xref: /sqlite-3.40.0/src/insert.c (revision 8a29dfde)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.236 2008/04/11 15:36:03 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P4 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 **
32 ** An extra 'b' is appended to the end of the string to cover the
33 ** rowid that appears as the last column in every index.
34 */
35 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
36   if( !pIdx->zColAff ){
37     /* The first time a column affinity string for a particular index is
38     ** required, it is allocated and populated here. It is then stored as
39     ** a member of the Index structure for subsequent use.
40     **
41     ** The column affinity string will eventually be deleted by
42     ** sqliteDeleteIndex() when the Index structure itself is cleaned
43     ** up.
44     */
45     int n;
46     Table *pTab = pIdx->pTable;
47     sqlite3 *db = sqlite3VdbeDb(v);
48     pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2);
49     if( !pIdx->zColAff ){
50       return;
51     }
52     for(n=0; n<pIdx->nColumn; n++){
53       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
54     }
55     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
56     pIdx->zColAff[n] = 0;
57   }
58 
59   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
60 }
61 
62 /*
63 ** Set P4 of the most recently inserted opcode to a column affinity
64 ** string for table pTab. A column affinity string has one character
65 ** for each column indexed by the index, according to the affinity of the
66 ** column:
67 **
68 **  Character      Column affinity
69 **  ------------------------------
70 **  'a'            TEXT
71 **  'b'            NONE
72 **  'c'            NUMERIC
73 **  'd'            INTEGER
74 **  'e'            REAL
75 */
76 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
77   /* The first time a column affinity string for a particular table
78   ** is required, it is allocated and populated here. It is then
79   ** stored as a member of the Table structure for subsequent use.
80   **
81   ** The column affinity string will eventually be deleted by
82   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
83   */
84   if( !pTab->zColAff ){
85     char *zColAff;
86     int i;
87     sqlite3 *db = sqlite3VdbeDb(v);
88 
89     zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
90     if( !zColAff ){
91       return;
92     }
93 
94     for(i=0; i<pTab->nCol; i++){
95       zColAff[i] = pTab->aCol[i].affinity;
96     }
97     zColAff[pTab->nCol] = '\0';
98 
99     pTab->zColAff = zColAff;
100   }
101 
102   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
103 }
104 
105 /*
106 ** Return non-zero if the table pTab in database iDb or any of its indices
107 ** have been opened at any point in the VDBE program beginning at location
108 ** iStartAddr throught the end of the program.  This is used to see if
109 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
110 ** run without using temporary table for the results of the SELECT.
111 */
112 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
113   int i;
114   int iEnd = sqlite3VdbeCurrentAddr(v);
115   for(i=iStartAddr; i<iEnd; i++){
116     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
117     assert( pOp!=0 );
118     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
119       Index *pIndex;
120       int tnum = pOp->p2;
121       if( tnum==pTab->tnum ){
122         return 1;
123       }
124       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
125         if( tnum==pIndex->tnum ){
126           return 1;
127         }
128       }
129     }
130 #ifndef SQLITE_OMIT_VIRTUALTABLE
131     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
132       assert( pOp->p4.pVtab!=0 );
133       assert( pOp->p4type==P4_VTAB );
134       return 1;
135     }
136 #endif
137   }
138   return 0;
139 }
140 
141 #ifndef SQLITE_OMIT_AUTOINCREMENT
142 /*
143 ** Write out code to initialize the autoincrement logic.  This code
144 ** looks up the current autoincrement value in the sqlite_sequence
145 ** table and stores that value in a register.  Code generated by
146 ** autoIncStep() will keep that register holding the largest
147 ** rowid value.  Code generated by autoIncEnd() will write the new
148 ** largest value of the counter back into the sqlite_sequence table.
149 **
150 ** This routine returns the index of the mem[] cell that contains
151 ** the maximum rowid counter.
152 **
153 ** Three consecutive registers are allocated by this routine.  The
154 ** first two hold the name of the target table and the maximum rowid
155 ** inserted into the target table, respectively.
156 ** The third holds the rowid in sqlite_sequence where we will
157 ** write back the revised maximum rowid.  This routine returns the
158 ** index of the second of these three registers.
159 */
160 static int autoIncBegin(
161   Parse *pParse,      /* Parsing context */
162   int iDb,            /* Index of the database holding pTab */
163   Table *pTab         /* The table we are writing to */
164 ){
165   int memId = 0;      /* Register holding maximum rowid */
166   if( pTab->autoInc ){
167     Vdbe *v = pParse->pVdbe;
168     Db *pDb = &pParse->db->aDb[iDb];
169     int iCur = pParse->nTab;
170     int addr;               /* Address of the top of the loop */
171     assert( v );
172     pParse->nMem++;         /* Holds name of table */
173     memId = ++pParse->nMem;
174     pParse->nMem++;
175     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
176     addr = sqlite3VdbeCurrentAddr(v);
177     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
178     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
179     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
180     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
181     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
182     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
183     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
184     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
185     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
186     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
187   }
188   return memId;
189 }
190 
191 /*
192 ** Update the maximum rowid for an autoincrement calculation.
193 **
194 ** This routine should be called when the top of the stack holds a
195 ** new rowid that is about to be inserted.  If that new rowid is
196 ** larger than the maximum rowid in the memId memory cell, then the
197 ** memory cell is updated.  The stack is unchanged.
198 */
199 static void autoIncStep(Parse *pParse, int memId, int regRowid){
200   if( memId>0 ){
201     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
202   }
203 }
204 
205 /*
206 ** After doing one or more inserts, the maximum rowid is stored
207 ** in reg[memId].  Generate code to write this value back into the
208 ** the sqlite_sequence table.
209 */
210 static void autoIncEnd(
211   Parse *pParse,     /* The parsing context */
212   int iDb,           /* Index of the database holding pTab */
213   Table *pTab,       /* Table we are inserting into */
214   int memId          /* Memory cell holding the maximum rowid */
215 ){
216   if( pTab->autoInc ){
217     int iCur = pParse->nTab;
218     Vdbe *v = pParse->pVdbe;
219     Db *pDb = &pParse->db->aDb[iDb];
220     int j1;
221     int iRec = ++pParse->nMem;    /* Memory cell used for record */
222 
223     assert( v );
224     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
225     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
226     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
227     sqlite3VdbeJumpHere(v, j1);
228     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
229     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
230     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
231     sqlite3VdbeAddOp1(v, OP_Close, iCur);
232   }
233 }
234 #else
235 /*
236 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
237 ** above are all no-ops
238 */
239 # define autoIncBegin(A,B,C) (0)
240 # define autoIncStep(A,B,C)
241 # define autoIncEnd(A,B,C,D)
242 #endif /* SQLITE_OMIT_AUTOINCREMENT */
243 
244 
245 /* Forward declaration */
246 static int xferOptimization(
247   Parse *pParse,        /* Parser context */
248   Table *pDest,         /* The table we are inserting into */
249   Select *pSelect,      /* A SELECT statement to use as the data source */
250   int onError,          /* How to handle constraint errors */
251   int iDbDest           /* The database of pDest */
252 );
253 
254 /*
255 ** This routine is call to handle SQL of the following forms:
256 **
257 **    insert into TABLE (IDLIST) values(EXPRLIST)
258 **    insert into TABLE (IDLIST) select
259 **
260 ** The IDLIST following the table name is always optional.  If omitted,
261 ** then a list of all columns for the table is substituted.  The IDLIST
262 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
263 **
264 ** The pList parameter holds EXPRLIST in the first form of the INSERT
265 ** statement above, and pSelect is NULL.  For the second form, pList is
266 ** NULL and pSelect is a pointer to the select statement used to generate
267 ** data for the insert.
268 **
269 ** The code generated follows one of four templates.  For a simple
270 ** select with data coming from a VALUES clause, the code executes
271 ** once straight down through.  The template looks like this:
272 **
273 **         open write cursor to <table> and its indices
274 **         puts VALUES clause expressions onto the stack
275 **         write the resulting record into <table>
276 **         cleanup
277 **
278 ** The three remaining templates assume the statement is of the form
279 **
280 **   INSERT INTO <table> SELECT ...
281 **
282 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
283 ** in other words if the SELECT pulls all columns from a single table
284 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
285 ** if <table2> and <table1> are distinct tables but have identical
286 ** schemas, including all the same indices, then a special optimization
287 ** is invoked that copies raw records from <table2> over to <table1>.
288 ** See the xferOptimization() function for the implementation of this
289 ** template.  This is the second template.
290 **
291 **         open a write cursor to <table>
292 **         open read cursor on <table2>
293 **         transfer all records in <table2> over to <table>
294 **         close cursors
295 **         foreach index on <table>
296 **           open a write cursor on the <table> index
297 **           open a read cursor on the corresponding <table2> index
298 **           transfer all records from the read to the write cursors
299 **           close cursors
300 **         end foreach
301 **
302 ** The third template is for when the second template does not apply
303 ** and the SELECT clause does not read from <table> at any time.
304 ** The generated code follows this template:
305 **
306 **         goto B
307 **      A: setup for the SELECT
308 **         loop over the rows in the SELECT
309 **           gosub C
310 **         end loop
311 **         cleanup after the SELECT
312 **         goto D
313 **      B: open write cursor to <table> and its indices
314 **         goto A
315 **      C: insert the select result into <table>
316 **         return
317 **      D: cleanup
318 **
319 ** The fourth template is used if the insert statement takes its
320 ** values from a SELECT but the data is being inserted into a table
321 ** that is also read as part of the SELECT.  In the third form,
322 ** we have to use a intermediate table to store the results of
323 ** the select.  The template is like this:
324 **
325 **         goto B
326 **      A: setup for the SELECT
327 **         loop over the tables in the SELECT
328 **           gosub C
329 **         end loop
330 **         cleanup after the SELECT
331 **         goto D
332 **      C: insert the select result into the intermediate table
333 **         return
334 **      B: open a cursor to an intermediate table
335 **         goto A
336 **      D: open write cursor to <table> and its indices
337 **         loop over the intermediate table
338 **           transfer values form intermediate table into <table>
339 **         end the loop
340 **         cleanup
341 */
342 void sqlite3Insert(
343   Parse *pParse,        /* Parser context */
344   SrcList *pTabList,    /* Name of table into which we are inserting */
345   ExprList *pList,      /* List of values to be inserted */
346   Select *pSelect,      /* A SELECT statement to use as the data source */
347   IdList *pColumn,      /* Column names corresponding to IDLIST. */
348   int onError           /* How to handle constraint errors */
349 ){
350   sqlite3 *db;          /* The main database structure */
351   Table *pTab;          /* The table to insert into.  aka TABLE */
352   char *zTab;           /* Name of the table into which we are inserting */
353   const char *zDb;      /* Name of the database holding this table */
354   int i, j, idx;        /* Loop counters */
355   Vdbe *v;              /* Generate code into this virtual machine */
356   Index *pIdx;          /* For looping over indices of the table */
357   int nColumn;          /* Number of columns in the data */
358   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
359   int baseCur = 0;      /* VDBE Cursor number for pTab */
360   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
361   int endOfLoop;        /* Label for the end of the insertion loop */
362   int useTempTable = 0; /* Store SELECT results in intermediate table */
363   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
364   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
365   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
366   int iCleanup = 0;     /* Address of the cleanup code */
367   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
368   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
369   int iDb;              /* Index of database holding TABLE */
370   Db *pDb;              /* The database containing table being inserted into */
371   int appendFlag = 0;   /* True if the insert is likely to be an append */
372 
373   /* Register allocations */
374   int regFromSelect;    /* Base register for data coming from SELECT */
375   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
376   int regRowCount = 0;  /* Memory cell used for the row counter */
377   int regIns;           /* Block of regs holding rowid+data being inserted */
378   int regRowid;         /* registers holding insert rowid */
379   int regData;          /* register holding first column to insert */
380   int regRecord;        /* Holds the assemblied row record */
381   int *aRegIdx = 0;     /* One register allocated to each index */
382 
383 
384 #ifndef SQLITE_OMIT_TRIGGER
385   int isView;                 /* True if attempting to insert into a view */
386   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
387 #endif
388 
389   db = pParse->db;
390   if( pParse->nErr || db->mallocFailed ){
391     goto insert_cleanup;
392   }
393 
394   /* Locate the table into which we will be inserting new information.
395   */
396   assert( pTabList->nSrc==1 );
397   zTab = pTabList->a[0].zName;
398   if( zTab==0 ) goto insert_cleanup;
399   pTab = sqlite3SrcListLookup(pParse, pTabList);
400   if( pTab==0 ){
401     goto insert_cleanup;
402   }
403   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
404   assert( iDb<db->nDb );
405   pDb = &db->aDb[iDb];
406   zDb = pDb->zName;
407   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
408     goto insert_cleanup;
409   }
410 
411   /* Figure out if we have any triggers and if the table being
412   ** inserted into is a view
413   */
414 #ifndef SQLITE_OMIT_TRIGGER
415   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
416   isView = pTab->pSelect!=0;
417 #else
418 # define triggers_exist 0
419 # define isView 0
420 #endif
421 #ifdef SQLITE_OMIT_VIEW
422 # undef isView
423 # define isView 0
424 #endif
425 
426   /* Ensure that:
427   *  (a) the table is not read-only,
428   *  (b) that if it is a view then ON INSERT triggers exist
429   */
430   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
431     goto insert_cleanup;
432   }
433   assert( pTab!=0 );
434 
435   /* If pTab is really a view, make sure it has been initialized.
436   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
437   ** module table).
438   */
439   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
440     goto insert_cleanup;
441   }
442 
443   /* Allocate a VDBE
444   */
445   v = sqlite3GetVdbe(pParse);
446   if( v==0 ) goto insert_cleanup;
447   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
448   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
449 
450   /* if there are row triggers, allocate a temp table for new.* references. */
451   if( triggers_exist ){
452     newIdx = pParse->nTab++;
453   }
454 
455 #ifndef SQLITE_OMIT_XFER_OPT
456   /* If the statement is of the form
457   **
458   **       INSERT INTO <table1> SELECT * FROM <table2>;
459   **
460   ** Then special optimizations can be applied that make the transfer
461   ** very fast and which reduce fragmentation of indices.
462   */
463   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
464     assert( !triggers_exist );
465     assert( pList==0 );
466     goto insert_cleanup;
467   }
468 #endif /* SQLITE_OMIT_XFER_OPT */
469 
470   /* If this is an AUTOINCREMENT table, look up the sequence number in the
471   ** sqlite_sequence table and store it in memory cell regAutoinc.
472   */
473   regAutoinc = autoIncBegin(pParse, iDb, pTab);
474 
475   /* Figure out how many columns of data are supplied.  If the data
476   ** is coming from a SELECT statement, then this step also generates
477   ** all the code to implement the SELECT statement and invoke a subroutine
478   ** to process each row of the result. (Template 2.) If the SELECT
479   ** statement uses the the table that is being inserted into, then the
480   ** subroutine is also coded here.  That subroutine stores the SELECT
481   ** results in a temporary table. (Template 3.)
482   */
483   if( pSelect ){
484     /* Data is coming from a SELECT.  Generate code to implement that SELECT
485     */
486     SelectDest dest;
487     int rc, iInitCode;
488 
489     iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
490     iSelectLoop = sqlite3VdbeCurrentAddr(v);
491     iInsertBlock = sqlite3VdbeMakeLabel(v);
492     sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
493 
494     /* Resolve the expressions in the SELECT statement and execute it. */
495     rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
496     if( rc || pParse->nErr || db->mallocFailed ){
497       goto insert_cleanup;
498     }
499 
500     regFromSelect = dest.iMem;
501     iCleanup = sqlite3VdbeMakeLabel(v);
502     sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
503     assert( pSelect->pEList );
504     nColumn = pSelect->pEList->nExpr;
505 
506     /* Set useTempTable to TRUE if the result of the SELECT statement
507     ** should be written into a temporary table.  Set to FALSE if each
508     ** row of the SELECT can be written directly into the result table.
509     **
510     ** A temp table must be used if the table being updated is also one
511     ** of the tables being read by the SELECT statement.  Also use a
512     ** temp table in the case of row triggers.
513     */
514     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
515       useTempTable = 1;
516     }
517 
518     if( useTempTable ){
519       /* Generate the subroutine that SELECT calls to process each row of
520       ** the result.  Store the result in a temporary table
521       */
522       int regRec, regRowid;
523 
524       srcTab = pParse->nTab++;
525       regRec = sqlite3GetTempReg(pParse);
526       regRowid = sqlite3GetTempReg(pParse);
527       sqlite3VdbeResolveLabel(v, iInsertBlock);
528       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
529       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
530       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
531       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
532       sqlite3ReleaseTempReg(pParse, regRec);
533       sqlite3ReleaseTempReg(pParse, regRowid);
534 
535       /* The following code runs first because the GOTO at the very top
536       ** of the program jumps to it.  Create the temporary table, then jump
537       ** back up and execute the SELECT code above.
538       */
539       sqlite3VdbeJumpHere(v, iInitCode);
540       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
541       sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
542       sqlite3VdbeResolveLabel(v, iCleanup);
543     }else{
544       sqlite3VdbeJumpHere(v, iInitCode);
545     }
546   }else{
547     /* This is the case if the data for the INSERT is coming from a VALUES
548     ** clause
549     */
550     NameContext sNC;
551     memset(&sNC, 0, sizeof(sNC));
552     sNC.pParse = pParse;
553     srcTab = -1;
554     assert( useTempTable==0 );
555     nColumn = pList ? pList->nExpr : 0;
556     for(i=0; i<nColumn; i++){
557       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
558         goto insert_cleanup;
559       }
560     }
561   }
562 
563   /* Make sure the number of columns in the source data matches the number
564   ** of columns to be inserted into the table.
565   */
566   if( IsVirtual(pTab) ){
567     for(i=0; i<pTab->nCol; i++){
568       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
569     }
570   }
571   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
572     sqlite3ErrorMsg(pParse,
573        "table %S has %d columns but %d values were supplied",
574        pTabList, 0, pTab->nCol, nColumn);
575     goto insert_cleanup;
576   }
577   if( pColumn!=0 && nColumn!=pColumn->nId ){
578     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
579     goto insert_cleanup;
580   }
581 
582   /* If the INSERT statement included an IDLIST term, then make sure
583   ** all elements of the IDLIST really are columns of the table and
584   ** remember the column indices.
585   **
586   ** If the table has an INTEGER PRIMARY KEY column and that column
587   ** is named in the IDLIST, then record in the keyColumn variable
588   ** the index into IDLIST of the primary key column.  keyColumn is
589   ** the index of the primary key as it appears in IDLIST, not as
590   ** is appears in the original table.  (The index of the primary
591   ** key in the original table is pTab->iPKey.)
592   */
593   if( pColumn ){
594     for(i=0; i<pColumn->nId; i++){
595       pColumn->a[i].idx = -1;
596     }
597     for(i=0; i<pColumn->nId; i++){
598       for(j=0; j<pTab->nCol; j++){
599         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
600           pColumn->a[i].idx = j;
601           if( j==pTab->iPKey ){
602             keyColumn = i;
603           }
604           break;
605         }
606       }
607       if( j>=pTab->nCol ){
608         if( sqlite3IsRowid(pColumn->a[i].zName) ){
609           keyColumn = i;
610         }else{
611           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
612               pTabList, 0, pColumn->a[i].zName);
613           pParse->nErr++;
614           goto insert_cleanup;
615         }
616       }
617     }
618   }
619 
620   /* If there is no IDLIST term but the table has an integer primary
621   ** key, the set the keyColumn variable to the primary key column index
622   ** in the original table definition.
623   */
624   if( pColumn==0 && nColumn>0 ){
625     keyColumn = pTab->iPKey;
626   }
627 
628   /* Open the temp table for FOR EACH ROW triggers
629   */
630   if( triggers_exist ){
631     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
632     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
633   }
634 
635   /* Initialize the count of rows to be inserted
636   */
637   if( db->flags & SQLITE_CountRows ){
638     regRowCount = ++pParse->nMem;
639     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
640   }
641 
642   /* If this is not a view, open the table and and all indices */
643   if( !isView ){
644     int nIdx;
645     int i;
646 
647     baseCur = pParse->nTab;
648     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
649     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
650     if( aRegIdx==0 ){
651       goto insert_cleanup;
652     }
653     for(i=0; i<nIdx; i++){
654       aRegIdx[i] = ++pParse->nMem;
655     }
656   }
657 
658   /* If the data source is a temporary table, then we have to create
659   ** a loop because there might be multiple rows of data.  If the data
660   ** source is a subroutine call from the SELECT statement, then we need
661   ** to launch the SELECT statement processing.
662   */
663   if( useTempTable ){
664     iBreak = sqlite3VdbeMakeLabel(v);
665     sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
666     iCont = sqlite3VdbeCurrentAddr(v);
667   }else if( pSelect ){
668     sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
669     sqlite3VdbeResolveLabel(v, iInsertBlock);
670   }
671 
672   /* Allocate registers for holding the rowid of the new row,
673   ** the content of the new row, and the assemblied row record.
674   */
675   regRecord = ++pParse->nMem;
676   regRowid = regIns = pParse->nMem+1;
677   pParse->nMem += pTab->nCol + 1;
678   if( IsVirtual(pTab) ){
679     regRowid++;
680     pParse->nMem++;
681   }
682   regData = regRowid+1;
683 
684   /* Run the BEFORE and INSTEAD OF triggers, if there are any
685   */
686   endOfLoop = sqlite3VdbeMakeLabel(v);
687   if( triggers_exist & TRIGGER_BEFORE ){
688     int regRowid;
689     int regCols;
690     int regRec;
691 
692     /* build the NEW.* reference row.  Note that if there is an INTEGER
693     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
694     ** translated into a unique ID for the row.  But on a BEFORE trigger,
695     ** we do not know what the unique ID will be (because the insert has
696     ** not happened yet) so we substitute a rowid of -1
697     */
698     regRowid = sqlite3GetTempReg(pParse);
699     if( keyColumn<0 ){
700       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
701     }else if( useTempTable ){
702       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
703     }else{
704       int j1;
705       assert( pSelect==0 );  /* Otherwise useTempTable is true */
706       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
707       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
708       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
709       sqlite3VdbeJumpHere(v, j1);
710       sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
711     }
712 
713     /* Cannot have triggers on a virtual table. If it were possible,
714     ** this block would have to account for hidden column.
715     */
716     assert(!IsVirtual(pTab));
717 
718     /* Create the new column data
719     */
720     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
721     for(i=0; i<pTab->nCol; i++){
722       if( pColumn==0 ){
723         j = i;
724       }else{
725         for(j=0; j<pColumn->nId; j++){
726           if( pColumn->a[j].idx==i ) break;
727         }
728       }
729       if( pColumn && j>=pColumn->nId ){
730         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
731       }else if( useTempTable ){
732         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
733       }else{
734         assert( pSelect==0 ); /* Otherwise useTempTable is true */
735         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
736       }
737     }
738     regRec = sqlite3GetTempReg(pParse);
739     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
740 
741     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
742     ** do not attempt any conversions before assembling the record.
743     ** If this is a real table, attempt conversions as required by the
744     ** table column affinities.
745     */
746     if( !isView ){
747       sqlite3TableAffinityStr(v, pTab);
748     }
749     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
750     sqlite3ReleaseTempReg(pParse, regRec);
751     sqlite3ReleaseTempReg(pParse, regRowid);
752     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
753 
754     /* Fire BEFORE or INSTEAD OF triggers */
755     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
756         newIdx, -1, onError, endOfLoop, 0, 0) ){
757       goto insert_cleanup;
758     }
759   }
760 
761   /* Push the record number for the new entry onto the stack.  The
762   ** record number is a randomly generate integer created by NewRowid
763   ** except when the table has an INTEGER PRIMARY KEY column, in which
764   ** case the record number is the same as that column.
765   */
766   if( !isView ){
767     if( IsVirtual(pTab) ){
768       /* The row that the VUpdate opcode will delete: none */
769       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
770     }
771     if( keyColumn>=0 ){
772       if( useTempTable ){
773         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
774       }else if( pSelect ){
775         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
776       }else{
777         VdbeOp *pOp;
778         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
779         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
780         if( pOp && pOp->opcode==OP_Null ){
781           appendFlag = 1;
782           pOp->opcode = OP_NewRowid;
783           pOp->p1 = baseCur;
784           pOp->p2 = regRowid;
785           pOp->p3 = regAutoinc;
786         }
787       }
788       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
789       ** to generate a unique primary key value.
790       */
791       if( !appendFlag ){
792         int j1;
793         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
794         sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
795         sqlite3VdbeJumpHere(v, j1);
796         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
797       }
798     }else if( IsVirtual(pTab) ){
799       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
800     }else{
801       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
802       appendFlag = 1;
803     }
804     autoIncStep(pParse, regAutoinc, regRowid);
805 
806     /* Push onto the stack, data for all columns of the new entry, beginning
807     ** with the first column.
808     */
809     nHidden = 0;
810     for(i=0; i<pTab->nCol; i++){
811       int iRegStore = regRowid+1+i;
812       if( i==pTab->iPKey ){
813         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
814         ** Whenever this column is read, the record number will be substituted
815         ** in its place.  So will fill this column with a NULL to avoid
816         ** taking up data space with information that will never be used. */
817         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
818         continue;
819       }
820       if( pColumn==0 ){
821         if( IsHiddenColumn(&pTab->aCol[i]) ){
822           assert( IsVirtual(pTab) );
823           j = -1;
824           nHidden++;
825         }else{
826           j = i - nHidden;
827         }
828       }else{
829         for(j=0; j<pColumn->nId; j++){
830           if( pColumn->a[j].idx==i ) break;
831         }
832       }
833       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
834         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
835       }else if( useTempTable ){
836         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
837       }else if( pSelect ){
838         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
839       }else{
840         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
841       }
842     }
843 
844     /* Generate code to check constraints and generate index keys and
845     ** do the insertion.
846     */
847 #ifndef SQLITE_OMIT_VIRTUALTABLE
848     if( IsVirtual(pTab) ){
849       pParse->pVirtualLock = pTab;
850       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
851                      (const char*)pTab->pVtab, P4_VTAB);
852     }else
853 #endif
854     {
855       sqlite3GenerateConstraintChecks(
856           pParse,
857           pTab,
858           baseCur,
859           regIns,
860           aRegIdx,
861           keyColumn>=0,
862           0,
863           onError,
864           endOfLoop
865       );
866       sqlite3CompleteInsertion(
867           pParse,
868           pTab,
869           baseCur,
870           regIns,
871           aRegIdx,
872           0,
873           0,
874           (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
875           appendFlag
876        );
877     }
878   }
879 
880   /* Update the count of rows that are inserted
881   */
882   if( (db->flags & SQLITE_CountRows)!=0 ){
883     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
884   }
885 
886   if( triggers_exist ){
887     /* Code AFTER triggers */
888     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
889           newIdx, -1, onError, endOfLoop, 0, 0) ){
890       goto insert_cleanup;
891     }
892   }
893 
894   /* The bottom of the loop, if the data source is a SELECT statement
895   */
896   sqlite3VdbeResolveLabel(v, endOfLoop);
897   if( useTempTable ){
898     sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
899     sqlite3VdbeResolveLabel(v, iBreak);
900     sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
901   }else if( pSelect ){
902     sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
903     sqlite3VdbeResolveLabel(v, iCleanup);
904   }
905 
906   if( !IsVirtual(pTab) && !isView ){
907     /* Close all tables opened */
908     sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
909     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
910       sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
911     }
912   }
913 
914   /* Update the sqlite_sequence table by storing the content of the
915   ** counter value in memory regAutoinc back into the sqlite_sequence
916   ** table.
917   */
918   autoIncEnd(pParse, iDb, pTab, regAutoinc);
919 
920   /*
921   ** Return the number of rows inserted. If this routine is
922   ** generating code because of a call to sqlite3NestedParse(), do not
923   ** invoke the callback function.
924   */
925   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
926     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
927     sqlite3VdbeSetNumCols(v, 1);
928     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
929   }
930 
931 insert_cleanup:
932   sqlite3SrcListDelete(pTabList);
933   sqlite3ExprListDelete(pList);
934   sqlite3SelectDelete(pSelect);
935   sqlite3IdListDelete(pColumn);
936   sqlite3_free(aRegIdx);
937 }
938 
939 /*
940 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
941 **
942 ** The input is a range of consecutive registers as follows:
943 **
944 **    1.  The rowid of the row to be updated before the update.  This
945 **        value is omitted unless we are doing an UPDATE that involves a
946 **        change to the record number or writing to a virtual table.
947 **
948 **    2.  The rowid of the row after the update.
949 **
950 **    3.  The data in the first column of the entry after the update.
951 **
952 **    i.  Data from middle columns...
953 **
954 **    N.  The data in the last column of the entry after the update.
955 **
956 ** The regRowid parameter is the index of the register containing (2).
957 **
958 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
959 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
960 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
961 ** the update or insert statement.  If rowidChng is false, it means that
962 ** the rowid is computed automatically in an insert or that the rowid value
963 ** is not modified by the update.
964 **
965 ** The code generated by this routine store new index entries into
966 ** registers identified by aRegIdx[].  No index entry is created for
967 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
968 ** the same as the order of indices on the linked list of indices
969 ** attached to the table.
970 **
971 ** This routine also generates code to check constraints.  NOT NULL,
972 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
973 ** then the appropriate action is performed.  There are five possible
974 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
975 **
976 **  Constraint type  Action       What Happens
977 **  ---------------  ----------   ----------------------------------------
978 **  any              ROLLBACK     The current transaction is rolled back and
979 **                                sqlite3_exec() returns immediately with a
980 **                                return code of SQLITE_CONSTRAINT.
981 **
982 **  any              ABORT        Back out changes from the current command
983 **                                only (do not do a complete rollback) then
984 **                                cause sqlite3_exec() to return immediately
985 **                                with SQLITE_CONSTRAINT.
986 **
987 **  any              FAIL         Sqlite_exec() returns immediately with a
988 **                                return code of SQLITE_CONSTRAINT.  The
989 **                                transaction is not rolled back and any
990 **                                prior changes are retained.
991 **
992 **  any              IGNORE       The record number and data is popped from
993 **                                the stack and there is an immediate jump
994 **                                to label ignoreDest.
995 **
996 **  NOT NULL         REPLACE      The NULL value is replace by the default
997 **                                value for that column.  If the default value
998 **                                is NULL, the action is the same as ABORT.
999 **
1000 **  UNIQUE           REPLACE      The other row that conflicts with the row
1001 **                                being inserted is removed.
1002 **
1003 **  CHECK            REPLACE      Illegal.  The results in an exception.
1004 **
1005 ** Which action to take is determined by the overrideError parameter.
1006 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1007 ** is used.  Or if pParse->onError==OE_Default then the onError value
1008 ** for the constraint is used.
1009 **
1010 ** The calling routine must open a read/write cursor for pTab with
1011 ** cursor number "baseCur".  All indices of pTab must also have open
1012 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1013 ** Except, if there is no possibility of a REPLACE action then
1014 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1015 */
1016 void sqlite3GenerateConstraintChecks(
1017   Parse *pParse,      /* The parser context */
1018   Table *pTab,        /* the table into which we are inserting */
1019   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1020   int regRowid,       /* Index of the range of input registers */
1021   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1022   int rowidChng,      /* True if the rowid might collide with existing entry */
1023   int isUpdate,       /* True for UPDATE, False for INSERT */
1024   int overrideError,  /* Override onError to this if not OE_Default */
1025   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
1026 ){
1027   int i;
1028   Vdbe *v;
1029   int nCol;
1030   int onError;
1031   int j1, j2, j3;     /* Addresses of jump instructions */
1032   int regData;        /* Register containing first data column */
1033   int iCur;
1034   Index *pIdx;
1035   int seenReplace = 0;
1036   int hasTwoRowids = (isUpdate && rowidChng);
1037 
1038   v = sqlite3GetVdbe(pParse);
1039   assert( v!=0 );
1040   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1041   nCol = pTab->nCol;
1042   regData = regRowid + 1;
1043 
1044 
1045   /* Test all NOT NULL constraints.
1046   */
1047   for(i=0; i<nCol; i++){
1048     if( i==pTab->iPKey ){
1049       continue;
1050     }
1051     onError = pTab->aCol[i].notNull;
1052     if( onError==OE_None ) continue;
1053     if( overrideError!=OE_Default ){
1054       onError = overrideError;
1055     }else if( onError==OE_Default ){
1056       onError = OE_Abort;
1057     }
1058     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1059       onError = OE_Abort;
1060     }
1061     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1062     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1063         || onError==OE_Ignore || onError==OE_Replace );
1064     switch( onError ){
1065       case OE_Rollback:
1066       case OE_Abort:
1067       case OE_Fail: {
1068         char *zMsg = 0;
1069         sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1070         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
1071                         " may not be NULL", (char*)0);
1072         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1073         break;
1074       }
1075       case OE_Ignore: {
1076         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1077         break;
1078       }
1079       case OE_Replace: {
1080         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1081         break;
1082       }
1083     }
1084     sqlite3VdbeJumpHere(v, j1);
1085   }
1086 
1087   /* Test all CHECK constraints
1088   */
1089 #ifndef SQLITE_OMIT_CHECK
1090   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1091     int allOk = sqlite3VdbeMakeLabel(v);
1092     pParse->ckBase = regData;
1093     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1094     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1095     if( onError==OE_Ignore ){
1096       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1097     }else{
1098       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1099     }
1100     sqlite3VdbeResolveLabel(v, allOk);
1101   }
1102 #endif /* !defined(SQLITE_OMIT_CHECK) */
1103 
1104   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1105   ** of the new record does not previously exist.  Except, if this
1106   ** is an UPDATE and the primary key is not changing, that is OK.
1107   */
1108   if( rowidChng ){
1109     onError = pTab->keyConf;
1110     if( overrideError!=OE_Default ){
1111       onError = overrideError;
1112     }else if( onError==OE_Default ){
1113       onError = OE_Abort;
1114     }
1115 
1116     if( onError!=OE_Replace || pTab->pIndex ){
1117       if( isUpdate ){
1118         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1119       }
1120       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1121       switch( onError ){
1122         default: {
1123           onError = OE_Abort;
1124           /* Fall thru into the next case */
1125         }
1126         case OE_Rollback:
1127         case OE_Abort:
1128         case OE_Fail: {
1129           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1130                            "PRIMARY KEY must be unique", P4_STATIC);
1131           break;
1132         }
1133         case OE_Replace: {
1134           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1135           seenReplace = 1;
1136           break;
1137         }
1138         case OE_Ignore: {
1139           assert( seenReplace==0 );
1140           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1141           break;
1142         }
1143       }
1144       sqlite3VdbeJumpHere(v, j3);
1145       if( isUpdate ){
1146         sqlite3VdbeJumpHere(v, j2);
1147       }
1148     }
1149   }
1150 
1151   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1152   ** index and making sure that duplicate entries do not already exist.
1153   ** Add the new records to the indices as we go.
1154   */
1155   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1156     int regIdx;
1157     int regR;
1158 
1159     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
1160 
1161     /* Create a key for accessing the index entry */
1162     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1163     for(i=0; i<pIdx->nColumn; i++){
1164       int idx = pIdx->aiColumn[i];
1165       if( idx==pTab->iPKey ){
1166         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1167       }else{
1168         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1169       }
1170     }
1171     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1172     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1173     sqlite3IndexAffinityStr(v, pIdx);
1174     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1175     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1176 
1177     /* Find out what action to take in case there is an indexing conflict */
1178     onError = pIdx->onError;
1179     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1180     if( overrideError!=OE_Default ){
1181       onError = overrideError;
1182     }else if( onError==OE_Default ){
1183       onError = OE_Abort;
1184     }
1185     if( seenReplace ){
1186       if( onError==OE_Ignore ) onError = OE_Replace;
1187       else if( onError==OE_Fail ) onError = OE_Abort;
1188     }
1189 
1190 
1191     /* Check to see if the new index entry will be unique */
1192     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1193     regR = sqlite3GetTempReg(pParse);
1194     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1195     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1196                            regR, (char*)(sqlite3_intptr_t)aRegIdx[iCur],
1197                            P4_INT32);
1198 
1199     /* Generate code that executes if the new index entry is not unique */
1200     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1201         || onError==OE_Ignore || onError==OE_Replace );
1202     switch( onError ){
1203       case OE_Rollback:
1204       case OE_Abort:
1205       case OE_Fail: {
1206         int j, n1, n2;
1207         char zErrMsg[200];
1208         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1209                          pIdx->nColumn>1 ? "columns " : "column ");
1210         n1 = strlen(zErrMsg);
1211         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1212           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1213           n2 = strlen(zCol);
1214           if( j>0 ){
1215             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1216             n1 += 2;
1217           }
1218           if( n1+n2>sizeof(zErrMsg)-30 ){
1219             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1220             n1 += 3;
1221             break;
1222           }else{
1223             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1224             n1 += n2;
1225           }
1226         }
1227         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1228             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1229         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1230         break;
1231       }
1232       case OE_Ignore: {
1233         assert( seenReplace==0 );
1234         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1235         break;
1236       }
1237       case OE_Replace: {
1238         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1239         seenReplace = 1;
1240         break;
1241       }
1242     }
1243     sqlite3VdbeJumpHere(v, j2);
1244     sqlite3VdbeJumpHere(v, j3);
1245     sqlite3ReleaseTempReg(pParse, regR);
1246   }
1247 }
1248 
1249 /*
1250 ** This routine generates code to finish the INSERT or UPDATE operation
1251 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1252 ** A consecutive range of registers starting at regRowid contains the
1253 ** rowid and the content to be inserted.
1254 **
1255 ** The arguments to this routine should be the same as the first six
1256 ** arguments to sqlite3GenerateConstraintChecks.
1257 */
1258 void sqlite3CompleteInsertion(
1259   Parse *pParse,      /* The parser context */
1260   Table *pTab,        /* the table into which we are inserting */
1261   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1262   int regRowid,       /* Range of content */
1263   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1264   int rowidChng,      /* True if the record number will change */
1265   int isUpdate,       /* True for UPDATE, False for INSERT */
1266   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1267   int appendBias      /* True if this is likely to be an append */
1268 ){
1269   int i;
1270   Vdbe *v;
1271   int nIdx;
1272   Index *pIdx;
1273   int pik_flags;
1274   int regData;
1275   int regRec;
1276 
1277   v = sqlite3GetVdbe(pParse);
1278   assert( v!=0 );
1279   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1280   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1281   for(i=nIdx-1; i>=0; i--){
1282     if( aRegIdx[i]==0 ) continue;
1283     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1284   }
1285   regData = regRowid + 1;
1286   regRec = sqlite3GetTempReg(pParse);
1287   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1288   sqlite3TableAffinityStr(v, pTab);
1289   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1290 #ifndef SQLITE_OMIT_TRIGGER
1291   if( newIdx>=0 ){
1292     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1293   }
1294 #endif
1295   if( pParse->nested ){
1296     pik_flags = 0;
1297   }else{
1298     pik_flags = OPFLAG_NCHANGE;
1299     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1300   }
1301   if( appendBias ){
1302     pik_flags |= OPFLAG_APPEND;
1303   }
1304   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1305   if( !pParse->nested ){
1306     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1307   }
1308   sqlite3VdbeChangeP5(v, pik_flags);
1309 }
1310 
1311 /*
1312 ** Generate code that will open cursors for a table and for all
1313 ** indices of that table.  The "baseCur" parameter is the cursor number used
1314 ** for the table.  Indices are opened on subsequent cursors.
1315 **
1316 ** Return the number of indices on the table.
1317 */
1318 int sqlite3OpenTableAndIndices(
1319   Parse *pParse,   /* Parsing context */
1320   Table *pTab,     /* Table to be opened */
1321   int baseCur,        /* Cursor number assigned to the table */
1322   int op           /* OP_OpenRead or OP_OpenWrite */
1323 ){
1324   int i;
1325   int iDb;
1326   Index *pIdx;
1327   Vdbe *v;
1328 
1329   if( IsVirtual(pTab) ) return 0;
1330   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1331   v = sqlite3GetVdbe(pParse);
1332   assert( v!=0 );
1333   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1334   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1335     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1336     assert( pIdx->pSchema==pTab->pSchema );
1337     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1338                       (char*)pKey, P4_KEYINFO_HANDOFF);
1339     VdbeComment((v, "%s", pIdx->zName));
1340   }
1341   if( pParse->nTab<=baseCur+i ){
1342     pParse->nTab = baseCur+i;
1343   }
1344   return i-1;
1345 }
1346 
1347 
1348 #ifdef SQLITE_TEST
1349 /*
1350 ** The following global variable is incremented whenever the
1351 ** transfer optimization is used.  This is used for testing
1352 ** purposes only - to make sure the transfer optimization really
1353 ** is happening when it is suppose to.
1354 */
1355 int sqlite3_xferopt_count;
1356 #endif /* SQLITE_TEST */
1357 
1358 
1359 #ifndef SQLITE_OMIT_XFER_OPT
1360 /*
1361 ** Check to collation names to see if they are compatible.
1362 */
1363 static int xferCompatibleCollation(const char *z1, const char *z2){
1364   if( z1==0 ){
1365     return z2==0;
1366   }
1367   if( z2==0 ){
1368     return 0;
1369   }
1370   return sqlite3StrICmp(z1, z2)==0;
1371 }
1372 
1373 
1374 /*
1375 ** Check to see if index pSrc is compatible as a source of data
1376 ** for index pDest in an insert transfer optimization.  The rules
1377 ** for a compatible index:
1378 **
1379 **    *   The index is over the same set of columns
1380 **    *   The same DESC and ASC markings occurs on all columns
1381 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1382 **    *   The same collating sequence on each column
1383 */
1384 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1385   int i;
1386   assert( pDest && pSrc );
1387   assert( pDest->pTable!=pSrc->pTable );
1388   if( pDest->nColumn!=pSrc->nColumn ){
1389     return 0;   /* Different number of columns */
1390   }
1391   if( pDest->onError!=pSrc->onError ){
1392     return 0;   /* Different conflict resolution strategies */
1393   }
1394   for(i=0; i<pSrc->nColumn; i++){
1395     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1396       return 0;   /* Different columns indexed */
1397     }
1398     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1399       return 0;   /* Different sort orders */
1400     }
1401     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1402       return 0;   /* Different collating sequences */
1403     }
1404   }
1405 
1406   /* If no test above fails then the indices must be compatible */
1407   return 1;
1408 }
1409 
1410 /*
1411 ** Attempt the transfer optimization on INSERTs of the form
1412 **
1413 **     INSERT INTO tab1 SELECT * FROM tab2;
1414 **
1415 ** This optimization is only attempted if
1416 **
1417 **    (1)  tab1 and tab2 have identical schemas including all the
1418 **         same indices and constraints
1419 **
1420 **    (2)  tab1 and tab2 are different tables
1421 **
1422 **    (3)  There must be no triggers on tab1
1423 **
1424 **    (4)  The result set of the SELECT statement is "*"
1425 **
1426 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1427 **         or LIMIT clause.
1428 **
1429 **    (6)  The SELECT statement is a simple (not a compound) select that
1430 **         contains only tab2 in its FROM clause
1431 **
1432 ** This method for implementing the INSERT transfers raw records from
1433 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1434 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1435 ** the resulting tab1 has much less fragmentation.
1436 **
1437 ** This routine returns TRUE if the optimization is attempted.  If any
1438 ** of the conditions above fail so that the optimization should not
1439 ** be attempted, then this routine returns FALSE.
1440 */
1441 static int xferOptimization(
1442   Parse *pParse,        /* Parser context */
1443   Table *pDest,         /* The table we are inserting into */
1444   Select *pSelect,      /* A SELECT statement to use as the data source */
1445   int onError,          /* How to handle constraint errors */
1446   int iDbDest           /* The database of pDest */
1447 ){
1448   ExprList *pEList;                /* The result set of the SELECT */
1449   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1450   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1451   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1452   int i;                           /* Loop counter */
1453   int iDbSrc;                      /* The database of pSrc */
1454   int iSrc, iDest;                 /* Cursors from source and destination */
1455   int addr1, addr2;                /* Loop addresses */
1456   int emptyDestTest;               /* Address of test for empty pDest */
1457   int emptySrcTest;                /* Address of test for empty pSrc */
1458   Vdbe *v;                         /* The VDBE we are building */
1459   KeyInfo *pKey;                   /* Key information for an index */
1460   int regAutoinc;                  /* Memory register used by AUTOINC */
1461   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1462   int regData, regRowid;           /* Registers holding data and rowid */
1463 
1464   if( pSelect==0 ){
1465     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1466   }
1467   if( pDest->pTrigger ){
1468     return 0;   /* tab1 must not have triggers */
1469   }
1470 #ifndef SQLITE_OMIT_VIRTUALTABLE
1471   if( pDest->isVirtual ){
1472     return 0;   /* tab1 must not be a virtual table */
1473   }
1474 #endif
1475   if( onError==OE_Default ){
1476     onError = OE_Abort;
1477   }
1478   if( onError!=OE_Abort && onError!=OE_Rollback ){
1479     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1480   }
1481   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1482   if( pSelect->pSrc->nSrc!=1 ){
1483     return 0;   /* FROM clause must have exactly one term */
1484   }
1485   if( pSelect->pSrc->a[0].pSelect ){
1486     return 0;   /* FROM clause cannot contain a subquery */
1487   }
1488   if( pSelect->pWhere ){
1489     return 0;   /* SELECT may not have a WHERE clause */
1490   }
1491   if( pSelect->pOrderBy ){
1492     return 0;   /* SELECT may not have an ORDER BY clause */
1493   }
1494   /* Do not need to test for a HAVING clause.  If HAVING is present but
1495   ** there is no ORDER BY, we will get an error. */
1496   if( pSelect->pGroupBy ){
1497     return 0;   /* SELECT may not have a GROUP BY clause */
1498   }
1499   if( pSelect->pLimit ){
1500     return 0;   /* SELECT may not have a LIMIT clause */
1501   }
1502   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1503   if( pSelect->pPrior ){
1504     return 0;   /* SELECT may not be a compound query */
1505   }
1506   if( pSelect->isDistinct ){
1507     return 0;   /* SELECT may not be DISTINCT */
1508   }
1509   pEList = pSelect->pEList;
1510   assert( pEList!=0 );
1511   if( pEList->nExpr!=1 ){
1512     return 0;   /* The result set must have exactly one column */
1513   }
1514   assert( pEList->a[0].pExpr );
1515   if( pEList->a[0].pExpr->op!=TK_ALL ){
1516     return 0;   /* The result set must be the special operator "*" */
1517   }
1518 
1519   /* At this point we have established that the statement is of the
1520   ** correct syntactic form to participate in this optimization.  Now
1521   ** we have to check the semantics.
1522   */
1523   pItem = pSelect->pSrc->a;
1524   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1525   if( pSrc==0 ){
1526     return 0;   /* FROM clause does not contain a real table */
1527   }
1528   if( pSrc==pDest ){
1529     return 0;   /* tab1 and tab2 may not be the same table */
1530   }
1531 #ifndef SQLITE_OMIT_VIRTUALTABLE
1532   if( pSrc->isVirtual ){
1533     return 0;   /* tab2 must not be a virtual table */
1534   }
1535 #endif
1536   if( pSrc->pSelect ){
1537     return 0;   /* tab2 may not be a view */
1538   }
1539   if( pDest->nCol!=pSrc->nCol ){
1540     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1541   }
1542   if( pDest->iPKey!=pSrc->iPKey ){
1543     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1544   }
1545   for(i=0; i<pDest->nCol; i++){
1546     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1547       return 0;    /* Affinity must be the same on all columns */
1548     }
1549     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1550       return 0;    /* Collating sequence must be the same on all columns */
1551     }
1552     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1553       return 0;    /* tab2 must be NOT NULL if tab1 is */
1554     }
1555   }
1556   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1557     if( pDestIdx->onError!=OE_None ){
1558       destHasUniqueIdx = 1;
1559     }
1560     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1561       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1562     }
1563     if( pSrcIdx==0 ){
1564       return 0;    /* pDestIdx has no corresponding index in pSrc */
1565     }
1566   }
1567 #ifndef SQLITE_OMIT_CHECK
1568   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1569     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1570   }
1571 #endif
1572 
1573   /* If we get this far, it means either:
1574   **
1575   **    *   We can always do the transfer if the table contains an
1576   **        an integer primary key
1577   **
1578   **    *   We can conditionally do the transfer if the destination
1579   **        table is empty.
1580   */
1581 #ifdef SQLITE_TEST
1582   sqlite3_xferopt_count++;
1583 #endif
1584   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1585   v = sqlite3GetVdbe(pParse);
1586   sqlite3CodeVerifySchema(pParse, iDbSrc);
1587   iSrc = pParse->nTab++;
1588   iDest = pParse->nTab++;
1589   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1590   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1591   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1592     /* If tables do not have an INTEGER PRIMARY KEY and there
1593     ** are indices to be copied and the destination is not empty,
1594     ** we have to disallow the transfer optimization because the
1595     ** the rowids might change which will mess up indexing.
1596     **
1597     ** Or if the destination has a UNIQUE index and is not empty,
1598     ** we also disallow the transfer optimization because we cannot
1599     ** insure that all entries in the union of DEST and SRC will be
1600     ** unique.
1601     */
1602     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1603     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1604     sqlite3VdbeJumpHere(v, addr1);
1605   }else{
1606     emptyDestTest = 0;
1607   }
1608   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1609   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1610   regData = sqlite3GetTempReg(pParse);
1611   regRowid = sqlite3GetTempReg(pParse);
1612   if( pDest->iPKey>=0 ){
1613     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1614     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1615     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1616                       "PRIMARY KEY must be unique", P4_STATIC);
1617     sqlite3VdbeJumpHere(v, addr2);
1618     autoIncStep(pParse, regAutoinc, regRowid);
1619   }else if( pDest->pIndex==0 ){
1620     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1621   }else{
1622     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1623     assert( pDest->autoInc==0 );
1624   }
1625   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1626   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1627   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1628   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1629   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1630   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1631   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1632     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1633       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1634     }
1635     assert( pSrcIdx );
1636     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1637     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1638     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1639     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1640                       (char*)pKey, P4_KEYINFO_HANDOFF);
1641     VdbeComment((v, "%s", pSrcIdx->zName));
1642     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1643     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1644                       (char*)pKey, P4_KEYINFO_HANDOFF);
1645     VdbeComment((v, "%s", pDestIdx->zName));
1646     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1647     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1648     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1649     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1650     sqlite3VdbeJumpHere(v, addr1);
1651   }
1652   sqlite3VdbeJumpHere(v, emptySrcTest);
1653   sqlite3ReleaseTempReg(pParse, regRowid);
1654   sqlite3ReleaseTempReg(pParse, regData);
1655   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1656   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1657   if( emptyDestTest ){
1658     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1659     sqlite3VdbeJumpHere(v, emptyDestTest);
1660     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1661     return 0;
1662   }else{
1663     return 1;
1664   }
1665 }
1666 #endif /* SQLITE_OMIT_XFER_OPT */
1667 
1668 /* Make sure "isView" gets undefined in case this file becomes part of
1669 ** the amalgamation - so that subsequent files do not see isView as a
1670 ** macro. */
1671 #undef isView
1672