1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 assert( zColAff!=0 ); 150 i = sqlite3Strlen30NN(zColAff); 151 if( i ){ 152 if( iReg ){ 153 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 154 }else{ 155 sqlite3VdbeChangeP4(v, -1, zColAff, i); 156 } 157 } 158 } 159 160 /* 161 ** Return non-zero if the table pTab in database iDb or any of its indices 162 ** have been opened at any point in the VDBE program. This is used to see if 163 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 164 ** run without using a temporary table for the results of the SELECT. 165 */ 166 static int readsTable(Parse *p, int iDb, Table *pTab){ 167 Vdbe *v = sqlite3GetVdbe(p); 168 int i; 169 int iEnd = sqlite3VdbeCurrentAddr(v); 170 #ifndef SQLITE_OMIT_VIRTUALTABLE 171 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 172 #endif 173 174 for(i=1; i<iEnd; i++){ 175 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 176 assert( pOp!=0 ); 177 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 178 Index *pIndex; 179 int tnum = pOp->p2; 180 if( tnum==pTab->tnum ){ 181 return 1; 182 } 183 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 184 if( tnum==pIndex->tnum ){ 185 return 1; 186 } 187 } 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 191 assert( pOp->p4.pVtab!=0 ); 192 assert( pOp->p4type==P4_VTAB ); 193 return 1; 194 } 195 #endif 196 } 197 return 0; 198 } 199 200 #ifndef SQLITE_OMIT_AUTOINCREMENT 201 /* 202 ** Locate or create an AutoincInfo structure associated with table pTab 203 ** which is in database iDb. Return the register number for the register 204 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 205 ** table. (Also return zero when doing a VACUUM since we do not want to 206 ** update the AUTOINCREMENT counters during a VACUUM.) 207 ** 208 ** There is at most one AutoincInfo structure per table even if the 209 ** same table is autoincremented multiple times due to inserts within 210 ** triggers. A new AutoincInfo structure is created if this is the 211 ** first use of table pTab. On 2nd and subsequent uses, the original 212 ** AutoincInfo structure is used. 213 ** 214 ** Four consecutive registers are allocated: 215 ** 216 ** (1) The name of the pTab table. 217 ** (2) The maximum ROWID of pTab. 218 ** (3) The rowid in sqlite_sequence of pTab 219 ** (4) The original value of the max ROWID in pTab, or NULL if none 220 ** 221 ** The 2nd register is the one that is returned. That is all the 222 ** insert routine needs to know about. 223 */ 224 static int autoIncBegin( 225 Parse *pParse, /* Parsing context */ 226 int iDb, /* Index of the database holding pTab */ 227 Table *pTab /* The table we are writing to */ 228 ){ 229 int memId = 0; /* Register holding maximum rowid */ 230 assert( pParse->db->aDb[iDb].pSchema!=0 ); 231 if( (pTab->tabFlags & TF_Autoincrement)!=0 232 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 233 ){ 234 Parse *pToplevel = sqlite3ParseToplevel(pParse); 235 AutoincInfo *pInfo; 236 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 237 238 /* Verify that the sqlite_sequence table exists and is an ordinary 239 ** rowid table with exactly two columns. 240 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 241 if( pSeqTab==0 242 || !HasRowid(pSeqTab) 243 || IsVirtual(pSeqTab) 244 || pSeqTab->nCol!=2 245 ){ 246 pParse->nErr++; 247 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 248 return 0; 249 } 250 251 pInfo = pToplevel->pAinc; 252 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 253 if( pInfo==0 ){ 254 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 255 if( pInfo==0 ) return 0; 256 pInfo->pNext = pToplevel->pAinc; 257 pToplevel->pAinc = pInfo; 258 pInfo->pTab = pTab; 259 pInfo->iDb = iDb; 260 pToplevel->nMem++; /* Register to hold name of table */ 261 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 262 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 263 } 264 memId = pInfo->regCtr; 265 } 266 return memId; 267 } 268 269 /* 270 ** This routine generates code that will initialize all of the 271 ** register used by the autoincrement tracker. 272 */ 273 void sqlite3AutoincrementBegin(Parse *pParse){ 274 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 275 sqlite3 *db = pParse->db; /* The database connection */ 276 Db *pDb; /* Database only autoinc table */ 277 int memId; /* Register holding max rowid */ 278 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 279 280 /* This routine is never called during trigger-generation. It is 281 ** only called from the top-level */ 282 assert( pParse->pTriggerTab==0 ); 283 assert( sqlite3IsToplevel(pParse) ); 284 285 assert( v ); /* We failed long ago if this is not so */ 286 for(p = pParse->pAinc; p; p = p->pNext){ 287 static const int iLn = VDBE_OFFSET_LINENO(2); 288 static const VdbeOpList autoInc[] = { 289 /* 0 */ {OP_Null, 0, 0, 0}, 290 /* 1 */ {OP_Rewind, 0, 10, 0}, 291 /* 2 */ {OP_Column, 0, 0, 0}, 292 /* 3 */ {OP_Ne, 0, 9, 0}, 293 /* 4 */ {OP_Rowid, 0, 0, 0}, 294 /* 5 */ {OP_Column, 0, 1, 0}, 295 /* 6 */ {OP_AddImm, 0, 0, 0}, 296 /* 7 */ {OP_Copy, 0, 0, 0}, 297 /* 8 */ {OP_Goto, 0, 11, 0}, 298 /* 9 */ {OP_Next, 0, 2, 0}, 299 /* 10 */ {OP_Integer, 0, 0, 0}, 300 /* 11 */ {OP_Close, 0, 0, 0} 301 }; 302 VdbeOp *aOp; 303 pDb = &db->aDb[p->iDb]; 304 memId = p->regCtr; 305 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 306 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 307 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 308 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 309 if( aOp==0 ) break; 310 aOp[0].p2 = memId; 311 aOp[0].p3 = memId+2; 312 aOp[2].p3 = memId; 313 aOp[3].p1 = memId-1; 314 aOp[3].p3 = memId; 315 aOp[3].p5 = SQLITE_JUMPIFNULL; 316 aOp[4].p2 = memId+1; 317 aOp[5].p3 = memId; 318 aOp[6].p1 = memId; 319 aOp[7].p2 = memId+2; 320 aOp[7].p1 = memId; 321 aOp[10].p2 = memId; 322 } 323 } 324 325 /* 326 ** Update the maximum rowid for an autoincrement calculation. 327 ** 328 ** This routine should be called when the regRowid register holds a 329 ** new rowid that is about to be inserted. If that new rowid is 330 ** larger than the maximum rowid in the memId memory cell, then the 331 ** memory cell is updated. 332 */ 333 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 334 if( memId>0 ){ 335 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 336 } 337 } 338 339 /* 340 ** This routine generates the code needed to write autoincrement 341 ** maximum rowid values back into the sqlite_sequence register. 342 ** Every statement that might do an INSERT into an autoincrement 343 ** table (either directly or through triggers) needs to call this 344 ** routine just before the "exit" code. 345 */ 346 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 347 AutoincInfo *p; 348 Vdbe *v = pParse->pVdbe; 349 sqlite3 *db = pParse->db; 350 351 assert( v ); 352 for(p = pParse->pAinc; p; p = p->pNext){ 353 static const int iLn = VDBE_OFFSET_LINENO(2); 354 static const VdbeOpList autoIncEnd[] = { 355 /* 0 */ {OP_NotNull, 0, 2, 0}, 356 /* 1 */ {OP_NewRowid, 0, 0, 0}, 357 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 358 /* 3 */ {OP_Insert, 0, 0, 0}, 359 /* 4 */ {OP_Close, 0, 0, 0} 360 }; 361 VdbeOp *aOp; 362 Db *pDb = &db->aDb[p->iDb]; 363 int iRec; 364 int memId = p->regCtr; 365 366 iRec = sqlite3GetTempReg(pParse); 367 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 368 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 369 VdbeCoverage(v); 370 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 371 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 372 if( aOp==0 ) break; 373 aOp[0].p1 = memId+1; 374 aOp[1].p2 = memId+1; 375 aOp[2].p1 = memId-1; 376 aOp[2].p3 = iRec; 377 aOp[3].p2 = iRec; 378 aOp[3].p3 = memId+1; 379 aOp[3].p5 = OPFLAG_APPEND; 380 sqlite3ReleaseTempReg(pParse, iRec); 381 } 382 } 383 void sqlite3AutoincrementEnd(Parse *pParse){ 384 if( pParse->pAinc ) autoIncrementEnd(pParse); 385 } 386 #else 387 /* 388 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 389 ** above are all no-ops 390 */ 391 # define autoIncBegin(A,B,C) (0) 392 # define autoIncStep(A,B,C) 393 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 394 395 396 /* Forward declaration */ 397 static int xferOptimization( 398 Parse *pParse, /* Parser context */ 399 Table *pDest, /* The table we are inserting into */ 400 Select *pSelect, /* A SELECT statement to use as the data source */ 401 int onError, /* How to handle constraint errors */ 402 int iDbDest /* The database of pDest */ 403 ); 404 405 /* 406 ** This routine is called to handle SQL of the following forms: 407 ** 408 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 409 ** insert into TABLE (IDLIST) select 410 ** insert into TABLE (IDLIST) default values 411 ** 412 ** The IDLIST following the table name is always optional. If omitted, 413 ** then a list of all (non-hidden) columns for the table is substituted. 414 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 415 ** is omitted. 416 ** 417 ** For the pSelect parameter holds the values to be inserted for the 418 ** first two forms shown above. A VALUES clause is really just short-hand 419 ** for a SELECT statement that omits the FROM clause and everything else 420 ** that follows. If the pSelect parameter is NULL, that means that the 421 ** DEFAULT VALUES form of the INSERT statement is intended. 422 ** 423 ** The code generated follows one of four templates. For a simple 424 ** insert with data coming from a single-row VALUES clause, the code executes 425 ** once straight down through. Pseudo-code follows (we call this 426 ** the "1st template"): 427 ** 428 ** open write cursor to <table> and its indices 429 ** put VALUES clause expressions into registers 430 ** write the resulting record into <table> 431 ** cleanup 432 ** 433 ** The three remaining templates assume the statement is of the form 434 ** 435 ** INSERT INTO <table> SELECT ... 436 ** 437 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 438 ** in other words if the SELECT pulls all columns from a single table 439 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 440 ** if <table2> and <table1> are distinct tables but have identical 441 ** schemas, including all the same indices, then a special optimization 442 ** is invoked that copies raw records from <table2> over to <table1>. 443 ** See the xferOptimization() function for the implementation of this 444 ** template. This is the 2nd template. 445 ** 446 ** open a write cursor to <table> 447 ** open read cursor on <table2> 448 ** transfer all records in <table2> over to <table> 449 ** close cursors 450 ** foreach index on <table> 451 ** open a write cursor on the <table> index 452 ** open a read cursor on the corresponding <table2> index 453 ** transfer all records from the read to the write cursors 454 ** close cursors 455 ** end foreach 456 ** 457 ** The 3rd template is for when the second template does not apply 458 ** and the SELECT clause does not read from <table> at any time. 459 ** The generated code follows this template: 460 ** 461 ** X <- A 462 ** goto B 463 ** A: setup for the SELECT 464 ** loop over the rows in the SELECT 465 ** load values into registers R..R+n 466 ** yield X 467 ** end loop 468 ** cleanup after the SELECT 469 ** end-coroutine X 470 ** B: open write cursor to <table> and its indices 471 ** C: yield X, at EOF goto D 472 ** insert the select result into <table> from R..R+n 473 ** goto C 474 ** D: cleanup 475 ** 476 ** The 4th template is used if the insert statement takes its 477 ** values from a SELECT but the data is being inserted into a table 478 ** that is also read as part of the SELECT. In the third form, 479 ** we have to use an intermediate table to store the results of 480 ** the select. The template is like this: 481 ** 482 ** X <- A 483 ** goto B 484 ** A: setup for the SELECT 485 ** loop over the tables in the SELECT 486 ** load value into register R..R+n 487 ** yield X 488 ** end loop 489 ** cleanup after the SELECT 490 ** end co-routine R 491 ** B: open temp table 492 ** L: yield X, at EOF goto M 493 ** insert row from R..R+n into temp table 494 ** goto L 495 ** M: open write cursor to <table> and its indices 496 ** rewind temp table 497 ** C: loop over rows of intermediate table 498 ** transfer values form intermediate table into <table> 499 ** end loop 500 ** D: cleanup 501 */ 502 void sqlite3Insert( 503 Parse *pParse, /* Parser context */ 504 SrcList *pTabList, /* Name of table into which we are inserting */ 505 Select *pSelect, /* A SELECT statement to use as the data source */ 506 IdList *pColumn, /* Column names corresponding to IDLIST. */ 507 int onError, /* How to handle constraint errors */ 508 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 509 ){ 510 sqlite3 *db; /* The main database structure */ 511 Table *pTab; /* The table to insert into. aka TABLE */ 512 int i, j; /* Loop counters */ 513 Vdbe *v; /* Generate code into this virtual machine */ 514 Index *pIdx; /* For looping over indices of the table */ 515 int nColumn; /* Number of columns in the data */ 516 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 517 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 518 int iIdxCur = 0; /* First index cursor */ 519 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 520 int endOfLoop; /* Label for the end of the insertion loop */ 521 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 522 int addrInsTop = 0; /* Jump to label "D" */ 523 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 524 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 525 int iDb; /* Index of database holding TABLE */ 526 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 527 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 528 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 529 u8 bIdListInOrder; /* True if IDLIST is in table order */ 530 ExprList *pList = 0; /* List of VALUES() to be inserted */ 531 532 /* Register allocations */ 533 int regFromSelect = 0;/* Base register for data coming from SELECT */ 534 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 535 int regRowCount = 0; /* Memory cell used for the row counter */ 536 int regIns; /* Block of regs holding rowid+data being inserted */ 537 int regRowid; /* registers holding insert rowid */ 538 int regData; /* register holding first column to insert */ 539 int *aRegIdx = 0; /* One register allocated to each index */ 540 541 #ifndef SQLITE_OMIT_TRIGGER 542 int isView; /* True if attempting to insert into a view */ 543 Trigger *pTrigger; /* List of triggers on pTab, if required */ 544 int tmask; /* Mask of trigger times */ 545 #endif 546 547 db = pParse->db; 548 if( pParse->nErr || db->mallocFailed ){ 549 goto insert_cleanup; 550 } 551 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 552 553 /* If the Select object is really just a simple VALUES() list with a 554 ** single row (the common case) then keep that one row of values 555 ** and discard the other (unused) parts of the pSelect object 556 */ 557 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 558 pList = pSelect->pEList; 559 pSelect->pEList = 0; 560 sqlite3SelectDelete(db, pSelect); 561 pSelect = 0; 562 } 563 564 /* Locate the table into which we will be inserting new information. 565 */ 566 assert( pTabList->nSrc==1 ); 567 pTab = sqlite3SrcListLookup(pParse, pTabList); 568 if( pTab==0 ){ 569 goto insert_cleanup; 570 } 571 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 572 assert( iDb<db->nDb ); 573 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 574 db->aDb[iDb].zDbSName) ){ 575 goto insert_cleanup; 576 } 577 withoutRowid = !HasRowid(pTab); 578 579 /* Figure out if we have any triggers and if the table being 580 ** inserted into is a view 581 */ 582 #ifndef SQLITE_OMIT_TRIGGER 583 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 584 isView = pTab->pSelect!=0; 585 #else 586 # define pTrigger 0 587 # define tmask 0 588 # define isView 0 589 #endif 590 #ifdef SQLITE_OMIT_VIEW 591 # undef isView 592 # define isView 0 593 #endif 594 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 595 596 /* If pTab is really a view, make sure it has been initialized. 597 ** ViewGetColumnNames() is a no-op if pTab is not a view. 598 */ 599 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 600 goto insert_cleanup; 601 } 602 603 /* Cannot insert into a read-only table. 604 */ 605 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 606 goto insert_cleanup; 607 } 608 609 /* Allocate a VDBE 610 */ 611 v = sqlite3GetVdbe(pParse); 612 if( v==0 ) goto insert_cleanup; 613 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 614 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 615 616 #ifndef SQLITE_OMIT_XFER_OPT 617 /* If the statement is of the form 618 ** 619 ** INSERT INTO <table1> SELECT * FROM <table2>; 620 ** 621 ** Then special optimizations can be applied that make the transfer 622 ** very fast and which reduce fragmentation of indices. 623 ** 624 ** This is the 2nd template. 625 */ 626 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 627 assert( !pTrigger ); 628 assert( pList==0 ); 629 goto insert_end; 630 } 631 #endif /* SQLITE_OMIT_XFER_OPT */ 632 633 /* If this is an AUTOINCREMENT table, look up the sequence number in the 634 ** sqlite_sequence table and store it in memory cell regAutoinc. 635 */ 636 regAutoinc = autoIncBegin(pParse, iDb, pTab); 637 638 /* Allocate registers for holding the rowid of the new row, 639 ** the content of the new row, and the assembled row record. 640 */ 641 regRowid = regIns = pParse->nMem+1; 642 pParse->nMem += pTab->nCol + 1; 643 if( IsVirtual(pTab) ){ 644 regRowid++; 645 pParse->nMem++; 646 } 647 regData = regRowid+1; 648 649 /* If the INSERT statement included an IDLIST term, then make sure 650 ** all elements of the IDLIST really are columns of the table and 651 ** remember the column indices. 652 ** 653 ** If the table has an INTEGER PRIMARY KEY column and that column 654 ** is named in the IDLIST, then record in the ipkColumn variable 655 ** the index into IDLIST of the primary key column. ipkColumn is 656 ** the index of the primary key as it appears in IDLIST, not as 657 ** is appears in the original table. (The index of the INTEGER 658 ** PRIMARY KEY in the original table is pTab->iPKey.) 659 */ 660 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 661 if( pColumn ){ 662 for(i=0; i<pColumn->nId; i++){ 663 pColumn->a[i].idx = -1; 664 } 665 for(i=0; i<pColumn->nId; i++){ 666 for(j=0; j<pTab->nCol; j++){ 667 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 668 pColumn->a[i].idx = j; 669 if( i!=j ) bIdListInOrder = 0; 670 if( j==pTab->iPKey ){ 671 ipkColumn = i; assert( !withoutRowid ); 672 } 673 break; 674 } 675 } 676 if( j>=pTab->nCol ){ 677 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 678 ipkColumn = i; 679 bIdListInOrder = 0; 680 }else{ 681 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 682 pTabList, 0, pColumn->a[i].zName); 683 pParse->checkSchema = 1; 684 goto insert_cleanup; 685 } 686 } 687 } 688 } 689 690 /* Figure out how many columns of data are supplied. If the data 691 ** is coming from a SELECT statement, then generate a co-routine that 692 ** produces a single row of the SELECT on each invocation. The 693 ** co-routine is the common header to the 3rd and 4th templates. 694 */ 695 if( pSelect ){ 696 /* Data is coming from a SELECT or from a multi-row VALUES clause. 697 ** Generate a co-routine to run the SELECT. */ 698 int regYield; /* Register holding co-routine entry-point */ 699 int addrTop; /* Top of the co-routine */ 700 int rc; /* Result code */ 701 702 regYield = ++pParse->nMem; 703 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 704 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 705 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 706 dest.iSdst = bIdListInOrder ? regData : 0; 707 dest.nSdst = pTab->nCol; 708 rc = sqlite3Select(pParse, pSelect, &dest); 709 regFromSelect = dest.iSdst; 710 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 711 sqlite3VdbeEndCoroutine(v, regYield); 712 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 713 assert( pSelect->pEList ); 714 nColumn = pSelect->pEList->nExpr; 715 716 /* Set useTempTable to TRUE if the result of the SELECT statement 717 ** should be written into a temporary table (template 4). Set to 718 ** FALSE if each output row of the SELECT can be written directly into 719 ** the destination table (template 3). 720 ** 721 ** A temp table must be used if the table being updated is also one 722 ** of the tables being read by the SELECT statement. Also use a 723 ** temp table in the case of row triggers. 724 */ 725 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 726 useTempTable = 1; 727 } 728 729 if( useTempTable ){ 730 /* Invoke the coroutine to extract information from the SELECT 731 ** and add it to a transient table srcTab. The code generated 732 ** here is from the 4th template: 733 ** 734 ** B: open temp table 735 ** L: yield X, goto M at EOF 736 ** insert row from R..R+n into temp table 737 ** goto L 738 ** M: ... 739 */ 740 int regRec; /* Register to hold packed record */ 741 int regTempRowid; /* Register to hold temp table ROWID */ 742 int addrL; /* Label "L" */ 743 744 srcTab = pParse->nTab++; 745 regRec = sqlite3GetTempReg(pParse); 746 regTempRowid = sqlite3GetTempReg(pParse); 747 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 748 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 749 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 750 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 751 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 752 sqlite3VdbeGoto(v, addrL); 753 sqlite3VdbeJumpHere(v, addrL); 754 sqlite3ReleaseTempReg(pParse, regRec); 755 sqlite3ReleaseTempReg(pParse, regTempRowid); 756 } 757 }else{ 758 /* This is the case if the data for the INSERT is coming from a 759 ** single-row VALUES clause 760 */ 761 NameContext sNC; 762 memset(&sNC, 0, sizeof(sNC)); 763 sNC.pParse = pParse; 764 srcTab = -1; 765 assert( useTempTable==0 ); 766 if( pList ){ 767 nColumn = pList->nExpr; 768 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 769 goto insert_cleanup; 770 } 771 }else{ 772 nColumn = 0; 773 } 774 } 775 776 /* If there is no IDLIST term but the table has an integer primary 777 ** key, the set the ipkColumn variable to the integer primary key 778 ** column index in the original table definition. 779 */ 780 if( pColumn==0 && nColumn>0 ){ 781 ipkColumn = pTab->iPKey; 782 } 783 784 /* Make sure the number of columns in the source data matches the number 785 ** of columns to be inserted into the table. 786 */ 787 for(i=0; i<pTab->nCol; i++){ 788 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 789 } 790 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 791 sqlite3ErrorMsg(pParse, 792 "table %S has %d columns but %d values were supplied", 793 pTabList, 0, pTab->nCol-nHidden, nColumn); 794 goto insert_cleanup; 795 } 796 if( pColumn!=0 && nColumn!=pColumn->nId ){ 797 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 798 goto insert_cleanup; 799 } 800 801 /* Initialize the count of rows to be inserted 802 */ 803 if( (db->flags & SQLITE_CountRows)!=0 804 && !pParse->nested 805 && !pParse->pTriggerTab 806 ){ 807 regRowCount = ++pParse->nMem; 808 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 809 } 810 811 /* If this is not a view, open the table and and all indices */ 812 if( !isView ){ 813 int nIdx; 814 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 815 &iDataCur, &iIdxCur); 816 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 817 if( aRegIdx==0 ){ 818 goto insert_cleanup; 819 } 820 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 821 assert( pIdx ); 822 aRegIdx[i] = ++pParse->nMem; 823 pParse->nMem += pIdx->nColumn; 824 } 825 } 826 #ifndef SQLITE_OMIT_UPSERT 827 if( pUpsert ){ 828 pTabList->a[0].iCursor = iDataCur; 829 pUpsert->pUpsertSrc = pTabList; 830 pUpsert->regData = regData; 831 pUpsert->iDataCur = iDataCur; 832 pUpsert->iIdxCur = iIdxCur; 833 if( pUpsert->pUpsertTarget ){ 834 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 835 } 836 } 837 #endif 838 839 840 /* This is the top of the main insertion loop */ 841 if( useTempTable ){ 842 /* This block codes the top of loop only. The complete loop is the 843 ** following pseudocode (template 4): 844 ** 845 ** rewind temp table, if empty goto D 846 ** C: loop over rows of intermediate table 847 ** transfer values form intermediate table into <table> 848 ** end loop 849 ** D: ... 850 */ 851 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 852 addrCont = sqlite3VdbeCurrentAddr(v); 853 }else if( pSelect ){ 854 /* This block codes the top of loop only. The complete loop is the 855 ** following pseudocode (template 3): 856 ** 857 ** C: yield X, at EOF goto D 858 ** insert the select result into <table> from R..R+n 859 ** goto C 860 ** D: ... 861 */ 862 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 863 VdbeCoverage(v); 864 } 865 866 /* Run the BEFORE and INSTEAD OF triggers, if there are any 867 */ 868 endOfLoop = sqlite3VdbeMakeLabel(v); 869 if( tmask & TRIGGER_BEFORE ){ 870 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 871 872 /* build the NEW.* reference row. Note that if there is an INTEGER 873 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 874 ** translated into a unique ID for the row. But on a BEFORE trigger, 875 ** we do not know what the unique ID will be (because the insert has 876 ** not happened yet) so we substitute a rowid of -1 877 */ 878 if( ipkColumn<0 ){ 879 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 880 }else{ 881 int addr1; 882 assert( !withoutRowid ); 883 if( useTempTable ){ 884 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 885 }else{ 886 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 887 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 888 } 889 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 890 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 891 sqlite3VdbeJumpHere(v, addr1); 892 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 893 } 894 895 /* Cannot have triggers on a virtual table. If it were possible, 896 ** this block would have to account for hidden column. 897 */ 898 assert( !IsVirtual(pTab) ); 899 900 /* Create the new column data 901 */ 902 for(i=j=0; i<pTab->nCol; i++){ 903 if( pColumn ){ 904 for(j=0; j<pColumn->nId; j++){ 905 if( pColumn->a[j].idx==i ) break; 906 } 907 } 908 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 909 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 910 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 911 }else if( useTempTable ){ 912 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 913 }else{ 914 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 915 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 916 } 917 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 918 } 919 920 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 921 ** do not attempt any conversions before assembling the record. 922 ** If this is a real table, attempt conversions as required by the 923 ** table column affinities. 924 */ 925 if( !isView ){ 926 sqlite3TableAffinity(v, pTab, regCols+1); 927 } 928 929 /* Fire BEFORE or INSTEAD OF triggers */ 930 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 931 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 932 933 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 934 } 935 936 /* Compute the content of the next row to insert into a range of 937 ** registers beginning at regIns. 938 */ 939 if( !isView ){ 940 if( IsVirtual(pTab) ){ 941 /* The row that the VUpdate opcode will delete: none */ 942 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 943 } 944 if( ipkColumn>=0 ){ 945 if( useTempTable ){ 946 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 947 }else if( pSelect ){ 948 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 949 }else{ 950 VdbeOp *pOp; 951 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 952 pOp = sqlite3VdbeGetOp(v, -1); 953 assert( pOp!=0 ); 954 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 955 appendFlag = 1; 956 pOp->opcode = OP_NewRowid; 957 pOp->p1 = iDataCur; 958 pOp->p2 = regRowid; 959 pOp->p3 = regAutoinc; 960 } 961 } 962 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 963 ** to generate a unique primary key value. 964 */ 965 if( !appendFlag ){ 966 int addr1; 967 if( !IsVirtual(pTab) ){ 968 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 969 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 970 sqlite3VdbeJumpHere(v, addr1); 971 }else{ 972 addr1 = sqlite3VdbeCurrentAddr(v); 973 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 974 } 975 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 976 } 977 }else if( IsVirtual(pTab) || withoutRowid ){ 978 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 979 }else{ 980 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 981 appendFlag = 1; 982 } 983 autoIncStep(pParse, regAutoinc, regRowid); 984 985 /* Compute data for all columns of the new entry, beginning 986 ** with the first column. 987 */ 988 nHidden = 0; 989 for(i=0; i<pTab->nCol; i++){ 990 int iRegStore = regRowid+1+i; 991 if( i==pTab->iPKey ){ 992 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 993 ** Whenever this column is read, the rowid will be substituted 994 ** in its place. Hence, fill this column with a NULL to avoid 995 ** taking up data space with information that will never be used. 996 ** As there may be shallow copies of this value, make it a soft-NULL */ 997 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 998 continue; 999 } 1000 if( pColumn==0 ){ 1001 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1002 j = -1; 1003 nHidden++; 1004 }else{ 1005 j = i - nHidden; 1006 } 1007 }else{ 1008 for(j=0; j<pColumn->nId; j++){ 1009 if( pColumn->a[j].idx==i ) break; 1010 } 1011 } 1012 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1013 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1014 }else if( useTempTable ){ 1015 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1016 }else if( pSelect ){ 1017 if( regFromSelect!=regData ){ 1018 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1019 } 1020 }else{ 1021 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1022 } 1023 } 1024 1025 /* Generate code to check constraints and generate index keys and 1026 ** do the insertion. 1027 */ 1028 #ifndef SQLITE_OMIT_VIRTUALTABLE 1029 if( IsVirtual(pTab) ){ 1030 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1031 sqlite3VtabMakeWritable(pParse, pTab); 1032 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1033 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1034 sqlite3MayAbort(pParse); 1035 }else 1036 #endif 1037 { 1038 int isReplace; /* Set to true if constraints may cause a replace */ 1039 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1040 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1041 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1042 ); 1043 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1044 1045 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1046 ** constraints or (b) there are no triggers and this table is not a 1047 ** parent table in a foreign key constraint. It is safe to set the 1048 ** flag in the second case as if any REPLACE constraint is hit, an 1049 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1050 ** cursor that is disturbed. And these instructions both clear the 1051 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1052 ** functionality. */ 1053 bUseSeek = (isReplace==0 || (pTrigger==0 && 1054 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1055 )); 1056 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1057 regIns, aRegIdx, 0, appendFlag, bUseSeek 1058 ); 1059 } 1060 } 1061 1062 /* Update the count of rows that are inserted 1063 */ 1064 if( regRowCount ){ 1065 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1066 } 1067 1068 if( pTrigger ){ 1069 /* Code AFTER triggers */ 1070 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1071 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1072 } 1073 1074 /* The bottom of the main insertion loop, if the data source 1075 ** is a SELECT statement. 1076 */ 1077 sqlite3VdbeResolveLabel(v, endOfLoop); 1078 if( useTempTable ){ 1079 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1080 sqlite3VdbeJumpHere(v, addrInsTop); 1081 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1082 }else if( pSelect ){ 1083 sqlite3VdbeGoto(v, addrCont); 1084 sqlite3VdbeJumpHere(v, addrInsTop); 1085 } 1086 1087 insert_end: 1088 /* Update the sqlite_sequence table by storing the content of the 1089 ** maximum rowid counter values recorded while inserting into 1090 ** autoincrement tables. 1091 */ 1092 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1093 sqlite3AutoincrementEnd(pParse); 1094 } 1095 1096 /* 1097 ** Return the number of rows inserted. If this routine is 1098 ** generating code because of a call to sqlite3NestedParse(), do not 1099 ** invoke the callback function. 1100 */ 1101 if( regRowCount ){ 1102 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1103 sqlite3VdbeSetNumCols(v, 1); 1104 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1105 } 1106 1107 insert_cleanup: 1108 sqlite3SrcListDelete(db, pTabList); 1109 sqlite3ExprListDelete(db, pList); 1110 sqlite3UpsertDelete(db, pUpsert); 1111 sqlite3SelectDelete(db, pSelect); 1112 sqlite3IdListDelete(db, pColumn); 1113 sqlite3DbFree(db, aRegIdx); 1114 } 1115 1116 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1117 ** they may interfere with compilation of other functions in this file 1118 ** (or in another file, if this file becomes part of the amalgamation). */ 1119 #ifdef isView 1120 #undef isView 1121 #endif 1122 #ifdef pTrigger 1123 #undef pTrigger 1124 #endif 1125 #ifdef tmask 1126 #undef tmask 1127 #endif 1128 1129 /* 1130 ** Meanings of bits in of pWalker->eCode for 1131 ** sqlite3ExprReferencesUpdatedColumn() 1132 */ 1133 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1134 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1135 1136 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1137 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1138 ** expression node references any of the 1139 ** columns that are being modifed by an UPDATE statement. 1140 */ 1141 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1142 if( pExpr->op==TK_COLUMN ){ 1143 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1144 if( pExpr->iColumn>=0 ){ 1145 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1146 pWalker->eCode |= CKCNSTRNT_COLUMN; 1147 } 1148 }else{ 1149 pWalker->eCode |= CKCNSTRNT_ROWID; 1150 } 1151 } 1152 return WRC_Continue; 1153 } 1154 1155 /* 1156 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1157 ** only columns that are modified by the UPDATE are those for which 1158 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1159 ** 1160 ** Return true if CHECK constraint pExpr uses any of the 1161 ** changing columns (or the rowid if it is changing). In other words, 1162 ** return true if this CHECK constraint must be validated for 1163 ** the new row in the UPDATE statement. 1164 ** 1165 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1166 ** The operation of this routine is the same - return true if an only if 1167 ** the expression uses one or more of columns identified by the second and 1168 ** third arguments. 1169 */ 1170 int sqlite3ExprReferencesUpdatedColumn( 1171 Expr *pExpr, /* The expression to be checked */ 1172 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1173 int chngRowid /* True if UPDATE changes the rowid */ 1174 ){ 1175 Walker w; 1176 memset(&w, 0, sizeof(w)); 1177 w.eCode = 0; 1178 w.xExprCallback = checkConstraintExprNode; 1179 w.u.aiCol = aiChng; 1180 sqlite3WalkExpr(&w, pExpr); 1181 if( !chngRowid ){ 1182 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1183 w.eCode &= ~CKCNSTRNT_ROWID; 1184 } 1185 testcase( w.eCode==0 ); 1186 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1187 testcase( w.eCode==CKCNSTRNT_ROWID ); 1188 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1189 return w.eCode!=0; 1190 } 1191 1192 /* 1193 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1194 ** on table pTab. 1195 ** 1196 ** The regNewData parameter is the first register in a range that contains 1197 ** the data to be inserted or the data after the update. There will be 1198 ** pTab->nCol+1 registers in this range. The first register (the one 1199 ** that regNewData points to) will contain the new rowid, or NULL in the 1200 ** case of a WITHOUT ROWID table. The second register in the range will 1201 ** contain the content of the first table column. The third register will 1202 ** contain the content of the second table column. And so forth. 1203 ** 1204 ** The regOldData parameter is similar to regNewData except that it contains 1205 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1206 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1207 ** checking regOldData for zero. 1208 ** 1209 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1210 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1211 ** might be modified by the UPDATE. If pkChng is false, then the key of 1212 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1213 ** 1214 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1215 ** was explicitly specified as part of the INSERT statement. If pkChng 1216 ** is zero, it means that the either rowid is computed automatically or 1217 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1218 ** pkChng will only be true if the INSERT statement provides an integer 1219 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1220 ** 1221 ** The code generated by this routine will store new index entries into 1222 ** registers identified by aRegIdx[]. No index entry is created for 1223 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1224 ** the same as the order of indices on the linked list of indices 1225 ** at pTab->pIndex. 1226 ** 1227 ** The caller must have already opened writeable cursors on the main 1228 ** table and all applicable indices (that is to say, all indices for which 1229 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1230 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1231 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1232 ** for the first index in the pTab->pIndex list. Cursors for other indices 1233 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1234 ** 1235 ** This routine also generates code to check constraints. NOT NULL, 1236 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1237 ** then the appropriate action is performed. There are five possible 1238 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1239 ** 1240 ** Constraint type Action What Happens 1241 ** --------------- ---------- ---------------------------------------- 1242 ** any ROLLBACK The current transaction is rolled back and 1243 ** sqlite3_step() returns immediately with a 1244 ** return code of SQLITE_CONSTRAINT. 1245 ** 1246 ** any ABORT Back out changes from the current command 1247 ** only (do not do a complete rollback) then 1248 ** cause sqlite3_step() to return immediately 1249 ** with SQLITE_CONSTRAINT. 1250 ** 1251 ** any FAIL Sqlite3_step() returns immediately with a 1252 ** return code of SQLITE_CONSTRAINT. The 1253 ** transaction is not rolled back and any 1254 ** changes to prior rows are retained. 1255 ** 1256 ** any IGNORE The attempt in insert or update the current 1257 ** row is skipped, without throwing an error. 1258 ** Processing continues with the next row. 1259 ** (There is an immediate jump to ignoreDest.) 1260 ** 1261 ** NOT NULL REPLACE The NULL value is replace by the default 1262 ** value for that column. If the default value 1263 ** is NULL, the action is the same as ABORT. 1264 ** 1265 ** UNIQUE REPLACE The other row that conflicts with the row 1266 ** being inserted is removed. 1267 ** 1268 ** CHECK REPLACE Illegal. The results in an exception. 1269 ** 1270 ** Which action to take is determined by the overrideError parameter. 1271 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1272 ** is used. Or if pParse->onError==OE_Default then the onError value 1273 ** for the constraint is used. 1274 */ 1275 void sqlite3GenerateConstraintChecks( 1276 Parse *pParse, /* The parser context */ 1277 Table *pTab, /* The table being inserted or updated */ 1278 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1279 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1280 int iIdxCur, /* First index cursor */ 1281 int regNewData, /* First register in a range holding values to insert */ 1282 int regOldData, /* Previous content. 0 for INSERTs */ 1283 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1284 u8 overrideError, /* Override onError to this if not OE_Default */ 1285 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1286 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1287 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1288 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1289 ){ 1290 Vdbe *v; /* VDBE under constrution */ 1291 Index *pIdx; /* Pointer to one of the indices */ 1292 Index *pPk = 0; /* The PRIMARY KEY index */ 1293 sqlite3 *db; /* Database connection */ 1294 int i; /* loop counter */ 1295 int ix; /* Index loop counter */ 1296 int nCol; /* Number of columns */ 1297 int onError; /* Conflict resolution strategy */ 1298 int addr1; /* Address of jump instruction */ 1299 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1300 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1301 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1302 u8 isUpdate; /* True if this is an UPDATE operation */ 1303 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1304 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1305 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1306 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1307 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1308 1309 isUpdate = regOldData!=0; 1310 db = pParse->db; 1311 v = sqlite3GetVdbe(pParse); 1312 assert( v!=0 ); 1313 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1314 nCol = pTab->nCol; 1315 1316 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1317 ** normal rowid tables. nPkField is the number of key fields in the 1318 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1319 ** number of fields in the true primary key of the table. */ 1320 if( HasRowid(pTab) ){ 1321 pPk = 0; 1322 nPkField = 1; 1323 }else{ 1324 pPk = sqlite3PrimaryKeyIndex(pTab); 1325 nPkField = pPk->nKeyCol; 1326 } 1327 1328 /* Record that this module has started */ 1329 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1330 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1331 1332 /* Test all NOT NULL constraints. 1333 */ 1334 for(i=0; i<nCol; i++){ 1335 if( i==pTab->iPKey ){ 1336 continue; /* ROWID is never NULL */ 1337 } 1338 if( aiChng && aiChng[i]<0 ){ 1339 /* Don't bother checking for NOT NULL on columns that do not change */ 1340 continue; 1341 } 1342 onError = pTab->aCol[i].notNull; 1343 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1344 if( overrideError!=OE_Default ){ 1345 onError = overrideError; 1346 }else if( onError==OE_Default ){ 1347 onError = OE_Abort; 1348 } 1349 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1350 onError = OE_Abort; 1351 } 1352 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1353 || onError==OE_Ignore || onError==OE_Replace ); 1354 switch( onError ){ 1355 case OE_Abort: 1356 sqlite3MayAbort(pParse); 1357 /* Fall through */ 1358 case OE_Rollback: 1359 case OE_Fail: { 1360 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1361 pTab->aCol[i].zName); 1362 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1363 regNewData+1+i); 1364 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1365 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1366 VdbeCoverage(v); 1367 break; 1368 } 1369 case OE_Ignore: { 1370 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1371 VdbeCoverage(v); 1372 break; 1373 } 1374 default: { 1375 assert( onError==OE_Replace ); 1376 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1377 VdbeCoverage(v); 1378 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1379 sqlite3VdbeJumpHere(v, addr1); 1380 break; 1381 } 1382 } 1383 } 1384 1385 /* Test all CHECK constraints 1386 */ 1387 #ifndef SQLITE_OMIT_CHECK 1388 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1389 ExprList *pCheck = pTab->pCheck; 1390 pParse->iSelfTab = -(regNewData+1); 1391 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1392 for(i=0; i<pCheck->nExpr; i++){ 1393 int allOk; 1394 Expr *pExpr = pCheck->a[i].pExpr; 1395 if( aiChng 1396 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1397 ){ 1398 /* The check constraints do not reference any of the columns being 1399 ** updated so there is no point it verifying the check constraint */ 1400 continue; 1401 } 1402 allOk = sqlite3VdbeMakeLabel(v); 1403 sqlite3VdbeVerifyAbortable(v, onError); 1404 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1405 if( onError==OE_Ignore ){ 1406 sqlite3VdbeGoto(v, ignoreDest); 1407 }else{ 1408 char *zName = pCheck->a[i].zName; 1409 if( zName==0 ) zName = pTab->zName; 1410 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1411 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1412 onError, zName, P4_TRANSIENT, 1413 P5_ConstraintCheck); 1414 } 1415 sqlite3VdbeResolveLabel(v, allOk); 1416 } 1417 pParse->iSelfTab = 0; 1418 } 1419 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1420 1421 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1422 ** order: 1423 ** 1424 ** (1) OE_Update 1425 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1426 ** (3) OE_Replace 1427 ** 1428 ** OE_Fail and OE_Ignore must happen before any changes are made. 1429 ** OE_Update guarantees that only a single row will change, so it 1430 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1431 ** could happen in any order, but they are grouped up front for 1432 ** convenience. 1433 ** 1434 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1435 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1436 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1437 ** constraint before any others, so it had to be moved. 1438 ** 1439 ** Constraint checking code is generated in this order: 1440 ** (A) The rowid constraint 1441 ** (B) Unique index constraints that do not have OE_Replace as their 1442 ** default conflict resolution strategy 1443 ** (C) Unique index that do use OE_Replace by default. 1444 ** 1445 ** The ordering of (2) and (3) is accomplished by making sure the linked 1446 ** list of indexes attached to a table puts all OE_Replace indexes last 1447 ** in the list. See sqlite3CreateIndex() for where that happens. 1448 */ 1449 1450 if( pUpsert ){ 1451 if( pUpsert->pUpsertTarget==0 ){ 1452 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1453 ** Make all unique constraint resolution be OE_Ignore */ 1454 assert( pUpsert->pUpsertSet==0 ); 1455 overrideError = OE_Ignore; 1456 pUpsert = 0; 1457 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1458 /* If the constraint-target uniqueness check must be run first. 1459 ** Jump to that uniqueness check now */ 1460 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1461 VdbeComment((v, "UPSERT constraint goes first")); 1462 } 1463 } 1464 1465 /* If rowid is changing, make sure the new rowid does not previously 1466 ** exist in the table. 1467 */ 1468 if( pkChng && pPk==0 ){ 1469 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1470 1471 /* Figure out what action to take in case of a rowid collision */ 1472 onError = pTab->keyConf; 1473 if( overrideError!=OE_Default ){ 1474 onError = overrideError; 1475 }else if( onError==OE_Default ){ 1476 onError = OE_Abort; 1477 } 1478 1479 /* figure out whether or not upsert applies in this case */ 1480 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1481 if( pUpsert->pUpsertSet==0 ){ 1482 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1483 }else{ 1484 onError = OE_Update; /* DO UPDATE */ 1485 } 1486 } 1487 1488 /* If the response to a rowid conflict is REPLACE but the response 1489 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1490 ** to defer the running of the rowid conflict checking until after 1491 ** the UNIQUE constraints have run. 1492 */ 1493 if( onError==OE_Replace /* IPK rule is REPLACE */ 1494 && onError!=overrideError /* Rules for other contraints are different */ 1495 && pTab->pIndex /* There exist other constraints */ 1496 ){ 1497 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1498 VdbeComment((v, "defer IPK REPLACE until last")); 1499 } 1500 1501 if( isUpdate ){ 1502 /* pkChng!=0 does not mean that the rowid has changed, only that 1503 ** it might have changed. Skip the conflict logic below if the rowid 1504 ** is unchanged. */ 1505 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1506 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1507 VdbeCoverage(v); 1508 } 1509 1510 /* Check to see if the new rowid already exists in the table. Skip 1511 ** the following conflict logic if it does not. */ 1512 VdbeNoopComment((v, "uniqueness check for ROWID")); 1513 sqlite3VdbeVerifyAbortable(v, onError); 1514 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1515 VdbeCoverage(v); 1516 1517 switch( onError ){ 1518 default: { 1519 onError = OE_Abort; 1520 /* Fall thru into the next case */ 1521 } 1522 case OE_Rollback: 1523 case OE_Abort: 1524 case OE_Fail: { 1525 testcase( onError==OE_Rollback ); 1526 testcase( onError==OE_Abort ); 1527 testcase( onError==OE_Fail ); 1528 sqlite3RowidConstraint(pParse, onError, pTab); 1529 break; 1530 } 1531 case OE_Replace: { 1532 /* If there are DELETE triggers on this table and the 1533 ** recursive-triggers flag is set, call GenerateRowDelete() to 1534 ** remove the conflicting row from the table. This will fire 1535 ** the triggers and remove both the table and index b-tree entries. 1536 ** 1537 ** Otherwise, if there are no triggers or the recursive-triggers 1538 ** flag is not set, but the table has one or more indexes, call 1539 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1540 ** only. The table b-tree entry will be replaced by the new entry 1541 ** when it is inserted. 1542 ** 1543 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1544 ** also invoke MultiWrite() to indicate that this VDBE may require 1545 ** statement rollback (if the statement is aborted after the delete 1546 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1547 ** but being more selective here allows statements like: 1548 ** 1549 ** REPLACE INTO t(rowid) VALUES($newrowid) 1550 ** 1551 ** to run without a statement journal if there are no indexes on the 1552 ** table. 1553 */ 1554 Trigger *pTrigger = 0; 1555 if( db->flags&SQLITE_RecTriggers ){ 1556 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1557 } 1558 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1559 sqlite3MultiWrite(pParse); 1560 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1561 regNewData, 1, 0, OE_Replace, 1, -1); 1562 }else{ 1563 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1564 assert( HasRowid(pTab) ); 1565 /* This OP_Delete opcode fires the pre-update-hook only. It does 1566 ** not modify the b-tree. It is more efficient to let the coming 1567 ** OP_Insert replace the existing entry than it is to delete the 1568 ** existing entry and then insert a new one. */ 1569 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1570 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1571 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1572 if( pTab->pIndex ){ 1573 sqlite3MultiWrite(pParse); 1574 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1575 } 1576 } 1577 seenReplace = 1; 1578 break; 1579 } 1580 #ifndef SQLITE_OMIT_UPSERT 1581 case OE_Update: { 1582 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1583 /* Fall through */ 1584 } 1585 #endif 1586 case OE_Ignore: { 1587 testcase( onError==OE_Ignore ); 1588 sqlite3VdbeGoto(v, ignoreDest); 1589 break; 1590 } 1591 } 1592 sqlite3VdbeResolveLabel(v, addrRowidOk); 1593 if( ipkTop ){ 1594 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1595 sqlite3VdbeJumpHere(v, ipkTop-1); 1596 } 1597 } 1598 1599 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1600 ** index and making sure that duplicate entries do not already exist. 1601 ** Compute the revised record entries for indices as we go. 1602 ** 1603 ** This loop also handles the case of the PRIMARY KEY index for a 1604 ** WITHOUT ROWID table. 1605 */ 1606 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1607 int regIdx; /* Range of registers hold conent for pIdx */ 1608 int regR; /* Range of registers holding conflicting PK */ 1609 int iThisCur; /* Cursor for this UNIQUE index */ 1610 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1611 1612 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1613 if( pUpIdx==pIdx ){ 1614 addrUniqueOk = upsertJump+1; 1615 upsertBypass = sqlite3VdbeGoto(v, 0); 1616 VdbeComment((v, "Skip upsert subroutine")); 1617 sqlite3VdbeJumpHere(v, upsertJump); 1618 }else{ 1619 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1620 } 1621 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1622 sqlite3TableAffinity(v, pTab, regNewData+1); 1623 bAffinityDone = 1; 1624 } 1625 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1626 iThisCur = iIdxCur+ix; 1627 1628 1629 /* Skip partial indices for which the WHERE clause is not true */ 1630 if( pIdx->pPartIdxWhere ){ 1631 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1632 pParse->iSelfTab = -(regNewData+1); 1633 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1634 SQLITE_JUMPIFNULL); 1635 pParse->iSelfTab = 0; 1636 } 1637 1638 /* Create a record for this index entry as it should appear after 1639 ** the insert or update. Store that record in the aRegIdx[ix] register 1640 */ 1641 regIdx = aRegIdx[ix]+1; 1642 for(i=0; i<pIdx->nColumn; i++){ 1643 int iField = pIdx->aiColumn[i]; 1644 int x; 1645 if( iField==XN_EXPR ){ 1646 pParse->iSelfTab = -(regNewData+1); 1647 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1648 pParse->iSelfTab = 0; 1649 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1650 }else{ 1651 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1652 x = regNewData; 1653 }else{ 1654 x = iField + regNewData + 1; 1655 } 1656 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1657 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1658 } 1659 } 1660 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1661 VdbeComment((v, "for %s", pIdx->zName)); 1662 #ifdef SQLITE_ENABLE_NULL_TRIM 1663 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1664 #endif 1665 1666 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1667 ** of a WITHOUT ROWID table and there has been no change the 1668 ** primary key, then no collision is possible. The collision detection 1669 ** logic below can all be skipped. */ 1670 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1671 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1672 continue; 1673 } 1674 1675 /* Find out what action to take in case there is a uniqueness conflict */ 1676 onError = pIdx->onError; 1677 if( onError==OE_None ){ 1678 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1679 continue; /* pIdx is not a UNIQUE index */ 1680 } 1681 if( overrideError!=OE_Default ){ 1682 onError = overrideError; 1683 }else if( onError==OE_Default ){ 1684 onError = OE_Abort; 1685 } 1686 1687 /* Figure out if the upsert clause applies to this index */ 1688 if( pUpIdx==pIdx ){ 1689 if( pUpsert->pUpsertSet==0 ){ 1690 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1691 }else{ 1692 onError = OE_Update; /* DO UPDATE */ 1693 } 1694 } 1695 1696 /* Collision detection may be omitted if all of the following are true: 1697 ** (1) The conflict resolution algorithm is REPLACE 1698 ** (2) The table is a WITHOUT ROWID table 1699 ** (3) There are no secondary indexes on the table 1700 ** (4) No delete triggers need to be fired if there is a conflict 1701 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1702 */ 1703 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1704 && pPk==pIdx /* Condition 2 */ 1705 && onError==OE_Replace /* Condition 1 */ 1706 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1707 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1708 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1709 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1710 ){ 1711 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1712 continue; 1713 } 1714 1715 /* Check to see if the new index entry will be unique */ 1716 sqlite3VdbeVerifyAbortable(v, onError); 1717 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1718 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1719 1720 /* Generate code to handle collisions */ 1721 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1722 if( isUpdate || onError==OE_Replace ){ 1723 if( HasRowid(pTab) ){ 1724 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1725 /* Conflict only if the rowid of the existing index entry 1726 ** is different from old-rowid */ 1727 if( isUpdate ){ 1728 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1729 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1730 VdbeCoverage(v); 1731 } 1732 }else{ 1733 int x; 1734 /* Extract the PRIMARY KEY from the end of the index entry and 1735 ** store it in registers regR..regR+nPk-1 */ 1736 if( pIdx!=pPk ){ 1737 for(i=0; i<pPk->nKeyCol; i++){ 1738 assert( pPk->aiColumn[i]>=0 ); 1739 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1740 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1741 VdbeComment((v, "%s.%s", pTab->zName, 1742 pTab->aCol[pPk->aiColumn[i]].zName)); 1743 } 1744 } 1745 if( isUpdate ){ 1746 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1747 ** table, only conflict if the new PRIMARY KEY values are actually 1748 ** different from the old. 1749 ** 1750 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1751 ** of the matched index row are different from the original PRIMARY 1752 ** KEY values of this row before the update. */ 1753 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1754 int op = OP_Ne; 1755 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1756 1757 for(i=0; i<pPk->nKeyCol; i++){ 1758 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1759 x = pPk->aiColumn[i]; 1760 assert( x>=0 ); 1761 if( i==(pPk->nKeyCol-1) ){ 1762 addrJump = addrUniqueOk; 1763 op = OP_Eq; 1764 } 1765 sqlite3VdbeAddOp4(v, op, 1766 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1767 ); 1768 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1769 VdbeCoverageIf(v, op==OP_Eq); 1770 VdbeCoverageIf(v, op==OP_Ne); 1771 } 1772 } 1773 } 1774 } 1775 1776 /* Generate code that executes if the new index entry is not unique */ 1777 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1778 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1779 switch( onError ){ 1780 case OE_Rollback: 1781 case OE_Abort: 1782 case OE_Fail: { 1783 testcase( onError==OE_Rollback ); 1784 testcase( onError==OE_Abort ); 1785 testcase( onError==OE_Fail ); 1786 sqlite3UniqueConstraint(pParse, onError, pIdx); 1787 break; 1788 } 1789 #ifndef SQLITE_OMIT_UPSERT 1790 case OE_Update: { 1791 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1792 /* Fall through */ 1793 } 1794 #endif 1795 case OE_Ignore: { 1796 testcase( onError==OE_Ignore ); 1797 sqlite3VdbeGoto(v, ignoreDest); 1798 break; 1799 } 1800 default: { 1801 Trigger *pTrigger = 0; 1802 assert( onError==OE_Replace ); 1803 if( db->flags&SQLITE_RecTriggers ){ 1804 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1805 } 1806 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1807 sqlite3MultiWrite(pParse); 1808 } 1809 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1810 regR, nPkField, 0, OE_Replace, 1811 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1812 seenReplace = 1; 1813 break; 1814 } 1815 } 1816 if( pUpIdx==pIdx ){ 1817 sqlite3VdbeGoto(v, upsertJump+1); 1818 sqlite3VdbeJumpHere(v, upsertBypass); 1819 }else{ 1820 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1821 } 1822 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1823 } 1824 1825 /* If the IPK constraint is a REPLACE, run it last */ 1826 if( ipkTop ){ 1827 sqlite3VdbeGoto(v, ipkTop+1); 1828 VdbeComment((v, "Do IPK REPLACE")); 1829 sqlite3VdbeJumpHere(v, ipkBottom); 1830 } 1831 1832 *pbMayReplace = seenReplace; 1833 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1834 } 1835 1836 #ifdef SQLITE_ENABLE_NULL_TRIM 1837 /* 1838 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1839 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1840 ** 1841 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1842 */ 1843 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1844 u16 i; 1845 1846 /* Records with omitted columns are only allowed for schema format 1847 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1848 if( pTab->pSchema->file_format<2 ) return; 1849 1850 for(i=pTab->nCol-1; i>0; i--){ 1851 if( pTab->aCol[i].pDflt!=0 ) break; 1852 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1853 } 1854 sqlite3VdbeChangeP5(v, i+1); 1855 } 1856 #endif 1857 1858 /* 1859 ** This routine generates code to finish the INSERT or UPDATE operation 1860 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1861 ** A consecutive range of registers starting at regNewData contains the 1862 ** rowid and the content to be inserted. 1863 ** 1864 ** The arguments to this routine should be the same as the first six 1865 ** arguments to sqlite3GenerateConstraintChecks. 1866 */ 1867 void sqlite3CompleteInsertion( 1868 Parse *pParse, /* The parser context */ 1869 Table *pTab, /* the table into which we are inserting */ 1870 int iDataCur, /* Cursor of the canonical data source */ 1871 int iIdxCur, /* First index cursor */ 1872 int regNewData, /* Range of content */ 1873 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1874 int update_flags, /* True for UPDATE, False for INSERT */ 1875 int appendBias, /* True if this is likely to be an append */ 1876 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1877 ){ 1878 Vdbe *v; /* Prepared statements under construction */ 1879 Index *pIdx; /* An index being inserted or updated */ 1880 u8 pik_flags; /* flag values passed to the btree insert */ 1881 int regData; /* Content registers (after the rowid) */ 1882 int regRec; /* Register holding assembled record for the table */ 1883 int i; /* Loop counter */ 1884 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1885 1886 assert( update_flags==0 1887 || update_flags==OPFLAG_ISUPDATE 1888 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1889 ); 1890 1891 v = sqlite3GetVdbe(pParse); 1892 assert( v!=0 ); 1893 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1894 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1895 if( aRegIdx[i]==0 ) continue; 1896 bAffinityDone = 1; 1897 if( pIdx->pPartIdxWhere ){ 1898 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1899 VdbeCoverage(v); 1900 } 1901 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1902 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1903 assert( pParse->nested==0 ); 1904 pik_flags |= OPFLAG_NCHANGE; 1905 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1906 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1907 if( update_flags==0 ){ 1908 sqlite3VdbeAddOp4(v, OP_InsertInt, 1909 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1910 ); 1911 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1912 } 1913 #endif 1914 } 1915 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1916 aRegIdx[i]+1, 1917 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1918 sqlite3VdbeChangeP5(v, pik_flags); 1919 } 1920 if( !HasRowid(pTab) ) return; 1921 regData = regNewData + 1; 1922 regRec = sqlite3GetTempReg(pParse); 1923 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1924 sqlite3SetMakeRecordP5(v, pTab); 1925 if( !bAffinityDone ){ 1926 sqlite3TableAffinity(v, pTab, 0); 1927 } 1928 if( pParse->nested ){ 1929 pik_flags = 0; 1930 }else{ 1931 pik_flags = OPFLAG_NCHANGE; 1932 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1933 } 1934 if( appendBias ){ 1935 pik_flags |= OPFLAG_APPEND; 1936 } 1937 if( useSeekResult ){ 1938 pik_flags |= OPFLAG_USESEEKRESULT; 1939 } 1940 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1941 if( !pParse->nested ){ 1942 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1943 } 1944 sqlite3VdbeChangeP5(v, pik_flags); 1945 } 1946 1947 /* 1948 ** Allocate cursors for the pTab table and all its indices and generate 1949 ** code to open and initialized those cursors. 1950 ** 1951 ** The cursor for the object that contains the complete data (normally 1952 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1953 ** ROWID table) is returned in *piDataCur. The first index cursor is 1954 ** returned in *piIdxCur. The number of indices is returned. 1955 ** 1956 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1957 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1958 ** If iBase is negative, then allocate the next available cursor. 1959 ** 1960 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1961 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1962 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1963 ** pTab->pIndex list. 1964 ** 1965 ** If pTab is a virtual table, then this routine is a no-op and the 1966 ** *piDataCur and *piIdxCur values are left uninitialized. 1967 */ 1968 int sqlite3OpenTableAndIndices( 1969 Parse *pParse, /* Parsing context */ 1970 Table *pTab, /* Table to be opened */ 1971 int op, /* OP_OpenRead or OP_OpenWrite */ 1972 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1973 int iBase, /* Use this for the table cursor, if there is one */ 1974 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1975 int *piDataCur, /* Write the database source cursor number here */ 1976 int *piIdxCur /* Write the first index cursor number here */ 1977 ){ 1978 int i; 1979 int iDb; 1980 int iDataCur; 1981 Index *pIdx; 1982 Vdbe *v; 1983 1984 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1985 assert( op==OP_OpenWrite || p5==0 ); 1986 if( IsVirtual(pTab) ){ 1987 /* This routine is a no-op for virtual tables. Leave the output 1988 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1989 ** can detect if they are used by mistake in the caller. */ 1990 return 0; 1991 } 1992 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1993 v = sqlite3GetVdbe(pParse); 1994 assert( v!=0 ); 1995 if( iBase<0 ) iBase = pParse->nTab; 1996 iDataCur = iBase++; 1997 if( piDataCur ) *piDataCur = iDataCur; 1998 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1999 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2000 }else{ 2001 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2002 } 2003 if( piIdxCur ) *piIdxCur = iBase; 2004 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2005 int iIdxCur = iBase++; 2006 assert( pIdx->pSchema==pTab->pSchema ); 2007 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2008 if( piDataCur ) *piDataCur = iIdxCur; 2009 p5 = 0; 2010 } 2011 if( aToOpen==0 || aToOpen[i+1] ){ 2012 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2013 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2014 sqlite3VdbeChangeP5(v, p5); 2015 VdbeComment((v, "%s", pIdx->zName)); 2016 } 2017 } 2018 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2019 return i; 2020 } 2021 2022 2023 #ifdef SQLITE_TEST 2024 /* 2025 ** The following global variable is incremented whenever the 2026 ** transfer optimization is used. This is used for testing 2027 ** purposes only - to make sure the transfer optimization really 2028 ** is happening when it is supposed to. 2029 */ 2030 int sqlite3_xferopt_count; 2031 #endif /* SQLITE_TEST */ 2032 2033 2034 #ifndef SQLITE_OMIT_XFER_OPT 2035 /* 2036 ** Check to see if index pSrc is compatible as a source of data 2037 ** for index pDest in an insert transfer optimization. The rules 2038 ** for a compatible index: 2039 ** 2040 ** * The index is over the same set of columns 2041 ** * The same DESC and ASC markings occurs on all columns 2042 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2043 ** * The same collating sequence on each column 2044 ** * The index has the exact same WHERE clause 2045 */ 2046 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2047 int i; 2048 assert( pDest && pSrc ); 2049 assert( pDest->pTable!=pSrc->pTable ); 2050 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2051 return 0; /* Different number of columns */ 2052 } 2053 if( pDest->onError!=pSrc->onError ){ 2054 return 0; /* Different conflict resolution strategies */ 2055 } 2056 for(i=0; i<pSrc->nKeyCol; i++){ 2057 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2058 return 0; /* Different columns indexed */ 2059 } 2060 if( pSrc->aiColumn[i]==XN_EXPR ){ 2061 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2062 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2063 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2064 return 0; /* Different expressions in the index */ 2065 } 2066 } 2067 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2068 return 0; /* Different sort orders */ 2069 } 2070 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2071 return 0; /* Different collating sequences */ 2072 } 2073 } 2074 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2075 return 0; /* Different WHERE clauses */ 2076 } 2077 2078 /* If no test above fails then the indices must be compatible */ 2079 return 1; 2080 } 2081 2082 /* 2083 ** Attempt the transfer optimization on INSERTs of the form 2084 ** 2085 ** INSERT INTO tab1 SELECT * FROM tab2; 2086 ** 2087 ** The xfer optimization transfers raw records from tab2 over to tab1. 2088 ** Columns are not decoded and reassembled, which greatly improves 2089 ** performance. Raw index records are transferred in the same way. 2090 ** 2091 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2092 ** There are lots of rules for determining compatibility - see comments 2093 ** embedded in the code for details. 2094 ** 2095 ** This routine returns TRUE if the optimization is guaranteed to be used. 2096 ** Sometimes the xfer optimization will only work if the destination table 2097 ** is empty - a factor that can only be determined at run-time. In that 2098 ** case, this routine generates code for the xfer optimization but also 2099 ** does a test to see if the destination table is empty and jumps over the 2100 ** xfer optimization code if the test fails. In that case, this routine 2101 ** returns FALSE so that the caller will know to go ahead and generate 2102 ** an unoptimized transfer. This routine also returns FALSE if there 2103 ** is no chance that the xfer optimization can be applied. 2104 ** 2105 ** This optimization is particularly useful at making VACUUM run faster. 2106 */ 2107 static int xferOptimization( 2108 Parse *pParse, /* Parser context */ 2109 Table *pDest, /* The table we are inserting into */ 2110 Select *pSelect, /* A SELECT statement to use as the data source */ 2111 int onError, /* How to handle constraint errors */ 2112 int iDbDest /* The database of pDest */ 2113 ){ 2114 sqlite3 *db = pParse->db; 2115 ExprList *pEList; /* The result set of the SELECT */ 2116 Table *pSrc; /* The table in the FROM clause of SELECT */ 2117 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2118 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2119 int i; /* Loop counter */ 2120 int iDbSrc; /* The database of pSrc */ 2121 int iSrc, iDest; /* Cursors from source and destination */ 2122 int addr1, addr2; /* Loop addresses */ 2123 int emptyDestTest = 0; /* Address of test for empty pDest */ 2124 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2125 Vdbe *v; /* The VDBE we are building */ 2126 int regAutoinc; /* Memory register used by AUTOINC */ 2127 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2128 int regData, regRowid; /* Registers holding data and rowid */ 2129 2130 if( pSelect==0 ){ 2131 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2132 } 2133 if( pParse->pWith || pSelect->pWith ){ 2134 /* Do not attempt to process this query if there are an WITH clauses 2135 ** attached to it. Proceeding may generate a false "no such table: xxx" 2136 ** error if pSelect reads from a CTE named "xxx". */ 2137 return 0; 2138 } 2139 if( sqlite3TriggerList(pParse, pDest) ){ 2140 return 0; /* tab1 must not have triggers */ 2141 } 2142 #ifndef SQLITE_OMIT_VIRTUALTABLE 2143 if( IsVirtual(pDest) ){ 2144 return 0; /* tab1 must not be a virtual table */ 2145 } 2146 #endif 2147 if( onError==OE_Default ){ 2148 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2149 if( onError==OE_Default ) onError = OE_Abort; 2150 } 2151 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2152 if( pSelect->pSrc->nSrc!=1 ){ 2153 return 0; /* FROM clause must have exactly one term */ 2154 } 2155 if( pSelect->pSrc->a[0].pSelect ){ 2156 return 0; /* FROM clause cannot contain a subquery */ 2157 } 2158 if( pSelect->pWhere ){ 2159 return 0; /* SELECT may not have a WHERE clause */ 2160 } 2161 if( pSelect->pOrderBy ){ 2162 return 0; /* SELECT may not have an ORDER BY clause */ 2163 } 2164 /* Do not need to test for a HAVING clause. If HAVING is present but 2165 ** there is no ORDER BY, we will get an error. */ 2166 if( pSelect->pGroupBy ){ 2167 return 0; /* SELECT may not have a GROUP BY clause */ 2168 } 2169 if( pSelect->pLimit ){ 2170 return 0; /* SELECT may not have a LIMIT clause */ 2171 } 2172 if( pSelect->pPrior ){ 2173 return 0; /* SELECT may not be a compound query */ 2174 } 2175 if( pSelect->selFlags & SF_Distinct ){ 2176 return 0; /* SELECT may not be DISTINCT */ 2177 } 2178 pEList = pSelect->pEList; 2179 assert( pEList!=0 ); 2180 if( pEList->nExpr!=1 ){ 2181 return 0; /* The result set must have exactly one column */ 2182 } 2183 assert( pEList->a[0].pExpr ); 2184 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2185 return 0; /* The result set must be the special operator "*" */ 2186 } 2187 2188 /* At this point we have established that the statement is of the 2189 ** correct syntactic form to participate in this optimization. Now 2190 ** we have to check the semantics. 2191 */ 2192 pItem = pSelect->pSrc->a; 2193 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2194 if( pSrc==0 ){ 2195 return 0; /* FROM clause does not contain a real table */ 2196 } 2197 if( pSrc==pDest ){ 2198 return 0; /* tab1 and tab2 may not be the same table */ 2199 } 2200 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2201 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2202 } 2203 #ifndef SQLITE_OMIT_VIRTUALTABLE 2204 if( IsVirtual(pSrc) ){ 2205 return 0; /* tab2 must not be a virtual table */ 2206 } 2207 #endif 2208 if( pSrc->pSelect ){ 2209 return 0; /* tab2 may not be a view */ 2210 } 2211 if( pDest->nCol!=pSrc->nCol ){ 2212 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2213 } 2214 if( pDest->iPKey!=pSrc->iPKey ){ 2215 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2216 } 2217 for(i=0; i<pDest->nCol; i++){ 2218 Column *pDestCol = &pDest->aCol[i]; 2219 Column *pSrcCol = &pSrc->aCol[i]; 2220 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2221 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2222 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2223 ){ 2224 return 0; /* Neither table may have __hidden__ columns */ 2225 } 2226 #endif 2227 if( pDestCol->affinity!=pSrcCol->affinity ){ 2228 return 0; /* Affinity must be the same on all columns */ 2229 } 2230 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2231 return 0; /* Collating sequence must be the same on all columns */ 2232 } 2233 if( pDestCol->notNull && !pSrcCol->notNull ){ 2234 return 0; /* tab2 must be NOT NULL if tab1 is */ 2235 } 2236 /* Default values for second and subsequent columns need to match. */ 2237 if( i>0 ){ 2238 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2239 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2240 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2241 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2242 pSrcCol->pDflt->u.zToken)!=0) 2243 ){ 2244 return 0; /* Default values must be the same for all columns */ 2245 } 2246 } 2247 } 2248 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2249 if( IsUniqueIndex(pDestIdx) ){ 2250 destHasUniqueIdx = 1; 2251 } 2252 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2253 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2254 } 2255 if( pSrcIdx==0 ){ 2256 return 0; /* pDestIdx has no corresponding index in pSrc */ 2257 } 2258 } 2259 #ifndef SQLITE_OMIT_CHECK 2260 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2261 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2262 } 2263 #endif 2264 #ifndef SQLITE_OMIT_FOREIGN_KEY 2265 /* Disallow the transfer optimization if the destination table constains 2266 ** any foreign key constraints. This is more restrictive than necessary. 2267 ** But the main beneficiary of the transfer optimization is the VACUUM 2268 ** command, and the VACUUM command disables foreign key constraints. So 2269 ** the extra complication to make this rule less restrictive is probably 2270 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2271 */ 2272 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2273 return 0; 2274 } 2275 #endif 2276 if( (db->flags & SQLITE_CountRows)!=0 ){ 2277 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2278 } 2279 2280 /* If we get this far, it means that the xfer optimization is at 2281 ** least a possibility, though it might only work if the destination 2282 ** table (tab1) is initially empty. 2283 */ 2284 #ifdef SQLITE_TEST 2285 sqlite3_xferopt_count++; 2286 #endif 2287 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2288 v = sqlite3GetVdbe(pParse); 2289 sqlite3CodeVerifySchema(pParse, iDbSrc); 2290 iSrc = pParse->nTab++; 2291 iDest = pParse->nTab++; 2292 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2293 regData = sqlite3GetTempReg(pParse); 2294 regRowid = sqlite3GetTempReg(pParse); 2295 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2296 assert( HasRowid(pDest) || destHasUniqueIdx ); 2297 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2298 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2299 || destHasUniqueIdx /* (2) */ 2300 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2301 )){ 2302 /* In some circumstances, we are able to run the xfer optimization 2303 ** only if the destination table is initially empty. Unless the 2304 ** DBFLAG_Vacuum flag is set, this block generates code to make 2305 ** that determination. If DBFLAG_Vacuum is set, then the destination 2306 ** table is always empty. 2307 ** 2308 ** Conditions under which the destination must be empty: 2309 ** 2310 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2311 ** (If the destination is not initially empty, the rowid fields 2312 ** of index entries might need to change.) 2313 ** 2314 ** (2) The destination has a unique index. (The xfer optimization 2315 ** is unable to test uniqueness.) 2316 ** 2317 ** (3) onError is something other than OE_Abort and OE_Rollback. 2318 */ 2319 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2320 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2321 sqlite3VdbeJumpHere(v, addr1); 2322 } 2323 if( HasRowid(pSrc) ){ 2324 u8 insFlags; 2325 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2326 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2327 if( pDest->iPKey>=0 ){ 2328 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2329 sqlite3VdbeVerifyAbortable(v, onError); 2330 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2331 VdbeCoverage(v); 2332 sqlite3RowidConstraint(pParse, onError, pDest); 2333 sqlite3VdbeJumpHere(v, addr2); 2334 autoIncStep(pParse, regAutoinc, regRowid); 2335 }else if( pDest->pIndex==0 ){ 2336 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2337 }else{ 2338 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2339 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2340 } 2341 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2342 if( db->mDbFlags & DBFLAG_Vacuum ){ 2343 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2344 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2345 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2346 }else{ 2347 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2348 } 2349 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2350 (char*)pDest, P4_TABLE); 2351 sqlite3VdbeChangeP5(v, insFlags); 2352 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2353 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2354 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2355 }else{ 2356 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2357 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2358 } 2359 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2360 u8 idxInsFlags = 0; 2361 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2362 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2363 } 2364 assert( pSrcIdx ); 2365 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2366 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2367 VdbeComment((v, "%s", pSrcIdx->zName)); 2368 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2369 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2370 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2371 VdbeComment((v, "%s", pDestIdx->zName)); 2372 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2373 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2374 if( db->mDbFlags & DBFLAG_Vacuum ){ 2375 /* This INSERT command is part of a VACUUM operation, which guarantees 2376 ** that the destination table is empty. If all indexed columns use 2377 ** collation sequence BINARY, then it can also be assumed that the 2378 ** index will be populated by inserting keys in strictly sorted 2379 ** order. In this case, instead of seeking within the b-tree as part 2380 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2381 ** OP_IdxInsert to seek to the point within the b-tree where each key 2382 ** should be inserted. This is faster. 2383 ** 2384 ** If any of the indexed columns use a collation sequence other than 2385 ** BINARY, this optimization is disabled. This is because the user 2386 ** might change the definition of a collation sequence and then run 2387 ** a VACUUM command. In that case keys may not be written in strictly 2388 ** sorted order. */ 2389 for(i=0; i<pSrcIdx->nColumn; i++){ 2390 const char *zColl = pSrcIdx->azColl[i]; 2391 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2392 } 2393 if( i==pSrcIdx->nColumn ){ 2394 idxInsFlags = OPFLAG_USESEEKRESULT; 2395 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2396 } 2397 } 2398 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2399 idxInsFlags |= OPFLAG_NCHANGE; 2400 } 2401 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2402 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2403 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2404 sqlite3VdbeJumpHere(v, addr1); 2405 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2406 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2407 } 2408 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2409 sqlite3ReleaseTempReg(pParse, regRowid); 2410 sqlite3ReleaseTempReg(pParse, regData); 2411 if( emptyDestTest ){ 2412 sqlite3AutoincrementEnd(pParse); 2413 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2414 sqlite3VdbeJumpHere(v, emptyDestTest); 2415 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2416 return 0; 2417 }else{ 2418 return 1; 2419 } 2420 } 2421 #endif /* SQLITE_OMIT_XFER_OPT */ 2422