1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 204 ** table. (Also return zero when doing a VACUUM since we do not want to 205 ** update the AUTOINCREMENT counters during a VACUUM.) 206 ** 207 ** There is at most one AutoincInfo structure per table even if the 208 ** same table is autoincremented multiple times due to inserts within 209 ** triggers. A new AutoincInfo structure is created if this is the 210 ** first use of table pTab. On 2nd and subsequent uses, the original 211 ** AutoincInfo structure is used. 212 ** 213 ** Four consecutive registers are allocated: 214 ** 215 ** (1) The name of the pTab table. 216 ** (2) The maximum ROWID of pTab. 217 ** (3) The rowid in sqlite_sequence of pTab 218 ** (4) The original value of the max ROWID in pTab, or NULL if none 219 ** 220 ** The 2nd register is the one that is returned. That is all the 221 ** insert routine needs to know about. 222 */ 223 static int autoIncBegin( 224 Parse *pParse, /* Parsing context */ 225 int iDb, /* Index of the database holding pTab */ 226 Table *pTab /* The table we are writing to */ 227 ){ 228 int memId = 0; /* Register holding maximum rowid */ 229 assert( pParse->db->aDb[iDb].pSchema!=0 ); 230 if( (pTab->tabFlags & TF_Autoincrement)!=0 231 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 232 ){ 233 Parse *pToplevel = sqlite3ParseToplevel(pParse); 234 AutoincInfo *pInfo; 235 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 236 237 /* Verify that the sqlite_sequence table exists and is an ordinary 238 ** rowid table with exactly two columns. 239 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 240 if( pSeqTab==0 241 || !HasRowid(pSeqTab) 242 || IsVirtual(pSeqTab) 243 || pSeqTab->nCol!=2 244 ){ 245 pParse->nErr++; 246 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 247 return 0; 248 } 249 250 pInfo = pToplevel->pAinc; 251 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 252 if( pInfo==0 ){ 253 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 254 if( pInfo==0 ) return 0; 255 pInfo->pNext = pToplevel->pAinc; 256 pToplevel->pAinc = pInfo; 257 pInfo->pTab = pTab; 258 pInfo->iDb = iDb; 259 pToplevel->nMem++; /* Register to hold name of table */ 260 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 261 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 262 } 263 memId = pInfo->regCtr; 264 } 265 return memId; 266 } 267 268 /* 269 ** This routine generates code that will initialize all of the 270 ** register used by the autoincrement tracker. 271 */ 272 void sqlite3AutoincrementBegin(Parse *pParse){ 273 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 274 sqlite3 *db = pParse->db; /* The database connection */ 275 Db *pDb; /* Database only autoinc table */ 276 int memId; /* Register holding max rowid */ 277 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 278 279 /* This routine is never called during trigger-generation. It is 280 ** only called from the top-level */ 281 assert( pParse->pTriggerTab==0 ); 282 assert( sqlite3IsToplevel(pParse) ); 283 284 assert( v ); /* We failed long ago if this is not so */ 285 for(p = pParse->pAinc; p; p = p->pNext){ 286 static const int iLn = VDBE_OFFSET_LINENO(2); 287 static const VdbeOpList autoInc[] = { 288 /* 0 */ {OP_Null, 0, 0, 0}, 289 /* 1 */ {OP_Rewind, 0, 10, 0}, 290 /* 2 */ {OP_Column, 0, 0, 0}, 291 /* 3 */ {OP_Ne, 0, 9, 0}, 292 /* 4 */ {OP_Rowid, 0, 0, 0}, 293 /* 5 */ {OP_Column, 0, 1, 0}, 294 /* 6 */ {OP_AddImm, 0, 0, 0}, 295 /* 7 */ {OP_Copy, 0, 0, 0}, 296 /* 8 */ {OP_Goto, 0, 11, 0}, 297 /* 9 */ {OP_Next, 0, 2, 0}, 298 /* 10 */ {OP_Integer, 0, 0, 0}, 299 /* 11 */ {OP_Close, 0, 0, 0} 300 }; 301 VdbeOp *aOp; 302 pDb = &db->aDb[p->iDb]; 303 memId = p->regCtr; 304 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 305 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 306 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 307 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 308 if( aOp==0 ) break; 309 aOp[0].p2 = memId; 310 aOp[0].p3 = memId+2; 311 aOp[2].p3 = memId; 312 aOp[3].p1 = memId-1; 313 aOp[3].p3 = memId; 314 aOp[3].p5 = SQLITE_JUMPIFNULL; 315 aOp[4].p2 = memId+1; 316 aOp[5].p3 = memId; 317 aOp[6].p1 = memId; 318 aOp[7].p2 = memId+2; 319 aOp[7].p1 = memId; 320 aOp[10].p2 = memId; 321 } 322 } 323 324 /* 325 ** Update the maximum rowid for an autoincrement calculation. 326 ** 327 ** This routine should be called when the regRowid register holds a 328 ** new rowid that is about to be inserted. If that new rowid is 329 ** larger than the maximum rowid in the memId memory cell, then the 330 ** memory cell is updated. 331 */ 332 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 333 if( memId>0 ){ 334 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 335 } 336 } 337 338 /* 339 ** This routine generates the code needed to write autoincrement 340 ** maximum rowid values back into the sqlite_sequence register. 341 ** Every statement that might do an INSERT into an autoincrement 342 ** table (either directly or through triggers) needs to call this 343 ** routine just before the "exit" code. 344 */ 345 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 346 AutoincInfo *p; 347 Vdbe *v = pParse->pVdbe; 348 sqlite3 *db = pParse->db; 349 350 assert( v ); 351 for(p = pParse->pAinc; p; p = p->pNext){ 352 static const int iLn = VDBE_OFFSET_LINENO(2); 353 static const VdbeOpList autoIncEnd[] = { 354 /* 0 */ {OP_NotNull, 0, 2, 0}, 355 /* 1 */ {OP_NewRowid, 0, 0, 0}, 356 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 357 /* 3 */ {OP_Insert, 0, 0, 0}, 358 /* 4 */ {OP_Close, 0, 0, 0} 359 }; 360 VdbeOp *aOp; 361 Db *pDb = &db->aDb[p->iDb]; 362 int iRec; 363 int memId = p->regCtr; 364 365 iRec = sqlite3GetTempReg(pParse); 366 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 367 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 368 VdbeCoverage(v); 369 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 370 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 371 if( aOp==0 ) break; 372 aOp[0].p1 = memId+1; 373 aOp[1].p2 = memId+1; 374 aOp[2].p1 = memId-1; 375 aOp[2].p3 = iRec; 376 aOp[3].p2 = iRec; 377 aOp[3].p3 = memId+1; 378 aOp[3].p5 = OPFLAG_APPEND; 379 sqlite3ReleaseTempReg(pParse, iRec); 380 } 381 } 382 void sqlite3AutoincrementEnd(Parse *pParse){ 383 if( pParse->pAinc ) autoIncrementEnd(pParse); 384 } 385 #else 386 /* 387 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 388 ** above are all no-ops 389 */ 390 # define autoIncBegin(A,B,C) (0) 391 # define autoIncStep(A,B,C) 392 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 393 394 395 /* Forward declaration */ 396 static int xferOptimization( 397 Parse *pParse, /* Parser context */ 398 Table *pDest, /* The table we are inserting into */ 399 Select *pSelect, /* A SELECT statement to use as the data source */ 400 int onError, /* How to handle constraint errors */ 401 int iDbDest /* The database of pDest */ 402 ); 403 404 /* 405 ** This routine is called to handle SQL of the following forms: 406 ** 407 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 408 ** insert into TABLE (IDLIST) select 409 ** insert into TABLE (IDLIST) default values 410 ** 411 ** The IDLIST following the table name is always optional. If omitted, 412 ** then a list of all (non-hidden) columns for the table is substituted. 413 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 414 ** is omitted. 415 ** 416 ** For the pSelect parameter holds the values to be inserted for the 417 ** first two forms shown above. A VALUES clause is really just short-hand 418 ** for a SELECT statement that omits the FROM clause and everything else 419 ** that follows. If the pSelect parameter is NULL, that means that the 420 ** DEFAULT VALUES form of the INSERT statement is intended. 421 ** 422 ** The code generated follows one of four templates. For a simple 423 ** insert with data coming from a single-row VALUES clause, the code executes 424 ** once straight down through. Pseudo-code follows (we call this 425 ** the "1st template"): 426 ** 427 ** open write cursor to <table> and its indices 428 ** put VALUES clause expressions into registers 429 ** write the resulting record into <table> 430 ** cleanup 431 ** 432 ** The three remaining templates assume the statement is of the form 433 ** 434 ** INSERT INTO <table> SELECT ... 435 ** 436 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 437 ** in other words if the SELECT pulls all columns from a single table 438 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 439 ** if <table2> and <table1> are distinct tables but have identical 440 ** schemas, including all the same indices, then a special optimization 441 ** is invoked that copies raw records from <table2> over to <table1>. 442 ** See the xferOptimization() function for the implementation of this 443 ** template. This is the 2nd template. 444 ** 445 ** open a write cursor to <table> 446 ** open read cursor on <table2> 447 ** transfer all records in <table2> over to <table> 448 ** close cursors 449 ** foreach index on <table> 450 ** open a write cursor on the <table> index 451 ** open a read cursor on the corresponding <table2> index 452 ** transfer all records from the read to the write cursors 453 ** close cursors 454 ** end foreach 455 ** 456 ** The 3rd template is for when the second template does not apply 457 ** and the SELECT clause does not read from <table> at any time. 458 ** The generated code follows this template: 459 ** 460 ** X <- A 461 ** goto B 462 ** A: setup for the SELECT 463 ** loop over the rows in the SELECT 464 ** load values into registers R..R+n 465 ** yield X 466 ** end loop 467 ** cleanup after the SELECT 468 ** end-coroutine X 469 ** B: open write cursor to <table> and its indices 470 ** C: yield X, at EOF goto D 471 ** insert the select result into <table> from R..R+n 472 ** goto C 473 ** D: cleanup 474 ** 475 ** The 4th template is used if the insert statement takes its 476 ** values from a SELECT but the data is being inserted into a table 477 ** that is also read as part of the SELECT. In the third form, 478 ** we have to use an intermediate table to store the results of 479 ** the select. The template is like this: 480 ** 481 ** X <- A 482 ** goto B 483 ** A: setup for the SELECT 484 ** loop over the tables in the SELECT 485 ** load value into register R..R+n 486 ** yield X 487 ** end loop 488 ** cleanup after the SELECT 489 ** end co-routine R 490 ** B: open temp table 491 ** L: yield X, at EOF goto M 492 ** insert row from R..R+n into temp table 493 ** goto L 494 ** M: open write cursor to <table> and its indices 495 ** rewind temp table 496 ** C: loop over rows of intermediate table 497 ** transfer values form intermediate table into <table> 498 ** end loop 499 ** D: cleanup 500 */ 501 void sqlite3Insert( 502 Parse *pParse, /* Parser context */ 503 SrcList *pTabList, /* Name of table into which we are inserting */ 504 Select *pSelect, /* A SELECT statement to use as the data source */ 505 IdList *pColumn, /* Column names corresponding to IDLIST. */ 506 int onError, /* How to handle constraint errors */ 507 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 508 ){ 509 sqlite3 *db; /* The main database structure */ 510 Table *pTab; /* The table to insert into. aka TABLE */ 511 int i, j; /* Loop counters */ 512 Vdbe *v; /* Generate code into this virtual machine */ 513 Index *pIdx; /* For looping over indices of the table */ 514 int nColumn; /* Number of columns in the data */ 515 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 516 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 517 int iIdxCur = 0; /* First index cursor */ 518 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 519 int endOfLoop; /* Label for the end of the insertion loop */ 520 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 521 int addrInsTop = 0; /* Jump to label "D" */ 522 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 523 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 524 int iDb; /* Index of database holding TABLE */ 525 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 526 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 527 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 528 u8 bIdListInOrder; /* True if IDLIST is in table order */ 529 ExprList *pList = 0; /* List of VALUES() to be inserted */ 530 531 /* Register allocations */ 532 int regFromSelect = 0;/* Base register for data coming from SELECT */ 533 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 534 int regRowCount = 0; /* Memory cell used for the row counter */ 535 int regIns; /* Block of regs holding rowid+data being inserted */ 536 int regRowid; /* registers holding insert rowid */ 537 int regData; /* register holding first column to insert */ 538 int *aRegIdx = 0; /* One register allocated to each index */ 539 540 #ifndef SQLITE_OMIT_TRIGGER 541 int isView; /* True if attempting to insert into a view */ 542 Trigger *pTrigger; /* List of triggers on pTab, if required */ 543 int tmask; /* Mask of trigger times */ 544 #endif 545 546 db = pParse->db; 547 if( pParse->nErr || db->mallocFailed ){ 548 goto insert_cleanup; 549 } 550 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 551 552 /* If the Select object is really just a simple VALUES() list with a 553 ** single row (the common case) then keep that one row of values 554 ** and discard the other (unused) parts of the pSelect object 555 */ 556 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 557 pList = pSelect->pEList; 558 pSelect->pEList = 0; 559 sqlite3SelectDelete(db, pSelect); 560 pSelect = 0; 561 } 562 563 /* Locate the table into which we will be inserting new information. 564 */ 565 assert( pTabList->nSrc==1 ); 566 pTab = sqlite3SrcListLookup(pParse, pTabList); 567 if( pTab==0 ){ 568 goto insert_cleanup; 569 } 570 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 571 assert( iDb<db->nDb ); 572 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 573 db->aDb[iDb].zDbSName) ){ 574 goto insert_cleanup; 575 } 576 withoutRowid = !HasRowid(pTab); 577 578 /* Figure out if we have any triggers and if the table being 579 ** inserted into is a view 580 */ 581 #ifndef SQLITE_OMIT_TRIGGER 582 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 583 isView = pTab->pSelect!=0; 584 #else 585 # define pTrigger 0 586 # define tmask 0 587 # define isView 0 588 #endif 589 #ifdef SQLITE_OMIT_VIEW 590 # undef isView 591 # define isView 0 592 #endif 593 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 594 595 /* If pTab is really a view, make sure it has been initialized. 596 ** ViewGetColumnNames() is a no-op if pTab is not a view. 597 */ 598 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 599 goto insert_cleanup; 600 } 601 602 /* Cannot insert into a read-only table. 603 */ 604 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 605 goto insert_cleanup; 606 } 607 608 /* Allocate a VDBE 609 */ 610 v = sqlite3GetVdbe(pParse); 611 if( v==0 ) goto insert_cleanup; 612 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 613 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 614 615 #ifndef SQLITE_OMIT_XFER_OPT 616 /* If the statement is of the form 617 ** 618 ** INSERT INTO <table1> SELECT * FROM <table2>; 619 ** 620 ** Then special optimizations can be applied that make the transfer 621 ** very fast and which reduce fragmentation of indices. 622 ** 623 ** This is the 2nd template. 624 */ 625 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 626 assert( !pTrigger ); 627 assert( pList==0 ); 628 goto insert_end; 629 } 630 #endif /* SQLITE_OMIT_XFER_OPT */ 631 632 /* If this is an AUTOINCREMENT table, look up the sequence number in the 633 ** sqlite_sequence table and store it in memory cell regAutoinc. 634 */ 635 regAutoinc = autoIncBegin(pParse, iDb, pTab); 636 637 /* Allocate registers for holding the rowid of the new row, 638 ** the content of the new row, and the assembled row record. 639 */ 640 regRowid = regIns = pParse->nMem+1; 641 pParse->nMem += pTab->nCol + 1; 642 if( IsVirtual(pTab) ){ 643 regRowid++; 644 pParse->nMem++; 645 } 646 regData = regRowid+1; 647 648 /* If the INSERT statement included an IDLIST term, then make sure 649 ** all elements of the IDLIST really are columns of the table and 650 ** remember the column indices. 651 ** 652 ** If the table has an INTEGER PRIMARY KEY column and that column 653 ** is named in the IDLIST, then record in the ipkColumn variable 654 ** the index into IDLIST of the primary key column. ipkColumn is 655 ** the index of the primary key as it appears in IDLIST, not as 656 ** is appears in the original table. (The index of the INTEGER 657 ** PRIMARY KEY in the original table is pTab->iPKey.) 658 */ 659 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 660 if( pColumn ){ 661 for(i=0; i<pColumn->nId; i++){ 662 pColumn->a[i].idx = -1; 663 } 664 for(i=0; i<pColumn->nId; i++){ 665 for(j=0; j<pTab->nCol; j++){ 666 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 667 pColumn->a[i].idx = j; 668 if( i!=j ) bIdListInOrder = 0; 669 if( j==pTab->iPKey ){ 670 ipkColumn = i; assert( !withoutRowid ); 671 } 672 break; 673 } 674 } 675 if( j>=pTab->nCol ){ 676 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 677 ipkColumn = i; 678 bIdListInOrder = 0; 679 }else{ 680 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 681 pTabList, 0, pColumn->a[i].zName); 682 pParse->checkSchema = 1; 683 goto insert_cleanup; 684 } 685 } 686 } 687 } 688 689 /* Figure out how many columns of data are supplied. If the data 690 ** is coming from a SELECT statement, then generate a co-routine that 691 ** produces a single row of the SELECT on each invocation. The 692 ** co-routine is the common header to the 3rd and 4th templates. 693 */ 694 if( pSelect ){ 695 /* Data is coming from a SELECT or from a multi-row VALUES clause. 696 ** Generate a co-routine to run the SELECT. */ 697 int regYield; /* Register holding co-routine entry-point */ 698 int addrTop; /* Top of the co-routine */ 699 int rc; /* Result code */ 700 701 regYield = ++pParse->nMem; 702 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 703 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 704 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 705 dest.iSdst = bIdListInOrder ? regData : 0; 706 dest.nSdst = pTab->nCol; 707 rc = sqlite3Select(pParse, pSelect, &dest); 708 regFromSelect = dest.iSdst; 709 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 710 sqlite3VdbeEndCoroutine(v, regYield); 711 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 712 assert( pSelect->pEList ); 713 nColumn = pSelect->pEList->nExpr; 714 715 /* Set useTempTable to TRUE if the result of the SELECT statement 716 ** should be written into a temporary table (template 4). Set to 717 ** FALSE if each output row of the SELECT can be written directly into 718 ** the destination table (template 3). 719 ** 720 ** A temp table must be used if the table being updated is also one 721 ** of the tables being read by the SELECT statement. Also use a 722 ** temp table in the case of row triggers. 723 */ 724 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 725 useTempTable = 1; 726 } 727 728 if( useTempTable ){ 729 /* Invoke the coroutine to extract information from the SELECT 730 ** and add it to a transient table srcTab. The code generated 731 ** here is from the 4th template: 732 ** 733 ** B: open temp table 734 ** L: yield X, goto M at EOF 735 ** insert row from R..R+n into temp table 736 ** goto L 737 ** M: ... 738 */ 739 int regRec; /* Register to hold packed record */ 740 int regTempRowid; /* Register to hold temp table ROWID */ 741 int addrL; /* Label "L" */ 742 743 srcTab = pParse->nTab++; 744 regRec = sqlite3GetTempReg(pParse); 745 regTempRowid = sqlite3GetTempReg(pParse); 746 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 747 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 748 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 749 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 750 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 751 sqlite3VdbeGoto(v, addrL); 752 sqlite3VdbeJumpHere(v, addrL); 753 sqlite3ReleaseTempReg(pParse, regRec); 754 sqlite3ReleaseTempReg(pParse, regTempRowid); 755 } 756 }else{ 757 /* This is the case if the data for the INSERT is coming from a 758 ** single-row VALUES clause 759 */ 760 NameContext sNC; 761 memset(&sNC, 0, sizeof(sNC)); 762 sNC.pParse = pParse; 763 srcTab = -1; 764 assert( useTempTable==0 ); 765 if( pList ){ 766 nColumn = pList->nExpr; 767 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 768 goto insert_cleanup; 769 } 770 }else{ 771 nColumn = 0; 772 } 773 } 774 775 /* If there is no IDLIST term but the table has an integer primary 776 ** key, the set the ipkColumn variable to the integer primary key 777 ** column index in the original table definition. 778 */ 779 if( pColumn==0 && nColumn>0 ){ 780 ipkColumn = pTab->iPKey; 781 } 782 783 /* Make sure the number of columns in the source data matches the number 784 ** of columns to be inserted into the table. 785 */ 786 for(i=0; i<pTab->nCol; i++){ 787 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 788 } 789 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 790 sqlite3ErrorMsg(pParse, 791 "table %S has %d columns but %d values were supplied", 792 pTabList, 0, pTab->nCol-nHidden, nColumn); 793 goto insert_cleanup; 794 } 795 if( pColumn!=0 && nColumn!=pColumn->nId ){ 796 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 797 goto insert_cleanup; 798 } 799 800 /* Initialize the count of rows to be inserted 801 */ 802 if( (db->flags & SQLITE_CountRows)!=0 803 && !pParse->nested 804 && !pParse->pTriggerTab 805 ){ 806 regRowCount = ++pParse->nMem; 807 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 808 } 809 810 /* If this is not a view, open the table and and all indices */ 811 if( !isView ){ 812 int nIdx; 813 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 814 &iDataCur, &iIdxCur); 815 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 816 if( aRegIdx==0 ){ 817 goto insert_cleanup; 818 } 819 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 820 assert( pIdx ); 821 aRegIdx[i] = ++pParse->nMem; 822 pParse->nMem += pIdx->nColumn; 823 } 824 } 825 #ifndef SQLITE_OMIT_UPSERT 826 if( pUpsert ){ 827 pTabList->a[0].iCursor = iDataCur; 828 pUpsert->pUpsertSrc = pTabList; 829 pUpsert->regData = regData; 830 pUpsert->iDataCur = iDataCur; 831 pUpsert->iIdxCur = iIdxCur; 832 if( pUpsert->pUpsertTarget ){ 833 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 834 } 835 } 836 #endif 837 838 839 /* This is the top of the main insertion loop */ 840 if( useTempTable ){ 841 /* This block codes the top of loop only. The complete loop is the 842 ** following pseudocode (template 4): 843 ** 844 ** rewind temp table, if empty goto D 845 ** C: loop over rows of intermediate table 846 ** transfer values form intermediate table into <table> 847 ** end loop 848 ** D: ... 849 */ 850 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 851 addrCont = sqlite3VdbeCurrentAddr(v); 852 }else if( pSelect ){ 853 /* This block codes the top of loop only. The complete loop is the 854 ** following pseudocode (template 3): 855 ** 856 ** C: yield X, at EOF goto D 857 ** insert the select result into <table> from R..R+n 858 ** goto C 859 ** D: ... 860 */ 861 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 862 VdbeCoverage(v); 863 } 864 865 /* Run the BEFORE and INSTEAD OF triggers, if there are any 866 */ 867 endOfLoop = sqlite3VdbeMakeLabel(v); 868 if( tmask & TRIGGER_BEFORE ){ 869 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 870 871 /* build the NEW.* reference row. Note that if there is an INTEGER 872 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 873 ** translated into a unique ID for the row. But on a BEFORE trigger, 874 ** we do not know what the unique ID will be (because the insert has 875 ** not happened yet) so we substitute a rowid of -1 876 */ 877 if( ipkColumn<0 ){ 878 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 879 }else{ 880 int addr1; 881 assert( !withoutRowid ); 882 if( useTempTable ){ 883 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 884 }else{ 885 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 886 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 887 } 888 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 889 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 890 sqlite3VdbeJumpHere(v, addr1); 891 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 892 } 893 894 /* Cannot have triggers on a virtual table. If it were possible, 895 ** this block would have to account for hidden column. 896 */ 897 assert( !IsVirtual(pTab) ); 898 899 /* Create the new column data 900 */ 901 for(i=j=0; i<pTab->nCol; i++){ 902 if( pColumn ){ 903 for(j=0; j<pColumn->nId; j++){ 904 if( pColumn->a[j].idx==i ) break; 905 } 906 } 907 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 908 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 909 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 910 }else if( useTempTable ){ 911 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 912 }else{ 913 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 914 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 915 } 916 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 917 } 918 919 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 920 ** do not attempt any conversions before assembling the record. 921 ** If this is a real table, attempt conversions as required by the 922 ** table column affinities. 923 */ 924 if( !isView ){ 925 sqlite3TableAffinity(v, pTab, regCols+1); 926 } 927 928 /* Fire BEFORE or INSTEAD OF triggers */ 929 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 930 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 931 932 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 933 } 934 935 /* Compute the content of the next row to insert into a range of 936 ** registers beginning at regIns. 937 */ 938 if( !isView ){ 939 if( IsVirtual(pTab) ){ 940 /* The row that the VUpdate opcode will delete: none */ 941 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 942 } 943 if( ipkColumn>=0 ){ 944 if( useTempTable ){ 945 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 946 }else if( pSelect ){ 947 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 948 }else{ 949 VdbeOp *pOp; 950 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 951 pOp = sqlite3VdbeGetOp(v, -1); 952 assert( pOp!=0 ); 953 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 954 appendFlag = 1; 955 pOp->opcode = OP_NewRowid; 956 pOp->p1 = iDataCur; 957 pOp->p2 = regRowid; 958 pOp->p3 = regAutoinc; 959 } 960 } 961 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 962 ** to generate a unique primary key value. 963 */ 964 if( !appendFlag ){ 965 int addr1; 966 if( !IsVirtual(pTab) ){ 967 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 968 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 969 sqlite3VdbeJumpHere(v, addr1); 970 }else{ 971 addr1 = sqlite3VdbeCurrentAddr(v); 972 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 973 } 974 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 975 } 976 }else if( IsVirtual(pTab) || withoutRowid ){ 977 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 978 }else{ 979 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 980 appendFlag = 1; 981 } 982 autoIncStep(pParse, regAutoinc, regRowid); 983 984 /* Compute data for all columns of the new entry, beginning 985 ** with the first column. 986 */ 987 nHidden = 0; 988 for(i=0; i<pTab->nCol; i++){ 989 int iRegStore = regRowid+1+i; 990 if( i==pTab->iPKey ){ 991 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 992 ** Whenever this column is read, the rowid will be substituted 993 ** in its place. Hence, fill this column with a NULL to avoid 994 ** taking up data space with information that will never be used. 995 ** As there may be shallow copies of this value, make it a soft-NULL */ 996 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 997 continue; 998 } 999 if( pColumn==0 ){ 1000 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1001 j = -1; 1002 nHidden++; 1003 }else{ 1004 j = i - nHidden; 1005 } 1006 }else{ 1007 for(j=0; j<pColumn->nId; j++){ 1008 if( pColumn->a[j].idx==i ) break; 1009 } 1010 } 1011 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1012 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1013 }else if( useTempTable ){ 1014 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1015 }else if( pSelect ){ 1016 if( regFromSelect!=regData ){ 1017 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1018 } 1019 }else{ 1020 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1021 } 1022 } 1023 1024 /* Generate code to check constraints and generate index keys and 1025 ** do the insertion. 1026 */ 1027 #ifndef SQLITE_OMIT_VIRTUALTABLE 1028 if( IsVirtual(pTab) ){ 1029 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1030 sqlite3VtabMakeWritable(pParse, pTab); 1031 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1032 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1033 sqlite3MayAbort(pParse); 1034 }else 1035 #endif 1036 { 1037 int isReplace; /* Set to true if constraints may cause a replace */ 1038 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1039 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1040 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1041 ); 1042 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1043 1044 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1045 ** constraints or (b) there are no triggers and this table is not a 1046 ** parent table in a foreign key constraint. It is safe to set the 1047 ** flag in the second case as if any REPLACE constraint is hit, an 1048 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1049 ** cursor that is disturbed. And these instructions both clear the 1050 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1051 ** functionality. */ 1052 bUseSeek = (isReplace==0 || (pTrigger==0 && 1053 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1054 )); 1055 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1056 regIns, aRegIdx, 0, appendFlag, bUseSeek 1057 ); 1058 } 1059 } 1060 1061 /* Update the count of rows that are inserted 1062 */ 1063 if( regRowCount ){ 1064 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1065 } 1066 1067 if( pTrigger ){ 1068 /* Code AFTER triggers */ 1069 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1070 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1071 } 1072 1073 /* The bottom of the main insertion loop, if the data source 1074 ** is a SELECT statement. 1075 */ 1076 sqlite3VdbeResolveLabel(v, endOfLoop); 1077 if( useTempTable ){ 1078 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1079 sqlite3VdbeJumpHere(v, addrInsTop); 1080 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1081 }else if( pSelect ){ 1082 sqlite3VdbeGoto(v, addrCont); 1083 sqlite3VdbeJumpHere(v, addrInsTop); 1084 } 1085 1086 insert_end: 1087 /* Update the sqlite_sequence table by storing the content of the 1088 ** maximum rowid counter values recorded while inserting into 1089 ** autoincrement tables. 1090 */ 1091 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1092 sqlite3AutoincrementEnd(pParse); 1093 } 1094 1095 /* 1096 ** Return the number of rows inserted. If this routine is 1097 ** generating code because of a call to sqlite3NestedParse(), do not 1098 ** invoke the callback function. 1099 */ 1100 if( regRowCount ){ 1101 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1102 sqlite3VdbeSetNumCols(v, 1); 1103 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1104 } 1105 1106 insert_cleanup: 1107 sqlite3SrcListDelete(db, pTabList); 1108 sqlite3ExprListDelete(db, pList); 1109 sqlite3UpsertDelete(db, pUpsert); 1110 sqlite3SelectDelete(db, pSelect); 1111 sqlite3IdListDelete(db, pColumn); 1112 sqlite3DbFree(db, aRegIdx); 1113 } 1114 1115 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1116 ** they may interfere with compilation of other functions in this file 1117 ** (or in another file, if this file becomes part of the amalgamation). */ 1118 #ifdef isView 1119 #undef isView 1120 #endif 1121 #ifdef pTrigger 1122 #undef pTrigger 1123 #endif 1124 #ifdef tmask 1125 #undef tmask 1126 #endif 1127 1128 /* 1129 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 1130 */ 1131 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1132 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1133 1134 /* This is the Walker callback from checkConstraintUnchanged(). Set 1135 ** bit 0x01 of pWalker->eCode if 1136 ** pWalker->eCode to 0 if this expression node references any of the 1137 ** columns that are being modifed by an UPDATE statement. 1138 */ 1139 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1140 if( pExpr->op==TK_COLUMN ){ 1141 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1142 if( pExpr->iColumn>=0 ){ 1143 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1144 pWalker->eCode |= CKCNSTRNT_COLUMN; 1145 } 1146 }else{ 1147 pWalker->eCode |= CKCNSTRNT_ROWID; 1148 } 1149 } 1150 return WRC_Continue; 1151 } 1152 1153 /* 1154 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1155 ** only columns that are modified by the UPDATE are those for which 1156 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1157 ** 1158 ** Return true if CHECK constraint pExpr does not use any of the 1159 ** changing columns (or the rowid if it is changing). In other words, 1160 ** return true if this CHECK constraint can be skipped when validating 1161 ** the new row in the UPDATE statement. 1162 */ 1163 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 1164 Walker w; 1165 memset(&w, 0, sizeof(w)); 1166 w.eCode = 0; 1167 w.xExprCallback = checkConstraintExprNode; 1168 w.u.aiCol = aiChng; 1169 sqlite3WalkExpr(&w, pExpr); 1170 if( !chngRowid ){ 1171 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1172 w.eCode &= ~CKCNSTRNT_ROWID; 1173 } 1174 testcase( w.eCode==0 ); 1175 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1176 testcase( w.eCode==CKCNSTRNT_ROWID ); 1177 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1178 return !w.eCode; 1179 } 1180 1181 /* 1182 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1183 ** on table pTab. 1184 ** 1185 ** The regNewData parameter is the first register in a range that contains 1186 ** the data to be inserted or the data after the update. There will be 1187 ** pTab->nCol+1 registers in this range. The first register (the one 1188 ** that regNewData points to) will contain the new rowid, or NULL in the 1189 ** case of a WITHOUT ROWID table. The second register in the range will 1190 ** contain the content of the first table column. The third register will 1191 ** contain the content of the second table column. And so forth. 1192 ** 1193 ** The regOldData parameter is similar to regNewData except that it contains 1194 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1195 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1196 ** checking regOldData for zero. 1197 ** 1198 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1199 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1200 ** might be modified by the UPDATE. If pkChng is false, then the key of 1201 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1202 ** 1203 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1204 ** was explicitly specified as part of the INSERT statement. If pkChng 1205 ** is zero, it means that the either rowid is computed automatically or 1206 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1207 ** pkChng will only be true if the INSERT statement provides an integer 1208 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1209 ** 1210 ** The code generated by this routine will store new index entries into 1211 ** registers identified by aRegIdx[]. No index entry is created for 1212 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1213 ** the same as the order of indices on the linked list of indices 1214 ** at pTab->pIndex. 1215 ** 1216 ** The caller must have already opened writeable cursors on the main 1217 ** table and all applicable indices (that is to say, all indices for which 1218 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1219 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1220 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1221 ** for the first index in the pTab->pIndex list. Cursors for other indices 1222 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1223 ** 1224 ** This routine also generates code to check constraints. NOT NULL, 1225 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1226 ** then the appropriate action is performed. There are five possible 1227 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1228 ** 1229 ** Constraint type Action What Happens 1230 ** --------------- ---------- ---------------------------------------- 1231 ** any ROLLBACK The current transaction is rolled back and 1232 ** sqlite3_step() returns immediately with a 1233 ** return code of SQLITE_CONSTRAINT. 1234 ** 1235 ** any ABORT Back out changes from the current command 1236 ** only (do not do a complete rollback) then 1237 ** cause sqlite3_step() to return immediately 1238 ** with SQLITE_CONSTRAINT. 1239 ** 1240 ** any FAIL Sqlite3_step() returns immediately with a 1241 ** return code of SQLITE_CONSTRAINT. The 1242 ** transaction is not rolled back and any 1243 ** changes to prior rows are retained. 1244 ** 1245 ** any IGNORE The attempt in insert or update the current 1246 ** row is skipped, without throwing an error. 1247 ** Processing continues with the next row. 1248 ** (There is an immediate jump to ignoreDest.) 1249 ** 1250 ** NOT NULL REPLACE The NULL value is replace by the default 1251 ** value for that column. If the default value 1252 ** is NULL, the action is the same as ABORT. 1253 ** 1254 ** UNIQUE REPLACE The other row that conflicts with the row 1255 ** being inserted is removed. 1256 ** 1257 ** CHECK REPLACE Illegal. The results in an exception. 1258 ** 1259 ** Which action to take is determined by the overrideError parameter. 1260 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1261 ** is used. Or if pParse->onError==OE_Default then the onError value 1262 ** for the constraint is used. 1263 */ 1264 void sqlite3GenerateConstraintChecks( 1265 Parse *pParse, /* The parser context */ 1266 Table *pTab, /* The table being inserted or updated */ 1267 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1268 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1269 int iIdxCur, /* First index cursor */ 1270 int regNewData, /* First register in a range holding values to insert */ 1271 int regOldData, /* Previous content. 0 for INSERTs */ 1272 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1273 u8 overrideError, /* Override onError to this if not OE_Default */ 1274 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1275 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1276 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1277 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1278 ){ 1279 Vdbe *v; /* VDBE under constrution */ 1280 Index *pIdx; /* Pointer to one of the indices */ 1281 Index *pPk = 0; /* The PRIMARY KEY index */ 1282 sqlite3 *db; /* Database connection */ 1283 int i; /* loop counter */ 1284 int ix; /* Index loop counter */ 1285 int nCol; /* Number of columns */ 1286 int onError; /* Conflict resolution strategy */ 1287 int addr1; /* Address of jump instruction */ 1288 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1289 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1290 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1291 u8 isUpdate; /* True if this is an UPDATE operation */ 1292 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1293 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1294 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1295 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1296 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1297 1298 isUpdate = regOldData!=0; 1299 db = pParse->db; 1300 v = sqlite3GetVdbe(pParse); 1301 assert( v!=0 ); 1302 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1303 nCol = pTab->nCol; 1304 1305 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1306 ** normal rowid tables. nPkField is the number of key fields in the 1307 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1308 ** number of fields in the true primary key of the table. */ 1309 if( HasRowid(pTab) ){ 1310 pPk = 0; 1311 nPkField = 1; 1312 }else{ 1313 pPk = sqlite3PrimaryKeyIndex(pTab); 1314 nPkField = pPk->nKeyCol; 1315 } 1316 1317 /* Record that this module has started */ 1318 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1319 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1320 1321 /* Test all NOT NULL constraints. 1322 */ 1323 for(i=0; i<nCol; i++){ 1324 if( i==pTab->iPKey ){ 1325 continue; /* ROWID is never NULL */ 1326 } 1327 if( aiChng && aiChng[i]<0 ){ 1328 /* Don't bother checking for NOT NULL on columns that do not change */ 1329 continue; 1330 } 1331 onError = pTab->aCol[i].notNull; 1332 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1333 if( overrideError!=OE_Default ){ 1334 onError = overrideError; 1335 }else if( onError==OE_Default ){ 1336 onError = OE_Abort; 1337 } 1338 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1339 onError = OE_Abort; 1340 } 1341 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1342 || onError==OE_Ignore || onError==OE_Replace ); 1343 switch( onError ){ 1344 case OE_Abort: 1345 sqlite3MayAbort(pParse); 1346 /* Fall through */ 1347 case OE_Rollback: 1348 case OE_Fail: { 1349 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1350 pTab->aCol[i].zName); 1351 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1352 regNewData+1+i); 1353 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1354 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1355 VdbeCoverage(v); 1356 break; 1357 } 1358 case OE_Ignore: { 1359 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1360 VdbeCoverage(v); 1361 break; 1362 } 1363 default: { 1364 assert( onError==OE_Replace ); 1365 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1366 VdbeCoverage(v); 1367 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1368 sqlite3VdbeJumpHere(v, addr1); 1369 break; 1370 } 1371 } 1372 } 1373 1374 /* Test all CHECK constraints 1375 */ 1376 #ifndef SQLITE_OMIT_CHECK 1377 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1378 ExprList *pCheck = pTab->pCheck; 1379 pParse->iSelfTab = -(regNewData+1); 1380 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1381 for(i=0; i<pCheck->nExpr; i++){ 1382 int allOk; 1383 Expr *pExpr = pCheck->a[i].pExpr; 1384 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 1385 allOk = sqlite3VdbeMakeLabel(v); 1386 sqlite3VdbeVerifyAbortable(v, onError); 1387 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1388 if( onError==OE_Ignore ){ 1389 sqlite3VdbeGoto(v, ignoreDest); 1390 }else{ 1391 char *zName = pCheck->a[i].zName; 1392 if( zName==0 ) zName = pTab->zName; 1393 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1394 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1395 onError, zName, P4_TRANSIENT, 1396 P5_ConstraintCheck); 1397 } 1398 sqlite3VdbeResolveLabel(v, allOk); 1399 } 1400 pParse->iSelfTab = 0; 1401 } 1402 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1403 1404 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1405 ** order: 1406 ** 1407 ** (1) OE_Update 1408 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1409 ** (3) OE_Replace 1410 ** 1411 ** OE_Fail and OE_Ignore must happen before any changes are made. 1412 ** OE_Update guarantees that only a single row will change, so it 1413 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1414 ** could happen in any order, but they are grouped up front for 1415 ** convenience. 1416 ** 1417 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1418 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1419 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1420 ** constraint before any others, so it had to be moved. 1421 ** 1422 ** Constraint checking code is generated in this order: 1423 ** (A) The rowid constraint 1424 ** (B) Unique index constraints that do not have OE_Replace as their 1425 ** default conflict resolution strategy 1426 ** (C) Unique index that do use OE_Replace by default. 1427 ** 1428 ** The ordering of (2) and (3) is accomplished by making sure the linked 1429 ** list of indexes attached to a table puts all OE_Replace indexes last 1430 ** in the list. See sqlite3CreateIndex() for where that happens. 1431 */ 1432 1433 if( pUpsert ){ 1434 if( pUpsert->pUpsertTarget==0 ){ 1435 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1436 ** Make all unique constraint resolution be OE_Ignore */ 1437 assert( pUpsert->pUpsertSet==0 ); 1438 overrideError = OE_Ignore; 1439 pUpsert = 0; 1440 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1441 /* If the constraint-target uniqueness check must be run first. 1442 ** Jump to that uniqueness check now */ 1443 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1444 VdbeComment((v, "UPSERT constraint goes first")); 1445 } 1446 } 1447 1448 /* If rowid is changing, make sure the new rowid does not previously 1449 ** exist in the table. 1450 */ 1451 if( pkChng && pPk==0 ){ 1452 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1453 1454 /* Figure out what action to take in case of a rowid collision */ 1455 onError = pTab->keyConf; 1456 if( overrideError!=OE_Default ){ 1457 onError = overrideError; 1458 }else if( onError==OE_Default ){ 1459 onError = OE_Abort; 1460 } 1461 1462 /* figure out whether or not upsert applies in this case */ 1463 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1464 if( pUpsert->pUpsertSet==0 ){ 1465 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1466 }else{ 1467 onError = OE_Update; /* DO UPDATE */ 1468 } 1469 } 1470 1471 /* If the response to a rowid conflict is REPLACE but the response 1472 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1473 ** to defer the running of the rowid conflict checking until after 1474 ** the UNIQUE constraints have run. 1475 */ 1476 if( onError==OE_Replace /* IPK rule is REPLACE */ 1477 && onError!=overrideError /* Rules for other contraints are different */ 1478 && pTab->pIndex /* There exist other constraints */ 1479 ){ 1480 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1481 VdbeComment((v, "defer IPK REPLACE until last")); 1482 } 1483 1484 if( isUpdate ){ 1485 /* pkChng!=0 does not mean that the rowid has changed, only that 1486 ** it might have changed. Skip the conflict logic below if the rowid 1487 ** is unchanged. */ 1488 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1489 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1490 VdbeCoverage(v); 1491 } 1492 1493 /* Check to see if the new rowid already exists in the table. Skip 1494 ** the following conflict logic if it does not. */ 1495 VdbeNoopComment((v, "uniqueness check for ROWID")); 1496 sqlite3VdbeVerifyAbortable(v, onError); 1497 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1498 VdbeCoverage(v); 1499 1500 switch( onError ){ 1501 default: { 1502 onError = OE_Abort; 1503 /* Fall thru into the next case */ 1504 } 1505 case OE_Rollback: 1506 case OE_Abort: 1507 case OE_Fail: { 1508 testcase( onError==OE_Rollback ); 1509 testcase( onError==OE_Abort ); 1510 testcase( onError==OE_Fail ); 1511 sqlite3RowidConstraint(pParse, onError, pTab); 1512 break; 1513 } 1514 case OE_Replace: { 1515 /* If there are DELETE triggers on this table and the 1516 ** recursive-triggers flag is set, call GenerateRowDelete() to 1517 ** remove the conflicting row from the table. This will fire 1518 ** the triggers and remove both the table and index b-tree entries. 1519 ** 1520 ** Otherwise, if there are no triggers or the recursive-triggers 1521 ** flag is not set, but the table has one or more indexes, call 1522 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1523 ** only. The table b-tree entry will be replaced by the new entry 1524 ** when it is inserted. 1525 ** 1526 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1527 ** also invoke MultiWrite() to indicate that this VDBE may require 1528 ** statement rollback (if the statement is aborted after the delete 1529 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1530 ** but being more selective here allows statements like: 1531 ** 1532 ** REPLACE INTO t(rowid) VALUES($newrowid) 1533 ** 1534 ** to run without a statement journal if there are no indexes on the 1535 ** table. 1536 */ 1537 Trigger *pTrigger = 0; 1538 if( db->flags&SQLITE_RecTriggers ){ 1539 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1540 } 1541 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1542 sqlite3MultiWrite(pParse); 1543 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1544 regNewData, 1, 0, OE_Replace, 1, -1); 1545 }else{ 1546 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1547 assert( HasRowid(pTab) ); 1548 /* This OP_Delete opcode fires the pre-update-hook only. It does 1549 ** not modify the b-tree. It is more efficient to let the coming 1550 ** OP_Insert replace the existing entry than it is to delete the 1551 ** existing entry and then insert a new one. */ 1552 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1553 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1554 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1555 if( pTab->pIndex ){ 1556 sqlite3MultiWrite(pParse); 1557 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1558 } 1559 } 1560 seenReplace = 1; 1561 break; 1562 } 1563 #ifndef SQLITE_OMIT_UPSERT 1564 case OE_Update: { 1565 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1566 /* Fall through */ 1567 } 1568 #endif 1569 case OE_Ignore: { 1570 testcase( onError==OE_Ignore ); 1571 sqlite3VdbeGoto(v, ignoreDest); 1572 break; 1573 } 1574 } 1575 sqlite3VdbeResolveLabel(v, addrRowidOk); 1576 if( ipkTop ){ 1577 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1578 sqlite3VdbeJumpHere(v, ipkTop-1); 1579 } 1580 } 1581 1582 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1583 ** index and making sure that duplicate entries do not already exist. 1584 ** Compute the revised record entries for indices as we go. 1585 ** 1586 ** This loop also handles the case of the PRIMARY KEY index for a 1587 ** WITHOUT ROWID table. 1588 */ 1589 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1590 int regIdx; /* Range of registers hold conent for pIdx */ 1591 int regR; /* Range of registers holding conflicting PK */ 1592 int iThisCur; /* Cursor for this UNIQUE index */ 1593 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1594 1595 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1596 if( pUpIdx==pIdx ){ 1597 addrUniqueOk = upsertJump+1; 1598 upsertBypass = sqlite3VdbeGoto(v, 0); 1599 VdbeComment((v, "Skip upsert subroutine")); 1600 sqlite3VdbeJumpHere(v, upsertJump); 1601 }else{ 1602 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1603 } 1604 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1605 sqlite3TableAffinity(v, pTab, regNewData+1); 1606 bAffinityDone = 1; 1607 } 1608 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1609 iThisCur = iIdxCur+ix; 1610 1611 1612 /* Skip partial indices for which the WHERE clause is not true */ 1613 if( pIdx->pPartIdxWhere ){ 1614 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1615 pParse->iSelfTab = -(regNewData+1); 1616 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1617 SQLITE_JUMPIFNULL); 1618 pParse->iSelfTab = 0; 1619 } 1620 1621 /* Create a record for this index entry as it should appear after 1622 ** the insert or update. Store that record in the aRegIdx[ix] register 1623 */ 1624 regIdx = aRegIdx[ix]+1; 1625 for(i=0; i<pIdx->nColumn; i++){ 1626 int iField = pIdx->aiColumn[i]; 1627 int x; 1628 if( iField==XN_EXPR ){ 1629 pParse->iSelfTab = -(regNewData+1); 1630 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1631 pParse->iSelfTab = 0; 1632 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1633 }else{ 1634 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1635 x = regNewData; 1636 }else{ 1637 x = iField + regNewData + 1; 1638 } 1639 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1640 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1641 } 1642 } 1643 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1644 VdbeComment((v, "for %s", pIdx->zName)); 1645 #ifdef SQLITE_ENABLE_NULL_TRIM 1646 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1647 #endif 1648 1649 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1650 ** of a WITHOUT ROWID table and there has been no change the 1651 ** primary key, then no collision is possible. The collision detection 1652 ** logic below can all be skipped. */ 1653 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1654 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1655 continue; 1656 } 1657 1658 /* Find out what action to take in case there is a uniqueness conflict */ 1659 onError = pIdx->onError; 1660 if( onError==OE_None ){ 1661 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1662 continue; /* pIdx is not a UNIQUE index */ 1663 } 1664 if( overrideError!=OE_Default ){ 1665 onError = overrideError; 1666 }else if( onError==OE_Default ){ 1667 onError = OE_Abort; 1668 } 1669 1670 /* Figure out if the upsert clause applies to this index */ 1671 if( pUpIdx==pIdx ){ 1672 if( pUpsert->pUpsertSet==0 ){ 1673 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1674 }else{ 1675 onError = OE_Update; /* DO UPDATE */ 1676 } 1677 } 1678 1679 /* Collision detection may be omitted if all of the following are true: 1680 ** (1) The conflict resolution algorithm is REPLACE 1681 ** (2) The table is a WITHOUT ROWID table 1682 ** (3) There are no secondary indexes on the table 1683 ** (4) No delete triggers need to be fired if there is a conflict 1684 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1685 */ 1686 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1687 && pPk==pIdx /* Condition 2 */ 1688 && onError==OE_Replace /* Condition 1 */ 1689 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1690 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1691 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1692 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1693 ){ 1694 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1695 continue; 1696 } 1697 1698 /* Check to see if the new index entry will be unique */ 1699 sqlite3VdbeVerifyAbortable(v, onError); 1700 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1701 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1702 1703 /* Generate code to handle collisions */ 1704 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1705 if( isUpdate || onError==OE_Replace ){ 1706 if( HasRowid(pTab) ){ 1707 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1708 /* Conflict only if the rowid of the existing index entry 1709 ** is different from old-rowid */ 1710 if( isUpdate ){ 1711 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1712 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1713 VdbeCoverage(v); 1714 } 1715 }else{ 1716 int x; 1717 /* Extract the PRIMARY KEY from the end of the index entry and 1718 ** store it in registers regR..regR+nPk-1 */ 1719 if( pIdx!=pPk ){ 1720 for(i=0; i<pPk->nKeyCol; i++){ 1721 assert( pPk->aiColumn[i]>=0 ); 1722 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1723 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1724 VdbeComment((v, "%s.%s", pTab->zName, 1725 pTab->aCol[pPk->aiColumn[i]].zName)); 1726 } 1727 } 1728 if( isUpdate ){ 1729 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1730 ** table, only conflict if the new PRIMARY KEY values are actually 1731 ** different from the old. 1732 ** 1733 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1734 ** of the matched index row are different from the original PRIMARY 1735 ** KEY values of this row before the update. */ 1736 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1737 int op = OP_Ne; 1738 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1739 1740 for(i=0; i<pPk->nKeyCol; i++){ 1741 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1742 x = pPk->aiColumn[i]; 1743 assert( x>=0 ); 1744 if( i==(pPk->nKeyCol-1) ){ 1745 addrJump = addrUniqueOk; 1746 op = OP_Eq; 1747 } 1748 sqlite3VdbeAddOp4(v, op, 1749 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1750 ); 1751 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1752 VdbeCoverageIf(v, op==OP_Eq); 1753 VdbeCoverageIf(v, op==OP_Ne); 1754 } 1755 } 1756 } 1757 } 1758 1759 /* Generate code that executes if the new index entry is not unique */ 1760 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1761 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1762 switch( onError ){ 1763 case OE_Rollback: 1764 case OE_Abort: 1765 case OE_Fail: { 1766 testcase( onError==OE_Rollback ); 1767 testcase( onError==OE_Abort ); 1768 testcase( onError==OE_Fail ); 1769 sqlite3UniqueConstraint(pParse, onError, pIdx); 1770 break; 1771 } 1772 #ifndef SQLITE_OMIT_UPSERT 1773 case OE_Update: { 1774 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1775 /* Fall through */ 1776 } 1777 #endif 1778 case OE_Ignore: { 1779 testcase( onError==OE_Ignore ); 1780 sqlite3VdbeGoto(v, ignoreDest); 1781 break; 1782 } 1783 default: { 1784 Trigger *pTrigger = 0; 1785 assert( onError==OE_Replace ); 1786 if( db->flags&SQLITE_RecTriggers ){ 1787 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1788 } 1789 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1790 sqlite3MultiWrite(pParse); 1791 } 1792 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1793 regR, nPkField, 0, OE_Replace, 1794 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1795 seenReplace = 1; 1796 break; 1797 } 1798 } 1799 if( pUpIdx==pIdx ){ 1800 sqlite3VdbeGoto(v, upsertJump+1); 1801 sqlite3VdbeJumpHere(v, upsertBypass); 1802 }else{ 1803 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1804 } 1805 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1806 } 1807 1808 /* If the IPK constraint is a REPLACE, run it last */ 1809 if( ipkTop ){ 1810 sqlite3VdbeGoto(v, ipkTop+1); 1811 VdbeComment((v, "Do IPK REPLACE")); 1812 sqlite3VdbeJumpHere(v, ipkBottom); 1813 } 1814 1815 *pbMayReplace = seenReplace; 1816 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1817 } 1818 1819 #ifdef SQLITE_ENABLE_NULL_TRIM 1820 /* 1821 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1822 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1823 ** 1824 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1825 */ 1826 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1827 u16 i; 1828 1829 /* Records with omitted columns are only allowed for schema format 1830 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1831 if( pTab->pSchema->file_format<2 ) return; 1832 1833 for(i=pTab->nCol-1; i>0; i--){ 1834 if( pTab->aCol[i].pDflt!=0 ) break; 1835 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1836 } 1837 sqlite3VdbeChangeP5(v, i+1); 1838 } 1839 #endif 1840 1841 /* 1842 ** This routine generates code to finish the INSERT or UPDATE operation 1843 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1844 ** A consecutive range of registers starting at regNewData contains the 1845 ** rowid and the content to be inserted. 1846 ** 1847 ** The arguments to this routine should be the same as the first six 1848 ** arguments to sqlite3GenerateConstraintChecks. 1849 */ 1850 void sqlite3CompleteInsertion( 1851 Parse *pParse, /* The parser context */ 1852 Table *pTab, /* the table into which we are inserting */ 1853 int iDataCur, /* Cursor of the canonical data source */ 1854 int iIdxCur, /* First index cursor */ 1855 int regNewData, /* Range of content */ 1856 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1857 int update_flags, /* True for UPDATE, False for INSERT */ 1858 int appendBias, /* True if this is likely to be an append */ 1859 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1860 ){ 1861 Vdbe *v; /* Prepared statements under construction */ 1862 Index *pIdx; /* An index being inserted or updated */ 1863 u8 pik_flags; /* flag values passed to the btree insert */ 1864 int regData; /* Content registers (after the rowid) */ 1865 int regRec; /* Register holding assembled record for the table */ 1866 int i; /* Loop counter */ 1867 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1868 1869 assert( update_flags==0 1870 || update_flags==OPFLAG_ISUPDATE 1871 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1872 ); 1873 1874 v = sqlite3GetVdbe(pParse); 1875 assert( v!=0 ); 1876 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1877 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1878 if( aRegIdx[i]==0 ) continue; 1879 bAffinityDone = 1; 1880 if( pIdx->pPartIdxWhere ){ 1881 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1882 VdbeCoverage(v); 1883 } 1884 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1885 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1886 assert( pParse->nested==0 ); 1887 pik_flags |= OPFLAG_NCHANGE; 1888 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1889 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1890 if( update_flags==0 ){ 1891 sqlite3VdbeAddOp4(v, OP_InsertInt, 1892 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1893 ); 1894 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1895 } 1896 #endif 1897 } 1898 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1899 aRegIdx[i]+1, 1900 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1901 sqlite3VdbeChangeP5(v, pik_flags); 1902 } 1903 if( !HasRowid(pTab) ) return; 1904 regData = regNewData + 1; 1905 regRec = sqlite3GetTempReg(pParse); 1906 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1907 sqlite3SetMakeRecordP5(v, pTab); 1908 if( !bAffinityDone ){ 1909 sqlite3TableAffinity(v, pTab, 0); 1910 } 1911 if( pParse->nested ){ 1912 pik_flags = 0; 1913 }else{ 1914 pik_flags = OPFLAG_NCHANGE; 1915 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1916 } 1917 if( appendBias ){ 1918 pik_flags |= OPFLAG_APPEND; 1919 } 1920 if( useSeekResult ){ 1921 pik_flags |= OPFLAG_USESEEKRESULT; 1922 } 1923 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1924 if( !pParse->nested ){ 1925 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1926 } 1927 sqlite3VdbeChangeP5(v, pik_flags); 1928 } 1929 1930 /* 1931 ** Allocate cursors for the pTab table and all its indices and generate 1932 ** code to open and initialized those cursors. 1933 ** 1934 ** The cursor for the object that contains the complete data (normally 1935 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1936 ** ROWID table) is returned in *piDataCur. The first index cursor is 1937 ** returned in *piIdxCur. The number of indices is returned. 1938 ** 1939 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1940 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1941 ** If iBase is negative, then allocate the next available cursor. 1942 ** 1943 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1944 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1945 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1946 ** pTab->pIndex list. 1947 ** 1948 ** If pTab is a virtual table, then this routine is a no-op and the 1949 ** *piDataCur and *piIdxCur values are left uninitialized. 1950 */ 1951 int sqlite3OpenTableAndIndices( 1952 Parse *pParse, /* Parsing context */ 1953 Table *pTab, /* Table to be opened */ 1954 int op, /* OP_OpenRead or OP_OpenWrite */ 1955 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1956 int iBase, /* Use this for the table cursor, if there is one */ 1957 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1958 int *piDataCur, /* Write the database source cursor number here */ 1959 int *piIdxCur /* Write the first index cursor number here */ 1960 ){ 1961 int i; 1962 int iDb; 1963 int iDataCur; 1964 Index *pIdx; 1965 Vdbe *v; 1966 1967 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1968 assert( op==OP_OpenWrite || p5==0 ); 1969 if( IsVirtual(pTab) ){ 1970 /* This routine is a no-op for virtual tables. Leave the output 1971 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1972 ** can detect if they are used by mistake in the caller. */ 1973 return 0; 1974 } 1975 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1976 v = sqlite3GetVdbe(pParse); 1977 assert( v!=0 ); 1978 if( iBase<0 ) iBase = pParse->nTab; 1979 iDataCur = iBase++; 1980 if( piDataCur ) *piDataCur = iDataCur; 1981 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1982 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1983 }else{ 1984 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1985 } 1986 if( piIdxCur ) *piIdxCur = iBase; 1987 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1988 int iIdxCur = iBase++; 1989 assert( pIdx->pSchema==pTab->pSchema ); 1990 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1991 if( piDataCur ) *piDataCur = iIdxCur; 1992 p5 = 0; 1993 } 1994 if( aToOpen==0 || aToOpen[i+1] ){ 1995 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1996 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1997 sqlite3VdbeChangeP5(v, p5); 1998 VdbeComment((v, "%s", pIdx->zName)); 1999 } 2000 } 2001 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2002 return i; 2003 } 2004 2005 2006 #ifdef SQLITE_TEST 2007 /* 2008 ** The following global variable is incremented whenever the 2009 ** transfer optimization is used. This is used for testing 2010 ** purposes only - to make sure the transfer optimization really 2011 ** is happening when it is supposed to. 2012 */ 2013 int sqlite3_xferopt_count; 2014 #endif /* SQLITE_TEST */ 2015 2016 2017 #ifndef SQLITE_OMIT_XFER_OPT 2018 /* 2019 ** Check to see if index pSrc is compatible as a source of data 2020 ** for index pDest in an insert transfer optimization. The rules 2021 ** for a compatible index: 2022 ** 2023 ** * The index is over the same set of columns 2024 ** * The same DESC and ASC markings occurs on all columns 2025 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2026 ** * The same collating sequence on each column 2027 ** * The index has the exact same WHERE clause 2028 */ 2029 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2030 int i; 2031 assert( pDest && pSrc ); 2032 assert( pDest->pTable!=pSrc->pTable ); 2033 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2034 return 0; /* Different number of columns */ 2035 } 2036 if( pDest->onError!=pSrc->onError ){ 2037 return 0; /* Different conflict resolution strategies */ 2038 } 2039 for(i=0; i<pSrc->nKeyCol; i++){ 2040 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2041 return 0; /* Different columns indexed */ 2042 } 2043 if( pSrc->aiColumn[i]==XN_EXPR ){ 2044 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2045 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2046 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2047 return 0; /* Different expressions in the index */ 2048 } 2049 } 2050 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2051 return 0; /* Different sort orders */ 2052 } 2053 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2054 return 0; /* Different collating sequences */ 2055 } 2056 } 2057 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2058 return 0; /* Different WHERE clauses */ 2059 } 2060 2061 /* If no test above fails then the indices must be compatible */ 2062 return 1; 2063 } 2064 2065 /* 2066 ** Attempt the transfer optimization on INSERTs of the form 2067 ** 2068 ** INSERT INTO tab1 SELECT * FROM tab2; 2069 ** 2070 ** The xfer optimization transfers raw records from tab2 over to tab1. 2071 ** Columns are not decoded and reassembled, which greatly improves 2072 ** performance. Raw index records are transferred in the same way. 2073 ** 2074 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2075 ** There are lots of rules for determining compatibility - see comments 2076 ** embedded in the code for details. 2077 ** 2078 ** This routine returns TRUE if the optimization is guaranteed to be used. 2079 ** Sometimes the xfer optimization will only work if the destination table 2080 ** is empty - a factor that can only be determined at run-time. In that 2081 ** case, this routine generates code for the xfer optimization but also 2082 ** does a test to see if the destination table is empty and jumps over the 2083 ** xfer optimization code if the test fails. In that case, this routine 2084 ** returns FALSE so that the caller will know to go ahead and generate 2085 ** an unoptimized transfer. This routine also returns FALSE if there 2086 ** is no chance that the xfer optimization can be applied. 2087 ** 2088 ** This optimization is particularly useful at making VACUUM run faster. 2089 */ 2090 static int xferOptimization( 2091 Parse *pParse, /* Parser context */ 2092 Table *pDest, /* The table we are inserting into */ 2093 Select *pSelect, /* A SELECT statement to use as the data source */ 2094 int onError, /* How to handle constraint errors */ 2095 int iDbDest /* The database of pDest */ 2096 ){ 2097 sqlite3 *db = pParse->db; 2098 ExprList *pEList; /* The result set of the SELECT */ 2099 Table *pSrc; /* The table in the FROM clause of SELECT */ 2100 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2101 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2102 int i; /* Loop counter */ 2103 int iDbSrc; /* The database of pSrc */ 2104 int iSrc, iDest; /* Cursors from source and destination */ 2105 int addr1, addr2; /* Loop addresses */ 2106 int emptyDestTest = 0; /* Address of test for empty pDest */ 2107 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2108 Vdbe *v; /* The VDBE we are building */ 2109 int regAutoinc; /* Memory register used by AUTOINC */ 2110 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2111 int regData, regRowid; /* Registers holding data and rowid */ 2112 2113 if( pSelect==0 ){ 2114 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2115 } 2116 if( pParse->pWith || pSelect->pWith ){ 2117 /* Do not attempt to process this query if there are an WITH clauses 2118 ** attached to it. Proceeding may generate a false "no such table: xxx" 2119 ** error if pSelect reads from a CTE named "xxx". */ 2120 return 0; 2121 } 2122 if( sqlite3TriggerList(pParse, pDest) ){ 2123 return 0; /* tab1 must not have triggers */ 2124 } 2125 #ifndef SQLITE_OMIT_VIRTUALTABLE 2126 if( IsVirtual(pDest) ){ 2127 return 0; /* tab1 must not be a virtual table */ 2128 } 2129 #endif 2130 if( onError==OE_Default ){ 2131 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2132 if( onError==OE_Default ) onError = OE_Abort; 2133 } 2134 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2135 if( pSelect->pSrc->nSrc!=1 ){ 2136 return 0; /* FROM clause must have exactly one term */ 2137 } 2138 if( pSelect->pSrc->a[0].pSelect ){ 2139 return 0; /* FROM clause cannot contain a subquery */ 2140 } 2141 if( pSelect->pWhere ){ 2142 return 0; /* SELECT may not have a WHERE clause */ 2143 } 2144 if( pSelect->pOrderBy ){ 2145 return 0; /* SELECT may not have an ORDER BY clause */ 2146 } 2147 /* Do not need to test for a HAVING clause. If HAVING is present but 2148 ** there is no ORDER BY, we will get an error. */ 2149 if( pSelect->pGroupBy ){ 2150 return 0; /* SELECT may not have a GROUP BY clause */ 2151 } 2152 if( pSelect->pLimit ){ 2153 return 0; /* SELECT may not have a LIMIT clause */ 2154 } 2155 if( pSelect->pPrior ){ 2156 return 0; /* SELECT may not be a compound query */ 2157 } 2158 if( pSelect->selFlags & SF_Distinct ){ 2159 return 0; /* SELECT may not be DISTINCT */ 2160 } 2161 pEList = pSelect->pEList; 2162 assert( pEList!=0 ); 2163 if( pEList->nExpr!=1 ){ 2164 return 0; /* The result set must have exactly one column */ 2165 } 2166 assert( pEList->a[0].pExpr ); 2167 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2168 return 0; /* The result set must be the special operator "*" */ 2169 } 2170 2171 /* At this point we have established that the statement is of the 2172 ** correct syntactic form to participate in this optimization. Now 2173 ** we have to check the semantics. 2174 */ 2175 pItem = pSelect->pSrc->a; 2176 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2177 if( pSrc==0 ){ 2178 return 0; /* FROM clause does not contain a real table */ 2179 } 2180 if( pSrc==pDest ){ 2181 return 0; /* tab1 and tab2 may not be the same table */ 2182 } 2183 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2184 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2185 } 2186 #ifndef SQLITE_OMIT_VIRTUALTABLE 2187 if( IsVirtual(pSrc) ){ 2188 return 0; /* tab2 must not be a virtual table */ 2189 } 2190 #endif 2191 if( pSrc->pSelect ){ 2192 return 0; /* tab2 may not be a view */ 2193 } 2194 if( pDest->nCol!=pSrc->nCol ){ 2195 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2196 } 2197 if( pDest->iPKey!=pSrc->iPKey ){ 2198 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2199 } 2200 for(i=0; i<pDest->nCol; i++){ 2201 Column *pDestCol = &pDest->aCol[i]; 2202 Column *pSrcCol = &pSrc->aCol[i]; 2203 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2204 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2205 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2206 ){ 2207 return 0; /* Neither table may have __hidden__ columns */ 2208 } 2209 #endif 2210 if( pDestCol->affinity!=pSrcCol->affinity ){ 2211 return 0; /* Affinity must be the same on all columns */ 2212 } 2213 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2214 return 0; /* Collating sequence must be the same on all columns */ 2215 } 2216 if( pDestCol->notNull && !pSrcCol->notNull ){ 2217 return 0; /* tab2 must be NOT NULL if tab1 is */ 2218 } 2219 /* Default values for second and subsequent columns need to match. */ 2220 if( i>0 ){ 2221 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2222 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2223 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2224 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2225 pSrcCol->pDflt->u.zToken)!=0) 2226 ){ 2227 return 0; /* Default values must be the same for all columns */ 2228 } 2229 } 2230 } 2231 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2232 if( IsUniqueIndex(pDestIdx) ){ 2233 destHasUniqueIdx = 1; 2234 } 2235 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2236 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2237 } 2238 if( pSrcIdx==0 ){ 2239 return 0; /* pDestIdx has no corresponding index in pSrc */ 2240 } 2241 } 2242 #ifndef SQLITE_OMIT_CHECK 2243 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2244 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2245 } 2246 #endif 2247 #ifndef SQLITE_OMIT_FOREIGN_KEY 2248 /* Disallow the transfer optimization if the destination table constains 2249 ** any foreign key constraints. This is more restrictive than necessary. 2250 ** But the main beneficiary of the transfer optimization is the VACUUM 2251 ** command, and the VACUUM command disables foreign key constraints. So 2252 ** the extra complication to make this rule less restrictive is probably 2253 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2254 */ 2255 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2256 return 0; 2257 } 2258 #endif 2259 if( (db->flags & SQLITE_CountRows)!=0 ){ 2260 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2261 } 2262 2263 /* If we get this far, it means that the xfer optimization is at 2264 ** least a possibility, though it might only work if the destination 2265 ** table (tab1) is initially empty. 2266 */ 2267 #ifdef SQLITE_TEST 2268 sqlite3_xferopt_count++; 2269 #endif 2270 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2271 v = sqlite3GetVdbe(pParse); 2272 sqlite3CodeVerifySchema(pParse, iDbSrc); 2273 iSrc = pParse->nTab++; 2274 iDest = pParse->nTab++; 2275 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2276 regData = sqlite3GetTempReg(pParse); 2277 regRowid = sqlite3GetTempReg(pParse); 2278 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2279 assert( HasRowid(pDest) || destHasUniqueIdx ); 2280 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2281 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2282 || destHasUniqueIdx /* (2) */ 2283 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2284 )){ 2285 /* In some circumstances, we are able to run the xfer optimization 2286 ** only if the destination table is initially empty. Unless the 2287 ** DBFLAG_Vacuum flag is set, this block generates code to make 2288 ** that determination. If DBFLAG_Vacuum is set, then the destination 2289 ** table is always empty. 2290 ** 2291 ** Conditions under which the destination must be empty: 2292 ** 2293 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2294 ** (If the destination is not initially empty, the rowid fields 2295 ** of index entries might need to change.) 2296 ** 2297 ** (2) The destination has a unique index. (The xfer optimization 2298 ** is unable to test uniqueness.) 2299 ** 2300 ** (3) onError is something other than OE_Abort and OE_Rollback. 2301 */ 2302 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2303 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2304 sqlite3VdbeJumpHere(v, addr1); 2305 } 2306 if( HasRowid(pSrc) ){ 2307 u8 insFlags; 2308 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2309 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2310 if( pDest->iPKey>=0 ){ 2311 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2312 sqlite3VdbeVerifyAbortable(v, onError); 2313 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2314 VdbeCoverage(v); 2315 sqlite3RowidConstraint(pParse, onError, pDest); 2316 sqlite3VdbeJumpHere(v, addr2); 2317 autoIncStep(pParse, regAutoinc, regRowid); 2318 }else if( pDest->pIndex==0 ){ 2319 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2320 }else{ 2321 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2322 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2323 } 2324 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2325 if( db->mDbFlags & DBFLAG_Vacuum ){ 2326 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2327 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2328 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2329 }else{ 2330 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2331 } 2332 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2333 (char*)pDest, P4_TABLE); 2334 sqlite3VdbeChangeP5(v, insFlags); 2335 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2336 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2337 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2338 }else{ 2339 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2340 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2341 } 2342 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2343 u8 idxInsFlags = 0; 2344 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2345 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2346 } 2347 assert( pSrcIdx ); 2348 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2349 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2350 VdbeComment((v, "%s", pSrcIdx->zName)); 2351 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2352 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2353 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2354 VdbeComment((v, "%s", pDestIdx->zName)); 2355 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2356 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2357 if( db->mDbFlags & DBFLAG_Vacuum ){ 2358 /* This INSERT command is part of a VACUUM operation, which guarantees 2359 ** that the destination table is empty. If all indexed columns use 2360 ** collation sequence BINARY, then it can also be assumed that the 2361 ** index will be populated by inserting keys in strictly sorted 2362 ** order. In this case, instead of seeking within the b-tree as part 2363 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2364 ** OP_IdxInsert to seek to the point within the b-tree where each key 2365 ** should be inserted. This is faster. 2366 ** 2367 ** If any of the indexed columns use a collation sequence other than 2368 ** BINARY, this optimization is disabled. This is because the user 2369 ** might change the definition of a collation sequence and then run 2370 ** a VACUUM command. In that case keys may not be written in strictly 2371 ** sorted order. */ 2372 for(i=0; i<pSrcIdx->nColumn; i++){ 2373 const char *zColl = pSrcIdx->azColl[i]; 2374 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2375 } 2376 if( i==pSrcIdx->nColumn ){ 2377 idxInsFlags = OPFLAG_USESEEKRESULT; 2378 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2379 } 2380 } 2381 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2382 idxInsFlags |= OPFLAG_NCHANGE; 2383 } 2384 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2385 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2386 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2387 sqlite3VdbeJumpHere(v, addr1); 2388 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2389 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2390 } 2391 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2392 sqlite3ReleaseTempReg(pParse, regRowid); 2393 sqlite3ReleaseTempReg(pParse, regData); 2394 if( emptyDestTest ){ 2395 sqlite3AutoincrementEnd(pParse); 2396 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2397 sqlite3VdbeJumpHere(v, emptyDestTest); 2398 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2399 return 0; 2400 }else{ 2401 return 1; 2402 } 2403 } 2404 #endif /* SQLITE_OMIT_XFER_OPT */ 2405