1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.195 2007/12/12 17:42:53 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Set P3 of the most recently inserted opcode to a column affinity 21 ** string for index pIdx. A column affinity string has one character 22 ** for each column in the table, according to the affinity of the column: 23 ** 24 ** Character Column affinity 25 ** ------------------------------ 26 ** 'a' TEXT 27 ** 'b' NONE 28 ** 'c' NUMERIC 29 ** 'd' INTEGER 30 ** 'e' REAL 31 */ 32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 33 if( !pIdx->zColAff ){ 34 /* The first time a column affinity string for a particular index is 35 ** required, it is allocated and populated here. It is then stored as 36 ** a member of the Index structure for subsequent use. 37 ** 38 ** The column affinity string will eventually be deleted by 39 ** sqliteDeleteIndex() when the Index structure itself is cleaned 40 ** up. 41 */ 42 int n; 43 Table *pTab = pIdx->pTable; 44 sqlite3 *db = sqlite3VdbeDb(v); 45 pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1); 46 if( !pIdx->zColAff ){ 47 return; 48 } 49 for(n=0; n<pIdx->nColumn; n++){ 50 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 51 } 52 pIdx->zColAff[pIdx->nColumn] = '\0'; 53 } 54 55 sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); 56 } 57 58 /* 59 ** Set P3 of the most recently inserted opcode to a column affinity 60 ** string for table pTab. A column affinity string has one character 61 ** for each column indexed by the index, according to the affinity of the 62 ** column: 63 ** 64 ** Character Column affinity 65 ** ------------------------------ 66 ** 'a' TEXT 67 ** 'b' NONE 68 ** 'c' NUMERIC 69 ** 'd' INTEGER 70 ** 'e' REAL 71 */ 72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 73 /* The first time a column affinity string for a particular table 74 ** is required, it is allocated and populated here. It is then 75 ** stored as a member of the Table structure for subsequent use. 76 ** 77 ** The column affinity string will eventually be deleted by 78 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 79 */ 80 if( !pTab->zColAff ){ 81 char *zColAff; 82 int i; 83 sqlite3 *db = sqlite3VdbeDb(v); 84 85 zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1); 86 if( !zColAff ){ 87 return; 88 } 89 90 for(i=0; i<pTab->nCol; i++){ 91 zColAff[i] = pTab->aCol[i].affinity; 92 } 93 zColAff[pTab->nCol] = '\0'; 94 95 pTab->zColAff = zColAff; 96 } 97 98 sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); 99 } 100 101 /* 102 ** Return non-zero if the table pTab in database iDb or any of its indices 103 ** have been opened at any point in the VDBE program beginning at location 104 ** iStartAddr throught the end of the program. This is used to see if 105 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 106 ** run without using temporary table for the results of the SELECT. 107 */ 108 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ 109 int i; 110 int iEnd = sqlite3VdbeCurrentAddr(v); 111 for(i=iStartAddr; i<iEnd; i++){ 112 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 113 if( pOp->opcode==OP_OpenRead ){ 114 VdbeOp *pPrior = &pOp[-1]; 115 int tnum = pOp->p2; 116 assert( i>iStartAddr ); 117 assert( pPrior->opcode==OP_Integer ); 118 if( pPrior->p1==iDb ){ 119 Index *pIndex; 120 if( tnum==pTab->tnum ){ 121 return 1; 122 } 123 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 124 if( tnum==pIndex->tnum ){ 125 return 1; 126 } 127 } 128 } 129 } 130 #ifndef SQLITE_OMIT_VIRTUALTABLE 131 if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){ 132 assert( pOp->p3!=0 ); 133 assert( pOp->p3type==P3_VTAB ); 134 return 1; 135 } 136 #endif 137 } 138 return 0; 139 } 140 141 #ifndef SQLITE_OMIT_AUTOINCREMENT 142 /* 143 ** Write out code to initialize the autoincrement logic. This code 144 ** looks up the current autoincrement value in the sqlite_sequence 145 ** table and stores that value in a memory cell. Code generated by 146 ** autoIncStep() will keep that memory cell holding the largest 147 ** rowid value. Code generated by autoIncEnd() will write the new 148 ** largest value of the counter back into the sqlite_sequence table. 149 ** 150 ** This routine returns the index of the mem[] cell that contains 151 ** the maximum rowid counter. 152 ** 153 ** Two memory cells are allocated. The next memory cell after the 154 ** one returned holds the rowid in sqlite_sequence where we will 155 ** write back the revised maximum rowid. 156 */ 157 static int autoIncBegin( 158 Parse *pParse, /* Parsing context */ 159 int iDb, /* Index of the database holding pTab */ 160 Table *pTab /* The table we are writing to */ 161 ){ 162 int memId = 0; 163 if( pTab->autoInc ){ 164 Vdbe *v = pParse->pVdbe; 165 Db *pDb = &pParse->db->aDb[iDb]; 166 int iCur = pParse->nTab; 167 int addr; 168 assert( v ); 169 addr = sqlite3VdbeCurrentAddr(v); 170 memId = pParse->nMem+1; 171 pParse->nMem += 2; 172 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 173 sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13); 174 sqlite3VdbeAddOp(v, OP_Column, iCur, 0); 175 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 176 sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12); 177 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 178 sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1); 179 sqlite3VdbeAddOp(v, OP_Column, iCur, 1); 180 sqlite3VdbeAddOp(v, OP_MemStore, memId, 1); 181 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13); 182 sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4); 183 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 184 } 185 return memId; 186 } 187 188 /* 189 ** Update the maximum rowid for an autoincrement calculation. 190 ** 191 ** This routine should be called when the top of the stack holds a 192 ** new rowid that is about to be inserted. If that new rowid is 193 ** larger than the maximum rowid in the memId memory cell, then the 194 ** memory cell is updated. The stack is unchanged. 195 */ 196 static void autoIncStep(Parse *pParse, int memId){ 197 if( memId>0 ){ 198 sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0); 199 } 200 } 201 202 /* 203 ** After doing one or more inserts, the maximum rowid is stored 204 ** in mem[memId]. Generate code to write this value back into the 205 ** the sqlite_sequence table. 206 */ 207 static void autoIncEnd( 208 Parse *pParse, /* The parsing context */ 209 int iDb, /* Index of the database holding pTab */ 210 Table *pTab, /* Table we are inserting into */ 211 int memId /* Memory cell holding the maximum rowid */ 212 ){ 213 if( pTab->autoInc ){ 214 int iCur = pParse->nTab; 215 Vdbe *v = pParse->pVdbe; 216 Db *pDb = &pParse->db->aDb[iDb]; 217 int addr; 218 assert( v ); 219 addr = sqlite3VdbeCurrentAddr(v); 220 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 221 sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0); 222 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7); 223 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 224 sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); 225 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 226 sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0); 227 sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); 228 sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND); 229 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 230 } 231 } 232 #else 233 /* 234 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 235 ** above are all no-ops 236 */ 237 # define autoIncBegin(A,B,C) (0) 238 # define autoIncStep(A,B) 239 # define autoIncEnd(A,B,C,D) 240 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 241 242 243 /* Forward declaration */ 244 static int xferOptimization( 245 Parse *pParse, /* Parser context */ 246 Table *pDest, /* The table we are inserting into */ 247 Select *pSelect, /* A SELECT statement to use as the data source */ 248 int onError, /* How to handle constraint errors */ 249 int iDbDest /* The database of pDest */ 250 ); 251 252 /* 253 ** This routine is call to handle SQL of the following forms: 254 ** 255 ** insert into TABLE (IDLIST) values(EXPRLIST) 256 ** insert into TABLE (IDLIST) select 257 ** 258 ** The IDLIST following the table name is always optional. If omitted, 259 ** then a list of all columns for the table is substituted. The IDLIST 260 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 261 ** 262 ** The pList parameter holds EXPRLIST in the first form of the INSERT 263 ** statement above, and pSelect is NULL. For the second form, pList is 264 ** NULL and pSelect is a pointer to the select statement used to generate 265 ** data for the insert. 266 ** 267 ** The code generated follows one of four templates. For a simple 268 ** select with data coming from a VALUES clause, the code executes 269 ** once straight down through. The template looks like this: 270 ** 271 ** open write cursor to <table> and its indices 272 ** puts VALUES clause expressions onto the stack 273 ** write the resulting record into <table> 274 ** cleanup 275 ** 276 ** The three remaining templates assume the statement is of the form 277 ** 278 ** INSERT INTO <table> SELECT ... 279 ** 280 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 281 ** in other words if the SELECT pulls all columns from a single table 282 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 283 ** if <table2> and <table1> are distinct tables but have identical 284 ** schemas, including all the same indices, then a special optimization 285 ** is invoked that copies raw records from <table2> over to <table1>. 286 ** See the xferOptimization() function for the implementation of this 287 ** template. This is the second template. 288 ** 289 ** open a write cursor to <table> 290 ** open read cursor on <table2> 291 ** transfer all records in <table2> over to <table> 292 ** close cursors 293 ** foreach index on <table> 294 ** open a write cursor on the <table> index 295 ** open a read cursor on the corresponding <table2> index 296 ** transfer all records from the read to the write cursors 297 ** close cursors 298 ** end foreach 299 ** 300 ** The third template is for when the second template does not apply 301 ** and the SELECT clause does not read from <table> at any time. 302 ** The generated code follows this template: 303 ** 304 ** goto B 305 ** A: setup for the SELECT 306 ** loop over the rows in the SELECT 307 ** gosub C 308 ** end loop 309 ** cleanup after the SELECT 310 ** goto D 311 ** B: open write cursor to <table> and its indices 312 ** goto A 313 ** C: insert the select result into <table> 314 ** return 315 ** D: cleanup 316 ** 317 ** The fourth template is used if the insert statement takes its 318 ** values from a SELECT but the data is being inserted into a table 319 ** that is also read as part of the SELECT. In the third form, 320 ** we have to use a intermediate table to store the results of 321 ** the select. The template is like this: 322 ** 323 ** goto B 324 ** A: setup for the SELECT 325 ** loop over the tables in the SELECT 326 ** gosub C 327 ** end loop 328 ** cleanup after the SELECT 329 ** goto D 330 ** C: insert the select result into the intermediate table 331 ** return 332 ** B: open a cursor to an intermediate table 333 ** goto A 334 ** D: open write cursor to <table> and its indices 335 ** loop over the intermediate table 336 ** transfer values form intermediate table into <table> 337 ** end the loop 338 ** cleanup 339 */ 340 void sqlite3Insert( 341 Parse *pParse, /* Parser context */ 342 SrcList *pTabList, /* Name of table into which we are inserting */ 343 ExprList *pList, /* List of values to be inserted */ 344 Select *pSelect, /* A SELECT statement to use as the data source */ 345 IdList *pColumn, /* Column names corresponding to IDLIST. */ 346 int onError /* How to handle constraint errors */ 347 ){ 348 Table *pTab; /* The table to insert into */ 349 char *zTab; /* Name of the table into which we are inserting */ 350 const char *zDb; /* Name of the database holding this table */ 351 int i, j, idx; /* Loop counters */ 352 Vdbe *v; /* Generate code into this virtual machine */ 353 Index *pIdx; /* For looping over indices of the table */ 354 int nColumn; /* Number of columns in the data */ 355 int base = 0; /* VDBE Cursor number for pTab */ 356 int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ 357 sqlite3 *db; /* The main database structure */ 358 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 359 int endOfLoop; /* Label for the end of the insertion loop */ 360 int useTempTable = 0; /* Store SELECT results in intermediate table */ 361 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 362 int iSelectLoop = 0; /* Address of code that implements the SELECT */ 363 int iCleanup = 0; /* Address of the cleanup code */ 364 int iInsertBlock = 0; /* Address of the subroutine used to insert data */ 365 int iCntMem = 0; /* Memory cell used for the row counter */ 366 int newIdx = -1; /* Cursor for the NEW table */ 367 Db *pDb; /* The database containing table being inserted into */ 368 int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ 369 int appendFlag = 0; /* True if the insert is likely to be an append */ 370 int iDb; 371 372 int nHidden = 0; 373 374 #ifndef SQLITE_OMIT_TRIGGER 375 int isView; /* True if attempting to insert into a view */ 376 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ 377 #endif 378 379 db = pParse->db; 380 if( pParse->nErr || db->mallocFailed ){ 381 goto insert_cleanup; 382 } 383 384 /* Locate the table into which we will be inserting new information. 385 */ 386 assert( pTabList->nSrc==1 ); 387 zTab = pTabList->a[0].zName; 388 if( zTab==0 ) goto insert_cleanup; 389 pTab = sqlite3SrcListLookup(pParse, pTabList); 390 if( pTab==0 ){ 391 goto insert_cleanup; 392 } 393 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 394 assert( iDb<db->nDb ); 395 pDb = &db->aDb[iDb]; 396 zDb = pDb->zName; 397 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 398 goto insert_cleanup; 399 } 400 401 /* Figure out if we have any triggers and if the table being 402 ** inserted into is a view 403 */ 404 #ifndef SQLITE_OMIT_TRIGGER 405 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); 406 isView = pTab->pSelect!=0; 407 #else 408 # define triggers_exist 0 409 # define isView 0 410 #endif 411 #ifdef SQLITE_OMIT_VIEW 412 # undef isView 413 # define isView 0 414 #endif 415 416 /* Ensure that: 417 * (a) the table is not read-only, 418 * (b) that if it is a view then ON INSERT triggers exist 419 */ 420 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ 421 goto insert_cleanup; 422 } 423 assert( pTab!=0 ); 424 425 /* If pTab is really a view, make sure it has been initialized. 426 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 427 ** module table). 428 */ 429 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 430 goto insert_cleanup; 431 } 432 433 /* Allocate a VDBE 434 */ 435 v = sqlite3GetVdbe(pParse); 436 if( v==0 ) goto insert_cleanup; 437 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 438 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); 439 440 /* if there are row triggers, allocate a temp table for new.* references. */ 441 if( triggers_exist ){ 442 newIdx = pParse->nTab++; 443 } 444 445 #ifndef SQLITE_OMIT_XFER_OPT 446 /* If the statement is of the form 447 ** 448 ** INSERT INTO <table1> SELECT * FROM <table2>; 449 ** 450 ** Then special optimizations can be applied that make the transfer 451 ** very fast and which reduce fragmentation of indices. 452 */ 453 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 454 assert( !triggers_exist ); 455 assert( pList==0 ); 456 goto insert_cleanup; 457 } 458 #endif /* SQLITE_OMIT_XFER_OPT */ 459 460 /* If this is an AUTOINCREMENT table, look up the sequence number in the 461 ** sqlite_sequence table and store it in memory cell counterMem. Also 462 ** remember the rowid of the sqlite_sequence table entry in memory cell 463 ** counterRowid. 464 */ 465 counterMem = autoIncBegin(pParse, iDb, pTab); 466 467 /* Figure out how many columns of data are supplied. If the data 468 ** is coming from a SELECT statement, then this step also generates 469 ** all the code to implement the SELECT statement and invoke a subroutine 470 ** to process each row of the result. (Template 2.) If the SELECT 471 ** statement uses the the table that is being inserted into, then the 472 ** subroutine is also coded here. That subroutine stores the SELECT 473 ** results in a temporary table. (Template 3.) 474 */ 475 if( pSelect ){ 476 /* Data is coming from a SELECT. Generate code to implement that SELECT 477 */ 478 int rc, iInitCode; 479 iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 480 iSelectLoop = sqlite3VdbeCurrentAddr(v); 481 iInsertBlock = sqlite3VdbeMakeLabel(v); 482 483 /* Resolve the expressions in the SELECT statement and execute it. */ 484 rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); 485 if( rc || pParse->nErr || db->mallocFailed ){ 486 goto insert_cleanup; 487 } 488 489 iCleanup = sqlite3VdbeMakeLabel(v); 490 sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); 491 assert( pSelect->pEList ); 492 nColumn = pSelect->pEList->nExpr; 493 494 /* Set useTempTable to TRUE if the result of the SELECT statement 495 ** should be written into a temporary table. Set to FALSE if each 496 ** row of the SELECT can be written directly into the result table. 497 ** 498 ** A temp table must be used if the table being updated is also one 499 ** of the tables being read by the SELECT statement. Also use a 500 ** temp table in the case of row triggers. 501 */ 502 if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){ 503 useTempTable = 1; 504 } 505 506 if( useTempTable ){ 507 /* Generate the subroutine that SELECT calls to process each row of 508 ** the result. Store the result in a temporary table 509 */ 510 srcTab = pParse->nTab++; 511 sqlite3VdbeResolveLabel(v, iInsertBlock); 512 sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0); 513 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 514 sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); 515 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 516 sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND); 517 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 518 519 /* The following code runs first because the GOTO at the very top 520 ** of the program jumps to it. Create the temporary table, then jump 521 ** back up and execute the SELECT code above. 522 */ 523 sqlite3VdbeJumpHere(v, iInitCode); 524 sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0); 525 sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); 526 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 527 sqlite3VdbeResolveLabel(v, iCleanup); 528 }else{ 529 sqlite3VdbeJumpHere(v, iInitCode); 530 } 531 }else{ 532 /* This is the case if the data for the INSERT is coming from a VALUES 533 ** clause 534 */ 535 NameContext sNC; 536 memset(&sNC, 0, sizeof(sNC)); 537 sNC.pParse = pParse; 538 srcTab = -1; 539 assert( useTempTable==0 ); 540 nColumn = pList ? pList->nExpr : 0; 541 for(i=0; i<nColumn; i++){ 542 if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ 543 goto insert_cleanup; 544 } 545 } 546 } 547 548 /* Make sure the number of columns in the source data matches the number 549 ** of columns to be inserted into the table. 550 */ 551 if( IsVirtual(pTab) ){ 552 for(i=0; i<pTab->nCol; i++){ 553 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 554 } 555 } 556 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 557 sqlite3ErrorMsg(pParse, 558 "table %S has %d columns but %d values were supplied", 559 pTabList, 0, pTab->nCol, nColumn); 560 goto insert_cleanup; 561 } 562 if( pColumn!=0 && nColumn!=pColumn->nId ){ 563 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 564 goto insert_cleanup; 565 } 566 567 /* If the INSERT statement included an IDLIST term, then make sure 568 ** all elements of the IDLIST really are columns of the table and 569 ** remember the column indices. 570 ** 571 ** If the table has an INTEGER PRIMARY KEY column and that column 572 ** is named in the IDLIST, then record in the keyColumn variable 573 ** the index into IDLIST of the primary key column. keyColumn is 574 ** the index of the primary key as it appears in IDLIST, not as 575 ** is appears in the original table. (The index of the primary 576 ** key in the original table is pTab->iPKey.) 577 */ 578 if( pColumn ){ 579 for(i=0; i<pColumn->nId; i++){ 580 pColumn->a[i].idx = -1; 581 } 582 for(i=0; i<pColumn->nId; i++){ 583 for(j=0; j<pTab->nCol; j++){ 584 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 585 pColumn->a[i].idx = j; 586 if( j==pTab->iPKey ){ 587 keyColumn = i; 588 } 589 break; 590 } 591 } 592 if( j>=pTab->nCol ){ 593 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 594 keyColumn = i; 595 }else{ 596 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 597 pTabList, 0, pColumn->a[i].zName); 598 pParse->nErr++; 599 goto insert_cleanup; 600 } 601 } 602 } 603 } 604 605 /* If there is no IDLIST term but the table has an integer primary 606 ** key, the set the keyColumn variable to the primary key column index 607 ** in the original table definition. 608 */ 609 if( pColumn==0 && nColumn>0 ){ 610 keyColumn = pTab->iPKey; 611 } 612 613 /* Open the temp table for FOR EACH ROW triggers 614 */ 615 if( triggers_exist ){ 616 sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); 617 sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); 618 } 619 620 /* Initialize the count of rows to be inserted 621 */ 622 if( db->flags & SQLITE_CountRows ){ 623 iCntMem = pParse->nMem++; 624 sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem); 625 } 626 627 /* Open tables and indices if there are no row triggers */ 628 if( !triggers_exist ){ 629 base = pParse->nTab; 630 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 631 } 632 633 /* If the data source is a temporary table, then we have to create 634 ** a loop because there might be multiple rows of data. If the data 635 ** source is a subroutine call from the SELECT statement, then we need 636 ** to launch the SELECT statement processing. 637 */ 638 if( useTempTable ){ 639 iBreak = sqlite3VdbeMakeLabel(v); 640 sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); 641 iCont = sqlite3VdbeCurrentAddr(v); 642 }else if( pSelect ){ 643 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 644 sqlite3VdbeResolveLabel(v, iInsertBlock); 645 sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0); 646 } 647 648 /* Run the BEFORE and INSTEAD OF triggers, if there are any 649 */ 650 endOfLoop = sqlite3VdbeMakeLabel(v); 651 if( triggers_exist & TRIGGER_BEFORE ){ 652 653 /* build the NEW.* reference row. Note that if there is an INTEGER 654 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 655 ** translated into a unique ID for the row. But on a BEFORE trigger, 656 ** we do not know what the unique ID will be (because the insert has 657 ** not happened yet) so we substitute a rowid of -1 658 */ 659 if( keyColumn<0 ){ 660 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 661 }else if( useTempTable ){ 662 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 663 }else{ 664 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 665 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 666 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 667 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 668 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 669 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 670 } 671 672 /* Cannot have triggers on a virtual table. If it were possible, 673 ** this block would have to account for hidden column. 674 */ 675 assert(!IsVirtual(pTab)); 676 677 /* Create the new column data 678 */ 679 for(i=0; i<pTab->nCol; i++){ 680 if( pColumn==0 ){ 681 j = i; 682 }else{ 683 for(j=0; j<pColumn->nId; j++){ 684 if( pColumn->a[j].idx==i ) break; 685 } 686 } 687 if( pColumn && j>=pColumn->nId ){ 688 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 689 }else if( useTempTable ){ 690 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 691 }else{ 692 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 693 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); 694 } 695 } 696 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 697 698 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 699 ** do not attempt any conversions before assembling the record. 700 ** If this is a real table, attempt conversions as required by the 701 ** table column affinities. 702 */ 703 if( !isView ){ 704 sqlite3TableAffinityStr(v, pTab); 705 } 706 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 707 708 /* Fire BEFORE or INSTEAD OF triggers */ 709 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 710 newIdx, -1, onError, endOfLoop) ){ 711 goto insert_cleanup; 712 } 713 } 714 715 /* If any triggers exists, the opening of tables and indices is deferred 716 ** until now. 717 */ 718 if( triggers_exist && !isView ){ 719 base = pParse->nTab; 720 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 721 } 722 723 /* Push the record number for the new entry onto the stack. The 724 ** record number is a randomly generate integer created by NewRowid 725 ** except when the table has an INTEGER PRIMARY KEY column, in which 726 ** case the record number is the same as that column. 727 */ 728 if( !isView ){ 729 if( IsVirtual(pTab) ){ 730 /* The row that the VUpdate opcode will delete: none */ 731 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 732 } 733 if( keyColumn>=0 ){ 734 if( useTempTable ){ 735 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 736 }else if( pSelect ){ 737 sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); 738 }else{ 739 VdbeOp *pOp; 740 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 741 pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); 742 if( pOp && pOp->opcode==OP_Null ){ 743 appendFlag = 1; 744 pOp->opcode = OP_NewRowid; 745 pOp->p1 = base; 746 pOp->p2 = counterMem; 747 } 748 } 749 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 750 ** to generate a unique primary key value. 751 */ 752 if( !appendFlag ){ 753 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 754 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 755 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 756 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 757 } 758 }else if( IsVirtual(pTab) ){ 759 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 760 }else{ 761 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 762 appendFlag = 1; 763 } 764 autoIncStep(pParse, counterMem); 765 766 /* Push onto the stack, data for all columns of the new entry, beginning 767 ** with the first column. 768 */ 769 nHidden = 0; 770 for(i=0; i<pTab->nCol; i++){ 771 if( i==pTab->iPKey ){ 772 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 773 ** Whenever this column is read, the record number will be substituted 774 ** in its place. So will fill this column with a NULL to avoid 775 ** taking up data space with information that will never be used. */ 776 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 777 continue; 778 } 779 if( pColumn==0 ){ 780 if( IsHiddenColumn(&pTab->aCol[i]) ){ 781 assert( IsVirtual(pTab) ); 782 j = -1; 783 nHidden++; 784 }else{ 785 j = i - nHidden; 786 } 787 }else{ 788 for(j=0; j<pColumn->nId; j++){ 789 if( pColumn->a[j].idx==i ) break; 790 } 791 } 792 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 793 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 794 }else if( useTempTable ){ 795 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 796 }else if( pSelect ){ 797 sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1); 798 }else{ 799 sqlite3ExprCode(pParse, pList->a[j].pExpr); 800 } 801 } 802 803 /* Generate code to check constraints and generate index keys and 804 ** do the insertion. 805 */ 806 #ifndef SQLITE_OMIT_VIRTUALTABLE 807 if( IsVirtual(pTab) ){ 808 pParse->pVirtualLock = pTab; 809 sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2, 810 (const char*)pTab->pVtab, P3_VTAB); 811 }else 812 #endif 813 { 814 sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 815 0, onError, endOfLoop); 816 sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, 817 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, 818 appendFlag); 819 } 820 } 821 822 /* Update the count of rows that are inserted 823 */ 824 if( (db->flags & SQLITE_CountRows)!=0 ){ 825 sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem); 826 } 827 828 if( triggers_exist ){ 829 /* Close all tables opened */ 830 if( !isView ){ 831 sqlite3VdbeAddOp(v, OP_Close, base, 0); 832 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 833 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 834 } 835 } 836 837 /* Code AFTER triggers */ 838 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, 839 newIdx, -1, onError, endOfLoop) ){ 840 goto insert_cleanup; 841 } 842 } 843 844 /* The bottom of the loop, if the data source is a SELECT statement 845 */ 846 sqlite3VdbeResolveLabel(v, endOfLoop); 847 if( useTempTable ){ 848 sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); 849 sqlite3VdbeResolveLabel(v, iBreak); 850 sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); 851 }else if( pSelect ){ 852 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 853 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 854 sqlite3VdbeResolveLabel(v, iCleanup); 855 } 856 857 if( !triggers_exist && !IsVirtual(pTab) ){ 858 /* Close all tables opened */ 859 sqlite3VdbeAddOp(v, OP_Close, base, 0); 860 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 861 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 862 } 863 } 864 865 /* Update the sqlite_sequence table by storing the content of the 866 ** counter value in memory counterMem back into the sqlite_sequence 867 ** table. 868 */ 869 autoIncEnd(pParse, iDb, pTab, counterMem); 870 871 /* 872 ** Return the number of rows inserted. If this routine is 873 ** generating code because of a call to sqlite3NestedParse(), do not 874 ** invoke the callback function. 875 */ 876 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 877 sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); 878 sqlite3VdbeAddOp(v, OP_Callback, 1, 0); 879 sqlite3VdbeSetNumCols(v, 1); 880 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC); 881 } 882 883 insert_cleanup: 884 sqlite3SrcListDelete(pTabList); 885 sqlite3ExprListDelete(pList); 886 sqlite3SelectDelete(pSelect); 887 sqlite3IdListDelete(pColumn); 888 } 889 890 /* 891 ** Generate code to do a constraint check prior to an INSERT or an UPDATE. 892 ** 893 ** When this routine is called, the stack contains (from bottom to top) 894 ** the following values: 895 ** 896 ** 1. The rowid of the row to be updated before the update. This 897 ** value is omitted unless we are doing an UPDATE that involves a 898 ** change to the record number. 899 ** 900 ** 2. The rowid of the row after the update. 901 ** 902 ** 3. The data in the first column of the entry after the update. 903 ** 904 ** i. Data from middle columns... 905 ** 906 ** N. The data in the last column of the entry after the update. 907 ** 908 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 909 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 910 ** INSERTs and rowidChng is true if the record number is being changed. 911 ** 912 ** The code generated by this routine pushes additional entries onto 913 ** the stack which are the keys for new index entries for the new record. 914 ** The order of index keys is the same as the order of the indices on 915 ** the pTable->pIndex list. A key is only created for index i if 916 ** aIdxUsed!=0 and aIdxUsed[i]!=0. 917 ** 918 ** This routine also generates code to check constraints. NOT NULL, 919 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 920 ** then the appropriate action is performed. There are five possible 921 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 922 ** 923 ** Constraint type Action What Happens 924 ** --------------- ---------- ---------------------------------------- 925 ** any ROLLBACK The current transaction is rolled back and 926 ** sqlite3_exec() returns immediately with a 927 ** return code of SQLITE_CONSTRAINT. 928 ** 929 ** any ABORT Back out changes from the current command 930 ** only (do not do a complete rollback) then 931 ** cause sqlite3_exec() to return immediately 932 ** with SQLITE_CONSTRAINT. 933 ** 934 ** any FAIL Sqlite_exec() returns immediately with a 935 ** return code of SQLITE_CONSTRAINT. The 936 ** transaction is not rolled back and any 937 ** prior changes are retained. 938 ** 939 ** any IGNORE The record number and data is popped from 940 ** the stack and there is an immediate jump 941 ** to label ignoreDest. 942 ** 943 ** NOT NULL REPLACE The NULL value is replace by the default 944 ** value for that column. If the default value 945 ** is NULL, the action is the same as ABORT. 946 ** 947 ** UNIQUE REPLACE The other row that conflicts with the row 948 ** being inserted is removed. 949 ** 950 ** CHECK REPLACE Illegal. The results in an exception. 951 ** 952 ** Which action to take is determined by the overrideError parameter. 953 ** Or if overrideError==OE_Default, then the pParse->onError parameter 954 ** is used. Or if pParse->onError==OE_Default then the onError value 955 ** for the constraint is used. 956 ** 957 ** The calling routine must open a read/write cursor for pTab with 958 ** cursor number "base". All indices of pTab must also have open 959 ** read/write cursors with cursor number base+i for the i-th cursor. 960 ** Except, if there is no possibility of a REPLACE action then 961 ** cursors do not need to be open for indices where aIdxUsed[i]==0. 962 ** 963 ** If the isUpdate flag is true, it means that the "base" cursor is 964 ** initially pointing to an entry that is being updated. The isUpdate 965 ** flag causes extra code to be generated so that the "base" cursor 966 ** is still pointing at the same entry after the routine returns. 967 ** Without the isUpdate flag, the "base" cursor might be moved. 968 */ 969 void sqlite3GenerateConstraintChecks( 970 Parse *pParse, /* The parser context */ 971 Table *pTab, /* the table into which we are inserting */ 972 int base, /* Index of a read/write cursor pointing at pTab */ 973 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 974 int rowidChng, /* True if the record number will change */ 975 int isUpdate, /* True for UPDATE, False for INSERT */ 976 int overrideError, /* Override onError to this if not OE_Default */ 977 int ignoreDest /* Jump to this label on an OE_Ignore resolution */ 978 ){ 979 int i; 980 Vdbe *v; 981 int nCol; 982 int onError; 983 int addr; 984 int extra; 985 int iCur; 986 Index *pIdx; 987 int seenReplace = 0; 988 int jumpInst1=0, jumpInst2; 989 int hasTwoRowids = (isUpdate && rowidChng); 990 991 v = sqlite3GetVdbe(pParse); 992 assert( v!=0 ); 993 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 994 nCol = pTab->nCol; 995 996 /* Test all NOT NULL constraints. 997 */ 998 for(i=0; i<nCol; i++){ 999 if( i==pTab->iPKey ){ 1000 continue; 1001 } 1002 onError = pTab->aCol[i].notNull; 1003 if( onError==OE_None ) continue; 1004 if( overrideError!=OE_Default ){ 1005 onError = overrideError; 1006 }else if( onError==OE_Default ){ 1007 onError = OE_Abort; 1008 } 1009 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1010 onError = OE_Abort; 1011 } 1012 sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); 1013 addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); 1014 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1015 || onError==OE_Ignore || onError==OE_Replace ); 1016 switch( onError ){ 1017 case OE_Rollback: 1018 case OE_Abort: 1019 case OE_Fail: { 1020 char *zMsg = 0; 1021 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1022 sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, 1023 " may not be NULL", (char*)0); 1024 sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); 1025 break; 1026 } 1027 case OE_Ignore: { 1028 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1029 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1030 break; 1031 } 1032 case OE_Replace: { 1033 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 1034 sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); 1035 break; 1036 } 1037 } 1038 sqlite3VdbeJumpHere(v, addr); 1039 } 1040 1041 /* Test all CHECK constraints 1042 */ 1043 #ifndef SQLITE_OMIT_CHECK 1044 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1045 int allOk = sqlite3VdbeMakeLabel(v); 1046 assert( pParse->ckOffset==0 ); 1047 pParse->ckOffset = nCol; 1048 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1); 1049 assert( pParse->ckOffset==nCol ); 1050 pParse->ckOffset = 0; 1051 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1052 if( onError==OE_Ignore ){ 1053 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1054 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1055 }else{ 1056 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1057 } 1058 sqlite3VdbeResolveLabel(v, allOk); 1059 } 1060 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1061 1062 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1063 ** of the new record does not previously exist. Except, if this 1064 ** is an UPDATE and the primary key is not changing, that is OK. 1065 */ 1066 if( rowidChng ){ 1067 onError = pTab->keyConf; 1068 if( overrideError!=OE_Default ){ 1069 onError = overrideError; 1070 }else if( onError==OE_Default ){ 1071 onError = OE_Abort; 1072 } 1073 1074 if( isUpdate ){ 1075 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1076 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1077 jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); 1078 } 1079 sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); 1080 jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); 1081 switch( onError ){ 1082 default: { 1083 onError = OE_Abort; 1084 /* Fall thru into the next case */ 1085 } 1086 case OE_Rollback: 1087 case OE_Abort: 1088 case OE_Fail: { 1089 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1090 "PRIMARY KEY must be unique", P3_STATIC); 1091 break; 1092 } 1093 case OE_Replace: { 1094 sqlite3GenerateRowIndexDelete(v, pTab, base, 0); 1095 if( isUpdate ){ 1096 sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); 1097 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1098 } 1099 seenReplace = 1; 1100 break; 1101 } 1102 case OE_Ignore: { 1103 assert( seenReplace==0 ); 1104 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 1105 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1106 break; 1107 } 1108 } 1109 sqlite3VdbeJumpHere(v, jumpInst2); 1110 if( isUpdate ){ 1111 sqlite3VdbeJumpHere(v, jumpInst1); 1112 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 1113 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1114 } 1115 } 1116 1117 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1118 ** index and making sure that duplicate entries do not already exist. 1119 ** Add the new records to the indices as we go. 1120 */ 1121 extra = -1; 1122 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1123 if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ 1124 extra++; 1125 1126 /* Create a key for accessing the index entry */ 1127 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); 1128 for(i=0; i<pIdx->nColumn; i++){ 1129 int idx = pIdx->aiColumn[i]; 1130 if( idx==pTab->iPKey ){ 1131 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); 1132 }else{ 1133 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); 1134 } 1135 } 1136 jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); 1137 sqlite3IndexAffinityStr(v, pIdx); 1138 1139 /* Find out what action to take in case there is an indexing conflict */ 1140 onError = pIdx->onError; 1141 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ 1142 if( overrideError!=OE_Default ){ 1143 onError = overrideError; 1144 }else if( onError==OE_Default ){ 1145 onError = OE_Abort; 1146 } 1147 if( seenReplace ){ 1148 if( onError==OE_Ignore ) onError = OE_Replace; 1149 else if( onError==OE_Fail ) onError = OE_Abort; 1150 } 1151 1152 1153 /* Check to see if the new index entry will be unique */ 1154 sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); 1155 jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); 1156 1157 /* Generate code that executes if the new index entry is not unique */ 1158 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1159 || onError==OE_Ignore || onError==OE_Replace ); 1160 switch( onError ){ 1161 case OE_Rollback: 1162 case OE_Abort: 1163 case OE_Fail: { 1164 int j, n1, n2; 1165 char zErrMsg[200]; 1166 sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, 1167 pIdx->nColumn>1 ? "columns " : "column "); 1168 n1 = strlen(zErrMsg); 1169 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ 1170 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1171 n2 = strlen(zCol); 1172 if( j>0 ){ 1173 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); 1174 n1 += 2; 1175 } 1176 if( n1+n2>sizeof(zErrMsg)-30 ){ 1177 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); 1178 n1 += 3; 1179 break; 1180 }else{ 1181 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); 1182 n1 += n2; 1183 } 1184 } 1185 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 1186 pIdx->nColumn>1 ? " are not unique" : " is not unique"); 1187 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); 1188 break; 1189 } 1190 case OE_Ignore: { 1191 assert( seenReplace==0 ); 1192 sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); 1193 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1194 break; 1195 } 1196 case OE_Replace: { 1197 sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); 1198 if( isUpdate ){ 1199 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); 1200 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1201 } 1202 seenReplace = 1; 1203 break; 1204 } 1205 } 1206 #if NULL_DISTINCT_FOR_UNIQUE 1207 sqlite3VdbeJumpHere(v, jumpInst1); 1208 #endif 1209 sqlite3VdbeJumpHere(v, jumpInst2); 1210 } 1211 } 1212 1213 /* 1214 ** This routine generates code to finish the INSERT or UPDATE operation 1215 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1216 ** The stack must contain keys for all active indices followed by data 1217 ** and the rowid for the new entry. This routine creates the new 1218 ** entries in all indices and in the main table. 1219 ** 1220 ** The arguments to this routine should be the same as the first six 1221 ** arguments to sqlite3GenerateConstraintChecks. 1222 */ 1223 void sqlite3CompleteInsertion( 1224 Parse *pParse, /* The parser context */ 1225 Table *pTab, /* the table into which we are inserting */ 1226 int base, /* Index of a read/write cursor pointing at pTab */ 1227 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 1228 int rowidChng, /* True if the record number will change */ 1229 int isUpdate, /* True for UPDATE, False for INSERT */ 1230 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1231 int appendBias /* True if this is likely to be an append */ 1232 ){ 1233 int i; 1234 Vdbe *v; 1235 int nIdx; 1236 Index *pIdx; 1237 int pik_flags; 1238 1239 v = sqlite3GetVdbe(pParse); 1240 assert( v!=0 ); 1241 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1242 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1243 for(i=nIdx-1; i>=0; i--){ 1244 if( aIdxUsed && aIdxUsed[i]==0 ) continue; 1245 sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); 1246 } 1247 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 1248 sqlite3TableAffinityStr(v, pTab); 1249 #ifndef SQLITE_OMIT_TRIGGER 1250 if( newIdx>=0 ){ 1251 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1252 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1253 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 1254 } 1255 #endif 1256 if( pParse->nested ){ 1257 pik_flags = 0; 1258 }else{ 1259 pik_flags = OPFLAG_NCHANGE; 1260 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1261 } 1262 if( appendBias ){ 1263 pik_flags |= OPFLAG_APPEND; 1264 } 1265 sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); 1266 if( !pParse->nested ){ 1267 sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); 1268 } 1269 1270 if( isUpdate && rowidChng ){ 1271 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1272 } 1273 } 1274 1275 /* 1276 ** Generate code that will open cursors for a table and for all 1277 ** indices of that table. The "base" parameter is the cursor number used 1278 ** for the table. Indices are opened on subsequent cursors. 1279 */ 1280 void sqlite3OpenTableAndIndices( 1281 Parse *pParse, /* Parsing context */ 1282 Table *pTab, /* Table to be opened */ 1283 int base, /* Cursor number assigned to the table */ 1284 int op /* OP_OpenRead or OP_OpenWrite */ 1285 ){ 1286 int i; 1287 int iDb; 1288 Index *pIdx; 1289 Vdbe *v; 1290 1291 if( IsVirtual(pTab) ) return; 1292 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1293 v = sqlite3GetVdbe(pParse); 1294 assert( v!=0 ); 1295 sqlite3OpenTable(pParse, base, iDb, pTab, op); 1296 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1297 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1298 assert( pIdx->pSchema==pTab->pSchema ); 1299 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1300 VdbeComment((v, "# %s", pIdx->zName)); 1301 sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF); 1302 } 1303 if( pParse->nTab<=base+i ){ 1304 pParse->nTab = base+i; 1305 } 1306 } 1307 1308 1309 #ifdef SQLITE_TEST 1310 /* 1311 ** The following global variable is incremented whenever the 1312 ** transfer optimization is used. This is used for testing 1313 ** purposes only - to make sure the transfer optimization really 1314 ** is happening when it is suppose to. 1315 */ 1316 int sqlite3_xferopt_count; 1317 #endif /* SQLITE_TEST */ 1318 1319 1320 #ifndef SQLITE_OMIT_XFER_OPT 1321 /* 1322 ** Check to collation names to see if they are compatible. 1323 */ 1324 static int xferCompatibleCollation(const char *z1, const char *z2){ 1325 if( z1==0 ){ 1326 return z2==0; 1327 } 1328 if( z2==0 ){ 1329 return 0; 1330 } 1331 return sqlite3StrICmp(z1, z2)==0; 1332 } 1333 1334 1335 /* 1336 ** Check to see if index pSrc is compatible as a source of data 1337 ** for index pDest in an insert transfer optimization. The rules 1338 ** for a compatible index: 1339 ** 1340 ** * The index is over the same set of columns 1341 ** * The same DESC and ASC markings occurs on all columns 1342 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1343 ** * The same collating sequence on each column 1344 */ 1345 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1346 int i; 1347 assert( pDest && pSrc ); 1348 assert( pDest->pTable!=pSrc->pTable ); 1349 if( pDest->nColumn!=pSrc->nColumn ){ 1350 return 0; /* Different number of columns */ 1351 } 1352 if( pDest->onError!=pSrc->onError ){ 1353 return 0; /* Different conflict resolution strategies */ 1354 } 1355 for(i=0; i<pSrc->nColumn; i++){ 1356 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1357 return 0; /* Different columns indexed */ 1358 } 1359 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1360 return 0; /* Different sort orders */ 1361 } 1362 if( pSrc->azColl[i]!=pDest->azColl[i] ){ 1363 return 0; /* Different sort orders */ 1364 } 1365 } 1366 1367 /* If no test above fails then the indices must be compatible */ 1368 return 1; 1369 } 1370 1371 /* 1372 ** Attempt the transfer optimization on INSERTs of the form 1373 ** 1374 ** INSERT INTO tab1 SELECT * FROM tab2; 1375 ** 1376 ** This optimization is only attempted if 1377 ** 1378 ** (1) tab1 and tab2 have identical schemas including all the 1379 ** same indices and constraints 1380 ** 1381 ** (2) tab1 and tab2 are different tables 1382 ** 1383 ** (3) There must be no triggers on tab1 1384 ** 1385 ** (4) The result set of the SELECT statement is "*" 1386 ** 1387 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1388 ** or LIMIT clause. 1389 ** 1390 ** (6) The SELECT statement is a simple (not a compound) select that 1391 ** contains only tab2 in its FROM clause 1392 ** 1393 ** This method for implementing the INSERT transfers raw records from 1394 ** tab2 over to tab1. The columns are not decoded. Raw records from 1395 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1396 ** the resulting tab1 has much less fragmentation. 1397 ** 1398 ** This routine returns TRUE if the optimization is attempted. If any 1399 ** of the conditions above fail so that the optimization should not 1400 ** be attempted, then this routine returns FALSE. 1401 */ 1402 static int xferOptimization( 1403 Parse *pParse, /* Parser context */ 1404 Table *pDest, /* The table we are inserting into */ 1405 Select *pSelect, /* A SELECT statement to use as the data source */ 1406 int onError, /* How to handle constraint errors */ 1407 int iDbDest /* The database of pDest */ 1408 ){ 1409 ExprList *pEList; /* The result set of the SELECT */ 1410 Table *pSrc; /* The table in the FROM clause of SELECT */ 1411 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1412 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1413 int i; /* Loop counter */ 1414 int iDbSrc; /* The database of pSrc */ 1415 int iSrc, iDest; /* Cursors from source and destination */ 1416 int addr1, addr2; /* Loop addresses */ 1417 int emptyDestTest; /* Address of test for empty pDest */ 1418 int emptySrcTest; /* Address of test for empty pSrc */ 1419 Vdbe *v; /* The VDBE we are building */ 1420 KeyInfo *pKey; /* Key information for an index */ 1421 int counterMem; /* Memory register used by AUTOINC */ 1422 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1423 1424 if( pSelect==0 ){ 1425 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1426 } 1427 if( pDest->pTrigger ){ 1428 return 0; /* tab1 must not have triggers */ 1429 } 1430 #ifndef SQLITE_OMIT_VIRTUALTABLE 1431 if( pDest->isVirtual ){ 1432 return 0; /* tab1 must not be a virtual table */ 1433 } 1434 #endif 1435 if( onError==OE_Default ){ 1436 onError = OE_Abort; 1437 } 1438 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1439 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1440 } 1441 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1442 if( pSelect->pSrc->nSrc!=1 ){ 1443 return 0; /* FROM clause must have exactly one term */ 1444 } 1445 if( pSelect->pSrc->a[0].pSelect ){ 1446 return 0; /* FROM clause cannot contain a subquery */ 1447 } 1448 if( pSelect->pWhere ){ 1449 return 0; /* SELECT may not have a WHERE clause */ 1450 } 1451 if( pSelect->pOrderBy ){ 1452 return 0; /* SELECT may not have an ORDER BY clause */ 1453 } 1454 /* Do not need to test for a HAVING clause. If HAVING is present but 1455 ** there is no ORDER BY, we will get an error. */ 1456 if( pSelect->pGroupBy ){ 1457 return 0; /* SELECT may not have a GROUP BY clause */ 1458 } 1459 if( pSelect->pLimit ){ 1460 return 0; /* SELECT may not have a LIMIT clause */ 1461 } 1462 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1463 if( pSelect->pPrior ){ 1464 return 0; /* SELECT may not be a compound query */ 1465 } 1466 if( pSelect->isDistinct ){ 1467 return 0; /* SELECT may not be DISTINCT */ 1468 } 1469 pEList = pSelect->pEList; 1470 assert( pEList!=0 ); 1471 if( pEList->nExpr!=1 ){ 1472 return 0; /* The result set must have exactly one column */ 1473 } 1474 assert( pEList->a[0].pExpr ); 1475 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1476 return 0; /* The result set must be the special operator "*" */ 1477 } 1478 1479 /* At this point we have established that the statement is of the 1480 ** correct syntactic form to participate in this optimization. Now 1481 ** we have to check the semantics. 1482 */ 1483 pItem = pSelect->pSrc->a; 1484 pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase); 1485 if( pSrc==0 ){ 1486 return 0; /* FROM clause does not contain a real table */ 1487 } 1488 if( pSrc==pDest ){ 1489 return 0; /* tab1 and tab2 may not be the same table */ 1490 } 1491 #ifndef SQLITE_OMIT_VIRTUALTABLE 1492 if( pSrc->isVirtual ){ 1493 return 0; /* tab2 must not be a virtual table */ 1494 } 1495 #endif 1496 if( pSrc->pSelect ){ 1497 return 0; /* tab2 may not be a view */ 1498 } 1499 if( pDest->nCol!=pSrc->nCol ){ 1500 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1501 } 1502 if( pDest->iPKey!=pSrc->iPKey ){ 1503 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1504 } 1505 for(i=0; i<pDest->nCol; i++){ 1506 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1507 return 0; /* Affinity must be the same on all columns */ 1508 } 1509 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1510 return 0; /* Collating sequence must be the same on all columns */ 1511 } 1512 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1513 return 0; /* tab2 must be NOT NULL if tab1 is */ 1514 } 1515 } 1516 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1517 if( pDestIdx->onError!=OE_None ){ 1518 destHasUniqueIdx = 1; 1519 } 1520 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1521 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1522 } 1523 if( pSrcIdx==0 ){ 1524 return 0; /* pDestIdx has no corresponding index in pSrc */ 1525 } 1526 } 1527 #ifndef SQLITE_OMIT_CHECK 1528 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1529 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1530 } 1531 #endif 1532 1533 /* If we get this far, it means either: 1534 ** 1535 ** * We can always do the transfer if the table contains an 1536 ** an integer primary key 1537 ** 1538 ** * We can conditionally do the transfer if the destination 1539 ** table is empty. 1540 */ 1541 #ifdef SQLITE_TEST 1542 sqlite3_xferopt_count++; 1543 #endif 1544 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1545 v = sqlite3GetVdbe(pParse); 1546 sqlite3CodeVerifySchema(pParse, iDbSrc); 1547 iSrc = pParse->nTab++; 1548 iDest = pParse->nTab++; 1549 counterMem = autoIncBegin(pParse, iDbDest, pDest); 1550 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1551 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1552 /* If tables do not have an INTEGER PRIMARY KEY and there 1553 ** are indices to be copied and the destination is not empty, 1554 ** we have to disallow the transfer optimization because the 1555 ** the rowids might change which will mess up indexing. 1556 ** 1557 ** Or if the destination has a UNIQUE index and is not empty, 1558 ** we also disallow the transfer optimization because we cannot 1559 ** insure that all entries in the union of DEST and SRC will be 1560 ** unique. 1561 */ 1562 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0); 1563 emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1564 sqlite3VdbeJumpHere(v, addr1); 1565 }else{ 1566 emptyDestTest = 0; 1567 } 1568 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1569 emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1570 if( pDest->iPKey>=0 ){ 1571 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1572 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1573 addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0); 1574 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 1575 "PRIMARY KEY must be unique", P3_STATIC); 1576 sqlite3VdbeJumpHere(v, addr2); 1577 autoIncStep(pParse, counterMem); 1578 }else if( pDest->pIndex==0 ){ 1579 addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0); 1580 }else{ 1581 addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0); 1582 assert( pDest->autoInc==0 ); 1583 } 1584 sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0); 1585 sqlite3VdbeOp3(v, OP_Insert, iDest, 1586 OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND, 1587 pDest->zName, 0); 1588 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1); 1589 autoIncEnd(pParse, iDbDest, pDest, counterMem); 1590 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1591 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1592 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1593 } 1594 assert( pSrcIdx ); 1595 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1596 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1597 sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0); 1598 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1599 VdbeComment((v, "# %s", pSrcIdx->zName)); 1600 sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 1601 (char*)pKey, P3_KEYINFO_HANDOFF); 1602 sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0); 1603 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1604 VdbeComment((v, "# %s", pDestIdx->zName)); 1605 sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 1606 (char*)pKey, P3_KEYINFO_HANDOFF); 1607 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0); 1608 sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0); 1609 sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1); 1610 sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1); 1611 sqlite3VdbeJumpHere(v, addr1); 1612 } 1613 sqlite3VdbeJumpHere(v, emptySrcTest); 1614 sqlite3VdbeAddOp(v, OP_Close, iSrc, 0); 1615 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1616 if( emptyDestTest ){ 1617 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0); 1618 sqlite3VdbeJumpHere(v, emptyDestTest); 1619 sqlite3VdbeAddOp(v, OP_Close, iDest, 0); 1620 return 0; 1621 }else{ 1622 return 1; 1623 } 1624 } 1625 #endif /* SQLITE_OMIT_XFER_OPT */ 1626