601 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1602 ** 1603 ** This routine also generates code to check constraints. NOT NULL, 1604 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1605 ** then the appropriate action is performed. There are five possible 1606 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1607 ** 1608 ** Constraint type Action What Happens 1609 ** --------------- ---------- ---------------------------------------- 1610 ** any ROLLBACK The current transaction is rolled back and 1611 ** sqlite3_step() returns immediately with a 1612 ** return code of SQLITE_CONSTRAINT. 1613 ** 1614 ** any ABORT Back out changes from the current command 1615 ** only (do not do a complete rollback) then 1616 ** cause sqlite3_step() to return immediately 1617 ** with SQLITE_CONSTRAINT. 1618 ** 1619 ** any FAIL Sqlite3_step() returns immediately with a 1620 ** return code of SQLITE_CONSTRAINT. The 1621 ** transaction is not rolled back and any 1622 ** changes to prior rows are retained. 1623 ** 1624 ** any IGNORE The attempt in insert or update the current 1625 ** row is skipped, without throwing an error. 1626 ** Processing continues with the next row. 1627 ** (There is an immediate jump to ignoreDest.) 1628 ** 1629 ** NOT NULL REPLACE The NULL value is replace by the default 1630 ** value for that column. If the default value 1631 ** is NULL, the action is the same as ABORT. 1632 ** 1633 ** UNIQUE REPLACE The other row that conflicts with the row 1634 ** being inserted is removed. 1635 ** 1636 ** CHECK REPLACE Illegal. The results in an exception. 1637 ** 1638 ** Which action to take is determined by the overrideError parameter. 1639 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1640 ** is used. Or if pParse->onError==OE_Default then the onError value 1641 ** for the constraint is used. 1642 */ 1643 void sqlite3GenerateConstraintChecks( 1644 Parse *pParse, /* The parser context */ 1645 Table *pTab, /* The table being inserted or updated */ 1646 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1647 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1648 int iIdxCur, /* First index cursor */ 1649 int regNewData, /* First register in a range holding values to insert */ 1650 int regOldData, /* Previous content. 0 for INSERTs */ 1651 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1652 u8 overrideError, /* Override onError to this if not OE_Default */ 1653 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1654 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1655 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1656 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1657 ){ 1658 Vdbe *v; /* VDBE under constrution */ 1659 Index *pIdx; /* Pointer to one of the indices */ 1660 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1661 sqlite3 *db; /* Database connection */ 1662 int i; /* loop counter */ 1663 int ix; /* Index loop counter */ 1664 int nCol; /* Number of columns */ 1665 int onError; /* Conflict resolution strategy */ 1666 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1667 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1668 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1669 u8 isUpdate; /* True if this is an UPDATE operation */ 1670 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1671 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1672 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1673 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1674 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1675 /* Variables associated with retesting uniqueness constraints after 1676 ** replace triggers fire have run */ 1677 int regTrigCnt; /* Register used to count replace trigger invocations */ 1678 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1679 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1680 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1681 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1682 IndexIterator sIdxIter; /* Index iterator */ 1683 1684 isUpdate = regOldData!=0; 1685 db = pParse->db; 1686 v = pParse->pVdbe; 1687 assert( v!=0 ); 1688 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1689 nCol = pTab->nCol; 1690 1691 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1692 ** normal rowid tables. nPkField is the number of key fields in the 1693 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1694 ** number of fields in the true primary key of the table. */ 1695 if( HasRowid(pTab) ){ 1696 pPk = 0; 1697 nPkField = 1; 1698 }else{ 1699 pPk = sqlite3PrimaryKeyIndex(pTab); 1700 nPkField = pPk->nKeyCol; 1701 } 1702 1703 /* Record that this module has started */ 1704 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1705 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1706 1707 /* Test all NOT NULL constraints. 1708 */ 1709 if( pTab->tabFlags & TF_HasNotNull ){ 1710 int b2ndPass = 0; /* True if currently running 2nd pass */ 1711 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1712 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1713 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1714 for(i=0; i<nCol; i++){ 1715 int iReg; /* Register holding column value */ 1716 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1717 int isGenerated; /* non-zero if column is generated */ 1718 onError = pCol->notNull; 1719 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1720 if( i==pTab->iPKey ){ 1721 continue; /* ROWID is never NULL */ 1722 } 1723 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1724 if( isGenerated && !b2ndPass ){ 1725 nGenerated++; 1726 continue; /* Generated columns processed on 2nd pass */ 1727 } 1728 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1729 /* Do not check NOT NULL on columns that do not change */ 1730 continue; 1731 } 1732 if( overrideError!=OE_Default ){ 1733 onError = overrideError; 1734 }else if( onError==OE_Default ){ 1735 onError = OE_Abort; 1736 } 1737 if( onError==OE_Replace ){ 1738 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1739 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1740 ){ 1741 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1742 testcase( pCol->colFlags & COLFLAG_STORED ); 1743 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1744 onError = OE_Abort; 1745 }else{ 1746 assert( !isGenerated ); 1747 } 1748 }else if( b2ndPass && !isGenerated ){ 1749 continue; 1750 } 1751 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1752 || onError==OE_Ignore || onError==OE_Replace ); 1753 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1754 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1755 switch( onError ){ 1756 case OE_Replace: { 1757 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1758 VdbeCoverage(v); 1759 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1760 nSeenReplace++; 1761 sqlite3ExprCodeCopy(pParse, 1762 sqlite3ColumnExpr(pTab, pCol), iReg); 1763 sqlite3VdbeJumpHere(v, addr1); 1764 break; 1765 } 1766 case OE_Abort: 1767 sqlite3MayAbort(pParse); 1768 /* no break */ deliberate_fall_through 1769 case OE_Rollback: 1770 case OE_Fail: { 1771 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1772 pCol->zCnName); 1773 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1774 onError, iReg); 1775 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1776 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1777 VdbeCoverage(v); 1778 break; 1779 } 1780 default: { 1781 assert( onError==OE_Ignore ); 1782 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1783 VdbeCoverage(v); 1784 break; 1785 } 1786 } /* end switch(onError) */ 1787 } /* end loop i over columns */ 1788 if( nGenerated==0 && nSeenReplace==0 ){ 1789 /* If there are no generated columns with NOT NULL constraints 1790 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1791 ** pass is sufficient */ 1792 break; 1793 } 1794 if( b2ndPass ) break; /* Never need more than 2 passes */ 1795 b2ndPass = 1; 1796 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1797 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1798 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1799 ** first pass, recomputed values for all generated columns, as 1800 ** those values might depend on columns affected by the REPLACE. 1801 */ 1802 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1803 } 1804 #endif 1805 } /* end of 2-pass loop */ 1806 } /* end if( has-not-null-constraints ) */ 1807 1808 /* Test all CHECK constraints 1809 */ 1810 #ifndef SQLITE_OMIT_CHECK 1811 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1812 ExprList *pCheck = pTab->pCheck; 1813 pParse->iSelfTab = -(regNewData+1); 1814 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1815 for(i=0; i<pCheck->nExpr; i++){ 1816 int allOk; 1817 Expr *pCopy; 1818 Expr *pExpr = pCheck->a[i].pExpr; 1819 if( aiChng 1820 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1821 ){ 1822 /* The check constraints do not reference any of the columns being 1823 ** updated so there is no point it verifying the check constraint */ 1824 continue; 1825 } 1826 if( bAffinityDone==0 ){ 1827 sqlite3TableAffinity(v, pTab, regNewData+1); 1828 bAffinityDone = 1; 1829 } 1830 allOk = sqlite3VdbeMakeLabel(pParse); 1831 sqlite3VdbeVerifyAbortable(v, onError); 1832 pCopy = sqlite3ExprDup(db, pExpr, 0); 1833 if( !db->mallocFailed ){ 1834 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1835 } 1836 sqlite3ExprDelete(db, pCopy); 1837 if( onError==OE_Ignore ){ 1838 sqlite3VdbeGoto(v, ignoreDest); 1839 }else{ 1840 char *zName = pCheck->a[i].zEName; 1841 assert( zName!=0 || pParse->db->mallocFailed ); 1842 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1843 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1844 onError, zName, P4_TRANSIENT, 1845 P5_ConstraintCheck); 1846 } 1847 sqlite3VdbeResolveLabel(v, allOk); 1848 } 1849 pParse->iSelfTab = 0; 1850 } 1851 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1852 1853 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1854 ** order: 1855 ** 1856 ** (1) OE_Update 1857 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1858 ** (3) OE_Replace 1859 ** 1860 ** OE_Fail and OE_Ignore must happen before any changes are made. 1861 ** OE_Update guarantees that only a single row will change, so it 1862 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1863 ** could happen in any order, but they are grouped up front for 1864 ** convenience. 1865 ** 1866 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1867 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1868 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1869 ** constraint before any others, so it had to be moved. 1870 ** 1871 ** Constraint checking code is generated in this order: 1872 ** (A) The rowid constraint 1873 ** (B) Unique index constraints that do not have OE_Replace as their 1874 ** default conflict resolution strategy 1875 ** (C) Unique index that do use OE_Replace by default. 1876 ** 1877 ** The ordering of (2) and (3) is accomplished by making sure the linked 1878 ** list of indexes attached to a table puts all OE_Replace indexes last 1879 ** in the list. See sqlite3CreateIndex() for where that happens. 1880 */ 1881 sIdxIter.eType = 0; 1882 sIdxIter.i = 0; 1883 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1884 sIdxIter.u.lx.pIdx = pTab->pIndex; 1885 if( pUpsert ){ 1886 if( pUpsert->pUpsertTarget==0 ){ 1887 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1888 assert( pUpsert->pNextUpsert==0 ); 1889 if( pUpsert->isDoUpdate==0 ){ 1890 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1891 ** Make all unique constraint resolution be OE_Ignore */ 1892 overrideError = OE_Ignore; 1893 pUpsert = 0; 1894 }else{ 1895 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1896 overrideError = OE_Update; 1897 } 1898 }else if( pTab->pIndex!=0 ){ 1899 /* Otherwise, we'll need to run the IndexListTerm array version of the 1900 ** iterator to ensure that all of the ON CONFLICT conditions are 1901 ** checked first and in order. */ 1902 int nIdx, jj; 1903 u64 nByte; 1904 Upsert *pTerm; 1905 u8 *bUsed; 1906 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1907 assert( aRegIdx[nIdx]>0 ); 1908 } 1909 sIdxIter.eType = 1; 1910 sIdxIter.u.ax.nIdx = nIdx; 1911 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1912 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1913 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1914 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1915 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1916 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1917 if( pTerm->pUpsertTarget==0 ) break; 1918 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1919 jj = 0; 1920 pIdx = pTab->pIndex; 1921 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1922 pIdx = pIdx->pNext; 1923 jj++; 1924 } 1925 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1926 bUsed[jj] = 1; 1927 sIdxIter.u.ax.aIdx[i].p = pIdx; 1928 sIdxIter.u.ax.aIdx[i].ix = jj; 1929 i++; 1930 } 1931 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1932 if( bUsed[jj] ) continue; 1933 sIdxIter.u.ax.aIdx[i].p = pIdx; 1934 sIdxIter.u.ax.aIdx[i].ix = jj; 1935 i++; 1936 } 1937 assert( i==nIdx ); 1938 } 1939 } 1940 1941 /* Determine if it is possible that triggers (either explicitly coded 1942 ** triggers or FK resolution actions) might run as a result of deletes 1943 ** that happen when OE_Replace conflict resolution occurs. (Call these 1944 ** "replace triggers".) If any replace triggers run, we will need to 1945 ** recheck all of the uniqueness constraints after they have all run. 1946 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1947 ** 1948 ** If replace triggers are a possibility, then 1949 ** 1950 ** (1) Allocate register regTrigCnt and initialize it to zero. 1951 ** That register will count the number of replace triggers that 1952 ** fire. Constraint recheck only occurs if the number is positive. 1953 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1954 ** (3) Initialize addrRecheck and lblRecheckOk 1955 ** 1956 ** The uniqueness rechecking code will create a series of tests to run 1957 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1958 ** used to link together these tests which are separated from each other 1959 ** in the generate bytecode. 1960 */ 1961 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1962 /* There are not DELETE triggers nor FK constraints. No constraint 1963 ** rechecks are needed. */ 1964 pTrigger = 0; 1965 regTrigCnt = 0; 1966 }else{ 1967 if( db->flags&SQLITE_RecTriggers ){ 1968 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1969 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1970 }else{ 1971 pTrigger = 0; 1972 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1973 } 1974 if( regTrigCnt ){ 1975 /* Replace triggers might exist. Allocate the counter and 1976 ** initialize it to zero. */ 1977 regTrigCnt = ++pParse->nMem; 1978 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1979 VdbeComment((v, "trigger count")); 1980 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1981 addrRecheck = lblRecheckOk; 1982 } 1983 } 1984 1985 /* If rowid is changing, make sure the new rowid does not previously 1986 ** exist in the table. 1987 */ 1988 if( pkChng && pPk==0 ){ 1989 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1990 1991 /* Figure out what action to take in case of a rowid collision */ 1992 onError = pTab->keyConf; 1993 if( overrideError!=OE_Default ){ 1994 onError = overrideError; 1995 }else if( onError==OE_Default ){ 1996 onError = OE_Abort; 1997 } 1998 1999 /* figure out whether or not upsert applies in this case */ 2000 if( pUpsert ){ 2001 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 2002 if( pUpsertClause!=0 ){ 2003 if( pUpsertClause->isDoUpdate==0 ){ 2004 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2005 }else{ 2006 onError = OE_Update; /* DO UPDATE */ 2007 } 2008 } 2009 if( pUpsertClause!=pUpsert ){ 2010 /* The first ON CONFLICT clause has a conflict target other than 2011 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2012 ** and then come back here and deal with the IPK afterwards */ 2013 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2014 } 2015 } 2016 2017 /* If the response to a rowid conflict is REPLACE but the response 2018 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2019 ** to defer the running of the rowid conflict checking until after 2020 ** the UNIQUE constraints have run. 2021 */ 2022 if( onError==OE_Replace /* IPK rule is REPLACE */ 2023 && onError!=overrideError /* Rules for other constraints are different */ 2024 && pTab->pIndex /* There exist other constraints */ 2025 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2026 ){ 2027 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2028 VdbeComment((v, "defer IPK REPLACE until last")); 2029 } 2030 2031 if( isUpdate ){ 2032 /* pkChng!=0 does not mean that the rowid has changed, only that 2033 ** it might have changed. Skip the conflict logic below if the rowid 2034 ** is unchanged. */ 2035 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2036 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2037 VdbeCoverage(v); 2038 } 2039 2040 /* Check to see if the new rowid already exists in the table. Skip 2041 ** the following conflict logic if it does not. */ 2042 VdbeNoopComment((v, "uniqueness check for ROWID")); 2043 sqlite3VdbeVerifyAbortable(v, onError); 2044 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2045 VdbeCoverage(v); 2046 2047 switch( onError ){ 2048 default: { 2049 onError = OE_Abort; 2050 /* no break */ deliberate_fall_through 2051 } 2052 case OE_Rollback: 2053 case OE_Abort: 2054 case OE_Fail: { 2055 testcase( onError==OE_Rollback ); 2056 testcase( onError==OE_Abort ); 2057 testcase( onError==OE_Fail ); 2058 sqlite3RowidConstraint(pParse, onError, pTab); 2059 break; 2060 } 2061 case OE_Replace: { 2062 /* If there are DELETE triggers on this table and the 2063 ** recursive-triggers flag is set, call GenerateRowDelete() to 2064 ** remove the conflicting row from the table. This will fire 2065 ** the triggers and remove both the table and index b-tree entries. 2066 ** 2067 ** Otherwise, if there are no triggers or the recursive-triggers 2068 ** flag is not set, but the table has one or more indexes, call 2069 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2070 ** only. The table b-tree entry will be replaced by the new entry 2071 ** when it is inserted. 2072 ** 2073 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2074 ** also invoke MultiWrite() to indicate that this VDBE may require 2075 ** statement rollback (if the statement is aborted after the delete 2076 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2077 ** but being more selective here allows statements like: 2078 ** 2079 ** REPLACE INTO t(rowid) VALUES($newrowid) 2080 ** 2081 ** to run without a statement journal if there are no indexes on the 2082 ** table. 2083 */ 2084 if( regTrigCnt ){ 2085 sqlite3MultiWrite(pParse); 2086 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2087 regNewData, 1, 0, OE_Replace, 1, -1); 2088 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2089 nReplaceTrig++; 2090 }else{ 2091 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2092 assert( HasRowid(pTab) ); 2093 /* This OP_Delete opcode fires the pre-update-hook only. It does 2094 ** not modify the b-tree. It is more efficient to let the coming 2095 ** OP_Insert replace the existing entry than it is to delete the 2096 ** existing entry and then insert a new one. */ 2097 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2098 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2099 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2100 if( pTab->pIndex ){ 2101 sqlite3MultiWrite(pParse); 2102 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2103 } 2104 } 2105 seenReplace = 1; 2106 break; 2107 } 2108 #ifndef SQLITE_OMIT_UPSERT 2109 case OE_Update: { 2110 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2111 /* no break */ deliberate_fall_through 2112 } 2113 #endif 2114 case OE_Ignore: { 2115 testcase( onError==OE_Ignore ); 2116 sqlite3VdbeGoto(v, ignoreDest); 2117 break; 2118 } 2119 } 2120 sqlite3VdbeResolveLabel(v, addrRowidOk); 2121 if( pUpsert && pUpsertClause!=pUpsert ){ 2122 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2123 }else if( ipkTop ){ 2124 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2125 sqlite3VdbeJumpHere(v, ipkTop-1); 2126 } 2127 } 2128 2129 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2130 ** index and making sure that duplicate entries do not already exist. 2131 ** Compute the revised record entries for indices as we go. 2132 ** 2133 ** This loop also handles the case of the PRIMARY KEY index for a 2134 ** WITHOUT ROWID table. 2135 */ 2136 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2137 pIdx; 2138 pIdx = indexIteratorNext(&sIdxIter, &ix) 2139 ){ 2140 int regIdx; /* Range of registers hold conent for pIdx */ 2141 int regR; /* Range of registers holding conflicting PK */ 2142 int iThisCur; /* Cursor for this UNIQUE index */ 2143 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2144 int addrConflictCk; /* First opcode in the conflict check logic */ 2145 2146 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2147 if( pUpsert ){ 2148 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2149 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2150 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2151 } 2152 } 2153 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2154 if( bAffinityDone==0 ){ 2155 sqlite3TableAffinity(v, pTab, regNewData+1); 2156 bAffinityDone = 1; 2157 } 2158 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2159 iThisCur = iIdxCur+ix; 2160 2161 2162 /* Skip partial indices for which the WHERE clause is not true */ 2163 if( pIdx->pPartIdxWhere ){ 2164 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2165 pParse->iSelfTab = -(regNewData+1); 2166 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2167 SQLITE_JUMPIFNULL); 2168 pParse->iSelfTab = 0; 2169 } 2170 2171 /* Create a record for this index entry as it should appear after 2172 ** the insert or update. Store that record in the aRegIdx[ix] register 2173 */ 2174 regIdx = aRegIdx[ix]+1; 2175 for(i=0; i<pIdx->nColumn; i++){ 2176 int iField = pIdx->aiColumn[i]; 2177 int x; 2178 if( iField==XN_EXPR ){ 2179 pParse->iSelfTab = -(regNewData+1); 2180 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2181 pParse->iSelfTab = 0; 2182 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2183 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2184 x = regNewData; 2185 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2186 VdbeComment((v, "rowid")); 2187 }else{ 2188 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2189 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2190 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2191 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2192 } 2193 } 2194 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2195 VdbeComment((v, "for %s", pIdx->zName)); 2196 #ifdef SQLITE_ENABLE_NULL_TRIM 2197 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2198 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2199 } 2200 #endif 2201 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2202 2203 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2204 ** of a WITHOUT ROWID table and there has been no change the 2205 ** primary key, then no collision is possible. The collision detection 2206 ** logic below can all be skipped. */ 2207 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2208 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2209 continue; 2210 } 2211 2212 /* Find out what action to take in case there is a uniqueness conflict */ 2213 onError = pIdx->onError; 2214 if( onError==OE_None ){ 2215 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2216 continue; /* pIdx is not a UNIQUE index */ 2217 } 2218 if( overrideError!=OE_Default ){ 2219 onError = overrideError; 2220 }else if( onError==OE_Default ){ 2221 onError = OE_Abort; 2222 } 2223 2224 /* Figure out if the upsert clause applies to this index */ 2225 if( pUpsertClause ){ 2226 if( pUpsertClause->isDoUpdate==0 ){ 2227 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2228 }else{ 2229 onError = OE_Update; /* DO UPDATE */ 2230 } 2231 } 2232 2233 /* Collision detection may be omitted if all of the following are true: 2234 ** (1) The conflict resolution algorithm is REPLACE 2235 ** (2) The table is a WITHOUT ROWID table 2236 ** (3) There are no secondary indexes on the table 2237 ** (4) No delete triggers need to be fired if there is a conflict 2238 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2239 ** 2240 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2241 ** must be explicitly deleted in order to ensure any pre-update hook 2242 ** is invoked. */ 2243 assert( IsOrdinaryTable(pTab) ); 2244 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2245 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2246 && pPk==pIdx /* Condition 2 */ 2247 && onError==OE_Replace /* Condition 1 */ 2248 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2249 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2250 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2251 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2252 ){ 2253 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2254 continue; 2255 } 2256 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2257 2258 /* Check to see if the new index entry will be unique */ 2259 sqlite3VdbeVerifyAbortable(v, onError); 2260 addrConflictCk = 2261 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2262 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2263 2264 /* Generate code to handle collisions */ 2265 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2266 if( isUpdate || onError==OE_Replace ){ 2267 if( HasRowid(pTab) ){ 2268 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2269 /* Conflict only if the rowid of the existing index entry 2270 ** is different from old-rowid */ 2271 if( isUpdate ){ 2272 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2273 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2274 VdbeCoverage(v); 2275 } 2276 }else{ 2277 int x; 2278 /* Extract the PRIMARY KEY from the end of the index entry and 2279 ** store it in registers regR..regR+nPk-1 */ 2280 if( pIdx!=pPk ){ 2281 for(i=0; i<pPk->nKeyCol; i++){ 2282 assert( pPk->aiColumn[i]>=0 ); 2283 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2284 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2285 VdbeComment((v, "%s.%s", pTab->zName, 2286 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2287 } 2288 } 2289 if( isUpdate ){ 2290 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2291 ** table, only conflict if the new PRIMARY KEY values are actually 2292 ** different from the old. See TH3 withoutrowid04.test. 2293 ** 2294 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2295 ** of the matched index row are different from the original PRIMARY 2296 ** KEY values of this row before the update. */ 2297 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2298 int op = OP_Ne; 2299 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2300 2301 for(i=0; i<pPk->nKeyCol; i++){ 2302 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2303 x = pPk->aiColumn[i]; 2304 assert( x>=0 ); 2305 if( i==(pPk->nKeyCol-1) ){ 2306 addrJump = addrUniqueOk; 2307 op = OP_Eq; 2308 } 2309 x = sqlite3TableColumnToStorage(pTab, x); 2310 sqlite3VdbeAddOp4(v, op, 2311 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2312 ); 2313 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2314 VdbeCoverageIf(v, op==OP_Eq); 2315 VdbeCoverageIf(v, op==OP_Ne); 2316 } 2317 } 2318 } 2319 } 2320 2321 /* Generate code that executes if the new index entry is not unique */ 2322 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2323 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2324 switch( onError ){ 2325 case OE_Rollback: 2326 case OE_Abort: 2327 case OE_Fail: { 2328 testcase( onError==OE_Rollback ); 2329 testcase( onError==OE_Abort ); 2330 testcase( onError==OE_Fail ); 2331 sqlite3UniqueConstraint(pParse, onError, pIdx); 2332 break; 2333 } 2334 #ifndef SQLITE_OMIT_UPSERT 2335 case OE_Update: { 2336 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2337 /* no break */ deliberate_fall_through 2338 } 2339 #endif 2340 case OE_Ignore: { 2341 testcase( onError==OE_Ignore ); 2342 sqlite3VdbeGoto(v, ignoreDest); 2343 break; 2344 } 2345 default: { 2346 int nConflictCk; /* Number of opcodes in conflict check logic */ 2347 2348 assert( onError==OE_Replace ); 2349 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2350 assert( nConflictCk>0 || db->mallocFailed ); 2351 testcase( nConflictCk<=0 ); 2352 testcase( nConflictCk>1 ); 2353 if( regTrigCnt ){ 2354 sqlite3MultiWrite(pParse); 2355 nReplaceTrig++; 2356 } 2357 if( pTrigger && isUpdate ){ 2358 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2359 } 2360 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2361 regR, nPkField, 0, OE_Replace, 2362 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2363 if( pTrigger && isUpdate ){ 2364 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2365 } 2366 if( regTrigCnt ){ 2367 int addrBypass; /* Jump destination to bypass recheck logic */ 2368 2369 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2370 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2371 VdbeComment((v, "bypass recheck")); 2372 2373 /* Here we insert code that will be invoked after all constraint 2374 ** checks have run, if and only if one or more replace triggers 2375 ** fired. */ 2376 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2377 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2378 if( pIdx->pPartIdxWhere ){ 2379 /* Bypass the recheck if this partial index is not defined 2380 ** for the current row */ 2381 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2382 VdbeCoverage(v); 2383 } 2384 /* Copy the constraint check code from above, except change 2385 ** the constraint-ok jump destination to be the address of 2386 ** the next retest block */ 2387 while( nConflictCk>0 ){ 2388 VdbeOp x; /* Conflict check opcode to copy */ 2389 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2390 ** Hence, make a complete copy of the opcode, rather than using 2391 ** a pointer to the opcode. */ 2392 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2393 if( x.opcode!=OP_IdxRowid ){ 2394 int p2; /* New P2 value for copied conflict check opcode */ 2395 const char *zP4; 2396 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2397 p2 = lblRecheckOk; 2398 }else{ 2399 p2 = x.p2; 2400 } 2401 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2402 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2403 sqlite3VdbeChangeP5(v, x.p5); 2404 VdbeCoverageIf(v, p2!=x.p2); 2405 } 2406 nConflictCk--; 2407 addrConflictCk++; 2408 } 2409 /* If the retest fails, issue an abort */ 2410 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2411 2412 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2413 } 2414 seenReplace = 1; 2415 break; 2416 } 2417 } 2418 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2419 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2420 if( pUpsertClause 2421 && upsertIpkReturn 2422 && sqlite3UpsertNextIsIPK(pUpsertClause) 2423 ){ 2424 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2425 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2426 upsertIpkReturn = 0; 2427 } 2428 } 2429 2430 /* If the IPK constraint is a REPLACE, run it last */ 2431 if( ipkTop ){ 2432 sqlite3VdbeGoto(v, ipkTop); 2433 VdbeComment((v, "Do IPK REPLACE")); 2434 assert( ipkBottom>0 ); 2435 sqlite3VdbeJumpHere(v, ipkBottom); 2436 } 2437 2438 /* Recheck all uniqueness constraints after replace triggers have run */ 2439 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2440 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2441 if( nReplaceTrig ){ 2442 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2443 if( !pPk ){ 2444 if( isUpdate ){ 2445 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2446 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2447 VdbeCoverage(v); 2448 } 2449 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2450 VdbeCoverage(v); 2451 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2452 }else{ 2453 sqlite3VdbeGoto(v, addrRecheck); 2454 } 2455 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2456 } 2457 2458 /* Generate the table record */ 2459 if( HasRowid(pTab) ){ 2460 int regRec = aRegIdx[ix]; 2461 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2462 sqlite3SetMakeRecordP5(v, pTab); 2463 if( !bAffinityDone ){ 2464 sqlite3TableAffinity(v, pTab, 0); 2465 } 2466 } 2467 2468 *pbMayReplace = seenReplace; 2469 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2470 } 2471 2472 #ifdef SQLITE_ENABLE_NULL_TRIM 2473 /* 2474 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2475 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2476 ** 2477 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2478 */ 2479 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2480 u16 i; 2481 2482 /* Records with omitted columns are only allowed for schema format 2483 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2484 if( pTab->pSchema->file_format<2 ) return; 2485 2486 for(i=pTab->nCol-1; i>0; i--){ 2487 if( pTab->aCol[i].iDflt!=0 ) break; 2488 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2489 } 2490 sqlite3VdbeChangeP5(v, i+1); 2491 } 2492 #endif 2493 2494 /* 2495 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2496 ** number is iCur, and register regData contains the new record for the 2497 ** PK index. This function adds code to invoke the pre-update hook, 2498 ** if one is registered. 2499 */ 2500 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2501 static void codeWithoutRowidPreupdate( 2502 Parse *pParse, /* Parse context */ 2503 Table *pTab, /* Table being updated */ 2504 int iCur, /* Cursor number for table */ 2505 int regData /* Data containing new record */ 2506 ){ 2507 Vdbe *v = pParse->pVdbe; 2508 int r = sqlite3GetTempReg(pParse); 2509 assert( !HasRowid(pTab) ); 2510 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2511 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2512 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2513 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2514 sqlite3ReleaseTempReg(pParse, r); 2515 } 2516 #else 2517 # define codeWithoutRowidPreupdate(a,b,c,d) 2518 #endif 2519 2520 /* 2521 ** This routine generates code to finish the INSERT or UPDATE operation 2522 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2523 ** A consecutive range of registers starting at regNewData contains the 2524 ** rowid and the content to be inserted. 2525 ** 2526 ** The arguments to this routine should be the same as the first six 2527 ** arguments to sqlite3GenerateConstraintChecks. 2528 */ 2529 void sqlite3CompleteInsertion( 2530 Parse *pParse, /* The parser context */ 2531 Table *pTab, /* the table into which we are inserting */ 2532 int iDataCur, /* Cursor of the canonical data source */ 2533 int iIdxCur, /* First index cursor */ 2534 int regNewData, /* Range of content */ 2535 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2536 int update_flags, /* True for UPDATE, False for INSERT */ 2537 int appendBias, /* True if this is likely to be an append */ 2538 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2539 ){ 2540 Vdbe *v; /* Prepared statements under construction */ 2541 Index *pIdx; /* An index being inserted or updated */ 2542 u8 pik_flags; /* flag values passed to the btree insert */ 2543 int i; /* Loop counter */ 2544 2545 assert( update_flags==0 2546 || update_flags==OPFLAG_ISUPDATE 2547 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2548 ); 2549 2550 v = pParse->pVdbe; 2551 assert( v!=0 ); 2552 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2553 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2554 /* All REPLACE indexes are at the end of the list */ 2555 assert( pIdx->onError!=OE_Replace 2556 || pIdx->pNext==0 2557 || pIdx->pNext->onError==OE_Replace ); 2558 if( aRegIdx[i]==0 ) continue; 2559 if( pIdx->pPartIdxWhere ){ 2560 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2561 VdbeCoverage(v); 2562 } 2563 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2564 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2565 pik_flags |= OPFLAG_NCHANGE; 2566 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2567 if( update_flags==0 ){ 2568 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2569 } 2570 } 2571 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2572 aRegIdx[i]+1, 2573 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2574 sqlite3VdbeChangeP5(v, pik_flags); 2575 } 2576 if( !HasRowid(pTab) ) return; 2577 if( pParse->nested ){ 2578 pik_flags = 0; 2579 }else{ 2580 pik_flags = OPFLAG_NCHANGE; 2581 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2582 } 2583 if( appendBias ){ 2584 pik_flags |= OPFLAG_APPEND; 2585 } 2586 if( useSeekResult ){ 2587 pik_flags |= OPFLAG_USESEEKRESULT; 2588 } 2589 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2590 if( !pParse->nested ){ 2591 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2592 } 2593 sqlite3VdbeChangeP5(v, pik_flags); 2594 } 2595 2596 /* 2597 ** Allocate cursors for the pTab table and all its indices and generate 2598 ** code to open and initialized those cursors. 2599 ** 2600 ** The cursor for the object that contains the complete data (normally 2601 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2602 ** ROWID table) is returned in *piDataCur. The first index cursor is 2603 ** returned in *piIdxCur. The number of indices is returned. 2604 ** 2605 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2606 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2607 ** If iBase is negative, then allocate the next available cursor. 2608 ** 2609 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2610 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2611 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2612 ** pTab->pIndex list. 2613 ** 2614 ** If pTab is a virtual table, then this routine is a no-op and the 2615 ** *piDataCur and *piIdxCur values are left uninitialized. 2616 */ 2617 int sqlite3OpenTableAndIndices( 2618 Parse *pParse, /* Parsing context */ 2619 Table *pTab, /* Table to be opened */ 2620 int op, /* OP_OpenRead or OP_OpenWrite */ 2621 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2622 int iBase, /* Use this for the table cursor, if there is one */ 2623 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2624 int *piDataCur, /* Write the database source cursor number here */ 2625 int *piIdxCur /* Write the first index cursor number here */ 2626 ){ 2627 int i; 2628 int iDb; 2629 int iDataCur; 2630 Index *pIdx; 2631 Vdbe *v; 2632 2633 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2634 assert( op==OP_OpenWrite || p5==0 ); 2635 if( IsVirtual(pTab) ){ 2636 /* This routine is a no-op for virtual tables. Leave the output 2637 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2638 ** for improved error detection. */ 2639 *piDataCur = *piIdxCur = -999; 2640 return 0; 2641 } 2642 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2643 v = pParse->pVdbe; 2644 assert( v!=0 ); 2645 if( iBase<0 ) iBase = pParse->nTab; 2646 iDataCur = iBase++; 2647 if( piDataCur ) *piDataCur = iDataCur; 2648 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2649 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2650 }else{ 2651 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2652 } 2653 if( piIdxCur ) *piIdxCur = iBase; 2654 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2655 int iIdxCur = iBase++; 2656 assert( pIdx->pSchema==pTab->pSchema ); 2657 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2658 if( piDataCur ) *piDataCur = iIdxCur; 2659 p5 = 0; 2660 } 2661 if( aToOpen==0 || aToOpen[i+1] ){ 2662 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2663 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2664 sqlite3VdbeChangeP5(v, p5); 2665 VdbeComment((v, "%s", pIdx->zName)); 2666 } 2667 } 2668 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2669 return i; 2670 } 2671 2672 2673 #ifdef SQLITE_TEST 2674 /* 2675 ** The following global variable is incremented whenever the 2676 ** transfer optimization is used. This is used for testing 2677 ** purposes only - to make sure the transfer optimization really 2678 ** is happening when it is supposed to. 2679 */ 2680 int sqlite3_xferopt_count; 2681 #endif /* SQLITE_TEST */ 2682 2683 2684 #ifndef SQLITE_OMIT_XFER_OPT 2685 /* 2686 ** Check to see if index pSrc is compatible as a source of data 2687 ** for index pDest in an insert transfer optimization. The rules 2688 ** for a compatible index: 2689 ** 2690 ** * The index is over the same set of columns 2691 ** * The same DESC and ASC markings occurs on all columns 2692 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2693 ** * The same collating sequence on each column 2694 ** * The index has the exact same WHERE clause 2695 */ 2696 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2697 int i; 2698 assert( pDest && pSrc ); 2699 assert( pDest->pTable!=pSrc->pTable ); 2700 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2701 return 0; /* Different number of columns */ 2702 } 2703 if( pDest->onError!=pSrc->onError ){ 2704 return 0; /* Different conflict resolution strategies */ 2705 } 2706 for(i=0; i<pSrc->nKeyCol; i++){ 2707 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2708 return 0; /* Different columns indexed */ 2709 } 2710 if( pSrc->aiColumn[i]==XN_EXPR ){ 2711 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2712 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2713 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2714 return 0; /* Different expressions in the index */ 2715 } 2716 } 2717 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2718 return 0; /* Different sort orders */ 2719 } 2720 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2721 return 0; /* Different collating sequences */ 2722 } 2723 } 2724 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2725 return 0; /* Different WHERE clauses */ 2726 } 2727 2728 /* If no test above fails then the indices must be compatible */ 2729 return 1; 2730 } 2731 2732 /* 2733 ** Attempt the transfer optimization on INSERTs of the form 2734 ** 2735 ** INSERT INTO tab1 SELECT * FROM tab2; 2736 ** 2737 ** The xfer optimization transfers raw records from tab2 over to tab1. 2738 ** Columns are not decoded and reassembled, which greatly improves 2739 ** performance. Raw index records are transferred in the same way. 2740 ** 2741 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2742 ** There are lots of rules for determining compatibility - see comments 2743 ** embedded in the code for details. 2744 ** 2745 ** This routine returns TRUE if the optimization is guaranteed to be used. 2746 ** Sometimes the xfer optimization will only work if the destination table 2747 ** is empty - a factor that can only be determined at run-time. In that 2748 ** case, this routine generates code for the xfer optimization but also 2749 ** does a test to see if the destination table is empty and jumps over the 2750 ** xfer optimization code if the test fails. In that case, this routine 2751 ** returns FALSE so that the caller will know to go ahead and generate 2752 ** an unoptimized transfer. This routine also returns FALSE if there 2753 ** is no chance that the xfer optimization can be applied. 2754 ** 2755 ** This optimization is particularly useful at making VACUUM run faster. 2756 */ 2757 static int xferOptimization( 2758 Parse *pParse, /* Parser context */ 2759 Table *pDest, /* The table we are inserting into */ 2760 Select *pSelect, /* A SELECT statement to use as the data source */ 2761 int onError, /* How to handle constraint errors */ 2762 int iDbDest /* The database of pDest */ 2763 ){ 2764 sqlite3 *db = pParse->db; 2765 ExprList *pEList; /* The result set of the SELECT */ 2766 Table *pSrc; /* The table in the FROM clause of SELECT */ 2767 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2768 SrcItem *pItem; /* An element of pSelect->pSrc */ 2769 int i; /* Loop counter */ 2770 int iDbSrc; /* The database of pSrc */ 2771 int iSrc, iDest; /* Cursors from source and destination */ 2772 int addr1, addr2; /* Loop addresses */ 2773 int emptyDestTest = 0; /* Address of test for empty pDest */ 2774 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2775 Vdbe *v; /* The VDBE we are building */ 2776 int regAutoinc; /* Memory register used by AUTOINC */ 2777 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2778 int regData, regRowid; /* Registers holding data and rowid */ 2779 2780 assert( pSelect!=0 ); 2781 if( pParse->pWith || pSelect->pWith ){ 2782 /* Do not attempt to process this query if there are an WITH clauses 2783 ** attached to it. Proceeding may generate a false "no such table: xxx" 2784 ** error if pSelect reads from a CTE named "xxx". */ 2785 return 0; 2786 } 2787 #ifndef SQLITE_OMIT_VIRTUALTABLE 2788 if( IsVirtual(pDest) ){ 2789 return 0; /* tab1 must not be a virtual table */ 2790 } 2791 #endif 2792 if( onError==OE_Default ){ 2793 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2794 if( onError==OE_Default ) onError = OE_Abort; 2795 } 2796 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2797 if( pSelect->pSrc->nSrc!=1 ){ 2798 return 0; /* FROM clause must have exactly one term */ 2799 } 2800 if( pSelect->pSrc->a[0].pSelect ){ 2801 return 0; /* FROM clause cannot contain a subquery */ 2802 } 2803 if( pSelect->pWhere ){ 2804 return 0; /* SELECT may not have a WHERE clause */ 2805 } 2806 if( pSelect->pOrderBy ){ 2807 return 0; /* SELECT may not have an ORDER BY clause */ 2808 } 2809 /* Do not need to test for a HAVING clause. If HAVING is present but 2810 ** there is no ORDER BY, we will get an error. */ 2811 if( pSelect->pGroupBy ){ 2812 return 0; /* SELECT may not have a GROUP BY clause */ 2813 } 2814 if( pSelect->pLimit ){ 2815 return 0; /* SELECT may not have a LIMIT clause */ 2816 } 2817 if( pSelect->pPrior ){ 2818 return 0; /* SELECT may not be a compound query */ 2819 } 2820 if( pSelect->selFlags & SF_Distinct ){ 2821 return 0; /* SELECT may not be DISTINCT */ 2822 } 2823 pEList = pSelect->pEList; 2824 assert( pEList!=0 ); 2825 if( pEList->nExpr!=1 ){ 2826 return 0; /* The result set must have exactly one column */ 2827 } 2828 assert( pEList->a[0].pExpr ); 2829 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2830 return 0; /* The result set must be the special operator "*" */ 2831 } 2832 2833 /* At this point we have established that the statement is of the 2834 ** correct syntactic form to participate in this optimization. Now 2835 ** we have to check the semantics. 2836 */ 2837 pItem = pSelect->pSrc->a; 2838 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2839 if( pSrc==0 ){ 2840 return 0; /* FROM clause does not contain a real table */ 2841 } 2842 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2843 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2844 return 0; /* tab1 and tab2 may not be the same table */ 2845 } 2846 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2847 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2848 } 2849 if( !IsOrdinaryTable(pSrc) ){ 2850 return 0; /* tab2 may not be a view or virtual table */ 2851 } 2852 if( pDest->nCol!=pSrc->nCol ){ 2853 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2854 } 2855 if( pDest->iPKey!=pSrc->iPKey ){ 2856 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2857 } 2858 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2859 return 0; /* Cannot feed from a non-strict into a strict table */ 2860 } 2861 for(i=0; i<pDest->nCol; i++){ 2862 Column *pDestCol = &pDest->aCol[i]; 2863 Column *pSrcCol = &pSrc->aCol[i]; 2864 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2865 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2866 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2867 ){ 2868 return 0; /* Neither table may have __hidden__ columns */ 2869 } 2870 #endif 2871 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2872 /* Even if tables t1 and t2 have identical schemas, if they contain 2873 ** generated columns, then this statement is semantically incorrect: 2874 ** 2875 ** INSERT INTO t2 SELECT * FROM t1; 2876 ** 2877 ** The reason is that generated column values are returned by the 2878 ** the SELECT statement on the right but the INSERT statement on the 2879 ** left wants them to be omitted. 2880 ** 2881 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2882 ** to do a bulk transfer all of the content from t1 over to t2. 2883 ** 2884 ** We could, in theory, disable this (except for internal use by the 2885 ** VACUUM command where it is actually needed). But why do that? It 2886 ** seems harmless enough, and provides a useful service. 2887 */ 2888 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2889 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2890 return 0; /* Both columns have the same generated-column type */ 2891 } 2892 /* But the transfer is only allowed if both the source and destination 2893 ** tables have the exact same expressions for generated columns. 2894 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2895 */ 2896 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2897 if( sqlite3ExprCompare(0, 2898 sqlite3ColumnExpr(pSrc, pSrcCol), 2899 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2900 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2901 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2902 return 0; /* Different generator expressions */ 2903 } 2904 } 2905 #endif 2906 if( pDestCol->affinity!=pSrcCol->affinity ){ 2907 return 0; /* Affinity must be the same on all columns */ 2908 } 2909 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2910 sqlite3ColumnColl(pSrcCol))!=0 ){ 2911 return 0; /* Collating sequence must be the same on all columns */ 2912 } 2913 if( pDestCol->notNull && !pSrcCol->notNull ){ 2914 return 0; /* tab2 must be NOT NULL if tab1 is */ 2915 } 2916 /* Default values for second and subsequent columns need to match. */ 2917 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2918 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2919 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2920 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2921 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2922 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2923 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2924 if( (pDestExpr==0)!=(pSrcExpr==0) 2925 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2926 pSrcExpr->u.zToken)!=0) 2927 ){ 2928 return 0; /* Default values must be the same for all columns */ 2929 } 2930 } 2931 } 2932 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2933 if( IsUniqueIndex(pDestIdx) ){ 2934 destHasUniqueIdx = 1; 2935 } 2936 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2937 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2938 } 2939 if( pSrcIdx==0 ){ 2940 return 0; /* pDestIdx has no corresponding index in pSrc */ 2941 } 2942 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2943 && sqlite3FaultSim(411)==SQLITE_OK ){ 2944 /* The sqlite3FaultSim() call allows this corruption test to be 2945 ** bypassed during testing, in order to exercise other corruption tests 2946 ** further downstream. */ 2947 return 0; /* Corrupt schema - two indexes on the same btree */ 2948 } 2949 } 2950 #ifndef SQLITE_OMIT_CHECK 2951 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2952 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2953 } 2954 #endif 2955 #ifndef SQLITE_OMIT_FOREIGN_KEY 2956 /* Disallow the transfer optimization if the destination table constains 2957 ** any foreign key constraints. This is more restrictive than necessary. 2958 ** But the main beneficiary of the transfer optimization is the VACUUM 2959 ** command, and the VACUUM command disables foreign key constraints. So 2960 ** the extra complication to make this rule less restrictive is probably 2961 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2962 */ 2963 assert( IsOrdinaryTable(pDest) ); 2964 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2965 return 0; 2966 } 2967 #endif 2968 if( (db->flags & SQLITE_CountRows)!=0 ){ 2969 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2970 } 2971 2972 /* If we get this far, it means that the xfer optimization is at 2973 ** least a possibility, though it might only work if the destination 2974 ** table (tab1) is initially empty. 2975 */ 2976 #ifdef SQLITE_TEST 2977 sqlite3_xferopt_count++; 2978 #endif 2979 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2980 v = sqlite3GetVdbe(pParse); 2981 sqlite3CodeVerifySchema(pParse, iDbSrc); 2982 iSrc = pParse->nTab++; 2983 iDest = pParse->nTab++; 2984 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2985 regData = sqlite3GetTempReg(pParse); 2986 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2987 regRowid = sqlite3GetTempReg(pParse); 2988 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2989 assert( HasRowid(pDest) || destHasUniqueIdx ); 2990 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2991 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2992 || destHasUniqueIdx /* (2) */ 2993 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2994 )){ 2995 /* In some circumstances, we are able to run the xfer optimization 2996 ** only if the destination table is initially empty. Unless the 2997 ** DBFLAG_Vacuum flag is set, this block generates code to make 2998 ** that determination. If DBFLAG_Vacuum is set, then the destination 2999 ** table is always empty. 3000 ** 3001 ** Conditions under which the destination must be empty: 3002 ** 3003 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 3004 ** (If the destination is not initially empty, the rowid fields 3005 ** of index entries might need to change.) 3006 ** 3007 ** (2) The destination has a unique index. (The xfer optimization 3008 ** is unable to test uniqueness.) 3009 ** 3010 ** (3) onError is something other than OE_Abort and OE_Rollback. 3011 */ 3012 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3013 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3014 sqlite3VdbeJumpHere(v, addr1); 3015 } 3016 if( HasRowid(pSrc) ){ 3017 u8 insFlags; 3018 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3019 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3020 if( pDest->iPKey>=0 ){ 3021 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3022 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3023 sqlite3VdbeVerifyAbortable(v, onError); 3024 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3025 VdbeCoverage(v); 3026 sqlite3RowidConstraint(pParse, onError, pDest); 3027 sqlite3VdbeJumpHere(v, addr2); 3028 } 3029 autoIncStep(pParse, regAutoinc, regRowid); 3030 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3031 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3032 }else{ 3033 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3034 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3035 } 3036 3037 if( db->mDbFlags & DBFLAG_Vacuum ){ 3038 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3039 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3040 }else{ 3041 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3042 } 3043 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3044 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3045 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3046 insFlags &= ~OPFLAG_PREFORMAT; 3047 }else 3048 #endif 3049 { 3050 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3051 } 3052 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3053 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3054 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3055 } 3056 sqlite3VdbeChangeP5(v, insFlags); 3057 3058 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3059 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3060 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3061 }else{ 3062 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3063 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3064 } 3065 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3066 u8 idxInsFlags = 0; 3067 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3068 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3069 } 3070 assert( pSrcIdx ); 3071 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3072 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3073 VdbeComment((v, "%s", pSrcIdx->zName)); 3074 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3075 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3076 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3077 VdbeComment((v, "%s", pDestIdx->zName)); 3078 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3079 if( db->mDbFlags & DBFLAG_Vacuum ){ 3080 /* This INSERT command is part of a VACUUM operation, which guarantees 3081 ** that the destination table is empty. If all indexed columns use 3082 ** collation sequence BINARY, then it can also be assumed that the 3083 ** index will be populated by inserting keys in strictly sorted 3084 ** order. In this case, instead of seeking within the b-tree as part 3085 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3086 ** OP_IdxInsert to seek to the point within the b-tree where each key 3087 ** should be inserted. This is faster. 3088 ** 3089 ** If any of the indexed columns use a collation sequence other than 3090 ** BINARY, this optimization is disabled. This is because the user 3091 ** might change the definition of a collation sequence and then run 3092 ** a VACUUM command. In that case keys may not be written in strictly 3093 ** sorted order. */ 3094 for(i=0; i<pSrcIdx->nColumn; i++){ 3095 const char *zColl = pSrcIdx->azColl[i]; 3096 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3097 } 3098 if( i==pSrcIdx->nColumn ){ 3099 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3100 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3101 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3102 } 3103 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3104 idxInsFlags |= OPFLAG_NCHANGE; 3105 } 3106 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3107 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3108 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3109 && !HasRowid(pDest) 3110 && IsPrimaryKeyIndex(pDestIdx) 3111 ){ 3112 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3113 } 3114 } 3115 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3116 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3117 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3118 sqlite3VdbeJumpHere(v, addr1); 3119 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3120 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3121 } 3122 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3123 sqlite3ReleaseTempReg(pParse, regRowid); 3124 sqlite3ReleaseTempReg(pParse, regData); 3125 if( emptyDestTest ){ 3126 sqlite3AutoincrementEnd(pParse); 3127 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3128 sqlite3VdbeJumpHere(v, emptyDestTest); 3129 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3130 return 0; 3131 }else{ 3132 return 1; 3133 } 3134 } 3135 #endif /* SQLITE_OMIT_XFER_OPT */ 3136