1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 204 ** table. (Also return zero when doing a VACUUM since we do not want to 205 ** update the AUTOINCREMENT counters during a VACUUM.) 206 ** 207 ** There is at most one AutoincInfo structure per table even if the 208 ** same table is autoincremented multiple times due to inserts within 209 ** triggers. A new AutoincInfo structure is created if this is the 210 ** first use of table pTab. On 2nd and subsequent uses, the original 211 ** AutoincInfo structure is used. 212 ** 213 ** Four consecutive registers are allocated: 214 ** 215 ** (1) The name of the pTab table. 216 ** (2) The maximum ROWID of pTab. 217 ** (3) The rowid in sqlite_sequence of pTab 218 ** (4) The original value of the max ROWID in pTab, or NULL if none 219 ** 220 ** The 2nd register is the one that is returned. That is all the 221 ** insert routine needs to know about. 222 */ 223 static int autoIncBegin( 224 Parse *pParse, /* Parsing context */ 225 int iDb, /* Index of the database holding pTab */ 226 Table *pTab /* The table we are writing to */ 227 ){ 228 int memId = 0; /* Register holding maximum rowid */ 229 assert( pParse->db->aDb[iDb].pSchema!=0 ); 230 if( (pTab->tabFlags & TF_Autoincrement)!=0 231 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 232 ){ 233 Parse *pToplevel = sqlite3ParseToplevel(pParse); 234 AutoincInfo *pInfo; 235 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 236 237 /* Verify that the sqlite_sequence table exists and is an ordinary 238 ** rowid table with exactly two columns. 239 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 240 if( pSeqTab==0 241 || !HasRowid(pSeqTab) 242 || IsVirtual(pSeqTab) 243 || pSeqTab->nCol!=2 244 ){ 245 pParse->nErr++; 246 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 247 return 0; 248 } 249 250 pInfo = pToplevel->pAinc; 251 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 252 if( pInfo==0 ){ 253 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 254 if( pInfo==0 ) return 0; 255 pInfo->pNext = pToplevel->pAinc; 256 pToplevel->pAinc = pInfo; 257 pInfo->pTab = pTab; 258 pInfo->iDb = iDb; 259 pToplevel->nMem++; /* Register to hold name of table */ 260 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 261 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 262 } 263 memId = pInfo->regCtr; 264 } 265 return memId; 266 } 267 268 /* 269 ** This routine generates code that will initialize all of the 270 ** register used by the autoincrement tracker. 271 */ 272 void sqlite3AutoincrementBegin(Parse *pParse){ 273 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 274 sqlite3 *db = pParse->db; /* The database connection */ 275 Db *pDb; /* Database only autoinc table */ 276 int memId; /* Register holding max rowid */ 277 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 278 279 /* This routine is never called during trigger-generation. It is 280 ** only called from the top-level */ 281 assert( pParse->pTriggerTab==0 ); 282 assert( sqlite3IsToplevel(pParse) ); 283 284 assert( v ); /* We failed long ago if this is not so */ 285 for(p = pParse->pAinc; p; p = p->pNext){ 286 static const int iLn = VDBE_OFFSET_LINENO(2); 287 static const VdbeOpList autoInc[] = { 288 /* 0 */ {OP_Null, 0, 0, 0}, 289 /* 1 */ {OP_Rewind, 0, 10, 0}, 290 /* 2 */ {OP_Column, 0, 0, 0}, 291 /* 3 */ {OP_Ne, 0, 9, 0}, 292 /* 4 */ {OP_Rowid, 0, 0, 0}, 293 /* 5 */ {OP_Column, 0, 1, 0}, 294 /* 6 */ {OP_AddImm, 0, 0, 0}, 295 /* 7 */ {OP_Copy, 0, 0, 0}, 296 /* 8 */ {OP_Goto, 0, 11, 0}, 297 /* 9 */ {OP_Next, 0, 2, 0}, 298 /* 10 */ {OP_Integer, 0, 0, 0}, 299 /* 11 */ {OP_Close, 0, 0, 0} 300 }; 301 VdbeOp *aOp; 302 pDb = &db->aDb[p->iDb]; 303 memId = p->regCtr; 304 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 305 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 306 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 307 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 308 if( aOp==0 ) break; 309 aOp[0].p2 = memId; 310 aOp[0].p3 = memId+2; 311 aOp[2].p3 = memId; 312 aOp[3].p1 = memId-1; 313 aOp[3].p3 = memId; 314 aOp[3].p5 = SQLITE_JUMPIFNULL; 315 aOp[4].p2 = memId+1; 316 aOp[5].p3 = memId; 317 aOp[6].p1 = memId; 318 aOp[7].p2 = memId+2; 319 aOp[7].p1 = memId; 320 aOp[10].p2 = memId; 321 } 322 } 323 324 /* 325 ** Update the maximum rowid for an autoincrement calculation. 326 ** 327 ** This routine should be called when the regRowid register holds a 328 ** new rowid that is about to be inserted. If that new rowid is 329 ** larger than the maximum rowid in the memId memory cell, then the 330 ** memory cell is updated. 331 */ 332 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 333 if( memId>0 ){ 334 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 335 } 336 } 337 338 /* 339 ** This routine generates the code needed to write autoincrement 340 ** maximum rowid values back into the sqlite_sequence register. 341 ** Every statement that might do an INSERT into an autoincrement 342 ** table (either directly or through triggers) needs to call this 343 ** routine just before the "exit" code. 344 */ 345 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 346 AutoincInfo *p; 347 Vdbe *v = pParse->pVdbe; 348 sqlite3 *db = pParse->db; 349 350 assert( v ); 351 for(p = pParse->pAinc; p; p = p->pNext){ 352 static const int iLn = VDBE_OFFSET_LINENO(2); 353 static const VdbeOpList autoIncEnd[] = { 354 /* 0 */ {OP_NotNull, 0, 2, 0}, 355 /* 1 */ {OP_NewRowid, 0, 0, 0}, 356 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 357 /* 3 */ {OP_Insert, 0, 0, 0}, 358 /* 4 */ {OP_Close, 0, 0, 0} 359 }; 360 VdbeOp *aOp; 361 Db *pDb = &db->aDb[p->iDb]; 362 int iRec; 363 int memId = p->regCtr; 364 365 iRec = sqlite3GetTempReg(pParse); 366 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 367 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 368 VdbeCoverage(v); 369 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 370 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 371 if( aOp==0 ) break; 372 aOp[0].p1 = memId+1; 373 aOp[1].p2 = memId+1; 374 aOp[2].p1 = memId-1; 375 aOp[2].p3 = iRec; 376 aOp[3].p2 = iRec; 377 aOp[3].p3 = memId+1; 378 aOp[3].p5 = OPFLAG_APPEND; 379 sqlite3ReleaseTempReg(pParse, iRec); 380 } 381 } 382 void sqlite3AutoincrementEnd(Parse *pParse){ 383 if( pParse->pAinc ) autoIncrementEnd(pParse); 384 } 385 #else 386 /* 387 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 388 ** above are all no-ops 389 */ 390 # define autoIncBegin(A,B,C) (0) 391 # define autoIncStep(A,B,C) 392 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 393 394 395 /* Forward declaration */ 396 static int xferOptimization( 397 Parse *pParse, /* Parser context */ 398 Table *pDest, /* The table we are inserting into */ 399 Select *pSelect, /* A SELECT statement to use as the data source */ 400 int onError, /* How to handle constraint errors */ 401 int iDbDest /* The database of pDest */ 402 ); 403 404 /* 405 ** This routine is called to handle SQL of the following forms: 406 ** 407 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 408 ** insert into TABLE (IDLIST) select 409 ** insert into TABLE (IDLIST) default values 410 ** 411 ** The IDLIST following the table name is always optional. If omitted, 412 ** then a list of all (non-hidden) columns for the table is substituted. 413 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 414 ** is omitted. 415 ** 416 ** For the pSelect parameter holds the values to be inserted for the 417 ** first two forms shown above. A VALUES clause is really just short-hand 418 ** for a SELECT statement that omits the FROM clause and everything else 419 ** that follows. If the pSelect parameter is NULL, that means that the 420 ** DEFAULT VALUES form of the INSERT statement is intended. 421 ** 422 ** The code generated follows one of four templates. For a simple 423 ** insert with data coming from a single-row VALUES clause, the code executes 424 ** once straight down through. Pseudo-code follows (we call this 425 ** the "1st template"): 426 ** 427 ** open write cursor to <table> and its indices 428 ** put VALUES clause expressions into registers 429 ** write the resulting record into <table> 430 ** cleanup 431 ** 432 ** The three remaining templates assume the statement is of the form 433 ** 434 ** INSERT INTO <table> SELECT ... 435 ** 436 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 437 ** in other words if the SELECT pulls all columns from a single table 438 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 439 ** if <table2> and <table1> are distinct tables but have identical 440 ** schemas, including all the same indices, then a special optimization 441 ** is invoked that copies raw records from <table2> over to <table1>. 442 ** See the xferOptimization() function for the implementation of this 443 ** template. This is the 2nd template. 444 ** 445 ** open a write cursor to <table> 446 ** open read cursor on <table2> 447 ** transfer all records in <table2> over to <table> 448 ** close cursors 449 ** foreach index on <table> 450 ** open a write cursor on the <table> index 451 ** open a read cursor on the corresponding <table2> index 452 ** transfer all records from the read to the write cursors 453 ** close cursors 454 ** end foreach 455 ** 456 ** The 3rd template is for when the second template does not apply 457 ** and the SELECT clause does not read from <table> at any time. 458 ** The generated code follows this template: 459 ** 460 ** X <- A 461 ** goto B 462 ** A: setup for the SELECT 463 ** loop over the rows in the SELECT 464 ** load values into registers R..R+n 465 ** yield X 466 ** end loop 467 ** cleanup after the SELECT 468 ** end-coroutine X 469 ** B: open write cursor to <table> and its indices 470 ** C: yield X, at EOF goto D 471 ** insert the select result into <table> from R..R+n 472 ** goto C 473 ** D: cleanup 474 ** 475 ** The 4th template is used if the insert statement takes its 476 ** values from a SELECT but the data is being inserted into a table 477 ** that is also read as part of the SELECT. In the third form, 478 ** we have to use an intermediate table to store the results of 479 ** the select. The template is like this: 480 ** 481 ** X <- A 482 ** goto B 483 ** A: setup for the SELECT 484 ** loop over the tables in the SELECT 485 ** load value into register R..R+n 486 ** yield X 487 ** end loop 488 ** cleanup after the SELECT 489 ** end co-routine R 490 ** B: open temp table 491 ** L: yield X, at EOF goto M 492 ** insert row from R..R+n into temp table 493 ** goto L 494 ** M: open write cursor to <table> and its indices 495 ** rewind temp table 496 ** C: loop over rows of intermediate table 497 ** transfer values form intermediate table into <table> 498 ** end loop 499 ** D: cleanup 500 */ 501 void sqlite3Insert( 502 Parse *pParse, /* Parser context */ 503 SrcList *pTabList, /* Name of table into which we are inserting */ 504 Select *pSelect, /* A SELECT statement to use as the data source */ 505 IdList *pColumn, /* Column names corresponding to IDLIST. */ 506 int onError, /* How to handle constraint errors */ 507 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 508 ){ 509 sqlite3 *db; /* The main database structure */ 510 Table *pTab; /* The table to insert into. aka TABLE */ 511 int i, j; /* Loop counters */ 512 Vdbe *v; /* Generate code into this virtual machine */ 513 Index *pIdx; /* For looping over indices of the table */ 514 int nColumn; /* Number of columns in the data */ 515 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 516 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 517 int iIdxCur = 0; /* First index cursor */ 518 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 519 int endOfLoop; /* Label for the end of the insertion loop */ 520 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 521 int addrInsTop = 0; /* Jump to label "D" */ 522 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 523 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 524 int iDb; /* Index of database holding TABLE */ 525 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 526 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 527 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 528 u8 bIdListInOrder; /* True if IDLIST is in table order */ 529 ExprList *pList = 0; /* List of VALUES() to be inserted */ 530 531 /* Register allocations */ 532 int regFromSelect = 0;/* Base register for data coming from SELECT */ 533 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 534 int regRowCount = 0; /* Memory cell used for the row counter */ 535 int regIns; /* Block of regs holding rowid+data being inserted */ 536 int regRowid; /* registers holding insert rowid */ 537 int regData; /* register holding first column to insert */ 538 int *aRegIdx = 0; /* One register allocated to each index */ 539 540 #ifndef SQLITE_OMIT_TRIGGER 541 int isView; /* True if attempting to insert into a view */ 542 Trigger *pTrigger; /* List of triggers on pTab, if required */ 543 int tmask; /* Mask of trigger times */ 544 #endif 545 546 db = pParse->db; 547 if( pParse->nErr || db->mallocFailed ){ 548 goto insert_cleanup; 549 } 550 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 551 552 /* If the Select object is really just a simple VALUES() list with a 553 ** single row (the common case) then keep that one row of values 554 ** and discard the other (unused) parts of the pSelect object 555 */ 556 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 557 pList = pSelect->pEList; 558 pSelect->pEList = 0; 559 sqlite3SelectDelete(db, pSelect); 560 pSelect = 0; 561 } 562 563 /* Locate the table into which we will be inserting new information. 564 */ 565 assert( pTabList->nSrc==1 ); 566 pTab = sqlite3SrcListLookup(pParse, pTabList); 567 if( pTab==0 ){ 568 goto insert_cleanup; 569 } 570 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 571 assert( iDb<db->nDb ); 572 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 573 db->aDb[iDb].zDbSName) ){ 574 goto insert_cleanup; 575 } 576 withoutRowid = !HasRowid(pTab); 577 578 /* Figure out if we have any triggers and if the table being 579 ** inserted into is a view 580 */ 581 #ifndef SQLITE_OMIT_TRIGGER 582 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 583 isView = pTab->pSelect!=0; 584 #else 585 # define pTrigger 0 586 # define tmask 0 587 # define isView 0 588 #endif 589 #ifdef SQLITE_OMIT_VIEW 590 # undef isView 591 # define isView 0 592 #endif 593 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 594 595 /* If pTab is really a view, make sure it has been initialized. 596 ** ViewGetColumnNames() is a no-op if pTab is not a view. 597 */ 598 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 599 goto insert_cleanup; 600 } 601 602 /* Cannot insert into a read-only table. 603 */ 604 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 605 goto insert_cleanup; 606 } 607 608 /* Allocate a VDBE 609 */ 610 v = sqlite3GetVdbe(pParse); 611 if( v==0 ) goto insert_cleanup; 612 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 613 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 614 615 #ifndef SQLITE_OMIT_XFER_OPT 616 /* If the statement is of the form 617 ** 618 ** INSERT INTO <table1> SELECT * FROM <table2>; 619 ** 620 ** Then special optimizations can be applied that make the transfer 621 ** very fast and which reduce fragmentation of indices. 622 ** 623 ** This is the 2nd template. 624 */ 625 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 626 assert( !pTrigger ); 627 assert( pList==0 ); 628 goto insert_end; 629 } 630 #endif /* SQLITE_OMIT_XFER_OPT */ 631 632 /* If this is an AUTOINCREMENT table, look up the sequence number in the 633 ** sqlite_sequence table and store it in memory cell regAutoinc. 634 */ 635 regAutoinc = autoIncBegin(pParse, iDb, pTab); 636 637 /* Allocate registers for holding the rowid of the new row, 638 ** the content of the new row, and the assembled row record. 639 */ 640 regRowid = regIns = pParse->nMem+1; 641 pParse->nMem += pTab->nCol + 1; 642 if( IsVirtual(pTab) ){ 643 regRowid++; 644 pParse->nMem++; 645 } 646 regData = regRowid+1; 647 648 /* If the INSERT statement included an IDLIST term, then make sure 649 ** all elements of the IDLIST really are columns of the table and 650 ** remember the column indices. 651 ** 652 ** If the table has an INTEGER PRIMARY KEY column and that column 653 ** is named in the IDLIST, then record in the ipkColumn variable 654 ** the index into IDLIST of the primary key column. ipkColumn is 655 ** the index of the primary key as it appears in IDLIST, not as 656 ** is appears in the original table. (The index of the INTEGER 657 ** PRIMARY KEY in the original table is pTab->iPKey.) 658 */ 659 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 660 if( pColumn ){ 661 for(i=0; i<pColumn->nId; i++){ 662 pColumn->a[i].idx = -1; 663 } 664 for(i=0; i<pColumn->nId; i++){ 665 for(j=0; j<pTab->nCol; j++){ 666 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 667 pColumn->a[i].idx = j; 668 if( i!=j ) bIdListInOrder = 0; 669 if( j==pTab->iPKey ){ 670 ipkColumn = i; assert( !withoutRowid ); 671 } 672 break; 673 } 674 } 675 if( j>=pTab->nCol ){ 676 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 677 ipkColumn = i; 678 bIdListInOrder = 0; 679 }else{ 680 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 681 pTabList, 0, pColumn->a[i].zName); 682 pParse->checkSchema = 1; 683 goto insert_cleanup; 684 } 685 } 686 } 687 } 688 689 /* Figure out how many columns of data are supplied. If the data 690 ** is coming from a SELECT statement, then generate a co-routine that 691 ** produces a single row of the SELECT on each invocation. The 692 ** co-routine is the common header to the 3rd and 4th templates. 693 */ 694 if( pSelect ){ 695 /* Data is coming from a SELECT or from a multi-row VALUES clause. 696 ** Generate a co-routine to run the SELECT. */ 697 int regYield; /* Register holding co-routine entry-point */ 698 int addrTop; /* Top of the co-routine */ 699 int rc; /* Result code */ 700 701 regYield = ++pParse->nMem; 702 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 703 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 704 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 705 dest.iSdst = bIdListInOrder ? regData : 0; 706 dest.nSdst = pTab->nCol; 707 rc = sqlite3Select(pParse, pSelect, &dest); 708 regFromSelect = dest.iSdst; 709 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 710 sqlite3VdbeEndCoroutine(v, regYield); 711 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 712 assert( pSelect->pEList ); 713 nColumn = pSelect->pEList->nExpr; 714 715 /* Set useTempTable to TRUE if the result of the SELECT statement 716 ** should be written into a temporary table (template 4). Set to 717 ** FALSE if each output row of the SELECT can be written directly into 718 ** the destination table (template 3). 719 ** 720 ** A temp table must be used if the table being updated is also one 721 ** of the tables being read by the SELECT statement. Also use a 722 ** temp table in the case of row triggers. 723 */ 724 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 725 useTempTable = 1; 726 } 727 728 if( useTempTable ){ 729 /* Invoke the coroutine to extract information from the SELECT 730 ** and add it to a transient table srcTab. The code generated 731 ** here is from the 4th template: 732 ** 733 ** B: open temp table 734 ** L: yield X, goto M at EOF 735 ** insert row from R..R+n into temp table 736 ** goto L 737 ** M: ... 738 */ 739 int regRec; /* Register to hold packed record */ 740 int regTempRowid; /* Register to hold temp table ROWID */ 741 int addrL; /* Label "L" */ 742 743 srcTab = pParse->nTab++; 744 regRec = sqlite3GetTempReg(pParse); 745 regTempRowid = sqlite3GetTempReg(pParse); 746 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 747 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 748 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 749 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 750 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 751 sqlite3VdbeGoto(v, addrL); 752 sqlite3VdbeJumpHere(v, addrL); 753 sqlite3ReleaseTempReg(pParse, regRec); 754 sqlite3ReleaseTempReg(pParse, regTempRowid); 755 } 756 }else{ 757 /* This is the case if the data for the INSERT is coming from a 758 ** single-row VALUES clause 759 */ 760 NameContext sNC; 761 memset(&sNC, 0, sizeof(sNC)); 762 sNC.pParse = pParse; 763 srcTab = -1; 764 assert( useTempTable==0 ); 765 if( pList ){ 766 nColumn = pList->nExpr; 767 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 768 goto insert_cleanup; 769 } 770 }else{ 771 nColumn = 0; 772 } 773 } 774 775 /* If there is no IDLIST term but the table has an integer primary 776 ** key, the set the ipkColumn variable to the integer primary key 777 ** column index in the original table definition. 778 */ 779 if( pColumn==0 && nColumn>0 ){ 780 ipkColumn = pTab->iPKey; 781 } 782 783 /* Make sure the number of columns in the source data matches the number 784 ** of columns to be inserted into the table. 785 */ 786 for(i=0; i<pTab->nCol; i++){ 787 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 788 } 789 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 790 sqlite3ErrorMsg(pParse, 791 "table %S has %d columns but %d values were supplied", 792 pTabList, 0, pTab->nCol-nHidden, nColumn); 793 goto insert_cleanup; 794 } 795 if( pColumn!=0 && nColumn!=pColumn->nId ){ 796 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 797 goto insert_cleanup; 798 } 799 800 /* Initialize the count of rows to be inserted 801 */ 802 if( (db->flags & SQLITE_CountRows)!=0 803 && !pParse->nested 804 && !pParse->pTriggerTab 805 ){ 806 regRowCount = ++pParse->nMem; 807 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 808 } 809 810 /* If this is not a view, open the table and and all indices */ 811 if( !isView ){ 812 int nIdx; 813 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 814 &iDataCur, &iIdxCur); 815 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 816 if( aRegIdx==0 ){ 817 goto insert_cleanup; 818 } 819 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 820 assert( pIdx ); 821 aRegIdx[i] = ++pParse->nMem; 822 pParse->nMem += pIdx->nColumn; 823 } 824 } 825 #ifndef SQLITE_OMIT_UPSERT 826 if( pUpsert ){ 827 pTabList->a[0].iCursor = iDataCur; 828 pUpsert->pUpsertSrc = pTabList; 829 pUpsert->regData = regData; 830 pUpsert->iDataCur = iDataCur; 831 pUpsert->iIdxCur = iIdxCur; 832 if( pUpsert->pUpsertTarget ){ 833 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 834 } 835 } 836 #endif 837 838 839 /* This is the top of the main insertion loop */ 840 if( useTempTable ){ 841 /* This block codes the top of loop only. The complete loop is the 842 ** following pseudocode (template 4): 843 ** 844 ** rewind temp table, if empty goto D 845 ** C: loop over rows of intermediate table 846 ** transfer values form intermediate table into <table> 847 ** end loop 848 ** D: ... 849 */ 850 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 851 addrCont = sqlite3VdbeCurrentAddr(v); 852 }else if( pSelect ){ 853 /* This block codes the top of loop only. The complete loop is the 854 ** following pseudocode (template 3): 855 ** 856 ** C: yield X, at EOF goto D 857 ** insert the select result into <table> from R..R+n 858 ** goto C 859 ** D: ... 860 */ 861 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 862 VdbeCoverage(v); 863 } 864 865 /* Run the BEFORE and INSTEAD OF triggers, if there are any 866 */ 867 endOfLoop = sqlite3VdbeMakeLabel(v); 868 if( tmask & TRIGGER_BEFORE ){ 869 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 870 871 /* build the NEW.* reference row. Note that if there is an INTEGER 872 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 873 ** translated into a unique ID for the row. But on a BEFORE trigger, 874 ** we do not know what the unique ID will be (because the insert has 875 ** not happened yet) so we substitute a rowid of -1 876 */ 877 if( ipkColumn<0 ){ 878 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 879 }else{ 880 int addr1; 881 assert( !withoutRowid ); 882 if( useTempTable ){ 883 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 884 }else{ 885 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 886 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 887 } 888 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 889 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 890 sqlite3VdbeJumpHere(v, addr1); 891 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 892 } 893 894 /* Cannot have triggers on a virtual table. If it were possible, 895 ** this block would have to account for hidden column. 896 */ 897 assert( !IsVirtual(pTab) ); 898 899 /* Create the new column data 900 */ 901 for(i=j=0; i<pTab->nCol; i++){ 902 if( pColumn ){ 903 for(j=0; j<pColumn->nId; j++){ 904 if( pColumn->a[j].idx==i ) break; 905 } 906 } 907 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 908 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 909 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 910 }else if( useTempTable ){ 911 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 912 }else{ 913 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 914 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 915 } 916 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 917 } 918 919 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 920 ** do not attempt any conversions before assembling the record. 921 ** If this is a real table, attempt conversions as required by the 922 ** table column affinities. 923 */ 924 if( !isView ){ 925 sqlite3TableAffinity(v, pTab, regCols+1); 926 } 927 928 /* Fire BEFORE or INSTEAD OF triggers */ 929 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 930 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 931 932 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 933 } 934 935 /* Compute the content of the next row to insert into a range of 936 ** registers beginning at regIns. 937 */ 938 if( !isView ){ 939 if( IsVirtual(pTab) ){ 940 /* The row that the VUpdate opcode will delete: none */ 941 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 942 } 943 if( ipkColumn>=0 ){ 944 if( useTempTable ){ 945 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 946 }else if( pSelect ){ 947 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 948 }else{ 949 VdbeOp *pOp; 950 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 951 pOp = sqlite3VdbeGetOp(v, -1); 952 assert( pOp!=0 ); 953 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 954 appendFlag = 1; 955 pOp->opcode = OP_NewRowid; 956 pOp->p1 = iDataCur; 957 pOp->p2 = regRowid; 958 pOp->p3 = regAutoinc; 959 } 960 } 961 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 962 ** to generate a unique primary key value. 963 */ 964 if( !appendFlag ){ 965 int addr1; 966 if( !IsVirtual(pTab) ){ 967 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 968 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 969 sqlite3VdbeJumpHere(v, addr1); 970 }else{ 971 addr1 = sqlite3VdbeCurrentAddr(v); 972 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 973 } 974 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 975 } 976 }else if( IsVirtual(pTab) || withoutRowid ){ 977 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 978 }else{ 979 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 980 appendFlag = 1; 981 } 982 autoIncStep(pParse, regAutoinc, regRowid); 983 984 /* Compute data for all columns of the new entry, beginning 985 ** with the first column. 986 */ 987 nHidden = 0; 988 for(i=0; i<pTab->nCol; i++){ 989 int iRegStore = regRowid+1+i; 990 if( i==pTab->iPKey ){ 991 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 992 ** Whenever this column is read, the rowid will be substituted 993 ** in its place. Hence, fill this column with a NULL to avoid 994 ** taking up data space with information that will never be used. 995 ** As there may be shallow copies of this value, make it a soft-NULL */ 996 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 997 continue; 998 } 999 if( pColumn==0 ){ 1000 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1001 j = -1; 1002 nHidden++; 1003 }else{ 1004 j = i - nHidden; 1005 } 1006 }else{ 1007 for(j=0; j<pColumn->nId; j++){ 1008 if( pColumn->a[j].idx==i ) break; 1009 } 1010 } 1011 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1012 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1013 }else if( useTempTable ){ 1014 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1015 }else if( pSelect ){ 1016 if( regFromSelect!=regData ){ 1017 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1018 } 1019 }else{ 1020 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1021 } 1022 } 1023 1024 /* Generate code to check constraints and generate index keys and 1025 ** do the insertion. 1026 */ 1027 #ifndef SQLITE_OMIT_VIRTUALTABLE 1028 if( IsVirtual(pTab) ){ 1029 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1030 sqlite3VtabMakeWritable(pParse, pTab); 1031 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1032 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1033 sqlite3MayAbort(pParse); 1034 }else 1035 #endif 1036 { 1037 int isReplace; /* Set to true if constraints may cause a replace */ 1038 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1039 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1040 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1041 ); 1042 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1043 1044 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1045 ** constraints or (b) there are no triggers and this table is not a 1046 ** parent table in a foreign key constraint. It is safe to set the 1047 ** flag in the second case as if any REPLACE constraint is hit, an 1048 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1049 ** cursor that is disturbed. And these instructions both clear the 1050 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1051 ** functionality. */ 1052 bUseSeek = (isReplace==0 || (pTrigger==0 && 1053 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1054 )); 1055 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1056 regIns, aRegIdx, 0, appendFlag, bUseSeek 1057 ); 1058 } 1059 } 1060 1061 /* Update the count of rows that are inserted 1062 */ 1063 if( regRowCount ){ 1064 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1065 } 1066 1067 if( pTrigger ){ 1068 /* Code AFTER triggers */ 1069 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1070 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1071 } 1072 1073 /* The bottom of the main insertion loop, if the data source 1074 ** is a SELECT statement. 1075 */ 1076 sqlite3VdbeResolveLabel(v, endOfLoop); 1077 if( useTempTable ){ 1078 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1079 sqlite3VdbeJumpHere(v, addrInsTop); 1080 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1081 }else if( pSelect ){ 1082 sqlite3VdbeGoto(v, addrCont); 1083 sqlite3VdbeJumpHere(v, addrInsTop); 1084 } 1085 1086 insert_end: 1087 /* Update the sqlite_sequence table by storing the content of the 1088 ** maximum rowid counter values recorded while inserting into 1089 ** autoincrement tables. 1090 */ 1091 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1092 sqlite3AutoincrementEnd(pParse); 1093 } 1094 1095 /* 1096 ** Return the number of rows inserted. If this routine is 1097 ** generating code because of a call to sqlite3NestedParse(), do not 1098 ** invoke the callback function. 1099 */ 1100 if( regRowCount ){ 1101 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1102 sqlite3VdbeSetNumCols(v, 1); 1103 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1104 } 1105 1106 insert_cleanup: 1107 sqlite3SrcListDelete(db, pTabList); 1108 sqlite3ExprListDelete(db, pList); 1109 sqlite3UpsertDelete(db, pUpsert); 1110 sqlite3SelectDelete(db, pSelect); 1111 sqlite3IdListDelete(db, pColumn); 1112 sqlite3DbFree(db, aRegIdx); 1113 } 1114 1115 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1116 ** they may interfere with compilation of other functions in this file 1117 ** (or in another file, if this file becomes part of the amalgamation). */ 1118 #ifdef isView 1119 #undef isView 1120 #endif 1121 #ifdef pTrigger 1122 #undef pTrigger 1123 #endif 1124 #ifdef tmask 1125 #undef tmask 1126 #endif 1127 1128 /* 1129 ** Meanings of bits in of pWalker->eCode for 1130 ** sqlite3ExprReferencesUpdatedColumn() 1131 */ 1132 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1133 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1134 1135 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1136 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1137 ** expression node references any of the 1138 ** columns that are being modifed by an UPDATE statement. 1139 */ 1140 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1141 if( pExpr->op==TK_COLUMN ){ 1142 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1143 if( pExpr->iColumn>=0 ){ 1144 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1145 pWalker->eCode |= CKCNSTRNT_COLUMN; 1146 } 1147 }else{ 1148 pWalker->eCode |= CKCNSTRNT_ROWID; 1149 } 1150 } 1151 return WRC_Continue; 1152 } 1153 1154 /* 1155 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1156 ** only columns that are modified by the UPDATE are those for which 1157 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1158 ** 1159 ** Return true if CHECK constraint pExpr uses any of the 1160 ** changing columns (or the rowid if it is changing). In other words, 1161 ** return true if this CHECK constraint must be validated for 1162 ** the new row in the UPDATE statement. 1163 ** 1164 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1165 ** The operation of this routine is the same - return true if an only if 1166 ** the expression uses one or more of columns identified by the second and 1167 ** third arguments. 1168 */ 1169 int sqlite3ExprReferencesUpdatedColumn( 1170 Expr *pExpr, /* The expression to be checked */ 1171 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1172 int chngRowid /* True if UPDATE changes the rowid */ 1173 ){ 1174 Walker w; 1175 memset(&w, 0, sizeof(w)); 1176 w.eCode = 0; 1177 w.xExprCallback = checkConstraintExprNode; 1178 w.u.aiCol = aiChng; 1179 sqlite3WalkExpr(&w, pExpr); 1180 if( !chngRowid ){ 1181 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1182 w.eCode &= ~CKCNSTRNT_ROWID; 1183 } 1184 testcase( w.eCode==0 ); 1185 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1186 testcase( w.eCode==CKCNSTRNT_ROWID ); 1187 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1188 return w.eCode!=0; 1189 } 1190 1191 /* 1192 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1193 ** on table pTab. 1194 ** 1195 ** The regNewData parameter is the first register in a range that contains 1196 ** the data to be inserted or the data after the update. There will be 1197 ** pTab->nCol+1 registers in this range. The first register (the one 1198 ** that regNewData points to) will contain the new rowid, or NULL in the 1199 ** case of a WITHOUT ROWID table. The second register in the range will 1200 ** contain the content of the first table column. The third register will 1201 ** contain the content of the second table column. And so forth. 1202 ** 1203 ** The regOldData parameter is similar to regNewData except that it contains 1204 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1205 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1206 ** checking regOldData for zero. 1207 ** 1208 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1209 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1210 ** might be modified by the UPDATE. If pkChng is false, then the key of 1211 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1212 ** 1213 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1214 ** was explicitly specified as part of the INSERT statement. If pkChng 1215 ** is zero, it means that the either rowid is computed automatically or 1216 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1217 ** pkChng will only be true if the INSERT statement provides an integer 1218 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1219 ** 1220 ** The code generated by this routine will store new index entries into 1221 ** registers identified by aRegIdx[]. No index entry is created for 1222 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1223 ** the same as the order of indices on the linked list of indices 1224 ** at pTab->pIndex. 1225 ** 1226 ** The caller must have already opened writeable cursors on the main 1227 ** table and all applicable indices (that is to say, all indices for which 1228 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1229 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1230 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1231 ** for the first index in the pTab->pIndex list. Cursors for other indices 1232 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1233 ** 1234 ** This routine also generates code to check constraints. NOT NULL, 1235 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1236 ** then the appropriate action is performed. There are five possible 1237 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1238 ** 1239 ** Constraint type Action What Happens 1240 ** --------------- ---------- ---------------------------------------- 1241 ** any ROLLBACK The current transaction is rolled back and 1242 ** sqlite3_step() returns immediately with a 1243 ** return code of SQLITE_CONSTRAINT. 1244 ** 1245 ** any ABORT Back out changes from the current command 1246 ** only (do not do a complete rollback) then 1247 ** cause sqlite3_step() to return immediately 1248 ** with SQLITE_CONSTRAINT. 1249 ** 1250 ** any FAIL Sqlite3_step() returns immediately with a 1251 ** return code of SQLITE_CONSTRAINT. The 1252 ** transaction is not rolled back and any 1253 ** changes to prior rows are retained. 1254 ** 1255 ** any IGNORE The attempt in insert or update the current 1256 ** row is skipped, without throwing an error. 1257 ** Processing continues with the next row. 1258 ** (There is an immediate jump to ignoreDest.) 1259 ** 1260 ** NOT NULL REPLACE The NULL value is replace by the default 1261 ** value for that column. If the default value 1262 ** is NULL, the action is the same as ABORT. 1263 ** 1264 ** UNIQUE REPLACE The other row that conflicts with the row 1265 ** being inserted is removed. 1266 ** 1267 ** CHECK REPLACE Illegal. The results in an exception. 1268 ** 1269 ** Which action to take is determined by the overrideError parameter. 1270 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1271 ** is used. Or if pParse->onError==OE_Default then the onError value 1272 ** for the constraint is used. 1273 */ 1274 void sqlite3GenerateConstraintChecks( 1275 Parse *pParse, /* The parser context */ 1276 Table *pTab, /* The table being inserted or updated */ 1277 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1278 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1279 int iIdxCur, /* First index cursor */ 1280 int regNewData, /* First register in a range holding values to insert */ 1281 int regOldData, /* Previous content. 0 for INSERTs */ 1282 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1283 u8 overrideError, /* Override onError to this if not OE_Default */ 1284 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1285 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1286 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1287 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1288 ){ 1289 Vdbe *v; /* VDBE under constrution */ 1290 Index *pIdx; /* Pointer to one of the indices */ 1291 Index *pPk = 0; /* The PRIMARY KEY index */ 1292 sqlite3 *db; /* Database connection */ 1293 int i; /* loop counter */ 1294 int ix; /* Index loop counter */ 1295 int nCol; /* Number of columns */ 1296 int onError; /* Conflict resolution strategy */ 1297 int addr1; /* Address of jump instruction */ 1298 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1299 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1300 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1301 u8 isUpdate; /* True if this is an UPDATE operation */ 1302 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1303 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1304 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1305 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1306 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1307 1308 isUpdate = regOldData!=0; 1309 db = pParse->db; 1310 v = sqlite3GetVdbe(pParse); 1311 assert( v!=0 ); 1312 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1313 nCol = pTab->nCol; 1314 1315 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1316 ** normal rowid tables. nPkField is the number of key fields in the 1317 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1318 ** number of fields in the true primary key of the table. */ 1319 if( HasRowid(pTab) ){ 1320 pPk = 0; 1321 nPkField = 1; 1322 }else{ 1323 pPk = sqlite3PrimaryKeyIndex(pTab); 1324 nPkField = pPk->nKeyCol; 1325 } 1326 1327 /* Record that this module has started */ 1328 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1329 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1330 1331 /* Test all NOT NULL constraints. 1332 */ 1333 for(i=0; i<nCol; i++){ 1334 if( i==pTab->iPKey ){ 1335 continue; /* ROWID is never NULL */ 1336 } 1337 if( aiChng && aiChng[i]<0 ){ 1338 /* Don't bother checking for NOT NULL on columns that do not change */ 1339 continue; 1340 } 1341 onError = pTab->aCol[i].notNull; 1342 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1343 if( overrideError!=OE_Default ){ 1344 onError = overrideError; 1345 }else if( onError==OE_Default ){ 1346 onError = OE_Abort; 1347 } 1348 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1349 onError = OE_Abort; 1350 } 1351 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1352 || onError==OE_Ignore || onError==OE_Replace ); 1353 switch( onError ){ 1354 case OE_Abort: 1355 sqlite3MayAbort(pParse); 1356 /* Fall through */ 1357 case OE_Rollback: 1358 case OE_Fail: { 1359 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1360 pTab->aCol[i].zName); 1361 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1362 regNewData+1+i); 1363 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1364 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1365 VdbeCoverage(v); 1366 break; 1367 } 1368 case OE_Ignore: { 1369 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1370 VdbeCoverage(v); 1371 break; 1372 } 1373 default: { 1374 assert( onError==OE_Replace ); 1375 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1376 VdbeCoverage(v); 1377 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1378 sqlite3VdbeJumpHere(v, addr1); 1379 break; 1380 } 1381 } 1382 } 1383 1384 /* Test all CHECK constraints 1385 */ 1386 #ifndef SQLITE_OMIT_CHECK 1387 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1388 ExprList *pCheck = pTab->pCheck; 1389 pParse->iSelfTab = -(regNewData+1); 1390 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1391 for(i=0; i<pCheck->nExpr; i++){ 1392 int allOk; 1393 Expr *pExpr = pCheck->a[i].pExpr; 1394 if( aiChng 1395 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1396 ){ 1397 /* The check constraints do not reference any of the columns being 1398 ** updated so there is no point it verifying the check constraint */ 1399 continue; 1400 } 1401 allOk = sqlite3VdbeMakeLabel(v); 1402 sqlite3VdbeVerifyAbortable(v, onError); 1403 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1404 if( onError==OE_Ignore ){ 1405 sqlite3VdbeGoto(v, ignoreDest); 1406 }else{ 1407 char *zName = pCheck->a[i].zName; 1408 if( zName==0 ) zName = pTab->zName; 1409 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1410 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1411 onError, zName, P4_TRANSIENT, 1412 P5_ConstraintCheck); 1413 } 1414 sqlite3VdbeResolveLabel(v, allOk); 1415 } 1416 pParse->iSelfTab = 0; 1417 } 1418 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1419 1420 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1421 ** order: 1422 ** 1423 ** (1) OE_Update 1424 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1425 ** (3) OE_Replace 1426 ** 1427 ** OE_Fail and OE_Ignore must happen before any changes are made. 1428 ** OE_Update guarantees that only a single row will change, so it 1429 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1430 ** could happen in any order, but they are grouped up front for 1431 ** convenience. 1432 ** 1433 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1434 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1435 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1436 ** constraint before any others, so it had to be moved. 1437 ** 1438 ** Constraint checking code is generated in this order: 1439 ** (A) The rowid constraint 1440 ** (B) Unique index constraints that do not have OE_Replace as their 1441 ** default conflict resolution strategy 1442 ** (C) Unique index that do use OE_Replace by default. 1443 ** 1444 ** The ordering of (2) and (3) is accomplished by making sure the linked 1445 ** list of indexes attached to a table puts all OE_Replace indexes last 1446 ** in the list. See sqlite3CreateIndex() for where that happens. 1447 */ 1448 1449 if( pUpsert ){ 1450 if( pUpsert->pUpsertTarget==0 ){ 1451 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1452 ** Make all unique constraint resolution be OE_Ignore */ 1453 assert( pUpsert->pUpsertSet==0 ); 1454 overrideError = OE_Ignore; 1455 pUpsert = 0; 1456 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1457 /* If the constraint-target uniqueness check must be run first. 1458 ** Jump to that uniqueness check now */ 1459 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1460 VdbeComment((v, "UPSERT constraint goes first")); 1461 } 1462 } 1463 1464 /* If rowid is changing, make sure the new rowid does not previously 1465 ** exist in the table. 1466 */ 1467 if( pkChng && pPk==0 ){ 1468 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1469 1470 /* Figure out what action to take in case of a rowid collision */ 1471 onError = pTab->keyConf; 1472 if( overrideError!=OE_Default ){ 1473 onError = overrideError; 1474 }else if( onError==OE_Default ){ 1475 onError = OE_Abort; 1476 } 1477 1478 /* figure out whether or not upsert applies in this case */ 1479 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1480 if( pUpsert->pUpsertSet==0 ){ 1481 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1482 }else{ 1483 onError = OE_Update; /* DO UPDATE */ 1484 } 1485 } 1486 1487 /* If the response to a rowid conflict is REPLACE but the response 1488 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1489 ** to defer the running of the rowid conflict checking until after 1490 ** the UNIQUE constraints have run. 1491 */ 1492 if( onError==OE_Replace /* IPK rule is REPLACE */ 1493 && onError!=overrideError /* Rules for other contraints are different */ 1494 && pTab->pIndex /* There exist other constraints */ 1495 ){ 1496 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1497 VdbeComment((v, "defer IPK REPLACE until last")); 1498 } 1499 1500 if( isUpdate ){ 1501 /* pkChng!=0 does not mean that the rowid has changed, only that 1502 ** it might have changed. Skip the conflict logic below if the rowid 1503 ** is unchanged. */ 1504 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1505 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1506 VdbeCoverage(v); 1507 } 1508 1509 /* Check to see if the new rowid already exists in the table. Skip 1510 ** the following conflict logic if it does not. */ 1511 VdbeNoopComment((v, "uniqueness check for ROWID")); 1512 sqlite3VdbeVerifyAbortable(v, onError); 1513 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1514 VdbeCoverage(v); 1515 1516 switch( onError ){ 1517 default: { 1518 onError = OE_Abort; 1519 /* Fall thru into the next case */ 1520 } 1521 case OE_Rollback: 1522 case OE_Abort: 1523 case OE_Fail: { 1524 testcase( onError==OE_Rollback ); 1525 testcase( onError==OE_Abort ); 1526 testcase( onError==OE_Fail ); 1527 sqlite3RowidConstraint(pParse, onError, pTab); 1528 break; 1529 } 1530 case OE_Replace: { 1531 /* If there are DELETE triggers on this table and the 1532 ** recursive-triggers flag is set, call GenerateRowDelete() to 1533 ** remove the conflicting row from the table. This will fire 1534 ** the triggers and remove both the table and index b-tree entries. 1535 ** 1536 ** Otherwise, if there are no triggers or the recursive-triggers 1537 ** flag is not set, but the table has one or more indexes, call 1538 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1539 ** only. The table b-tree entry will be replaced by the new entry 1540 ** when it is inserted. 1541 ** 1542 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1543 ** also invoke MultiWrite() to indicate that this VDBE may require 1544 ** statement rollback (if the statement is aborted after the delete 1545 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1546 ** but being more selective here allows statements like: 1547 ** 1548 ** REPLACE INTO t(rowid) VALUES($newrowid) 1549 ** 1550 ** to run without a statement journal if there are no indexes on the 1551 ** table. 1552 */ 1553 Trigger *pTrigger = 0; 1554 if( db->flags&SQLITE_RecTriggers ){ 1555 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1556 } 1557 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1558 sqlite3MultiWrite(pParse); 1559 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1560 regNewData, 1, 0, OE_Replace, 1, -1); 1561 }else{ 1562 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1563 assert( HasRowid(pTab) ); 1564 /* This OP_Delete opcode fires the pre-update-hook only. It does 1565 ** not modify the b-tree. It is more efficient to let the coming 1566 ** OP_Insert replace the existing entry than it is to delete the 1567 ** existing entry and then insert a new one. */ 1568 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1569 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1570 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1571 if( pTab->pIndex ){ 1572 sqlite3MultiWrite(pParse); 1573 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1574 } 1575 } 1576 seenReplace = 1; 1577 break; 1578 } 1579 #ifndef SQLITE_OMIT_UPSERT 1580 case OE_Update: { 1581 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1582 /* Fall through */ 1583 } 1584 #endif 1585 case OE_Ignore: { 1586 testcase( onError==OE_Ignore ); 1587 sqlite3VdbeGoto(v, ignoreDest); 1588 break; 1589 } 1590 } 1591 sqlite3VdbeResolveLabel(v, addrRowidOk); 1592 if( ipkTop ){ 1593 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1594 sqlite3VdbeJumpHere(v, ipkTop-1); 1595 } 1596 } 1597 1598 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1599 ** index and making sure that duplicate entries do not already exist. 1600 ** Compute the revised record entries for indices as we go. 1601 ** 1602 ** This loop also handles the case of the PRIMARY KEY index for a 1603 ** WITHOUT ROWID table. 1604 */ 1605 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1606 int regIdx; /* Range of registers hold conent for pIdx */ 1607 int regR; /* Range of registers holding conflicting PK */ 1608 int iThisCur; /* Cursor for this UNIQUE index */ 1609 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1610 1611 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1612 if( pUpIdx==pIdx ){ 1613 addrUniqueOk = upsertJump+1; 1614 upsertBypass = sqlite3VdbeGoto(v, 0); 1615 VdbeComment((v, "Skip upsert subroutine")); 1616 sqlite3VdbeJumpHere(v, upsertJump); 1617 }else{ 1618 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1619 } 1620 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1621 sqlite3TableAffinity(v, pTab, regNewData+1); 1622 bAffinityDone = 1; 1623 } 1624 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1625 iThisCur = iIdxCur+ix; 1626 1627 1628 /* Skip partial indices for which the WHERE clause is not true */ 1629 if( pIdx->pPartIdxWhere ){ 1630 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1631 pParse->iSelfTab = -(regNewData+1); 1632 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1633 SQLITE_JUMPIFNULL); 1634 pParse->iSelfTab = 0; 1635 } 1636 1637 /* Create a record for this index entry as it should appear after 1638 ** the insert or update. Store that record in the aRegIdx[ix] register 1639 */ 1640 regIdx = aRegIdx[ix]+1; 1641 for(i=0; i<pIdx->nColumn; i++){ 1642 int iField = pIdx->aiColumn[i]; 1643 int x; 1644 if( iField==XN_EXPR ){ 1645 pParse->iSelfTab = -(regNewData+1); 1646 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1647 pParse->iSelfTab = 0; 1648 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1649 }else{ 1650 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1651 x = regNewData; 1652 }else{ 1653 x = iField + regNewData + 1; 1654 } 1655 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1656 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1657 } 1658 } 1659 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1660 VdbeComment((v, "for %s", pIdx->zName)); 1661 #ifdef SQLITE_ENABLE_NULL_TRIM 1662 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1663 #endif 1664 1665 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1666 ** of a WITHOUT ROWID table and there has been no change the 1667 ** primary key, then no collision is possible. The collision detection 1668 ** logic below can all be skipped. */ 1669 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1670 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1671 continue; 1672 } 1673 1674 /* Find out what action to take in case there is a uniqueness conflict */ 1675 onError = pIdx->onError; 1676 if( onError==OE_None ){ 1677 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1678 continue; /* pIdx is not a UNIQUE index */ 1679 } 1680 if( overrideError!=OE_Default ){ 1681 onError = overrideError; 1682 }else if( onError==OE_Default ){ 1683 onError = OE_Abort; 1684 } 1685 1686 /* Figure out if the upsert clause applies to this index */ 1687 if( pUpIdx==pIdx ){ 1688 if( pUpsert->pUpsertSet==0 ){ 1689 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1690 }else{ 1691 onError = OE_Update; /* DO UPDATE */ 1692 } 1693 } 1694 1695 /* Collision detection may be omitted if all of the following are true: 1696 ** (1) The conflict resolution algorithm is REPLACE 1697 ** (2) The table is a WITHOUT ROWID table 1698 ** (3) There are no secondary indexes on the table 1699 ** (4) No delete triggers need to be fired if there is a conflict 1700 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1701 */ 1702 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1703 && pPk==pIdx /* Condition 2 */ 1704 && onError==OE_Replace /* Condition 1 */ 1705 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1706 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1707 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1708 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1709 ){ 1710 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1711 continue; 1712 } 1713 1714 /* Check to see if the new index entry will be unique */ 1715 sqlite3VdbeVerifyAbortable(v, onError); 1716 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1717 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1718 1719 /* Generate code to handle collisions */ 1720 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1721 if( isUpdate || onError==OE_Replace ){ 1722 if( HasRowid(pTab) ){ 1723 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1724 /* Conflict only if the rowid of the existing index entry 1725 ** is different from old-rowid */ 1726 if( isUpdate ){ 1727 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1728 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1729 VdbeCoverage(v); 1730 } 1731 }else{ 1732 int x; 1733 /* Extract the PRIMARY KEY from the end of the index entry and 1734 ** store it in registers regR..regR+nPk-1 */ 1735 if( pIdx!=pPk ){ 1736 for(i=0; i<pPk->nKeyCol; i++){ 1737 assert( pPk->aiColumn[i]>=0 ); 1738 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1739 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1740 VdbeComment((v, "%s.%s", pTab->zName, 1741 pTab->aCol[pPk->aiColumn[i]].zName)); 1742 } 1743 } 1744 if( isUpdate ){ 1745 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1746 ** table, only conflict if the new PRIMARY KEY values are actually 1747 ** different from the old. 1748 ** 1749 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1750 ** of the matched index row are different from the original PRIMARY 1751 ** KEY values of this row before the update. */ 1752 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1753 int op = OP_Ne; 1754 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1755 1756 for(i=0; i<pPk->nKeyCol; i++){ 1757 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1758 x = pPk->aiColumn[i]; 1759 assert( x>=0 ); 1760 if( i==(pPk->nKeyCol-1) ){ 1761 addrJump = addrUniqueOk; 1762 op = OP_Eq; 1763 } 1764 sqlite3VdbeAddOp4(v, op, 1765 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1766 ); 1767 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1768 VdbeCoverageIf(v, op==OP_Eq); 1769 VdbeCoverageIf(v, op==OP_Ne); 1770 } 1771 } 1772 } 1773 } 1774 1775 /* Generate code that executes if the new index entry is not unique */ 1776 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1777 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1778 switch( onError ){ 1779 case OE_Rollback: 1780 case OE_Abort: 1781 case OE_Fail: { 1782 testcase( onError==OE_Rollback ); 1783 testcase( onError==OE_Abort ); 1784 testcase( onError==OE_Fail ); 1785 sqlite3UniqueConstraint(pParse, onError, pIdx); 1786 break; 1787 } 1788 #ifndef SQLITE_OMIT_UPSERT 1789 case OE_Update: { 1790 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1791 /* Fall through */ 1792 } 1793 #endif 1794 case OE_Ignore: { 1795 testcase( onError==OE_Ignore ); 1796 sqlite3VdbeGoto(v, ignoreDest); 1797 break; 1798 } 1799 default: { 1800 Trigger *pTrigger = 0; 1801 assert( onError==OE_Replace ); 1802 if( db->flags&SQLITE_RecTriggers ){ 1803 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1804 } 1805 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1806 sqlite3MultiWrite(pParse); 1807 } 1808 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1809 regR, nPkField, 0, OE_Replace, 1810 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1811 seenReplace = 1; 1812 break; 1813 } 1814 } 1815 if( pUpIdx==pIdx ){ 1816 sqlite3VdbeGoto(v, upsertJump+1); 1817 sqlite3VdbeJumpHere(v, upsertBypass); 1818 }else{ 1819 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1820 } 1821 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1822 } 1823 1824 /* If the IPK constraint is a REPLACE, run it last */ 1825 if( ipkTop ){ 1826 sqlite3VdbeGoto(v, ipkTop+1); 1827 VdbeComment((v, "Do IPK REPLACE")); 1828 sqlite3VdbeJumpHere(v, ipkBottom); 1829 } 1830 1831 *pbMayReplace = seenReplace; 1832 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1833 } 1834 1835 #ifdef SQLITE_ENABLE_NULL_TRIM 1836 /* 1837 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1838 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1839 ** 1840 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1841 */ 1842 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1843 u16 i; 1844 1845 /* Records with omitted columns are only allowed for schema format 1846 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1847 if( pTab->pSchema->file_format<2 ) return; 1848 1849 for(i=pTab->nCol-1; i>0; i--){ 1850 if( pTab->aCol[i].pDflt!=0 ) break; 1851 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1852 } 1853 sqlite3VdbeChangeP5(v, i+1); 1854 } 1855 #endif 1856 1857 /* 1858 ** This routine generates code to finish the INSERT or UPDATE operation 1859 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1860 ** A consecutive range of registers starting at regNewData contains the 1861 ** rowid and the content to be inserted. 1862 ** 1863 ** The arguments to this routine should be the same as the first six 1864 ** arguments to sqlite3GenerateConstraintChecks. 1865 */ 1866 void sqlite3CompleteInsertion( 1867 Parse *pParse, /* The parser context */ 1868 Table *pTab, /* the table into which we are inserting */ 1869 int iDataCur, /* Cursor of the canonical data source */ 1870 int iIdxCur, /* First index cursor */ 1871 int regNewData, /* Range of content */ 1872 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1873 int update_flags, /* True for UPDATE, False for INSERT */ 1874 int appendBias, /* True if this is likely to be an append */ 1875 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1876 ){ 1877 Vdbe *v; /* Prepared statements under construction */ 1878 Index *pIdx; /* An index being inserted or updated */ 1879 u8 pik_flags; /* flag values passed to the btree insert */ 1880 int regData; /* Content registers (after the rowid) */ 1881 int regRec; /* Register holding assembled record for the table */ 1882 int i; /* Loop counter */ 1883 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1884 1885 assert( update_flags==0 1886 || update_flags==OPFLAG_ISUPDATE 1887 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1888 ); 1889 1890 v = sqlite3GetVdbe(pParse); 1891 assert( v!=0 ); 1892 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1893 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1894 if( aRegIdx[i]==0 ) continue; 1895 bAffinityDone = 1; 1896 if( pIdx->pPartIdxWhere ){ 1897 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1898 VdbeCoverage(v); 1899 } 1900 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1901 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1902 assert( pParse->nested==0 ); 1903 pik_flags |= OPFLAG_NCHANGE; 1904 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1905 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1906 if( update_flags==0 ){ 1907 sqlite3VdbeAddOp4(v, OP_InsertInt, 1908 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1909 ); 1910 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1911 } 1912 #endif 1913 } 1914 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1915 aRegIdx[i]+1, 1916 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1917 sqlite3VdbeChangeP5(v, pik_flags); 1918 } 1919 if( !HasRowid(pTab) ) return; 1920 regData = regNewData + 1; 1921 regRec = sqlite3GetTempReg(pParse); 1922 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1923 sqlite3SetMakeRecordP5(v, pTab); 1924 if( !bAffinityDone ){ 1925 sqlite3TableAffinity(v, pTab, 0); 1926 } 1927 if( pParse->nested ){ 1928 pik_flags = 0; 1929 }else{ 1930 pik_flags = OPFLAG_NCHANGE; 1931 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1932 } 1933 if( appendBias ){ 1934 pik_flags |= OPFLAG_APPEND; 1935 } 1936 if( useSeekResult ){ 1937 pik_flags |= OPFLAG_USESEEKRESULT; 1938 } 1939 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1940 if( !pParse->nested ){ 1941 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1942 } 1943 sqlite3VdbeChangeP5(v, pik_flags); 1944 } 1945 1946 /* 1947 ** Allocate cursors for the pTab table and all its indices and generate 1948 ** code to open and initialized those cursors. 1949 ** 1950 ** The cursor for the object that contains the complete data (normally 1951 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1952 ** ROWID table) is returned in *piDataCur. The first index cursor is 1953 ** returned in *piIdxCur. The number of indices is returned. 1954 ** 1955 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1956 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1957 ** If iBase is negative, then allocate the next available cursor. 1958 ** 1959 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1960 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1961 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1962 ** pTab->pIndex list. 1963 ** 1964 ** If pTab is a virtual table, then this routine is a no-op and the 1965 ** *piDataCur and *piIdxCur values are left uninitialized. 1966 */ 1967 int sqlite3OpenTableAndIndices( 1968 Parse *pParse, /* Parsing context */ 1969 Table *pTab, /* Table to be opened */ 1970 int op, /* OP_OpenRead or OP_OpenWrite */ 1971 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1972 int iBase, /* Use this for the table cursor, if there is one */ 1973 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1974 int *piDataCur, /* Write the database source cursor number here */ 1975 int *piIdxCur /* Write the first index cursor number here */ 1976 ){ 1977 int i; 1978 int iDb; 1979 int iDataCur; 1980 Index *pIdx; 1981 Vdbe *v; 1982 1983 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1984 assert( op==OP_OpenWrite || p5==0 ); 1985 if( IsVirtual(pTab) ){ 1986 /* This routine is a no-op for virtual tables. Leave the output 1987 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1988 ** can detect if they are used by mistake in the caller. */ 1989 return 0; 1990 } 1991 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1992 v = sqlite3GetVdbe(pParse); 1993 assert( v!=0 ); 1994 if( iBase<0 ) iBase = pParse->nTab; 1995 iDataCur = iBase++; 1996 if( piDataCur ) *piDataCur = iDataCur; 1997 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1998 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1999 }else{ 2000 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2001 } 2002 if( piIdxCur ) *piIdxCur = iBase; 2003 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2004 int iIdxCur = iBase++; 2005 assert( pIdx->pSchema==pTab->pSchema ); 2006 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2007 if( piDataCur ) *piDataCur = iIdxCur; 2008 p5 = 0; 2009 } 2010 if( aToOpen==0 || aToOpen[i+1] ){ 2011 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2012 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2013 sqlite3VdbeChangeP5(v, p5); 2014 VdbeComment((v, "%s", pIdx->zName)); 2015 } 2016 } 2017 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2018 return i; 2019 } 2020 2021 2022 #ifdef SQLITE_TEST 2023 /* 2024 ** The following global variable is incremented whenever the 2025 ** transfer optimization is used. This is used for testing 2026 ** purposes only - to make sure the transfer optimization really 2027 ** is happening when it is supposed to. 2028 */ 2029 int sqlite3_xferopt_count; 2030 #endif /* SQLITE_TEST */ 2031 2032 2033 #ifndef SQLITE_OMIT_XFER_OPT 2034 /* 2035 ** Check to see if index pSrc is compatible as a source of data 2036 ** for index pDest in an insert transfer optimization. The rules 2037 ** for a compatible index: 2038 ** 2039 ** * The index is over the same set of columns 2040 ** * The same DESC and ASC markings occurs on all columns 2041 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2042 ** * The same collating sequence on each column 2043 ** * The index has the exact same WHERE clause 2044 */ 2045 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2046 int i; 2047 assert( pDest && pSrc ); 2048 assert( pDest->pTable!=pSrc->pTable ); 2049 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2050 return 0; /* Different number of columns */ 2051 } 2052 if( pDest->onError!=pSrc->onError ){ 2053 return 0; /* Different conflict resolution strategies */ 2054 } 2055 for(i=0; i<pSrc->nKeyCol; i++){ 2056 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2057 return 0; /* Different columns indexed */ 2058 } 2059 if( pSrc->aiColumn[i]==XN_EXPR ){ 2060 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2061 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2062 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2063 return 0; /* Different expressions in the index */ 2064 } 2065 } 2066 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2067 return 0; /* Different sort orders */ 2068 } 2069 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2070 return 0; /* Different collating sequences */ 2071 } 2072 } 2073 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2074 return 0; /* Different WHERE clauses */ 2075 } 2076 2077 /* If no test above fails then the indices must be compatible */ 2078 return 1; 2079 } 2080 2081 /* 2082 ** Attempt the transfer optimization on INSERTs of the form 2083 ** 2084 ** INSERT INTO tab1 SELECT * FROM tab2; 2085 ** 2086 ** The xfer optimization transfers raw records from tab2 over to tab1. 2087 ** Columns are not decoded and reassembled, which greatly improves 2088 ** performance. Raw index records are transferred in the same way. 2089 ** 2090 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2091 ** There are lots of rules for determining compatibility - see comments 2092 ** embedded in the code for details. 2093 ** 2094 ** This routine returns TRUE if the optimization is guaranteed to be used. 2095 ** Sometimes the xfer optimization will only work if the destination table 2096 ** is empty - a factor that can only be determined at run-time. In that 2097 ** case, this routine generates code for the xfer optimization but also 2098 ** does a test to see if the destination table is empty and jumps over the 2099 ** xfer optimization code if the test fails. In that case, this routine 2100 ** returns FALSE so that the caller will know to go ahead and generate 2101 ** an unoptimized transfer. This routine also returns FALSE if there 2102 ** is no chance that the xfer optimization can be applied. 2103 ** 2104 ** This optimization is particularly useful at making VACUUM run faster. 2105 */ 2106 static int xferOptimization( 2107 Parse *pParse, /* Parser context */ 2108 Table *pDest, /* The table we are inserting into */ 2109 Select *pSelect, /* A SELECT statement to use as the data source */ 2110 int onError, /* How to handle constraint errors */ 2111 int iDbDest /* The database of pDest */ 2112 ){ 2113 sqlite3 *db = pParse->db; 2114 ExprList *pEList; /* The result set of the SELECT */ 2115 Table *pSrc; /* The table in the FROM clause of SELECT */ 2116 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2117 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2118 int i; /* Loop counter */ 2119 int iDbSrc; /* The database of pSrc */ 2120 int iSrc, iDest; /* Cursors from source and destination */ 2121 int addr1, addr2; /* Loop addresses */ 2122 int emptyDestTest = 0; /* Address of test for empty pDest */ 2123 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2124 Vdbe *v; /* The VDBE we are building */ 2125 int regAutoinc; /* Memory register used by AUTOINC */ 2126 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2127 int regData, regRowid; /* Registers holding data and rowid */ 2128 2129 if( pSelect==0 ){ 2130 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2131 } 2132 if( pParse->pWith || pSelect->pWith ){ 2133 /* Do not attempt to process this query if there are an WITH clauses 2134 ** attached to it. Proceeding may generate a false "no such table: xxx" 2135 ** error if pSelect reads from a CTE named "xxx". */ 2136 return 0; 2137 } 2138 if( sqlite3TriggerList(pParse, pDest) ){ 2139 return 0; /* tab1 must not have triggers */ 2140 } 2141 #ifndef SQLITE_OMIT_VIRTUALTABLE 2142 if( IsVirtual(pDest) ){ 2143 return 0; /* tab1 must not be a virtual table */ 2144 } 2145 #endif 2146 if( onError==OE_Default ){ 2147 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2148 if( onError==OE_Default ) onError = OE_Abort; 2149 } 2150 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2151 if( pSelect->pSrc->nSrc!=1 ){ 2152 return 0; /* FROM clause must have exactly one term */ 2153 } 2154 if( pSelect->pSrc->a[0].pSelect ){ 2155 return 0; /* FROM clause cannot contain a subquery */ 2156 } 2157 if( pSelect->pWhere ){ 2158 return 0; /* SELECT may not have a WHERE clause */ 2159 } 2160 if( pSelect->pOrderBy ){ 2161 return 0; /* SELECT may not have an ORDER BY clause */ 2162 } 2163 /* Do not need to test for a HAVING clause. If HAVING is present but 2164 ** there is no ORDER BY, we will get an error. */ 2165 if( pSelect->pGroupBy ){ 2166 return 0; /* SELECT may not have a GROUP BY clause */ 2167 } 2168 if( pSelect->pLimit ){ 2169 return 0; /* SELECT may not have a LIMIT clause */ 2170 } 2171 if( pSelect->pPrior ){ 2172 return 0; /* SELECT may not be a compound query */ 2173 } 2174 if( pSelect->selFlags & SF_Distinct ){ 2175 return 0; /* SELECT may not be DISTINCT */ 2176 } 2177 pEList = pSelect->pEList; 2178 assert( pEList!=0 ); 2179 if( pEList->nExpr!=1 ){ 2180 return 0; /* The result set must have exactly one column */ 2181 } 2182 assert( pEList->a[0].pExpr ); 2183 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2184 return 0; /* The result set must be the special operator "*" */ 2185 } 2186 2187 /* At this point we have established that the statement is of the 2188 ** correct syntactic form to participate in this optimization. Now 2189 ** we have to check the semantics. 2190 */ 2191 pItem = pSelect->pSrc->a; 2192 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2193 if( pSrc==0 ){ 2194 return 0; /* FROM clause does not contain a real table */ 2195 } 2196 if( pSrc==pDest ){ 2197 return 0; /* tab1 and tab2 may not be the same table */ 2198 } 2199 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2200 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2201 } 2202 #ifndef SQLITE_OMIT_VIRTUALTABLE 2203 if( IsVirtual(pSrc) ){ 2204 return 0; /* tab2 must not be a virtual table */ 2205 } 2206 #endif 2207 if( pSrc->pSelect ){ 2208 return 0; /* tab2 may not be a view */ 2209 } 2210 if( pDest->nCol!=pSrc->nCol ){ 2211 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2212 } 2213 if( pDest->iPKey!=pSrc->iPKey ){ 2214 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2215 } 2216 for(i=0; i<pDest->nCol; i++){ 2217 Column *pDestCol = &pDest->aCol[i]; 2218 Column *pSrcCol = &pSrc->aCol[i]; 2219 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2220 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2221 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2222 ){ 2223 return 0; /* Neither table may have __hidden__ columns */ 2224 } 2225 #endif 2226 if( pDestCol->affinity!=pSrcCol->affinity ){ 2227 return 0; /* Affinity must be the same on all columns */ 2228 } 2229 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2230 return 0; /* Collating sequence must be the same on all columns */ 2231 } 2232 if( pDestCol->notNull && !pSrcCol->notNull ){ 2233 return 0; /* tab2 must be NOT NULL if tab1 is */ 2234 } 2235 /* Default values for second and subsequent columns need to match. */ 2236 if( i>0 ){ 2237 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2238 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2239 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2240 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2241 pSrcCol->pDflt->u.zToken)!=0) 2242 ){ 2243 return 0; /* Default values must be the same for all columns */ 2244 } 2245 } 2246 } 2247 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2248 if( IsUniqueIndex(pDestIdx) ){ 2249 destHasUniqueIdx = 1; 2250 } 2251 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2252 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2253 } 2254 if( pSrcIdx==0 ){ 2255 return 0; /* pDestIdx has no corresponding index in pSrc */ 2256 } 2257 } 2258 #ifndef SQLITE_OMIT_CHECK 2259 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2260 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2261 } 2262 #endif 2263 #ifndef SQLITE_OMIT_FOREIGN_KEY 2264 /* Disallow the transfer optimization if the destination table constains 2265 ** any foreign key constraints. This is more restrictive than necessary. 2266 ** But the main beneficiary of the transfer optimization is the VACUUM 2267 ** command, and the VACUUM command disables foreign key constraints. So 2268 ** the extra complication to make this rule less restrictive is probably 2269 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2270 */ 2271 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2272 return 0; 2273 } 2274 #endif 2275 if( (db->flags & SQLITE_CountRows)!=0 ){ 2276 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2277 } 2278 2279 /* If we get this far, it means that the xfer optimization is at 2280 ** least a possibility, though it might only work if the destination 2281 ** table (tab1) is initially empty. 2282 */ 2283 #ifdef SQLITE_TEST 2284 sqlite3_xferopt_count++; 2285 #endif 2286 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2287 v = sqlite3GetVdbe(pParse); 2288 sqlite3CodeVerifySchema(pParse, iDbSrc); 2289 iSrc = pParse->nTab++; 2290 iDest = pParse->nTab++; 2291 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2292 regData = sqlite3GetTempReg(pParse); 2293 regRowid = sqlite3GetTempReg(pParse); 2294 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2295 assert( HasRowid(pDest) || destHasUniqueIdx ); 2296 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2297 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2298 || destHasUniqueIdx /* (2) */ 2299 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2300 )){ 2301 /* In some circumstances, we are able to run the xfer optimization 2302 ** only if the destination table is initially empty. Unless the 2303 ** DBFLAG_Vacuum flag is set, this block generates code to make 2304 ** that determination. If DBFLAG_Vacuum is set, then the destination 2305 ** table is always empty. 2306 ** 2307 ** Conditions under which the destination must be empty: 2308 ** 2309 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2310 ** (If the destination is not initially empty, the rowid fields 2311 ** of index entries might need to change.) 2312 ** 2313 ** (2) The destination has a unique index. (The xfer optimization 2314 ** is unable to test uniqueness.) 2315 ** 2316 ** (3) onError is something other than OE_Abort and OE_Rollback. 2317 */ 2318 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2319 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2320 sqlite3VdbeJumpHere(v, addr1); 2321 } 2322 if( HasRowid(pSrc) ){ 2323 u8 insFlags; 2324 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2325 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2326 if( pDest->iPKey>=0 ){ 2327 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2328 sqlite3VdbeVerifyAbortable(v, onError); 2329 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2330 VdbeCoverage(v); 2331 sqlite3RowidConstraint(pParse, onError, pDest); 2332 sqlite3VdbeJumpHere(v, addr2); 2333 autoIncStep(pParse, regAutoinc, regRowid); 2334 }else if( pDest->pIndex==0 ){ 2335 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2336 }else{ 2337 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2338 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2339 } 2340 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2341 if( db->mDbFlags & DBFLAG_Vacuum ){ 2342 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2343 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2344 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2345 }else{ 2346 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2347 } 2348 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2349 (char*)pDest, P4_TABLE); 2350 sqlite3VdbeChangeP5(v, insFlags); 2351 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2352 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2353 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2354 }else{ 2355 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2356 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2357 } 2358 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2359 u8 idxInsFlags = 0; 2360 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2361 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2362 } 2363 assert( pSrcIdx ); 2364 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2365 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2366 VdbeComment((v, "%s", pSrcIdx->zName)); 2367 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2368 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2369 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2370 VdbeComment((v, "%s", pDestIdx->zName)); 2371 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2372 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2373 if( db->mDbFlags & DBFLAG_Vacuum ){ 2374 /* This INSERT command is part of a VACUUM operation, which guarantees 2375 ** that the destination table is empty. If all indexed columns use 2376 ** collation sequence BINARY, then it can also be assumed that the 2377 ** index will be populated by inserting keys in strictly sorted 2378 ** order. In this case, instead of seeking within the b-tree as part 2379 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2380 ** OP_IdxInsert to seek to the point within the b-tree where each key 2381 ** should be inserted. This is faster. 2382 ** 2383 ** If any of the indexed columns use a collation sequence other than 2384 ** BINARY, this optimization is disabled. This is because the user 2385 ** might change the definition of a collation sequence and then run 2386 ** a VACUUM command. In that case keys may not be written in strictly 2387 ** sorted order. */ 2388 for(i=0; i<pSrcIdx->nColumn; i++){ 2389 const char *zColl = pSrcIdx->azColl[i]; 2390 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2391 } 2392 if( i==pSrcIdx->nColumn ){ 2393 idxInsFlags = OPFLAG_USESEEKRESULT; 2394 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2395 } 2396 } 2397 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2398 idxInsFlags |= OPFLAG_NCHANGE; 2399 } 2400 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2401 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2402 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2403 sqlite3VdbeJumpHere(v, addr1); 2404 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2405 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2406 } 2407 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2408 sqlite3ReleaseTempReg(pParse, regRowid); 2409 sqlite3ReleaseTempReg(pParse, regData); 2410 if( emptyDestTest ){ 2411 sqlite3AutoincrementEnd(pParse); 2412 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2413 sqlite3VdbeJumpHere(v, emptyDestTest); 2414 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2415 return 0; 2416 }else{ 2417 return 1; 2418 } 2419 } 2420 #endif /* SQLITE_OMIT_XFER_OPT */ 2421