xref: /sqlite-3.40.0/src/insert.c (revision 84c501ba)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85     if( !pIdx->zColAff ){
86       sqlite3OomFault(db);
87       return 0;
88     }
89     for(n=0; n<pIdx->nColumn; n++){
90       i16 x = pIdx->aiColumn[n];
91       if( x>=0 ){
92         pIdx->zColAff[n] = pTab->aCol[x].affinity;
93       }else if( x==XN_ROWID ){
94         pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95       }else{
96         char aff;
97         assert( x==XN_EXPR );
98         assert( pIdx->aColExpr!=0 );
99         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100         if( aff==0 ) aff = SQLITE_AFF_BLOB;
101         pIdx->zColAff[n] = aff;
102       }
103     }
104     pIdx->zColAff[n] = 0;
105   }
106 
107   return pIdx->zColAff;
108 }
109 
110 /*
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
113 **
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following.  Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should  be
118 ** an OP_MakeRecord) to the affinity string.
119 **
120 ** A column affinity string has one character per column:
121 **
122 **  Character      Column affinity
123 **  ------------------------------
124 **  'A'            BLOB
125 **  'B'            TEXT
126 **  'C'            NUMERIC
127 **  'D'            INTEGER
128 **  'E'            REAL
129 */
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131   int i;
132   char *zColAff = pTab->zColAff;
133   if( zColAff==0 ){
134     sqlite3 *db = sqlite3VdbeDb(v);
135     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136     if( !zColAff ){
137       sqlite3OomFault(db);
138       return;
139     }
140 
141     for(i=0; i<pTab->nCol; i++){
142       zColAff[i] = pTab->aCol[i].affinity;
143     }
144     do{
145       zColAff[i--] = 0;
146     }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147     pTab->zColAff = zColAff;
148   }
149   assert( zColAff!=0 );
150   i = sqlite3Strlen30NN(zColAff);
151   if( i ){
152     if( iReg ){
153       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
154     }else{
155       sqlite3VdbeChangeP4(v, -1, zColAff, i);
156     }
157   }
158 }
159 
160 /*
161 ** Return non-zero if the table pTab in database iDb or any of its indices
162 ** have been opened at any point in the VDBE program. This is used to see if
163 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
164 ** run without using a temporary table for the results of the SELECT.
165 */
166 static int readsTable(Parse *p, int iDb, Table *pTab){
167   Vdbe *v = sqlite3GetVdbe(p);
168   int i;
169   int iEnd = sqlite3VdbeCurrentAddr(v);
170 #ifndef SQLITE_OMIT_VIRTUALTABLE
171   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
172 #endif
173 
174   for(i=1; i<iEnd; i++){
175     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
176     assert( pOp!=0 );
177     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
178       Index *pIndex;
179       int tnum = pOp->p2;
180       if( tnum==pTab->tnum ){
181         return 1;
182       }
183       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
184         if( tnum==pIndex->tnum ){
185           return 1;
186         }
187       }
188     }
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
191       assert( pOp->p4.pVtab!=0 );
192       assert( pOp->p4type==P4_VTAB );
193       return 1;
194     }
195 #endif
196   }
197   return 0;
198 }
199 
200 #ifndef SQLITE_OMIT_AUTOINCREMENT
201 /*
202 ** Locate or create an AutoincInfo structure associated with table pTab
203 ** which is in database iDb.  Return the register number for the register
204 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
205 ** table.  (Also return zero when doing a VACUUM since we do not want to
206 ** update the AUTOINCREMENT counters during a VACUUM.)
207 **
208 ** There is at most one AutoincInfo structure per table even if the
209 ** same table is autoincremented multiple times due to inserts within
210 ** triggers.  A new AutoincInfo structure is created if this is the
211 ** first use of table pTab.  On 2nd and subsequent uses, the original
212 ** AutoincInfo structure is used.
213 **
214 ** Four consecutive registers are allocated:
215 **
216 **   (1)  The name of the pTab table.
217 **   (2)  The maximum ROWID of pTab.
218 **   (3)  The rowid in sqlite_sequence of pTab
219 **   (4)  The original value of the max ROWID in pTab, or NULL if none
220 **
221 ** The 2nd register is the one that is returned.  That is all the
222 ** insert routine needs to know about.
223 */
224 static int autoIncBegin(
225   Parse *pParse,      /* Parsing context */
226   int iDb,            /* Index of the database holding pTab */
227   Table *pTab         /* The table we are writing to */
228 ){
229   int memId = 0;      /* Register holding maximum rowid */
230   assert( pParse->db->aDb[iDb].pSchema!=0 );
231   if( (pTab->tabFlags & TF_Autoincrement)!=0
232    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
233   ){
234     Parse *pToplevel = sqlite3ParseToplevel(pParse);
235     AutoincInfo *pInfo;
236     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
237 
238     /* Verify that the sqlite_sequence table exists and is an ordinary
239     ** rowid table with exactly two columns.
240     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
241     if( pSeqTab==0
242      || !HasRowid(pSeqTab)
243      || IsVirtual(pSeqTab)
244      || pSeqTab->nCol!=2
245     ){
246       pParse->nErr++;
247       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
248       return 0;
249     }
250 
251     pInfo = pToplevel->pAinc;
252     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
253     if( pInfo==0 ){
254       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
255       if( pInfo==0 ) return 0;
256       pInfo->pNext = pToplevel->pAinc;
257       pToplevel->pAinc = pInfo;
258       pInfo->pTab = pTab;
259       pInfo->iDb = iDb;
260       pToplevel->nMem++;                  /* Register to hold name of table */
261       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
262       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
263     }
264     memId = pInfo->regCtr;
265   }
266   return memId;
267 }
268 
269 /*
270 ** This routine generates code that will initialize all of the
271 ** register used by the autoincrement tracker.
272 */
273 void sqlite3AutoincrementBegin(Parse *pParse){
274   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
275   sqlite3 *db = pParse->db;  /* The database connection */
276   Db *pDb;                   /* Database only autoinc table */
277   int memId;                 /* Register holding max rowid */
278   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
279 
280   /* This routine is never called during trigger-generation.  It is
281   ** only called from the top-level */
282   assert( pParse->pTriggerTab==0 );
283   assert( sqlite3IsToplevel(pParse) );
284 
285   assert( v );   /* We failed long ago if this is not so */
286   for(p = pParse->pAinc; p; p = p->pNext){
287     static const int iLn = VDBE_OFFSET_LINENO(2);
288     static const VdbeOpList autoInc[] = {
289       /* 0  */ {OP_Null,    0,  0, 0},
290       /* 1  */ {OP_Rewind,  0, 10, 0},
291       /* 2  */ {OP_Column,  0,  0, 0},
292       /* 3  */ {OP_Ne,      0,  9, 0},
293       /* 4  */ {OP_Rowid,   0,  0, 0},
294       /* 5  */ {OP_Column,  0,  1, 0},
295       /* 6  */ {OP_AddImm,  0,  0, 0},
296       /* 7  */ {OP_Copy,    0,  0, 0},
297       /* 8  */ {OP_Goto,    0, 11, 0},
298       /* 9  */ {OP_Next,    0,  2, 0},
299       /* 10 */ {OP_Integer, 0,  0, 0},
300       /* 11 */ {OP_Close,   0,  0, 0}
301     };
302     VdbeOp *aOp;
303     pDb = &db->aDb[p->iDb];
304     memId = p->regCtr;
305     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
306     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
307     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
308     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
309     if( aOp==0 ) break;
310     aOp[0].p2 = memId;
311     aOp[0].p3 = memId+2;
312     aOp[2].p3 = memId;
313     aOp[3].p1 = memId-1;
314     aOp[3].p3 = memId;
315     aOp[3].p5 = SQLITE_JUMPIFNULL;
316     aOp[4].p2 = memId+1;
317     aOp[5].p3 = memId;
318     aOp[6].p1 = memId;
319     aOp[7].p2 = memId+2;
320     aOp[7].p1 = memId;
321     aOp[10].p2 = memId;
322   }
323 }
324 
325 /*
326 ** Update the maximum rowid for an autoincrement calculation.
327 **
328 ** This routine should be called when the regRowid register holds a
329 ** new rowid that is about to be inserted.  If that new rowid is
330 ** larger than the maximum rowid in the memId memory cell, then the
331 ** memory cell is updated.
332 */
333 static void autoIncStep(Parse *pParse, int memId, int regRowid){
334   if( memId>0 ){
335     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
336   }
337 }
338 
339 /*
340 ** This routine generates the code needed to write autoincrement
341 ** maximum rowid values back into the sqlite_sequence register.
342 ** Every statement that might do an INSERT into an autoincrement
343 ** table (either directly or through triggers) needs to call this
344 ** routine just before the "exit" code.
345 */
346 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
347   AutoincInfo *p;
348   Vdbe *v = pParse->pVdbe;
349   sqlite3 *db = pParse->db;
350 
351   assert( v );
352   for(p = pParse->pAinc; p; p = p->pNext){
353     static const int iLn = VDBE_OFFSET_LINENO(2);
354     static const VdbeOpList autoIncEnd[] = {
355       /* 0 */ {OP_NotNull,     0, 2, 0},
356       /* 1 */ {OP_NewRowid,    0, 0, 0},
357       /* 2 */ {OP_MakeRecord,  0, 2, 0},
358       /* 3 */ {OP_Insert,      0, 0, 0},
359       /* 4 */ {OP_Close,       0, 0, 0}
360     };
361     VdbeOp *aOp;
362     Db *pDb = &db->aDb[p->iDb];
363     int iRec;
364     int memId = p->regCtr;
365 
366     iRec = sqlite3GetTempReg(pParse);
367     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
368     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
369     VdbeCoverage(v);
370     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
371     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
372     if( aOp==0 ) break;
373     aOp[0].p1 = memId+1;
374     aOp[1].p2 = memId+1;
375     aOp[2].p1 = memId-1;
376     aOp[2].p3 = iRec;
377     aOp[3].p2 = iRec;
378     aOp[3].p3 = memId+1;
379     aOp[3].p5 = OPFLAG_APPEND;
380     sqlite3ReleaseTempReg(pParse, iRec);
381   }
382 }
383 void sqlite3AutoincrementEnd(Parse *pParse){
384   if( pParse->pAinc ) autoIncrementEnd(pParse);
385 }
386 #else
387 /*
388 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
389 ** above are all no-ops
390 */
391 # define autoIncBegin(A,B,C) (0)
392 # define autoIncStep(A,B,C)
393 #endif /* SQLITE_OMIT_AUTOINCREMENT */
394 
395 
396 /* Forward declaration */
397 static int xferOptimization(
398   Parse *pParse,        /* Parser context */
399   Table *pDest,         /* The table we are inserting into */
400   Select *pSelect,      /* A SELECT statement to use as the data source */
401   int onError,          /* How to handle constraint errors */
402   int iDbDest           /* The database of pDest */
403 );
404 
405 /*
406 ** This routine is called to handle SQL of the following forms:
407 **
408 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
409 **    insert into TABLE (IDLIST) select
410 **    insert into TABLE (IDLIST) default values
411 **
412 ** The IDLIST following the table name is always optional.  If omitted,
413 ** then a list of all (non-hidden) columns for the table is substituted.
414 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
415 ** is omitted.
416 **
417 ** For the pSelect parameter holds the values to be inserted for the
418 ** first two forms shown above.  A VALUES clause is really just short-hand
419 ** for a SELECT statement that omits the FROM clause and everything else
420 ** that follows.  If the pSelect parameter is NULL, that means that the
421 ** DEFAULT VALUES form of the INSERT statement is intended.
422 **
423 ** The code generated follows one of four templates.  For a simple
424 ** insert with data coming from a single-row VALUES clause, the code executes
425 ** once straight down through.  Pseudo-code follows (we call this
426 ** the "1st template"):
427 **
428 **         open write cursor to <table> and its indices
429 **         put VALUES clause expressions into registers
430 **         write the resulting record into <table>
431 **         cleanup
432 **
433 ** The three remaining templates assume the statement is of the form
434 **
435 **   INSERT INTO <table> SELECT ...
436 **
437 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
438 ** in other words if the SELECT pulls all columns from a single table
439 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
440 ** if <table2> and <table1> are distinct tables but have identical
441 ** schemas, including all the same indices, then a special optimization
442 ** is invoked that copies raw records from <table2> over to <table1>.
443 ** See the xferOptimization() function for the implementation of this
444 ** template.  This is the 2nd template.
445 **
446 **         open a write cursor to <table>
447 **         open read cursor on <table2>
448 **         transfer all records in <table2> over to <table>
449 **         close cursors
450 **         foreach index on <table>
451 **           open a write cursor on the <table> index
452 **           open a read cursor on the corresponding <table2> index
453 **           transfer all records from the read to the write cursors
454 **           close cursors
455 **         end foreach
456 **
457 ** The 3rd template is for when the second template does not apply
458 ** and the SELECT clause does not read from <table> at any time.
459 ** The generated code follows this template:
460 **
461 **         X <- A
462 **         goto B
463 **      A: setup for the SELECT
464 **         loop over the rows in the SELECT
465 **           load values into registers R..R+n
466 **           yield X
467 **         end loop
468 **         cleanup after the SELECT
469 **         end-coroutine X
470 **      B: open write cursor to <table> and its indices
471 **      C: yield X, at EOF goto D
472 **         insert the select result into <table> from R..R+n
473 **         goto C
474 **      D: cleanup
475 **
476 ** The 4th template is used if the insert statement takes its
477 ** values from a SELECT but the data is being inserted into a table
478 ** that is also read as part of the SELECT.  In the third form,
479 ** we have to use an intermediate table to store the results of
480 ** the select.  The template is like this:
481 **
482 **         X <- A
483 **         goto B
484 **      A: setup for the SELECT
485 **         loop over the tables in the SELECT
486 **           load value into register R..R+n
487 **           yield X
488 **         end loop
489 **         cleanup after the SELECT
490 **         end co-routine R
491 **      B: open temp table
492 **      L: yield X, at EOF goto M
493 **         insert row from R..R+n into temp table
494 **         goto L
495 **      M: open write cursor to <table> and its indices
496 **         rewind temp table
497 **      C: loop over rows of intermediate table
498 **           transfer values form intermediate table into <table>
499 **         end loop
500 **      D: cleanup
501 */
502 void sqlite3Insert(
503   Parse *pParse,        /* Parser context */
504   SrcList *pTabList,    /* Name of table into which we are inserting */
505   Select *pSelect,      /* A SELECT statement to use as the data source */
506   IdList *pColumn,      /* Column names corresponding to IDLIST. */
507   int onError,          /* How to handle constraint errors */
508   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
509 ){
510   sqlite3 *db;          /* The main database structure */
511   Table *pTab;          /* The table to insert into.  aka TABLE */
512   int i, j;             /* Loop counters */
513   Vdbe *v;              /* Generate code into this virtual machine */
514   Index *pIdx;          /* For looping over indices of the table */
515   int nColumn;          /* Number of columns in the data */
516   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
517   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
518   int iIdxCur = 0;      /* First index cursor */
519   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
520   int endOfLoop;        /* Label for the end of the insertion loop */
521   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
522   int addrInsTop = 0;   /* Jump to label "D" */
523   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
524   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
525   int iDb;              /* Index of database holding TABLE */
526   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
527   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
528   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
529   u8 bIdListInOrder;    /* True if IDLIST is in table order */
530   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
531 
532   /* Register allocations */
533   int regFromSelect = 0;/* Base register for data coming from SELECT */
534   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
535   int regRowCount = 0;  /* Memory cell used for the row counter */
536   int regIns;           /* Block of regs holding rowid+data being inserted */
537   int regRowid;         /* registers holding insert rowid */
538   int regData;          /* register holding first column to insert */
539   int *aRegIdx = 0;     /* One register allocated to each index */
540 
541 #ifndef SQLITE_OMIT_TRIGGER
542   int isView;                 /* True if attempting to insert into a view */
543   Trigger *pTrigger;          /* List of triggers on pTab, if required */
544   int tmask;                  /* Mask of trigger times */
545 #endif
546 
547   db = pParse->db;
548   if( pParse->nErr || db->mallocFailed ){
549     goto insert_cleanup;
550   }
551   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
552 
553   /* If the Select object is really just a simple VALUES() list with a
554   ** single row (the common case) then keep that one row of values
555   ** and discard the other (unused) parts of the pSelect object
556   */
557   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
558     pList = pSelect->pEList;
559     pSelect->pEList = 0;
560     sqlite3SelectDelete(db, pSelect);
561     pSelect = 0;
562   }
563 
564   /* Locate the table into which we will be inserting new information.
565   */
566   assert( pTabList->nSrc==1 );
567   pTab = sqlite3SrcListLookup(pParse, pTabList);
568   if( pTab==0 ){
569     goto insert_cleanup;
570   }
571   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
572   assert( iDb<db->nDb );
573   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
574                        db->aDb[iDb].zDbSName) ){
575     goto insert_cleanup;
576   }
577   withoutRowid = !HasRowid(pTab);
578 
579   /* Figure out if we have any triggers and if the table being
580   ** inserted into is a view
581   */
582 #ifndef SQLITE_OMIT_TRIGGER
583   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
584   isView = pTab->pSelect!=0;
585 #else
586 # define pTrigger 0
587 # define tmask 0
588 # define isView 0
589 #endif
590 #ifdef SQLITE_OMIT_VIEW
591 # undef isView
592 # define isView 0
593 #endif
594   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
595 
596   /* If pTab is really a view, make sure it has been initialized.
597   ** ViewGetColumnNames() is a no-op if pTab is not a view.
598   */
599   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
600     goto insert_cleanup;
601   }
602 
603   /* Cannot insert into a read-only table.
604   */
605   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
606     goto insert_cleanup;
607   }
608 
609   /* Allocate a VDBE
610   */
611   v = sqlite3GetVdbe(pParse);
612   if( v==0 ) goto insert_cleanup;
613   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
614   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
615 
616 #ifndef SQLITE_OMIT_XFER_OPT
617   /* If the statement is of the form
618   **
619   **       INSERT INTO <table1> SELECT * FROM <table2>;
620   **
621   ** Then special optimizations can be applied that make the transfer
622   ** very fast and which reduce fragmentation of indices.
623   **
624   ** This is the 2nd template.
625   */
626   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
627     assert( !pTrigger );
628     assert( pList==0 );
629     goto insert_end;
630   }
631 #endif /* SQLITE_OMIT_XFER_OPT */
632 
633   /* If this is an AUTOINCREMENT table, look up the sequence number in the
634   ** sqlite_sequence table and store it in memory cell regAutoinc.
635   */
636   regAutoinc = autoIncBegin(pParse, iDb, pTab);
637 
638   /* Allocate registers for holding the rowid of the new row,
639   ** the content of the new row, and the assembled row record.
640   */
641   regRowid = regIns = pParse->nMem+1;
642   pParse->nMem += pTab->nCol + 1;
643   if( IsVirtual(pTab) ){
644     regRowid++;
645     pParse->nMem++;
646   }
647   regData = regRowid+1;
648 
649   /* If the INSERT statement included an IDLIST term, then make sure
650   ** all elements of the IDLIST really are columns of the table and
651   ** remember the column indices.
652   **
653   ** If the table has an INTEGER PRIMARY KEY column and that column
654   ** is named in the IDLIST, then record in the ipkColumn variable
655   ** the index into IDLIST of the primary key column.  ipkColumn is
656   ** the index of the primary key as it appears in IDLIST, not as
657   ** is appears in the original table.  (The index of the INTEGER
658   ** PRIMARY KEY in the original table is pTab->iPKey.)
659   */
660   bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
661   if( pColumn ){
662     for(i=0; i<pColumn->nId; i++){
663       pColumn->a[i].idx = -1;
664     }
665     for(i=0; i<pColumn->nId; i++){
666       for(j=0; j<pTab->nCol; j++){
667         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
668           pColumn->a[i].idx = j;
669           if( i!=j ) bIdListInOrder = 0;
670           if( j==pTab->iPKey ){
671             ipkColumn = i;  assert( !withoutRowid );
672           }
673           break;
674         }
675       }
676       if( j>=pTab->nCol ){
677         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
678           ipkColumn = i;
679           bIdListInOrder = 0;
680         }else{
681           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
682               pTabList, 0, pColumn->a[i].zName);
683           pParse->checkSchema = 1;
684           goto insert_cleanup;
685         }
686       }
687     }
688   }
689 
690   /* Figure out how many columns of data are supplied.  If the data
691   ** is coming from a SELECT statement, then generate a co-routine that
692   ** produces a single row of the SELECT on each invocation.  The
693   ** co-routine is the common header to the 3rd and 4th templates.
694   */
695   if( pSelect ){
696     /* Data is coming from a SELECT or from a multi-row VALUES clause.
697     ** Generate a co-routine to run the SELECT. */
698     int regYield;       /* Register holding co-routine entry-point */
699     int addrTop;        /* Top of the co-routine */
700     int rc;             /* Result code */
701 
702     regYield = ++pParse->nMem;
703     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
704     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
705     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
706     dest.iSdst = bIdListInOrder ? regData : 0;
707     dest.nSdst = pTab->nCol;
708     rc = sqlite3Select(pParse, pSelect, &dest);
709     regFromSelect = dest.iSdst;
710     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
711     sqlite3VdbeEndCoroutine(v, regYield);
712     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
713     assert( pSelect->pEList );
714     nColumn = pSelect->pEList->nExpr;
715 
716     /* Set useTempTable to TRUE if the result of the SELECT statement
717     ** should be written into a temporary table (template 4).  Set to
718     ** FALSE if each output row of the SELECT can be written directly into
719     ** the destination table (template 3).
720     **
721     ** A temp table must be used if the table being updated is also one
722     ** of the tables being read by the SELECT statement.  Also use a
723     ** temp table in the case of row triggers.
724     */
725     if( pTrigger || readsTable(pParse, iDb, pTab) ){
726       useTempTable = 1;
727     }
728 
729     if( useTempTable ){
730       /* Invoke the coroutine to extract information from the SELECT
731       ** and add it to a transient table srcTab.  The code generated
732       ** here is from the 4th template:
733       **
734       **      B: open temp table
735       **      L: yield X, goto M at EOF
736       **         insert row from R..R+n into temp table
737       **         goto L
738       **      M: ...
739       */
740       int regRec;          /* Register to hold packed record */
741       int regTempRowid;    /* Register to hold temp table ROWID */
742       int addrL;           /* Label "L" */
743 
744       srcTab = pParse->nTab++;
745       regRec = sqlite3GetTempReg(pParse);
746       regTempRowid = sqlite3GetTempReg(pParse);
747       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
748       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
749       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
750       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
751       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
752       sqlite3VdbeGoto(v, addrL);
753       sqlite3VdbeJumpHere(v, addrL);
754       sqlite3ReleaseTempReg(pParse, regRec);
755       sqlite3ReleaseTempReg(pParse, regTempRowid);
756     }
757   }else{
758     /* This is the case if the data for the INSERT is coming from a
759     ** single-row VALUES clause
760     */
761     NameContext sNC;
762     memset(&sNC, 0, sizeof(sNC));
763     sNC.pParse = pParse;
764     srcTab = -1;
765     assert( useTempTable==0 );
766     if( pList ){
767       nColumn = pList->nExpr;
768       if( sqlite3ResolveExprListNames(&sNC, pList) ){
769         goto insert_cleanup;
770       }
771     }else{
772       nColumn = 0;
773     }
774   }
775 
776   /* If there is no IDLIST term but the table has an integer primary
777   ** key, the set the ipkColumn variable to the integer primary key
778   ** column index in the original table definition.
779   */
780   if( pColumn==0 && nColumn>0 ){
781     ipkColumn = pTab->iPKey;
782   }
783 
784   /* Make sure the number of columns in the source data matches the number
785   ** of columns to be inserted into the table.
786   */
787   for(i=0; i<pTab->nCol; i++){
788     nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
789   }
790   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
791     sqlite3ErrorMsg(pParse,
792        "table %S has %d columns but %d values were supplied",
793        pTabList, 0, pTab->nCol-nHidden, nColumn);
794     goto insert_cleanup;
795   }
796   if( pColumn!=0 && nColumn!=pColumn->nId ){
797     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
798     goto insert_cleanup;
799   }
800 
801   /* Initialize the count of rows to be inserted
802   */
803   if( (db->flags & SQLITE_CountRows)!=0
804    && !pParse->nested
805    && !pParse->pTriggerTab
806   ){
807     regRowCount = ++pParse->nMem;
808     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
809   }
810 
811   /* If this is not a view, open the table and and all indices */
812   if( !isView ){
813     int nIdx;
814     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
815                                       &iDataCur, &iIdxCur);
816     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
817     if( aRegIdx==0 ){
818       goto insert_cleanup;
819     }
820     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
821       assert( pIdx );
822       aRegIdx[i] = ++pParse->nMem;
823       pParse->nMem += pIdx->nColumn;
824     }
825   }
826 #ifndef SQLITE_OMIT_UPSERT
827   if( pUpsert ){
828     pTabList->a[0].iCursor = iDataCur;
829     pUpsert->pUpsertSrc = pTabList;
830     pUpsert->regData = regData;
831     pUpsert->iDataCur = iDataCur;
832     pUpsert->iIdxCur = iIdxCur;
833     if( pUpsert->pUpsertTarget ){
834       sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
835     }
836   }
837 #endif
838 
839 
840   /* This is the top of the main insertion loop */
841   if( useTempTable ){
842     /* This block codes the top of loop only.  The complete loop is the
843     ** following pseudocode (template 4):
844     **
845     **         rewind temp table, if empty goto D
846     **      C: loop over rows of intermediate table
847     **           transfer values form intermediate table into <table>
848     **         end loop
849     **      D: ...
850     */
851     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
852     addrCont = sqlite3VdbeCurrentAddr(v);
853   }else if( pSelect ){
854     /* This block codes the top of loop only.  The complete loop is the
855     ** following pseudocode (template 3):
856     **
857     **      C: yield X, at EOF goto D
858     **         insert the select result into <table> from R..R+n
859     **         goto C
860     **      D: ...
861     */
862     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
863     VdbeCoverage(v);
864   }
865 
866   /* Run the BEFORE and INSTEAD OF triggers, if there are any
867   */
868   endOfLoop = sqlite3VdbeMakeLabel(v);
869   if( tmask & TRIGGER_BEFORE ){
870     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
871 
872     /* build the NEW.* reference row.  Note that if there is an INTEGER
873     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
874     ** translated into a unique ID for the row.  But on a BEFORE trigger,
875     ** we do not know what the unique ID will be (because the insert has
876     ** not happened yet) so we substitute a rowid of -1
877     */
878     if( ipkColumn<0 ){
879       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
880     }else{
881       int addr1;
882       assert( !withoutRowid );
883       if( useTempTable ){
884         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
885       }else{
886         assert( pSelect==0 );  /* Otherwise useTempTable is true */
887         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
888       }
889       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
890       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
891       sqlite3VdbeJumpHere(v, addr1);
892       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
893     }
894 
895     /* Cannot have triggers on a virtual table. If it were possible,
896     ** this block would have to account for hidden column.
897     */
898     assert( !IsVirtual(pTab) );
899 
900     /* Create the new column data
901     */
902     for(i=j=0; i<pTab->nCol; i++){
903       if( pColumn ){
904         for(j=0; j<pColumn->nId; j++){
905           if( pColumn->a[j].idx==i ) break;
906         }
907       }
908       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
909             || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
910         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
911       }else if( useTempTable ){
912         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
913       }else{
914         assert( pSelect==0 ); /* Otherwise useTempTable is true */
915         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
916       }
917       if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
918     }
919 
920     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
921     ** do not attempt any conversions before assembling the record.
922     ** If this is a real table, attempt conversions as required by the
923     ** table column affinities.
924     */
925     if( !isView ){
926       sqlite3TableAffinity(v, pTab, regCols+1);
927     }
928 
929     /* Fire BEFORE or INSTEAD OF triggers */
930     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
931         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
932 
933     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
934   }
935 
936   /* Compute the content of the next row to insert into a range of
937   ** registers beginning at regIns.
938   */
939   if( !isView ){
940     if( IsVirtual(pTab) ){
941       /* The row that the VUpdate opcode will delete: none */
942       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
943     }
944     if( ipkColumn>=0 ){
945       if( useTempTable ){
946         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
947       }else if( pSelect ){
948         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
949       }else{
950         VdbeOp *pOp;
951         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
952         pOp = sqlite3VdbeGetOp(v, -1);
953         assert( pOp!=0 );
954         if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){
955           appendFlag = 1;
956           pOp->opcode = OP_NewRowid;
957           pOp->p1 = iDataCur;
958           pOp->p2 = regRowid;
959           pOp->p3 = regAutoinc;
960         }
961       }
962       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
963       ** to generate a unique primary key value.
964       */
965       if( !appendFlag ){
966         int addr1;
967         if( !IsVirtual(pTab) ){
968           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
969           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
970           sqlite3VdbeJumpHere(v, addr1);
971         }else{
972           addr1 = sqlite3VdbeCurrentAddr(v);
973           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
974         }
975         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
976       }
977     }else if( IsVirtual(pTab) || withoutRowid ){
978       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
979     }else{
980       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
981       appendFlag = 1;
982     }
983     autoIncStep(pParse, regAutoinc, regRowid);
984 
985     /* Compute data for all columns of the new entry, beginning
986     ** with the first column.
987     */
988     nHidden = 0;
989     for(i=0; i<pTab->nCol; i++){
990       int iRegStore = regRowid+1+i;
991       if( i==pTab->iPKey ){
992         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
993         ** Whenever this column is read, the rowid will be substituted
994         ** in its place.  Hence, fill this column with a NULL to avoid
995         ** taking up data space with information that will never be used.
996         ** As there may be shallow copies of this value, make it a soft-NULL */
997         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
998         continue;
999       }
1000       if( pColumn==0 ){
1001         if( IsHiddenColumn(&pTab->aCol[i]) ){
1002           j = -1;
1003           nHidden++;
1004         }else{
1005           j = i - nHidden;
1006         }
1007       }else{
1008         for(j=0; j<pColumn->nId; j++){
1009           if( pColumn->a[j].idx==i ) break;
1010         }
1011       }
1012       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
1013         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1014       }else if( useTempTable ){
1015         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1016       }else if( pSelect ){
1017         if( regFromSelect!=regData ){
1018           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1019         }
1020       }else{
1021         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1022       }
1023     }
1024 
1025     /* Generate code to check constraints and generate index keys and
1026     ** do the insertion.
1027     */
1028 #ifndef SQLITE_OMIT_VIRTUALTABLE
1029     if( IsVirtual(pTab) ){
1030       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1031       sqlite3VtabMakeWritable(pParse, pTab);
1032       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1033       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1034       sqlite3MayAbort(pParse);
1035     }else
1036 #endif
1037     {
1038       int isReplace;    /* Set to true if constraints may cause a replace */
1039       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1040       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1041           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1042       );
1043       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1044 
1045       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1046       ** constraints or (b) there are no triggers and this table is not a
1047       ** parent table in a foreign key constraint. It is safe to set the
1048       ** flag in the second case as if any REPLACE constraint is hit, an
1049       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1050       ** cursor that is disturbed. And these instructions both clear the
1051       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1052       ** functionality.  */
1053       bUseSeek = (isReplace==0 || (pTrigger==0 &&
1054           ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1055       ));
1056       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1057           regIns, aRegIdx, 0, appendFlag, bUseSeek
1058       );
1059     }
1060   }
1061 
1062   /* Update the count of rows that are inserted
1063   */
1064   if( regRowCount ){
1065     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1066   }
1067 
1068   if( pTrigger ){
1069     /* Code AFTER triggers */
1070     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1071         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1072   }
1073 
1074   /* The bottom of the main insertion loop, if the data source
1075   ** is a SELECT statement.
1076   */
1077   sqlite3VdbeResolveLabel(v, endOfLoop);
1078   if( useTempTable ){
1079     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1080     sqlite3VdbeJumpHere(v, addrInsTop);
1081     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1082   }else if( pSelect ){
1083     sqlite3VdbeGoto(v, addrCont);
1084     sqlite3VdbeJumpHere(v, addrInsTop);
1085   }
1086 
1087 insert_end:
1088   /* Update the sqlite_sequence table by storing the content of the
1089   ** maximum rowid counter values recorded while inserting into
1090   ** autoincrement tables.
1091   */
1092   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1093     sqlite3AutoincrementEnd(pParse);
1094   }
1095 
1096   /*
1097   ** Return the number of rows inserted. If this routine is
1098   ** generating code because of a call to sqlite3NestedParse(), do not
1099   ** invoke the callback function.
1100   */
1101   if( regRowCount ){
1102     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1103     sqlite3VdbeSetNumCols(v, 1);
1104     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1105   }
1106 
1107 insert_cleanup:
1108   sqlite3SrcListDelete(db, pTabList);
1109   sqlite3ExprListDelete(db, pList);
1110   sqlite3UpsertDelete(db, pUpsert);
1111   sqlite3SelectDelete(db, pSelect);
1112   sqlite3IdListDelete(db, pColumn);
1113   sqlite3DbFree(db, aRegIdx);
1114 }
1115 
1116 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1117 ** they may interfere with compilation of other functions in this file
1118 ** (or in another file, if this file becomes part of the amalgamation).  */
1119 #ifdef isView
1120  #undef isView
1121 #endif
1122 #ifdef pTrigger
1123  #undef pTrigger
1124 #endif
1125 #ifdef tmask
1126  #undef tmask
1127 #endif
1128 
1129 /*
1130 ** Meanings of bits in of pWalker->eCode for
1131 ** sqlite3ExprReferencesUpdatedColumn()
1132 */
1133 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1134 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1135 
1136 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1137 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1138 ** expression node references any of the
1139 ** columns that are being modifed by an UPDATE statement.
1140 */
1141 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1142   if( pExpr->op==TK_COLUMN ){
1143     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1144     if( pExpr->iColumn>=0 ){
1145       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1146         pWalker->eCode |= CKCNSTRNT_COLUMN;
1147       }
1148     }else{
1149       pWalker->eCode |= CKCNSTRNT_ROWID;
1150     }
1151   }
1152   return WRC_Continue;
1153 }
1154 
1155 /*
1156 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1157 ** only columns that are modified by the UPDATE are those for which
1158 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1159 **
1160 ** Return true if CHECK constraint pExpr uses any of the
1161 ** changing columns (or the rowid if it is changing).  In other words,
1162 ** return true if this CHECK constraint must be validated for
1163 ** the new row in the UPDATE statement.
1164 **
1165 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1166 ** The operation of this routine is the same - return true if an only if
1167 ** the expression uses one or more of columns identified by the second and
1168 ** third arguments.
1169 */
1170 int sqlite3ExprReferencesUpdatedColumn(
1171   Expr *pExpr,    /* The expression to be checked */
1172   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1173   int chngRowid   /* True if UPDATE changes the rowid */
1174 ){
1175   Walker w;
1176   memset(&w, 0, sizeof(w));
1177   w.eCode = 0;
1178   w.xExprCallback = checkConstraintExprNode;
1179   w.u.aiCol = aiChng;
1180   sqlite3WalkExpr(&w, pExpr);
1181   if( !chngRowid ){
1182     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1183     w.eCode &= ~CKCNSTRNT_ROWID;
1184   }
1185   testcase( w.eCode==0 );
1186   testcase( w.eCode==CKCNSTRNT_COLUMN );
1187   testcase( w.eCode==CKCNSTRNT_ROWID );
1188   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1189   return w.eCode!=0;
1190 }
1191 
1192 /*
1193 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1194 ** on table pTab.
1195 **
1196 ** The regNewData parameter is the first register in a range that contains
1197 ** the data to be inserted or the data after the update.  There will be
1198 ** pTab->nCol+1 registers in this range.  The first register (the one
1199 ** that regNewData points to) will contain the new rowid, or NULL in the
1200 ** case of a WITHOUT ROWID table.  The second register in the range will
1201 ** contain the content of the first table column.  The third register will
1202 ** contain the content of the second table column.  And so forth.
1203 **
1204 ** The regOldData parameter is similar to regNewData except that it contains
1205 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1206 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1207 ** checking regOldData for zero.
1208 **
1209 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1210 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1211 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1212 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1213 **
1214 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1215 ** was explicitly specified as part of the INSERT statement.  If pkChng
1216 ** is zero, it means that the either rowid is computed automatically or
1217 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1218 ** pkChng will only be true if the INSERT statement provides an integer
1219 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1220 **
1221 ** The code generated by this routine will store new index entries into
1222 ** registers identified by aRegIdx[].  No index entry is created for
1223 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1224 ** the same as the order of indices on the linked list of indices
1225 ** at pTab->pIndex.
1226 **
1227 ** The caller must have already opened writeable cursors on the main
1228 ** table and all applicable indices (that is to say, all indices for which
1229 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1230 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1231 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1232 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1233 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1234 **
1235 ** This routine also generates code to check constraints.  NOT NULL,
1236 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1237 ** then the appropriate action is performed.  There are five possible
1238 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1239 **
1240 **  Constraint type  Action       What Happens
1241 **  ---------------  ----------   ----------------------------------------
1242 **  any              ROLLBACK     The current transaction is rolled back and
1243 **                                sqlite3_step() returns immediately with a
1244 **                                return code of SQLITE_CONSTRAINT.
1245 **
1246 **  any              ABORT        Back out changes from the current command
1247 **                                only (do not do a complete rollback) then
1248 **                                cause sqlite3_step() to return immediately
1249 **                                with SQLITE_CONSTRAINT.
1250 **
1251 **  any              FAIL         Sqlite3_step() returns immediately with a
1252 **                                return code of SQLITE_CONSTRAINT.  The
1253 **                                transaction is not rolled back and any
1254 **                                changes to prior rows are retained.
1255 **
1256 **  any              IGNORE       The attempt in insert or update the current
1257 **                                row is skipped, without throwing an error.
1258 **                                Processing continues with the next row.
1259 **                                (There is an immediate jump to ignoreDest.)
1260 **
1261 **  NOT NULL         REPLACE      The NULL value is replace by the default
1262 **                                value for that column.  If the default value
1263 **                                is NULL, the action is the same as ABORT.
1264 **
1265 **  UNIQUE           REPLACE      The other row that conflicts with the row
1266 **                                being inserted is removed.
1267 **
1268 **  CHECK            REPLACE      Illegal.  The results in an exception.
1269 **
1270 ** Which action to take is determined by the overrideError parameter.
1271 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1272 ** is used.  Or if pParse->onError==OE_Default then the onError value
1273 ** for the constraint is used.
1274 */
1275 void sqlite3GenerateConstraintChecks(
1276   Parse *pParse,       /* The parser context */
1277   Table *pTab,         /* The table being inserted or updated */
1278   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1279   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1280   int iIdxCur,         /* First index cursor */
1281   int regNewData,      /* First register in a range holding values to insert */
1282   int regOldData,      /* Previous content.  0 for INSERTs */
1283   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1284   u8 overrideError,    /* Override onError to this if not OE_Default */
1285   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1286   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1287   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1288   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1289 ){
1290   Vdbe *v;             /* VDBE under constrution */
1291   Index *pIdx;         /* Pointer to one of the indices */
1292   Index *pPk = 0;      /* The PRIMARY KEY index */
1293   sqlite3 *db;         /* Database connection */
1294   int i;               /* loop counter */
1295   int ix;              /* Index loop counter */
1296   int nCol;            /* Number of columns */
1297   int onError;         /* Conflict resolution strategy */
1298   int addr1;           /* Address of jump instruction */
1299   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1300   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1301   Index *pUpIdx = 0;   /* Index to which to apply the upsert */
1302   u8 isUpdate;         /* True if this is an UPDATE operation */
1303   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1304   int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */
1305   int upsertJump = 0;    /* Address of Goto that jumps into upsert subroutine */
1306   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1307   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1308 
1309   isUpdate = regOldData!=0;
1310   db = pParse->db;
1311   v = sqlite3GetVdbe(pParse);
1312   assert( v!=0 );
1313   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1314   nCol = pTab->nCol;
1315 
1316   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1317   ** normal rowid tables.  nPkField is the number of key fields in the
1318   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1319   ** number of fields in the true primary key of the table. */
1320   if( HasRowid(pTab) ){
1321     pPk = 0;
1322     nPkField = 1;
1323   }else{
1324     pPk = sqlite3PrimaryKeyIndex(pTab);
1325     nPkField = pPk->nKeyCol;
1326   }
1327 
1328   /* Record that this module has started */
1329   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1330                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1331 
1332   /* Test all NOT NULL constraints.
1333   */
1334   for(i=0; i<nCol; i++){
1335     if( i==pTab->iPKey ){
1336       continue;        /* ROWID is never NULL */
1337     }
1338     if( aiChng && aiChng[i]<0 ){
1339       /* Don't bother checking for NOT NULL on columns that do not change */
1340       continue;
1341     }
1342     onError = pTab->aCol[i].notNull;
1343     if( onError==OE_None ) continue;  /* This column is allowed to be NULL */
1344     if( overrideError!=OE_Default ){
1345       onError = overrideError;
1346     }else if( onError==OE_Default ){
1347       onError = OE_Abort;
1348     }
1349     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1350       onError = OE_Abort;
1351     }
1352     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1353         || onError==OE_Ignore || onError==OE_Replace );
1354     switch( onError ){
1355       case OE_Abort:
1356         sqlite3MayAbort(pParse);
1357         /* Fall through */
1358       case OE_Rollback:
1359       case OE_Fail: {
1360         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1361                                     pTab->aCol[i].zName);
1362         sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1363                           regNewData+1+i);
1364         sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1365         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1366         VdbeCoverage(v);
1367         break;
1368       }
1369       case OE_Ignore: {
1370         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1371         VdbeCoverage(v);
1372         break;
1373       }
1374       default: {
1375         assert( onError==OE_Replace );
1376         addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1377            VdbeCoverage(v);
1378         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1379         sqlite3VdbeJumpHere(v, addr1);
1380         break;
1381       }
1382     }
1383   }
1384 
1385   /* Test all CHECK constraints
1386   */
1387 #ifndef SQLITE_OMIT_CHECK
1388   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1389     ExprList *pCheck = pTab->pCheck;
1390     pParse->iSelfTab = -(regNewData+1);
1391     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1392     for(i=0; i<pCheck->nExpr; i++){
1393       int allOk;
1394       Expr *pExpr = pCheck->a[i].pExpr;
1395       if( aiChng
1396        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1397       ){
1398         /* The check constraints do not reference any of the columns being
1399         ** updated so there is no point it verifying the check constraint */
1400         continue;
1401       }
1402       allOk = sqlite3VdbeMakeLabel(v);
1403       sqlite3VdbeVerifyAbortable(v, onError);
1404       sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1405       if( onError==OE_Ignore ){
1406         sqlite3VdbeGoto(v, ignoreDest);
1407       }else{
1408         char *zName = pCheck->a[i].zName;
1409         if( zName==0 ) zName = pTab->zName;
1410         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1411         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1412                               onError, zName, P4_TRANSIENT,
1413                               P5_ConstraintCheck);
1414       }
1415       sqlite3VdbeResolveLabel(v, allOk);
1416     }
1417     pParse->iSelfTab = 0;
1418   }
1419 #endif /* !defined(SQLITE_OMIT_CHECK) */
1420 
1421   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1422   ** order:
1423   **
1424   **   (1)  OE_Update
1425   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1426   **   (3)  OE_Replace
1427   **
1428   ** OE_Fail and OE_Ignore must happen before any changes are made.
1429   ** OE_Update guarantees that only a single row will change, so it
1430   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1431   ** could happen in any order, but they are grouped up front for
1432   ** convenience.
1433   **
1434   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1435   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1436   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1437   ** constraint before any others, so it had to be moved.
1438   **
1439   ** Constraint checking code is generated in this order:
1440   **   (A)  The rowid constraint
1441   **   (B)  Unique index constraints that do not have OE_Replace as their
1442   **        default conflict resolution strategy
1443   **   (C)  Unique index that do use OE_Replace by default.
1444   **
1445   ** The ordering of (2) and (3) is accomplished by making sure the linked
1446   ** list of indexes attached to a table puts all OE_Replace indexes last
1447   ** in the list.  See sqlite3CreateIndex() for where that happens.
1448   */
1449 
1450   if( pUpsert ){
1451     if( pUpsert->pUpsertTarget==0 ){
1452       /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1453       ** Make all unique constraint resolution be OE_Ignore */
1454       assert( pUpsert->pUpsertSet==0 );
1455       overrideError = OE_Ignore;
1456       pUpsert = 0;
1457     }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1458       /* If the constraint-target uniqueness check must be run first.
1459       ** Jump to that uniqueness check now */
1460       upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1461       VdbeComment((v, "UPSERT constraint goes first"));
1462     }
1463   }
1464 
1465   /* If rowid is changing, make sure the new rowid does not previously
1466   ** exist in the table.
1467   */
1468   if( pkChng && pPk==0 ){
1469     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1470 
1471     /* Figure out what action to take in case of a rowid collision */
1472     onError = pTab->keyConf;
1473     if( overrideError!=OE_Default ){
1474       onError = overrideError;
1475     }else if( onError==OE_Default ){
1476       onError = OE_Abort;
1477     }
1478 
1479     /* figure out whether or not upsert applies in this case */
1480     if( pUpsert && pUpsert->pUpsertIdx==0 ){
1481       if( pUpsert->pUpsertSet==0 ){
1482         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1483       }else{
1484         onError = OE_Update;  /* DO UPDATE */
1485       }
1486     }
1487 
1488     /* If the response to a rowid conflict is REPLACE but the response
1489     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1490     ** to defer the running of the rowid conflict checking until after
1491     ** the UNIQUE constraints have run.
1492     */
1493     if( onError==OE_Replace      /* IPK rule is REPLACE */
1494      && onError!=overrideError   /* Rules for other contraints are different */
1495      && pTab->pIndex             /* There exist other constraints */
1496     ){
1497       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1498       VdbeComment((v, "defer IPK REPLACE until last"));
1499     }
1500 
1501     if( isUpdate ){
1502       /* pkChng!=0 does not mean that the rowid has changed, only that
1503       ** it might have changed.  Skip the conflict logic below if the rowid
1504       ** is unchanged. */
1505       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1506       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1507       VdbeCoverage(v);
1508     }
1509 
1510     /* Check to see if the new rowid already exists in the table.  Skip
1511     ** the following conflict logic if it does not. */
1512     VdbeNoopComment((v, "uniqueness check for ROWID"));
1513     sqlite3VdbeVerifyAbortable(v, onError);
1514     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1515     VdbeCoverage(v);
1516 
1517     switch( onError ){
1518       default: {
1519         onError = OE_Abort;
1520         /* Fall thru into the next case */
1521       }
1522       case OE_Rollback:
1523       case OE_Abort:
1524       case OE_Fail: {
1525         testcase( onError==OE_Rollback );
1526         testcase( onError==OE_Abort );
1527         testcase( onError==OE_Fail );
1528         sqlite3RowidConstraint(pParse, onError, pTab);
1529         break;
1530       }
1531       case OE_Replace: {
1532         /* If there are DELETE triggers on this table and the
1533         ** recursive-triggers flag is set, call GenerateRowDelete() to
1534         ** remove the conflicting row from the table. This will fire
1535         ** the triggers and remove both the table and index b-tree entries.
1536         **
1537         ** Otherwise, if there are no triggers or the recursive-triggers
1538         ** flag is not set, but the table has one or more indexes, call
1539         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1540         ** only. The table b-tree entry will be replaced by the new entry
1541         ** when it is inserted.
1542         **
1543         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1544         ** also invoke MultiWrite() to indicate that this VDBE may require
1545         ** statement rollback (if the statement is aborted after the delete
1546         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1547         ** but being more selective here allows statements like:
1548         **
1549         **   REPLACE INTO t(rowid) VALUES($newrowid)
1550         **
1551         ** to run without a statement journal if there are no indexes on the
1552         ** table.
1553         */
1554         Trigger *pTrigger = 0;
1555         if( db->flags&SQLITE_RecTriggers ){
1556           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1557         }
1558         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1559           sqlite3MultiWrite(pParse);
1560           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1561                                    regNewData, 1, 0, OE_Replace, 1, -1);
1562         }else{
1563 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1564           assert( HasRowid(pTab) );
1565           /* This OP_Delete opcode fires the pre-update-hook only. It does
1566           ** not modify the b-tree. It is more efficient to let the coming
1567           ** OP_Insert replace the existing entry than it is to delete the
1568           ** existing entry and then insert a new one. */
1569           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1570           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1571 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1572           if( pTab->pIndex ){
1573             sqlite3MultiWrite(pParse);
1574             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1575           }
1576         }
1577         seenReplace = 1;
1578         break;
1579       }
1580 #ifndef SQLITE_OMIT_UPSERT
1581       case OE_Update: {
1582         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1583         /* Fall through */
1584       }
1585 #endif
1586       case OE_Ignore: {
1587         testcase( onError==OE_Ignore );
1588         sqlite3VdbeGoto(v, ignoreDest);
1589         break;
1590       }
1591     }
1592     sqlite3VdbeResolveLabel(v, addrRowidOk);
1593     if( ipkTop ){
1594       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1595       sqlite3VdbeJumpHere(v, ipkTop-1);
1596     }
1597   }
1598 
1599   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1600   ** index and making sure that duplicate entries do not already exist.
1601   ** Compute the revised record entries for indices as we go.
1602   **
1603   ** This loop also handles the case of the PRIMARY KEY index for a
1604   ** WITHOUT ROWID table.
1605   */
1606   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1607     int regIdx;          /* Range of registers hold conent for pIdx */
1608     int regR;            /* Range of registers holding conflicting PK */
1609     int iThisCur;        /* Cursor for this UNIQUE index */
1610     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1611 
1612     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1613     if( pUpIdx==pIdx ){
1614       addrUniqueOk = upsertJump+1;
1615       upsertBypass = sqlite3VdbeGoto(v, 0);
1616       VdbeComment((v, "Skip upsert subroutine"));
1617       sqlite3VdbeJumpHere(v, upsertJump);
1618     }else{
1619       addrUniqueOk = sqlite3VdbeMakeLabel(v);
1620     }
1621     if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1622       sqlite3TableAffinity(v, pTab, regNewData+1);
1623       bAffinityDone = 1;
1624     }
1625     VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
1626     iThisCur = iIdxCur+ix;
1627 
1628 
1629     /* Skip partial indices for which the WHERE clause is not true */
1630     if( pIdx->pPartIdxWhere ){
1631       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1632       pParse->iSelfTab = -(regNewData+1);
1633       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1634                             SQLITE_JUMPIFNULL);
1635       pParse->iSelfTab = 0;
1636     }
1637 
1638     /* Create a record for this index entry as it should appear after
1639     ** the insert or update.  Store that record in the aRegIdx[ix] register
1640     */
1641     regIdx = aRegIdx[ix]+1;
1642     for(i=0; i<pIdx->nColumn; i++){
1643       int iField = pIdx->aiColumn[i];
1644       int x;
1645       if( iField==XN_EXPR ){
1646         pParse->iSelfTab = -(regNewData+1);
1647         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1648         pParse->iSelfTab = 0;
1649         VdbeComment((v, "%s column %d", pIdx->zName, i));
1650       }else{
1651         if( iField==XN_ROWID || iField==pTab->iPKey ){
1652           x = regNewData;
1653         }else{
1654           x = iField + regNewData + 1;
1655         }
1656         sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1657         VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1658       }
1659     }
1660     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1661     VdbeComment((v, "for %s", pIdx->zName));
1662 #ifdef SQLITE_ENABLE_NULL_TRIM
1663     if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable);
1664 #endif
1665 
1666     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1667     ** of a WITHOUT ROWID table and there has been no change the
1668     ** primary key, then no collision is possible.  The collision detection
1669     ** logic below can all be skipped. */
1670     if( isUpdate && pPk==pIdx && pkChng==0 ){
1671       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1672       continue;
1673     }
1674 
1675     /* Find out what action to take in case there is a uniqueness conflict */
1676     onError = pIdx->onError;
1677     if( onError==OE_None ){
1678       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1679       continue;  /* pIdx is not a UNIQUE index */
1680     }
1681     if( overrideError!=OE_Default ){
1682       onError = overrideError;
1683     }else if( onError==OE_Default ){
1684       onError = OE_Abort;
1685     }
1686 
1687     /* Figure out if the upsert clause applies to this index */
1688     if( pUpIdx==pIdx ){
1689       if( pUpsert->pUpsertSet==0 ){
1690         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1691       }else{
1692         onError = OE_Update;  /* DO UPDATE */
1693       }
1694     }
1695 
1696     /* Collision detection may be omitted if all of the following are true:
1697     **   (1) The conflict resolution algorithm is REPLACE
1698     **   (2) The table is a WITHOUT ROWID table
1699     **   (3) There are no secondary indexes on the table
1700     **   (4) No delete triggers need to be fired if there is a conflict
1701     **   (5) No FK constraint counters need to be updated if a conflict occurs.
1702     */
1703     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
1704      && pPk==pIdx                                   /* Condition 2 */
1705      && onError==OE_Replace                         /* Condition 1 */
1706      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
1707           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1708      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
1709          (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1710     ){
1711       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1712       continue;
1713     }
1714 
1715     /* Check to see if the new index entry will be unique */
1716     sqlite3VdbeVerifyAbortable(v, onError);
1717     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1718                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1719 
1720     /* Generate code to handle collisions */
1721     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1722     if( isUpdate || onError==OE_Replace ){
1723       if( HasRowid(pTab) ){
1724         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1725         /* Conflict only if the rowid of the existing index entry
1726         ** is different from old-rowid */
1727         if( isUpdate ){
1728           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1729           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1730           VdbeCoverage(v);
1731         }
1732       }else{
1733         int x;
1734         /* Extract the PRIMARY KEY from the end of the index entry and
1735         ** store it in registers regR..regR+nPk-1 */
1736         if( pIdx!=pPk ){
1737           for(i=0; i<pPk->nKeyCol; i++){
1738             assert( pPk->aiColumn[i]>=0 );
1739             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1740             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1741             VdbeComment((v, "%s.%s", pTab->zName,
1742                          pTab->aCol[pPk->aiColumn[i]].zName));
1743           }
1744         }
1745         if( isUpdate ){
1746           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1747           ** table, only conflict if the new PRIMARY KEY values are actually
1748           ** different from the old.
1749           **
1750           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1751           ** of the matched index row are different from the original PRIMARY
1752           ** KEY values of this row before the update.  */
1753           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1754           int op = OP_Ne;
1755           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1756 
1757           for(i=0; i<pPk->nKeyCol; i++){
1758             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1759             x = pPk->aiColumn[i];
1760             assert( x>=0 );
1761             if( i==(pPk->nKeyCol-1) ){
1762               addrJump = addrUniqueOk;
1763               op = OP_Eq;
1764             }
1765             sqlite3VdbeAddOp4(v, op,
1766                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1767             );
1768             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1769             VdbeCoverageIf(v, op==OP_Eq);
1770             VdbeCoverageIf(v, op==OP_Ne);
1771           }
1772         }
1773       }
1774     }
1775 
1776     /* Generate code that executes if the new index entry is not unique */
1777     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1778         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
1779     switch( onError ){
1780       case OE_Rollback:
1781       case OE_Abort:
1782       case OE_Fail: {
1783         testcase( onError==OE_Rollback );
1784         testcase( onError==OE_Abort );
1785         testcase( onError==OE_Fail );
1786         sqlite3UniqueConstraint(pParse, onError, pIdx);
1787         break;
1788       }
1789 #ifndef SQLITE_OMIT_UPSERT
1790       case OE_Update: {
1791         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
1792         /* Fall through */
1793       }
1794 #endif
1795       case OE_Ignore: {
1796         testcase( onError==OE_Ignore );
1797         sqlite3VdbeGoto(v, ignoreDest);
1798         break;
1799       }
1800       default: {
1801         Trigger *pTrigger = 0;
1802         assert( onError==OE_Replace );
1803         if( db->flags&SQLITE_RecTriggers ){
1804           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1805         }
1806         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1807           sqlite3MultiWrite(pParse);
1808         }
1809         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1810             regR, nPkField, 0, OE_Replace,
1811             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1812         seenReplace = 1;
1813         break;
1814       }
1815     }
1816     if( pUpIdx==pIdx ){
1817       sqlite3VdbeGoto(v, upsertJump+1);
1818       sqlite3VdbeJumpHere(v, upsertBypass);
1819     }else{
1820       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1821     }
1822     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1823   }
1824 
1825   /* If the IPK constraint is a REPLACE, run it last */
1826   if( ipkTop ){
1827     sqlite3VdbeGoto(v, ipkTop+1);
1828     VdbeComment((v, "Do IPK REPLACE"));
1829     sqlite3VdbeJumpHere(v, ipkBottom);
1830   }
1831 
1832   *pbMayReplace = seenReplace;
1833   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1834 }
1835 
1836 #ifdef SQLITE_ENABLE_NULL_TRIM
1837 /*
1838 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1839 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1840 **
1841 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1842 */
1843 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1844   u16 i;
1845 
1846   /* Records with omitted columns are only allowed for schema format
1847   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1848   if( pTab->pSchema->file_format<2 ) return;
1849 
1850   for(i=pTab->nCol-1; i>0; i--){
1851     if( pTab->aCol[i].pDflt!=0 ) break;
1852     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1853   }
1854   sqlite3VdbeChangeP5(v, i+1);
1855 }
1856 #endif
1857 
1858 /*
1859 ** This routine generates code to finish the INSERT or UPDATE operation
1860 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1861 ** A consecutive range of registers starting at regNewData contains the
1862 ** rowid and the content to be inserted.
1863 **
1864 ** The arguments to this routine should be the same as the first six
1865 ** arguments to sqlite3GenerateConstraintChecks.
1866 */
1867 void sqlite3CompleteInsertion(
1868   Parse *pParse,      /* The parser context */
1869   Table *pTab,        /* the table into which we are inserting */
1870   int iDataCur,       /* Cursor of the canonical data source */
1871   int iIdxCur,        /* First index cursor */
1872   int regNewData,     /* Range of content */
1873   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1874   int update_flags,   /* True for UPDATE, False for INSERT */
1875   int appendBias,     /* True if this is likely to be an append */
1876   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1877 ){
1878   Vdbe *v;            /* Prepared statements under construction */
1879   Index *pIdx;        /* An index being inserted or updated */
1880   u8 pik_flags;       /* flag values passed to the btree insert */
1881   int regData;        /* Content registers (after the rowid) */
1882   int regRec;         /* Register holding assembled record for the table */
1883   int i;              /* Loop counter */
1884   u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1885 
1886   assert( update_flags==0
1887        || update_flags==OPFLAG_ISUPDATE
1888        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1889   );
1890 
1891   v = sqlite3GetVdbe(pParse);
1892   assert( v!=0 );
1893   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1894   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1895     if( aRegIdx[i]==0 ) continue;
1896     bAffinityDone = 1;
1897     if( pIdx->pPartIdxWhere ){
1898       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1899       VdbeCoverage(v);
1900     }
1901     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1902     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1903       assert( pParse->nested==0 );
1904       pik_flags |= OPFLAG_NCHANGE;
1905       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1906 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1907       if( update_flags==0 ){
1908         sqlite3VdbeAddOp4(v, OP_InsertInt,
1909             iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
1910         );
1911         sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1912       }
1913 #endif
1914     }
1915     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1916                          aRegIdx[i]+1,
1917                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1918     sqlite3VdbeChangeP5(v, pik_flags);
1919   }
1920   if( !HasRowid(pTab) ) return;
1921   regData = regNewData + 1;
1922   regRec = sqlite3GetTempReg(pParse);
1923   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1924   sqlite3SetMakeRecordP5(v, pTab);
1925   if( !bAffinityDone ){
1926     sqlite3TableAffinity(v, pTab, 0);
1927   }
1928   if( pParse->nested ){
1929     pik_flags = 0;
1930   }else{
1931     pik_flags = OPFLAG_NCHANGE;
1932     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1933   }
1934   if( appendBias ){
1935     pik_flags |= OPFLAG_APPEND;
1936   }
1937   if( useSeekResult ){
1938     pik_flags |= OPFLAG_USESEEKRESULT;
1939   }
1940   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1941   if( !pParse->nested ){
1942     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1943   }
1944   sqlite3VdbeChangeP5(v, pik_flags);
1945 }
1946 
1947 /*
1948 ** Allocate cursors for the pTab table and all its indices and generate
1949 ** code to open and initialized those cursors.
1950 **
1951 ** The cursor for the object that contains the complete data (normally
1952 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1953 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1954 ** returned in *piIdxCur.  The number of indices is returned.
1955 **
1956 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1957 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1958 ** If iBase is negative, then allocate the next available cursor.
1959 **
1960 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1961 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1962 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1963 ** pTab->pIndex list.
1964 **
1965 ** If pTab is a virtual table, then this routine is a no-op and the
1966 ** *piDataCur and *piIdxCur values are left uninitialized.
1967 */
1968 int sqlite3OpenTableAndIndices(
1969   Parse *pParse,   /* Parsing context */
1970   Table *pTab,     /* Table to be opened */
1971   int op,          /* OP_OpenRead or OP_OpenWrite */
1972   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
1973   int iBase,       /* Use this for the table cursor, if there is one */
1974   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1975   int *piDataCur,  /* Write the database source cursor number here */
1976   int *piIdxCur    /* Write the first index cursor number here */
1977 ){
1978   int i;
1979   int iDb;
1980   int iDataCur;
1981   Index *pIdx;
1982   Vdbe *v;
1983 
1984   assert( op==OP_OpenRead || op==OP_OpenWrite );
1985   assert( op==OP_OpenWrite || p5==0 );
1986   if( IsVirtual(pTab) ){
1987     /* This routine is a no-op for virtual tables. Leave the output
1988     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1989     ** can detect if they are used by mistake in the caller. */
1990     return 0;
1991   }
1992   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1993   v = sqlite3GetVdbe(pParse);
1994   assert( v!=0 );
1995   if( iBase<0 ) iBase = pParse->nTab;
1996   iDataCur = iBase++;
1997   if( piDataCur ) *piDataCur = iDataCur;
1998   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1999     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2000   }else{
2001     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2002   }
2003   if( piIdxCur ) *piIdxCur = iBase;
2004   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2005     int iIdxCur = iBase++;
2006     assert( pIdx->pSchema==pTab->pSchema );
2007     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2008       if( piDataCur ) *piDataCur = iIdxCur;
2009       p5 = 0;
2010     }
2011     if( aToOpen==0 || aToOpen[i+1] ){
2012       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2013       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2014       sqlite3VdbeChangeP5(v, p5);
2015       VdbeComment((v, "%s", pIdx->zName));
2016     }
2017   }
2018   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2019   return i;
2020 }
2021 
2022 
2023 #ifdef SQLITE_TEST
2024 /*
2025 ** The following global variable is incremented whenever the
2026 ** transfer optimization is used.  This is used for testing
2027 ** purposes only - to make sure the transfer optimization really
2028 ** is happening when it is supposed to.
2029 */
2030 int sqlite3_xferopt_count;
2031 #endif /* SQLITE_TEST */
2032 
2033 
2034 #ifndef SQLITE_OMIT_XFER_OPT
2035 /*
2036 ** Check to see if index pSrc is compatible as a source of data
2037 ** for index pDest in an insert transfer optimization.  The rules
2038 ** for a compatible index:
2039 **
2040 **    *   The index is over the same set of columns
2041 **    *   The same DESC and ASC markings occurs on all columns
2042 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2043 **    *   The same collating sequence on each column
2044 **    *   The index has the exact same WHERE clause
2045 */
2046 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2047   int i;
2048   assert( pDest && pSrc );
2049   assert( pDest->pTable!=pSrc->pTable );
2050   if( pDest->nKeyCol!=pSrc->nKeyCol ){
2051     return 0;   /* Different number of columns */
2052   }
2053   if( pDest->onError!=pSrc->onError ){
2054     return 0;   /* Different conflict resolution strategies */
2055   }
2056   for(i=0; i<pSrc->nKeyCol; i++){
2057     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2058       return 0;   /* Different columns indexed */
2059     }
2060     if( pSrc->aiColumn[i]==XN_EXPR ){
2061       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2062       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2063                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2064         return 0;   /* Different expressions in the index */
2065       }
2066     }
2067     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2068       return 0;   /* Different sort orders */
2069     }
2070     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2071       return 0;   /* Different collating sequences */
2072     }
2073   }
2074   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2075     return 0;     /* Different WHERE clauses */
2076   }
2077 
2078   /* If no test above fails then the indices must be compatible */
2079   return 1;
2080 }
2081 
2082 /*
2083 ** Attempt the transfer optimization on INSERTs of the form
2084 **
2085 **     INSERT INTO tab1 SELECT * FROM tab2;
2086 **
2087 ** The xfer optimization transfers raw records from tab2 over to tab1.
2088 ** Columns are not decoded and reassembled, which greatly improves
2089 ** performance.  Raw index records are transferred in the same way.
2090 **
2091 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2092 ** There are lots of rules for determining compatibility - see comments
2093 ** embedded in the code for details.
2094 **
2095 ** This routine returns TRUE if the optimization is guaranteed to be used.
2096 ** Sometimes the xfer optimization will only work if the destination table
2097 ** is empty - a factor that can only be determined at run-time.  In that
2098 ** case, this routine generates code for the xfer optimization but also
2099 ** does a test to see if the destination table is empty and jumps over the
2100 ** xfer optimization code if the test fails.  In that case, this routine
2101 ** returns FALSE so that the caller will know to go ahead and generate
2102 ** an unoptimized transfer.  This routine also returns FALSE if there
2103 ** is no chance that the xfer optimization can be applied.
2104 **
2105 ** This optimization is particularly useful at making VACUUM run faster.
2106 */
2107 static int xferOptimization(
2108   Parse *pParse,        /* Parser context */
2109   Table *pDest,         /* The table we are inserting into */
2110   Select *pSelect,      /* A SELECT statement to use as the data source */
2111   int onError,          /* How to handle constraint errors */
2112   int iDbDest           /* The database of pDest */
2113 ){
2114   sqlite3 *db = pParse->db;
2115   ExprList *pEList;                /* The result set of the SELECT */
2116   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2117   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2118   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
2119   int i;                           /* Loop counter */
2120   int iDbSrc;                      /* The database of pSrc */
2121   int iSrc, iDest;                 /* Cursors from source and destination */
2122   int addr1, addr2;                /* Loop addresses */
2123   int emptyDestTest = 0;           /* Address of test for empty pDest */
2124   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2125   Vdbe *v;                         /* The VDBE we are building */
2126   int regAutoinc;                  /* Memory register used by AUTOINC */
2127   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2128   int regData, regRowid;           /* Registers holding data and rowid */
2129 
2130   if( pSelect==0 ){
2131     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2132   }
2133   if( pParse->pWith || pSelect->pWith ){
2134     /* Do not attempt to process this query if there are an WITH clauses
2135     ** attached to it. Proceeding may generate a false "no such table: xxx"
2136     ** error if pSelect reads from a CTE named "xxx".  */
2137     return 0;
2138   }
2139   if( sqlite3TriggerList(pParse, pDest) ){
2140     return 0;   /* tab1 must not have triggers */
2141   }
2142 #ifndef SQLITE_OMIT_VIRTUALTABLE
2143   if( IsVirtual(pDest) ){
2144     return 0;   /* tab1 must not be a virtual table */
2145   }
2146 #endif
2147   if( onError==OE_Default ){
2148     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2149     if( onError==OE_Default ) onError = OE_Abort;
2150   }
2151   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2152   if( pSelect->pSrc->nSrc!=1 ){
2153     return 0;   /* FROM clause must have exactly one term */
2154   }
2155   if( pSelect->pSrc->a[0].pSelect ){
2156     return 0;   /* FROM clause cannot contain a subquery */
2157   }
2158   if( pSelect->pWhere ){
2159     return 0;   /* SELECT may not have a WHERE clause */
2160   }
2161   if( pSelect->pOrderBy ){
2162     return 0;   /* SELECT may not have an ORDER BY clause */
2163   }
2164   /* Do not need to test for a HAVING clause.  If HAVING is present but
2165   ** there is no ORDER BY, we will get an error. */
2166   if( pSelect->pGroupBy ){
2167     return 0;   /* SELECT may not have a GROUP BY clause */
2168   }
2169   if( pSelect->pLimit ){
2170     return 0;   /* SELECT may not have a LIMIT clause */
2171   }
2172   if( pSelect->pPrior ){
2173     return 0;   /* SELECT may not be a compound query */
2174   }
2175   if( pSelect->selFlags & SF_Distinct ){
2176     return 0;   /* SELECT may not be DISTINCT */
2177   }
2178   pEList = pSelect->pEList;
2179   assert( pEList!=0 );
2180   if( pEList->nExpr!=1 ){
2181     return 0;   /* The result set must have exactly one column */
2182   }
2183   assert( pEList->a[0].pExpr );
2184   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2185     return 0;   /* The result set must be the special operator "*" */
2186   }
2187 
2188   /* At this point we have established that the statement is of the
2189   ** correct syntactic form to participate in this optimization.  Now
2190   ** we have to check the semantics.
2191   */
2192   pItem = pSelect->pSrc->a;
2193   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2194   if( pSrc==0 ){
2195     return 0;   /* FROM clause does not contain a real table */
2196   }
2197   if( pSrc==pDest ){
2198     return 0;   /* tab1 and tab2 may not be the same table */
2199   }
2200   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2201     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2202   }
2203 #ifndef SQLITE_OMIT_VIRTUALTABLE
2204   if( IsVirtual(pSrc) ){
2205     return 0;   /* tab2 must not be a virtual table */
2206   }
2207 #endif
2208   if( pSrc->pSelect ){
2209     return 0;   /* tab2 may not be a view */
2210   }
2211   if( pDest->nCol!=pSrc->nCol ){
2212     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2213   }
2214   if( pDest->iPKey!=pSrc->iPKey ){
2215     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2216   }
2217   for(i=0; i<pDest->nCol; i++){
2218     Column *pDestCol = &pDest->aCol[i];
2219     Column *pSrcCol = &pSrc->aCol[i];
2220 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2221     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2222      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2223     ){
2224       return 0;    /* Neither table may have __hidden__ columns */
2225     }
2226 #endif
2227     if( pDestCol->affinity!=pSrcCol->affinity ){
2228       return 0;    /* Affinity must be the same on all columns */
2229     }
2230     if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2231       return 0;    /* Collating sequence must be the same on all columns */
2232     }
2233     if( pDestCol->notNull && !pSrcCol->notNull ){
2234       return 0;    /* tab2 must be NOT NULL if tab1 is */
2235     }
2236     /* Default values for second and subsequent columns need to match. */
2237     if( i>0 ){
2238       assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2239       assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2240       if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2241        || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2242                                        pSrcCol->pDflt->u.zToken)!=0)
2243       ){
2244         return 0;    /* Default values must be the same for all columns */
2245       }
2246     }
2247   }
2248   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2249     if( IsUniqueIndex(pDestIdx) ){
2250       destHasUniqueIdx = 1;
2251     }
2252     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2253       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2254     }
2255     if( pSrcIdx==0 ){
2256       return 0;    /* pDestIdx has no corresponding index in pSrc */
2257     }
2258   }
2259 #ifndef SQLITE_OMIT_CHECK
2260   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2261     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2262   }
2263 #endif
2264 #ifndef SQLITE_OMIT_FOREIGN_KEY
2265   /* Disallow the transfer optimization if the destination table constains
2266   ** any foreign key constraints.  This is more restrictive than necessary.
2267   ** But the main beneficiary of the transfer optimization is the VACUUM
2268   ** command, and the VACUUM command disables foreign key constraints.  So
2269   ** the extra complication to make this rule less restrictive is probably
2270   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2271   */
2272   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2273     return 0;
2274   }
2275 #endif
2276   if( (db->flags & SQLITE_CountRows)!=0 ){
2277     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2278   }
2279 
2280   /* If we get this far, it means that the xfer optimization is at
2281   ** least a possibility, though it might only work if the destination
2282   ** table (tab1) is initially empty.
2283   */
2284 #ifdef SQLITE_TEST
2285   sqlite3_xferopt_count++;
2286 #endif
2287   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2288   v = sqlite3GetVdbe(pParse);
2289   sqlite3CodeVerifySchema(pParse, iDbSrc);
2290   iSrc = pParse->nTab++;
2291   iDest = pParse->nTab++;
2292   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2293   regData = sqlite3GetTempReg(pParse);
2294   regRowid = sqlite3GetTempReg(pParse);
2295   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2296   assert( HasRowid(pDest) || destHasUniqueIdx );
2297   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2298       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2299    || destHasUniqueIdx                              /* (2) */
2300    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2301   )){
2302     /* In some circumstances, we are able to run the xfer optimization
2303     ** only if the destination table is initially empty. Unless the
2304     ** DBFLAG_Vacuum flag is set, this block generates code to make
2305     ** that determination. If DBFLAG_Vacuum is set, then the destination
2306     ** table is always empty.
2307     **
2308     ** Conditions under which the destination must be empty:
2309     **
2310     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2311     **     (If the destination is not initially empty, the rowid fields
2312     **     of index entries might need to change.)
2313     **
2314     ** (2) The destination has a unique index.  (The xfer optimization
2315     **     is unable to test uniqueness.)
2316     **
2317     ** (3) onError is something other than OE_Abort and OE_Rollback.
2318     */
2319     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2320     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2321     sqlite3VdbeJumpHere(v, addr1);
2322   }
2323   if( HasRowid(pSrc) ){
2324     u8 insFlags;
2325     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2326     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2327     if( pDest->iPKey>=0 ){
2328       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2329       sqlite3VdbeVerifyAbortable(v, onError);
2330       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2331       VdbeCoverage(v);
2332       sqlite3RowidConstraint(pParse, onError, pDest);
2333       sqlite3VdbeJumpHere(v, addr2);
2334       autoIncStep(pParse, regAutoinc, regRowid);
2335     }else if( pDest->pIndex==0 ){
2336       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2337     }else{
2338       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2339       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2340     }
2341     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2342     if( db->mDbFlags & DBFLAG_Vacuum ){
2343       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2344       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2345                            OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2346     }else{
2347       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2348     }
2349     sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2350                       (char*)pDest, P4_TABLE);
2351     sqlite3VdbeChangeP5(v, insFlags);
2352     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2353     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2354     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2355   }else{
2356     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2357     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2358   }
2359   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2360     u8 idxInsFlags = 0;
2361     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2362       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2363     }
2364     assert( pSrcIdx );
2365     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2366     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2367     VdbeComment((v, "%s", pSrcIdx->zName));
2368     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2369     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2370     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2371     VdbeComment((v, "%s", pDestIdx->zName));
2372     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2373     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2374     if( db->mDbFlags & DBFLAG_Vacuum ){
2375       /* This INSERT command is part of a VACUUM operation, which guarantees
2376       ** that the destination table is empty. If all indexed columns use
2377       ** collation sequence BINARY, then it can also be assumed that the
2378       ** index will be populated by inserting keys in strictly sorted
2379       ** order. In this case, instead of seeking within the b-tree as part
2380       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2381       ** OP_IdxInsert to seek to the point within the b-tree where each key
2382       ** should be inserted. This is faster.
2383       **
2384       ** If any of the indexed columns use a collation sequence other than
2385       ** BINARY, this optimization is disabled. This is because the user
2386       ** might change the definition of a collation sequence and then run
2387       ** a VACUUM command. In that case keys may not be written in strictly
2388       ** sorted order.  */
2389       for(i=0; i<pSrcIdx->nColumn; i++){
2390         const char *zColl = pSrcIdx->azColl[i];
2391         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2392       }
2393       if( i==pSrcIdx->nColumn ){
2394         idxInsFlags = OPFLAG_USESEEKRESULT;
2395         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2396       }
2397     }
2398     if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2399       idxInsFlags |= OPFLAG_NCHANGE;
2400     }
2401     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2402     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2403     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2404     sqlite3VdbeJumpHere(v, addr1);
2405     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2406     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2407   }
2408   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2409   sqlite3ReleaseTempReg(pParse, regRowid);
2410   sqlite3ReleaseTempReg(pParse, regData);
2411   if( emptyDestTest ){
2412     sqlite3AutoincrementEnd(pParse);
2413     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2414     sqlite3VdbeJumpHere(v, emptyDestTest);
2415     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2416     return 0;
2417   }else{
2418     return 1;
2419   }
2420 }
2421 #endif /* SQLITE_OMIT_XFER_OPT */
2422