xref: /sqlite-3.40.0/src/insert.c (revision 85b623f2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.195 2007/12/12 17:42:53 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P3 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 */
32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
33   if( !pIdx->zColAff ){
34     /* The first time a column affinity string for a particular index is
35     ** required, it is allocated and populated here. It is then stored as
36     ** a member of the Index structure for subsequent use.
37     **
38     ** The column affinity string will eventually be deleted by
39     ** sqliteDeleteIndex() when the Index structure itself is cleaned
40     ** up.
41     */
42     int n;
43     Table *pTab = pIdx->pTable;
44     sqlite3 *db = sqlite3VdbeDb(v);
45     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
46     if( !pIdx->zColAff ){
47       return;
48     }
49     for(n=0; n<pIdx->nColumn; n++){
50       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
51     }
52     pIdx->zColAff[pIdx->nColumn] = '\0';
53   }
54 
55   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
56 }
57 
58 /*
59 ** Set P3 of the most recently inserted opcode to a column affinity
60 ** string for table pTab. A column affinity string has one character
61 ** for each column indexed by the index, according to the affinity of the
62 ** column:
63 **
64 **  Character      Column affinity
65 **  ------------------------------
66 **  'a'            TEXT
67 **  'b'            NONE
68 **  'c'            NUMERIC
69 **  'd'            INTEGER
70 **  'e'            REAL
71 */
72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
73   /* The first time a column affinity string for a particular table
74   ** is required, it is allocated and populated here. It is then
75   ** stored as a member of the Table structure for subsequent use.
76   **
77   ** The column affinity string will eventually be deleted by
78   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
79   */
80   if( !pTab->zColAff ){
81     char *zColAff;
82     int i;
83     sqlite3 *db = sqlite3VdbeDb(v);
84 
85     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
86     if( !zColAff ){
87       return;
88     }
89 
90     for(i=0; i<pTab->nCol; i++){
91       zColAff[i] = pTab->aCol[i].affinity;
92     }
93     zColAff[pTab->nCol] = '\0';
94 
95     pTab->zColAff = zColAff;
96   }
97 
98   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
99 }
100 
101 /*
102 ** Return non-zero if the table pTab in database iDb or any of its indices
103 ** have been opened at any point in the VDBE program beginning at location
104 ** iStartAddr throught the end of the program.  This is used to see if
105 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
106 ** run without using temporary table for the results of the SELECT.
107 */
108 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
109   int i;
110   int iEnd = sqlite3VdbeCurrentAddr(v);
111   for(i=iStartAddr; i<iEnd; i++){
112     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
113     if( pOp->opcode==OP_OpenRead ){
114       VdbeOp *pPrior = &pOp[-1];
115       int tnum = pOp->p2;
116       assert( i>iStartAddr );
117       assert( pPrior->opcode==OP_Integer );
118       if( pPrior->p1==iDb ){
119         Index *pIndex;
120         if( tnum==pTab->tnum ){
121           return 1;
122         }
123         for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
124           if( tnum==pIndex->tnum ){
125             return 1;
126           }
127         }
128       }
129     }
130 #ifndef SQLITE_OMIT_VIRTUALTABLE
131     if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){
132       assert( pOp->p3!=0 );
133       assert( pOp->p3type==P3_VTAB );
134       return 1;
135     }
136 #endif
137   }
138   return 0;
139 }
140 
141 #ifndef SQLITE_OMIT_AUTOINCREMENT
142 /*
143 ** Write out code to initialize the autoincrement logic.  This code
144 ** looks up the current autoincrement value in the sqlite_sequence
145 ** table and stores that value in a memory cell.  Code generated by
146 ** autoIncStep() will keep that memory cell holding the largest
147 ** rowid value.  Code generated by autoIncEnd() will write the new
148 ** largest value of the counter back into the sqlite_sequence table.
149 **
150 ** This routine returns the index of the mem[] cell that contains
151 ** the maximum rowid counter.
152 **
153 ** Two memory cells are allocated.  The next memory cell after the
154 ** one returned holds the rowid in sqlite_sequence where we will
155 ** write back the revised maximum rowid.
156 */
157 static int autoIncBegin(
158   Parse *pParse,      /* Parsing context */
159   int iDb,            /* Index of the database holding pTab */
160   Table *pTab         /* The table we are writing to */
161 ){
162   int memId = 0;
163   if( pTab->autoInc ){
164     Vdbe *v = pParse->pVdbe;
165     Db *pDb = &pParse->db->aDb[iDb];
166     int iCur = pParse->nTab;
167     int addr;
168     assert( v );
169     addr = sqlite3VdbeCurrentAddr(v);
170     memId = pParse->nMem+1;
171     pParse->nMem += 2;
172     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
173     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
174     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
175     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
176     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
177     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
178     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
179     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
180     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
181     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
182     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
183     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
184   }
185   return memId;
186 }
187 
188 /*
189 ** Update the maximum rowid for an autoincrement calculation.
190 **
191 ** This routine should be called when the top of the stack holds a
192 ** new rowid that is about to be inserted.  If that new rowid is
193 ** larger than the maximum rowid in the memId memory cell, then the
194 ** memory cell is updated.  The stack is unchanged.
195 */
196 static void autoIncStep(Parse *pParse, int memId){
197   if( memId>0 ){
198     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
199   }
200 }
201 
202 /*
203 ** After doing one or more inserts, the maximum rowid is stored
204 ** in mem[memId].  Generate code to write this value back into the
205 ** the sqlite_sequence table.
206 */
207 static void autoIncEnd(
208   Parse *pParse,     /* The parsing context */
209   int iDb,           /* Index of the database holding pTab */
210   Table *pTab,       /* Table we are inserting into */
211   int memId          /* Memory cell holding the maximum rowid */
212 ){
213   if( pTab->autoInc ){
214     int iCur = pParse->nTab;
215     Vdbe *v = pParse->pVdbe;
216     Db *pDb = &pParse->db->aDb[iDb];
217     int addr;
218     assert( v );
219     addr = sqlite3VdbeCurrentAddr(v);
220     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
221     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
222     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
223     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
224     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
225     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
226     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
227     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
228     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
229     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
230   }
231 }
232 #else
233 /*
234 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
235 ** above are all no-ops
236 */
237 # define autoIncBegin(A,B,C) (0)
238 # define autoIncStep(A,B)
239 # define autoIncEnd(A,B,C,D)
240 #endif /* SQLITE_OMIT_AUTOINCREMENT */
241 
242 
243 /* Forward declaration */
244 static int xferOptimization(
245   Parse *pParse,        /* Parser context */
246   Table *pDest,         /* The table we are inserting into */
247   Select *pSelect,      /* A SELECT statement to use as the data source */
248   int onError,          /* How to handle constraint errors */
249   int iDbDest           /* The database of pDest */
250 );
251 
252 /*
253 ** This routine is call to handle SQL of the following forms:
254 **
255 **    insert into TABLE (IDLIST) values(EXPRLIST)
256 **    insert into TABLE (IDLIST) select
257 **
258 ** The IDLIST following the table name is always optional.  If omitted,
259 ** then a list of all columns for the table is substituted.  The IDLIST
260 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
261 **
262 ** The pList parameter holds EXPRLIST in the first form of the INSERT
263 ** statement above, and pSelect is NULL.  For the second form, pList is
264 ** NULL and pSelect is a pointer to the select statement used to generate
265 ** data for the insert.
266 **
267 ** The code generated follows one of four templates.  For a simple
268 ** select with data coming from a VALUES clause, the code executes
269 ** once straight down through.  The template looks like this:
270 **
271 **         open write cursor to <table> and its indices
272 **         puts VALUES clause expressions onto the stack
273 **         write the resulting record into <table>
274 **         cleanup
275 **
276 ** The three remaining templates assume the statement is of the form
277 **
278 **   INSERT INTO <table> SELECT ...
279 **
280 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
281 ** in other words if the SELECT pulls all columns from a single table
282 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
283 ** if <table2> and <table1> are distinct tables but have identical
284 ** schemas, including all the same indices, then a special optimization
285 ** is invoked that copies raw records from <table2> over to <table1>.
286 ** See the xferOptimization() function for the implementation of this
287 ** template.  This is the second template.
288 **
289 **         open a write cursor to <table>
290 **         open read cursor on <table2>
291 **         transfer all records in <table2> over to <table>
292 **         close cursors
293 **         foreach index on <table>
294 **           open a write cursor on the <table> index
295 **           open a read cursor on the corresponding <table2> index
296 **           transfer all records from the read to the write cursors
297 **           close cursors
298 **         end foreach
299 **
300 ** The third template is for when the second template does not apply
301 ** and the SELECT clause does not read from <table> at any time.
302 ** The generated code follows this template:
303 **
304 **         goto B
305 **      A: setup for the SELECT
306 **         loop over the rows in the SELECT
307 **           gosub C
308 **         end loop
309 **         cleanup after the SELECT
310 **         goto D
311 **      B: open write cursor to <table> and its indices
312 **         goto A
313 **      C: insert the select result into <table>
314 **         return
315 **      D: cleanup
316 **
317 ** The fourth template is used if the insert statement takes its
318 ** values from a SELECT but the data is being inserted into a table
319 ** that is also read as part of the SELECT.  In the third form,
320 ** we have to use a intermediate table to store the results of
321 ** the select.  The template is like this:
322 **
323 **         goto B
324 **      A: setup for the SELECT
325 **         loop over the tables in the SELECT
326 **           gosub C
327 **         end loop
328 **         cleanup after the SELECT
329 **         goto D
330 **      C: insert the select result into the intermediate table
331 **         return
332 **      B: open a cursor to an intermediate table
333 **         goto A
334 **      D: open write cursor to <table> and its indices
335 **         loop over the intermediate table
336 **           transfer values form intermediate table into <table>
337 **         end the loop
338 **         cleanup
339 */
340 void sqlite3Insert(
341   Parse *pParse,        /* Parser context */
342   SrcList *pTabList,    /* Name of table into which we are inserting */
343   ExprList *pList,      /* List of values to be inserted */
344   Select *pSelect,      /* A SELECT statement to use as the data source */
345   IdList *pColumn,      /* Column names corresponding to IDLIST. */
346   int onError           /* How to handle constraint errors */
347 ){
348   Table *pTab;          /* The table to insert into */
349   char *zTab;           /* Name of the table into which we are inserting */
350   const char *zDb;      /* Name of the database holding this table */
351   int i, j, idx;        /* Loop counters */
352   Vdbe *v;              /* Generate code into this virtual machine */
353   Index *pIdx;          /* For looping over indices of the table */
354   int nColumn;          /* Number of columns in the data */
355   int base = 0;         /* VDBE Cursor number for pTab */
356   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
357   sqlite3 *db;          /* The main database structure */
358   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
359   int endOfLoop;        /* Label for the end of the insertion loop */
360   int useTempTable = 0; /* Store SELECT results in intermediate table */
361   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
362   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
363   int iCleanup = 0;     /* Address of the cleanup code */
364   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
365   int iCntMem = 0;      /* Memory cell used for the row counter */
366   int newIdx = -1;      /* Cursor for the NEW table */
367   Db *pDb;              /* The database containing table being inserted into */
368   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
369   int appendFlag = 0;   /* True if the insert is likely to be an append */
370   int iDb;
371 
372   int nHidden = 0;
373 
374 #ifndef SQLITE_OMIT_TRIGGER
375   int isView;                 /* True if attempting to insert into a view */
376   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
377 #endif
378 
379   db = pParse->db;
380   if( pParse->nErr || db->mallocFailed ){
381     goto insert_cleanup;
382   }
383 
384   /* Locate the table into which we will be inserting new information.
385   */
386   assert( pTabList->nSrc==1 );
387   zTab = pTabList->a[0].zName;
388   if( zTab==0 ) goto insert_cleanup;
389   pTab = sqlite3SrcListLookup(pParse, pTabList);
390   if( pTab==0 ){
391     goto insert_cleanup;
392   }
393   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
394   assert( iDb<db->nDb );
395   pDb = &db->aDb[iDb];
396   zDb = pDb->zName;
397   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
398     goto insert_cleanup;
399   }
400 
401   /* Figure out if we have any triggers and if the table being
402   ** inserted into is a view
403   */
404 #ifndef SQLITE_OMIT_TRIGGER
405   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
406   isView = pTab->pSelect!=0;
407 #else
408 # define triggers_exist 0
409 # define isView 0
410 #endif
411 #ifdef SQLITE_OMIT_VIEW
412 # undef isView
413 # define isView 0
414 #endif
415 
416   /* Ensure that:
417   *  (a) the table is not read-only,
418   *  (b) that if it is a view then ON INSERT triggers exist
419   */
420   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
421     goto insert_cleanup;
422   }
423   assert( pTab!=0 );
424 
425   /* If pTab is really a view, make sure it has been initialized.
426   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
427   ** module table).
428   */
429   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
430     goto insert_cleanup;
431   }
432 
433   /* Allocate a VDBE
434   */
435   v = sqlite3GetVdbe(pParse);
436   if( v==0 ) goto insert_cleanup;
437   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
438   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
439 
440   /* if there are row triggers, allocate a temp table for new.* references. */
441   if( triggers_exist ){
442     newIdx = pParse->nTab++;
443   }
444 
445 #ifndef SQLITE_OMIT_XFER_OPT
446   /* If the statement is of the form
447   **
448   **       INSERT INTO <table1> SELECT * FROM <table2>;
449   **
450   ** Then special optimizations can be applied that make the transfer
451   ** very fast and which reduce fragmentation of indices.
452   */
453   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
454     assert( !triggers_exist );
455     assert( pList==0 );
456     goto insert_cleanup;
457   }
458 #endif /* SQLITE_OMIT_XFER_OPT */
459 
460   /* If this is an AUTOINCREMENT table, look up the sequence number in the
461   ** sqlite_sequence table and store it in memory cell counterMem.  Also
462   ** remember the rowid of the sqlite_sequence table entry in memory cell
463   ** counterRowid.
464   */
465   counterMem = autoIncBegin(pParse, iDb, pTab);
466 
467   /* Figure out how many columns of data are supplied.  If the data
468   ** is coming from a SELECT statement, then this step also generates
469   ** all the code to implement the SELECT statement and invoke a subroutine
470   ** to process each row of the result. (Template 2.) If the SELECT
471   ** statement uses the the table that is being inserted into, then the
472   ** subroutine is also coded here.  That subroutine stores the SELECT
473   ** results in a temporary table. (Template 3.)
474   */
475   if( pSelect ){
476     /* Data is coming from a SELECT.  Generate code to implement that SELECT
477     */
478     int rc, iInitCode;
479     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
480     iSelectLoop = sqlite3VdbeCurrentAddr(v);
481     iInsertBlock = sqlite3VdbeMakeLabel(v);
482 
483     /* Resolve the expressions in the SELECT statement and execute it. */
484     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
485     if( rc || pParse->nErr || db->mallocFailed ){
486       goto insert_cleanup;
487     }
488 
489     iCleanup = sqlite3VdbeMakeLabel(v);
490     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
491     assert( pSelect->pEList );
492     nColumn = pSelect->pEList->nExpr;
493 
494     /* Set useTempTable to TRUE if the result of the SELECT statement
495     ** should be written into a temporary table.  Set to FALSE if each
496     ** row of the SELECT can be written directly into the result table.
497     **
498     ** A temp table must be used if the table being updated is also one
499     ** of the tables being read by the SELECT statement.  Also use a
500     ** temp table in the case of row triggers.
501     */
502     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
503       useTempTable = 1;
504     }
505 
506     if( useTempTable ){
507       /* Generate the subroutine that SELECT calls to process each row of
508       ** the result.  Store the result in a temporary table
509       */
510       srcTab = pParse->nTab++;
511       sqlite3VdbeResolveLabel(v, iInsertBlock);
512       sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
513       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
514       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
515       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
516       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
517       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
518 
519       /* The following code runs first because the GOTO at the very top
520       ** of the program jumps to it.  Create the temporary table, then jump
521       ** back up and execute the SELECT code above.
522       */
523       sqlite3VdbeJumpHere(v, iInitCode);
524       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
525       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
526       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
527       sqlite3VdbeResolveLabel(v, iCleanup);
528     }else{
529       sqlite3VdbeJumpHere(v, iInitCode);
530     }
531   }else{
532     /* This is the case if the data for the INSERT is coming from a VALUES
533     ** clause
534     */
535     NameContext sNC;
536     memset(&sNC, 0, sizeof(sNC));
537     sNC.pParse = pParse;
538     srcTab = -1;
539     assert( useTempTable==0 );
540     nColumn = pList ? pList->nExpr : 0;
541     for(i=0; i<nColumn; i++){
542       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
543         goto insert_cleanup;
544       }
545     }
546   }
547 
548   /* Make sure the number of columns in the source data matches the number
549   ** of columns to be inserted into the table.
550   */
551   if( IsVirtual(pTab) ){
552     for(i=0; i<pTab->nCol; i++){
553       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
554     }
555   }
556   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
557     sqlite3ErrorMsg(pParse,
558        "table %S has %d columns but %d values were supplied",
559        pTabList, 0, pTab->nCol, nColumn);
560     goto insert_cleanup;
561   }
562   if( pColumn!=0 && nColumn!=pColumn->nId ){
563     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
564     goto insert_cleanup;
565   }
566 
567   /* If the INSERT statement included an IDLIST term, then make sure
568   ** all elements of the IDLIST really are columns of the table and
569   ** remember the column indices.
570   **
571   ** If the table has an INTEGER PRIMARY KEY column and that column
572   ** is named in the IDLIST, then record in the keyColumn variable
573   ** the index into IDLIST of the primary key column.  keyColumn is
574   ** the index of the primary key as it appears in IDLIST, not as
575   ** is appears in the original table.  (The index of the primary
576   ** key in the original table is pTab->iPKey.)
577   */
578   if( pColumn ){
579     for(i=0; i<pColumn->nId; i++){
580       pColumn->a[i].idx = -1;
581     }
582     for(i=0; i<pColumn->nId; i++){
583       for(j=0; j<pTab->nCol; j++){
584         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
585           pColumn->a[i].idx = j;
586           if( j==pTab->iPKey ){
587             keyColumn = i;
588           }
589           break;
590         }
591       }
592       if( j>=pTab->nCol ){
593         if( sqlite3IsRowid(pColumn->a[i].zName) ){
594           keyColumn = i;
595         }else{
596           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
597               pTabList, 0, pColumn->a[i].zName);
598           pParse->nErr++;
599           goto insert_cleanup;
600         }
601       }
602     }
603   }
604 
605   /* If there is no IDLIST term but the table has an integer primary
606   ** key, the set the keyColumn variable to the primary key column index
607   ** in the original table definition.
608   */
609   if( pColumn==0 && nColumn>0 ){
610     keyColumn = pTab->iPKey;
611   }
612 
613   /* Open the temp table for FOR EACH ROW triggers
614   */
615   if( triggers_exist ){
616     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
617     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
618   }
619 
620   /* Initialize the count of rows to be inserted
621   */
622   if( db->flags & SQLITE_CountRows ){
623     iCntMem = pParse->nMem++;
624     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
625   }
626 
627   /* Open tables and indices if there are no row triggers */
628   if( !triggers_exist ){
629     base = pParse->nTab;
630     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
631   }
632 
633   /* If the data source is a temporary table, then we have to create
634   ** a loop because there might be multiple rows of data.  If the data
635   ** source is a subroutine call from the SELECT statement, then we need
636   ** to launch the SELECT statement processing.
637   */
638   if( useTempTable ){
639     iBreak = sqlite3VdbeMakeLabel(v);
640     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
641     iCont = sqlite3VdbeCurrentAddr(v);
642   }else if( pSelect ){
643     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
644     sqlite3VdbeResolveLabel(v, iInsertBlock);
645     sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
646   }
647 
648   /* Run the BEFORE and INSTEAD OF triggers, if there are any
649   */
650   endOfLoop = sqlite3VdbeMakeLabel(v);
651   if( triggers_exist & TRIGGER_BEFORE ){
652 
653     /* build the NEW.* reference row.  Note that if there is an INTEGER
654     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
655     ** translated into a unique ID for the row.  But on a BEFORE trigger,
656     ** we do not know what the unique ID will be (because the insert has
657     ** not happened yet) so we substitute a rowid of -1
658     */
659     if( keyColumn<0 ){
660       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
661     }else if( useTempTable ){
662       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
663     }else{
664       assert( pSelect==0 );  /* Otherwise useTempTable is true */
665       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
666       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
667       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
668       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
669       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
670     }
671 
672     /* Cannot have triggers on a virtual table. If it were possible,
673     ** this block would have to account for hidden column.
674     */
675     assert(!IsVirtual(pTab));
676 
677     /* Create the new column data
678     */
679     for(i=0; i<pTab->nCol; i++){
680       if( pColumn==0 ){
681         j = i;
682       }else{
683         for(j=0; j<pColumn->nId; j++){
684           if( pColumn->a[j].idx==i ) break;
685         }
686       }
687       if( pColumn && j>=pColumn->nId ){
688         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
689       }else if( useTempTable ){
690         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
691       }else{
692         assert( pSelect==0 ); /* Otherwise useTempTable is true */
693         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
694       }
695     }
696     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
697 
698     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
699     ** do not attempt any conversions before assembling the record.
700     ** If this is a real table, attempt conversions as required by the
701     ** table column affinities.
702     */
703     if( !isView ){
704       sqlite3TableAffinityStr(v, pTab);
705     }
706     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
707 
708     /* Fire BEFORE or INSTEAD OF triggers */
709     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
710         newIdx, -1, onError, endOfLoop) ){
711       goto insert_cleanup;
712     }
713   }
714 
715   /* If any triggers exists, the opening of tables and indices is deferred
716   ** until now.
717   */
718   if( triggers_exist && !isView ){
719     base = pParse->nTab;
720     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
721   }
722 
723   /* Push the record number for the new entry onto the stack.  The
724   ** record number is a randomly generate integer created by NewRowid
725   ** except when the table has an INTEGER PRIMARY KEY column, in which
726   ** case the record number is the same as that column.
727   */
728   if( !isView ){
729     if( IsVirtual(pTab) ){
730       /* The row that the VUpdate opcode will delete:  none */
731       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
732     }
733     if( keyColumn>=0 ){
734       if( useTempTable ){
735         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
736       }else if( pSelect ){
737         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
738       }else{
739         VdbeOp *pOp;
740         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
741         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
742         if( pOp && pOp->opcode==OP_Null ){
743           appendFlag = 1;
744           pOp->opcode = OP_NewRowid;
745           pOp->p1 = base;
746           pOp->p2 = counterMem;
747         }
748       }
749       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
750       ** to generate a unique primary key value.
751       */
752       if( !appendFlag ){
753         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
754         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
755         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
756         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
757       }
758     }else if( IsVirtual(pTab) ){
759       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
760     }else{
761       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
762       appendFlag = 1;
763     }
764     autoIncStep(pParse, counterMem);
765 
766     /* Push onto the stack, data for all columns of the new entry, beginning
767     ** with the first column.
768     */
769     nHidden = 0;
770     for(i=0; i<pTab->nCol; i++){
771       if( i==pTab->iPKey ){
772         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
773         ** Whenever this column is read, the record number will be substituted
774         ** in its place.  So will fill this column with a NULL to avoid
775         ** taking up data space with information that will never be used. */
776         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
777         continue;
778       }
779       if( pColumn==0 ){
780         if( IsHiddenColumn(&pTab->aCol[i]) ){
781           assert( IsVirtual(pTab) );
782           j = -1;
783           nHidden++;
784         }else{
785           j = i - nHidden;
786         }
787       }else{
788         for(j=0; j<pColumn->nId; j++){
789           if( pColumn->a[j].idx==i ) break;
790         }
791       }
792       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
793         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
794       }else if( useTempTable ){
795         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
796       }else if( pSelect ){
797         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
798       }else{
799         sqlite3ExprCode(pParse, pList->a[j].pExpr);
800       }
801     }
802 
803     /* Generate code to check constraints and generate index keys and
804     ** do the insertion.
805     */
806 #ifndef SQLITE_OMIT_VIRTUALTABLE
807     if( IsVirtual(pTab) ){
808       pParse->pVirtualLock = pTab;
809       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
810                      (const char*)pTab->pVtab, P3_VTAB);
811     }else
812 #endif
813     {
814       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
815                                      0, onError, endOfLoop);
816       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
817                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
818                             appendFlag);
819     }
820   }
821 
822   /* Update the count of rows that are inserted
823   */
824   if( (db->flags & SQLITE_CountRows)!=0 ){
825     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
826   }
827 
828   if( triggers_exist ){
829     /* Close all tables opened */
830     if( !isView ){
831       sqlite3VdbeAddOp(v, OP_Close, base, 0);
832       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
833         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
834       }
835     }
836 
837     /* Code AFTER triggers */
838     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
839           newIdx, -1, onError, endOfLoop) ){
840       goto insert_cleanup;
841     }
842   }
843 
844   /* The bottom of the loop, if the data source is a SELECT statement
845   */
846   sqlite3VdbeResolveLabel(v, endOfLoop);
847   if( useTempTable ){
848     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
849     sqlite3VdbeResolveLabel(v, iBreak);
850     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
851   }else if( pSelect ){
852     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
853     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
854     sqlite3VdbeResolveLabel(v, iCleanup);
855   }
856 
857   if( !triggers_exist && !IsVirtual(pTab) ){
858     /* Close all tables opened */
859     sqlite3VdbeAddOp(v, OP_Close, base, 0);
860     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
861       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
862     }
863   }
864 
865   /* Update the sqlite_sequence table by storing the content of the
866   ** counter value in memory counterMem back into the sqlite_sequence
867   ** table.
868   */
869   autoIncEnd(pParse, iDb, pTab, counterMem);
870 
871   /*
872   ** Return the number of rows inserted. If this routine is
873   ** generating code because of a call to sqlite3NestedParse(), do not
874   ** invoke the callback function.
875   */
876   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
877     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
878     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
879     sqlite3VdbeSetNumCols(v, 1);
880     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
881   }
882 
883 insert_cleanup:
884   sqlite3SrcListDelete(pTabList);
885   sqlite3ExprListDelete(pList);
886   sqlite3SelectDelete(pSelect);
887   sqlite3IdListDelete(pColumn);
888 }
889 
890 /*
891 ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
892 **
893 ** When this routine is called, the stack contains (from bottom to top)
894 ** the following values:
895 **
896 **    1.  The rowid of the row to be updated before the update.  This
897 **        value is omitted unless we are doing an UPDATE that involves a
898 **        change to the record number.
899 **
900 **    2.  The rowid of the row after the update.
901 **
902 **    3.  The data in the first column of the entry after the update.
903 **
904 **    i.  Data from middle columns...
905 **
906 **    N.  The data in the last column of the entry after the update.
907 **
908 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
909 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
910 ** INSERTs and rowidChng is true if the record number is being changed.
911 **
912 ** The code generated by this routine pushes additional entries onto
913 ** the stack which are the keys for new index entries for the new record.
914 ** The order of index keys is the same as the order of the indices on
915 ** the pTable->pIndex list.  A key is only created for index i if
916 ** aIdxUsed!=0 and aIdxUsed[i]!=0.
917 **
918 ** This routine also generates code to check constraints.  NOT NULL,
919 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
920 ** then the appropriate action is performed.  There are five possible
921 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
922 **
923 **  Constraint type  Action       What Happens
924 **  ---------------  ----------   ----------------------------------------
925 **  any              ROLLBACK     The current transaction is rolled back and
926 **                                sqlite3_exec() returns immediately with a
927 **                                return code of SQLITE_CONSTRAINT.
928 **
929 **  any              ABORT        Back out changes from the current command
930 **                                only (do not do a complete rollback) then
931 **                                cause sqlite3_exec() to return immediately
932 **                                with SQLITE_CONSTRAINT.
933 **
934 **  any              FAIL         Sqlite_exec() returns immediately with a
935 **                                return code of SQLITE_CONSTRAINT.  The
936 **                                transaction is not rolled back and any
937 **                                prior changes are retained.
938 **
939 **  any              IGNORE       The record number and data is popped from
940 **                                the stack and there is an immediate jump
941 **                                to label ignoreDest.
942 **
943 **  NOT NULL         REPLACE      The NULL value is replace by the default
944 **                                value for that column.  If the default value
945 **                                is NULL, the action is the same as ABORT.
946 **
947 **  UNIQUE           REPLACE      The other row that conflicts with the row
948 **                                being inserted is removed.
949 **
950 **  CHECK            REPLACE      Illegal.  The results in an exception.
951 **
952 ** Which action to take is determined by the overrideError parameter.
953 ** Or if overrideError==OE_Default, then the pParse->onError parameter
954 ** is used.  Or if pParse->onError==OE_Default then the onError value
955 ** for the constraint is used.
956 **
957 ** The calling routine must open a read/write cursor for pTab with
958 ** cursor number "base".  All indices of pTab must also have open
959 ** read/write cursors with cursor number base+i for the i-th cursor.
960 ** Except, if there is no possibility of a REPLACE action then
961 ** cursors do not need to be open for indices where aIdxUsed[i]==0.
962 **
963 ** If the isUpdate flag is true, it means that the "base" cursor is
964 ** initially pointing to an entry that is being updated.  The isUpdate
965 ** flag causes extra code to be generated so that the "base" cursor
966 ** is still pointing at the same entry after the routine returns.
967 ** Without the isUpdate flag, the "base" cursor might be moved.
968 */
969 void sqlite3GenerateConstraintChecks(
970   Parse *pParse,      /* The parser context */
971   Table *pTab,        /* the table into which we are inserting */
972   int base,           /* Index of a read/write cursor pointing at pTab */
973   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
974   int rowidChng,      /* True if the record number will change */
975   int isUpdate,       /* True for UPDATE, False for INSERT */
976   int overrideError,  /* Override onError to this if not OE_Default */
977   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
978 ){
979   int i;
980   Vdbe *v;
981   int nCol;
982   int onError;
983   int addr;
984   int extra;
985   int iCur;
986   Index *pIdx;
987   int seenReplace = 0;
988   int jumpInst1=0, jumpInst2;
989   int hasTwoRowids = (isUpdate && rowidChng);
990 
991   v = sqlite3GetVdbe(pParse);
992   assert( v!=0 );
993   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
994   nCol = pTab->nCol;
995 
996   /* Test all NOT NULL constraints.
997   */
998   for(i=0; i<nCol; i++){
999     if( i==pTab->iPKey ){
1000       continue;
1001     }
1002     onError = pTab->aCol[i].notNull;
1003     if( onError==OE_None ) continue;
1004     if( overrideError!=OE_Default ){
1005       onError = overrideError;
1006     }else if( onError==OE_Default ){
1007       onError = OE_Abort;
1008     }
1009     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1010       onError = OE_Abort;
1011     }
1012     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
1013     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
1014     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1015         || onError==OE_Ignore || onError==OE_Replace );
1016     switch( onError ){
1017       case OE_Rollback:
1018       case OE_Abort:
1019       case OE_Fail: {
1020         char *zMsg = 0;
1021         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1022         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
1023                         " may not be NULL", (char*)0);
1024         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
1025         break;
1026       }
1027       case OE_Ignore: {
1028         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1029         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1030         break;
1031       }
1032       case OE_Replace: {
1033         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
1034         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
1035         break;
1036       }
1037     }
1038     sqlite3VdbeJumpHere(v, addr);
1039   }
1040 
1041   /* Test all CHECK constraints
1042   */
1043 #ifndef SQLITE_OMIT_CHECK
1044   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1045     int allOk = sqlite3VdbeMakeLabel(v);
1046     assert( pParse->ckOffset==0 );
1047     pParse->ckOffset = nCol;
1048     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
1049     assert( pParse->ckOffset==nCol );
1050     pParse->ckOffset = 0;
1051     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1052     if( onError==OE_Ignore ){
1053       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1054       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1055     }else{
1056       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1057     }
1058     sqlite3VdbeResolveLabel(v, allOk);
1059   }
1060 #endif /* !defined(SQLITE_OMIT_CHECK) */
1061 
1062   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1063   ** of the new record does not previously exist.  Except, if this
1064   ** is an UPDATE and the primary key is not changing, that is OK.
1065   */
1066   if( rowidChng ){
1067     onError = pTab->keyConf;
1068     if( overrideError!=OE_Default ){
1069       onError = overrideError;
1070     }else if( onError==OE_Default ){
1071       onError = OE_Abort;
1072     }
1073 
1074     if( isUpdate ){
1075       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1076       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1077       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
1078     }
1079     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
1080     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
1081     switch( onError ){
1082       default: {
1083         onError = OE_Abort;
1084         /* Fall thru into the next case */
1085       }
1086       case OE_Rollback:
1087       case OE_Abort:
1088       case OE_Fail: {
1089         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1090                          "PRIMARY KEY must be unique", P3_STATIC);
1091         break;
1092       }
1093       case OE_Replace: {
1094         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
1095         if( isUpdate ){
1096           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
1097           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1098         }
1099         seenReplace = 1;
1100         break;
1101       }
1102       case OE_Ignore: {
1103         assert( seenReplace==0 );
1104         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1105         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1106         break;
1107       }
1108     }
1109     sqlite3VdbeJumpHere(v, jumpInst2);
1110     if( isUpdate ){
1111       sqlite3VdbeJumpHere(v, jumpInst1);
1112       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1113       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1114     }
1115   }
1116 
1117   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1118   ** index and making sure that duplicate entries do not already exist.
1119   ** Add the new records to the indices as we go.
1120   */
1121   extra = -1;
1122   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1123     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
1124     extra++;
1125 
1126     /* Create a key for accessing the index entry */
1127     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
1128     for(i=0; i<pIdx->nColumn; i++){
1129       int idx = pIdx->aiColumn[i];
1130       if( idx==pTab->iPKey ){
1131         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
1132       }else{
1133         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
1134       }
1135     }
1136     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
1137     sqlite3IndexAffinityStr(v, pIdx);
1138 
1139     /* Find out what action to take in case there is an indexing conflict */
1140     onError = pIdx->onError;
1141     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1142     if( overrideError!=OE_Default ){
1143       onError = overrideError;
1144     }else if( onError==OE_Default ){
1145       onError = OE_Abort;
1146     }
1147     if( seenReplace ){
1148       if( onError==OE_Ignore ) onError = OE_Replace;
1149       else if( onError==OE_Fail ) onError = OE_Abort;
1150     }
1151 
1152 
1153     /* Check to see if the new index entry will be unique */
1154     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
1155     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
1156 
1157     /* Generate code that executes if the new index entry is not unique */
1158     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1159         || onError==OE_Ignore || onError==OE_Replace );
1160     switch( onError ){
1161       case OE_Rollback:
1162       case OE_Abort:
1163       case OE_Fail: {
1164         int j, n1, n2;
1165         char zErrMsg[200];
1166         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1167                          pIdx->nColumn>1 ? "columns " : "column ");
1168         n1 = strlen(zErrMsg);
1169         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1170           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1171           n2 = strlen(zCol);
1172           if( j>0 ){
1173             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1174             n1 += 2;
1175           }
1176           if( n1+n2>sizeof(zErrMsg)-30 ){
1177             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1178             n1 += 3;
1179             break;
1180           }else{
1181             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1182             n1 += n2;
1183           }
1184         }
1185         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1186             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1187         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
1188         break;
1189       }
1190       case OE_Ignore: {
1191         assert( seenReplace==0 );
1192         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
1193         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1194         break;
1195       }
1196       case OE_Replace: {
1197         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
1198         if( isUpdate ){
1199           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
1200           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1201         }
1202         seenReplace = 1;
1203         break;
1204       }
1205     }
1206 #if NULL_DISTINCT_FOR_UNIQUE
1207     sqlite3VdbeJumpHere(v, jumpInst1);
1208 #endif
1209     sqlite3VdbeJumpHere(v, jumpInst2);
1210   }
1211 }
1212 
1213 /*
1214 ** This routine generates code to finish the INSERT or UPDATE operation
1215 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1216 ** The stack must contain keys for all active indices followed by data
1217 ** and the rowid for the new entry.  This routine creates the new
1218 ** entries in all indices and in the main table.
1219 **
1220 ** The arguments to this routine should be the same as the first six
1221 ** arguments to sqlite3GenerateConstraintChecks.
1222 */
1223 void sqlite3CompleteInsertion(
1224   Parse *pParse,      /* The parser context */
1225   Table *pTab,        /* the table into which we are inserting */
1226   int base,           /* Index of a read/write cursor pointing at pTab */
1227   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
1228   int rowidChng,      /* True if the record number will change */
1229   int isUpdate,       /* True for UPDATE, False for INSERT */
1230   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1231   int appendBias      /* True if this is likely to be an append */
1232 ){
1233   int i;
1234   Vdbe *v;
1235   int nIdx;
1236   Index *pIdx;
1237   int pik_flags;
1238 
1239   v = sqlite3GetVdbe(pParse);
1240   assert( v!=0 );
1241   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1242   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1243   for(i=nIdx-1; i>=0; i--){
1244     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
1245     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
1246   }
1247   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
1248   sqlite3TableAffinityStr(v, pTab);
1249 #ifndef SQLITE_OMIT_TRIGGER
1250   if( newIdx>=0 ){
1251     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1252     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1253     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
1254   }
1255 #endif
1256   if( pParse->nested ){
1257     pik_flags = 0;
1258   }else{
1259     pik_flags = OPFLAG_NCHANGE;
1260     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1261   }
1262   if( appendBias ){
1263     pik_flags |= OPFLAG_APPEND;
1264   }
1265   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
1266   if( !pParse->nested ){
1267     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
1268   }
1269 
1270   if( isUpdate && rowidChng ){
1271     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1272   }
1273 }
1274 
1275 /*
1276 ** Generate code that will open cursors for a table and for all
1277 ** indices of that table.  The "base" parameter is the cursor number used
1278 ** for the table.  Indices are opened on subsequent cursors.
1279 */
1280 void sqlite3OpenTableAndIndices(
1281   Parse *pParse,   /* Parsing context */
1282   Table *pTab,     /* Table to be opened */
1283   int base,        /* Cursor number assigned to the table */
1284   int op           /* OP_OpenRead or OP_OpenWrite */
1285 ){
1286   int i;
1287   int iDb;
1288   Index *pIdx;
1289   Vdbe *v;
1290 
1291   if( IsVirtual(pTab) ) return;
1292   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1293   v = sqlite3GetVdbe(pParse);
1294   assert( v!=0 );
1295   sqlite3OpenTable(pParse, base, iDb, pTab, op);
1296   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1297     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1298     assert( pIdx->pSchema==pTab->pSchema );
1299     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
1300     VdbeComment((v, "# %s", pIdx->zName));
1301     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
1302   }
1303   if( pParse->nTab<=base+i ){
1304     pParse->nTab = base+i;
1305   }
1306 }
1307 
1308 
1309 #ifdef SQLITE_TEST
1310 /*
1311 ** The following global variable is incremented whenever the
1312 ** transfer optimization is used.  This is used for testing
1313 ** purposes only - to make sure the transfer optimization really
1314 ** is happening when it is suppose to.
1315 */
1316 int sqlite3_xferopt_count;
1317 #endif /* SQLITE_TEST */
1318 
1319 
1320 #ifndef SQLITE_OMIT_XFER_OPT
1321 /*
1322 ** Check to collation names to see if they are compatible.
1323 */
1324 static int xferCompatibleCollation(const char *z1, const char *z2){
1325   if( z1==0 ){
1326     return z2==0;
1327   }
1328   if( z2==0 ){
1329     return 0;
1330   }
1331   return sqlite3StrICmp(z1, z2)==0;
1332 }
1333 
1334 
1335 /*
1336 ** Check to see if index pSrc is compatible as a source of data
1337 ** for index pDest in an insert transfer optimization.  The rules
1338 ** for a compatible index:
1339 **
1340 **    *   The index is over the same set of columns
1341 **    *   The same DESC and ASC markings occurs on all columns
1342 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1343 **    *   The same collating sequence on each column
1344 */
1345 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1346   int i;
1347   assert( pDest && pSrc );
1348   assert( pDest->pTable!=pSrc->pTable );
1349   if( pDest->nColumn!=pSrc->nColumn ){
1350     return 0;   /* Different number of columns */
1351   }
1352   if( pDest->onError!=pSrc->onError ){
1353     return 0;   /* Different conflict resolution strategies */
1354   }
1355   for(i=0; i<pSrc->nColumn; i++){
1356     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1357       return 0;   /* Different columns indexed */
1358     }
1359     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1360       return 0;   /* Different sort orders */
1361     }
1362     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1363       return 0;   /* Different sort orders */
1364     }
1365   }
1366 
1367   /* If no test above fails then the indices must be compatible */
1368   return 1;
1369 }
1370 
1371 /*
1372 ** Attempt the transfer optimization on INSERTs of the form
1373 **
1374 **     INSERT INTO tab1 SELECT * FROM tab2;
1375 **
1376 ** This optimization is only attempted if
1377 **
1378 **    (1)  tab1 and tab2 have identical schemas including all the
1379 **         same indices and constraints
1380 **
1381 **    (2)  tab1 and tab2 are different tables
1382 **
1383 **    (3)  There must be no triggers on tab1
1384 **
1385 **    (4)  The result set of the SELECT statement is "*"
1386 **
1387 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1388 **         or LIMIT clause.
1389 **
1390 **    (6)  The SELECT statement is a simple (not a compound) select that
1391 **         contains only tab2 in its FROM clause
1392 **
1393 ** This method for implementing the INSERT transfers raw records from
1394 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1395 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1396 ** the resulting tab1 has much less fragmentation.
1397 **
1398 ** This routine returns TRUE if the optimization is attempted.  If any
1399 ** of the conditions above fail so that the optimization should not
1400 ** be attempted, then this routine returns FALSE.
1401 */
1402 static int xferOptimization(
1403   Parse *pParse,        /* Parser context */
1404   Table *pDest,         /* The table we are inserting into */
1405   Select *pSelect,      /* A SELECT statement to use as the data source */
1406   int onError,          /* How to handle constraint errors */
1407   int iDbDest           /* The database of pDest */
1408 ){
1409   ExprList *pEList;                /* The result set of the SELECT */
1410   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1411   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1412   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1413   int i;                           /* Loop counter */
1414   int iDbSrc;                      /* The database of pSrc */
1415   int iSrc, iDest;                 /* Cursors from source and destination */
1416   int addr1, addr2;                /* Loop addresses */
1417   int emptyDestTest;               /* Address of test for empty pDest */
1418   int emptySrcTest;                /* Address of test for empty pSrc */
1419   Vdbe *v;                         /* The VDBE we are building */
1420   KeyInfo *pKey;                   /* Key information for an index */
1421   int counterMem;                  /* Memory register used by AUTOINC */
1422   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1423 
1424   if( pSelect==0 ){
1425     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1426   }
1427   if( pDest->pTrigger ){
1428     return 0;   /* tab1 must not have triggers */
1429   }
1430 #ifndef SQLITE_OMIT_VIRTUALTABLE
1431   if( pDest->isVirtual ){
1432     return 0;   /* tab1 must not be a virtual table */
1433   }
1434 #endif
1435   if( onError==OE_Default ){
1436     onError = OE_Abort;
1437   }
1438   if( onError!=OE_Abort && onError!=OE_Rollback ){
1439     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1440   }
1441   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1442   if( pSelect->pSrc->nSrc!=1 ){
1443     return 0;   /* FROM clause must have exactly one term */
1444   }
1445   if( pSelect->pSrc->a[0].pSelect ){
1446     return 0;   /* FROM clause cannot contain a subquery */
1447   }
1448   if( pSelect->pWhere ){
1449     return 0;   /* SELECT may not have a WHERE clause */
1450   }
1451   if( pSelect->pOrderBy ){
1452     return 0;   /* SELECT may not have an ORDER BY clause */
1453   }
1454   /* Do not need to test for a HAVING clause.  If HAVING is present but
1455   ** there is no ORDER BY, we will get an error. */
1456   if( pSelect->pGroupBy ){
1457     return 0;   /* SELECT may not have a GROUP BY clause */
1458   }
1459   if( pSelect->pLimit ){
1460     return 0;   /* SELECT may not have a LIMIT clause */
1461   }
1462   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1463   if( pSelect->pPrior ){
1464     return 0;   /* SELECT may not be a compound query */
1465   }
1466   if( pSelect->isDistinct ){
1467     return 0;   /* SELECT may not be DISTINCT */
1468   }
1469   pEList = pSelect->pEList;
1470   assert( pEList!=0 );
1471   if( pEList->nExpr!=1 ){
1472     return 0;   /* The result set must have exactly one column */
1473   }
1474   assert( pEList->a[0].pExpr );
1475   if( pEList->a[0].pExpr->op!=TK_ALL ){
1476     return 0;   /* The result set must be the special operator "*" */
1477   }
1478 
1479   /* At this point we have established that the statement is of the
1480   ** correct syntactic form to participate in this optimization.  Now
1481   ** we have to check the semantics.
1482   */
1483   pItem = pSelect->pSrc->a;
1484   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
1485   if( pSrc==0 ){
1486     return 0;   /* FROM clause does not contain a real table */
1487   }
1488   if( pSrc==pDest ){
1489     return 0;   /* tab1 and tab2 may not be the same table */
1490   }
1491 #ifndef SQLITE_OMIT_VIRTUALTABLE
1492   if( pSrc->isVirtual ){
1493     return 0;   /* tab2 must not be a virtual table */
1494   }
1495 #endif
1496   if( pSrc->pSelect ){
1497     return 0;   /* tab2 may not be a view */
1498   }
1499   if( pDest->nCol!=pSrc->nCol ){
1500     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1501   }
1502   if( pDest->iPKey!=pSrc->iPKey ){
1503     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1504   }
1505   for(i=0; i<pDest->nCol; i++){
1506     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1507       return 0;    /* Affinity must be the same on all columns */
1508     }
1509     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1510       return 0;    /* Collating sequence must be the same on all columns */
1511     }
1512     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1513       return 0;    /* tab2 must be NOT NULL if tab1 is */
1514     }
1515   }
1516   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1517     if( pDestIdx->onError!=OE_None ){
1518       destHasUniqueIdx = 1;
1519     }
1520     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1521       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1522     }
1523     if( pSrcIdx==0 ){
1524       return 0;    /* pDestIdx has no corresponding index in pSrc */
1525     }
1526   }
1527 #ifndef SQLITE_OMIT_CHECK
1528   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1529     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1530   }
1531 #endif
1532 
1533   /* If we get this far, it means either:
1534   **
1535   **    *   We can always do the transfer if the table contains an
1536   **        an integer primary key
1537   **
1538   **    *   We can conditionally do the transfer if the destination
1539   **        table is empty.
1540   */
1541 #ifdef SQLITE_TEST
1542   sqlite3_xferopt_count++;
1543 #endif
1544   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1545   v = sqlite3GetVdbe(pParse);
1546   sqlite3CodeVerifySchema(pParse, iDbSrc);
1547   iSrc = pParse->nTab++;
1548   iDest = pParse->nTab++;
1549   counterMem = autoIncBegin(pParse, iDbDest, pDest);
1550   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1551   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1552     /* If tables do not have an INTEGER PRIMARY KEY and there
1553     ** are indices to be copied and the destination is not empty,
1554     ** we have to disallow the transfer optimization because the
1555     ** the rowids might change which will mess up indexing.
1556     **
1557     ** Or if the destination has a UNIQUE index and is not empty,
1558     ** we also disallow the transfer optimization because we cannot
1559     ** insure that all entries in the union of DEST and SRC will be
1560     ** unique.
1561     */
1562     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
1563     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1564     sqlite3VdbeJumpHere(v, addr1);
1565   }else{
1566     emptyDestTest = 0;
1567   }
1568   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1569   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1570   if( pDest->iPKey>=0 ){
1571     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1572     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1573     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
1574     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1575                       "PRIMARY KEY must be unique", P3_STATIC);
1576     sqlite3VdbeJumpHere(v, addr2);
1577     autoIncStep(pParse, counterMem);
1578   }else if( pDest->pIndex==0 ){
1579     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
1580   }else{
1581     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1582     assert( pDest->autoInc==0 );
1583   }
1584   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
1585   sqlite3VdbeOp3(v, OP_Insert, iDest,
1586                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
1587                     pDest->zName, 0);
1588   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
1589   autoIncEnd(pParse, iDbDest, pDest, counterMem);
1590   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1591     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1592       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1593     }
1594     assert( pSrcIdx );
1595     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1596     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1597     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
1598     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1599     VdbeComment((v, "# %s", pSrcIdx->zName));
1600     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
1601                    (char*)pKey, P3_KEYINFO_HANDOFF);
1602     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
1603     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1604     VdbeComment((v, "# %s", pDestIdx->zName));
1605     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
1606                    (char*)pKey, P3_KEYINFO_HANDOFF);
1607     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1608     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
1609     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
1610     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
1611     sqlite3VdbeJumpHere(v, addr1);
1612   }
1613   sqlite3VdbeJumpHere(v, emptySrcTest);
1614   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1615   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1616   if( emptyDestTest ){
1617     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
1618     sqlite3VdbeJumpHere(v, emptyDestTest);
1619     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1620     return 0;
1621   }else{
1622     return 1;
1623   }
1624 }
1625 #endif /* SQLITE_OMIT_XFER_OPT */
1626